
UCLA
UCLA Electronic Theses and Dissertations

Title
Inference of Human Motion using Low-cost Sensors

Permalink
https://escholarship.org/uc/item/4pp7n7z8

Author
Chien, Chieh

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4pp7n7z8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Inference of Human Motion using Low-cost Sensors

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Chieh Chien

2013

© Copyright by

Chieh Chien

2013

 ii

ABSTRACT OF THE DISSERTATION

Inference of Human Motion using Low-cost Sensors

By

Chieh Chien

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2013

Professor Gregory J. Pottie, Chair

A wireless health system that collects and processes data of human activities can help both users

and medical professionals to monitor health status remotely. Therefore it saves tremendous

medical resources and costs compared to traditional treatment in which a huge amount of human

effort is involved. We present two systems that can correctly classify human daily life activities

with little training, and another system to reconstruct human motion trajectories from

commercial low cost MEMS inertial measurement units (IMUs) and the Microsoft® Kinect.

A system that reliably classifies daily life activities can contribute to more effective and

economical treatments for patients with chronic conditions or undergoing rehabilitative therapy.

We propose a universal hybrid decision tree classifier for this purpose. The tree classifier can

flexibly implement different decision rules at its internal nodes, and can be adapted from a

 iii

population-based model when supplemented by training data for individuals. Compared to other

methods, the experimental results showed a high accuracy of classifying human daily live

activities.

After we have an accurate classification of human activities, we present a system to

further reconstruct motion trajectories using IMUs and the Kinect. The system fuses different

motion reconstruction models to give a better tracking result, in which each model is weighted

and transformed to a universal basis. This model is also expandable to accommodate different

resources and environments. Experimental results showed a great improvement over past

methods only using a single motion reconstruction scheme.

 iv

The dissertation of Chieh Chien is approved.

William Kaiser

Lara Doecek

Mario Gerla

Gregory J. Pottie, Committee Chair

University of California, Los Angeles

2013

 v

TABLE OF CONTENTS

CHAPTER 1! INTRODUCTION AND PRELIMINARIES ...1!

1.1! Introduction .. 1!

1.2! Activity Classification ... 3!

1.2.1! Decision Tree Classifier .. 4!

1.2.2! Naïve Bayes Classifier .. 7!

1.2.3! Support Vector Machine ... 9!

1.3! Motion Reconstruction .. 11!

1.3.1! Complementary Filter ... 11!

1.3.2! Motion Decomposition ... 13!

1.4! Devices Used in this Research ... 14!

1.4.1! Micro-electromechanical Systems (MEMS) ... 14!

1.4.2! Kinect and Software Development Kit (SDK) ... 16!

CHAPTER 2! A"UNIVERSAL"HYBRID"DECISION"TREE"CLASSIFIER DESIGN FOR

HUMAN ACTIVITY CLASSIFICATION AND ITS APPLICATIONS18!

2.1! Introduction .. 18!

2.2! System .. 21!

2.2.1! Data Collection ... 21!

2.2.2! Signal Processing Toolbox ... 23!

2.2.3! Feature Extraction ... 23!

 vi

2.2.3.1! Spatial Domain ... 24!

2.2.3.2! Time Domain ... 24!

2.2.3.3! Frequency Domain ... 24!

2.2.4! Tree Formation .. 24!

2.2.5! Feature Selection ... 25!

2.2.6! Testing / Classification ... 27!

2.3! Hybrid Tree Formation .. 27!

2.4! Universal Hybrid Decision Trees .. 28!

2.5! Simulation .. 30!

2.5.1! Methods ... 30!

2.5.2! Custom Universal Hybrid Decision Tree .. 30!

2.5.3! Automatically Generated Tree .. 32!

2.5.4! Automatically Generated Tree with Tuned Thresholds .. 33!

2.6! Result ... 33!

2.7! Discussion .. 36!

2.7.1! Universal Hybrid Tree Structure ... 36!

2.7.2! Automatically Generated Trees .. 36!

2.7.3! Confusion Matrices ... 38!

2.8! Monitoring Workspace Activities using Accelerometers .. 39!

2.8.1! Introduction ... 39!

2.8.2! System Architecture .. 40!

2.8.2.1! System Components .. 40!

2.8.2.2! Training Data Collection .. 40!

 vii

2.8.2.3! Scripted/Testing Data Collection ... 41!

2.8.2.4! Data Analysis ... 41!

2.8.3! Experiments and Results ... 41!

2.8.3.1! Training Data Set Duration .. 44!

2.8.4! Summary ... 46!

2.9! Estimation of Accelerometer Orientation for Activity Recognition 47!

2.9.1! Introduction ... 47!

2.9.2! Methodology ... 48!

2.9.2.1! System Description .. 48!

2.9.2.2! Rotation Matrix Estimation Method .. 48!

2.9.2.3! Estimating the Orientation ... 49!

2.9.3! Results and Evaluations .. 52!

2.9.3.1! Single Sensor Experiments .. 52!

2.9.3.2! Multiple Sensor Activity Classification ... 54!

2.9.3.3! Graphical User Interface .. 58!

2.9.4! Summary ... 59!

2.10! Feature Selection Based on Mutual Information for Human Activity Recognition 60!

2.10.1! Introduction ... 60!

2.10.2! Methodology ... 62!

2.10.2.1! Training Data Collection .. 62!

2.10.2.2! Features Computation .. 63!

2.10.2.3! Classification .. 64!

2.10.2.4! Feature Selection Algorithm .. 65!

 viii

2.10.3! Results ... 67!

2.10.4! Summary ... 69!

2.11! Conclusion ... 70!

CHAPTER 3! MOTION TRAJECTORY FUSION USING DIVERSE SENSOR TYPES ..71!

3.1! Introduction .. 71!

3.2! Algorithms ... 73!

3.2.1! Definitions!and!building!blocks ... 73!

3.2.1.1! Notation!and!measurement!modeling .. 73!

3.2.1.1.1! Special!rotation!group .. 73!

3.2.1.1.2! Coordinate!systems!(Frames!of!reference) .. 74!

3.2.1.1.3! Measurement!models ... 75!

3.2.1.2! NonAlinear!Complementary!Filters!with!Bias!Estimation 79!

3.2.1.2.1! Estimate!of!Sensor!Orientations!and!Error!Measurement 80!

3.2.1.2.2! Static!and!Dynamic!Estimation!of!the!Orientation 80!

3.2.1.2.3! Direct!and!Passive!Complementary!Filters .. 81!

3.2.1.3! Upper!Body!Motion!Decomposition ... 84!

3.2.1.4! Parameter!Optimization .. 87!

3.2.2! Motion!Reconstruction!Strategies ... 89!

3.2.2.1! Integration!Model .. 89!

3.2.2.2! IMU!Model ... 91!

3.2.2.2.1! Static!Orientations!from!Accelerometers!and!Magnetometers 91!

3.2.2.2.2! Motion!Tracking!Scheme!using!IMU!Model .. 94!

3.2.2.3! Kinect!and!IMU!Model ... 95!

 ix

3.2.2.3.1! Static!Orientations!from!Accelerometers!and!Kinect 95!

3.2.2.3.2! Motion!Tracking!Scheme!using!Kinect!and!IMU!Model 101!

3.2.2.4! Comparison!of!Models ... 102!

3.2.3! Coordinate!Transformations .. 103!

3.2.3.1! Kinect!Frame!to!Earth!Frame .. 104!

3.2.3.2! Virtual!Frame!to!Earth!Frame ... 108!

3.2.4! Coordinate!weighting ... 108!

3.2.4.1! Trustworthiness!of!Kinect!and!IMU!Model .. 109!

3.2.4.2! Trustworthiness!of!IMU!Model ... 111!

3.2.5! Coordinate!Fusion ... 117!

3.3! Experiments and Simulations .. 120!

3.3.1! Devices ... 121!

3.3.2! Performed!Experiment!Types .. 121!

3.3.2.1.1! Square!and!Triangle!Experiments!(Shape!Drawing) 123!

3.3.2.1.2! BookAreaching!experiments ... 124!

3.3.2.1.3! Vertical!ArmAswing!Experiments!(Arm!Lifting) 125!

3.3.2.2! Error!Measurements .. 125!

3.3.2.2.1! BestAfit!Shape!Error .. 125!

3.3.2.2.2! Length!Estimation!Error .. 128!

3.3.3! Experiment!Part!1!–!Outdoor!Experiments .. 132!

3.3.4! Experiment!Part!2!–!Indoor!Experiments ... 134!

3.3.5! Experiment!Part!3!–!Coordinate!Fusion .. 137!

3.4! Results .. 141!

 x

3.4.1! Experiment!Part!1!–!Outdoor!Experiments .. 141!

3.4.2! Experiment!Part!2!–!Indoor!Experiments ... 148!

3.4.3! Experiment!Part!3!–!Coordinate!Fusion .. 154!

3.5! Discussion .. 168!

3.5.1! Complimentary!Filters!with!Human!Biomechanical!Model!using!Accelerometer,!

Gyro!and!Magnetometer!–!Outdoor!Case .. 168!

3.5.2! Complimentary!Filters!with!Human!Biomechanical!Model!using!Accelerometer,!

Gyro!and!Kinect!–!Indoor!Case ... 169!

3.5.3! Coordinate!Fusion!Model!using!Accelerometers,!Gyros,!Magnetometers!and!

Kinect 172!

3.6! Conclusion ... 174!

CHAPTER 4! CONCLUSIONS AND FUTURE RESEARCH175!

4.1! Research Contribution ... 175!

4.2! Future Research ... 176!

4.2.1! Multilevel System Optimization ... 176!

4.2.2! Virtual Sensor Platform and Vicon Motion Capture System 177!

REFERENCES ...179!

 xi

LIST OF FIGURES

Figure 1.1 Decision tree classifier .. 5!

Figure 1.2. Support vector machine on 2 classes .. 10!

Figure 1.3 Complementary filter example .. 12!

Figure 1.4 Joint hierarchy ... 14!

Figure 2.1. Locations for 14 sensors ... 21!

Figure 2.2 Structure toolbox for building a decision tree ... 25!

Figure 2.3 Feature selection tool ... 26!

Figure 2.4 Universal hybrid decision tree classifier ... 31!

Figure 2.5. Walking, siting, and standing classification statics .. 43!

Figure 2.6. Sitting posture classification statistics .. 43!

Figure 2.7. Sitting motions classification statistics ... 43!

Figure 2.8. Overall classification accuracy of walking, sitting, and standing as a function of

training duration .. 45!

Figure 2.9. Overall classification accuracy of seated posture as a function of training duration . 45!

Figure 2.10. Overall seated motion classification accuracy as a function of training duration 46!

Figure 2.11. Three dimensional acceleration signals .. 50!

Figure 2.12. The figure on the left shows the system for a correctly placed sensor. The figure on

the right shows the system for an incorrectly placed sensor ... 50!

Figure 2.13. Calibration action 1 .. 50!

Figure 2.14. Calibration action 2 .. 51!

Figure 2.15. Data from non-calibrated sensors ... 53!

 xii

Figure 2.16. Data from calibrated sensors .. 54!

Figure 2.17. The decision tree used, the features used are shown on every node 55!

Figure 2.18. Confusion matrix for correctly oriented sensors .. 57!

Figure 2.19. Confusion matrix for non-calibrated incorrectly oriented sensors 57!

Figure 2.20. Confusion matrix for calibrated incorrectly oriented sensors 57!

Figure 2.21. GUI home screen .. 58!

Figure 2.22. GUI final screen ... 59!

Figure 2.23. Location of the 14 accelerometers .. 62!

Figure 2.24. Decision tree used ... 65!

Figure 3.1. Kinect axes definition ... 75!

Figure 3.2. Joint information provided by Kinect ... 78!

Figure 3.3. Block diagram of direct complementary filter ... 83!

Figure 3.4. Block diagram of passive complementary filter ... 83!

Figure 3.5. Joint hierarchy .. 85!

Figure 3.6. Upper limb decompositions and sensor placements ... 86!

Figure 3.7. Training error using Passive complementary filters ... 89!

Figure 3.8. Integration method .. 90!

Figure 3.9. Motion reconstruction using IMU .. 94!

Figure 3.10. Relationship between frames of reference ... 97!

Figure 3.11. Stage 1 of rotating Bb to Kb ... 98!

Figure 3.12. Motion reconstruction using Kinect and IMU .. 101!

Figure 3.13. Kinect availability .. 105!

Figure 3.14. Kinect collected signals for the right wrist with tracking status 110!

 xiii

Figure 3.15. Trustworthiness (interpolated) of Kinect signals for the right wrist 110!

Figure 3.16. Accelerometer sphere ... 115!

Figure 3.17. Magnetometer sphere ... 116!

Figure 3.18. Trustworthiness of IMU model .. 116!

Figure 3.19. Coordinate fusion ... 117!

Figure 3.20. Final design flow .. 119!

Figure 3.21. Sensor placement .. 122!

Figure 3.22. Drawn square .. 123!

Figure 3.23. Drawn triangle .. 123!

Figure 3.24. Bookshelf reaching shape, red starts indicating vertices to be touched 124!

Figure 3.25. Vertical arm swing shape ... 125!

Figure 3.26. Reconstructed and best-fit square ... 127!

Figure 3.27. Reconstructed and best-fit triangle ... 127!

Figure 3.28. Reconstructed and best-fit vertical arc ... 128!

Figure 3.29. Reconstructed square and estimated length .. 130!

Figure 3.30. Reconstructed triangle and estimated length .. 130!

Figure 3.31. Reconstructed book reaching and ground truth length ... 131!

Figure 3.32. Reconstructed vertical arm swing and estimated angle .. 131!

Figure 3.33. Experiment setup when outdoor ... 132!

Figure 3.34. Experiment setup when indoor ... 135!

Figure 3.35. Corrupted Kinect signals for different percentages .. 139!

Figure 3.36. Corrupted Kinect trustworthiness for different percentages 140!

 xiv

Figure 3.37. Reconstruction of square drawing of outdoor experiments, ground truths are shown

in black curves .. 144!

Figure 3.38. Reconstruction of triangle drawing of outdoor experiments, ground truths are shown

in black curves .. 145!

Figure 3.39. Reconstruction of book reaching of outdoor experiments, ground truths are shown in

black stars .. 146!

Figure 3.40. Reconstruction of vertical arm swing of outdoor experiments, ground truths are

shown in black curves ... 147!

Figure 3.41. Reconstruction of square drawing, of indoor experiments ground truths are shown in

black curves .. 151!

Figure 3.42. Reconstruction of triangle drawing of indoor experiments, ground truths are shown

in black curves .. 152!

Figure 3.43. Reconstruction of vertical arm swing, of indoor experiments ground truths are

shown in black curves ... 153!

Figure 3.44. Average distance to the best-fit shape, square experiment 156!

Figure 3.45. Variance of distance to the best-fit shape, square experiment 157!

Figure 3.46. Average error of length estimation, square experiment ... 158!

Figure 3.47. Variance of error of length estimation, square experiment 159!

Figure 3.48. Average distance to the best-fit shape, triangle experiment 160!

Figure 3.49. Variance of distance to the best-fit shape, square experiment 161!

Figure 3.50. Average error of length estimation, triangle experiment .. 162!

Figure 3.51. Variance of error of length estimation, triangle experiment 163!

Figure 3.52. Average distance to the best-fit shape, arm-swing experiment 164!

 xv

Figure 3.53. Variance of distance to the best-fit shape, arm-swing experiment 165!

Figure 3.54. Average error of angle estimation, arm-swing experiment 166!

Figure 3.55. Variance of error of angle estimation, arm-swing experiment 167!

 xvi

LIST OF TABLES

Table 2.1. Sensor placements .. 22!

Table 2.2. Collected activities ... 22!

Table 2.3 Classification result summary (mean ± standard deviation) ... 34!

Table 2.4 Confusion matrix of universal hybrid decision trees, tested using LOOCV 34!

Table 2.5 Confusion matrix of automatically generated tree, tested using LOOCV 35!

Table 2.6 Confusion matrix of automatically generated trees, tested using LOOCV 35!

Table 2.7. Summary of previous research .. 61!

Table 2.8. The 14 activities that were classified ... 63!

Table 2.9. Features used (m refers to the magnitude of the 3D acceleration vector) 64!

Table 2.10. Average accuracy for each of the activities ... 68!

Table 2.11. Average accuracy for each of the test subjects .. 69!

Table 3.1. Number of joints .. 79!

Table 3.2. Comparison of models ... 102!

Table 3.3. Mean of distances to best-fit shape of outdoor experiments (inches) 142!

Table 3.4. Variance of distances to best-fit shape of outdoor experiments (inches) 142!

Table 3.5. Mean of percentage of length-estimation error of outdoor experiments (%) 143!

Table 3.6. Variance of percentage of length-estimation error of outdoor experiments (%) 143!

Table 3.7. Mean of distances to best-fit shape of indoor experiments (inches) 149!

Table 3.8. Variance of distances to best-fit shape of indoor experiments (inches) 149!

Table 3.9. Mean of error percentages of length-estimation error of indoor experiments (%) ... 150!

 xvii

Table 3.10. Variance of error percentages of length-estimation error of indoor experiments (%)

 ... 150!

 xviii

ACKNOWLEDGEMENTS

First I would like to give my deepest thanks to my advisor Prof. Gregory J. Pottie as being the

nicest advisor in my life. He always gave me full supports and allowed me to do any kinds of

strange experiments as long as I thought they benefited our research. Prof. Pottie seldom pushed

me for speeding up on research or writing up more papers. While this means that I always have

to supervise myself and self-examine, this also means that Prof. Pottie gave his full trust in me in

my research. I think the lesson he wanted to teach me was not only “By knowing how to research

independently then you earn your M.S. degree, and by knowing how to lead a research project

and master that specific field, which even I cannot fully understand, then you qualify as a Ph.D.,”

but also how to be self-responsible, always learn actively, self-examine and think independently.

To me, Prof. Pottie is not only my academic advisor, but also like my friend in life.

I would like to thank Prof. Bill Kaiser, Prof. Lara Dolecek, and Prof. Mario Gerla who

served as my committee in Ph.D. defense and qualifying examination, with their accommodation

in scheduling the defense and qualifying examination, and with their challenging questions and

kindly help during these exams.

I was lucky enough to have some awesome lab mates when in UCLA graduate school.

First I would like to thank my first and only senior lab mate Nabil Hajj Chehade who inspired me

and gave lots of valuable knowledge and priceless experiences in doing researches, launching

experiments, and mentoring internship students. I would also like to thank James Xu who

provided tons of technical support and programming experiences. Also, I would like to thank

Yan Wang who always shared the research ideas through ferocious arguing with each other

while remaining friends. I would like to thank Hua-I Chang who also helped me on programming

 xix

issues and companionship when only he and I worked together during late 2011 and early 2012.

Finally I would like to thank Xiaoxu Wu who helped me in collecting data and mentoring the

internship students.

I would also like to thank many of my mentored students. First I would like to

acknowledge the CENS summer internship program held by Wes Uehara, for which I supervised

10 students in summer 2010 and 2011. They are Natali Ruchanski, Claire Lochner, Elizabeth Do,

Tremaine Rawls, Benjamin Fish, Ammar Khan, Pinar Ozirik, James Gomes, Travis Rodriguez,

and Ascher Friedman. I would like to thank another 3 internship students of Prof. Pottie’s

research seminar (class EE199). They are Jingtao Xia, Oscar Santana, and Debbie Tray. These

internship students helped me collecting data, recruited their friends for more data, and

implemented algorithms on their own under my guidance. During this time not only did I mentor

them with a series of discussions and experiments, but their creative ideas and thoughts also

inspired me a lot.

Then I would like to acknowledge the reprint of copyrighted material and thank my co-

authors and the ones who helped me for the research.

Chapter 2 is in part a reprint of “A universal hybrid decision tree classifier design for

human activity classification,” in Engineering in Medicine and Biology Society (EMBC), 2012

Annual International Conference of the IEEE, “Monitoring Workspace Activities Using

Accelerometers.” IEEE International Conference on Acoustics, Speech, and Signal Processing,

2011, “Estimation of Accelerometer Orientation for Activity Recognition” IEEE Engineering In

Medicine & Biology Society 34th Annual International Conference, 2012, and “Feature Selection

based on Mutual Information for Human Activity Recognition.” IEEE International Conference

 xx

on Acoustics, Speech, and Signal Processing, 2012. I would like to thank the following co-

authors who helped with this project: Prof. Bill Kaiser, Nabil Hajj Chehade, Natali Ruchanski,

Claire Lochner, Elizabeth Do, Tremaine Rawls, Benjamin Fish, Ammar Khan, Ascher Friedman

and Prof. Gregory J. Pottie. I would like to thank the following lab mates and students for data

collection: James Xu, Pinar Ozirik, James Gomes, and Travis Rodriguez.

Chapter 3 is in part a reprint “Non-linear Complementary Filter based Upper Limb

Motion Tracking using Wearable Sensors” IEEE International Conference on Acoustics, Speech,

and Signal Processing, 2013. I would like to thank the following co-authors with this project:

Jingtao Xia, Oscar Santana, Yan Wang and Prof. Gregory J. Pottie. I would also like to thank the

following lab mates and students for data collection: James Xu, Hua-I Chang, Xiaoxu Wu, and

Debbie Tray.

I would like to dedicate this dissertation to my family. To Chung-ming Chien, my father,

he took care me ever since I was a little boy. He fed me, washed my clothes, took care of my

room, supervised my homework, and more importantly, he gave a whole love to the family so we

can be united as one. To Li-chin Zhou, my mother, she provided me full mental and financial

support so that I can study here in UCLA. She always encouraged me to study abroad to broaden

my horizons, though she knew it was a tough decision since the family will be separated apart. I

would like to thank my brother I-zen Chien who is my pillar of strength. I also would like to

thank my grandmother and aunts who flew to the USA to attend my graduation commencement

especially for me. Finally, I would like to thank all other members of my family who always

gave me warm support when I studied abroad.

 xxi

I would also like to thank all my friends here in Los Angeles. I could not have completed

my degree when being alone without them. Thank you Chung-Yu Lou, Chung-Tse Michael Wu,

Wen-Sao Wilson Hong, Chi-Wen Stasia Su, Chris Hsu, Angie Liao, Frank Wang, Meng-Ning

Monica Cheng, Sheng-Wen Wayne Chang, Jim Sun, Mars Lan, Peiyun Lu, James Chung,

Wenjae Joanne Chang, Fang-Li Justin Yuan, and Sabrina Saykham. I hope I did not forget

anyone, and if I did, please accept my full apology.

A special acknowledge goes to all my college friends in my hometown Taiwan. To Hisn-

Yao Lin, Hong-Yi Jack Lu, Tzu-Chang Lin, Chung-Hsiu Ko, Chi-Kuang Luke Chen, Meng-Han

Andy Tang, Yen-Yu Andrew Lee, Po-Chun Chen, Tony Chun-Ming Lo, Kung-Yi Li, Chien-Wei

Chen, Tsung-Han Ryan Wu, Yuan-Heng Chien, Wei-Kang Ricky Hsu, Yu-Jung Karl Chen,

Albert Yu-Ying Lee , Hsu-Kuang Chiu, Chun-Te Randy Chu, Jeffery Lee, Chung-Kai Yu,

Bernie Jord Yang, Pei-Yin Lin, Jian-Hung Liu, Sheng-Yung Chen, Yen-Tien Lu, Wen-Yang Ku,

Tao Todd Ben, Meng-Chao Boris Peng, Sheng-Hui Derek Lu, Shu-Sheng Huang, Min-

Chun Jenny Shih, Lene Yung Ling Cheng, Wan-Ling Annie Tsai, Li-Wen Eva Huang, Elaine

Tung, Yun-Chun Christine Hua, and Hsin-Yin Annie Peng. Thank you for all your support ever

since I met you in different time of my life.

 Last but not least, I would like to give a special thank to my girlfriend Yamin Maxine Lu.

Thank you for always support me and take care of tons of stuff in our lives, so that I can focus

myself solely on research. Without you I could not have been graduated so soon. Thank you for

all the happy memories that we have been through for the past 3 years, and hope we can be

together longer and longer.

 xxii

VITA

Mar, 2010 – Oct, 2013 Research Assistant, Electrical Engineering,

University of California, Los Angeles

Mar, 2010 – Oct, 2013 M.S., Electrical Engineering

University of California, Los Angeles

Jan, 2008 – Jul, 2008 Research Assistant

Institute of Biomedical Engineering,

National Taiwan University

Sep, 2002 – Jun, 2006 B.S., Electrical Engineering

National Taiwan University

PUBLICATIONS

[J1] J. Y. Xu, H-I Chang, C. Chien, W. Kaiser, and G. J. Pottie, “Context-driven, Prescription

based Personal Activity Classification: Methodology, Architecture and End-to-End

Implementation”, IEEE Journal of Biomedical and Health Informatics, 2014

[C1] H-I Chang, C. Chien, J. Y. Xu, and Greg J. Pottie, “Context-guided Universal Hybrid

Decision Tree for Activity Classification”, Wearable and Implantable Body Sensor

Networks, 2013

[C2] X. Wu, Y. Wang, C. Chien, and G. J. Pottie, “Self-Calibration of Sensor Misplacement

Based on Motion Signatures” Wearable and Implantable Body Sensor Networks, 2013

 xxiii

[C3] C. Chien, J. Xia, O. Santana, Y. Wang, and G. J. Pottie, “Non-linear Complementary

Filter based Upper Limb Motion Tracking using Wearable Sensors” IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2013

[C4] Y. Wang, C. Chien, J. Xu, G. J. Pottie, and W. Kaiser, “Gait Analysis using 3D Motion

Reconstruction with an Activity-specific Tracking Protocol” IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2013

[C5] C. Chien, J. Y. Xu, H-I Chang, X. Wu, G. J. Pottie, “Model construction for Human

Motion Classification using Inertial Sensors” in Information Theory and Applications

Workshop (ITA), 2013. IEEE, 2013.

[C6] C. Chien, and G. Pottie, “A Universal Hybrid Decision Tree Classifier Design for Human

Activity Classification” IEEE Engineering In Medicine & Biology Society 34th Annual

International Conference, 2012

[C7] N. Hajj Chehade, A. Friedman, C. Chien, and G. Pottie, “Estimation of Accelerometer

Orientation for Activity Recognition” IEEE Engineering In Medicine & Biology Society

34th Annual International Conference, 2012

[C8] B. Fish, A. Khan, N. Hajj Chehade, C. Chien, G. Pottie, “Feature Selection based on

Mutual Information for Human Activity Recognition.” IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2012.

