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ABSTRACT OF THE DISSERTATION 

Inference of Human Motion using Low-cost Sensors 

By 

Chieh Chien 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2013 

Professor Gregory J. Pottie, Chair 

 

A wireless health system that collects and processes data of human activities can help both users 

and medical professionals to monitor health status remotely. Therefore it saves tremendous 

medical resources and costs compared to traditional treatment in which a huge amount of human 

effort is involved. We present two systems that can correctly classify human daily life activities 

with little training, and another system to reconstruct human motion trajectories from 

commercial low cost MEMS inertial measurement units (IMUs) and the Microsoft® Kinect.  

A system that reliably classifies daily life activities can contribute to more effective and 

economical treatments for patients with chronic conditions or undergoing rehabilitative therapy. 

We propose a universal hybrid decision tree classifier for this purpose. The tree classifier can 

flexibly implement different decision rules at its internal nodes, and can be adapted from a 
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population-based model when supplemented by training data for individuals. Compared to other 

methods, the experimental results showed a high accuracy of classifying human daily live 

activities. 

After we have an accurate classification of human activities, we present a system to 

further reconstruct motion trajectories using IMUs and the Kinect. The system fuses different 

motion reconstruction models to give a better tracking result, in which each model is weighted 

and transformed to a universal basis. This model is also expandable to accommodate different 

resources and environments. Experimental results showed a great improvement over past 

methods only using a single motion reconstruction scheme. 
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Chapter 1  

INTRODUCTION AND PRELIMINARIES 

1.1 Introduction"

Classifying human activities is important for many medical applications. Consider a patient 

whose arm is injured and who is in the rehabilitation process. The patient will preferentially use 

the healthy arm since it is more convenient, while doctors will prescribe exercising the injured 

arm and using it in ordinary daily activities. Traditionally this was done in medical clinics where 

health care professionals can supervise patients’ rehabilitation progress. However, with a system 

of activity classification and monitoring, professionals can monitor this progress when patients 

stay at home. This saves considerable medical resources since rehabilitation often takes a very 

long time.  

Gathering statistics on people’s daily activities through automatic monitoring systems 

also has application to wellness. According to the World Health Organization (WHO), at least 

60% of the global population fails to achieve the minimum recommendation of 30 minutes of 

moderate intensity physical activity daily[6]. A habit of daily activity strongly protects against 

many chronic diseases. Yet it has heretofore been difficult to cheaply and reliably record such 

activities, and provide useful feedback to both individuals and health care providers. Therefore, 

increased research effort is going into the creation of systems that record human motions with 

feasible cost (manufacture cost, power, storage and communication resources), classify activities 

with good accuracy, and then analyze these activities with respect to different rules that lead to a 

better life [1][2][3][4]. 
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 Other than activity classification, it is also important that we can track human motions in 

3D space at any time. This helps us observe and monitor the human motions at a more detailed 

scale. For instance, for patients with Parkinson’s disease, we can monitor patients’ sickness by 

recording the resting tremors continuously with a motion reconstruction system; for injured 

patients who are in their rehabilitation states, we can know how well they perform day by day if 

there exists a system telling us how high they can lift their arms, or the lengths of their steps. 

Other applications of the motion reconstruction system include gait analysis, remote health 

monitoring, health care analysis, etc.  

 For motion tracking using low-cost commercial micro-electromechanical systems 

(MEMS) such as accelerometers, gyros and magnetometers, we usually failed to acquire accurate 

results due to various kinds of imperfections due to the nature of MEMS sensors. These 

imperfections include bias and noise from sensor measurements, misalignment between 

coordinates of the sensors, magnetic field interference caused by environments [5], etc. 

Therefore, when one tries to reconstruct trajectories using numerical integration, integration error 

from the noise will accumulate. What is worse, the miscalculation of object orientation when 

estimating trajectories has a large effect since one has to know the orientation of the object in 

order to cancel the gravity to integrate the acceleration. 

 The rest of the thesis is organized as follows. In this chapter, we will give some 

preliminary knowledge that is necessary for the thesis. We provide our system for activity 

classification in Chapter 2. Chapter 3 will discuss the coordinate fusion used for human motion 

tracking and reconstruction. In Chapter 4 we present our conclusions and suggestions for future 

research. 
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This chapter introduces some basic knowledge regarding to activity classification and 

motion tracking, and also the devices used in this research. For activity classification, we will 

introduce some machine learning techniques that are generally used, including the tree classifier 

(1.2.1), naïve Bayes classifier (1.2.2), and support vector machine (1.2.3). For motion tracking, 

we will introduce how to use complementary filters to find the orientation of an object given we 

have MEMS measurements (1.3), and how we decompose human motions using biomechanical 

models (1.3.2). Finally, we introduce the devices used in this research, including MEMS inertial 

sensors (1.4.1) and the Microsoft® Kinect (1.4.2). 

1.2 Activity"Classification"

In this section, we introduce several classical machine learning methods and techniques that 

classify activities. They are well defined and found useful when it comes to activity classification 

[6][7][8][10][10][11][12][13][14][15][16][17][18][19][20]. However, each of these methods has 

drawbacks for our purpose of classifying activities, when the set of activities to be classified 

should be expandable easily with a small amount of training data. 

A classifier is a function that maps the calculated feature vectors into classes. Suppose we 

have collected a set of data consisting of n observations, each observation has  features, and 

there is one label out of  classes associated with it. The classifier  can be thought of as a 

mapping function that maps the training data to the classification or partition 

   (1.1) 

where   is the classification of the   set of data,   is the  set of training data of n 

points of the form 
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  ŷi  i
th

 TD
i  i

th



 

 4 

   (1.2) 

where   is the feature vector, and the   are the labeled classes associated with the features. 

1.2.1 Decision Tree Classifier 

A decision tree classifier is a supervised machine learning technique, which breaks down the 

multiclass classification into simpler subsets. Because of its nature of divide and conquer of the 

decision-making procedure, the decision tree classifier avoids the curse of dimensionality in 

multivariate analysis [6][7]. The curse of dimensionality says when doing multiclass 

classification, as the number of classes increases, one usually has to select more features and 

makes decisions in a high-dimensional feature space. Therefore, in order to collect enough 

training data that is representative of the nature of each class, the amount of labeled ground 

truths grows enormously as the dimension of feature space increases, or the predictive power 

reduces as the dimensionality increases [8]. The decision tree classifier uses a conditional 

independence assumption to avoid this issue by performing many classifications targeting 

smaller classes instead of a single stage with a huge number of states. Thus each decision is done 

in a feature space with lower dimensionality. 

Generally, a tree classifier  with  internal nodes can be depicted as shown in Figure 

1.1. An internal node of a tree is a node that is not a leaf node. This tree classifier can be thought 

as a set of  single-stage classifiers, each with its subset of classes, features and the decision 

rules used for the node. Therefore the tree classifier can be written as 

   (1.3) 
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Figure 1.1 Decision tree classifier 

where 

   (1.4) 

is the subset of classes of node t, indicating how to group classes in that node; and 

   (1.5) 

is the subset of classes of node t, indicating how to group classes in that node; and 

   (1.6) 

is the feature set used for node  ; and 

   (1.7) 
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is the decision rule of node  . 

 Forming a tree classifier consists of deciding upon ,  and  for each 

internal node based on prior knowledge and observation of the training data. 

  According to [10], the optimal decision tree design  can be represented as the 

following optimization problem 

   (1.8) 

where   is the overall probability of error associated with specific set of tree 

structure, features and decision rules selected. That is to say, we are looking for a combination of 

C, F and D that minimize the probability of error. Then following [11], the optimization problem 

can be broken down into two steps 

   (1.9) 

   (1.10) 

In most designs of decision tree classifiers [12][13], the selected decision rules  

associated with the optimized tree  are fixed and the same for every node of the tree classifier. 

Commonly used rules are Gini index, twoing rule or maximum deviance reduction; some 

researchers also use naïve Bayes classifiers to separate classes in each node. However, in our 

research, in which we try to classify various activities with different characteristics, only using a 
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single decision rule in making the decision tree classifier is limited. Therefore, a more flexible 

design is needed. 

1.2.2 Naïve Bayes Classifier 

Naïve Bayes classifiers [14][15][16] are yet another probabilistic classifier based on Bayes’ 

theorem, with the assumption of conditional independence with respect to the input features in 

each class, and Gaussian kernels. Although these assumptions seem unrealistic, naïve Bayes 

classifiers very often work well in real-world situations, provided the features are carefully 

chosen. One major advantage of their use is that only a small amount of training data is needed 

to build class parameters. Another advantage is that only the variances of features belonging to 

each class are needed, obviating the time and resources required for computing the whole 

covariance matrix, which makes the classification procedure fast and efficient. Additionally, the 

advantage of using a probability-distribution-based classifier is that sometimes an instance may 

not be classified as one of the labeled classes, known as a reject option. This is important in some 

medical decision-making. In that case, there is not enough confidence in believing the answer, 

and so human effort is flagged for examining the data in more detail. This could of course be a 

deficiency in other applications. 

The naïve Bayes classifier is a probabilistic classifier, which estimates the probability of 

each class  given the set of available feature vector , which we call the posterior probability

 in this section. The classifier then selects the final class  such that the posterior 

probability is maximized.  

   (1.11) 
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Generally, the posterior probability is not easily acquired. Therefore, the classifier 

incorporates Bayes’ theorem  

   (1.12) 

In this formula,  is called the likelihood, or the conditional probability of the feature 

vector  given class  happened. The distribution of this conditional probability is estimated in 

the training phase.   is called the prior probability, which states our prior knowledge before 

estimating the model.  is the evidence, or the normalization factor which makes the total 

summation of probabilities equal to 1.  

The naïve Bayes classifier further assumes that the distribution of each feature value 

given the class is independent to simplify the computation (which states there is no correlation 

between feature values). Given this assumption, we calculate the likelihood as follows: 

   (1.13) 

Therefore, by calculating the distribution of each feature value given the class  during 

the training phase we can estimate the probability of each class given the feature values acquired 

during testing. 

 The Naïve Bayes classifier, which proved useful in many fields including activity 

classification, has some drawbacks thus making it insufficient to our study. First, when building 
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the statistics of features of some activities that are prone to noise, the noise might disturb the data 

so badly that the calculated statistics are not representative of the distributions of those activities. 

Therefore the trained distribution, and the naïve Bayes classifier models, cannot be used to 

classify activities in testing phase. Second, when one tries to classify more than 2 classes, the 

curse of dimensionality makes one to collect more ground truth in training phase, thus making 

the model not easily expandable. 

1.2.3 Support Vector Machine 

The support vector machine (SVM) [17][18][19] is a non-probabilistic classifier. It is a 

supervised learning algorithm for classification that observes data and labels, and then 

recognizes patterns. Given a set of feature vectors mapped into the feature space, an SVM tries to 

find the largest gap that can separate the classes. Given we have  different features, SVM 

forms a hyperplane of dimension  that divides categories given feature vectors of  

elements lying in a  -dimensional space. Figure 1.2 shows an example of using SVM to 

classify 2 classes using 2 features. As shown in the figure, SVM tries to find a gap that 

maximizes the distance between support vectors (marked in circles).  

The benefit of using an SVM to classify activities, especially of using it in internal nodes 

of tree classifiers, is that it draws a decision boundary for activities that are not easily 

characterized by probabilistic models. In internal nodes of a decision tree classifier that contains 

more than one activity, using a single-peak Gaussian model may not be a good characterization 

of the multiple activities represented. SVM, on the other hand, does not care about interior 

feature points and only boundary points matter. This leads to another benefit of using an SVM,  

 p

p −1 p

p
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Figure 1.2. Support vector machine on 2 classes 

which is when trying to classify some activities whose features are easily affected by noise. For 

some features of passive activities, such as energy of standing and sitting, values of such features 

are very low and easily affected by any external noise or unexpected movements. Therefore, the 

means and standard deviations may not be very representative. In this study, we used the 

Gaussian radial basis as the kernel function, with scaling factor . SVMs were mainly used to s = 1
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classify stationary activities, such as standing, lying, and sitting, since the training data are 

concentrated, and few outliers occur, which is suitable for the use of SVM. 