[C9] N. Ruchansky, E. Do, C. Lochner, T. Rawls, N. Hajj Chehade, J. Chien, G. Pottie, W.

Kaiser, “Monitoring Workspace Activities Using Accelerometers.” IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2011

[C10] C. Chien, Y-H Chen, and L-G Chen, “Skip Control Algorithm of Motion Estimation for

Power-scalable H.264 Video Encoder,” The 18th VLSI Design/CAD Symposium, 2007

 1

Chapter 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction"

Classifying human activities is important for many medical applications. Consider a patient

whose arm is injured and who is in the rehabilitation process. The patient will preferentially use

the healthy arm since it is more convenient, while doctors will prescribe exercising the injured

arm and using it in ordinary daily activities. Traditionally this was done in medical clinics where

health care professionals can supervise patients’ rehabilitation progress. However, with a system

of activity classification and monitoring, professionals can monitor this progress when patients

stay at home. This saves considerable medical resources since rehabilitation often takes a very

long time.

Gathering statistics on people’s daily activities through automatic monitoring systems

also has application to wellness. According to the World Health Organization (WHO), at least

60% of the global population fails to achieve the minimum recommendation of 30 minutes of

moderate intensity physical activity daily[6]. A habit of daily activity strongly protects against

many chronic diseases. Yet it has heretofore been difficult to cheaply and reliably record such

activities, and provide useful feedback to both individuals and health care providers. Therefore,

increased research effort is going into the creation of systems that record human motions with

feasible cost (manufacture cost, power, storage and communication resources), classify activities

with good accuracy, and then analyze these activities with respect to different rules that lead to a

better life [1][2][3][4].

 2

 Other than activity classification, it is also important that we can track human motions in

3D space at any time. This helps us observe and monitor the human motions at a more detailed

scale. For instance, for patients with Parkinson’s disease, we can monitor patients’ sickness by

recording the resting tremors continuously with a motion reconstruction system; for injured

patients who are in their rehabilitation states, we can know how well they perform day by day if

there exists a system telling us how high they can lift their arms, or the lengths of their steps.

Other applications of the motion reconstruction system include gait analysis, remote health

monitoring, health care analysis, etc.

 For motion tracking using low-cost commercial micro-electromechanical systems

(MEMS) such as accelerometers, gyros and magnetometers, we usually failed to acquire accurate

results due to various kinds of imperfections due to the nature of MEMS sensors. These

imperfections include bias and noise from sensor measurements, misalignment between

coordinates of the sensors, magnetic field interference caused by environments [5], etc.

Therefore, when one tries to reconstruct trajectories using numerical integration, integration error

from the noise will accumulate. What is worse, the miscalculation of object orientation when

estimating trajectories has a large effect since one has to know the orientation of the object in

order to cancel the gravity to integrate the acceleration.

 The rest of the thesis is organized as follows. In this chapter, we will give some

preliminary knowledge that is necessary for the thesis. We provide our system for activity

classification in Chapter 2. Chapter 3 will discuss the coordinate fusion used for human motion

tracking and reconstruction. In Chapter 4 we present our conclusions and suggestions for future

research.

 3

This chapter introduces some basic knowledge regarding to activity classification and

motion tracking, and also the devices used in this research. For activity classification, we will

introduce some machine learning techniques that are generally used, including the tree classifier

(1.2.1), naïve Bayes classifier (1.2.2), and support vector machine (1.2.3). For motion tracking,

we will introduce how to use complementary filters to find the orientation of an object given we

have MEMS measurements (1.3), and how we decompose human motions using biomechanical

models (1.3.2). Finally, we introduce the devices used in this research, including MEMS inertial

sensors (1.4.1) and the Microsoft® Kinect (1.4.2).

1.2 Activity"Classification"

In this section, we introduce several classical machine learning methods and techniques that

classify activities. They are well defined and found useful when it comes to activity classification

[6][7][8][10][10][11][12][13][14][15][16][17][18][19][20]. However, each of these methods has

drawbacks for our purpose of classifying activities, when the set of activities to be classified

should be expandable easily with a small amount of training data.

A classifier is a function that maps the calculated feature vectors into classes. Suppose we

have collected a set of data consisting of n observations, each observation has features, and

there is one label out of classes associated with it. The classifier can be thought of as a

mapping function that maps the training data to the classification or partition

 (1.1)

where is the classification of the set of data, is the set of training data of n

points of the form

 p

 q f

 f :TD
i
→ ŷ

i

 ŷi i
th

 TD
i i

th

 4

 (1.2)

where is the feature vector, and the are the labeled classes associated with the features.

1.2.1 Decision Tree Classifier

A decision tree classifier is a supervised machine learning technique, which breaks down the

multiclass classification into simpler subsets. Because of its nature of divide and conquer of the

decision-making procedure, the decision tree classifier avoids the curse of dimensionality in

multivariate analysis [6][7]. The curse of dimensionality says when doing multiclass

classification, as the number of classes increases, one usually has to select more features and

makes decisions in a high-dimensional feature space. Therefore, in order to collect enough

training data that is representative of the nature of each class, the amount of labeled ground

truths grows enormously as the dimension of feature space increases, or the predictive power

reduces as the dimensionality increases [8]. The decision tree classifier uses a conditional

independence assumption to avoid this issue by performing many classifications targeting

smaller classes instead of a single stage with a huge number of states. Thus each decision is done

in a feature space with lower dimensionality.

Generally, a tree classifier with internal nodes can be depicted as shown in Figure

1.1. An internal node of a tree is a node that is not a leaf node. This tree classifier can be thought

as a set of single-stage classifiers, each with its subset of classes, features and the decision

rules used for the node. Therefore the tree classifier can be written as

 (1.3)

TD = x

i
,y

i() x
i
∈p,y

i
∈ 1,2,,q{ }{ },i = 1,2,,n

 xi yi

 T l

 l

T = C t(),F t(),D t(){ }

 5

Figure 1.1 Decision tree classifier

where

 (1.4)

is the subset of classes of node t, indicating how to group classes in that node; and

 (1.5)

is the subset of classes of node t, indicating how to group classes in that node; and

 (1.6)

is the feature set used for node ; and

 (1.7)

C(1), F(1), D(1)

C(t), F(t), D(t)……"

……"

…
…
"

……"

C(n), F(n), D(n)

Root

Leaf

C T() ∈C,C = c c = possible combination of classes{ }

F t() ∈F,F = f f = possible combination of features{ }

F t() ∈F,F = f f = possible combination of features{ }

 t

D t() ∈D,D = d d is a decision rule{ }

 6

is the decision rule of node .

 Forming a tree classifier consists of deciding upon , and for each

internal node based on prior knowledge and observation of the training data.

 According to [10], the optimal decision tree design can be represented as the

following optimization problem

 (1.8)

where is the overall probability of error associated with specific set of tree

structure, features and decision rules selected. That is to say, we are looking for a combination of

C, F and D that minimize the probability of error. Then following [11], the optimization problem

can be broken down into two steps

 (1.9)

 (1.10)

In most designs of decision tree classifiers [12][13], the selected decision rules

associated with the optimized tree are fixed and the same for every node of the tree classifier.

Commonly used rules are Gini index, twoing rule or maximum deviance reduction; some

researchers also use naïve Bayes classifiers to separate classes in each node. However, in our

research, in which we try to classify various activities with different characteristics, only using a

 t

C t() F t() D t()

 T
∗

T ∗ = arg min

C ,F ,D()
P

e
C,F,D() s.t. Limited training size

P

e
C,F,D()

Step 1: For a given C and F, find D∗ = D∗ C,F() such that

P
e

C,F,D∗ C,F()() = min
D

P
e

C,F,D()

Step 2: Find C ∗,F ∗ such that

P
e

C ∗,F ∗,D∗ C ∗,F ∗()() = min
C ,F

P
e

C,F,D∗ C,F()()

 D
∗

 T
∗

 7

single decision rule in making the decision tree classifier is limited. Therefore, a more flexible

design is needed.

1.2.2 Naïve Bayes Classifier

Naïve Bayes classifiers [14][15][16] are yet another probabilistic classifier based on Bayes’

theorem, with the assumption of conditional independence with respect to the input features in

each class, and Gaussian kernels. Although these assumptions seem unrealistic, naïve Bayes

classifiers very often work well in real-world situations, provided the features are carefully

chosen. One major advantage of their use is that only a small amount of training data is needed

to build class parameters. Another advantage is that only the variances of features belonging to

each class are needed, obviating the time and resources required for computing the whole

covariance matrix, which makes the classification procedure fast and efficient. Additionally, the

advantage of using a probability-distribution-based classifier is that sometimes an instance may

not be classified as one of the labeled classes, known as a reject option. This is important in some

medical decision-making. In that case, there is not enough confidence in believing the answer,

and so human effort is flagged for examining the data in more detail. This could of course be a

deficiency in other applications.

The naïve Bayes classifier is a probabilistic classifier, which estimates the probability of

each class given the set of available feature vector , which we call the posterior probability

 in this section. The classifier then selects the final class such that the posterior

probability is maximized.

 (1.11)

 y x

p y x() y

∗

y∗ x() = argmax

y
p y x()

 8

Generally, the posterior probability is not easily acquired. Therefore, the classifier

incorporates Bayes’ theorem

 (1.12)

In this formula, is called the likelihood, or the conditional probability of the feature

vector given class happened. The distribution of this conditional probability is estimated in

the training phase. is called the prior probability, which states our prior knowledge before

estimating the model. is the evidence, or the normalization factor which makes the total

summation of probabilities equal to 1.

The naïve Bayes classifier further assumes that the distribution of each feature value

given the class is independent to simplify the computation (which states there is no correlation

between feature values). Given this assumption, we calculate the likelihood as follows:

 (1.13)

Therefore, by calculating the distribution of each feature value given the class during

the training phase we can estimate the probability of each class given the feature values acquired

during testing.

 The Naïve Bayes classifier, which proved useful in many fields including activity

classification, has some drawbacks thus making it insufficient to our study. First, when building

p y x() = p x y()p y()

p x()

p x y()

 x y

p y()

p x()

p y x() ∝ p x y()p y()
∝ p y() p x

i
y()

i
∏

p x

i
y()

 9

the statistics of features of some activities that are prone to noise, the noise might disturb the data

so badly that the calculated statistics are not representative of the distributions of those activities.

Therefore the trained distribution, and the naïve Bayes classifier models, cannot be used to

classify activities in testing phase. Second, when one tries to classify more than 2 classes, the

curse of dimensionality makes one to collect more ground truth in training phase, thus making

the model not easily expandable.

1.2.3 Support Vector Machine

The support vector machine (SVM) [17][18][19] is a non-probabilistic classifier. It is a

supervised learning algorithm for classification that observes data and labels, and then

recognizes patterns. Given a set of feature vectors mapped into the feature space, an SVM tries to

find the largest gap that can separate the classes. Given we have different features, SVM

forms a hyperplane of dimension that divides categories given feature vectors of

elements lying in a -dimensional space. Figure 1.2 shows an example of using SVM to

classify 2 classes using 2 features. As shown in the figure, SVM tries to find a gap that

maximizes the distance between support vectors (marked in circles).

The benefit of using an SVM to classify activities, especially of using it in internal nodes

of tree classifiers, is that it draws a decision boundary for activities that are not easily

characterized by probabilistic models. In internal nodes of a decision tree classifier that contains

more than one activity, using a single-peak Gaussian model may not be a good characterization

of the multiple activities represented. SVM, on the other hand, does not care about interior

feature points and only boundary points matter. This leads to another benefit of using an SVM,

 p

p −1 p

p

 10

Figure 1.2. Support vector machine on 2 classes

which is when trying to classify some activities whose features are easily affected by noise. For

some features of passive activities, such as energy of standing and sitting, values of such features

are very low and easily affected by any external noise or unexpected movements. Therefore, the

means and standard deviations may not be very representative. In this study, we used the

Gaussian radial basis as the kernel function, with scaling factor . SVMs were mainly used to s = 1

 11

classify stationary activities, such as standing, lying, and sitting, since the training data are

concentrated, and few outliers occur, which is suitable for the use of SVM.

The main drawback of using SVM in our applications is the established theories and

methods are mainly targeted on classifying 2 classes, while in our research there may be more

than 2 classes to be dealt with. Also, as for the Naïve Bayes classifier, the curse of

dimensionality forces one to collect more ground truth to be able to make decisions in a higher

dimensional space when more activities must be separated.

1.3 Motion"Reconstruction"

In this section, we introduce two major components that are used in motion reconstruction,

which are the use of complementary filtering and human biomechanical models for motion

decomposition.

1.3.1 Complementary Filter

A complementary filter is often used in motion reconstruction and tracking, due to its simple

structure and fast computation, which is more suitable for real-time applications [20][21]. It is

often used in flight navigation or robotics to estimate the orientation of the sensor. It fuses

multiple estimation measurements that have noise of complementary spectral characteristics [22].

For instance, in estimating the vertical velocity using accelerometers and a barometric sensor,

one would suffer from long-term drift when integrating the acceleration, and instantaneous noise

when using barometric sensor to estimate velocities. The complementary filter applies a low-pass

filter to the integrated signal of acceleration, and a low-pass filter to velocity estimated by

barometric sensors, then sums up the filtered signals to have a better estimate of velocity.

 12

Figure 1.3 Complementary filter example

More formally, as shown in Figure 1.3, suppose that we have two methods to estimate ,

 (1.14)

where contains mostly low-frequency noise and mostly high-frequency noise. The

complementary filter then applies a low-pass filter to , and another complementary

high-pass filter to . The resulting signal can then be written as

 (1.15)

 x

y
1
= x + n

1

y
2
= x + n

2

 n1 n2

G s() y1

1 −G s()() y2

x̂ =G s()y1
+ 1 −G s()()y2

=G s() x + n
1() + 1 −G s()() x + n

2()
= x +G s()n1

+ 1 −G s()()n2

 13

The signal is then all pass filtered, while noises and are high and low pass filtered

respectively.

In real-time motion tracking applications using inertial measurement units (IMU) such as

accelerometers, gyros and magnetometers, we can estimate the orientation of the sensor either

using accelerometers and magnetometers, or integrating the gyros. However, both methods have

drawbacks. In the accelerometer and magnetometer method, one suffer from measurement noise

of MEMS sensors; in the gyro method, the integration of angular velocity causes serious drift as

time goes by. The complementary filter then filters the orientation estimation using

accelerometers and magnetometers with a high-pass filter, and the orientation estimation using

gyro with a complementary low-pass filter, hoping both filters can help to remove the

corresponding noises. The remaining issue becomes how the filters should be designed and how

the result can be verified, as can be seen in the following chapters.

1.3.2 Motion Decomposition

In this research, we use the biomechanical models for the human limbs to represent human

motions. Based on [23], we model human joints by using the hierarchy as shown in Figure 1.4.

This hierarchy has the root at hip center, and extends to the feet, hands and head. In this model,

parent joints are those closer to the center of the body, while child joints are those connecting to

their parents and away from the center. The bones are defined by surrounding parent and child

joints, their own orientations, and their lengths. Motions are then just a set of rotations within

this hierarchy.

 x n1 n2

 14

Figure 1.4 Joint hierarchy

1.4 Devices"Used"in"this"Research"

1.4.1 Micro-electromechanical Systems (MEMS)

Micro-electromechanical systems refer to the technology of making mechanical devices very

small, for which the size of such devices traditionally relying on classical physics are large.

Because of the advance of semiconductor technologies, their sizes generally range from 20 to

 15

1000 micrometers, with structures usually consisting of a microprocessor together with various

microsensors [24][25]. There are many applications benefiting from MEMS technology, such as

accelerometers in gaming devices, cars and cellphones, or gyroscope in modern aircraft and cars,

microphones in cellphones, etc.

In this research, we mainly use three kinds of MEMS devices: accelerometers, gyros, and

magnetometers. MEMS accelerometers, which sense the external force (including the gravity

and force applied to the sensor), usually consist of a mass and a cantilever beam. When the mass

deviates from its natural position, the capacitance between the beam and the mass is measured

and converted digitally, which relates the measured capacitance to the force applied to the mass.

Other kinds of accelerometers include piezoelectric material in the spring, and convert the

mechanical deformation of the spring into voltages. The MEMS gyro uses a piezoelectric

material to produce a constant oscillation to pick up the Coriolis effect when rotation occurs. The

torque induced by rotation is then transformed into electric signals and the angular velocity can

be measured. The magnetometer is a magnetic field sensor that senses magnetic fields from the

Earth and other sources. It relies on the Hall effect to sense the magnetic field: when a magnetic

field is present, the current exposed to this field gets deflected and thus the magnetic field force

can be calculated.

This research utilizes sensor fusion to combine signals from these sensors. Sensor fusion

is a way to combine data from multiple types of sensors to produce a more reliable result than

using the sensor sources separately and individually [26][27]. There are many applications. For

example, indoor navigation combines Wi-Fi signals with accelerometer measurements to help

positioning when indoors [28], while GPS/INS uses GPS signals to help calibrating

measurements from inertial navigation systems (INS) [29]. In this research, we try to combine

 16

signals from accelerometers, gyros and magnetometers to provide a better estimate of object

orientation. To combine sensor signals from diverse sources, generally one has to rely on some

algorithms for more accurate results and less noise. Common techniques used for estimating the

orientation include Kalman filters and complementary filters.

1.4.2 Kinect and Software Development Kit (SDK)

The Kinect was released by Microsoft Corporation in November 2010. It consists of an RGB

camera with 1280x960 resolution, an infrared (IR) camera that captures depth with 640x480

resolution, a multi-array microphone, and a triaxial accelerometer of range 2g. The Kinect is a

motion sensing devices that can capture human motion by recognizing various joint positions in

the space relative to it. In June 2011, Microsoft further released the Kinect SDK [23][30], which

assists developers tracking human joint and skeleton positions in real-time, building 3D models

for objects using Kinect Fusion, recognizing speech with its API, performing face tracking, etc.

With this SDK, other than its original gaming purposes, people started using the Kinect for many

other purposes [31][32][33][34][35]. In this research, we use the joint and skeleton tracking SDK

to help us locate the positions of human body parts, and therefore we can track the trajectories.

Although the Kinect SDK provides an easy and powerful way to track the trajectories in

real-time, there are a few drawbacks in using it. First, it is pose and gesture significant. Since it

was originally designed for players facing the television to play with it, one has to face the

Kinect before it can recognize human joints. The Kinect’s tracking ability is seriously degraded

when not facing the sensor. Second, the Kinect is color and background sensitive. For the best

recognition, there should be a solid background, and it should be clean with less colors, which

suggests that Kinect has limitations in real-life environments of various backgrounds. Third, the

Kinect requires a power outlet to operate, and this means that it is not suitable for outdoor

 17

recognition. Finally, the joint and skeleton tracking result using Kinect SDK is not accurate and

fast enough for our application. The refreshing frame rate is not high enough (at a maximum of

29 frames per second), nor does its accuracy meet our need. Therefore, given the circumstances

that Kinect might not always be available, and with an inaccurate tracking result, some signal

processing algorithms and techniques are necessary to meet our goal.

 18

Chapter 2 "

A"UNIVERSAL"HYBRID"DECISION"TREE"CLASSIFIER DESIGN FOR

HUMAN ACTIVITY CLASSIFICATION AND ITS APPLICATIONS

2.1 Introduction"

In this chapter we discuss the development of a tree classifier for human motions. Previous

systems [1][2] have classified daily activities using naïve Bayes classifiers with accuracy ranging

from 30% to 90%. However, these systems classified only 5 groups of activities based on their

intensity levels. In people’s daily lives, they may walk slowly or fast, they may rush for buses, or

they may just sit on the couch with different gestures. As the number of activities of interest

grow, to classify them with a single-stage classifier that separates all activities at the same time

becomes difficult at many levels, not least in the large volume of training data required.

Additionally, as researchers in different fields may care about different levels of details of

activities, the number of classes would grow even more. A decision tree is a better tool in these

situations. Decision tree classifiers [3][4][36][37][10] handle complex decision regions by

partitioning them into sets of simpler low dimensional regions. This “divide and conquer” nature

also helps to avoid the curse of dimensionality compared to single-stage classifiers. In

multivariate analysis, where one usually needs to estimate a large number of classes from many

features with only a small training data set, one is forced to go to high-dimension if using single-

stage classifiers. However, a decision tree classifier helps to ease this problem by selecting only

a few features at each internal node; if these features are carefully selected, there can be little

 19

performance degradation. Other advantages of tree-structured approaches include robustness to

outliers in training data, flexibility and extensibility of target classes, and invariance under

monotone transformations.

 However, to classify daily-life activities, traditional decision tree methodologies are not

enough. For example [6] has classified 7 real-life activities with a custom tree classifier using a

comprehensive system containing various kinds of sensors including accelerometers,

electrocardiogram (EKG), global positioning system (GPS), etc. The system collected complete

information of activities and achieved overall 82% accuracy on classifying 7 activities. Another

study [4] classified 20 activities with decision tree classifiers, with data collected by

accelerometers on hip, wrist, ankle, arm and thigh. It verified the testing data with various

classifiers and had the highest accuracy of 84% using the C4.5 tree classifier. In these papers,

there are some activities that can be easily determined, especially classes related to motion

activities. However, classifiers were confused by activities without simple characteristics, or

those that share some common features with other activities. Therefore, there exists a need for a

tree classifier with more flexibility, which selects its separation criteria and thresholds of internal

nodes individually, and thereby applies different rules in drawing the decision boundaries, so as

to separate these confusing activities easily.

 Another important issue is the generalizability of a model. In a clinical trial, due to very

high logistical costs, one can only control a small group of people to have good training data

(i.e., with reliable ground truth); for the rest of the people, one might end up with something

incomplete or with a small amount of training time. However, large classifier accuracy gains

result when models are adapted to individuals. Thus, to make the model generalizable, we need a

decision tree that fits the general public or significant subpopulation categories, whereby the

 20

structure and features of internal nodes are determined, and one only tunes the thresholds of each

node based on shorter training sequences from individuals. In [3] similar work was done, in that

they classified 7 activities with a custom fixed tree. However, it did not point out the importance

of using a fixed structure, and neither did it have high enough accuracy for medical use (82%).

 In this chapter, our goal is to create a fixed structured tree capable of classifying daily life

activities daily with satisfactory accuracy. We took an empirical approach by collecting a large

amount of data. We report a complete procedure for daily life activity classification, from data

collection, feature extraction, tree structure and feature selection, to testing. The resulting

classifier is generalizable and has high accuracy. Using leave-one-out cross validation, it

produced average classification accuracy of 91.5%. In contrast, the MATLAB personalized tree

classifiers using Gini’s diversity index as the split criterion followed by optimally tuning the

thresholds for each subject yielded 69.2%.

 The remainder of the chapter is organized as follows. We provide the system setup,

including data collection and tree formation in Section 2.2. In Section 2.3, we introduce two

classifiers that are used in this chapter, and describe how to form a hybrid tree classifier. In

section 2.4, we move from hybrid tree classifiers to the proposed universal hybrid tree classifier.

Simulations and results are given in Section 2.5, followed by result in Section 2.6, and a short

discussion of the universal tree in 2.7. We discuss three related issues associated with the

universal hybrid tree classifier in the next three sections: monitoring workspace activities in

section 2.8; estimation of accelerometer orientation in section 2.9; and the feature selection

problem in section 2.10. Conclusions are drawn in Section 2.11.

 21

Figure 2.1. Locations for 14 sensors

2.2 System"

We now explain how the whole system works, from data collection to activity classification.

2.2.1 Data Collection

We used the Gulf Coast Data Concept USB Accelerometer X6-2mini with a built-in tri-axial

accelerometer [38] to collect the data. It is a small device, which can be easily worn on any part

of the body. The accelerometers collect data at the sample rate 160 Hz, resolution 16 bits, and

gain ±6g. We put accelerometers on 14 parts of the body, as described in Figure 2.1 and Table

2.1. In this research, we over-instrumented the test subjects in order to get a complete data set.

However, we found that only few sensors are needed and crucial for activity classification for

particular activities, as will be described later. In the training and testing processes, each

 22

Table 2.1. Sensor placements

Upper limb and head Lower limb

Forehead Left and right pockets

Chest Left and right knees

Right and left elbows Left and right ankles

Right and left wrists Left and right toes

Table 2.2. Collected activities

Motion Stationary

Walk slowly Stand

Walk fast Sit upright

Run Sit while slouching

Walk up slope Sit while hunching

Walk down slope Lie on back

Walk upstairs Lie on stomach

Walk downstairs Lie on side

sensor collected x, y, and z directions of acceleration, thus producing in total 42 channels of data.

Seven people took part in data collection, with 2 hours of measurement for each person. The

subjects were asked to perform the series of activities listed in Table 2.2, as being representative

of some activities from daily living.

 In order to build the ground truth, when the test subject was doing assigned activities, an

annotator followed him/her to label the activities. The annotator used an Android phone to mark

changes in contexts for reference purposes. In this program, users can edit the list of activities

and their order to fulfill their needs for experiments. During the experiment, start and end

markers were manually added. The annotation program was a considerable advance over

previous pen and paper methods, particularly in providing consistent time stamps. Since there

was no communication mechanism between accelerometers, or between accelerometers and the

Android phone, before starting any measurement we simply tied all the sensors together and

shook them sharply, while at the same time pressing the synchronize button of the annotation

 23

program. This simple action gave distinct signatures in all the signals, and thus provided the

reference for signal synchronization.

2.2.2 Signal Processing Toolbox

After measurements, a comprehensive custom MATLAB toolbox was employed, that enabled

data merging and synchronization, activity labeling, feature extraction, hybrid tree classifier

formation, feature selection, and finally activity classification. The program includes a graphical

user interface (GUI), with which users can easily click and load files, input parameters, and

visualize data spreading and decision boundaries for classes. First, acceleration data was loaded

and merged to a MATLAB variable. Then the merged data and its annotation were synchronized

based on signatures made at the beginnings of the measurement sessions, tagging the data with

the ground truth.

2.2.3 Feature Extraction

After synchronizing the data and the ground truth annotations, we converted the measured

acceleration into various features. Feature extraction was done by using a moving window and

extracting different features. The moving window was of length four seconds and of step size

one second. The window size of four seconds ensured that we captured more than a complete

cycle for every activity, therefore having similar features for each class. The step size of a second

makes the activity classification in the resolution of one prediction per second; this is enough for

the purpose of daily activity classification, where changes between activities are not rapid.

 In each window, thirty-one features for each accelerometer were calculated. These thirty-

one features can be clustered into three categories, which are the spatial, time, and frequency

domains. Some instances for each category and their uses follow.