The main drawback of using SVM in our applications is the established theories and 

methods are mainly targeted on classifying 2 classes, while in our research there may be more 

than 2 classes to be dealt with. Also, as for the Naïve Bayes classifier, the curse of 

dimensionality forces one to collect more ground truth to be able to make decisions in a higher 

dimensional space when more activities must be separated.  

1.3 Motion"Reconstruction"

In this section, we introduce two major components that are used in motion reconstruction, 

which are the use of complementary filtering and human biomechanical models for motion 

decomposition.  

1.3.1 Complementary Filter 

A complementary filter is often used in motion reconstruction and tracking, due to its simple 

structure and fast computation, which is more suitable for real-time applications [20][21]. It is 

often used in flight navigation or robotics to estimate the orientation of the sensor. It fuses 

multiple estimation measurements that have noise of complementary spectral characteristics [22]. 

For instance, in estimating the vertical velocity using accelerometers and a barometric sensor, 

one would suffer from long-term drift when integrating the acceleration, and instantaneous noise 

when using barometric sensor to estimate velocities. The complementary filter applies a low-pass 

filter to the integrated signal of acceleration, and a low-pass filter to velocity estimated by 

barometric sensors, then sums up the filtered signals to have a better estimate of velocity.  
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Figure 1.3 Complementary filter example 

More formally, as shown in Figure 1.3, suppose that we have two methods to estimate , 

   (1.14) 

where  contains mostly low-frequency noise and  mostly high-frequency noise. The 

complementary filter then applies a low-pass filter  to , and another complementary 

high-pass filter  to . The resulting signal can then be written as  

   (1.15) 
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The signal  is then all pass filtered, while noises  and  are high and low pass filtered 

respectively.  

In real-time motion tracking applications using inertial measurement units (IMU) such as 

accelerometers, gyros and magnetometers, we can estimate the orientation of the sensor either 

using accelerometers and magnetometers, or integrating the gyros. However, both methods have 

drawbacks. In the accelerometer and magnetometer method, one suffer from measurement noise 

of MEMS sensors; in the gyro method, the integration of angular velocity causes serious drift as 

time goes by. The complementary filter then filters the orientation estimation using 

accelerometers and magnetometers with a high-pass filter, and the orientation estimation using 

gyro with a complementary low-pass filter, hoping both filters can help to remove the 

corresponding noises. The remaining issue becomes how the filters should be designed and how 

the result can be verified, as can be seen in the following chapters. 

1.3.2 Motion Decomposition 

In this research, we use the biomechanical models for the human limbs to represent human 

motions. Based on [23], we model human joints by using the hierarchy as shown in Figure 1.4. 

This hierarchy has the root at hip center, and extends to the feet, hands and head. In this model, 

parent joints are those closer to the center of the body, while child joints are those connecting to 

their parents and away from the center. The bones are defined by surrounding parent and child 

joints, their own orientations, and their lengths. Motions are then just a set of rotations within 

this hierarchy. 

 

 

 x   n1   n2
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Figure 1.4 Joint hierarchy 

1.4 Devices"Used"in"this"Research"

1.4.1 Micro-electromechanical Systems (MEMS) 

Micro-electromechanical systems refer to the technology of making mechanical devices very 

small, for which the size of such devices traditionally relying on classical physics are large. 

Because of the advance of semiconductor technologies, their sizes generally range from 20 to 
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1000 micrometers, with structures usually consisting of a microprocessor together with various 

microsensors [24][25]. There are many applications benefiting from MEMS technology, such as 

accelerometers in gaming devices, cars and cellphones, or gyroscope in modern aircraft and cars, 

microphones in cellphones, etc.  

In this research, we mainly use three kinds of MEMS devices: accelerometers, gyros, and 

magnetometers. MEMS accelerometers, which sense the external force (including the gravity 

and force applied to the sensor), usually consist of a mass and a cantilever beam. When the mass 

deviates from its natural position, the capacitance between the beam and the mass is measured 

and converted digitally, which relates the measured capacitance to the force applied to the mass. 

Other kinds of accelerometers include piezoelectric material in the spring, and convert the 

mechanical deformation of the spring into voltages. The MEMS gyro uses a piezoelectric 

material to produce a constant oscillation to pick up the Coriolis effect when rotation occurs. The 

torque induced by rotation is then transformed into electric signals and the angular velocity can 

be measured. The magnetometer is a magnetic field sensor that senses magnetic fields from the 

Earth and other sources. It relies on the Hall effect to sense the magnetic field: when a magnetic 

field is present, the current exposed to this field gets deflected and thus the magnetic field force 

can be calculated. 

This research utilizes sensor fusion to combine signals from these sensors. Sensor fusion 

is a way to combine data from multiple types of sensors to produce a more reliable result than 

using the sensor sources separately and individually [26][27]. There are many applications. For 

example, indoor navigation combines Wi-Fi signals with accelerometer measurements to help 

positioning when indoors [28], while GPS/INS uses GPS signals to help calibrating 

measurements from inertial navigation systems (INS) [29]. In this research, we try to combine 
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signals from accelerometers, gyros and magnetometers to provide a better estimate of object 

orientation. To combine sensor signals from diverse sources, generally one has to rely on some 

algorithms for more accurate results and less noise. Common techniques used for estimating the 

orientation include Kalman filters and complementary filters. 

1.4.2 Kinect and Software Development Kit (SDK) 

The Kinect was released by Microsoft Corporation in November 2010. It consists of an RGB 

camera with 1280x960 resolution, an infrared (IR) camera that captures depth with 640x480 

resolution, a multi-array microphone, and a triaxial accelerometer of range 2g. The Kinect is a 

motion sensing devices that can capture human motion by recognizing various joint positions in 

the space relative to it. In June 2011, Microsoft further released the Kinect SDK [23][30], which 

assists developers tracking human joint and skeleton positions in real-time, building 3D models 

for objects using Kinect Fusion, recognizing speech with its API, performing face tracking, etc. 

With this SDK, other than its original gaming purposes, people started using the Kinect for many 

other purposes [31][32][33][34][35]. In this research, we use the joint and skeleton tracking SDK 

to help us locate the positions of human body parts, and therefore we can track the trajectories.  

Although the Kinect SDK provides an easy and powerful way to track the trajectories in 

real-time, there are a few drawbacks in using it. First, it is pose and gesture significant. Since it 

was originally designed for players facing the television to play with it, one has to face the 

Kinect before it can recognize human joints. The Kinect’s tracking ability is seriously degraded 

when not facing the sensor. Second, the Kinect is color and background sensitive. For the best 

recognition, there should be a solid background, and it should be clean with less colors, which 

suggests that Kinect has limitations in real-life environments of various backgrounds. Third, the 

Kinect requires a power outlet to operate, and this means that it is not suitable for outdoor 
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recognition. Finally, the joint and skeleton tracking result using Kinect SDK is not accurate and 

fast enough for our application. The refreshing frame rate is not high enough (at a maximum of 

29 frames per second), nor does its accuracy meet our need. Therefore, given the circumstances 

that Kinect might not always be available, and with an inaccurate tracking result, some signal 

processing algorithms and techniques are necessary to meet our goal. 
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Chapter 2 "

A"UNIVERSAL"HYBRID"DECISION"TREE"CLASSIFIER DESIGN FOR 

HUMAN ACTIVITY CLASSIFICATION AND ITS APPLICATIONS 

2.1 Introduction"

In this chapter we discuss the development of a tree classifier for human motions. Previous 

systems [1][2] have classified daily activities using naïve Bayes classifiers with accuracy ranging 

from 30% to 90%. However, these systems classified only 5 groups of activities based on their 

intensity levels. In people’s daily lives, they may walk slowly or fast, they may rush for buses, or 

they may just sit on the couch with different gestures. As the number of activities of interest 

grow, to classify them with a single-stage classifier that separates all activities at the same time 

becomes difficult at many levels, not least in the large volume of training data required. 

Additionally, as researchers in different fields may care about different levels of details of 

activities, the number of classes would grow even more. A decision tree is a better tool in these 

situations. Decision tree classifiers [3][4][36][37][10] handle complex decision regions by 

partitioning them into sets of simpler low dimensional regions. This “divide and conquer” nature 

also helps to avoid the curse of dimensionality compared to single-stage classifiers. In 

multivariate analysis, where one usually needs to estimate a large number of classes from many 

features with only a small training data set, one is forced to go to high-dimension if using single-

stage classifiers. However, a decision tree classifier helps to ease this problem by selecting only 

a few features at each internal node; if these features are carefully selected, there can be little 
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performance degradation. Other advantages of tree-structured approaches include robustness to 

outliers in training data, flexibility and extensibility of target classes, and invariance under 

monotone transformations. 

 However, to classify daily-life activities, traditional decision tree methodologies are not 

enough. For example [6] has classified 7 real-life activities with a custom tree classifier using a 

comprehensive system containing various kinds of sensors including accelerometers, 

electrocardiogram (EKG), global positioning system (GPS), etc. The system collected complete 

information of activities and achieved overall 82% accuracy on classifying 7 activities. Another 

study [4] classified 20 activities with decision tree classifiers, with data collected by 

accelerometers on hip, wrist, ankle, arm and thigh. It verified the testing data with various 

classifiers and had the highest accuracy of 84% using the C4.5 tree classifier. In these papers, 

there are some activities that can be easily determined, especially classes related to motion 

activities. However, classifiers were confused by activities without simple characteristics, or 

those that share some common features with other activities. Therefore, there exists a need for a 

tree classifier with more flexibility, which selects its separation criteria and thresholds of internal 

nodes individually, and thereby applies different rules in drawing the decision boundaries, so as 

to separate these confusing activities easily.  

 Another important issue is the generalizability of a model. In a clinical trial, due to very 

high logistical costs, one can only control a small group of people to have good training data 

(i.e., with reliable ground truth); for the rest of the people, one might end up with something 

incomplete or with a small amount of training time. However, large classifier accuracy gains 

result when models are adapted to individuals. Thus, to make the model generalizable, we need a 

decision tree that fits the general public or significant subpopulation categories, whereby the 
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structure and features of internal nodes are determined, and one only tunes the thresholds of each 

node based on shorter training sequences from individuals. In [3] similar work was done, in that 

they classified 7 activities with a custom fixed tree. However, it did not point out the importance 

of using a fixed structure, and neither did it have high enough accuracy for medical use (82%).  

 In this chapter, our goal is to create a fixed structured tree capable of classifying daily life 

activities daily with satisfactory accuracy. We took an empirical approach by collecting a large 

amount of data. We report a complete procedure for daily life activity classification, from data 

collection, feature extraction, tree structure and feature selection, to testing. The resulting 

classifier is generalizable and has high accuracy. Using leave-one-out cross validation, it 

produced average classification accuracy of 91.5%. In contrast, the MATLAB personalized tree 

classifiers using Gini’s diversity index as the split criterion followed by optimally tuning the 

thresholds for each subject yielded 69.2%. 

 The remainder of the chapter is organized as follows. We provide the system setup, 

including data collection and tree formation in Section 2.2. In Section 2.3, we introduce two 

classifiers that are used in this chapter, and describe how to form a hybrid tree classifier. In 

section 2.4, we move from hybrid tree classifiers to the proposed universal hybrid tree classifier. 

Simulations and results are given in Section 2.5, followed by result in Section 2.6, and a short 

discussion of the universal tree in 2.7. We discuss three related issues associated with the 

universal hybrid tree classifier in the next three sections: monitoring workspace activities in 

section 2.8; estimation of accelerometer orientation in section 2.9; and the feature selection 

problem in section 2.10. Conclusions are drawn in Section 2.11.   
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Figure 2.1. Locations for 14 sensors 

2.2 System"

We now explain how the whole system works, from data collection to activity classification. 

2.2.1 Data Collection 

We used the Gulf Coast Data Concept USB Accelerometer X6-2mini with a built-in tri-axial 

accelerometer [38] to collect the data. It is a small device, which can be easily worn on any part 

of the body. The accelerometers collect data at the sample rate 160 Hz, resolution 16 bits, and 

gain ±6g. We put accelerometers on 14 parts of the body, as described in Figure 2.1 and Table 

2.1. In this research, we over-instrumented the test subjects in order to get a complete data set. 

However, we found that only few sensors are needed and crucial for activity classification for 

particular activities, as will be described later. In the training and testing processes, each  
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Table 2.1. Sensor placements 

Upper limb and head Lower limb 

Forehead Left and right pockets 

Chest Left and right knees 

Right and left elbows Left and right ankles 

Right and left wrists Left and right toes 

  

Table 2.2. Collected activities 

Motion Stationary 

Walk slowly Stand 

Walk fast Sit upright 

Run Sit while slouching 

Walk up slope Sit while hunching 

Walk down slope Lie on back 

Walk upstairs Lie on stomach 

Walk downstairs Lie on side 

sensor collected x, y, and z directions of acceleration, thus producing in total 42 channels of data. 

Seven people took part in data collection, with 2 hours of measurement for each person. The 

subjects were asked to perform the series of activities listed in Table 2.2, as being representative 

of some activities from daily living. 

 In order to build the ground truth, when the test subject was doing assigned activities, an 

annotator followed him/her to label the activities. The annotator used an Android phone to mark 

changes in contexts for reference purposes. In this program, users can edit the list of activities 

and their order to fulfill their needs for experiments. During the experiment, start and end 

markers were manually added. The annotation program was a considerable advance over 

previous pen and paper methods, particularly in providing consistent time stamps. Since there 

was no communication mechanism between accelerometers, or between accelerometers and the 

Android phone, before starting any measurement we simply tied all the sensors together and 

shook them sharply, while at the same time pressing the synchronize button of the annotation 
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program. This simple action gave distinct signatures in all the signals, and thus provided the 

reference for signal synchronization. 

2.2.2 Signal Processing Toolbox 

After measurements, a comprehensive custom MATLAB toolbox was employed, that enabled 

data merging and synchronization, activity labeling, feature extraction, hybrid tree classifier 

formation, feature selection, and finally activity classification. The program includes a graphical 

user interface (GUI), with which users can easily click and load files, input parameters, and 

visualize data spreading and decision boundaries for classes. First, acceleration data was loaded 

and merged to a MATLAB variable. Then the merged data and its annotation were synchronized 

based on signatures made at the beginnings of the measurement sessions, tagging the data with 

the ground truth. 

2.2.3 Feature Extraction 

After synchronizing the data and the ground truth annotations, we converted the measured 

acceleration into various features. Feature extraction was done by using a moving window and 

extracting different features. The moving window was of length four seconds and of step size 

one second. The window size of four seconds ensured that we captured more than a complete 

cycle for every activity, therefore having similar features for each class. The step size of a second 

makes the activity classification in the resolution of one prediction per second; this is enough for 

the purpose of daily activity classification, where changes between activities are not rapid.  

 In each window, thirty-one features for each accelerometer were calculated. These thirty-

one features can be clustered into three categories, which are the spatial, time, and frequency 

domains. Some instances for each category and their uses follow.  
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2.2.3.1 Spatial Domain 

“Correlations” between x, y, and z directions were calculated. These features showed how the 

posture changes during some classes, or emphasized the transition during activities. 

2.2.3.2  Time Domain 

“Standard deviation” and “short-term energy (total energy of the windowed signal)” of a window 

were calculated. These features had strong correlations to how intense the movements were, 

which were suitable in distinguishing motion and stationary activities. The feature “maximum 

values” of a frame for each direction indicated the range of different motions. 

2.2.3.3  Frequency Domain 

The features “sidelobe location” and “DC value to sidelobe location ratio” indicated what was 

the dominant frequency of each activity. These features were helpful in distinguishing among 

periodic activities with different periods, such as run, walk fast, and walk slowly. The feature “f-

ratio” which was the ratio of the energy of frequency band above a certain threshold to the total 

energy of the whole signal in the frame, indicates whether the energy was concentrated on 

certain frequency bands or spread through the entire frequency spectrum. 

2.2.4 Tree Formation 

The hybrid decision tree classifier was built using the structure toolbox, which is a sub-toolbox 

of the entire system as shown in Figure 2.2. The decision tree was built manually based on the 

knowledge of various domains of the signal. In the manner of Figure 2.2, we first grouped 

motion activities to the upper node, and stationary ones to the lower node, selected “horizontal f-

ratio” and “maximum value of feature vector length” of the left knee sensor as the separating 

features, and then applied the naïve Bayes classifier for the root node as the separating classifier.  
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Figure 2.2 Structure toolbox for building a decision tree 

These two groups of activities were distinct and clearly separated in the space composed by these 

two features. Continuing in this fashion, we ended up with several complete hybrid decision tree 

classifiers. We then used a feature selection tool to visualize the feature vectors in their spaces to 

further determine the separating classifiers and features of each internal node, which will be 

described next. 

2.2.5 Feature Selection 

Once the tree structure was formed, we used the feature selection toolbox to help us determine 

feature sets and the type of single-stage classifiers that were good in separating classes. This 

toolbox, which was another sub-tool of the complete toolbox, was able to test trained features of 

a specified node of the tree against itself (resubstitution error), or with k-fold cross-validation. 

This toolbox also tested any combination of features on various types of classifiers 

automatically. Therefore it speeded up the feature selection process and covered some set of 

features that were not easily imagined by only observing the signals. Furthermore, it enables 

visualization of the feature vectors of activities in their feature spaces, and draws the decision  
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Figure 2.3 Feature selection tool 

boundary; therefore one can see and select the feature set for a node that was most robust to 

outliers. Figure 2.3 shows how the feature selection toolbox operates. In this toolbox, we could 

test all kinds of feature combinations for all nodes of the tree, and the decision boundary (based 

on naïve Bayes or SVM) was drawn. By observing the spread of feature points, one can even 

calculate a metric to rank the feature combination to have the best feature set separating classes 

of each node. Given the fast search time and simple feature vector visualization, we could easily 

verify if each node of the hybrid decision tree classifier had good classification performance.  
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2.2.6 Testing / Classification 

 Once the decision tree, including its separating features, was formed, we tested it using the 

testing toolbox. This tool loaded the testing set label and the tree classifier, and classified 

activities in a real-time fashion.  

2.3 Hybrid"Tree"Formation"

From chapter 1, we know that in designing a decision tree classifier , where 

  , (2.1) 

 the procedure can be viewed as an optimization problem in two steps: 

  (2.2) 

   (2.3) 

where  are defined earlier. As mentioned in chapter 1, in most designs a single decision 

rule is used to find the final tree classifier. However, in this research we tried a more flexible 

design, which can adapt to the varying natures of the activity classes, and thus make the model 

expandable. This is achieved by introducing a new type of tree classifier called a hybrid tree 

classifier, which allows different types of decision rules available when designing the tree 

classifier. We do so by manually determining the decision tree structure, and found feature sets 

and decision rules for each internal node. Therefore, in the tree design procedure, we fix the set 

 T
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of classes  for all nodes and try to find the optimal feature set F* and decision rules D* that 

minimize the total probability of error. Thus, we have 

  (2.4) 

 Among many possibilities, we used two kinds of classifiers for the decision rules for 

internal nodes, namely, the naïve Bayes classifier and support vector machine (SVM).  

2.4 Universal"Hybrid"Decision"Trees"

After creating a hybrid tree classifier for classifying various activities, we then tried to find a tree 

that can classify multiple sets of testing data from many subjects. As mentioned previously, this 

is important since with this tree we can specialize this classifier to individuals with minimal 

additional training, therefore making the model more easily applied to the general public. 

Suppose we have in total M sets of training data defined by (2.1), each of them from a carefully 

monitored test subject, and let  be the training data for the subject j. Also, we have N 

manually structured trees, each with  internal nodes for . Then each tree  can 

be written as  

   (2.5) 

with  internal nodes. In every tree, the class subset for each node  is determined for 

every internal node. Let  be part of the training data  whose classes that are involved in 

node  of tree .  is the probability of error of node  when applying 

 C
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feature set  and decision rule  on training data . The procedure can be 

summarized by the following algorithm: 

Begin 

1. Given a set of possible decision trees, randomly pick a tree T with l internal nodes. 

2. For  to   

Find the optimal set  that minimizes the weighted probability of error 

  

where  is the weighting function for the subject , indicating the weighting of that 

type of people to the general public. 

3. If    

Terminate the for loop, go to step 1 and try the next tree , where  is the predefined 

error threshold 

End If 

End For 

4. Output the tree classifier  

  

End Begin 

 The above algorithm provides a means to find a compromise tree that accounts for the 

differences among people, while maintaining a satisfactory error rate. After creating this 

F t( ) D t( ) TDj ,t

t = 1 l

F∗ t( ),D∗ t( )( )

F∗ t( ),D∗ t( )( ) = arg min
F t( ),D t( )( )

wj ⋅Pe j ,t F t( ),D t( ),TDj ,t( )j=1

M∑

wj j
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 T
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universal hybrid decision tree classifier, when there is a test subject with only small amount of 

training, we can then apply the tree classifier, include the tree structure, its separating features 

and decision rules, to the test subject. The only thing that is changed is the decision threshold for 

each internal node. The threshold is determined specifically for each subject, while maintaining 

the decision tree structure.  

2.5 Simulation"

2.5.1 Methods 

Three different kinds of decision tree classifier mechanisms were used, namely the custom 

universal hybrid decision tree, automatically generated trees for each subject, and automated 

trees but with tuned thresholds for individuals. All of them were provided with full data and 

extracted features. The common structure and features of the custom decision tree were formed 

based on the algorithm described earlier, then for each person, we applied different thresholds for 

its internal nodes. The personalized automatically generated trees were used in this report to 

compare with our custom tree. For each test subject’s automated tree, we kept the structure and 

separating features but calculated thresholds for other subjects. This showed how well the 

personalized automated tree could perform when applied to different people. The classification 

results for these three classifiers were calculated using testing on the training set (resubstitution 

error), training on 40% of data and testing on the rest 60% (40%-60% partition error), and leave-

one-out cross-validation (LOOCV). 

2.5.2 Custom Universal Hybrid Decision Tree 

The custom decision tree (Figure 2.4) consisted of 27 nodes, where 13 were internal nodes with 

binary separation. We first used all data from 7 subjects to determine the tree structure and  
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Figure 2.4 Universal hybrid decision tree classifier 

features giving the highest accuracies. Afterward, for each subject, we determined individual 

thresholds for internal nodes of the tree. In this tree, we first separate motion activities (stairs up 

and down, walking fast and slow, walking up and down ramp, and running) from stationary 

activities (sitting upright, sitting slouch, sitting hunch, standing, lying back, side and stomach). 

In the upper part of the tree (motion activities), we used naïve Bayes classifiers on each branch, 

and assumed equal prior probabilities; in the lower part (stationary activities), we used SVMs 

with the Gaussian radial basis function kernel. For nodes using naïve Bayes classifiers, we 
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selected two features that gave the highest weighted accuracy in separating classes; for nodes 

with SVM classifiers, we only selected one feature due to computational concerns. The threshold 

values were determined specifically for each individual. After creating this universal tree 

classifier, we just changed the separation thresholds for each individual, and the structure of the 

tree remained unchanged during the simulation.  

Resubstitution error was calculated by finding the thresholds from the whole raining data, 

and then testing on the same data. 40%-60% error was estimated by finding the thresholds from 

40% of the data, and then testing on the remaining data. LOOCV was done by finding a 

universal hybrid tree structure using data from all people except one subject. Thresholds were 

then calculated using 40% of the data from the subject left out of the tree structure creation 

process, and then tested on the remaining 60% of the data. 

2.5.3 Automatically Generated Tree 

Automatically generated decision trees were created using the MATLAB built-in function 

“classregtree.” This function used Gini’s diversity index [12] as the separation criterion. The rule 

of thumb of this function is to find the largest class first, and then separate it from other classes. 

It should be noted that the automated trees were specific to the target training data. Therefore 

each subject has a unique automated decision tree. The acquired data varied from person to 

person, even from different parts when we chopped it. Thus, the size of the automatically 

generated tree was different; on average the tree had 19.9 internal nodes ranging from 16 to 26, 

and on average 20.9 leaf nodes with a range from 31 to 53. For the resubstitution error 

estimation, decision trees for each person were generated and tested against themselves. In 40%-

60% error estimation, specific trees were generated for each person on his/her 40% of data, and 
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tested on the remaining 60%. In LOOCV, we found the automated decision trees by using data of 

all except one subject, and then tested on the targeted subject.  