24

2.2.3.1 Spatial Domain

“Correlations” between x, y, and z directions were calculated. These features showed how the

posture changes during some classes, or emphasized the transition during activities.

2.2.3.2 Time Domain

“Standard deviation” and “short-term energy (total energy of the windowed signal)” of a window

were calculated. These features had strong correlations to how intense the movements were,

which were suitable in distinguishing motion and stationary activities. The feature “maximum

values” of a frame for each direction indicated the range of different motions.

2.2.3.3 Frequency Domain

The features “sidelobe location” and “DC value to sidelobe location ratio” indicated what was

the dominant frequency of each activity. These features were helpful in distinguishing among

periodic activities with different periods, such as run, walk fast, and walk slowly. The feature “f-

ratio” which was the ratio of the energy of frequency band above a certain threshold to the total

energy of the whole signal in the frame, indicates whether the energy was concentrated on

certain frequency bands or spread through the entire frequency spectrum.

2.2.4 Tree Formation

The hybrid decision tree classifier was built using the structure toolbox, which is a sub-toolbox

of the entire system as shown in Figure 2.2. The decision tree was built manually based on the

knowledge of various domains of the signal. In the manner of Figure 2.2, we first grouped

motion activities to the upper node, and stationary ones to the lower node, selected “horizontal f-

ratio” and “maximum value of feature vector length” of the left knee sensor as the separating

features, and then applied the naïve Bayes classifier for the root node as the separating classifier.

25

Figure 2.2 Structure toolbox for building a decision tree

These two groups of activities were distinct and clearly separated in the space composed by these

two features. Continuing in this fashion, we ended up with several complete hybrid decision tree

classifiers. We then used a feature selection tool to visualize the feature vectors in their spaces to

further determine the separating classifiers and features of each internal node, which will be

described next.

2.2.5 Feature Selection

Once the tree structure was formed, we used the feature selection toolbox to help us determine

feature sets and the type of single-stage classifiers that were good in separating classes. This

toolbox, which was another sub-tool of the complete toolbox, was able to test trained features of

a specified node of the tree against itself (resubstitution error), or with k-fold cross-validation.

This toolbox also tested any combination of features on various types of classifiers

automatically. Therefore it speeded up the feature selection process and covered some set of

features that were not easily imagined by only observing the signals. Furthermore, it enables

visualization of the feature vectors of activities in their feature spaces, and draws the decision

26

Figure 2.3 Feature selection tool

boundary; therefore one can see and select the feature set for a node that was most robust to

outliers. Figure 2.3 shows how the feature selection toolbox operates. In this toolbox, we could

test all kinds of feature combinations for all nodes of the tree, and the decision boundary (based

on naïve Bayes or SVM) was drawn. By observing the spread of feature points, one can even

calculate a metric to rank the feature combination to have the best feature set separating classes

of each node. Given the fast search time and simple feature vector visualization, we could easily

verify if each node of the hybrid decision tree classifier had good classification performance.

27

2.2.6 Testing / Classification

 Once the decision tree, including its separating features, was formed, we tested it using the

testing toolbox. This tool loaded the testing set label and the tree classifier, and classified

activities in a real-time fashion.

2.3 Hybrid"Tree"Formation"

From chapter 1, we know that in designing a decision tree classifier , where

 , (2.1)

 the procedure can be viewed as an optimization problem in two steps:

 (2.2)

 (2.3)

where are defined earlier. As mentioned in chapter 1, in most designs a single decision

rule is used to find the final tree classifier. However, in this research we tried a more flexible

design, which can adapt to the varying natures of the activity classes, and thus make the model

expandable. This is achieved by introducing a new type of tree classifier called a hybrid tree

classifier, which allows different types of decision rules available when designing the tree

classifier. We do so by manually determining the decision tree structure, and found feature sets

and decision rules for each internal node. Therefore, in the tree design procedure, we fix the set

 T

T = C t(),F t(),D t(){ }

Step 1: For a given C and F, find D = D C,F() such that

Pe C,F,D∗ C,F()() = min
D
Pe C,F,D()

Step 2: Find C ∗,F ∗ such that

 P
e

C ∗,F ∗,D∗ C,F()() = min
C ,F

C,F,D∗ C,F()()

 C,F,D

28

of classes for all nodes and try to find the optimal feature set F* and decision rules D* that

minimize the total probability of error. Thus, we have

 (2.4)

 Among many possibilities, we used two kinds of classifiers for the decision rules for

internal nodes, namely, the naïve Bayes classifier and support vector machine (SVM).

2.4 Universal"Hybrid"Decision"Trees"

After creating a hybrid tree classifier for classifying various activities, we then tried to find a tree

that can classify multiple sets of testing data from many subjects. As mentioned previously, this

is important since with this tree we can specialize this classifier to individuals with minimal

additional training, therefore making the model more easily applied to the general public.

Suppose we have in total M sets of training data defined by (2.1), each of them from a carefully

monitored test subject, and let be the training data for the subject j. Also, we have N

manually structured trees, each with internal nodes for . Then each tree can

be written as

 (2.5)

with internal nodes. In every tree, the class subset for each node is determined for

every internal node. Let be part of the training data whose classes that are involved in

node of tree . is the probability of error of node when applying

 C

Given C, find F∗ and D∗ such that

Pe C,F∗,D∗() = min
F ,D

Pe C,F,D()

TDj

l i() i = 1,2,,N Ti

T = F t(),D t(),C t(){ }
t = 1,2,,l i = 1,2,,N

l i() C t()

TDj ,t TDj

t T Pe| j ,t F t(),D t(),TDj ,t() t

29

feature set and decision rule on training data . The procedure can be

summarized by the following algorithm:

Begin

1. Given a set of possible decision trees, randomly pick a tree T with l internal nodes.

2. For to

Find the optimal set that minimizes the weighted probability of error

where is the weighting function for the subject , indicating the weighting of that

type of people to the general public.

3. If

Terminate the for loop, go to step 1 and try the next tree , where is the predefined

error threshold

End If

End For

4. Output the tree classifier

End Begin

 The above algorithm provides a means to find a compromise tree that accounts for the

differences among people, while maintaining a satisfactory error rate. After creating this

F t() D t() TDj ,t

t = 1 l

F∗ t(),D∗ t()()

F∗ t(),D∗ t()() = arg min
F t(),D t()()

wj ⋅Pe j ,t F t(),D t(),TDj ,t()j=1

M∑

wj j

wj ⋅Pe j ,t F
∗ t(),D∗ t(),TDj ,t()j=1

M∑ > therr

T therr

 T
∗ = F∗ t(),D∗ t(),C∗ t(){ } t = 1,2,,l

30

universal hybrid decision tree classifier, when there is a test subject with only small amount of

training, we can then apply the tree classifier, include the tree structure, its separating features

and decision rules, to the test subject. The only thing that is changed is the decision threshold for

each internal node. The threshold is determined specifically for each subject, while maintaining

the decision tree structure.

2.5 Simulation"

2.5.1 Methods

Three different kinds of decision tree classifier mechanisms were used, namely the custom

universal hybrid decision tree, automatically generated trees for each subject, and automated

trees but with tuned thresholds for individuals. All of them were provided with full data and

extracted features. The common structure and features of the custom decision tree were formed

based on the algorithm described earlier, then for each person, we applied different thresholds for

its internal nodes. The personalized automatically generated trees were used in this report to

compare with our custom tree. For each test subject’s automated tree, we kept the structure and

separating features but calculated thresholds for other subjects. This showed how well the

personalized automated tree could perform when applied to different people. The classification

results for these three classifiers were calculated using testing on the training set (resubstitution

error), training on 40% of data and testing on the rest 60% (40%-60% partition error), and leave-

one-out cross-validation (LOOCV).

2.5.2 Custom Universal Hybrid Decision Tree

The custom decision tree (Figure 2.4) consisted of 27 nodes, where 13 were internal nodes with

binary separation. We first used all data from 7 subjects to determine the tree structure and

31

Figure 2.4 Universal hybrid decision tree classifier

features giving the highest accuracies. Afterward, for each subject, we determined individual

thresholds for internal nodes of the tree. In this tree, we first separate motion activities (stairs up

and down, walking fast and slow, walking up and down ramp, and running) from stationary

activities (sitting upright, sitting slouch, sitting hunch, standing, lying back, side and stomach).

In the upper part of the tree (motion activities), we used naïve Bayes classifiers on each branch,

and assumed equal prior probabilities; in the lower part (stationary activities), we used SVMs

with the Gaussian radial basis function kernel. For nodes using naïve Bayes classifiers, we

32

selected two features that gave the highest weighted accuracy in separating classes; for nodes

with SVM classifiers, we only selected one feature due to computational concerns. The threshold

values were determined specifically for each individual. After creating this universal tree

classifier, we just changed the separation thresholds for each individual, and the structure of the

tree remained unchanged during the simulation.

Resubstitution error was calculated by finding the thresholds from the whole raining data,

and then testing on the same data. 40%-60% error was estimated by finding the thresholds from

40% of the data, and then testing on the remaining data. LOOCV was done by finding a

universal hybrid tree structure using data from all people except one subject. Thresholds were

then calculated using 40% of the data from the subject left out of the tree structure creation

process, and then tested on the remaining 60% of the data.

2.5.3 Automatically Generated Tree

Automatically generated decision trees were created using the MATLAB built-in function

“classregtree.” This function used Gini’s diversity index [12] as the separation criterion. The rule

of thumb of this function is to find the largest class first, and then separate it from other classes.

It should be noted that the automated trees were specific to the target training data. Therefore

each subject has a unique automated decision tree. The acquired data varied from person to

person, even from different parts when we chopped it. Thus, the size of the automatically

generated tree was different; on average the tree had 19.9 internal nodes ranging from 16 to 26,

and on average 20.9 leaf nodes with a range from 31 to 53. For the resubstitution error

estimation, decision trees for each person were generated and tested against themselves. In 40%-

60% error estimation, specific trees were generated for each person on his/her 40% of data, and

33

tested on the remaining 60%. In LOOCV, we found the automated decision trees by using data of

all except one subject, and then tested on the targeted subject.

2.5.4 Automatically Generated Tree with Tuned Thresholds

In order to compare to the universal tree structure, we kept the same structure of automatically

generated trees from the previous section and tuned their threshold values according to testing

data. In this test, we called MATLAB to generate the automated decision tree for subject A, then

kept the tree structure and selected features but changed the separation thresholds of internal

nodes of the tree using testing data of subject B, C, etc. The resubstitution error was estimated by

keeping the structure from one person, then changing separation thresholds with other people’s

data, and then tested against their own data. The 40%-60% error was acquired by keeping the

tree structure but changing thresholds using 40% of data from one subject, then tested on the

remaining 60% of data. In LOOCV, we found the decision trees using all but one subject’s data,

then determined the thresholds using 40% of the last subject’s data, and then tested on the

remaining 60%.

2.6 Result"

Table 2.3 shows the classification error rates for universal hybrid trees, automatically generated

trees and automatically generated trees with tuned thresholds. Table 2.4 to Table 2.6 (next page)

show the classification results for three different classifiers, using LOOCV. The universal hybrid

tree shows considerably better results than the others.

34

Table 2.3 Classification result summary (mean ± standard deviation)

Classifier Resub. Error 40%-60% Error LOOCV

Universal Hybrid Tree 93.5%±0.6% 92.5%±2.6% 91.5%±3.2%

Auto Tree 97.7%±4.4% 92.5%±6.0% 73.0%±13.5%

Auto Tree with Tuned

Threshold
54.4%±13.3% 47.7%±14.3% 69.2%±12.2%

Table 2.4 Confusion matrix of universal hybrid decision trees, tested using LOOCV

 a b c d e f g h i j k l m n

a 1518 0 0 5 4 572 0 7 0 0 0 0 0 0 a = lie_back

b 0 1808 0 0 0 292 11 0 0 0 0 0 0 0 b = lie_side

c 0 0 1794 2 302 0 0 0 4 0 0 0 0 0 c = lie_stomach

d 0 0 0 1980 0 0 0 0 1 0 0 0 0 0 d = run

e 0 0 0 3 1774 0 303 0 18 0 0 0 0 0 e = sit_hunch

f 0 0 0 3 0 1480 594 5 0 0 0 0 0 0 f = sit_slouch

g 0 0 0 0 300 273 1510 7 7 0 0 0 4 1 g = sit_upright

h 0 0 0 37 0 0 0 1202 22 0 198 16 300 26 h = stairs_down

i 0 0 0 1 0 0 0 0 942 0 0 0 13 693 i = stairs_up

j 0 0 0 0 0 0 0 0 0 2070 0 0 18 0 j = stand

k 0 0 0 68 0 0 0 268 103 0 735 130 227 151 k = walk_down

l 0 0 0 144 0 0 0 19 203 0 345 851 204 338 l = walk_fast

m 0 0 0 45 0 0 0 0 5 0 7 283 1654 112 m = walk_slow

n 0 0 0 5 0 0 0 2 298 0 0 19 316 1353 n = walk_up

35

Table 2.5 Confusion matrix of automatically generated tree, tested using LOOCV

 a b c d e f g h i j k l m n

a 1085 0 0 0 0 167 0 0 0 0 0 0 0 0 a = lie_back

b 0 1128 128 0 0 0 0 0 0 0 0 0 0 0 b = lie_side

c 184 0 1067 0 0 0 0 0 0 0 0 0 0 0 c = lie_stomach

d 0 0 1 1164 0 0 0 0 0 0 5 0 0 0 d = run

e 0 0 0 0 876 0 373 0 0 0 0 0 0 0 e = sit_hunch

f 0 0 0 0 0 517 719 0 0 0 0 0 0 0 f = sit_slouch

g 0 0 0 0 309 168 774 0 0 0 0 0 0 0 g = sit_upright

h 0 0 0 0 0 0 0 512 29 0 347 21 10 60 h = stairs_down

i 0 0 0 3 0 0 0 3 552 0 35 4 12 279 i = stairs_up

j 0 0 0 0 0 0 0 0 0 1242 0 0 0 0 j = stand

k 0 0 0 0 0 0 0 165 54 0 480 84 80 82 k = walk_down

l 0 0 0 0 0 0 0 183 78 0 439 410 117 24 l = walk_fast

m 0 0 0 0 0 0 0 5 9 9 44 6 665 517 m = walk_slow

n 0 0 0 0 0 0 0 16 143 0 79 14 31 850 n = walk_up

Table 2.6 Confusion matrix of automatically generated trees, tested using LOOCV

 a b c d e f g h i j k l m n

a 1085 0 0 0 0 167 0 0 0 0 0 0 0 0 a = lie_back

b 0 1128 128 0 0 0 0 0 0 0 0 0 0 0 b = lie_side

c 184 0 1067 0 0 0 0 0 0 0 0 0 0 0 c = lie_stomach

d 0 0 1 1164 0 0 0 0 0 0 5 0 0 0 d = run

e 0 0 0 0 876 0 373 0 0 0 0 0 0 0 e = sit_hunch

f 0 0 0 0 0 517 719 0 0 0 0 0 0 0 f = sit_slouch

g 0 0 0 0 309 168 774 0 0 0 0 0 0 0 g = sit_upright

h 0 0 0 0 0 0 0 512 29 0 347 21 10 60 h = stairs_down

i 0 0 0 3 0 0 0 3 552 0 35 4 12 279 i = stairs_up

j 0 0 0 0 0 0 0 0 0 1242 0 0 0 0 j = stand

k 0 0 0 0 0 0 0 165 54 0 480 84 80 82 k = walk_down

l 0 0 0 0 0 0 0 183 78 0 439 410 117 24 l = walk_fast

m 0 0 0 0 0 0 0 5 9 9 44 6 665 517 m = walk_slow

n 0 0 0 0 0 0 0 16 143 0 79 14 31 850 n = walk_up

36

2.7 Discussion"

2.7.1 Universal Hybrid Tree Structure

From the structure and chosen features of internal nodes (Figure 2.4), we first used naïve Bayes

classifiers to distinguish motion and stationary activities using energy as the separating feature,

based on physical intuition. We separated motion activities using naïve Bayes classifiers by

grouping similar activities at different nodes of the tree. By similar we mean that there existed a

common Gaussian model describing all activities contained in every node. For example, we

separated running from walking and stairs using energy (standard deviation) and frequency

(sidelobe location) since we believed that walking and stairs feature values are similar in this

space, and were distinct from feature values for running. However, there were some difficulties

in distinguishing different walking types and stairs, and this will be discussed quantitatively in

section 2.10.3. In distinguishing stationary motions, we used SVMs for the separation rules.

SVMs are good in classifying activities, especially when the values are not easily described

using parameterized models. When we grouped several stationary activities, in the feature space

these activities were centered at their own regions, which made it improper to characterize each

node using single-peak Gaussian models. On the other hand, SVMs drew clear boundaries

between stationary activities, especially in the early stages of the tree, when different stationary

activities were grouped together. Thus, SVMs outperformed naïve Bayes classifiers at the early

stages of the tree, and had similar classification accuracy near the leaf nodes.

2.7.2 Automatically Generated Trees

When comparing automatically generated trees versus universal hybrid decision trees, we found

out that auto-generated trees were too specific to the training data to classify other subject’s data.

37

As seen in the second row of Table 2.3, auto-generated trees are very accurate when trained and

tested on the same set of data (97.7%). However, this accuracy dropped when we separated the

data into two (92.5%) since they were too fine-tuned and overfit the training data. For LOOCV,

classification accuracy dropped dramatically and displayed a large variance (73.0% ± 13.5%),

indicating that the automatically generated trees were not easily generalized even we have a large

amount of training data. Additionally, the average number of internal nodes of the LOOCV trees

was 136.7 and 274.4 for total average number of nodes. All of the above clearly indicates that the

personalized trees depend largely on the training subject, even the timing when the data is

generated, thus making it hard to generalize the model to the general public.

 We further illustrated this overfitting phenomenon of auto-generated trees by keeping the

structures and features of the tree and tuning only separation thresholds. In the third row of Table

2.3, the classification accuracies were never satisfying (54.4%, 47.7%, and 69.2% for

resubstitution error, 46%-60% error and LOOCV error respectively). The overfit tree structure of

personalized automatically generated decision trees makes it hard to find a universal tree

structure that classifies daily activities with acceptable accuracy.

 On the other hand, the classification accuracies of the universal hybrid decision tree

dropped only a little when we separate the subjects’ data (from 93.5% to 92.5%), and when we

generalized the result (from 93.5% to 91.5%); this can be seen from the first row of Table 2.3. In

the first two tests, the tree structure and separating features were given in Figure 2.4 and the

accuracy remained high for the two error estimations. In LOOCV, we fixed the tree structure and

changed the separating features based on only part of the subject test data each time, and

determined the thresholds for each subjects. The result was still above 90% with smaller

38

variations compared to automatically generated decision trees. Therefore, we showed that

universal hybrid decision trees can classify daily-life activities with acceptable accuracy.

2.7.3 Confusion Matrices

We discuss individual classification accuracy of each activity in this section. The universal

hybrid decision tree successfully classified all stationary activities and running, but did not do as

well in classifying walking and stairs activities. On the one hand, stationary activities have few

variations and thus SVMs easily classified them. The high intensity and frequency of running

made it distinct from other motion activities in feature spaces. On the other hand, 77% of stairs

down were classified correctly and 12% of them were classified as ramp down; similarly, 76% of

walk up-ramp were correctly classified, where 20% of them were classified as stairs up. Since

the feature values of walking on ramps and stairs are very similar, it was difficult to distinguish

among them. Additionally, only 76% of walk down-ramp and 68% of walk fast were classified

correctly, and the rest of them were misclassified as other walking and stairs.

 Automatically generated trees classified almost every activity when trained and tested on

the same set of data, and had similar classification accuracy compared to universal hybrid

decision trees. However, when estimating LOOCV error as in Table 5, only lie back (86%), lie

side (93%) lie stomach (86%), running (100%) and standing (100%) have accuracies above 85%;

all other activities have of accuracies below 80% (77% for sitting hunch, 71% for sit slouch, 62%

for sit upright, 71% for stairs down, 58% for stairs up, 38% for walking down-ramp, 41% for

walking fast, 61% for walking slow, and 70% for walking up-ramp). We get similar results from

the use of automatically generated trees with tuned thresholds. Therefore, this showed that a

united set of thresholds is improper for generalizing the model to other untrained data. A better

39

way was to learn the tree structure and separating features from existing data, and then determine

the thresholds for internal nodes with a short amount of observation.

2.8 Monitoring"Workspace"Activities"using"Accelerometers"

2.8.1 Introduction

Physical activity monitoring (PAM) systems comprised of on-the-body accelerometers are

effective tools for monitoring physical activity with medical, athletic training, and general health

applications. In this section we used a PAM system for monitoring people at their workplace.

Accelerometer systems have already proven their effectiveness for the physical activity

classification necessary for health monitoring, successfully classifying basic physical activities

including walking, jogging, and going upstairs and downstairs [40]. In this project we

demonstrated that our PAM system is capable of utilizing a personalized training set easily

acquired by the user in a clinical setting. We also investigated the effect of training set duration

on overall classification accuracy. Previous research has used pressure sensors embedded in a

worker’s chair for seated posture classification [41][42], and video surveillance has been used to

classify standing, sitting and lying down postures [43]. However, there has been little research

concentrated on workspace activity and seated posture classification with accelerometers. These

sensors are less costly for mass production than chairs equipped with embedded sensors and less

invasive than video surveillance. Workplace activities that are of interest for classification in our

system include walking, standing, sitting, sitting posture, and seated movements such as shaking

ones leg or twisting in a chair. Studies have shown that too much sedentary behavior, such as

sitting at a computer during the work day, is detrimental to health so much so that it leads to

increased risks of cardiovascular disease, despite regular participation in moderate to intense

40

exercise [44]. It has also been shown that bad workplace posture can result in widespread

physical pain [45]. Fidgeting and restlessness, such as shaking ones leg and twisting in a chair,

are both symptoms of anxiety, and thus the monitoring of such activities could potentially

provide insight into the stress level of workers [44][46]. With the tri-axial accelerometers used in

this work, employers and employees will be able to monitor exactly how much time they are

spending in sedentary positions, whether or not they have proper posture when sitting, and to

what extent they are exhibiting anxious physical behaviors. This data will be able to be used as a

guideline for altering their behaviors for the preservation and improvement of their health.

2.8.2 System Architecture

2.8.2.1 System Components

As before, our system consists of tri-axial wireless and wearable Gulf Coast Data Concept X6-

2mini accelerometer sensors. The sensors continually collect data in the X, Y, and Z directions

once removed from a USB port, at a selected rate of 160Hz.

2.8.2.2 Training Data Collection

Sensors are placed on the user in specified locations (knees, chest). When collecting a training

set, an easily recognizable signature (such as jumping or leaning back and forth five times) is

performed before each activity. Each activity is performed for the same amount of time and its

occurrence and duration is recorded, facilitating the ease of labeling the data. The orientation and

location of each sensor is also recorded in order to remain consistent between data collection

sessions. The workspace activities performed are walking, standing, sitting, sitting with the back

reclined 85-95, sitting with the back reclined 115-125, sitting while slouching, shaking one leg

while sitting, crossing one leg while sitting, swiveling in a chair, and sliding in a chair away from

and towards a desk.

41

2.8.2.3 Scripted/Testing Data Collection

Sensors are placed in the same locations and with the same orientations as they are in training

data collection. The same activities are performed but in a natural, un-planned manner. An

observer (or the user) records the activities that the user performs so that the data can be labeled

appropriately, creating ground truth for classification. In a deployed system, this recording would

not be necessary as we would rely on the classifications, presuming they yield sufficiently

accurate statistics.

2.8.2.4 Data Analysis

For the classification, we used a Naïve Bayes classifier [47] over a feature space. The features

were calculated over a window of 4 seconds. The features were: mean, maximum value, and

frequency energy. This was done on several levels first by classifying sitting, walking, and

standing, and then within sitting, classifying the postures and movements.

2.8.3 Experiments and Results

The activities classification performed were structured into three levels. The first classification

level comprised of walking, sitting, and standing, the second of seated posture, and the third of

seated movements: twisting in the chair, shaking the leg, sliding to and from the desk, and

crossing legs. From these data the frequency, max, min, mean, and standard deviation values

were extracted on the three levels of classification. Splitting the classification into several levels

has advantages for (1) producing a model that is physically understandable, and thus leading to

information that is more useful in advising subjects on how to change their behavior (e.g., degree

of slouch, take more breaks, etc.), and (2) reducing training time, since each decision is low-

dimensional. We chose the naïve Bayes classifier [47] because it is simple and it worked well.

42

On the first level (walking, sitting, and standing) an accuracy of 99.5% was achieved as

seen in Figure 2.5. For the posture, where the angle of the back was measured, the accuracy was

99.6%, as seen in Figure 2.6. On this level, two types of proper posture 2.6[48] were classified;

reclined at 120 degrees, and upright at 105 degrees and many types of slouching were classified

as improper. For the various movements while sitting, an accuracy of 96.5% was obtained, as

seen in Figure 2.7.

43

Figure 2.5. Walking, siting, and standing classification statics

Figure 2.6. Sitting posture classification statistics

Figure 2.7. Sitting motions classification statistics

44

2.8.3.1 Training Data Set Duration

An integral part of our PAM system is the training data set. In order to determine the optimal

amount of time for which each activity should be performed in the training data set, a single set

of data was broken up into subsets of time intervals. One time interval was dedicated as the

testing data set, while the other time intervals length was varied and dedicated as the training

data sets. The same testing data set was tested against each of these training data sets, and the

overall accuracy for each training data set length was recorded. For walking, standing, and sitting

classification, it was found that 2 minutes was an adequate training interval, as seen in Figure

2.8. For seated posture classification it was found to be 2 minutes, as seen in Figure 2.9. For

seated motions it was found to be 15 seconds, as seen in Figure 2.10.

45

Figure 2.8. Overall classification accuracy of walking, sitting, and standing as a function of

training duration

Figure 2.9. Overall classification accuracy of seated posture as a function of training duration

46

Figure 2.10. Overall seated motion classification accuracy as a function of training duration

2.8.4 Summary

We have presented a system that can accurately classify daily life activities in the work place.

The systematic and simple method of training that has been developed is key. The procedures

developed and results obtained allow, with research on basic activities as a foundation, for the

monitoring of work place physical activity. Subjects who have expressed pain or discomfort in

their body would be enabled with such a system to track their daily movement and posture

without any disruption to their daily life.

Further work in two main areas is desired, expanding on posture and feature selection.