2.5.4 Automatically Generated Tree with Tuned Thresholds 

In order to compare to the universal tree structure, we kept the same structure of automatically 

generated trees from the previous section and tuned their threshold values according to testing 

data. In this test, we called MATLAB to generate the automated decision tree for subject A, then 

kept the tree structure and selected features but changed the separation thresholds of internal 

nodes of the tree using testing data of subject B, C, etc. The resubstitution error was estimated by 

keeping the structure from one person, then changing separation thresholds with other people’s 

data, and then tested against their own data. The 40%-60% error was acquired by keeping the 

tree structure but changing thresholds using 40% of data from one subject, then tested on the 

remaining 60% of data. In LOOCV, we found the decision trees using all but one subject’s data, 

then determined the thresholds using 40% of the last subject’s data, and then tested on the 

remaining 60%. 

2.6 Result"

Table 2.3 shows the classification error rates for universal hybrid trees, automatically generated 

trees and automatically generated trees with tuned thresholds. Table 2.4 to Table 2.6 (next page) 

show the classification results for three different classifiers, using LOOCV. The universal hybrid 

tree shows considerably better results than the others. 

 

 



 

34 

Table 2.3 Classification result summary (mean ± standard deviation) 

Classifier Resub. Error 40%-60% Error LOOCV 

Universal Hybrid Tree 93.5%±0.6% 92.5%±2.6% 91.5%±3.2% 

Auto Tree 97.7%±4.4% 92.5%±6.0% 73.0%±13.5% 

Auto Tree with Tuned 

Threshold 
54.4%±13.3% 47.7%±14.3% 69.2%±12.2% 

 

 

 

Table 2.4 Confusion matrix of universal hybrid decision trees, tested using LOOCV 

  a b c d e f g h i j k l m n  

a 1518 0 0 5 4 572 0 7 0 0 0 0 0 0 a = lie_back 

b 0 1808 0 0 0 292 11 0 0 0 0 0 0 0 b = lie_side 

c 0 0 1794 2 302 0 0 0 4 0 0 0 0 0 c = lie_stomach 

d 0 0 0 1980 0 0 0 0 1 0 0 0 0 0 d = run 

e 0 0 0 3 1774 0 303 0 18 0 0 0 0 0 e = sit_hunch 

f 0 0 0 3 0 1480 594 5 0 0 0 0 0 0 f = sit_slouch 

g 0 0 0 0 300 273 1510 7 7 0 0 0 4 1 g = sit_upright 

h 0 0 0 37 0 0 0 1202 22 0 198 16 300 26 h = stairs_down 

i 0 0 0 1 0 0 0 0 942 0 0 0 13 693 i = stairs_up 

j 0 0 0 0 0 0 0 0 0 2070 0 0 18 0 j = stand 

k 0 0 0 68 0 0 0 268 103 0 735 130 227 151 k = walk_down 

l 0 0 0 144 0 0 0 19 203 0 345 851 204 338 l = walk_fast 

m 0 0 0 45 0 0 0 0 5 0 7 283 1654 112 m = walk_slow 

n 0 0 0 5 0 0 0 2 298 0 0 19 316 1353 n = walk_up 
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Table 2.5 Confusion matrix of automatically generated tree, tested using LOOCV 

  a b c d e f g h i j k l m n  

a 1085 0 0 0 0 167 0 0 0 0 0 0 0 0 a = lie_back 

b 0 1128 128 0 0 0 0 0 0 0 0 0 0 0 b = lie_side 

c 184 0 1067 0 0 0 0 0 0 0 0 0 0 0 c = lie_stomach 

d 0 0 1 1164 0 0 0 0 0 0 5 0 0 0 d = run 

e 0 0 0 0 876 0 373 0 0 0 0 0 0 0 e = sit_hunch 

f 0 0 0 0 0 517 719 0 0 0 0 0 0 0 f = sit_slouch 

g 0 0 0 0 309 168 774 0 0 0 0 0 0 0 g = sit_upright 

h 0 0 0 0 0 0 0 512 29 0 347 21 10 60 h = stairs_down 

i 0 0 0 3 0 0 0 3 552 0 35 4 12 279 i = stairs_up 

j 0 0 0 0 0 0 0 0 0 1242 0 0 0 0 j = stand 

k 0 0 0 0 0 0 0 165 54 0 480 84 80 82 k = walk_down 

l 0 0 0 0 0 0 0 183 78 0 439 410 117 24 l = walk_fast 

m 0 0 0 0 0 0 0 5 9 9 44 6 665 517 m = walk_slow 

n 0 0 0 0 0 0 0 16 143 0 79 14 31 850 n = walk_up 

                

Table 2.6 Confusion matrix of automatically generated trees, tested using LOOCV 

  a b c d e f g h i j k l m n  

a 1085 0 0 0 0 167 0 0 0 0 0 0 0 0 a = lie_back 

b 0 1128 128 0 0 0 0 0 0 0 0 0 0 0 b = lie_side 

c 184 0 1067 0 0 0 0 0 0 0 0 0 0 0 c = lie_stomach 

d 0 0 1 1164 0 0 0 0 0 0 5 0 0 0 d = run 

e 0 0 0 0 876 0 373 0 0 0 0 0 0 0 e = sit_hunch 

f 0 0 0 0 0 517 719 0 0 0 0 0 0 0 f = sit_slouch 

g 0 0 0 0 309 168 774 0 0 0 0 0 0 0 g = sit_upright 

h 0 0 0 0 0 0 0 512 29 0 347 21 10 60 h = stairs_down 

i 0 0 0 3 0 0 0 3 552 0 35 4 12 279 i = stairs_up 

j 0 0 0 0 0 0 0 0 0 1242 0 0 0 0 j = stand 

k 0 0 0 0 0 0 0 165 54 0 480 84 80 82 k = walk_down 

l 0 0 0 0 0 0 0 183 78 0 439 410 117 24 l = walk_fast 

m 0 0 0 0 0 0 0 5 9 9 44 6 665 517 m = walk_slow 

n 0 0 0 0 0 0 0 16 143 0 79 14 31 850 n = walk_up 
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2.7 Discussion"

2.7.1 Universal Hybrid Tree Structure 

From the structure and chosen features of internal nodes (Figure 2.4), we first used naïve Bayes 

classifiers to distinguish motion and stationary activities using energy as the separating feature, 

based on physical intuition. We separated motion activities using naïve Bayes classifiers by 

grouping similar activities at different nodes of the tree. By similar we mean that there existed a 

common Gaussian model describing all activities contained in every node. For example, we 

separated running from walking and stairs using energy (standard deviation) and frequency 

(sidelobe location) since we believed that walking and stairs feature values are similar in this 

space, and were distinct from feature values for running. However, there were some difficulties 

in distinguishing different walking types and stairs, and this will be discussed quantitatively in 

section 2.10.3. In distinguishing stationary motions, we used SVMs for the separation rules. 

SVMs are good in classifying activities, especially when the values are not easily described 

using parameterized models. When we grouped several stationary activities, in the feature space 

these activities were centered at their own regions, which made it improper to characterize each 

node using single-peak Gaussian models. On the other hand, SVMs drew clear boundaries 

between stationary activities, especially in the early stages of the tree, when different stationary 

activities were grouped together. Thus, SVMs outperformed naïve Bayes classifiers at the early 

stages of the tree, and had similar classification accuracy near the leaf nodes. 

2.7.2  Automatically Generated Trees 

When comparing automatically generated trees versus universal hybrid decision trees, we found 

out that auto-generated trees were too specific to the training data to classify other subject’s data. 
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As seen in the second row of Table 2.3, auto-generated trees are very accurate when trained and 

tested on the same set of data (97.7%). However, this accuracy dropped when we separated the 

data into two (92.5%) since they were too fine-tuned and overfit the training data. For LOOCV, 

classification accuracy dropped dramatically and displayed a large variance (73.0% ± 13.5%), 

indicating that the automatically generated trees were not easily generalized even we have a large 

amount of training data. Additionally, the average number of internal nodes of the LOOCV trees 

was 136.7 and 274.4 for total average number of nodes. All of the above clearly indicates that the 

personalized trees depend largely on the training subject, even the timing when the data is 

generated, thus making it hard to generalize the model to the general public. 

 We further illustrated this overfitting phenomenon of auto-generated trees by keeping the 

structures and features of the tree and tuning only separation thresholds. In the third row of Table 

2.3, the classification accuracies were never satisfying (54.4%, 47.7%, and 69.2% for 

resubstitution error, 46%-60% error and LOOCV error respectively). The overfit tree structure of 

personalized automatically generated decision trees makes it hard to find a universal tree 

structure that classifies daily activities with acceptable accuracy.  

 On the other hand, the classification accuracies of the universal hybrid decision tree 

dropped only a little when we separate the subjects’ data (from 93.5% to 92.5%), and when we 

generalized the result (from 93.5% to 91.5%); this can be seen from the first row of Table 2.3. In 

the first two tests, the tree structure and separating features were given in Figure 2.4 and the 

accuracy remained high for the two error estimations. In LOOCV, we fixed the tree structure and 

changed the separating features based on only part of the subject test data each time, and 

determined the thresholds for each subjects. The result was still above 90% with smaller 
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variations compared to automatically generated decision trees. Therefore, we showed that 

universal hybrid decision trees can classify daily-life activities with acceptable accuracy. 

2.7.3 Confusion Matrices 

We discuss individual classification accuracy of each activity in this section. The universal 

hybrid decision tree successfully classified all stationary activities and running, but did not do as 

well in classifying walking and stairs activities. On the one hand, stationary activities have few 

variations and thus SVMs easily classified them. The high intensity and frequency of running 

made it distinct from other motion activities in feature spaces. On the other hand, 77% of stairs 

down were classified correctly and 12% of them were classified as ramp down; similarly, 76% of 

walk up-ramp were correctly classified, where 20% of them were classified as stairs up. Since 

the feature values of walking on ramps and stairs are very similar, it was difficult to distinguish 

among them. Additionally, only 76% of walk down-ramp and 68% of walk fast were classified 

correctly, and the rest of them were misclassified as other walking and stairs. 

 Automatically generated trees classified almost every activity when trained and tested on 

the same set of data, and had similar classification accuracy compared to universal hybrid 

decision trees. However, when estimating LOOCV error as in Table 5, only lie back (86%), lie 

side (93%) lie stomach (86%), running (100%) and standing (100%) have accuracies above 85%; 

all other activities have of accuracies below 80% (77% for sitting hunch, 71% for sit slouch, 62% 

for sit upright, 71% for stairs down, 58% for stairs up, 38% for walking down-ramp, 41% for 

walking fast, 61% for walking slow, and 70% for walking up-ramp). We get similar results from 

the use of automatically generated trees with tuned thresholds. Therefore, this showed that a 

united set of thresholds is improper for generalizing the model to other untrained data. A better 
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way was to learn the tree structure and separating features from existing data, and then determine 

the thresholds for internal nodes with a short amount of observation. 

2.8 Monitoring"Workspace"Activities"using"Accelerometers"

2.8.1 Introduction 

Physical activity monitoring (PAM) systems comprised of on-the-body accelerometers are 

effective tools for monitoring physical activity with medical, athletic training, and general health 

applications. In this section we used a PAM system for monitoring people at their workplace. 

Accelerometer systems have already proven their effectiveness for the physical activity 

classification necessary for health monitoring, successfully classifying basic physical activities 

including walking, jogging, and going upstairs and downstairs [40]. In this project we 

demonstrated that our PAM system is capable of utilizing a personalized training set easily 

acquired by the user in a clinical setting. We also investigated the effect of training set duration 

on overall classification accuracy. Previous research has used pressure sensors embedded in a 

worker’s chair for seated posture classification [41][42], and video surveillance has been used to 

classify standing, sitting and lying down postures [43]. However, there has been little research 

concentrated on workspace activity and seated posture classification with accelerometers. These 

sensors are less costly for mass production than chairs equipped with embedded sensors and less 

invasive than video surveillance. Workplace activities that are of interest for classification in our 

system include walking, standing, sitting, sitting posture, and seated movements such as shaking 

ones leg or twisting in a chair. Studies have shown that too much sedentary behavior, such as 

sitting at a computer during the work day, is detrimental to health so much so that it leads to 

increased risks of cardiovascular disease, despite regular participation in moderate to intense 
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exercise [44]. It has also been shown that bad workplace posture can result in widespread 

physical pain [45]. Fidgeting and restlessness, such as shaking ones leg and twisting in a chair, 

are both symptoms of anxiety, and thus the monitoring of such activities could potentially 

provide insight into the stress level of workers [44][46]. With the tri-axial accelerometers used in 

this work, employers and employees will be able to monitor exactly how much time they are 

spending in sedentary positions, whether or not they have proper posture when sitting, and to 

what extent they are exhibiting anxious physical behaviors. This data will be able to be used as a 

guideline for altering their behaviors for the preservation and improvement of their health. 

2.8.2 System Architecture 

2.8.2.1 System Components 

As before, our system consists of tri-axial wireless and wearable Gulf Coast Data Concept X6-

2mini accelerometer sensors. The sensors continually collect data in the X, Y, and Z directions 

once removed from a USB port, at a selected rate of 160Hz. 

2.8.2.2 Training Data Collection 

Sensors are placed on the user in specified locations (knees, chest). When collecting a training 

set, an easily recognizable signature (such as jumping or leaning back and forth five times) is 

performed before each activity. Each activity is performed for the same amount of time and its 

occurrence and duration is recorded, facilitating the ease of labeling the data. The orientation and 

location of each sensor is also recorded in order to remain consistent between data collection 

sessions. The workspace activities performed are walking, standing, sitting, sitting with the back 

reclined 85-95, sitting with the back reclined 115-125, sitting while slouching, shaking one leg 

while sitting, crossing one leg while sitting, swiveling in a chair, and sliding in a chair away from 

and towards a desk. 
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2.8.2.3 Scripted/Testing Data Collection 

Sensors are placed in the same locations and with the same orientations as they are in training 

data collection. The same activities are performed but in a natural, un-planned manner. An 

observer (or the user) records the activities that the user performs so that the data can be labeled 

appropriately, creating ground truth for classification. In a deployed system, this recording would 

not be necessary as we would rely on the classifications, presuming they yield sufficiently 

accurate statistics. 

2.8.2.4  Data Analysis 

For the classification, we used a Naïve Bayes classifier [47] over a feature space. The features 

were calculated over a window of 4 seconds. The features were: mean, maximum value, and 

frequency energy. This was done on several levels first by classifying sitting, walking, and 

standing, and then within sitting, classifying the postures and movements. 

2.8.3  Experiments and Results 

The activities classification performed were structured into three levels. The first classification 

level comprised of walking, sitting, and standing, the second of seated posture, and the third of 

seated movements: twisting in the chair, shaking the leg, sliding to and from the desk, and 

crossing legs. From these data the frequency, max, min, mean, and standard deviation values 

were extracted on the three levels of classification. Splitting the classification into several levels 

has advantages for (1) producing a model that is physically understandable, and thus leading to 

information that is more useful in advising subjects on how to change their behavior (e.g., degree 

of slouch, take more breaks, etc.), and (2) reducing training time, since each decision is low-

dimensional. We chose the naïve Bayes classifier [47] because it is simple and it worked well. 
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On the first level (walking, sitting, and standing) an accuracy of 99.5% was achieved as 

seen in Figure 2.5. For the posture, where the angle of the back was measured, the accuracy was 

99.6%, as seen in Figure 2.6. On this level, two types of proper posture 2.6[48] were classified; 

reclined at 120 degrees, and upright at 105 degrees and many types of slouching were classified 

as improper. For the various movements while sitting, an accuracy of 96.5% was obtained, as 

seen in Figure 2.7. 
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Figure 2.5. Walking, siting, and standing classification statics 

 

Figure 2.6. Sitting posture classification statistics 

 

Figure 2.7. Sitting motions classification statistics 
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2.8.3.1 Training Data Set Duration  

An integral part of our PAM system is the training data set. In order to determine the optimal 

amount of time for which each activity should be performed in the training data set, a single set 

of data was broken up into subsets of time intervals. One time interval was dedicated as the 

testing data set, while the other time intervals length was varied and dedicated as the training 

data sets. The same testing data set was tested against each of these training data sets, and the 

overall accuracy for each training data set length was recorded. For walking, standing, and sitting 

classification, it was found that 2 minutes was an adequate training interval, as seen in Figure 

2.8. For seated posture classification it was found to be 2 minutes, as seen in Figure 2.9. For 

seated motions it was found to be 15 seconds, as seen in Figure 2.10. 
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Figure 2.8. Overall classification accuracy of walking, sitting, and standing as a function of 

training duration 

  

Figure 2.9. Overall classification accuracy of seated posture as a function of training duration 
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Figure 2.10. Overall seated motion classification accuracy as a function of training duration 

2.8.4 Summary 

We have presented a system that can accurately classify daily life activities in the work place. 

The systematic and simple method of training that has been developed is key. The procedures 

developed and results obtained allow, with research on basic activities as a foundation, for the 

monitoring of work place physical activity. Subjects who have expressed pain or discomfort in 

their body would be enabled with such a system to track their daily movement and posture 

without any disruption to their daily life. 

Further work in two main areas is desired, expanding on posture and feature selection. 

We have only studied the posture of the back; whether the subject is sitting at a proper angle or 

slouching. However, there are many aspects to posture and proper physical motion in the 

workplace, such as how long subjects stare at a computer monitor, the angle of the knees, 
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whether the subject’s feet are flat on the floor, the level of the arm rest, etc. With more data 

collected in these areas, the applications of the system would be even greater. Another interest is 

in feature selection. There are many possible features to compute, and many possible sensor 

positions. Further analysis on the best features and combination of features is needed. There are 

also more feature selection algorithms that could be investigated, such as giving features weights 

that reflect their ability to differentiate between activities. In the future, we would like to test this 

system on various subjects for longer periods of time to gain a wider data pool for pattern 

analysis. 

2.9 Estimation"of"Accelerometer"Orientation"for"Activity"Recognition"

2.9.1 Introduction 

In real world applications, many activity classification algorithms are not robust due to issues 

related to sensor orientation. In this section we discuss the use of personalized and supervised 

learning methods where a training set is used to build an activity classifier for each user. For 

these methods, a classifier would be built using accelerometers placed in specific orientations. 

The robustness issue comes into play, when there is a mismatch in the accelerometer orientation 

between the training, and the testing or subsequent use of the system. This is a very practical 

problem since the users will wear their accelerometers at different times and use their trained 

classifier built in a previous time. Since activity recognition algorithms are executed on training 

under known sensor orientations, subsequently the classifications are sensitive to those 

orientations as well. In order to make the systems more robust, calibration algorithms must be in 

place to manipulate and correct data produced by incorrectly oriented sensors. There are two 

traditional means for dealing with problems concerning the orientation of sensors. The first is to 
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find orientation-invariant features, using mathematical manipulations such as power spectral 

density or a Fourier Transform [49]. The other is calibration through a series of movements. In 

this section we propose and evaluate a method to calibrate a system of sensors through a series of 

simple pre-defined movements. Additionally we propose an algorithm to automate the system of 

sensors calibration using orientation invariant motion recognition methods. This method is then 

tested on real data for human motion recognition. 

Very few researchers have considered this problem. In [51], the authors use a similar 

approach but do not report the improvement one could get from such a method. The contribution 

of this section is that it shows the effectiveness of accelerometer orientation calibration using 

pre-defined movements on real data. Our results are based on real experiments using three 

sensors, for seven daily-life activities. 

2.9.2 Methodology 

2.9.2.1 System Description 

We again employ the GCDC Miniature 3-axis Accelerometer Data Logger X6-2mini [53]. Our 

accelerometers samples at 160Hz, with a range of ±6g, recording at 16 bits of resolution. For 

classification purposes, the algorithms include a naïve Bayes classifier, combined with a decision 

tree. At each node of the decision tree, one or two mathematical features are extracted from each 

sensor. Features include mean values, standard deviations, and energy, among others. The 

specific features and activities used for experimentation purposes are discussed in the 

experiments and evaluation section. 

2.9.2.2 Rotation Matrix Estimation Method 

We use rotation matrices to calibrate the misoriented data measured by a misoriented sensor. 
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Each sensor measures the acceleration in a 3-D space relative to the sensor orientation. We refer 

to that space by sensor space. We use a reference 3-D space that corresponds to gravity, and we 

call it hand space. In this space gravity is aligned with the y-axis. 

For each sensor, a 3x3 rotation matrix is constructed to calibrate the misorientated data. 

Orientations in three dimensions can be used to represent one system’s orientation relative to 

another [52]. In this method we use a fixed system where gravity is aligned with the y-axis. In 

this section, it will be referred to as hand space, as we use gravity as a reference to align with the 

hand. The sensor has its own orientation however, which can be represented relative to the hand. 

Thus if we have a rotation matrix that represents the sensor in hand space, it will make the sensor 

data appear to come from a sensor that is aligned with the hand as shown in Figure 2.11. This is 

doable because all sensor data is related by an absolute, the gravity vector, as shown in Figure 

2.12. 

Using a feature of rotation matrices, if an inverse is performed on the 3x3 matrix of the 

hand in sensor space, it becomes the sensor in hand space. This rotation matrix can then be 

multiplied by the data being recorded by the sensor, and the sensor data can be manipulated to 

look as though it is being produced from a correctly oriented sensor. 

2.9.2.3 Estimating the Orientation 

An algorithm was developed to automate sensor calibration for systems of sensors 

simultaneously. Having the user perform movements shown in Figure 2.13 and Figure 2.14, an 

algorithm (described in detail below) recognizes those movements, records the acceleration 

signatures, and applies rotation matrices to correct the data. The correction motion is easy for the 

naïve users to perform, so that the rotation matrix can be automatically built and applied on the 
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Figure 2.11. Three dimensional acceleration signals 

 

Figure 2.12. The figure on the left shows the system for a correctly placed sensor. The figure on 

the right shows the system for an incorrectly placed sensor 

 

Figure 2.13. Calibration action 1 
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Figure 2.14. Calibration action 2 

subjects’ data for researchers to utilize without difficulty. 

The first step is aligning the signals. To do this, the sensors are all held together in the 

same orientation and violently shaken. Once the time signature on all the sensors is clear, the 

signals are time shifted to make all movements recorded from the individual in sync. The data 

are also put through a low pass filter prior to processing. This ensures that shaking dynamics are 

kept at a minimum and tilt is emphasized. This also makes the method more robust to deal with 

individuals that have trouble holding still, such as Parkinson’s disease. The sensors would 

otherwise produce sudden spikes in the data, creating a high standard deviation, giving the 

illusion of movement indication. 

The second stage consists of finding the time period when the individual was standing 

upright. Regardless of orientation, the sensors must be worn flat against the skin. This ensures 

that if the individual is standing upright, the sensor’s z-axis will always be perpendicular to 

gravity and read zero. The other indication that the individual is standing upright and still, is the 
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data produced by the accelerometers will have minimal movement, indicated by a low standard 

deviation. Within the signal, a time frame of 10 seconds is searched for, where the 

accelerometers z-axis is parallel with the ground, and the individual is holding still. This is 

marked by an average z-reading of less than 0.2g, and a low standard deviation in x and y 

indicating stillness in the subject. These values are then recorded and placed into the second 

column of the rotation matrix. 

The transitional period from standing to lying down is marked by a very high average 

standard deviation on the three sensors attached to the individual. The individual lying down is 

found by a period following the transitional period with a low standard deviation on all three 

axes. This ensures that as long as the individual stands upright, and then subsequently lies down, 

all of the needed signals will be found for rotation matrices processing. 

Once these time periods are found, average values over 10 seconds are now available for 

each of the sensors in each of the needed axes. The values are put into a rotation matrix, inverted 

and then multiplied by the sensor data as described in the previous sub-section. The method is 

robust and user friendly, as it can automatically calibrate data, rather than having individuals 

finding time signals visually or recording them from an external device. 

2.9.3 Results and Evaluations 

2.9.3.1 Single Sensor Experiments 

An initial experiment was conducted to test the effectiveness of this calibration method on the 

subject’s wrist. One sensor was correctly oriented, while two sensors were placed in incorrect 

orientations on various parts of the wrist, as well as tilted to different angles. Control indicates 

the sensor that was correctly oriented. Experiments 1 and 2 denote the sensors that were  
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Figure 2.15. Data from non-calibrated sensors 

incorrectly oriented. The x, y, and z axes are denoted as, red, green, and blue lines in that order. 