We have only studied the posture of the back; whether the subject is sitting at a proper angle or

slouching. However, there are many aspects to posture and proper physical motion in the

workplace, such as how long subjects stare at a computer monitor, the angle of the knees,

47

whether the subject’s feet are flat on the floor, the level of the arm rest, etc. With more data

collected in these areas, the applications of the system would be even greater. Another interest is

in feature selection. There are many possible features to compute, and many possible sensor

positions. Further analysis on the best features and combination of features is needed. There are

also more feature selection algorithms that could be investigated, such as giving features weights

that reflect their ability to differentiate between activities. In the future, we would like to test this

system on various subjects for longer periods of time to gain a wider data pool for pattern

analysis.

2.9 Estimation"of"Accelerometer"Orientation"for"Activity"Recognition"

2.9.1 Introduction

In real world applications, many activity classification algorithms are not robust due to issues

related to sensor orientation. In this section we discuss the use of personalized and supervised

learning methods where a training set is used to build an activity classifier for each user. For

these methods, a classifier would be built using accelerometers placed in specific orientations.

The robustness issue comes into play, when there is a mismatch in the accelerometer orientation

between the training, and the testing or subsequent use of the system. This is a very practical

problem since the users will wear their accelerometers at different times and use their trained

classifier built in a previous time. Since activity recognition algorithms are executed on training

under known sensor orientations, subsequently the classifications are sensitive to those

orientations as well. In order to make the systems more robust, calibration algorithms must be in

place to manipulate and correct data produced by incorrectly oriented sensors. There are two

traditional means for dealing with problems concerning the orientation of sensors. The first is to

48

find orientation-invariant features, using mathematical manipulations such as power spectral

density or a Fourier Transform [49]. The other is calibration through a series of movements. In

this section we propose and evaluate a method to calibrate a system of sensors through a series of

simple pre-defined movements. Additionally we propose an algorithm to automate the system of

sensors calibration using orientation invariant motion recognition methods. This method is then

tested on real data for human motion recognition.

Very few researchers have considered this problem. In [51], the authors use a similar

approach but do not report the improvement one could get from such a method. The contribution

of this section is that it shows the effectiveness of accelerometer orientation calibration using

pre-defined movements on real data. Our results are based on real experiments using three

sensors, for seven daily-life activities.

2.9.2 Methodology

2.9.2.1 System Description

We again employ the GCDC Miniature 3-axis Accelerometer Data Logger X6-2mini [53]. Our

accelerometers samples at 160Hz, with a range of ±6g, recording at 16 bits of resolution. For

classification purposes, the algorithms include a naïve Bayes classifier, combined with a decision

tree. At each node of the decision tree, one or two mathematical features are extracted from each

sensor. Features include mean values, standard deviations, and energy, among others. The

specific features and activities used for experimentation purposes are discussed in the

experiments and evaluation section.

2.9.2.2 Rotation Matrix Estimation Method

We use rotation matrices to calibrate the misoriented data measured by a misoriented sensor.

49

Each sensor measures the acceleration in a 3-D space relative to the sensor orientation. We refer

to that space by sensor space. We use a reference 3-D space that corresponds to gravity, and we

call it hand space. In this space gravity is aligned with the y-axis.

For each sensor, a 3x3 rotation matrix is constructed to calibrate the misorientated data.

Orientations in three dimensions can be used to represent one system’s orientation relative to

another [52]. In this method we use a fixed system where gravity is aligned with the y-axis. In

this section, it will be referred to as hand space, as we use gravity as a reference to align with the

hand. The sensor has its own orientation however, which can be represented relative to the hand.

Thus if we have a rotation matrix that represents the sensor in hand space, it will make the sensor

data appear to come from a sensor that is aligned with the hand as shown in Figure 2.11. This is

doable because all sensor data is related by an absolute, the gravity vector, as shown in Figure

2.12.

Using a feature of rotation matrices, if an inverse is performed on the 3x3 matrix of the

hand in sensor space, it becomes the sensor in hand space. This rotation matrix can then be

multiplied by the data being recorded by the sensor, and the sensor data can be manipulated to

look as though it is being produced from a correctly oriented sensor.

2.9.2.3 Estimating the Orientation

An algorithm was developed to automate sensor calibration for systems of sensors

simultaneously. Having the user perform movements shown in Figure 2.13 and Figure 2.14, an

algorithm (described in detail below) recognizes those movements, records the acceleration

signatures, and applies rotation matrices to correct the data. The correction motion is easy for the

naïve users to perform, so that the rotation matrix can be automatically built and applied on the

50

Figure 2.11. Three dimensional acceleration signals

Figure 2.12. The figure on the left shows the system for a correctly placed sensor. The figure on

the right shows the system for an incorrectly placed sensor

Figure 2.13. Calibration action 1

51

Figure 2.14. Calibration action 2

subjects’ data for researchers to utilize without difficulty.

The first step is aligning the signals. To do this, the sensors are all held together in the

same orientation and violently shaken. Once the time signature on all the sensors is clear, the

signals are time shifted to make all movements recorded from the individual in sync. The data

are also put through a low pass filter prior to processing. This ensures that shaking dynamics are

kept at a minimum and tilt is emphasized. This also makes the method more robust to deal with

individuals that have trouble holding still, such as Parkinson’s disease. The sensors would

otherwise produce sudden spikes in the data, creating a high standard deviation, giving the

illusion of movement indication.

The second stage consists of finding the time period when the individual was standing

upright. Regardless of orientation, the sensors must be worn flat against the skin. This ensures

that if the individual is standing upright, the sensor’s z-axis will always be perpendicular to

gravity and read zero. The other indication that the individual is standing upright and still, is the

52

data produced by the accelerometers will have minimal movement, indicated by a low standard

deviation. Within the signal, a time frame of 10 seconds is searched for, where the

accelerometers z-axis is parallel with the ground, and the individual is holding still. This is

marked by an average z-reading of less than 0.2g, and a low standard deviation in x and y

indicating stillness in the subject. These values are then recorded and placed into the second

column of the rotation matrix.

The transitional period from standing to lying down is marked by a very high average

standard deviation on the three sensors attached to the individual. The individual lying down is

found by a period following the transitional period with a low standard deviation on all three

axes. This ensures that as long as the individual stands upright, and then subsequently lies down,

all of the needed signals will be found for rotation matrices processing.

Once these time periods are found, average values over 10 seconds are now available for

each of the sensors in each of the needed axes. The values are put into a rotation matrix, inverted

and then multiplied by the sensor data as described in the previous sub-section. The method is

robust and user friendly, as it can automatically calibrate data, rather than having individuals

finding time signals visually or recording them from an external device.

2.9.3 Results and Evaluations

2.9.3.1 Single Sensor Experiments

An initial experiment was conducted to test the effectiveness of this calibration method on the

subject’s wrist. One sensor was correctly oriented, while two sensors were placed in incorrect

orientations on various parts of the wrist, as well as tilted to different angles. Control indicates

the sensor that was correctly oriented. Experiments 1 and 2 denote the sensors that were

53

Figure 2.15. Data from non-calibrated sensors

incorrectly oriented. The x, y, and z axes are denoted as, red, green, and blue lines in that order.

A series of movements were performed, and the rotation matrices were applied via the

calibration algorithm. In Figure 2.15, it is seen that the signals from the sensors are related, but

yield vastly different results. In Figure 2.16 however, the signals all look almost

indistinguishable from one another aside from a time delay, and the control is unchanged. These

early experiments were an indication that the algorithm was successful.

54

Figure 2.16. Data from calibrated sensors

2.9.3.2 Multiple Sensor Activity Classification

In this experiment, the calibration algorithm was tested on two systems of 3 sensors attached to

different locations on the subject’s body. Three sensors represented the control, as well as the

base of the training data, and the other three are the experiment, placed at identical locations with

different orientations. These locations were the right ankle, the right wrist, and the chest of the

test subject. The activities being trained and classified were slow walking, running, walking up

stairs, walking down stairs, sitting, lying down, and standing upright.

 Our naïve Bayes decision tree classifier is shown in Figure 2.17. The first distinction

between motion activities and still poses was made in the first branch. This distinction is of

55

Figure 2.17. The decision tree used, the features used are shown on every node

importance to us, because still motion activities can be determined only through tilt, and are

subsequently much more dependent on the orientation of sensors. Motion activities can be

determined often times through motion invariant features, such as average standard deviation of

the x, y, and z axes.

In this experiment the calibration algorithm was applied to two systems of 3 sensors

attached to different locations on the subject’s body. Three sensors represent the control, and the

other three represent the experiment, as incorrectly oriented sensors. The individual wearing the

sensors underwent 7 activities to be classified: slow walking, running, walking up stairs, walking

down stairs, sitting, lying down, and standing. The three experimental sensors were tested for

accuracy both before and after the calibration algorithms, and compared to the control

experiment. The sensors were located on the right ankle, the right wrist, and the chest of the test

subject.

Our naïve Bayes decision tree classifier is shown in Figure 2.17. For example, the first

56

distinction made was between motion activities and still poses. It was found that the maximum

value of the y-axis was the most accurate feature for separating these sets using cross validation.

Subsequently nodes are added to the tree until all 7 activities have their distinguished sets of

features.

Figure 2.18 represents the control of the experiment using correctly oriented sensors. The

activities were classified correctly with an accuracy of 96%. The incorrectly oriented sensors in

Figure 2.19 had only 38% accuracy. Once the algorithm was run on the data, the data was again

tested for activity classification and an accuracy of 93% was achieved. Also, it is clear that some

activities are accurately classified regardless of orientation. The reason is that still activities are

entirely orientation dependent, while mobile activities can be classified on a range of features,

some being more orientation dependent than others. For example high average standard

deviation can mark running, which is also rotation invariant. The data indicated that with very

poor placement, the algorithm could make sensor data on average, accurate within 3% of the

correctly oriented sensor data. This indicates a successful method to be used and developed

further in the future.

57

Figure 2.18. Confusion matrix for correctly oriented sensors

Figure 2.19. Confusion matrix for non-calibrated incorrectly oriented sensors

Figure 2.20. Confusion matrix for calibrated incorrectly oriented sensors

58

Figure 2.21. GUI home screen

2.9.3.3 Graphical User Interface

A GUI was created so that researchers could choose to calibrate individual body parts, or a

system of three sensors simultaneously. After choosing the body part(s) that need calibrating, the

individual selects the data file that needs to be preprocessed, and a message will appear

indicating its success. Figure 2.21 is the first screen, and after selecting Full Body, Figure 2.22 is

the second screen showing the positions needed for calibration and a sample to show a successful

calibration.

59

Figure 2.22. GUI final screen

2.9.4 Summary

In this section, we presented an approach for correcting the data recorded by misoriented

accelerometers used for activity recognition purposes. This approach uses rotation matrices

estimated from pre-defined activities done by the user at the initialization of the system. We

60

show that it improves the accuracy from 38% to 92% for a real data set of 7 activities. Based on

these promising results we are pursuing an extension to this work. This involves automatic

recognition of activities that may be used for calibration of sensor orientation, rather than

requiring the subject to engage in a set of prescribed activities, which may themselves be subject

to error. This requires collection of large training sets over multiple subjects that include many

orientation errors so that the classifier may be self-calibrating through recognition of error states.

While the work involved in model creation is larger, methods that further reduce what is

demanded of users may ease scaling to very large numbers.

2.10 Feature"Selection"Based"on"Mutual"Information"for"Human"Activity"

Recognition"

2.10.1 Introduction

In prior sections we have outlined means of constructing decision trees when the number of

activities and sensors is relatively small. This is the usual situation reported in the literature. For

example, in [40], multi-modal sensor systems were used to classify basic physical activities,

including walking, jogging, and going up and down stairs. In [4] and [56], sensor systems using

only accelerometers were used for activity classification; [4] used biaxial accelerometers to

monitor both ambulatory and sedentary motions, while [56] used tri-axial accelerometers to

monitor workspace activities. Smart phone based accelerometers were also used for activity

recognition as in [57]. A representative sampling of previous research is presented in Table 2.7.

In the research reported in this section, we aim at capturing the motions of all the parts of

the body for a thorough study of the activity recognition problem. We over-instrument the

subjects with 14 tri-axial accelerometers placed on various parts of the body, and we consider the

61

Table 2.7. Summary of previous research

Ref Accuracy No. Activities No. Subjects No. Sensors

[40] 95% 10 2 7

[4] 84% 20 20 5

[57] 85% 5 10 1

[1] N/A 5 groups 11 6

[58] 90% 8 12 7

[59] 95% 8 7 1

[60] 65%-95% 8 1 12

[61] 90% 5 5 2

classification of 14 common daily activities. We take a supervised learning approach, using a

binary decision-tree with a naïve Bayes classifier at every internal node and a large feature set of

31 features per accelerometer (total of 434 features). This is a high-dimensional problem where

brute force is not possible, and a feature selection algorithm is needed to find the best features for

every naïve Bayes classifier (present at every internal node). Feature selection is a problem that

has been studied many times before in other contexts. Different types include margin-based

algorithms such as RELIEF [62] and mutual information based algorithms such as MIFS [63].

We use a mutual information-based algorithm because it is computationally capable of handling

the large amount of data captured by 14 accelerometers.

62

Figure 2.23. Location of the 14 accelerometers

2.10.2 Methodology

2.10.2.1 Training Data Collection

Accelerometers are placed on an individual at fourteen locations, as shown in Figure 2.23. The

accelerometers we used were tri-axial wireless Gulf Coast Data Concept X6-2mini

63

Table 2.8. The 14 activities that were classified

Active Stationary

Slow walk Stand

Fast walk Sit (upright)

Walk (up-slope) Sit (hunch)

Walk (down-slope) Sit (slouch)

Walk (up stairs) Lie down (on back)

Walk (down stairs) Lie down (on stomach)

Run Lie down (on side)

accelerometers (±6g) [53], which continually collected data at a rate of 160Hz. Fourteen

different activities are performed, as described in Table 2.8. To collect labels for ground truth,

we used an Android phone application. The application has a list of the activities to choose from

and a start/stop button to record the time the subject started the activity, and the time he/she

stopped. Eight different data sets were collected from eight different healthy individuals for a

length of five minutes per activity.

2.10.2.2 Features Computation

Features were computed on 4-second windows of acceleration data with 3 second overlapping

between consecutive windows. We compute 31 different features for each sensor, shown in

Table 2.9. Since we used 14 different sensors, this meant a total of 434 features from which to

choose.

64

Table 2.9. Features used (m refers to the magnitude of the 3D acceleration vector)

Feature

Standard deviation of x,y,z axes and

Mean of x,y,z axes and

Absolute mean of x,y,z axes and

Energy ratio of x,y,z axes and

Ratio of DC to sidelobe of x,y,z axes

First sidelobe location of x,y,z axes

Max value of x,y,z axes and

Short time energy in x,y,z axes and

Correlation between x and y axes

2.10.2.3 Classification

We used the binary decision tree shown in Figure 2.24, with a naïve Bayes classifier at each

node. The naïve Bayes classifier is a probabilistic method given by the function (2.6), where

is the set of classes and is the set of features.

 (2.6)

This classification was performed offline. A tree was used so that the classifier would not have to

distinguish between all 14 of the classes using the same set of features. Instead, classifiers are

used to partition the data into smaller and smaller categories of classes until the categories

 m

 m

 m

 m

 m

 m

 C

 F

max
C∈C

p C() p f C()
f∈F
∏

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

65

Figure 2.24. Decision tree used

consist of a single class, at which point the data is fully classified. In the probability calculations

(given by Bayes’ rule), the features were assumed to be independent with a Gaussian

distribution, as required by the naïve Bayes classifier. For every subject, the naïve Bayes

classifiers (at the internal nodes of the tree) were trained on his/her training data; this is often

called a user dependent procedure. The feature selection was also personalized to every subject.

2.10.2.4 Feature Selection Algorithm

The high-dimensionality of the problem requires a good feature selection algorithm to find the

best features for the naïve Bayes classifier at every internal node. In order to minimize

computational complexity while maximizing accuracy, this algorithm employs a ’filter’ solution

first, and then a ’wrapper.’ The algorithm works as follows:

1. We determine the Gaussianity of each feature by calculating the negentropy of each

feature given each class using the approximation given in equation (2.7), where is the

negentropy, is a random variable, is the expected value, and is the kurtosis,

the fourth central moment of the [64][65].

 J

 x E kurt

66

 (2.7)

We remove all features with negentropy values that are higher than an a priori threshold.

2. Using the mRMR algorithm, we ranked the features. [66] The term this algorithm wishes

to maximize is given by formula (2.8).

 (2.8)

 is the mutual information, is the class variable, is the feature under

consideration, and is the set of features already selected and ranked. Calculating

mutual information requires calculating the entropy of a feature or set of features, a

computationally expensive process because each feature is a mixture of Gaussians. Hence

a Taylor series approximation of the entropy was employed[3].

3. By now, there are a few parameters that can be changed: the threshold for the negentropy

values and the degree of the Taylor series approximation. In addition, there are really two

different possible algorithms, using only the first term of (3) (Max-Relevance), or both

(Max-Relevance and Min-Redundancy) [66]. Instead of choosing one algorithm, or just

one set of parameters, a range of parameters are used over both algorithms, and the sets

of features returned by these algorithms are captured. Because we wish to minimize the

number of features, we use the first k features in each ranking, where k ranges from 1 to

the full set.

J x() ≈ 1

12
E x 3{ }2

+ 1
48

kurt x()2

I C; f

i() − 1
S

I f
s
; f

i()
fs∈S
∑

 I C fi

 S

67

4. This gives us a list of feature sets. We pick the feature set that minimizes the training

error1.

5. The above steps are repeated for each node in the tree. Then for each node, the highest

ranking set of features are chosen, and the total number of sensors used so far is updated.

2.10.3 Results

We collected sets of data from eight different individuals where the participant did five minutes

of each of the 14 activities while wearing all 14 accelerometers. For these data sets, we trained

on half the data, 2.5 minutes per activity, and tested on the other half, a time suggested by [40].

We got an average overall accuracy of 96.5%, as seen in Table 2.10. These results show that a

high activity recognition rate is achievable for a large set of activities. Table 2.11 shows that a

large number of sensors was used for every subject. This is due to the fact that the feature

selection algorithm does not take into consideration from which sensor the features were

selected. It would be interesting to change the feature selection algorithm to a sensor selection

algorithm, while maintaining a relatively high accuracy. This could be done by adding a term to

favor features from the same sensors. It is also worth noting that for different subjects, different

features were selected. This is due to the variation in the acceleration data belonging to different

subjects (e.g. different subjects walk differently, sit differently, and lie differently.).

1 This corresponds to choosing the feature set that gives the highest discrimination between the two branches of the

tree at the corresponding node. Training error is the percentage of misclassified training data

68

Table 2.10. Average accuracy for each of the activities

Activity Percent Correct

Run 100%

Walk (up stairs) 97.67%

Walk (down stairs) 94.54%

Slow walk 92.77%

Walk (up-slope) 95.95%

Fast walk 96.81%

Walk (down-slope) 95.32%

Stand 99.41%

Sit (upright) 89.90%

Sit (slouch) 94.62%

Sit (hunch) 99.24%

Lie down (on side) 100%

Lie down (on back) 94.83%

Lie down (on stomach) 99.66%

69

Table 2.11. Average accuracy for each of the test subjects

Test subject Our algorithm Number of sensors

1 93% 10

2 98% 12

3 96% 9

4 97% 10

5 98% 12

6 99% 10

7 96% 13

8 95% 11

Average 96.5% 10.875

2.10.4 Summary

This section presents a combination of a tree-based classification and a feature selection

algorithm for human activity recognition, and shows that a high activity recognition rate is

achievable for a large set of common daily activities. More than just a specific algorithm, this

section presents a framework that maximizes the accuracy that can be garnered from the results

of specific algorithms, like the mRMR algorithm that we used. This work shows that different

sensors (at different locations on the body) are the best for discriminating between subset of the

activities. The algorithm presented could be changed to minimize for the number of sensor used.

This is a step forward towards understanding human activities and towards finding the best

70

placements of sensors on the body for the recognition of a large set of activities.

2.11 Conclusion"

In this chapter we have presented a variety of applications of decision trees to the problem of

activity classification. In some cases, the problem addressed was simple enough that naïve Bayes

classifiers were sufficient, but in general more sophisticated approaches are required to enable

good classification accuracy with limited human effort in providing ground truth. The hybrid tree

we have introduced provides exactly this functionality so that the overall effort in developing

models that can be tuned to individuals is reduced.

71

Chapter 3

MOTION TRAJECTORY FUSION USING DIVERSE SENSOR TYPES

3.1 Introduction"

Inertial measurement units (IMU) are widely used due to their low cost, low weight and small

size. They are now implemented in numerous fields including aviation, robotics, gaming, sports

and others to measure orientations or directions[68][69][70][71]. Some studies also utilized

inertial sensing to classify human activities or reconstruct human motions

[72][73][74][75][76][77].

Generally used IMUs include accelerometers, gyros, magnetometers, GPS and other devices.

Due to their physical characteristics and numerical data manipulating procedures, estimation

results using these devices suffer from high measurement noise, incorrect scaling and biasing.

Therefore, there are many studies discussing how to model measurement errors and drift using

various filters and algorithms [78][79][80].

Our goal is to estimate the orientations of upper limbs at any given moment to find the

motion trajectories of the arm. This will benefit medical-field studies, which focus on long-term

and detailed movement monitoring. For conditions such as Parkinson’s disease or rehabilitation

from injuries, doctors and therapists usually need to watch tiny changes of patients' motions for a

period of time. If there exists a system composed of IMUs, which can tell them of any significant

changes of the motions at patients' home environments, it would greatly benefit doctors'

diagnosis and save a huge amount of medical resources through timely interventions.

72

Much research has been conducted to reconstruct trajectories, or to estimate sensor

orientations. In [76] kinematic models were combined with unscented Kalman filters to estimate

orientations of joints under slow and fast motions. However only simple arm movements were

evaluated. In [77], a continuous-wavelet-transform based method was used to integrate

accelerometer data analytically to avoid numerical integration drifts, in which subjects only

performed motions slowly, and some reconstructed patterns are only recognizable but not

accurate.

In [81], biomechanical models and non-linear complementary filters were combined to

estimate upper body motion. However, all experiments were done outdoors where there is less

magnetometer interference.

In this chapter, we show how to estimate motion trajectories by combining non-linear

complementary filter designs, which estimate orientations and gyro bias [70][82], with

biomechanical models of upper limbs, including limb decomposition and human motion

limitations. From different studies, we have seen that different environments require different

motion reconstruction strategies. For example, we know that in an indoor environment, the

magnetometer suffers from large amounts of magnetic interference, which will affect its

measurements. In addition, in an outdoor environment, though the magnetometer suffers from

less interference, there are also some limitations which affect the robustness of our methods:

there may be limited wireless internet connection which is necessary to upload and transfer

recorded data between recording devices, and the devices need to be less dependent on a power

source. For these reasons, in this chapter we formulated a system, which can track human motion

trajectories under various environments. Experiments were conducted covering arm movements,

pattern drawing and daily life activities. This method not only applies to upper limb motion

73

reconstruction, but can be also used to estimate orientation of lower limbs with the appropriate

kinematic model.

In section 3.2 we introduce the system for estimating motion trajectories using various

types of sensors. Section 3.3 introduces the experimental and simulation setups. The results are

presented in section 3.4, followed by the discussions of the results in section 3.5, and we draw

the conclusions in section 3.6.

3.2 Algorithms"

3.2.1 Definitions"and"building"blocks"

3.2.1.1 Notation"and"measurement"modeling"

3.2.1.1.1 Special,rotation,group,

In geometry, any orientation and rotation can be expressed as a vector , where it contains

the yaw, pitch and roll angles of that rotation. We can also define orientations and rotations in

matrix form. belongs to the special orthogonal group such that

 (3.1)

We then define the operator such that

 (3.2)

Then for a rotation and any vector , we have

 υ ∈3

 R ∈3×3

SO 3()

 RRT = I , R ∈3×3

∨ :3 → SO 3()

υ∨ =

0 −υ
3

υ
2

υ
3

0 −υ
1

−υ
2

υ
1

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
 υ ∈3

,υ∨ ∈SO 3()

ω ν ∈3

74

 (3.3)

where is the vector cross product. The following identity is also commonly used in this

chapter:

 (3.4)

where is a rotation matrix, and represents an orientation in 3-D space.

We then define being the inverse of . That is to say, we have

 (3.5)

3.2.1.1.2 Coordinate,systems,(Frames,of,reference),

We use the following notation to represent different frames of reference

 Earth frame of reference (Earth coordinate).

 Body frame of reference (Body coordinate)

 Estimator frame of reference (Estimator coordinate).

 Kinect frame of reference (Kinect coordinate).

We use , , and to represent the axie of north, east, and down (NED) coordinate

system in . is the body coordinate, and is used to denote the original data of the IMU.

ω∨ν = ω ×ν

×

Ra()

∨
= Ra∨R

T
, R ∈SO 3(),a ∈3

 R a

vex : SO 3()→ 3 ∨

vex R()()
∨
= R, R ∈SO 3()

vex v∨() = v, v ∈3

A{ } :

B{ } :

E{ } :

K{ } :

 x y z

A{ }

B{ }

75

Figure 3.1. Kinect axes definition

 is the estimator coordinate, which is used to represent the estimation of the IMU

orientation. is the Kinect frame of reference, whose , and axes are defined from the

view of the camera of the Kinect as shown in Figure 3.1.

Unless otherwise specified, we use left superscripts and subscripts to describe

orientations and rotations expressed in different frames of reference; we use subscripts to

describe the origin frame of reference, and superscript to represent the destination frame of

reference. For instance, represents the orientation relative to the body frame;

 represents the rotation matrix R from the Earth frame to the body frame.

3.2.1.1.3 Measurement,models,

In this section we model measurements from MEMS sensors and the Kinect in the following

ways.

E{ }

K{ } x y z

 Bv v

 B
AR : B{ }→ A{ }

76

3.2.1.1.3.1 Accelerometers"

Let the noisy measurements of accelerometers measured in the body frame be denoted by a ∈3

, and the true measurement by a ∈3 . We model the relation of collected signals to their true

values by

 B a = M
a B

a + b
a
+ n

a
 (3.6)

where is the combination of sensitivity and misalignment of the accelerometer axes,

 is the constant bias of the measurements, and na
 is the zero-mean additive white

Gaussian noise (AWGN).