A series of movements were performed, and the rotation matrices were applied via the 

calibration algorithm. In Figure 2.15, it is seen that the signals from the sensors are related, but 

yield vastly different results. In Figure 2.16 however, the signals all look almost 

indistinguishable from one another aside from a time delay, and the control is unchanged. These 

early experiments were an indication that the algorithm was successful. 
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Figure 2.16. Data from calibrated sensors 

2.9.3.2 Multiple Sensor Activity Classification 

In this experiment, the calibration algorithm was tested on two systems of 3 sensors attached to 

different locations on the subject’s body. Three sensors represented the control, as well as the 

base of the training data, and the other three are the experiment, placed at identical locations with 

different orientations. These locations were the right ankle, the right wrist, and the chest of the 

test subject. The activities being trained and classified were slow walking, running, walking up 

stairs, walking down stairs, sitting, lying down, and standing upright. 

 Our naïve Bayes decision tree classifier is shown in Figure 2.17. The first distinction 

between motion activities and still poses was made in the first branch. This distinction is of  
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Figure 2.17. The decision tree used, the features used are shown on every node 

importance to us, because still motion activities can be determined only through tilt, and are 

subsequently much more dependent on the orientation of sensors. Motion activities can be 

determined often times through motion invariant features, such as average standard deviation of 

the x, y, and z axes. 

In this experiment the calibration algorithm was applied to two systems of 3 sensors 

attached to different locations on the subject’s body. Three sensors represent the control, and the 

other three represent the experiment, as incorrectly oriented sensors. The individual wearing the 

sensors underwent 7 activities to be classified: slow walking, running, walking up stairs, walking 

down stairs, sitting, lying down, and standing. The three experimental sensors were tested for 

accuracy both before and after the calibration algorithms, and compared to the control 

experiment. The sensors were located on the right ankle, the right wrist, and the chest of the test 

subject. 

Our naïve Bayes decision tree classifier is shown in Figure 2.17. For example, the first 
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distinction made was between motion activities and still poses. It was found that the maximum 

value of the y-axis was the most accurate feature for separating these sets using cross validation. 

Subsequently nodes are added to the tree until all 7 activities have their distinguished sets of 

features.  

Figure 2.18 represents the control of the experiment using correctly oriented sensors. The 

activities were classified correctly with an accuracy of 96%. The incorrectly oriented sensors in 

Figure 2.19 had only 38% accuracy. Once the algorithm was run on the data, the data was again 

tested for activity classification and an accuracy of 93% was achieved. Also, it is clear that some 

activities are accurately classified regardless of orientation. The reason is that still activities are 

entirely orientation dependent, while mobile activities can be classified on a range of features, 

some being more orientation dependent than others. For example high average standard 

deviation can mark running, which is also rotation invariant. The data indicated that with very 

poor placement, the algorithm could make sensor data on average, accurate within 3% of the 

correctly oriented sensor data. This indicates a successful method to be used and developed 

further in the future. 
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Figure 2.18. Confusion matrix for correctly oriented sensors 

 

Figure 2.19. Confusion matrix for non-calibrated incorrectly oriented sensors 

 

Figure 2.20. Confusion matrix for calibrated incorrectly oriented sensors 
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Figure 2.21. GUI home screen 

2.9.3.3 Graphical User Interface 

A GUI was created so that researchers could choose to calibrate individual body parts, or a 

system of three sensors simultaneously. After choosing the body part(s) that need calibrating, the 

individual selects the data file that needs to be preprocessed, and a message will appear 

indicating its success. Figure 2.21 is the first screen, and after selecting Full Body, Figure 2.22 is 

the second screen showing the positions needed for calibration and a sample to show a successful 

calibration. 
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Figure 2.22. GUI final screen 

2.9.4 Summary 

In this section, we presented an approach for correcting the data recorded by misoriented 

accelerometers used for activity recognition purposes. This approach uses rotation matrices 

estimated from pre-defined activities done by the user at the initialization of the system. We 
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show that it improves the accuracy from 38% to 92% for a real data set of 7 activities. Based on 

these promising results we are pursuing an extension to this work. This involves automatic 

recognition of activities that may be used for calibration of sensor orientation, rather than 

requiring the subject to engage in a set of prescribed activities, which may themselves be subject 

to error. This requires collection of large training sets over multiple subjects that include many 

orientation errors so that the classifier may be self-calibrating through recognition of error states. 

While the work involved in model creation is larger, methods that further reduce what is 

demanded of users may ease scaling to very large numbers. 

2.10 Feature"Selection"Based"on"Mutual"Information"for"Human"Activity"

Recognition"

2.10.1 Introduction 

In prior sections we have outlined means of constructing decision trees when the number of 

activities and sensors is relatively small. This is the usual situation reported in the literature. For 

example, in [40], multi-modal sensor systems were used to classify basic physical activities, 

including walking, jogging, and going up and down stairs. In [4] and [56], sensor systems using 

only accelerometers were used for activity classification; [4] used biaxial accelerometers to 

monitor both ambulatory and sedentary motions, while [56] used tri-axial accelerometers to 

monitor workspace activities. Smart phone based accelerometers were also used for activity 

recognition as in [57]. A representative sampling of previous research is presented in Table 2.7. 

In the research reported in this section, we aim at capturing the motions of all the parts of 

the body for a thorough study of the activity recognition problem. We over-instrument the 

subjects with 14 tri-axial accelerometers placed on various parts of the body, and we consider the  
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Table 2.7. Summary of previous research 

Ref Accuracy No. Activities No. Subjects No. Sensors 

[40] 95% 10 2 7 

[4] 84% 20 20 5 

[57]  85% 5 10 1 

[1] N/A 5 groups 11 6 

[58]  90% 8 12 7 

[59]  95% 8 7 1 

[60]  65%-95% 8 1 12 

[61] 90% 5 5 2 

 

classification of 14 common daily activities. We take a supervised learning approach, using a 

binary decision-tree with a naïve Bayes classifier at every internal node and a large feature set of 

31 features per accelerometer (total of 434 features). This is a high-dimensional problem where 

brute force is not possible, and a feature selection algorithm is needed to find the best features for 

every naïve Bayes classifier (present at every internal node). Feature selection is a problem that 

has been studied many times before in other contexts. Different types include margin-based 

algorithms such as RELIEF [62] and mutual information based algorithms such as MIFS [63]. 

We use a mutual information-based algorithm because it is computationally capable of handling 

the large amount of data captured by 14 accelerometers. 
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Figure 2.23. Location of the 14 accelerometers 

2.10.2 Methodology 

2.10.2.1 Training Data Collection 

Accelerometers are placed on an individual at fourteen locations, as shown in Figure 2.23. The 

accelerometers we used were tri-axial wireless Gulf Coast Data Concept X6-2mini  
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Table 2.8. The 14 activities that were classified 

Active Stationary 

Slow walk Stand 

Fast walk Sit (upright) 

Walk (up-slope) Sit (hunch) 

Walk (down-slope) Sit (slouch) 

Walk (up stairs) Lie down (on back) 

Walk (down stairs) Lie down (on stomach) 

Run Lie down (on side) 

 

accelerometers (±6g) [53], which continually collected data at a rate of 160Hz. Fourteen 

different activities are performed, as described in Table 2.8. To collect labels for ground truth, 

we used an Android phone application. The application has a list of the activities to choose from 

and a start/stop button to record the time the subject started the activity, and the time he/she 

stopped. Eight different data sets were collected from eight different healthy individuals for a 

length of five minutes per activity. 

2.10.2.2 Features Computation 

Features were computed on 4-second windows of acceleration data with 3 second overlapping 

between consecutive windows. We compute 31 different features for each sensor, shown in 

Table 2.9. Since we used 14 different sensors, this meant a total of 434 features from which to 

choose. 
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Table 2.9. Features used (m refers to the magnitude of the 3D acceleration vector) 

Feature 

Standard deviation of x,y,z axes and   

Mean of x,y,z axes and   

Absolute mean of x,y,z axes and  

Energy ratio of x,y,z axes and  

Ratio of DC to sidelobe of x,y,z axes 

First sidelobe location of x,y,z axes 

Max value of x,y,z axes and  

Short time energy in x,y,z axes and  

Correlation between x and y axes 

 

2.10.2.3 Classification 

We used the binary decision tree shown in Figure 2.24, with a naïve Bayes classifier at each 

node. The naïve Bayes classifier is a probabilistic method given by the function (2.6), where  

is the set of classes and  is the set of features. 

   (2.6) 

This classification was performed offline. A tree was used so that the classifier would not have to 

distinguish between all 14 of the classes using the same set of features. Instead, classifiers are 

used to partition the data into smaller and smaller categories of classes until the categories  
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Figure 2.24. Decision tree used 

consist of a single class, at which point the data is fully classified. In the probability calculations 

(given by Bayes’ rule), the features were assumed to be independent with a Gaussian 

distribution, as required by the naïve Bayes classifier. For every subject, the naïve Bayes 

classifiers (at the internal nodes of the tree) were trained on his/her training data; this is often 

called a user dependent procedure. The feature selection was also personalized to every subject. 

2.10.2.4 Feature Selection Algorithm 

The high-dimensionality of the problem requires a good feature selection algorithm to find the 

best features for the naïve Bayes classifier at every internal node. In order to minimize 

computational complexity while maximizing accuracy, this algorithm employs a ’filter’ solution 

first, and then a ’wrapper.’ The algorithm works as follows: 

1. We determine the Gaussianity of each feature by calculating the negentropy of each 

feature given each class using the approximation given in equation (2.7), where  is the 

negentropy,  is a random variable,  is the expected value, and  is the kurtosis, 

the fourth central moment of the [64][65].  

 J

 x  E  kurt
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   (2.7) 

We remove all features with negentropy values that are higher than an a priori threshold. 

2. Using the mRMR algorithm, we ranked the features. [66] The term this algorithm wishes 

to maximize is given by formula (2.8). 

   (2.8) 

  is the mutual information,  is the class variable,  is the feature under 

consideration, and  is the set of features already selected and ranked. Calculating 

mutual information requires calculating the entropy of a feature or set of features, a 

computationally expensive process because each feature is a mixture of Gaussians. Hence 

a Taylor series approximation of the entropy was employed[3]. 

3. By now, there are a few parameters that can be changed: the threshold for the negentropy 

values and the degree of the Taylor series approximation. In addition, there are really two 

different possible algorithms, using only the first term of (3) (Max-Relevance), or both 

(Max-Relevance and Min-Redundancy) [66]. Instead of choosing one algorithm, or just 

one set of parameters, a range of parameters are used over both algorithms, and the sets 

of features returned by these algorithms are captured. Because we wish to minimize the 

number of features, we use the first k features in each ranking, where k ranges from 1 to 

the full set. 
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4. This gives us a list of feature sets. We pick the feature set that minimizes the training 

error1. 

5. The above steps are repeated for each node in the tree. Then for each node, the highest 

ranking set of features are chosen, and the total number of sensors used so far is updated. 

2.10.3 Results 

We collected sets of data from eight different individuals where the participant did five minutes 

of each of the 14 activities while wearing all 14 accelerometers. For these data sets, we trained 

on half the data, 2.5 minutes per activity, and tested on the other half, a time suggested by [40]. 

We got an average overall accuracy of 96.5%, as seen in Table 2.10. These results show that a 

high activity recognition rate is achievable for a large set of activities. Table 2.11 shows that a 

large number of sensors was used for every subject. This is due to the fact that the feature 

selection algorithm does not take into consideration from which sensor the features were 

selected. It would be interesting to change the feature selection algorithm to a sensor selection 

algorithm, while maintaining a relatively high accuracy. This could be done by adding a term to 

favor features from the same sensors. It is also worth noting that for different subjects, different 

features were selected. This is due to the variation in the acceleration data belonging to different 

subjects (e.g. different subjects walk differently, sit differently, and lie differently.). 

 

                                                

 

1 This corresponds to choosing the feature set that gives the highest discrimination between the two branches of the 

tree at the corresponding node. Training error is the percentage of misclassified training data 
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Table 2.10. Average accuracy for each of the activities 

Activity Percent Correct 

Run 100% 

Walk (up stairs) 97.67% 

Walk (down stairs) 94.54% 

Slow walk 92.77% 

Walk (up-slope) 95.95% 

Fast walk 96.81% 

Walk (down-slope) 95.32% 

Stand 99.41% 

Sit (upright) 89.90% 

Sit (slouch) 94.62% 

Sit (hunch) 99.24% 

Lie down (on side) 100% 

Lie down (on back) 94.83% 

Lie down (on stomach) 99.66% 
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Table 2.11. Average accuracy for each of the test subjects 

Test subject Our algorithm Number of sensors 

1 93% 10 

2 98% 12 

3 96% 9 

4 97% 10 

5 98% 12 

6 99% 10 

7 96% 13 

8 95% 11 

Average 96.5% 10.875 

 

2.10.4 Summary 

This section presents a combination of a tree-based classification and a feature selection 

algorithm for human activity recognition, and shows that a high activity recognition rate is 

achievable for a large set of common daily activities. More than just a specific algorithm, this 

section presents a framework that maximizes the accuracy that can be garnered from the results 

of specific algorithms, like the mRMR algorithm that we used. This work shows that different 

sensors (at different locations on the body) are the best for discriminating between subset of the 

activities. The algorithm presented could be changed to minimize for the number of sensor used. 

This is a step forward towards understanding human activities and towards finding the best 
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placements of sensors on the body for the recognition of a large set of activities. 

2.11 Conclusion"

In this chapter we have presented a variety of applications of decision trees to the problem of 

activity classification. In some cases, the problem addressed was simple enough that naïve Bayes 

classifiers were sufficient, but in general more sophisticated approaches are required to enable 

good classification accuracy with limited human effort in providing ground truth. The hybrid tree 

we have introduced provides exactly this functionality so that the overall effort in developing 

models that can be tuned to individuals is reduced. 
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Chapter 3  

MOTION TRAJECTORY FUSION USING DIVERSE SENSOR TYPES 

3.1 Introduction"

Inertial measurement units (IMU) are widely used due to their low cost, low weight and small 

size. They are now implemented in numerous fields including aviation, robotics, gaming, sports 

and others to measure orientations or directions[68][69][70][71]. Some studies also utilized 

inertial sensing to classify human activities or reconstruct human motions 

[72][73][74][75][76][77].  

Generally used IMUs include accelerometers, gyros, magnetometers, GPS and other devices. 

Due to their physical characteristics and numerical data manipulating procedures, estimation 

results using these devices suffer from high measurement noise, incorrect scaling and biasing. 

Therefore, there are many studies discussing how to model measurement errors and drift using 

various filters and algorithms [78][79][80].  

Our goal is to estimate the orientations of upper limbs at any given moment to find the 

motion trajectories of the arm. This will benefit medical-field studies, which focus on long-term 

and detailed movement monitoring. For conditions such as Parkinson’s disease or rehabilitation 

from injuries, doctors and therapists usually need to watch tiny changes of patients' motions for a 

period of time. If there exists a system composed of IMUs, which can tell them of any significant 

changes of the motions at patients' home environments, it would greatly benefit doctors' 

diagnosis and save a huge amount of medical resources through timely interventions.  
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Much research has been conducted to reconstruct trajectories, or to estimate sensor 

orientations. In [76] kinematic models were combined with unscented Kalman filters to estimate 

orientations of joints under slow and fast motions. However only simple arm movements were 

evaluated. In [77], a continuous-wavelet-transform based method was used to integrate 

accelerometer data analytically to avoid numerical integration drifts, in which subjects only 

performed motions slowly, and some reconstructed patterns are only recognizable but not 

accurate. 

In [81], biomechanical models and non-linear complementary filters were combined to 

estimate upper body motion. However, all experiments were done outdoors where there is less 

magnetometer interference.  

In this chapter, we show how to estimate motion trajectories by combining non-linear 

complementary filter designs, which estimate orientations and gyro bias [70][82], with 

biomechanical models of upper limbs, including limb decomposition and human motion 

limitations. From different studies, we have seen that different environments require different 

motion reconstruction strategies. For example, we know that in an indoor environment, the 

magnetometer suffers from large amounts of magnetic interference, which will affect its 

measurements. In addition, in an outdoor environment, though the magnetometer suffers from 

less interference, there are also some limitations which affect the robustness of our methods: 

there may be limited wireless internet connection which is necessary to upload and transfer 

recorded data between recording devices, and the devices need to be less dependent on a power 

source. For these reasons, in this chapter we formulated a system, which can track human motion 

trajectories under various environments. Experiments were conducted covering arm movements, 

pattern drawing and daily life activities. This method not only applies to upper limb motion 
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reconstruction, but can be also used to estimate orientation of lower limbs with the appropriate 

kinematic model.  

In section 3.2 we introduce the system for estimating motion trajectories using various 

types of sensors. Section 3.3 introduces the experimental and simulation setups. The results are 

presented in section 3.4, followed by the discussions of the results in section 3.5, and we draw 

the conclusions in section 3.6. 

3.2 Algorithms"

3.2.1 Definitions"and"building"blocks"

3.2.1.1 Notation"and"measurement"modeling"

3.2.1.1.1 Special,rotation,group,

In geometry, any orientation and rotation can be expressed as a vector , where it contains 

the yaw, pitch and roll angles of that rotation. We can also define orientations and rotations in 

matrix form.  belongs to the special orthogonal group  such that 

   (3.1) 

We then define the operator  such that 

   (3.2)  

Then for a rotation  and any vector , we have  
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   (3.3) 

where  is the vector cross product. The following identity is also commonly used in this 

chapter:  

   (3.4) 

where   is a rotation matrix, and  represents an orientation in 3-D space. 

We then define  being the inverse of . That is to say, we have 

   (3.5) 

3.2.1.1.2 Coordinate,systems,(Frames,of,reference),

We use the following notation to represent different frames of reference 

 Earth frame of reference (Earth coordinate).  

  Body frame of reference (Body coordinate) 

  Estimator frame of reference (Estimator coordinate). 

  Kinect frame of reference (Kinect coordinate). 

We use , , and  to represent the axie of north, east, and down (NED) coordinate 

system in .   is the body coordinate, and is used to denote the original data of the IMU.  

ω∨ν = ω ×ν

×

   
Ra( )

∨
= Ra∨R

T
,         R ∈SO 3( ),a ∈3

 R  a

  
vex : SO 3( )→ 3 ∨

   

vex R( )( )
∨
= R,          R ∈SO 3( )

vex v∨( ) = v,                    v ∈3

  
A{ } :

  
B{ } :

  
E{ } :

  
K{ } :

 x  y  z

 
A{ }  

B{ }
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Figure 3.1. Kinect axes definition 

 is the estimator coordinate, which is used to represent the estimation of the IMU 

orientation.  is the Kinect frame of reference, whose ,  and  axes are defined from the 

view of the camera of the Kinect as shown in Figure 3.1.  

Unless otherwise specified, we use left superscripts and subscripts to describe 

orientations and rotations expressed in different frames of reference; we use subscripts to 

describe the origin frame of reference, and superscript to represent the destination frame of 

reference. For instance,  represents the orientation  relative to the body frame; 

 represents the rotation matrix  R  from the Earth frame to the body frame. 

3.2.1.1.3 Measurement,models,

In this section we model measurements from MEMS sensors and the Kinect in the following 

ways. 

 
E{ }

 
K{ }  x  y  z

 Bv  v

  B
AR : B{ }→ A{ }



 

76 

3.2.1.1.3.1 Accelerometers"

Let the noisy measurements of accelerometers measured in the body frame be denoted by    a ∈3

, and the true measurement by    a ∈3 . We model the relation of collected signals to their true 

values by 

   B a = M
a B

a + b
a
+ n

a
  (3.6) 

where  is the combination of sensitivity and misalignment of the accelerometer axes, 

 is the constant bias of the measurements, and  na
 is the zero-mean additive white 

Gaussian noise (AWGN). 

It is important that we distinguish gravity and the force applied to the sensor. Let the 

Earth’s gravitational acceleration field in the Earth frame be denoted by , and the 

instantaneous acceleration applied to the sensor in Earth frame by . We can then describe the 

ideal accelerometer measurements  by  

 
   B
a = M

a
⋅R

A
v −

A
g

0( ) + b
a
+ n

a
 . (3.7) 

When the sensor moves slowly, we have ; then the accelerometer measurements 

are roughly equal to the gravitational acceleration. Therefore, we can express the normalized 

ideal measurements by 

   (3.8) 

   Ma
∈3×3

   ba
∈3

  Ag
0

  A v

  B a

   A
v ≈ 0

  

B
a

B
a

=
B
AR

A
g

0
e

3
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where   in NED coordinates. 

3.2.1.1.3.2 Gyros"

We describe the noisy gyro measurements  by 

   (3.9) 

where  is the combination of sensitivity and misalignment of the gyro,  is the 

true gyro rotation along its axes,  is the constant bias of the measurements, and   

is the zero-mean AWGN. If we want to integrate the gyro measurements of angular velocity to 

find the orientation, we have to notice the bias term  will accumulate as time goes by.  

3.2.1.1.3.3 Magnetometers"

Similar to previous sections, we describe the noisy magnetometer measurements  by 

   (3.10) 

where  is the combination of sensitivity and misalignment of the magnetometer, 

 is the Earth magnetic field being projected on the magnetometer axes,    bm
∈3  is the 

constant bias of the measurements, and    nm
∈3  is the zero-mean AWGN. 

  
e

3
= 0 0 1⎡⎣ ⎤⎦

T

   B
w ∈3

  B
w = M

g B
w + b

g
+ n

g

   Ma
∈3×3

   Bw ∈3

   
b

g
∈3

   
n

g
∈3

bg

   B m ∈3

  B m = M
m B

m + b
m
+ n

m

   Mm
∈3×3

   Bm ∈3



 

78 

 

Figure 3.2. Joint information provided by Kinect 

3.2.1.1.3.4 Kinect"

The released Kinect for Windows Software Development Kit (SDK) [23] provides the position 

information of 20 human joints as shown in Figure 3.2, and Table 3.1 shows the joint numbers. 

We model the  Kinect position measurement in the Kinect frame of reference  by 

   K pi
=

K
p

i
+ n

i
  (3.11) 

where    K p
i
∈3  is the real distances of the joint to Kinect camera, and    ni

∈3  is the zero-mean 

AWGN.  

  i
th

   K pi
∈3
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Table 3.1. Number of joints 

# Part # Part # Part # Part # Part 

1 Hip center 5 
Shoulder 

left 
9 

Shoulder 

right 
13 

Hip 

left 
17 

Hip 

right 

2 Spine 6 
Elbow 

left 
10 

Elbow 

right 
14 

Knee 

left 
18 

Knee 

right 

3 Shoulder 

center 
7 

Wrist 

left 
11 

Wrist 

right 
15 

Ankle 

left 
19 

Ankle 

right 

4 Head 8 
Hand  

left 
12 

Hand 

right 
16 

Foot 

left 
20 

Foot 

right 

 

3.2.1.2 NonWlinear"Complementary"Filters"with"Bias"Estimation"

In this section, we introduce our method for finding the orientation of the sensor, namely, non-

linear complementary filters with bias estimation. From [70][82], this filter applies a low pass 

filter and a high pass filter to two signals and then fuses them to get better estimates. In our 

situation, we have a static estimate of the orientation which is accurate when the subject moves 

slowly, but inaccurate when moving fast; we also have a dynamic estimate of the orientation 

which tells instant changes of the orientation, but accumulates errors when integrating the 

dynamics. The complementary filter will apply a low pass filter to the static estimate, and a high 

pass filter to the dynamic estimate to fuse both estimates to acquire a better orientation estimate. 

We start by defining the error measurement of an orientation, and then introduce the static and 

the dynamic estimation processes for the orientation, and finally explain how we fuse these 

measurements using non-linear complementary filters.  
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3.2.1.2.1 Estimate,of,Sensor,Orientations,and,Error,Measurement,

We define  

 
   E
AR̂ : E{ }→ A{ },      E

AR̂ ∈3×3    

to be the estimated orientation of the sensors from the estimator frame to the Earth frame. This 

orientation should be close to the true orientation from the body frame to the Earth frame, which 

is  B
AR . We define the relative rotation of   E

AR̂  and  B
AR  by 

    B
E R =

E
AR̂T

B
AR    

With Lyapunov stability analysis, we can define the estimation error by 

 

   

err = 1
4

I −
B
E R

2

= 1
2

tr I −
B
E R( )

= 1 − cos θ( )
  (3.12) 

where  is the angle of rotation from the  frame to  frame. Once the estimate of 

orientation is close to the true value, we have two frames overlapped and thus , and 

therefore from (3.12) the estimation error goes to zero. 