It is important that we distinguish gravity and the force applied to the sensor. Let the

Earth’s gravitational acceleration field in the Earth frame be denoted by , and the

instantaneous acceleration applied to the sensor in Earth frame by . We can then describe the

ideal accelerometer measurements by

 B
a = M

a
⋅R

A
v −

A
g

0() + b
a
+ n

a
 . (3.7)

When the sensor moves slowly, we have ; then the accelerometer measurements

are roughly equal to the gravitational acceleration. Therefore, we can express the normalized

ideal measurements by

 (3.8)

 Ma
∈3×3

 ba
∈3

 Ag
0

 A v

 B a

 A
v ≈ 0

B
a

B
a

=
B
AR

A
g

0
e

3

77

where in NED coordinates.

3.2.1.1.3.2 Gyros"

We describe the noisy gyro measurements by

 (3.9)

where is the combination of sensitivity and misalignment of the gyro, is the

true gyro rotation along its axes, is the constant bias of the measurements, and

is the zero-mean AWGN. If we want to integrate the gyro measurements of angular velocity to

find the orientation, we have to notice the bias term will accumulate as time goes by.

3.2.1.1.3.3 Magnetometers"

Similar to previous sections, we describe the noisy magnetometer measurements by

 (3.10)

where is the combination of sensitivity and misalignment of the magnetometer,

 is the Earth magnetic field being projected on the magnetometer axes, bm
∈3 is the

constant bias of the measurements, and nm
∈3 is the zero-mean AWGN.

e

3
= 0 0 1⎡⎣ ⎤⎦

T

 B
w ∈3

 B
w = M

g B
w + b

g
+ n

g

 Ma
∈3×3

 Bw ∈3

b

g
∈3

n

g
∈3

bg

 B m ∈3

 B m = M
m B

m + b
m
+ n

m

 Mm
∈3×3

 Bm ∈3

78

Figure 3.2. Joint information provided by Kinect

3.2.1.1.3.4 Kinect"

The released Kinect for Windows Software Development Kit (SDK) [23] provides the position

information of 20 human joints as shown in Figure 3.2, and Table 3.1 shows the joint numbers.

We model the Kinect position measurement in the Kinect frame of reference by

 K pi
=

K
p

i
+ n

i
 (3.11)

where K p
i
∈3 is the real distances of the joint to Kinect camera, and ni

∈3 is the zero-mean

AWGN.

 i
th

 K pi
∈3

79

Table 3.1. Number of joints

Part # Part # Part # Part # Part

1 Hip center 5
Shoulder

left
9

Shoulder

right
13

Hip

left
17

Hip

right

2 Spine 6
Elbow

left
10

Elbow

right
14

Knee

left
18

Knee

right

3 Shoulder

center
7

Wrist

left
11

Wrist

right
15

Ankle

left
19

Ankle

right

4 Head 8
Hand

left
12

Hand

right
16

Foot

left
20

Foot

right

3.2.1.2 NonWlinear"Complementary"Filters"with"Bias"Estimation"

In this section, we introduce our method for finding the orientation of the sensor, namely, non-

linear complementary filters with bias estimation. From [70][82], this filter applies a low pass

filter and a high pass filter to two signals and then fuses them to get better estimates. In our

situation, we have a static estimate of the orientation which is accurate when the subject moves

slowly, but inaccurate when moving fast; we also have a dynamic estimate of the orientation

which tells instant changes of the orientation, but accumulates errors when integrating the

dynamics. The complementary filter will apply a low pass filter to the static estimate, and a high

pass filter to the dynamic estimate to fuse both estimates to acquire a better orientation estimate.

We start by defining the error measurement of an orientation, and then introduce the static and

the dynamic estimation processes for the orientation, and finally explain how we fuse these

measurements using non-linear complementary filters.

80

3.2.1.2.1 Estimate,of,Sensor,Orientations,and,Error,Measurement,

We define

 E
AR̂ : E{ }→ A{ }, E

AR̂ ∈3×3

to be the estimated orientation of the sensors from the estimator frame to the Earth frame. This

orientation should be close to the true orientation from the body frame to the Earth frame, which

is B
AR . We define the relative rotation of E

AR̂ and B
AR by

 B
E R =

E
AR̂T

B
AR

With Lyapunov stability analysis, we can define the estimation error by

err = 1
4

I −
B
E R

2

= 1
2

tr I −
B
E R()

= 1 − cos θ()
 (3.12)

where is the angle of rotation from the frame to frame. Once the estimate of

orientation is close to the true value, we have two frames overlapped and thus , and

therefore from (3.12) the estimation error goes to zero.

3.2.1.2.2 Static,and,Dynamic,Estimation,of,the,Orientation,

Ideally, any two nonparallel measurements measured in the body frame and their

corresponding value in the Earth frame can be used to calculate the orientation of a

θ B{ } E{ }

θ = 0

Bυ1, Bυ2

Aυ1, Aυ2

81

rigid body. We call this estimate the static orientation E
AR̂

s
. From [70], this static estimate can be

acquired using the following optimization formula,

E
AR̂

s
= argmin

R∈SO 3()
λ

1

R ⋅
B
v

1

B
v

1

− A
v

1

A
v

1

2

+ λ
2

R ⋅
B
v

2

B
v

2

− A
v

2

A
v

2

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (3.13)

where the weightings are chosen depending on the confidence of the sensor outputs.

Also, if we have measurements of the angular velocities of a rigid body , we can

estimate the dynamic orientations E
AR̂

d
 from the rotational kinematics by solving the following

differential equation

∂
∂t E

AR̂
d
=

E
AR̂

d

0 −ω
3

ω
2

ω
3

0 −ω
1

−ω
2

ω
1

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
E
AR̂

d
⋅ω∨

 (3.14)

3.2.1.2.3 Direct,and,Passive,Complementary,Filters,

The rotation error between estimation E
AR̂ and ground truth B

AR can be expressed as

R =

E
AR̂T

B
AR . Based on [82][83], we define the correction term

σ = vex

1
2
RT − R()⎛

⎝⎜
⎞
⎠⎟
∈3 (3.15)

We use to represent error between the estimated orientation and the true orientation. When the

estimate is equal to the truth, we have R = I , and thus . With the above

λ1,λ2

 ω ∈3

σ

σ = 0 0 0⎡⎣ ⎤⎦
T

82

definitions, we then fuse static and dynamic estimates to derive the final estimate of the

orientation.

From (3.4) and (3.14) we have

∂
∂t

R = Rω∨ = Rω()
∨
R (3.16)

where is the angular velocity. By modifying the last term of the equation and based on

[70][83], we define two types of non-linear filters.

Direct complementary filter with bias correction

∂
∂t E

AR̂D =
E
AR̂

s B
ω − b̂

g
D() + k

p E
AR̂Dσ()

∨ E
AR̂D,

 E
AR̂D 0() = E

AR̂
s0

 (3.17)

∂
∂t

b̂
g
D = −k

I
σ ,

b̂

g
D 0() = 0

(3.18)

σ = vex

1
2
RT − R()⎛

⎝⎜
⎞
⎠⎟
,

R =
E
AR̂D()T E

AR̂
s

(3.19)

Passive complementary filter with bias correction

∂
∂t E

AR̂P =
E
AR̂P

B
ω − b̂

g
P() + k

p E
AR̂Pσ()

∨ E
AR̂P,

 E
AR̂P 0() = E

AR̂
s0

 (3.20)

∂
∂t

b̂
g
P = −k

I
σ ,

b̂

g
P 0() = 0

(3.21)

σ = vex

1
2
RT − R()⎛

⎝⎜
⎞
⎠⎟
,

R =
E
AR̂P()T E

AR̂
s

(3.22)

ω

83

Figure 3.3. Block diagram of direct complementary filter

Figure 3.4. Block diagram of passive complementary filter

where E
AR̂D and E

AR̂P are direct and passive estimates of the orientation from the estimator

frame to the Earth frame,

b̂

g
D and

b̂

g
P are the estimated bias of gyros, and are positive

gains. Figure 3.3 and Figure 3.4 show the block diagram of the direct and passive

complementary filters respectively.

In both figures, we can realize non-linear complementary filter models as feedback

systems, where static estimation and angular velocity serve as inputs to the system,

which is used to find the initial estimation using rotational kinematic in (3.14). This initial

kp kI

 E
AR̂

s B
ω

84

estimate is then transposed and post multiplied by to form the error rotation

, i.e., the transpose in is equivalent to subtraction in linear domain, and

so defines the error between the initial and static orientation estimates. This error is then

multiplied by a gain and adds to the initial estimate, which forms the final estimate of

orientation.

In [70] it was shown that the estimates of the orientations E
AR̂D and E

AR̂P , as well as gyro

bias estimations ,

b̂

g
D and

b̂

g
P will converge to the true values B

AR and

b

g
 respectively, and for

almost all initial conditions the trajectory
 E

AR̂D t(),b̂g
D t()() and

 E
AR̂P t(),b̂g

P t()() are locally

exponentially stable to the trajectory
 B

AR t(),bg
t()() . Here, we use both methods to estimate the

orientations of the sensors.

3.2.1.3 Upper"Body"Motion"Decomposition"

After finding the orientations of sensors using complementary filters, we then use the

biomechanical models for the human limbs to reconstruct human motions. As mentioned in

1.3.2, we use a hierarchy of human joints as shown in Figure 3.5 to represent motions as a series

of transitions of human limbs. In this model, let the joint denotes a parent joint with its

location in the Earth frame AP
M
∈3 . This parent is connected with its child by a bone of

length with estimated orientation
 E
AR̂

lm
. This estimated orientation

 E
AR̂

lm
 is the same as that of

the sensor attached to the limb.

 E
AR̂

s

R =

E
AR̂

s E
AR̂()T

SO 3()

 R

k

p

m

m +1

lm

85

Figure 3.5. Joint hierarchy

Here, we put sensors in the middle of the limbs, and align the of the sensors with

the bone, where the positive direction of the points outward from the human body. Since

the of the sensor is aligned with the bone, we can define a relative vector

 in the estimator frame. This vector represents the direction of the

y-axis

y-axis

y-axis

EV =

E
0 lm 0⎡

⎣
⎤
⎦
T
∈3

86

Figure 3.6. Upper limb decompositions and sensor placements

child joint seen by its parent joint . We can then express the location of the child joint

in the estimator frame as

 E
P

m+1 = E
P

m
+

E
AR̂

lm
⋅

E
V (3.23)

This formula describes how we can find positions of child joints given their parents.

The hierarchy structure in the previous section describes how we model the motion of every

human joint at any given moment. We use this model to estimate motions of human upper limbs.

In this model, we assume that the upper limb motions can be decomposed into upper arm and

forearm movements. We put sensors in the middle of these two limbs, and align the of the

sensors with the bone, where the plus direction of the points outward from the human

body. Figure 3.6 shows positions and orientations of sensor placements. We do not put sensors

on the fist and consider the fist as a part that extends from the forearm. Also, we consider the

m +1 m

y-axis

y-axis

87

shoulder to be a fixed joint in the space. Therefore, the whole model of the upper limb looks like

a double pendulum.

We set the origin at the position of the shoulder joint. Let and represent the

estimated orientations of the upper arm and the forearm respectively. Also, let represent the

length of the upper arm, and be the length of the forearm and the fist. Then from equation

(3.23) we can find the estimated positions of the elbow and the fist in the Earth frame

by

 (3.24)

By calculating and , we can then estimate upper limb trajectories in NED coordinates.

3.2.1.4 Parameter"Optimization"

Since human limbs deform when twisting, they cannot be considered as ideal rigid bodies.

Therefore, the above double pendulum model needs to be fixed. We remodel the problem into a

supervised training procedure.

At first, we asked subjects to perform some designated motions, and recorded the ground

truth. The training motions were designed to be easily followed and were repeated for several

times. Later on, we compared the estimated results with the ground truth, and calculated

estimation errors. We tuned the parameters in equations (3.17) and (3.20) and then

 E
AR̂

U E
AR̂

F

 lu

l
f

 AP̂
W AP̂

F

A
P̂

W
=

E
AR̂

U 0 l
u

0⎡
⎣

⎤
⎦
T

A
P̂

F
=

A
P̂

W
+

E
AR̂

F
0 l

f
0⎡

⎣⎢
⎤
⎦⎥
T

 AP
W AP

F

k

p
,k

I()

88

recorded estimation errors. Finally, we found the optimal set of such that the estimation

error is minimized.

In this study, subjects were asked to slowly draw a square of length on a wall, and they

stopped for a while at each vertex. We then rebuilt the training motions using the algorithms of

3.2.1.2 and 3.2.1.3 with different parameters . We compared the reconstructed length to

and found the estimation error. The optimal set given the minimum error would be used

in the testing experiments. In summary, we have

 (3.25)

where is the position of the fist for the vertex of the square.

It turns out that equation (3.25) is a nonconvex problem, and therefore we exhaustively

searched a certain range to find the optimal set. Figure 3.7 shows an example of the error versus

different

of the passive complementary filter for one subject. The minimum error of

2.72% happens when . For direct complementary filters we have similar

results and they are also nonconvex problems. Once we found the optimal parameters, we then

applied them to the testing set, and that completes the training process.

k

p
∗,k

I
∗()

 l

k

p
,k

I() l

k

p
∗,k

I
∗()

k

p
∗,k

I
∗() = argmin

kp ,kI()∈,() A
P

F ,k+1 − A
P

F ,k
− l

k=1

N −1

∑

 APF , j ∈
3 j th

k

p
,k

I()

k

p
∗,k

I
∗() = 1.3,0.8()

89

Figure 3.7. Training error using Passive complementary filters

3.2.2 Motion"Reconstruction"Strategies"

In this section we describe how we can reconstruct human motion trajectories with different

devices and algorithms described in 3.2.1.2, 3.2.1.3 and 3.2.1.4. In this study, we provide three

methods to track human motions: Integration method, IMU method, and IMU with Kinect

method.

3.2.2.1 Integration"Model"

The simplest way to reconstruct motions is through integration of gyro measurements, and by

combining with human biomechanical model we can track trajectories in the space as described

in Figure 3.8. This method, as will be shown in the experiment results, suffers from severe drift

due to numerical integration. Recall from the noisy model of gyro signals (3.9) and the classical

rotation kinematic (3.14) we can write the estimated orientations using the integration method

 as

0
0.5

1
1.5

2

0
0.5

1
1.5

2
0

5

10

15

20

kI

Error of Passive Filter

kp

Er
ro

r %

2

4

6

8

10

12

14

16

18

 E
AR̂

Int

90

Figure 3.8. Integration method

 while the true value estimated form the true gyro data without gyro bias and zero-mean

AWGN is

∂
∂t B

VRInt = B
VRInt ⋅ Bω∨, B

VRInt 0() = B
VRInt0 (3.26)

Notice that here we create another virtual frame , and tries to transpose vectors

expressed in the body frame to this virtual frame . This virtual frame is created since

for the integration model using only gyro signals, we have no way to know where the true

∂
∂t E

VR̂
Int

=
E
VR̂

Int
⋅

B
ω̂∨ =

E
VR̂

Int
⋅ M

g B
ω + b

g
+ n

g()
∨
,

E
VR̂

Int
0() = E

VR̂
Int0

 B
VR

Int
b

g

n

g

V{ } E

AR̂
Int

B{ }

V{ }

91

positions of the joints are either in the Earth or Kinect frames. Therefore, this virtual frame is

created to aid the model to locate the joint positions. The , , and axes of this frame are

arbitrarily defined. We define the first orientation of as the identity matrix, which means

After finding the sensor orientations of the forearm and upper arm ,

from the estimator frame to the Earth frame, we then use equation (3.24) to find the positions of

the elbow and the fist in the virtual frame, which serve as the final estimations

of motion trajectories.

3.2.2.2 IMU"Model"

In this section, we reconstruct motion trajectories using the accelerometers, gyros and

magnetometers of the IMU. We first introduce how to find the static orientation using

accelerometers and magnetometers, and then introduce the whole process of acquiring motion

trajectories.

3.2.2.2.1 Static,Orientations,from,Accelerometers,and,Magnetometers,

Ideally, we can acquire the static orientation given we have a set of two nonparallel vectors

. From (3.13) we know

E
AR̂

s
= argmin

R∈SO 3()
λ

1

R ⋅
B
v

1

B
v

1

− A
v

1

A
v

1

2

+ λ
2

R ⋅
B
v

2

B
v

2

− A
v

2

A
v

2

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

However, due to the computational complexity of solving this equation usually a

suboptimal solution is provided. In this section, we explain how we calculate the static

orientation of the IMU given accelerometer and magnetometer measurements.

 x y z

 E
VR̂

Int

 E
VR̂

Int,U
,

E
VR̂

Int,F()

 V
P̂

Int,W
,
V

P̂
Int,F()

v

1
,v

2()

92

Recall the definitions of frames of reference in 3.2.1.1:

E{ } : Earth frame of reference

B{ } : Body frame of reference

 Ag : Normalized ideal gravity in Earth fame when the sensor is not moving

 Bg : Normalized ideal gravity in body frame when the sensor is not moving

 Am : Normalized ideal magnet in Earth frame when the sensor is not moving

 Bm : Normalized ideal magnet in body frame when the sensor is not moving

We want to know B
AR , which is the orientation from the body to Earth frames, such that

A
g =

B
AR

B
g

A
m =

B
AR

B
m

Since we use the NED (north east down) coordinate system, in the Earth frame we have

A
g =

B
AR

B
g = e

3
= 0 0 1⎡⎣ ⎤⎦

T

A
m =

B
AR

B
m = e

1
= 1 0 0⎡⎣ ⎤⎦

T

where ei
 is the standard basis vector of 3 . Since e3

× e
1
= e

2
, and from the knowledge of the

cross product of vectors under matrix transformation

we have

 a,b M

Ma()× Mb() = det M()M −T a × b()

93

e
2
=

A
g ×

A
m

=
B
AR

B
g ×

B
AR

B
m

= det
B
AR() B

AR−T
B
g ×

B
m()

=
B
AR

B
g ×

B
m()

 (3.27)

Finally, we have

I = e
1

e
2

e
3

⎡
⎣

⎤
⎦

=
B
AR

B
m

B
AR

B
g ×

B
m() B

AR
B
g⎡

⎣⎢
⎤
⎦⎥

=
B
AR

B
m

B
g ×

B
m

B
g⎡

⎣
⎤
⎦

which indicates

 B
AR =

B
m

B
g ×

B
m

B
g⎡

⎣
⎤
⎦
−1

 (3.28)

Since the accelerometer and magnetometer measurements are noisy, we perform another

cross product of the second and the third column vector of (3.28) to ensure the estimated rotation

matrix is orthogonal. Therefore, we have our final estimate of the static orientation

E
AR̂

IMU,s
= B

a

B
a
× B

m

B
m

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
× B
a

B
a

B
a

B
a
× B

m

B
m

B
a

B
a

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

T

 (3.29)

The reason we modify the first vector of
 E
AR̂

IMU,s
 is that generally the magnetometer

measurement is more inaccurate compared to accelerometer readings due to disruption of the

Earth’s magnetic field due to structures, magnets, and the like.

94

Figure 3.9. Motion reconstruction using IMU

This static estimate is accurate if the object moves slowly and the measurement error is

small, that is, in low frequency conditions we have
 E
AR̂IMU,s ≈ B

AR .

3.2.2.2.2 Motion,Tracking,Scheme,using,IMU,Model,

After obtaining the static estimate of sensor orientations
 E
AR̂IMU,s , we then use the passive and

direct non-linear complementary filters in 3.2.1.2 to find out the estimated rotation of the upper

arm and forearm from the estimated frame to the Earth frame for the direct

E
AR̂IMU,U

D , E
AR̂IMU,F

D()

and passive

E
AR̂IMU,U

P , E
AR̂IMU,F

P() complementary filters respectively. We then use the

95

biomechanical model in 3.2.1.3, and parameter optimization in 3.2.1.4 to find the final elbow and

fist position in the Earth frame

AP̂IMU,W , AP̂IMU,F() respectively. The whole model can is

described in Figure 3.9.

3.2.2.3 Kinect"and"IMU"Model"

Since measurements form magnetometers get severely distorted when indoors, the idea of using

such a model of heterogeneous sensors is to try to replace magnetometer readings by Kinect data,

when available. In this section, we reconstruct motion trajectories using accelerometers, gyros

and the Kinect. We first introduce how to find the static orientation using accelerometers and the

Kinect, and then introduce the whole process of acquiring motion trajectories.

3.2.2.3.1 Static,Orientations,from,Accelerometers,and,Kinect,

In finding the rotation between the body frame of reference and the Kinect frame of

reference , from the definition of 3.2.1.1 recall:

Recall the Kinect axes definition in Figure 3.1 with frame and the bone vector being

marked. In this frame of reference we have
 K

g = 0 −1 0⎡
⎣

⎤
⎦
T

pointing to the negative

B{ }

K{ }

K{ } : Kinect frame of reference

B{ } : Body frame of reference

K
g : Normalized ideal gravity in Kinect frame when the sensor is not moving

B
g : Normalized ideal gravity in body frame when the sensor is not moving

K
b : Normalized bone (limb) pointing outward in Kinect frame

B
b : Normalized bone (limb) pointing outward in body frame

B{ } b

y

96

Kg = B
KRBg

Kb = B
KRBb

Figure 3.1. Kinect axes definition

direction of Kinect frame

(notice difference between
 A
g = 0 0 1⎡

⎣
⎤
⎦
T

 and

 K
g = 0 −1 0⎡

⎣
⎤
⎦
T

); and since the bone is aligned with the plus of body frame, we have

 B
b = 0 1 0⎡

⎣
⎤
⎦
T

 in the body frame.

We want to find B
KR , which is the relationship between frames of reference and

, such that

K
g =

B
KR

B
g

K
b =

B
KR

B
b

y-axis

K{ }

B{ }

B{ }

K{ }

 b

97

Figure 3.10. Relationship between frames of reference

In order to solve this problem, we introduce a virtual transition frame of reference, named

. This transition frame has the aligned with the of but the x and z-axis

may not align with those of the body frame of reference. is transformed from with a

rotation . As shown in Figure 3.10, the frame can be transformed to the frame via

another rotation . Therefore, for any vector , we have

 Ba = T
BR2 K

TR1

Thus

 .

We solve this problem in 2 stages

• Stage 1 rotates frame to frame through the rotation matrix , thus

transforms into , and since the of and frames are aligned, we

T{ } y-axis y-axis B{ }

T{ }

K{ }

 K
TR

1
T{ }

B{ }

 T
BR

2 a ∈3

 B
KR =

T
BR

2 K
TR

1()T

K{ }

T{ } K
TR

1

 Kb Tb y -axis

T{ }

B{ }

98

Figure 3.11. Stage 1 of rotating Bb to Kb

have . Therefore we have , which means is a matrix that

rotates to .

• Stage 2 rotates the along the of to using rotation , so we have

 (3.30)

And since the of is aligned with that of , we also have

 (3.31)

From (3.30) and (3.31), and knowing that and are not parallel to each other, we

conclude that the transpose of the multiplication of T
BR

2
 and K

TR
1
 is the desired orientation of the

limb, which is

 (3.32)

Below is the detailed explanation of what is being done.

 Bb =
T
b Bb =

T
b =

K
TR

1 K
b K

TR
1

 Bb Kb

 y -axis

T{ }

B{ } T
BR

2

 T
BR

2 K
TR

1 K
g =

B
g

 y -axis

T{ }

B{ }

 T
BR

2 K
TR

1 K
b =

B
b =

T
b =

K
TR

1 K
b

 g p

 B
KR =

T
BR

2 K
TR

1()T

 Axis of ration a

 Angle of ration

 Bb = 0 1 0⎡⎣ ⎤⎦
T

99

Stage 1

In stage 1 rotates to . This can be shown in the Figure 3.11.

The axis of rotation is found from cross product of and , and the angle of

rotation is found using dot product of these two vectors as follows

We transform this axis-angle representation into rotation matrix using

 (3.33)

Stage 2

In stage 2 we rotate the of such that the and axes of the rotated frame

are parallel to those of using matrix . Since is a rotation along the , we can

write as

 (3.34)

 K
TR

1 Bb Kb

 a Kb Bb

a =
B
b ×

K
b

θ = cos−1 B
b ⋅

K
b

B
b

K
b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 K
TR

1

K
TR

1
=

cosθ + a
x
2 1 − cosθ() a

x
a

y
1 − cosθ() − a

z
sinθ a

x
a

z
1 − cosθ() − a

y
sinθ

a
y
a

x
1 − cosθ() − a

z
sinθ cosθ + a

y
2 1 − cosθ() a

y
a

z
1 − cosθ() − a

x
sinθ

a
z
a

x
1 − cosθ() − a

y
sinθ a

z
a

y
1 − cosθ() − a

x
sinθ cosθ + a

z
2 1 − cosθ()

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 y -axis

T{ } x z

B{ } T

BR
2 T

BR
2 y -axis

 T
BR

2

T
BR

2
=

cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

100

where is some rotating angle. We find the angle such that the norm the difference between

 and the rotated is minimized, which means we have

We solve this problem using an exhaustive search. The final static estimate of the

orientation is then shown by (3.32).

Given we have noisy accelerometer and Kinect signals, in estimating the static rotation

from the body to Kinect frames, we assume the following

This assumption indicates that we use the accelerometer reading as the indication of

gravity, and the relative direction of the joint to the point, which is the difference

between positions reported by the Kinect , as the direction of the limb. By following

the method described above, by equation (3.32) we have the final static estimation using the

accelerometer and Kinect as

 (3.35)

φ φ∗

 K g Bg

φ∗ = argmin

φ∈ −π π⎡⎣) T
BR

2 K
TR

1 B
g −

K
g

B{ }

K{ }

K
g = 0 −1 0⎡⎣ ⎤⎦

T

B
g = B

â

B
â

K
b = K

p̂
i+1 − K

p̂
i

K
p̂

i+1 − K
p̂

i

B
b = 0 1 0⎡⎣ ⎤⎦

T

 Bâ

 i
th

 i + 1th

 K p̂
i+1 − K

p̂
i

 E
KR̂

KINECT,s
=

T
ER̂

2 K
TR̂

1()T

101

Figure 3.12. Motion reconstruction using Kinect and IMU

where and are acquired from (3.33) and(3.34) respectively.

3.2.2.3.2 Motion,Tracking,Scheme,using,Kinect,and,IMU,Model,

After obtaining the static estimate of sensor orientations , we then use the

passive and direct non-linear complementary filters in 3.2.1.2 to find the estimated orientation of

the upper arm and forearm from the estimated frame to the Kinect frame for the direct

complementary filter and for the passive complementary filter

 respectively. We then use the biomechanical model in 3.2.1.3, and

 K
TR̂

1 T
ER̂

2

 E
KR̂

KINECT,s

 E
AR̂

KINECT,U
D ,

E
AR̂

KINECT,F
D()

 E
KR̂

KINECT,U
P ,

E
KR̂

KINECT,F
P()

102

Table 3.2. Comparison of models

Models Devices Frames

estimated

Pros Cons

Integration Gyro Virtual frame

Only one type of sensor

needed

Portable sensors

Integration drift

IMU Accelerometer

Magnetometer

Gyro

Earth frame

Consistent direction

reference

Portable sensors

Magnetometer interference

when indoor

Kinect and

IMU

Acceletometer

Gyro

Kinect

Kinect frame

Accurate tracking indoors Inconsistent direction

reference

Background constraint

Pose constraint

Power outlet required

parameter optimization in 3.2.1.4 to find the final elbow and fist position in the Earth frame

 respectively. The whole model is described in Figure 3.12

3.2.2.4 Comparison"of"Models"

In this section we compare the 3 different methods of 3.2.2.1, 3.2.2.2, and 3.2.2.3. Table 3.2

gives a comparison of these methods. The integration model uses only portable MEMS gyros;

therefore from the power saving perspective this model is the most energy-saving one. However,

bias and quantization error from measurements cause severe drifts during integration, so the

V{ }

A{ }

K{ }

 A
P̂

KINECT,W
,
A
P̂

KINECT,F()

103

integration model can only serve as a short-time solution, provided other kinds of sensors are not

accessible and other models cannot be used.

For the IMU model, since we estimate sensor orientations in the Earth frame , the

estimated orientations are always expressed in a consistent reference, and also all MEMS

accelerometer, magnetometer and gyros are light-weight and portable, such that the model makes

the realization of orientation estimation in any place possible. However, by using magnetometers

to measure Earth’s magnetic direction, we experience severe interference when indoors, which

provides inaccurate static estimations.

The third method fuses Kinect and IMU models and uses the Kinect to replace

magnetometers. Therefore we avoid this interference issue, and additionally the Kinect provides

accurate joint positions information (given its massive amount of training data). But on the other

hand, the estimation of orientation is expressed in the Kinect frame of reference , which will

change if the Kinect is moved, and we do not have a consistent reference. Also, the Kinect is

very background and pose sensitive, which means the background has to be clean and the subject

has to face the Kinect before it can recognize joint positions. What is worse, we have to have a

power outlet for Kinect and thus this solution it not easily portable.

Starting from the next section we will discuss the relationships between frames of

reference so we can link different models.

3.2.3 Coordinate"Transformations"

Now that we have described the methods for finding the trajectories, we show how to link

different models. As seen in Table 3.2, each model transforms measurements expressed in the

A{ }

K{ }

104

body frame to different frames. Therefore, if we want to fuse different models to improve

tracking accuracies, we have to first find out how these frames of reference are related. In this

thesis, we use the Earth frame as our base frame and try to transform other frames to it. The

reason to do this is because magnetometers and accelerometers are always available when

collecting data, and they are used to find the positions in the Earth frame. On the other hand, the

Kinect usually takes a short period of time to recognize human joints, and when there are

obstacles blocking the camera, the Kinect signal would not be available. Therefore, by using the

Earth frame we can have a universal basis frame of reference. We will explain how we can find

the relationship between the Earth frame and other frames of reference.

3.2.3.1 Kinect"Frame"to"Earth"Frame"

In the Kinect and IMU model described in 3.2.2.3, we end up having the estimated rotation from

the estimation frame to the Kinect frame of the upper arm and the forearm using the direct

complementary filter

and passive complementary

filter

respectively. In order to describe these orientations in the Earth frame,

we must find a transformation that rotates the orientation from Kinect to Earth frames.

This estimate transformation is calculated when both the Kinect and magnetometer

signals are available, and we wait for a short period of time until Kinect signals are stable then

start calculating the transformation. When Kinect joint information becomes not available we

will recalculate the transformation once again after the Kinect signals are regained since the

Kinect may have been moved. After calculating each transformation at the beginning of Kinect

B{ }

A{ }

 E
AR̂

KINECT,U
D ,

E
AR̂

KINECT,F
D()

 E
KR̂

KINECT,U
P ,

E
KR̂

KINECT,F
P()

K
AR̂

 K
AR̂

105

Figure 3.13. Kinect availability

available period, we apply this transformation to the rest of the period, which completes the

transformation of orientations estimated in the Kinect frame to Earth frame.

Suppose the availability of the Kinect signal versus time is shown in Figure 3.13. From

this figure we can see that after starting the Kinect we have our first Kinect signal available when

 t = 2 , then at t = 5 Kinect is being blocked and thus not available. At t = 6 we regain the

Kinect signal for only 0.5 second, then at t = 7.5 we have the third period of available Kinect

signal. In this study, we set a calculation threshold cal _th = p second, indicating that if the

time period of available Kinect signal is shorter than this time, we would not calculate K
AR̂ since

during this short period of time the Kinect just starts to recognize joints and is not stable. If the

period of the available Kinect signal is longer than this threshold, we calculate K
AR̂ within this

period, and then average the estimate rotation K
AR̂ . Thus, for this example, where the calculation

106

threshold is set to cal _th = 1 , we calculate K
AR̂ twice. The first instance is for t = 2 to t = 3 ,

the other is for t = 7.5 to t = 8.5 .

We now explain how this K
AR̂ is actually calculated. Suppose we have the first

calculation-start time t = t
s1

, the first calculation-end time t = t
ew1

, and the second calculation-

start time t = t
s2

. We want to calculate the average transformation for the first period from the

Kinect frame to the Earth frame , which we call K
AR̂

1
. The first step of this calculation

is to find the static orientation estimate of the sensor
 K
AR̂

KINECT,s
 from the estimate frame to

the Kinect frame during

t = t

s1
,t

e1() using equation (3.35),

 (3.36)

Also, since magnetometer data is available, we use equation (3.29) to find the static

orientation estimate of the sensor from the estimate frame to the Earth frame

during

 (3.37)

Using (3.36) and (3.37), we can find the relative transformation ,

 (3.38)

K{ } A{ }

E{ }

K{ }

E
KR̂

KINECT,s
t()

t= ts1,te1()

 E
AR

IMU,s
E{ } A{ }

t = t

s1
,t

e1()

E
AR̂

KINECT,s
t()

t= ts1,te1()

 K
AR̂

s

K
AR̂

s
t()

t= ts1,te1() = E
AR̂

KINECT,s
t() E

KR̂
KINECT,s

t()()−1

=
E
AR̂

KINECT,s
t() E

KR̂
KINECT,s

t()()T

107

After finding this relative transformation, we will take the average of it and then apply it

to the rest of the signal until the next calculation-start time . In finding the average of the

relative transformation, since the rotation matrix is not continuous we convert the relative

transformation into quaternions using

Then we find the average of the quaternion

Finally, we transform the quaternion back to matrix form by

 t = t
s2

Q t() = q

w
t() q

x
t() q

y
t() q

z
t()⎡

⎣⎢
⎤
⎦⎥

q
w

t() =
1 +

K
AR̂

s
t()⎡⎣ ⎤⎦11

+
K
AR̂

s
t()⎡⎣ ⎤⎦22

+
K
AR̂

s
t()⎡⎣ ⎤⎦33

2

q
x

t() = K
AR̂

s
t()⎡⎣ ⎤⎦32

−
K
AR̂

s
t()⎡⎣ ⎤⎦23()

4q
w

q
y

t() = K
AR̂

s
t()⎡⎣ ⎤⎦13

−
K
AR̂

s
t()⎡⎣ ⎤⎦31()

4q
w

q
z

t() = K
AR̂

s
t()⎡⎣ ⎤⎦21

−
K
AR̂

s
t()⎡⎣ ⎤⎦12()

4q
w

Q = q
w

q
x

q
y

q
z

⎡
⎣⎢

⎤
⎦⎥

= Q t()dt
ts1

te1∫

E
K
AR̂

s() =
1 − 2q

y
2 − 2q

z
2 2q

x
q

y
− 2q

z
q

w
2q

x
q

z
+ 2q

y
q

w

2q
x
q

y
+ 2q

z
q

w
1 − 2q

x
2 − 2q

z
2 2q

y
q

z
− 2q

x
q

w

2q
x
q

z
− 2q

y
q

w
2q

y
q

z
+ 2q

x
q

w
1 − 2q

x
2 − 2q

y
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

108

This averaged transformation is then applied to the rest of the Kinect signals to find the

static orientation of the sensor from estimate frame to Earth frame until , which

is

 (3.39)

After we find this static orientation estimate, we replace it with the original static estimate from

the estimate frame to the Kinect frame , then by following procedures described in

3.2.2.3.2 we complete the Kinect and IMU motion tracking model.

3.2.3.2 Virtual"Frame"to"Earth"Frame"

In the integration model described in 3.2.2.1, since there is no static orientation estimate of any

kind in this model, this model uses the last frame where the accelerometer and

magnetometer/Kinect is accessible. Then the integration model calculates the relative rotations to

the last orientation where we have such devices indicating either the Earth frame or Kinect

frame .

3.2.4 Coordinate"weighting"

In this section, we describe how we evaluate the trustworthiness of each model. This is necessary

when we fuse different models to acquire more accurate tracking results. By knowing how

trustworthy certain methods are we can determine which models we prefer when fusing them.

B{ }

A{ } t = t
s2

E
AR̂

KINECT,s
t()

t= ts1,ts 2() = E
K
AR̂

s() E
KR̂

KINECT,s
t()

t= ts1,ts 2()

 E
KR̂

KINECT,s

A{ }

K{ }

109

3.2.4.1 Trustworthiness"of"Kinect"and"IMU"Model"

From [23], we know that every joint has a tracking state, where “tracked” means the joint

is clearly visible; “inferred” when it is not clearly visible and being inferred by the Kinect; “non-

tracked” when it is not tracked. In this study, we use this tracking state as the indication whether

to use the Kinect and IMU model described in 3.2.2.3. In our study, since the sampling rates for

heterogeneous sensors need not to be the same, we re-interpolate not only the collected Kinect

data, but also the trustworthiness. After we re-interpolate the trustworthiness of the Kinect signal,

we then define a threshold. The joint position is inferred when its trustworthiness is below this

threshold, and tracked if above the threshold. Figure 3.14 shows an example of the X, Y, and Z

data of the collected Kinect signals for the right wrist, while the solid lines represent the tracked

positions, and the dotted lines the inferred positions. Figure 3.15 shows the trustworthiness of the

Kinect signal for the right wrist, where the decision threshold is set to 0.5. From Figure 3.15 we

can see that we have the first tracked Kinect right wrist positions starting from and

ending at , the second tracked signal from to , with a short drop to

inferred signals at . The third tracked signal starts from to .

Notice that this trustworthiness of Kinect position is equivalent to the availability of the

Kinect signal mentioned in 3.2.3.1, where we use the period within the calculation threshold after

each rising edge to calculate the relative transformation from Kinect frame to Earth frame

.

t = 20.3

t = 26.2 t = 29.3 t = 30.7

t = 30.5 t = 31.3 t = 38.9

K{ }

A{ }

110

Figure 3.14. Kinect collected signals for the right wrist with tracking status

Figure 3.15. Trustworthiness (interpolated) of Kinect signals for the right wrist

111

3.2.4.2 Trustworthiness"of"IMU"Model"

The trustworthiness of the IMU model measures how much we prefer this model and use it to

track joint motions.

Ideally, if we have the perfect measurement of accelerometers while the subject is not

moving, with no external force applied to the sensor the collected data should reflect the

direction of gravity only. Therefore, if you move the accelerometer around this reflection of

gravity should be scattered around a sphere centered at the origin and with radius around

. However, since the subject applies forces to the sensor when moving, and given the

measurement is noisy, the data actually collected will be scattered around a sphere that is not

centered at the origin, with various distances different from . Similarly for the

magnetometer given we have interference, the measurement will not be scattered around a sphere

centered at the origin.

In this study, given accelerometer and magnetometer collected data we first find a best-fit

sphere, then with the center and the radius of that sphere we normalize the collected data. After

that, by comparing the distance of collected data to the origin we define a curve mapping this

distance to trustworthiness, which completes the whole procedure. The detailed explanation is

given below.

In the first step we find the best fit sphere given noisy accelerometer and magnetometer

measurements. Suppose the we have a total of measurements, and the measurement of the

, , components of the accelerometer data is expressed as

9.8m s2

9.8m s2

N i th

X Y Z

B ai = B aXi B aYi B aZi⎡

⎣
⎤
⎦

112

The center of the best-fit sphere is acquired using a closed form

for the solution

 (3.40)

According to [84] this can be done by first defining an auxiliary matrix , a vector ,

and a scalar

where is the expected value of a random variable. The center of the best-fit sphere is then

given by

 (3.41)

and the radius of the best-fit sphere R
∗ is given by

R∗ =

B
â

Xi
−C

X
∗()2 + B

â
Yi
−C

Y
∗()2 + B

â
Zi
−C

Z
∗()2

i=1

N

∑ (3.42)

C∗ = CX
∗ CY

∗ CZ
∗⎡

⎣
⎤
⎦
T

CX

∗ ,CY
∗ ,CZ

∗{ } = argmin
CX ,CY ,CZ{ }∈ ,,{ }

B aXi −Cx()2 + B aYi −CY()2
i=1

N

∑ + B aZi −CZ()2

A b

r

A = 2 ⋅

E B aX B aX − E B aX[]()⎡⎣ ⎤⎦ E B aX B aY − E B aY[]()⎡⎣ ⎤⎦ E B aX B aZ − E B aZ[]()⎡⎣ ⎤⎦

E B aY B aX − E B aX[]()⎡⎣ ⎤⎦ E B aY B aY − E B aY[]()⎡⎣ ⎤⎦ E B aY B aZ − E B aZ[]()⎡⎣ ⎤⎦

E B aZ B aX − E B aX[]()⎡⎣ ⎤⎦ E B aZ B aY − E B aY[]()⎡⎣ ⎤⎦ E B aZ B aZ − E B aZ[]()⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

b =

E R B aX − E B aX[]()⎡⎣ ⎤⎦

E R B aX − E B aX[]()⎡⎣ ⎤⎦

E R B aX − E B aX[]()⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

r = B aX
2 + B aY

2 + B aZ
2

E ⋅[]

C∗ = A−1b

113

Once we find the center and the radius of the best-fit sphere, we then normalize the noisy

measurement by

B

′̂a = B
â

X
−C

X
∗

R∗
B
â

Y
−C

Y
∗

R∗
B
â

Z
−C

Z
∗

R∗

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

 (3.43)

By following the similar procedure we can find the normalized magnetometer data .

Figure 3.16 and Figure 3.17 show the normalized measurements and the fest-fit sphere for

accelerometer and magnetometer data respectively.

After having the normalized measurements, we find the distances of them to the origin.

The distances are expressed as the norms of the measurements and for

accelerometer and magnetometer data respectively. If the distance equals 1, it means that the

measurement falls on the best-fit sphere, and we say at this moment we have a good

measurement, and we are more in favor of using the IMU model described in 3.2.2.2; if the

distance is smaller or larger than 1, then we decrease our trustworthiness following some

functions. In our study, we set the trustworthiness of IMU model to 1 to infer that we are very

confident of using this model, and 0 to infer that we do not use the model. The function

calculating the trustworthiness is defined in the following way

 (3.44)

where are some parameters we have previously defined. Figure 3.18 shows this model.

B ′m

da = B ˆ′a dm = B ′m̂

T d() =
e−λ1 d−1(), d ≥1

eλ2t+b − eb , 0 ≤ d <1

⎧
⎨
⎪

⎩⎪

λ1,λ2,b

114

This function transforms the distances of the normalized measurements to the

trustworthiness of the IMU model of estimating joint motions. Once both the trustworthiness of

the accelerometer and the magnetometer are calculated, we multiply them to form the final

trustworthiness.

115

Figure 3.16. Accelerometer sphere

116

Figure 3.17. Magnetometer sphere

Figure 3.18. Trustworthiness of IMU model

117

Figure 3.19. Coordinate fusion

3.2.5 Coordinate"Fusion"

After we know how to reconstruct human motions using different methods as described in 3.2.2,

how to link each model so that they can all expressed in the Earth frame in 3.2.3, and how to

weight each method in 3.2.4, we are ready to fuse all models together and have the final

algorithm as shown in Figure 3.19.

At first, we have the measurements from various sensors

 .
simn m = 1,2,,K{ },n = 1,2,,Nm{ }{ }

118

The index means that we have a total of models finding motion trajectories, and index

means that for the model there are sensor measurements fed to the motion reconstruction

algorithm m .

For each set of sensor data , we develop a motion reconstruction algorithm to find out

the reconstructed joint positions

 which are expressed in the frame of reference . These estimated positions are then

transformed to a basis frame of reference using

 Z

p̂
mj{ } = Fm

ZR̂
Fm

p̂
mj{ } j = 1,2,,L

so that every estimated position from all motion reconstruction algorithms is expressed in the

same frame of reference.

After we expressed estimated positions in the same frame , we find the

trustworthiness for each model

We also define a set of prior multipliers

 .

This set of prior multipliers defines our confidence regarding the environments and conditions

under which the different motion reconstruction algorithms are operating. For example, in using

m K n

m Nm

m

L

 Fm
p̂mj{ }, j = 1,2,,L

Fm

Z{ }

Z{ }

 Tj , j = 1,2,,K

 α j , j = 1,2,,K

119

Figure 3.20. Final design flow

the IMU model indoor we would decrease the prior multiplier corresponding to the IMU model,

since we know that the magnetometers are generally not accurate when indoors.

The final estimate of joint positions in the base frame is then expressed as

 (3.45)

The condition in equation (3.45) ensures that the final estimated positions are

normalized.

Equation (3.45) and Figure 3.19 describe the most general case of how we can fuse

different models and frames of reference to track human motions in a more accurate way. In this

study, we have three ways of motion tracking, which are the integration model in 3.2.2.1, IMU

model in 3.2.2.2, and Kinect and IMU model in 3.2.2.3. By combining these three models and

specializing the general model in Figure 3.19, we end up with the final design flow in Figure

3.20. In this figure, we first examine if the Kinect trustworthiness is high enough; if yes then we

Z{ }

Z pj{ } = α iTi Z pij{ }

i=1

K

∑ , α iTi
i=1

K

∑ = 1, j = 1,2,,L

α iTi
i=1

K

∑ = 1

120

will use the Kinect and IMU model. This is achieved by setting the prior multiplier

corresponding to Kinect and IMU model high relative to multipliers corresponding to the IMU

and integration models in equation (3.45). If the trustworthiness of the Kinect is not high enough,

we use the IMU model to estimate motions, which occurs in equation (3.45) by setting the

multiplier of IMU model higher than that of integration model. In this study, we use Earth frame

of reference as the base frame, and thus every estimate of trajectory is expressed in NED

base.

3.3 Experiments"and"Simulations"

In this study, for motion reconstruction we did several types of experiments, which can be

categorized into 3 parts. The first part was done outside, where we have good magnetometer

measurements. In this part we want to show that the use of complementary filters, which

combines high frequency part of gyro and low frequency part of magnetometer and

accelerometer, achieves higher accuracy than using them alone. The second part was done

indoors, where we have the Kinect to measure joint positions but the magnetometer

measurements are assumed to be inaccurate. In this part we want to show that by using the

Kinect to replace the magnetometer indoors we can more accurately track joint motions. The

third part simulates the time when Kinect data are sometimes unavailable, and we use the

coordinate fused model described in 0 to overcome this.

We begin by introducing the devices used for this study, the different types of

experiments performed, and the reconstruction error calculations. We then discuss the

experiments.

 α i

A{ }

121

3.3.1 Devices"

We used Sparkfun 9 degrees of freedom IMU sensor chips [85] and the Microsoft Kinect (see

3.2.1.1.3.4) for the experiments. These Sparkfun sensors consist of a tri-axial accelerometer (see

3.2.1.1.3.1), gyro (see 3.2.1.1.3.2), and magnetometer (see 3.2.1.1.3.3). The sensors have a

sampling rate of 50 Hz and the Kinect has a sampling rate of between 15-30 Hz. Since the

sampling rates for the Kinect and IMU are different, and they are not synchronized to each other

when doing experiments, we synchronize and re-interpolate the collected data to 50 Hz after

collecting them. These two sensors were placed on the subject's right arm using adjustable velcro

straps, shown in Figure 3.21: one was placed in the middle of the forearm and the other was

placed in the middle of the upper arm. Since there are no handshake communications between 2

sensors mounted in the upper arm and the forearm, when doing experiments we asked the subject

to lift his/her heels and hit them hard to the ground for several times to make significant

signatures in the collected signals which helped us to align the measured data.

As for Kinect setup, since the best detection range for the Kinect is from 1.8 to 2.4 meters

[23], we placed the Kinect 2 meters in front of the subject. When turned on, the Kinect will

record 20 joint positions and write them into a log file. We asked the subject to lift his/her arms

before and after doing experiments to serve as significant signatures both in Kinect and sensor

data. We then align the data sets.

3.3.2 Performed"Experiment"Types"

The general process of each experiment consists of training and testing procedures. During the

training procedure, the subject was asked to draw a square for 3 times. This square drawing

122

Figure 3.21. Sensor placement

procedure was used to find the best set of parameters, which would be used in the testing

procedure as described in 3.2.1.4. In the training procedure there were 5 possible experiments

performed in each part, which are square, triangle, bookshelf tapping, bookshelf sliding, and

vertical arm-swing experiments. These 5 experiments are described below.

123

Figure 3.22. Drawn square

Figure 3.23. Drawn triangle

3.3.2.1.1 Square,and,Triangle,Experiments,(Shape,Drawing),

In the square experiment, we placed a square of length 20 inches in front of the subject. The

subject was asked to follow the sides of a clearly marked square in the clockwise direction for 10

times while we recorded sensor data. The subject stood around 20 inches in front of the square so

that when the arm was moved the shoulder was stationary. Each shape took no more than 5

seconds to complete, and during the experiment, we did not instruct subjects how to draw, that is,

how the subject bent and twisted the arm. Figure 3.22 shows the drawn squares.

For the triangle experiments, the subject was asked to draw a triangle of height 20 inches,

and also repeated for 10 times. All other settings are the same as those of the square experiment.

Figure 3.23 shows the triangle.

124

Figure 3.24. Bookshelf reaching shape, red starts indicating vertices to be touched

3.3.2.1.2 BookMreaching,experiments,

To simulate a more lifelike activity like reaching for a book on a bookshelf, we performed two

experiments that involved sliding and tapping of the subject's hand using the square shape as a

template. We partitioned the square of side length 20 inches into a 3x3 array and the subject

would tap each vertex in the array. These actions were repeated for 10 times, and then we

calculate the distances of the estimated vertex positions versus the ground truth. The shape is

illustrated in Figure 3.24.

125

Figure 3.25. Vertical arm swing shape

3.3.2.1.3 Vertical,ArmMswing,Experiments,(Arm,Lifting),

Lastly, to simulate how high a subject could reach with our experimental setup, we performed an

arm raising experiment where the subject would raise their arm vertically upwards so that they

trace out a half circle with their arm as the radius of the circle. During this experiment, the

subject’s arm was kept straight and each arm swing took no more than 3 seconds to complete.

Figure 3.25 shows such patterns.

3.3.2.2 Error"Measurements"

We define two error measures: the best-fit shape error, and the length-estimation error.

3.3.2.2.1 BestMfit,Shape,Error,

In the best-shape error, for each kind of shape we use the reconstructed vertices to define the

corresponding ground truth shape. For example, in the square experiments, for each time after

we draw a square there would be 4 reconstructed vertices. We then find the best-fit square given

those 4 vertices such that the total distance of the reconstructed vertices to the vertices of the

126

best-fit square is minimized. In the vertical arm-swing experiment, we first calculate the range of

angles through which the subject’s arm has swung. We then took the mean of that range of

angles as the mid-angle, then plus and minus 90 degrees. The arc defined by these 180 degrees is

the best-fit arc. Figure 3.26, Figure 3.27, and Figure 3.28 illustrate these best-fit shapes for

squares, triangles, and vertical arcs respectively. After we found the best-fit shape, we calculated

the closest distances from reconstructed paths (green curves) to the best-fit shape.

We did not define the best-fit shape error for book-reaching experiments.

127

Figure 3.26. Reconstructed and best-fit square

Figure 3.27. Reconstructed and best-fit triangle

128

Figure 3.28. Reconstructed and best-fit vertical arc

3.3.2.2.2 Length,Estimation,Error,

In length-estimation error, we calculated the length of each side of reconstructed pattern, and

compared them to the ground truth. In the square and triangle experiments, we calculated the

edges linked by reconstructed vertices and compared them to the true length of the shape as

described in Figure 3.26 and Figure 3.27. For example, in Figure 3.29, the edges connected by

reconstructed vertices are 18.0, 19.7, 15.5, and 17.6 inches, where the true length of the square is

20 inches, and therefore we have the sum of absolute error of 9.2 inches, or 11.4% of error. For

the triangle, in Figure 3.30, the edges connected by reconstructed vertices are 19.3, 22.1, and

23.4 inches, where the true length of the square is inches, and therefore we have the sum

of absolute error of 5.1 inches, or 7% of error.

 40 3

129

For the sliding and tapping book-reaching experiment, we calculated the distance of

adjacent reconstructed vertices. Since there are 9 vertices, we calculated 6 horizontal and 6

vertical distances as shown in Figure 3.31. As shown in Figure 3.31, the edges formed by

adjacent vertices are of lengths ranging from 7.4 inches to 14.7 inches, where the true length is

10 inches, and therefore we have the sum of absolute error of 18.9 inches, or 15.7% error.

For vertical arc-swing experiments, we calculated the range of angles that the subject’s

arm had swung. As shown in Figure 3.32, this subject had swung 177.5 degrees, where the true

range of the arc is 180 degrees, and therefore we have the absolute error of 2.5 degrees, or 1.4%

of error.

130

Figure 3.29. Reconstructed square and estimated length

Figure 3.30. Reconstructed triangle and estimated length

131

Figure 3.31. Reconstructed book reaching and ground truth length

Figure 3.32. Reconstructed vertical arm swing and estimated angle

132

Figure 3.33. Experiment setup when outdoor

3.3.3 Experiment"Part"1"–"Outdoor"Experiments"

In this part, the experiments were done outside, where good magnetometer measurements were

available. We used the Sparkfun 9DoF IMU chip with sampling rate 50 Hz. Two sensors were

placed in the middle of the upper arm and the forearm as depicted in Figure 3.6. Twelve subjects

participated in the experiments. We did three types of experiments in this part. The setup of this

part of the experiments is shown in Figure 3.33. In this figure, the subject was standing about 20

inches in front of the shape, while the shape was created using tape and posterboard. There was a

computer next to the subject to collect sensor data, which are transmitted via Bluetooth. Since

the sampling rates of the two sensors were not exactly the same, and the clocks were not

133

synchronized, the subject was asked to raise his/her heels and hit them hard on the ground. This

produced significant signals in the accelerometer measurements so later on we can synchronize

signals from the sensors. The subject was asked to do the heel-strike actions before and after the

whole experiment. In each experiment, the subject drew the 20’ x 20’ square for 3 times first,

which served as the training procedure to find the optimal parameters for complementary filters

as in 3.2.1.4. Then the subject would do the designated experiments 10 times, which completed

the whole experiment process.

In the first experiment subjects drew squares and triangles on a wall. The shape of

squares and triangles are described in Figure 3.22 and Figure 3.23. Each shape took no more than

5 seconds to complete and was repeated for 10 times.

The second experiment was conducted to simulate reaching for and grasping books. In

this experiment we portioned a 20’ by 20’ square hanging on a wall into a array as

described in Figure 3.24. Then we tapped each point 10 times to simulate patients taking books

out of a shelf.

In the third experiment, the subjects were asked to perform 10 rotations around their

shoulders from bottom to top for 10 times. This vertical arc is depicted in Figure 3.25.

After the experiments, we used the combination of non-linear complementary filters

(direct and passive type), human biomechanical models, and parameter optimization of

complementary filters to process the data, as described in 3.2.2.2.

 3 × 3

134

3.3.4 Experiment"Part"2"–"Indoor"Experiments"

For this part of experiment, we continued to use the Sparkfun sensors but added the Microsoft

Kinect as a way to increase the accuracy of our results, since there is severe interference of

magnetometer measurements in many indoor settings. There were a total of ten subjects who

participated in our experiments.

To see whether or not our choice of incorporating the Kinect as a means of making

measurements and collecting data was accurate, we performed several experiments. The setup of

our experiments is shown in Figure 3.34.

The frame was constructed using PVC pipes for stability and consistency in the

experimental setup. This setup enables a thin, hanging shape in front of the subject which gives

us an accurate ground truth; in addition, because the shape was thin enough, it would not block

the Kinect's ability to recognize joint positions. We fastened threads to our shape in order to

suspend it through holes in the PVC pipes and used velcro to hold the wires in place during the

experiment. These wires not only helped us assemble and disassemble the experiment quickly,

but also allowed for easy adjustment of the height of the shape corresponding to the subject’s

height. The subject would extend their arm forward and parallel to the ground with their fist

clenched, and we would adjust the height of the shape so that the subject's fist was in the center

of the shape. This is necessary because we need to make sure that the subjects do not move their

shoulders. We placed the Kinect on a movable cart 2 meters in front of the subject and facing

away from the door so that it would not accidentally record other skeletons of passersby. We

attached two 9DoF sensors to the subject’s right arm in a similar fashion as shown in Figure 3.34

using adjustable velcro straps.

135

Figure 3.34. Experiment setup when indoor

Using the setup shown in Figure 3.34, we had the subject first perform signature and

training motions before performing any of the experiments: three heel strikes, one arm raise, and

three square traces. The arm raise was performed by having the subject raise and three square

traces. The arm raise was performed by having the subject raise their arm vertically upward from

136

their side which traces a half circle in the air with their arm acting as the radius of the circle (See

Figure 3.25 for more details). The three square traces are performed by having the subject trace

the square with their hand in a fist in a clockwise fashion starting with the upper left corner, as

shown in Figure 3.22.

Because the sensors did not start collecting data at the same time, the three heel strikes

are a way to sharply disrupt the sensor data so we know exactly how to align the signals later, as

was the case in the previous section. The arm raise was used so that we can align the sensor data

with the Kinect’s data since a heel strike is not clearly visible from the Kinect’s point of view.

Lastly, the square traces are used as training in order to find the best filter parameters of the

complementary filters as in 3.2.1.4.

Similarly to the previous section, we performed three experiments after the completion of

the motion signatures: shape tracing, tapping, and arm-raising. The experiments were performed

in the same way as before, but we added the Kinect to collect 3D motion data in addition to the

IMU's and we used a new experimental location and setup. This section focuses on the

differences and additions that were necessary as we introduced the Kinect into our data

collection methods.

 First, we performed the shape tracing experiment using a square with a side length of 20

inches and the triangle with a height of 20 inches. The subject would trace the shape for a total of

ten times, pausing at each corner for about one second.

To simulate a more lifelike activity like reaching for a book on a bookshelf, we

performed an experiment that involved tapping of the subject's hand using the square shape as a

template. The positions of the taps are shown in Figure 3.24. We partitioned the square into a

137

3x3 array and the subject would tap each vertex in the array. This is repeated for 10 rounds for a

total of 90 taps.

Lastly, to simulate how high a subject could reach with our experimental setup, we

performed an arm raising experiment where the subject would raise their arm vertically upwards

so that they trace out a half circle with their arm as the radius of the circle. This shape is shown

in Figure 3.25. Likewise, the subjects kept their arm straight during this experiment.

There were several differences between these experiments and the experiments from the

previous section. For instance, while using the Kinect, if the subject performed the experiment

too quickly, the Kinect had difficulty in keeping up with the subject. In other words, if the

movements were too fast, the Kinect could not detect the subject's arm as easily and there would

sometimes be a delay between the Kinect and the person's actual arm movement. This was a

problem that was especially apparent in the arm raise experiment. To remedy this, we made sure

that the subject did not perform the experiment too quickly. Another difference is that we needed

to perform more arm raising motion signatures to make sure we aligned the IMU data with the

Kinect properly. Lastly, the experimental design and environment were different.

3.3.5 Experiment"Part"3"–"Coordinate"Fusion"

The third part of the experiment was conducted to verify our coordinate fusion algorithm

described in 3.2.5. We used our current pool of experimental data collected in 3.4.1 to simulate

situations where our algorithm would switch to a different model to analyze the data. There are

two motivations for improving our previous Kinect model and for creating and testing the fused

model. First, the magnetometer was very noisy especially indoors where there can be large

amounts of interference contained in a room. Second, sometimes the Kinect cannot always

138

determine the joints of the subject, which results in inferred joint positions. Finally, the Kinect

did not perform optimally in the outdoor environment. Therefore, our goal for this simulated

experiment was to determine whether or not our algorithm was working properly when the

environment suddenly changed, i.e., how well it would switch models according to the

trustworthiness described in 3.2.4.

To test the trustworthiness of the Kinect, rather than designing a physical experiment, we

simulated the results of the square, triangle, and arm raising experiments by randomly destroying

a certain percent of the Kinect's data using our previous data, and set the trustworthiness to 0.

These three experiments are described in previous sections. We corrupted the Kinect data in

steps of 10% starting from 0% to 100% and examined the error between our reconstruction and

the ground truth. Figure 3.35 and Figure 3.36 illustrate the corrupted Kinect signals of right

elbow for different percentages and the trustworthiness respectively.

139

Figure 3.35. Corrupted Kinect signals for different percentages

140

Figure 3.36. Corrupted Kinect trustworthiness for different percentages

141

3.4 Results"

3.4.1 Experiment"Part"1"–"Outdoor"Experiments"

This section shows the results of indoor reconstruction using the IMU model described in 3.2.2.2.

Table 3.3 and Table 3.4 show the mean and variance of distances to the best-fit shape for square,

triangle, and vertical arm-swing experiments respectively. Table 3.5 and Table 3.6 show the

mean and variance of percentages of length-estimation error of square, triangle, book reaching,

and vertical arm-swing experiments respectively.

The results of 3D motion reconstruction of the fist are shown from Figure 3.37 to Figure

3.39. We show total of 6 reconstructed trajectories using different methods, which are the Kinect

raw data, static model using the accelerometer and the magnetometer, direct integration using the

gyro signal (dynamic models), the direct filter, and the passive filter. For the first experiment of

square and triangle plotting, Figure 3.37 show the 3-dimensional motion reconstruction of the

fist movements. Figure 3.38 shows the reconstructed trajectories of triangle-drawing experiments.

Figure 3.39 shows the reconstructed result of book-reaching experiments, and finally Figure 3.40

shows the reconstructed result of vertical arm-swing experiments.

142

Table 3.3. Mean of distances to best-fit shape of outdoor experiments (inches)

Experiments Static Dynamic Passive Direct

Square arc 4.49 10.78 4.31 4.25

Triangle 7.60 12.48 7.12 7.23

Vertical arc 7.39 9.24 5.94 5.97

Table 3.4. Variance of distances to best-fit shape of outdoor experiments (inches)

Experiments Static Dynamic Passive Direct

Square arc 1.60 4.19 1.70 1.73

Triangle 4.75 4.91 4.10 4.39

Vertical arc 1.74 2.54 1.36 1.41

143

Table 3.5. Mean of percentage of length-estimation error of outdoor experiments (%)

Experiments Static Dynamic Passive Direct

Square arc 10.66 30.47 6.28 5.27

Triangle 10.37 27.17 6.41 5.86

Reaching 17.79 38.86 12.05 13.01

Vertical arc 16.11 21.69 10.42 5.56

Table 3.6. Variance of percentage of length-estimation error of outdoor experiments (%)

Experiments Static Dynamic Passive Direct

Square arc 0.88 4.84 0.43 0.35

Triangle 0.05 1.90 0.01 0.01

Reaching 4.36 5.18 3.27 4.28

Vertical arc 2.13 4.01 0.16 0.13

144

Figure 3.37. Reconstruction of square drawing of outdoor experiments, ground truths are shown

in black curves

−30 −20 −10 0 10

−20

0

20

−20

0

Static Models

East (inches)

D
ow

n
(in

ch
es

)

−30 −20 −10 0

−20

0

20

−20

0

Direct Filters

East (inches)

D
ow

n
(in

ch
es

)

−30 −20 −10 0

−20

0

20

−20

0

Passive Filters

East (inches)

D
ow

n
(in

ch
es

)

−40 −20 0

−20

0

20

−20

0

20

Dynamic Models

East (inches)

D
ow

n
(in

ch
es

)

145

Figure 3.38. Reconstruction of triangle drawing of outdoor experiments, ground truths are shown

in black curves

−30 −20 −10 0

−10

0

10

20

Static Models

East (inches)

D
ow

n
(in

ch
es

)

−30 −20 −10 0

−10

0

10

20

Direct Filters

East (inches)

D
ow

n
(in

ch
es

)

−30 −20 −10 0 10

−10

0

10

20

Passive Filters

East (inches)

D
ow

n
(in

ch
es

)

−30 −20 −10 0 10

−20

0

20

−20

0

Dynamic Models

East (inches)

D
ow

n
(in

ch
es

)

146

Figure 3.39. Reconstruction of book reaching of outdoor experiments, ground truths are shown in

black stars

−30 −20 −10 0 10

−20

0

20

−20

0

Static Models

East (inches)

D
ow

n
(in

ch
es

)

−30 −20 −10 0 10

−20

0

20

−20

0

Direct Filters

East (inches)

D
ow

n
(in

ch
es

)

−30 −20 −10 0 10

−20

0

20

−20

0

Passive Filters

East (inches)

D
ow

n
(in

ch
es

)

−40 −20 0

−20

0

20

−20

0

20

Dynamic Models

East (inches)

D
ow

n
(in

ch
es

)

147

Figure 3.40. Reconstruction of vertical arm swing of outdoor experiments, ground truths are

shown in black curves

−1001020

−20
0

20
40

−20
0

20
−20

0
20
−20

East (inches)

Static Models

North (inches)

D
ow

n
(in

ch
es

)

01020

−20
0

20
40

−20
0

20
−20

0
20
−20

East (inches)

Direct Filters

North (inches)

D
ow

n
(in

ch
es

)

−1001020

−20
0

20
40

−20
0

20
−20

0
20
−20

East (inches)

Passive Filters

North (inches)

D
ow

n
(in

ch
es

)

−20020
−20

0
20

40

−20
0

20
−20

0
20
−20

East (inches)

Dynamic Models

North (inches)

D
ow

n
(in

ch
es

)

148

3.4.2 Experiment"Part"2"–"Indoor"Experiments"

This section shows the results of indoor reconstruction results using the Kinect and IMU model

described in 3.2.2.3. Table 3.7 and Table 3.8 show the mean and variance of distances to the

best-fit shape for square, triangle, and vertical arm-swing experiments respectively. Table 3.9

and Table 3.10 show the mean and variance of percentages of length-estimation error of square,

triangle, and vertical arm-swing experiments respectively. These figures show the static result

using the magnetometer and accelerometer, Kinect only, Kinect and accelerometer, dynamic

model using gyro, and complementary filtered result (passive and direct).

The results of 3D motion reconstruction of the fist are shown from Figure 3.41 to Figure

3.43. We show a total of 6 reconstructed trajectories using different methods, which are the

Kinect raw data, static model using the accelerometer and the magnetometer (ACC+MAG),

static model using the accelerometer and the Kinect (ACC+KIN), direct integration using the

gyro signal (Dynamic models), the direct filter, and the passive filter. For the first experiment of

square and triangle plotting, Figure 3.41 shows the 3-dimensional motion reconstruction of the

fist movements. Figure 3.42 shows the reconstructed trajectories of triangle-drawing experiments,

and Figure 3.43 shows the reconstructed result of vertical arm-swing experiments.

149

Table 3.7. Mean of distances to best-fit shape of indoor experiments (inches)

Experiments
Static

(M+A)

Static

(K)

Static

(K+A)

Dynamic

(G)

Passive

(K+A+G)

Direct

(K+A+G)

Square 1.33 0.76 0.41 1.04 0.34 0.33

Triangle 1.34 0.78 0.37 1.06 0.36 0.35

Vertical arc 1.77 0.95 1.19 0.94 1.02 1.19

Table 3.8. Variance of distances to best-fit shape of indoor experiments (inches)

Experiments
Static

(M+A)

Static

(K)

Static

(K+A)

Dynamic

(G)

Passive

(K+A+G)

Direct

(K+A+G)

Square 0.291 0.048 0.024 0.347 0.022 0.019

Triangle 0.35 0.07 0.03 0.32 0.03 0.03

Vertical arc 0.61 0.07 0.07 0.06 0.19 0.15

150

Table 3.9. Mean of error percentages of length-estimation error of indoor experiments (%)

Experiments
Static

(M+A)

Static

(K)

Static

(K+A)

Dynamic

(G)

Passive

(K+A+G)

Direct

(K+A+G)

Square 24.06 24.79 20.44 28.11 13.12 13.54

Triangle 22.54 25.84 16.10 24.86 10.27 9.95

Vertical arc 55.65 17.21 19.54 12.48 6.57 11.09

Table 3.10. Variance of error percentages of length-estimation error of indoor experiments (%)

Experiments
Static

(M+A)

Static

(K)

Static

(K+A)

Dynamic

(G)

Passive

(K+A+G)

Direct

(K+A+G)

Square 0.18 0.11 0.092 1.50 0.029 0.058

Triangle 0.28 0.11 0.28 1.34 0.04 0.07

Vertical arc 8.06 0.32 1.78 1.46 0.61 0.80

151

Figure 3.41. Reconstruction of square drawing, of indoor experiments ground truths are shown in

black curves

−20020

−20

0

20

Forward (inches)

Passive Filter
U

p
(in

ch
es

)

−20020

−20

0

20

Forward (inches)

ACC+MAG

U
p

(in
ch

es
)

−20020

−20

0

20

Forward (inches)

ACC+KIN

U
p

(in
ch

es
)

−20020

−20

0

20

Forward (inches)

Dircet Filter

U
p

(in
ch

es
)

−20020

−20

0

20

Forward (inches)

Dynamic Models

U
p

(in
ch

es
)

−20020

−20

0

20

Forward (inches)

Kinect Raw

U
p

(in
ch

es
)

152

Figure 3.42. Reconstruction of triangle drawing of indoor experiments, ground truths are shown

in black curves

−20020

−20

0

20

Forward (inches)

Passive Filter
U

p
(in

ch
es

)

−20020

−20

0

20

Forward (inches)

ACC+MAG

U
p

(in
ch

es
)

−20020

−20

0

20

Forward (inches)

ACC+KIN

U
p

(in
ch

es
)

−20020

−20

0

20

Forward (inches)

Dircet Filter

U
p

(in
ch

es
)

−20020

−20

0

20

Forward (inches)

Dynamic Models

U
p

(in
ch

es
)

−20020

−20

0

20

Forward (inches)

Kinect Raw

U
p

(in
ch

es
)

153

Figure 3.43. Reconstruction of vertical arm swing, of indoor experiments ground truths are

shown in black curves

−20020−20
0

20
−20

0
20
−20

Forward (inches)

Passive Filter
U

p
(in

ch
es

)

−20020−20
0

20
−20

0
20
−20

Forward (inches)

ACC+MAG

U
p

(in
ch

es
)

−20020−20
0

20
−20

0
20
−20

Forward (inches)

ACC+KIN

U
p

(in
ch

es
)

−20020−20
0

20
−20

0
20
−20

Forward (inches)

Dircet Filter

U
p

(in
ch

es
)

−20020−20
0

20
−20

0
20
−20

Forward (inches)

Dynamic Models

U
p

(in
ch

es
)

−20020−20
0

20
−20

0
20
−20

Forward (inches)

Kinect Raw

U
p

(in
ch

es
)

154

3.4.3 Experiment"Part"3"–"Coordinate"Fusion"

This section shows the experimental results of the coordinate fusion model described in 3.2.5 on

the simulated date described in 3.3.5. In this simulation, we destroyed a portion of the Kinect

data and saw how the coordinate fused model behaved in comparison to other methods.

In the following graphs in this section, we show the simulation results using best-fit

shape and length estimation error evaluations described in 3.3.2.2.1 and 3.3.2.2.2 respectively.

For best-fit shape error, we plot the average and variances of distances to the best-fit shape (in

inches); for length-estimation error, we plot the average and variances of error percentages of

length estimation. We show the simulation results using static model with magnetometer and

accelerometer, using Kinect, using Kinect and accelerometer, dynamic model using gyro, and the

fused result averaging passive and direct filters using IMU model in 3.2.2.2, using Kinect and

IMU model in 3.2.2.3, and the proposed coordinate fusing model in 3.2.5.

For square-plot experiments, the average and variances of distances to the best-fit square

are described in Figure 3.44 and Figure 3.45 respectively. The average and variances of error

percentages of square side length estimation are shown in Figure 3.46 and Figure 3.47

respectively.

For triangle-plot experiments, the average and variances of distances to the best-fit

triangle are described in Figure 3.48 and Figure 3.49 respectively. The average and variances of

error percentages of triangle side length estimation are shown in Figure 3.50 and Figure 3.51

respectively.

155

For vertical arm-swing experiments, the average and variances of distances to the best-fit

arc are described in Figure 3.52 and Figure 3.53 respectively. The average and variances of error

percentages of swung angle estimation are shown in Figure 3.54 and Figure 3.55 respectively.

156

Figure 3.44. Average distance to the best-fit shape, square experiment

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

D
is
ta
nc
e)
fo
)B
es
t-
.it
)S
ha
pe
)(i
nc
he
s)
)

Destruction)Ratio)

Square)Experiment,)Average)of)Distance)to))
"Best-.it)Shape")

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

157

Figure 3.45. Variance of distance to the best-fit shape, square experiment

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

D
is
ta
nc
e)
fo
)B
es
t-
.it
)S
ha
pe
)(i
nc
he
s)
))

Destruction)Ratio)

Square)Experiment,)Varianve)of)Distance)to))
"Best-.it)Shape")

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

158

Figure 3.46. Average error of length estimation, square experiment

0"

10"

20"

30"

40"

50"

60"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Er
ro
r)
of
)E
st
im
at
ed
)S
id
e)
Le
ng
th
)(%

))

Destruction)Ratio)

Square)Experiment,)Average)of)Error)of)Estimated)Side)
Length)

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

159

Figure 3.47. Variance of error of length estimation, square experiment

0"

0.5"

1"

1.5"

2"

2.5"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Er
ro
r)
of
)E
st
im
at
ed
)S
id
e)
Le
ng
th
)(%

))

Destruction)Ratio)

Square)Experiment,)Variance)of)Error)of)Estimated)
Side)Length)

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

160

Figure 3.48. Average distance to the best-fit shape, triangle experiment

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

D
is
ta
nc
e)
fo
)B
es
t-
.it
)S
ha
pe
)(i
nc
he
s)
))

Destruction)Ratio)

Triangle)Experiment,)Average)of)Distance)to))
"Best-.it)Shape")

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

161

Figure 3.49. Variance of distance to the best-fit shape, square experiment

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

D
is
ta
nc
e)
fo
)B
es
t-
.it
)S
ha
pe
)(i
nc
he
s)
))

Destruction)Ratio)

Triangle)Experiment,)Variance)of)Distance)to))
"Best-.it)Shape")

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

162

Figure 3.50. Average error of length estimation, triangle experiment

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Er
ro
r)
of
)E
st
im
at
ed
)S
id
e)
Le
ng
th
)(%

))

Destruction)Ratio)

Triangle)Experiment,)Average)of)Error)of)Estimated)
Side)Length)

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

163

Figure 3.51. Variance of error of length estimation, triangle experiment

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Er
ro
r)
of
)E
st
im
at
ed
)S
id
e)
Le
ng
th
)(%

))

Destruction)Ratio)

Triangle)Experiment,)Variance)of)Error)of)Estimated)
Side)Length)

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

164

Figure 3.52. Average distance to the best-fit shape, arm-swing experiment

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

2"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

D
is
ta
nc
e)
fo
)B
es
t-
.it
)S
ha
pe
)(i
nc
he
s)
))

Destruction)Ratio)

Vertical)Arm-swing,)Average)of)Distance)to))
"Best-.it)Shape")

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

165

Figure 3.53. Variance of distance to the best-fit shape, arm-swing experiment

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

D
is
ta
nc
e)
fo
)B
es
t-
.it
)S
ha
pe
)(i
nc
he
s)
))

Destruction)Ratio)

Vertical)Arm-swing,)Variance)of)Distance)to))
"Best-.it)Shape")

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

166

Figure 3.54. Average error of angle estimation, arm-swing experiment

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

Er
ro
r)
of
)E
st
im
at
ed
)A
ng
le
s)
(%

))

Destruction)Ratio)

Vertical)Arm-swing,)Averageof)Error)of)Estimated)
Angles)of)Swing)

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

167

Figure 3.55. Variance of error of angle estimation, arm-swing experiment

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

AE
rr
or
)o
f)E
st
im
at
ed
)A
ng
le
s)
(%

))

Destruction)Ratio)

Vertical)Arm-swing,)Variance)of)Error)of)Estimated)
Angles)of)Swing)

Static"(M+A)"

Static"(K)"

Static"(K+A)"

Dynamic"(G)"

IMU"Model"
(M+A+G)"
Kinect"and"IMU"Model"
(K+A+G)"
Coordinate"Fusion"
(M+K+A+G)"

168

3.5 Discussion+

3.5.1 Complimentary+Filters+with+Human+Biomechanical+Model+using+

Accelerometer,+Gyro+and+Magnetometer+–+Outdoor+Case+

From the outdoor experiment results presented in 3.4.1, we can see from Table 3.3 and Table 3.4

that only integrating the gyro signals will give us a gradually shifted shape due to error

accumulation during integration. Therefore, the average distance to the best-fit shape is almost

twice as large as the passive and direct complementary filtered results, and so is the variance of

distances to the best-fit shape. The drifts from integration can also be seen from Figure 3.37 to

Figure 3.40, where initially the first few shapes were close to their best-fit shapes, but eventually

they will deviate and thus it suggests how inaccurate the dynamic model will be as time goes by.

Similar results can be seen from Table 3.5 and Table 3.6, which tell us the average and variance

of error percentages of length estimation. In these tables we can see that the error percentages of

dynamic models ranged from twice to even four times larger than using complementary filters,

and their variances were more than 20 times larger than the filtered results, indicating that even

for a short period of time, using integration to estimate the lengths or distances of human

motions would give us inaccurate and highly variable results.

For the static estimate using accelerometers and magnetometers, from Figure 3.37 to

Figure 3.40 we can see that generally the patterns were recognizable; in the book-reaching

experiments, the static estimates were very close to the ground truth. This can also be explained

in Table 3.3 where the average distances to their best-fit shape were comparable to the

complementary filtered results. However, from the reconstructed patterns shown in Figure 3.37,

Figure 3.38 and Figure 3.40 we can see that the reconstructed results using static models with

169

accelerometers and magnetometers were very noisy, and the reason behind this noisy

reconstruction results came from first the sensor measurements themselves were very noisy, and

thus made the static reconstruction without any kind of filters produce noisy results. Second,

when moving we applied forces to the accelerometers, so that it made the estimation of the

direction of gravity inaccurate. Third, in using magnetometers they experienced more or less

interference, and with the lack of more advanced calibration devices we could not correct them.

Finally, from the passive and direct complementary filters results of Figure 3.37 to Figure

3.40 we can see that by using the non-linear complementary filters combined with the human

biomechanical model, we successfully filtered the noise from static models, while avoiding

integration drift from dynamic models. The drawn patterns were clearly recognizable and very

close to the ground truth, with small errors, which were mainly caused from twists of subjects’

wrists and deformations of forearms. From Table 3.3 and Table 3.4 of tabular errors, we can see

that the proposed IMU model not only has lower error to the ground truth, BUT also with lower

variance it means that our model was less noisy. Compared to prior works [68][77], the proposed

method can track more complex and rapid arm movements.

3.5.2 Complimentary+Filters+with+Human+Biomechanical+Model+using+

Accelerometer,+Gyro+and+Kinect+–+Indoor+Case+

After the outdoor experiments using IMU model utilizing accelerometers, gyros and

magnetometers, we then moved inside and did the same experiments indoors while the Kinect

was available, but severe magnetometer interference would exist.

First, from the reconstruction results with static models using accelerometers and

magnetometers, which are the pink-colored lines from Figure 3.41 to Figure 3.43, we can see

170

that because of severe interference to magnetometer measurements when indoors, the estimated

traces were very inaccurate. Also, as said in 3.5.1 because of measurement noise the

reconstructed results were very noisy. From Table 3.7 and Table 3.8 we can see that the average

and variances of distances to the best-fit shape were the largest compared to using other models.

Similar results can also be seen in Table 3.9 and Table 3.10, where we had very large error

estimating lengths of drawn patterns, and angle of swung vertical arcs.

We now discuss the motion reconstruction using static models utilizing Kinect solely,

and the fused model of Kinect and accelerometers. The results of only using the Kinect are

shown in yellow lines, and those of using the Kinect and accelerometers are shown in red lines

from Figure 3.41 to Figure 3.43. Compared to the reconstruction results using accelerometers

and magnetometers depicted in the previous paragraph, we saw a great improvement while using

the Kinect. However, in the reconstruction result only using Kinect’s raw data, we first saw that

the Kinect measurements were still noisy and its measurements were not accurate enough such

that the reconstructed patterns looked smaller than the ground truth since in this model the

human biomechanical constraints were not incorporated and we might have inaccurate

information regarding to the lengths of limbs. On the other hand, the reconstruction results with

the static model using the Kinect and accelerometers were skewed. This was mainly due to fact

that the extra force that we applied to the accelerometers made the judgment of the direction of

gravity incorrect. From Table 3.7 and Table 3.8 of the average and variances of distances to the

best-fit shape we can see that though these distances were less accurate compared to the static

model with accelerometer and magnetometer, they were still more accurate compared to the

complementary filtered results. Table 3.9 and Table 3.10 of estimated side lengths of the shapes

and angles of swung also suggested similar results, where the error percentages were less than

171

static model using magnetometers and accelerometers, but larger than fused model using Kinect

and IMU.

Third, we discuss the reconstruction result using purely gyro signals. This was shown in

blue lines from Figure 3.41 to Figure 3.43. Similar to the integration results of the previous

section, during short time intervals we avoid the measurement noise, which suggests this model

is accurate in high frequency. However, as time goes by this dynamic model experienced

gradually increased drift since error accumulates from numerical integration. Table 3.7 and Table

3.8 show that the average and variances of distances to the best-fit shape were much larger than

the fused model results. Table 3.9 and Table 3.10 also suggested high average percentage of

errors, and high variances in estimating the lengths of the drawn shape, and angles of vertical

arm swing.

Finally, the filtered results using direct and passive non-linear complementary filters and

human biomechanical models utilizing the Kinect, accelerometers and gyros gave us the most

accurate estimation of scatterplot and arm movements. Not only did it filter out the noise from

sensor measurements and avoid drifts from integration, but also the use of the Kinect indoors

provided more accurate joint position information than that of magnetometer did. Therefore,

from the discussion in this section and that in 3.5.1, we conclude that under different

environments and resources, different strategies are required for human motion tracking and

reconstruction.

172

3.5.3 Coordinate+Fusion+Model+using+Accelerometers,+Gyros,+

Magnetometers+and+Kinect+

In this section we discuss the effect of using the coordinate fusion model depicted in 3.2.5, which

fuses the integration model in 3.2.2.1, the IMU model in 3.2.2.2, the Kinect and IMU model in

3.2.2.3 to deliver even better estimation results.

First we notice that from Figure 3.44 to Figure 3.55 the distance or error were unchanged

for models that did not include Kinect data (static model using magnetometers and

accelerometer, dynamic model using gyros, and IMU model using magnetometer, accelerometer,

and gyros), since the simulated data being destroyed was the Kinect data. And for these models,

the distance to the best-fit shape and the error percentage of length estimation are higher than

filtered results, indicating that without the use of the Kinect we would get a very high error.

The other static models including that using the Kinect (red lines) and that using the

Kinect and accelerometers (cyan-blue lines) would give us high average and variances of

distances to the best-fit shapes, and estimated lengths and angles of plotted patterns. And as the

destruction ratio of Kinect data increased, so did these error and distances, suggesting that if we

tried to use Kinect data that were not trustworthy, the error caused by doing so would be even

higher than using integration with gyro measurement.

For the integration model (purple lines), there is always high distance and error

percentage of distance to the best-fit shapes and estimation lengths and angles respectively.

Except for vertical arm-swing experiments, we have low average distance to the best-fit arc, and

low error percentages of estimation swung angles. This is because arm-swing movements

involved only rotations among one axis (in our coordinate system it was the of the z -axis

173

sensor), and thus the errors were fewer compared to those of reconstructed plotted squares and

triangles.

We also notice that the distances and error percentages of the integration model were the

top limit of the proposed coordinate fusion model. This was because when we had 100% of

Kinect data destroyed, unless the magnetometer was trustworthy (which usually was not true

when indoors), the fused model would select the integration model as its reconstruction strategy,

thus making the errors to increase to be close to those using the integration model.

When we compared the distance to the best-fit shape and error percentages of estimation

lengths and angles using the IMU model in 3.2.2.2 with the Kinect and IMU model in 3.2.2.3, we

found that the errors of the IMU model were higher than the later ones, even if data provided by

the Kinect started getting untrustworthy. This suggested that we should use Kinect whenever we

had it, to collect data and fuse Kinect data with the IMU data.

Finally, if we compared the Kinect and IMU model in 3.2.2.3 and coordinate fusion

model in3.2.5, we found that unless the Kinect data were totally destroyed and totally not

trustworthy, the coordinate fusion model always performed better than the Kinect and IMU

model. Compared to other methods, the proposed coordinate fusion model always gave the

lowest average and variances distance to the best-fit shape and those of length and angle

estimation. As described in the previous paragraph, the gyro based integration models served as

the lower limit of the reconstruction accuracy.

174

3.6 Conclusion+

To conclude, in this chapter we present a coordinate fusion system that tracks and reconstructs

human motions using commercial MEMS and other sensors off the shelf. The system combines

several existing motion reconstruction methods, thus making it more adaptable to various

environments with different sensors available. Further, the proposed system is expandable when

new type of sensors and motion reconstruction methods become available. This system will not

only benefit medical professional and therapists who want to analyze more detail in human

motion trajectories, but this system can also be included in the medical remote monitoring

system for many medical purposes, e.g., a medical surveillance system which keeps track of

patients requiring long-term care and reports to emergency if necessary, or a system to see if the

patients in rehabilitation have followed doctors’ directions to exercise for a prescribed amount of

time daily.

175

Chapter 4

CONCLUSIONS AND FUTURE RESEARCH

4.1 Research+Contribution+

This research mainly concerns machine learning on activity classification and motion tracking /

reconstruction using various off-the-shelf sensors and digital filtering techniques. That is, this

research tries to construct a system, which collects data from sensors attached to human bodies,

and then makes inferences from collected data. The system either tries to tell which activities the

subject is doing at any given moment (activity classification in Chapter 2), or to show detailed

movements of human actions (motion tracking / reconstruction in Chapter 3).

 The research is a building block for end-to-end wireless health systems that target either

patients requiring long-term care or the general public. For patients requiring long-term care,

such as people in the rehabilitation process or people with chronic diseases, traditional treatments

require them to stay at hospitals each day. The system will serve as a remote monitoring system

that can record and store patients’ activities in their daily lives while patients stay at home, then

doctors can access the data and make diagnostics remotely, which will save tremendous medical

costs and resources.

For the general public, this system will monitor people’s health status day by day and

make suggestions based on their health level. As mentioned in Chapter 1, according to WHO

more than 60 percent of populations fails to exercise 30 minutes per day, which is the least

requirement for fitness. Therefore, if there is a system that can accurately classify human

176

activities, and then compute health inferences, statistics, and suggestions from the data, all at low

cost, then it can greatly improve our health levels.

4.2 Future+Research+

This section points out some potential research directions in the future. On one hand, we wish to

develop a larger system of activity classification / motion reconstruction with various levels,

where the current research contributes to two such levels. On the other hand, in order to acquire

the more accurate ground truth, another project named Virtual Sensor Platform in cooperation

with UCLA Rehabilitation Unit of the Ronald Reagan Hospital to collect data using a multi-

camera motion capture system will also be launched.

4.2.1 Multilevel System Optimization

As mentioned in 4.1, we expect an end-to-end wireless health system that will have better

performance for targeted applications. To achieve this, in the future it is desirable to expand the

current research to create a broader system operating at multiple levels of abstraction. In this

dissertation we have already proposed 2 systems. For activity classification, the use of hybrid

tree classifiers in 2.4 combines decision tree classifiers with naïve Bayes classifiers and support

vector machines to adapt to many more kinds of complicated activities; the idea of coordinate

fusion in 3.2.5 weights different motion reconstruction methods to perform better motion

tracking under various environments and circumstances. In the future, these two systems will

become levels of an even larger system; the levels of this system will communicate with each

other to optimize the performance as a whole.

One instance of such levels can be the concept of determining and using contexts.

Contexts identify the surrounding environments, and hence suggest possible constraints and

177

available resources. For example, if from the Wi-Fi connection the system knows that the subject

stays at the office, then chances are this subject would not do any intense exercises, thus we can

lower the prior of corresponding classes in the naïve Bayes classifier. Another context example

is that by knowing the phone is plugged into a power outlet, the system can increase the

sampling rate to achieve better classification accuracy. Therefore, by knowing the contexts we

can have a better activity classification / motion reconstruction result.

What is more, the research of context detection is not a one-way thing as the context will

help with increasing activity classification / motion reconstruction accuracy. The current systems

of activity classification / motion reconstruction can also improve context detection. For instance,

if by using the universal hybrid tree classifier we know that the subject was sitting for a long

time in the afternoon, and then we can suspect that he/she was in the office during that time.

Therefore, not only do we need to find the new levels in the larger system, but also how the

levels interact with each other.

4.2.2 Virtual Sensor Platform and Vicon Motion Capture System

The idea of the Virtual Sensor is to construct a platform that simulates outputs of MEMS sensors

including accelerometers, gyros and magnetometers as if they were put on the subject’s body

parts while he/she is doing various activities. This platform will provide a simulated ground truth,

that is, the sensor output should be given as if the subject were doing prescribed motions. This is

exactly the reverse of what this dissertation tries to achieve – to reconstruct the subject’s motions

given the sensor output. Therefore, with this platform, not only can it provide an approximate

signal template for a given motion, but through the bootstrap process, of which this platform and

the proposed motion reconstruction system help each other, we can improve the accuracies of

both systems.

178

 Another accurate ground truth will also be acquired using an eight-camera Motion

Capture System here at the University of California, Los Angeles (UCLA) [86]. This is a high-

speed motion capture system that can capture locations of special markers attached on the human

body using cameras. With the aid of this system, we can accurately record human motions and

thus provide better and more detailed motion trajectories. In the future, with the cooperation of

the UCLA Rehabilitation Unit of the Ronald Reagan Hospital and by accessing this system not

only can we accurately record human motions and thus provide better and more detailed motion

trajectories, but also we will discover more potential ways of realizing the system of activity

classification and motion reconstruction for real-life medical applications.

179

REFERENCES

[1] L. Atallah, B. Lo, R. King, and G.-Z. Yang, “Sensor placement for activity detection using

wearable accelerometers,” in Proc. Wearable Implantable Body Sens. Netw., Los Alamitos,

CA, 2010, pp. Int.Workshop, pp. 24–29.

[2] Long, X., Yin, B., and Aarts, R.M. 2009. Single accelerometer-based daily physical

activity classification. In 31st Annual International Conference of the IEEE EMBS, 6107-

6110.

[3] J. Pärkkä, M. Ermes, P. Korpipää, J. M¨antyjärvi, J. Peltola, and I. Korhonen, “Activity

classification using realistic data from wearable sensors,” IEEE Trans. Inf. Technol.

Biomed., vol. 10, no. 1, pp. 119–128, Jan. 2006.

[4] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,” in

Proceedings 2nd Int. Conference on. Pervasive Computing. Springer, 2004, pp. 1-17.

[5] Renk, Erin L., et al. "Calibrating a triaxial accelerometer-magnetometer-using robotic

actuation for sensor reorientation during data collection." Control Systems, IEEE 25.6

(2005): 86-95.

[6] Bellman, Richard. "Dynamic Programming and Lagrange Multipliers." The Bellman

Continuum: A Collection of the Works of Richard E. Bellman (1986): 49.

[7] Bellman, Richard. Adaptive control processes: a guided tour. Vol. 4. Princeton: Princeton

university press, 1961.

[8] Oommen, Thomas, et al. "An objective analysis of support vector machine based

classification for remote sensing." Mathematical Geosciences 40.4 (2008): 409-424.

180

[9] F. Foerster and J. Fahrenberg, “Motion pattern and posture: Correctly assessed by

calibrated accelerometers,” Behav. Res. Methods Instrum. Comput., vol. 32, no. 3, pp. 450–

457, Aug. 2000.

[10] AS.R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology.”

IEEE Trans. Systems Man Cybernet. 21 (1991), pp. 660–674.

[11] M. W. Kurzynski, "The optimal strategy of a tree classifier," Pattern Recognition vol. 16,.

81-87 (1983).

[12] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.

Boca Raton, FL: CRC Press, (1984).

[13] De’Ath, G. & Fabricius, K.E. (2000) Classification and regression trees: a powerful yet

simple technique for ecological data analysis. Ecology, 81, 3178–3192.

[14] D. Lowd, P. Domingos, “Naïve Bayes models for probability estimation,” in Proceedings

of 22nd International Conference on Machine Learning, Bonn, Germany, 2005.

[15] K. P. Murphy, “Naïve Bayes classifiers,”

http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/NB.pdf

[16] Harry Zhang "The Optimality of Naïve Bayes". FLAIRS2004 conference.

[17] Bottou, L., and Chih-Jen Lin. Support Vector Machine Solvers.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.4209&rep=rep1&type=pdf

[18] Christianini, N., and J. Shawe-Taylor. An Introduction to Support Vector Machines and

Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, UK,

2000.

[19] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, second

edition. Springer, New York, 2008.

181

[20] Higgins, W. T. "A comparison of complementary and Kalman filtering." Aerospace and

Electronic Systems, IEEE Transactions on 3 (1975): 321-325.

[21] S. S.Osder, W. e. Rouse, and L. S. Young, “Navigation, guidance and control systems for

V/STOL aircraft,” Sperry Tech. col. 1, no. 3, 1973

[22] Marins, Joăo Luís, et al. "An extended Kalman filter for quaternion-based orientation

estimation using MARG sensors." Intelligent Robots and Systems, 2001. Proceedings. 2001

IEEE/RSJ International Conference on. Vol. 4. IEEE, 2001.

[23] Webb, Jarrett, and James Ashley. Beginning Kinect Programming with the Microsoft

Kinect SDK. Apress, 2012.

[24] Waldner, Jean-Baptsite. Nanocomputers and swarm intelligence. Vol. 12. Wiley. com,

2010.

[25] Bernstein, Jonathan. "An Overview of MEMS Inertial Sensing Technology", Sensors

Weekly, February 1, 2003.

[26] Elmenreich, W. (2002). Sensor Fusion in Time-Triggered Systems, PhD Thesis. Vienna,

Austria: Vienna University of Technology. p. 173.

[27] Haghighat, M. B. A., Aghagolzadeh, A., & Seyedarabi, H. (2011). Multi-focus image

fusion for visual sensor networks in DCT domain. Computers & Electrical Engineering,

37(5), 789-797.

[28] Shala, Ubejd, and Angel Rodriguez. Indoor positioning using sensor-fusion in android

devices. Diss. Kristianstad University, 2011.

[29] Grewal, M. S.; L. R. Weill, and A. P. Andrew (2007). Global Positioning, Inertial

Navigation & Integration. New York: John Wiley & Sons.

182

[30] Lai, Kam, Janusz Konrad, and Prakash Ishwar. "A gesture-driven computer interface using

Kinect." Image Analysis and Interpretation (SSIAI), 2012 IEEE Southwest Symposium on.

IEEE, 2012.

[31] Oikonomidis, Iason, Nikolaos Kyriazis, and Antonis A. Argyros. "Efficient model-based

3D tracking of hand articulations using Kinect." BMVC. 2011.

[32] Khoshelham, Kourosh, and Sander Oude Elberink. "Accuracy and resolution of kinect

depth data for indoor mapping applications." Sensors 12.2 (2012): 1437-1454.

[33] Xia, Lu, Chia-Chih Chen, and J. K. Aggarwal. "Human detection using depth information

by Kinect." Computer Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE

Computer Society Conference on. IEEE, 2011.

[34] Chang, Yao-Jen, Shu-Fang Chen, and Jun-Da Huang. "A Kinect-based system for physical

rehabilitation: A pilot study for young adults with motor disabilities." Research in

developmental disabilities 32.6 (2011): 2566-2570.

[35] Gallo, Luigi, Alessio Pierluigi Placitelli, and Mario Ciampi. "Controller-free exploration of

medical image data: Experiencing the Kinect." Computer-Based Medical Systems (CBMS),

2011 24th International Symposium on. IEEE, 2011.

[36] G. Landerweerd, T. Timmers, E. Gelsema, M. Bins and M. Halic, “Binary tree versus

single level tree classification of while blood cells,” Pattern Recognition vol. 16, 571-577

(1983).

[37] X. Li and R. C. Dubes, “Tree classifier design with a Permutation statistic,” Pattern

Recognition vol. 19, 229-235 (1986).

[38] http://www.gcdataconcepts.com/

[39] Cortes and V. Vapnik. “Support vector networks.” Machine Learning, 20:273 – 297, 1995.

183

[40] Jonathan Lester, Tanzeem Choudhury, Gaetano Borriello, Sunny Consolvo, James L,

Kate Everitt, and Ian Smith, “Sensing and modeling activities to support physical fitness,”In

Proceedings of UbiComp, 2005.

[41] H.Z. Tan, L.A. Slivovsky, and A. Pentland, “A sensing chair using pressure distribution

sensors,” IEEE/ASME Transactions On Mechatronics, vol. 6, no. 3, pp. 261–268, 2001.

[42] Mota, Selene, and Rosalind W. Picard. "Automated posture analysis for detecting learner's

interest level." Computer Vision and Pattern Recognition Workshop, 2003. CVPRW'03.

Conference on. Vol. 5. IEEE, 2003.

[43] R. Cucchiara, C. Grana, A. Prati, and R. Vezzani, “Probabilistic posture classification for

human-behavior analysis,” IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, vol. 35, no. 1, pp. 42–54, 2005.

[44] G.S. Bruss, A.M. Gruenberg, R.D. Goldstein, and J.P. Barber, “Hamilton Anxiety Rating

Scale Interview guide: joint interview and test-retest methods for interrater reliability,”

Psychiatry research, vol. 53, no. 2, pp. 191–202, 1994.

[45] P.A. Reilly, “Fibromyalgia in the workplace: a ’management’ problem,” Annals of the

rheumatic diseases, vol. 52, no. 4, pp. 249, 1993.

[46] D. Blazer, D. Hughes, L.K. George, M. Swartz, and R. Boyer, “8 Generalized Anxiety

Disorder,” Psychiatric disorders in America: The epidemiologic catchment area study, p.

180, 1991.

[47] David Lewis, “Naïve (bayes) at forty: The independence assumption in information

retrieval,” in Machine Learning: ECML-98, Claire Ndellec and Cline Rouveirol, Eds., vol.

1398 of Lecture Notes in Computer Science, pp. 4–15. Springer Berlin / Heidelberg, 1998.

184

[48] Occupational Safety & Health Administration U.S. Department of Labor, “Good working

positions,” http://www.osha.gov/SLTC/etools/computerworkstations/positions.html

[49] C. Glaros, D.I. Fotiadis, A. Likas, A. Stafylopatis, ”A Wearable Intelligent System for

Monitoring Health Condition and Rehabilitation of Running Athletes,” In the 4th

International EMBS Special Topic Conference on Information Technology Applications in

Biomedicine, April 2003

[50] Youngbum Lee and Myoungho Lee, ”Implementation of Accelerometer Sensor Module

and Fall Detection Monitoring System based on Wireless Sensor Network” In Proceedings

of the 29th Annual International Conference of the IEEE EMBS, August 2007.

[51] Q. Yuan, I-M. Chen, S. P. Lee, ”SLAC: 3D Localization of Human Based on Kinetic

Human Movement Capture,” IEEE International Conference on Robotics and Automation,

Shanghai International Conference Center, May 2011.

[52] J. M. McCarthy, ”An Introduction to Theoretical Kinematics.” MIT Press, 1990.

[53] Gulf Coast Data Concepts: http://www.gcdataconcepts.com

[54] DK White, RC Wagenaar, ME Del Olmo, and TD Ellis, “Test-retest reliability of 24 hours

of activity monitoring in individuals with parkinsons disease in home and community,”

Neurorehabil Neural Repair, 2007.

[55] F. M. Impellizzeri, S. M. Marcora, C. Castagna, T. Reilly, A. Sassi, F. M. Iaia, and E.

Rampinini, “Physiological and performance effects of generic versus specific aerobic

training in soccer players,” International Journal of Sports Medicine, 2006.

[56] N. Ruchansky, C. Lochner, E. Do, T. Rawls, N. Hajj Chehade, J. Chien, G. Pottie, and W

Kaiser, “Monitoring workspace activities using accelerometers,” ICASSP, 2011.

185

[57] Zhongtang Zhao, Yiqiang Chen, Junfa Liu, Zhiqi Shen, and Mingjie Liu, “Cross-people

mobile-phone based activity recognition,” 2011.

[58] Jonathan Lester, Tanzeem Choudhury, and Gaetano Borriello, “A practical approach to

recognizing physical activities,” pp. 1–16, 2006.

[59] Jhun-Ying Yang, Jeen-ShingWang, and Yen-Ping Chen, “Using acceleration measurements

for activity recognition: An effective learning algorithm for constructing neural classifiers,”

Pattern Recognition Letters, vol. 29, no. 16, pp. 2213 – 2220, 2008.

[60] Kern, Nicky, Bernt Schiele, and Albrecht Schmidt. "Multi-sensor activity context detection

for wearable computing." Ambient Intelligence. Springer Berlin Heidelberg, 2003. 220-232.

[61] Aminian, K., et al. "Physical activity monitoring based on accelerometry: validation and

comparison with video observation." Medical & biological engineering & computing 37.3

(1999): 304-308.

[62] Kenji Kira and Larry A. Rendell, “A practical approach to feature selection,” pp. 249–256,

1992.

[63] R. Battiti, “Using mutual information for selecting features in supervised neural net

learning,” Neural Networks, IEEE Transactions on, vol. 5, no. 4, pp. 537–550, jul 1994.

[64] S. Roberts and R. Everson, Independent component analysis: principles and practice,

Cambridge University Press, 2001.

[65] T. M. Cover and J. A. Thomas, Elements of information theory, Wiley Series in

Telecommunications and Signal Processing. Wiley-Interscience, 2006.

[66] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria of

maxdependency, max-relevance, and min-redundancy,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 27, no. 8, pp. 1226 –1238, aug. 2005.

186

[67] M. F. Huber, T. Bailey, H. Durrant-Whyte, and U. D. Hanebeck, “On entropy

approximation for gaussian mixture random vectors,” in Multisensor Fusion and

Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on,

aug. 2008, pp. 181 –188.

[68] S. Bertrand, T. Hamel, H. Piet-Lahanier, and R. Mahony, “Attitude tracking of rigid bodies

on the special orthogonal group with bounded partial state feedback,” in Joint 48th IEEE

Conference on Decision and Control and 28th Chinese Control Conference, pp. 2972–2977,

December 2009.

[69] S. P. Tseng, W.-L. Li, C.-Y. Sheng, J.-W. Hsu, and C.- S. Chen, “Motion and attitude

estimation using inertial measurements with complementary filter,” in Proceedings of 2011

8th Asian Control Conference (ASCC), pp. 863–868, May 2011.

[70] R. Mahony, T. Hamel, and J.-M. Pimlin, “Non-linear complementary filters on the special

orthogonal group,” IEEE Transactions on Automatic Control, vol. 53, pp. 1203–1217, May

2008.

[71] D. Roetenberg, Inertial and Magnetic Sensing of Human Motion. PhD thesis, Universiteit

Twente, 2006.

[72] C. Chien and G. J. Pottie, “A universal hybrid decision tree classifier design for human

activity classification,” in Engineering in Medicine and Biology Society (EMBC), 2012

Annual International Conference of the IEEE, August 2012.

[73] N. H. Chehade, A. Friedman, , C. Chien, and G. J. Pottie, “Estimation of accelerometer

orientation for activity recognition,” in Engineering in Medicine and Biology Society

(EMBC), 2012 Annual International Conference of the IEEE, August 2012.

187

[74] B. Fish, A. Khan, N. H. Chehade, C. Chien, and G. J. Pottie, “Feature selection based on

mutual information for human activity recognition,” in IEEE International Conference on

Acoustics, Speech, and Signal Processing, March 2012.

[75] Y. Wang, X. Xu, M. Batalin, and W. Kaiser, “Detection of upper limb activities using

multimode sensor fusion,” in Biomedical Circuits and Systems Conference (BioCAS), 2011

IEEE, November 2011.

[76] M. El-Gohary, L. Holmstrom, J. Huisinga, E. King, J. McNames, and F. Horak, “Upper

limb joint angle tracking with inertial sensors,” in 33rd Annual International Conference of

the IEEE EMBS, 2011.

[77] S. Suvorova,T. Vaithianathan, and T. Caelli, “Action trajectory reconstruction from inertial

sensor,” in The 11th International Conference on Information Science, Signal Processing

and their applications, July 2012.

[78] S. Sukkarieh, E. M. Nebot, and H. F. Durrant-Whyte, “A high integrity imu/gps navigation

loop for autonomous land vehicle applications,” IEEE Transactions on Robotics and

Automation, vol. 15, pp. 572–578, June 1999.

[79] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, “Circumventing dynamic modeling:

Evaluation of the error-state Kalman filter applied to mobile robot localization,” in

International Conference on Robotics and Automation, pp. 1656–1663, May 1999.

[80] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors using Allan

variance,” IEEE Transactions on Instrumentation and Measurement, vol. 57, pp. 140–149,

January 2008.

188

[81] C. Chien, J. Xia, O. Santana, Y. Wang, Greg J. Pottie, “Non-linear complementary filter

based upper limb motion tracking using wearable sensors” in IEEE International

Conference on Acoustics, Speech, and Signal Processing, May 2013.

[82] R. Mahony and T. Hamel, “Attitude estimation on SO(3) based on direct inertial

measurements,” in International Conference on Robotics and Automation, ICRA2006,

2006.

[83] R. Mahony, T. Hamel, and J.-M. Pimlin, “Complementary filter design on the special

orthogonal group SO(3),” in 44th IEEE Conference on Decision and Control, and the

European Control Conference 2005, pp. 1477–1484, December 2005.

[84] Pratt, Vaughan. "Direct least-squares fitting of algebraic surfaces." ACM SIGGRAPH

Computer Graphics. Vol. 21. No. 4. ACM, 1987.

[85] Sparkfun Electronics, “9 degrees of freedom - razor imu.”

[86] Vicon 8 motion capture system, http://www.vicon.com/System/Cara

!

!

!