3.2.1.2.2 Static,and,Dynamic,Estimation,of,the,Orientation,

Ideally, any two nonparallel measurements  measured in the body frame and their 

corresponding value in the Earth frame  can be used to calculate the orientation of a 

θ B{ } E{ }

θ = 0

Bυ1, Bυ2

Aυ1, Aυ2
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rigid body. We call this estimate the static orientation   E
AR̂

s
. From [70], this static estimate can be 

acquired using the following optimization formula, 

 

  
E
AR̂

s
= argmin

R∈SO 3( )
λ

1

R ⋅
B
v

1

B
v

1

− A
v

1

A
v

1

2

+ λ
2

R ⋅
B
v

2

B
v

2

− A
v

2

A
v

2

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (3.13) 

where the weightings  are chosen depending on the confidence of the sensor outputs.  

Also, if we have measurements of the angular velocities of a rigid body , we can 

estimate the dynamic orientations   E
AR̂

d
 from the rotational kinematics by solving the following 

differential equation 

 

  

∂
∂t E

AR̂
d
=

E
AR̂

d

0 −ω
3

ω
2

ω
3

0 −ω
1

−ω
2

ω
1

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
E
AR̂

d
⋅ω∨

   (3.14) 

3.2.1.2.3 Direct,and,Passive,Complementary,Filters,

The rotation error between estimation   E
AR̂  and ground truth  B

AR  can be expressed as 

   
R =

E
AR̂T

B
AR . Based on [82][83], we define the correction term 

 
   
σ = vex

1
2
RT − R( )⎛

⎝⎜
⎞
⎠⎟
∈3    (3.15) 

We use  to represent error between the estimated orientation and the true orientation. When the 

estimate is equal to the truth, we have   R = I , and thus . With the above 

λ1,λ2

 ω ∈3

σ

σ = 0 0 0⎡⎣ ⎤⎦
T
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definitions, we then fuse static and dynamic estimates to derive the final estimate of the 

orientation. 

From (3.4) and (3.14) we have 

 
 

∂
∂t

R = Rω∨ = Rω( )
∨
R  (3.16)  

where  is the angular velocity. By modifying the last term of the equation and based on 

[70][83], we define two types of non-linear filters. 

Direct complementary filter with bias correction  

 

   

∂
∂t E

AR̂D =
E
AR̂

s B
ω − b̂

g
D( ) + k

p E
AR̂Dσ( )

∨ E
AR̂D,

 
  E
AR̂D 0( ) = E

AR̂
s0

  (3.17) 

 

  

∂
∂t

b̂
g
D = −k

I
σ ,

 
  
b̂

g
D 0( ) = 0

 
(3.18) 

 

   
σ = vex

1
2
RT − R( )⎛

⎝⎜
⎞
⎠⎟
,
     

R =
E
AR̂D( )T E

AR̂
s   

(3.19) 

Passive complementary filter with bias correction 
 

 

   

∂
∂t E

AR̂P =
E
AR̂P

B
ω − b̂

g
P( ) + k

p E
AR̂Pσ( )

∨ E
AR̂P,

 
  E
AR̂P 0( ) = E

AR̂
s0

  (3.20) 

 

  

∂
∂t

b̂
g
P = −k

I
σ ,

 
  
b̂

g
P 0( ) = 0

 
(3.21) 

 

   
σ = vex

1
2
RT − R( )⎛

⎝⎜
⎞
⎠⎟
,
     

R =
E
AR̂P( )T E

AR̂
s   

(3.22) 

ω
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Figure 3.3. Block diagram of direct complementary filter 

 

 

Figure 3.4. Block diagram of passive complementary filter 

where   E
AR̂D  and   E

AR̂P  are direct and passive estimates of the orientation from the estimator 

frame to the Earth frame, 
  
b̂

g
D  and 

  
b̂

g
P  are the estimated bias of gyros,  and  are positive 

gains. Figure 3.3 and Figure 3.4 show the block diagram of the direct and passive 

complementary filters respectively.  

In both figures, we can realize non-linear complementary filter models as feedback 

systems, where static estimation  and angular velocity  serve as inputs to the system, 

which is used to find the initial estimation using rotational kinematic in (3.14). This initial 

kp kI

  E
AR̂

s   B
ω
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estimate is then transposed and post multiplied by  to form the error rotation 

, i.e., the transpose in  is equivalent to subtraction in linear domain, and 

so  defines the error between the initial and static orientation estimates. This error is then 

multiplied by a gain  and adds to the initial estimate, which forms the final estimate of 

orientation. 

In [70] it was shown that the estimates of the orientations   E
AR̂D  and   E

AR̂P , as well as gyro 

bias estimations , 
  
b̂

g
D  and 

  
b̂

g
P  will converge to the true values  B

AR  and 
 
b

g
 respectively, and for 

almost all initial conditions the trajectory 
  E

AR̂D t( ),b̂g
D t( )( )  and 

  E
AR̂P t( ),b̂g

P t( )( )  are locally 

exponentially stable to the trajectory 
  B

AR t( ),bg
t( )( ) . Here, we use both methods to estimate the 

orientations of the sensors. 

3.2.1.3 Upper"Body"Motion"Decomposition"

After finding the orientations of sensors using complementary filters, we then use the 

biomechanical models for the human limbs to reconstruct human motions. As mentioned in 

1.3.2, we use a hierarchy of human joints as shown in Figure 3.5 to represent motions as a series 

of transitions of human limbs. In this model, let the joint  denotes a parent joint with its 

location in the Earth frame    AP
M
∈3 . This parent is connected with its child  by a bone of 

length  with estimated orientation 
  E
AR̂

lm
. This estimated orientation 

  E
AR̂

lm
 is the same as that of 

the sensor attached to the limb.  

 

  E
AR̂

s

   
R =

E
AR̂

s E
AR̂( )T

 
SO 3( )

  R

 
k

p

m

m +1

lm
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Figure 3.5. Joint hierarchy 

Here, we put sensors in the middle of the limbs, and align the  of the sensors with 

the bone, where the positive direction of the  points outward from the human body. Since 

the  of the sensor is aligned with the bone, we can define a relative vector 

 in the estimator frame. This vector represents the direction of the  

 

y-axis

y-axis

y-axis

 
EV =

E
0 lm 0⎡

⎣
⎤
⎦
T
∈3
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Figure 3.6. Upper limb decompositions and sensor placements 

child joint  seen by its parent joint . We can then express the location of the child joint 

in the estimator frame as 

 
  E
P

m+1 = E
P

m
+

E
AR̂

lm
⋅

E
V  (3.23) 

This formula describes how we can find positions of child joints given their parents. 

The hierarchy structure in the previous section describes how we model the motion of every 

human joint at any given moment. We use this model to estimate motions of human upper limbs. 

In this model, we assume that the upper limb motions can be decomposed into upper arm and 

forearm movements. We put sensors in the middle of these two limbs, and align the  of the 

sensors with the bone, where the plus direction of the  points outward from the human 

body. Figure 3.6 shows positions and orientations of sensor placements. We do not put sensors 

on the fist and consider the fist as a part that extends from the forearm. Also, we consider the 

m +1 m

y-axis

y-axis
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shoulder to be a fixed joint in the space. Therefore, the whole model of the upper limb looks like 

a double pendulum. 

We set the origin at the position of the shoulder joint. Let  and  represent the 

estimated orientations of the upper arm and the forearm respectively. Also, let  represent the 

length of the upper arm, and  be the length of the forearm and the fist. Then from equation 

(3.23) we can find the estimated positions of the elbow  and the fist  in the Earth frame 

by 

   (3.24) 

By calculating  and , we can then estimate upper limb trajectories in NED coordinates. 

3.2.1.4 Parameter"Optimization"

Since human limbs deform when twisting, they cannot be considered as ideal rigid bodies. 

Therefore, the above double pendulum model needs to be fixed. We remodel the problem into a 

supervised training procedure.  

At first, we asked subjects to perform some designated motions, and recorded the ground 

truth. The training motions were designed to be easily followed and were repeated for several 

times. Later on, we compared the estimated results with the ground truth, and calculated 

estimation errors. We tuned the parameters  in equations (3.17) and (3.20) and then 
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recorded estimation errors. Finally, we found the optimal set of  such that the estimation 

error is minimized. 

In this study, subjects were asked to slowly draw a square of length  on a wall, and they 

stopped for a while at each vertex. We then rebuilt the training motions using the algorithms of 

3.2.1.2 and 3.2.1.3 with different parameters . We compared the reconstructed length to  

and found the estimation error. The optimal set  given the minimum error would be used 

in the testing experiments. In summary, we have 

   (3.25) 

where  is the position of the fist for the  vertex of the square. 

It turns out that equation (3.25) is a nonconvex problem, and therefore we exhaustively 

searched a certain range to find the optimal set. Figure 3.7 shows an example of the error versus 

different 
 
of the passive complementary filter for one subject. The minimum error of 

2.72% happens when . For direct complementary filters we have similar 

results and they are also nonconvex problems. Once we found the optimal parameters, we then 

applied them to the testing set, and that completes the training process. 
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Figure 3.7. Training error using Passive complementary filters 

3.2.2 Motion"Reconstruction"Strategies"

In this section we describe how we can reconstruct human motion trajectories with different 

devices and algorithms described in 3.2.1.2, 3.2.1.3 and 3.2.1.4. In this study, we provide three 

methods to track human motions: Integration method, IMU method, and IMU with Kinect 

method. 

3.2.2.1 Integration"Model"

The simplest way to reconstruct motions is through integration of gyro measurements, and by 

combining with human biomechanical model we can track trajectories in the space as described 

in Figure 3.8. This method, as will be shown in the experiment results, suffers from severe drift 

due to numerical integration. Recall from the noisy model of gyro signals (3.9) and the classical 

rotation kinematic (3.14) we can write the estimated orientations using the integration method 
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Figure 3.8. Integration method 

   

 while the true value  estimated form the true gyro data without gyro bias  and zero-mean 

AWGN  is 

 
  

∂
∂t B

VRInt = B
VRInt ⋅ Bω∨,      B

VRInt 0( ) = B
VRInt0   (3.26) 

Notice that here we create another virtual frame , and  tries to transpose vectors 

expressed in the body frame  to this virtual frame . This virtual frame is created since 

for the integration model using only gyro signals, we have no way to know where the true 
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positions of the joints are either in the Earth or Kinect frames. Therefore, this virtual frame is 

created to aid the model to locate the joint positions. The , , and  axes of this frame are 

arbitrarily defined. We define the first orientation of as the identity matrix, which means 

After finding the sensor orientations of the forearm and upper arm , 

from the estimator frame to the Earth frame, we then use equation (3.24) to find the positions of 

the elbow and the fist  in the virtual frame, which serve as the final estimations 

of motion trajectories. 

3.2.2.2 IMU"Model"

In this section, we reconstruct motion trajectories using the accelerometers, gyros and 

magnetometers of the IMU. We first introduce how to find the static orientation using 

accelerometers and magnetometers, and then introduce the whole process of acquiring motion 

trajectories. 

3.2.2.2.1 Static,Orientations,from,Accelerometers,and,Magnetometers,

Ideally, we can acquire the static orientation given we have a set of two nonparallel vectors

. From (3.13) we know 
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However, due to the computational complexity of solving this equation usually a 

suboptimal solution is provided. In this section, we explain how we calculate the static 

orientation of the IMU given accelerometer and magnetometer measurements.  
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Recall the definitions of frames of reference in 3.2.1.1: 

 
E{ } : Earth frame of reference 

 
B{ } : Body frame of reference 

 Ag  : Normalized ideal gravity in Earth fame when the sensor is not moving 

 Bg : Normalized ideal gravity in body frame when the sensor is not moving 

 Am : Normalized ideal magnet in Earth frame when the sensor is not moving 

 Bm : Normalized ideal magnet in body frame when the sensor is not moving  

We want to know  B
AR , which is the orientation from the body to Earth frames, such that 

 

 

A
g =

B
AR

B
g

A
m =

B
AR

B
m

  

Since we use the NED (north east down) coordinate system, in the Earth frame we have 

 

  

A
g =

B
AR

B
g = e

3
= 0 0 1⎡⎣ ⎤⎦

T

A
m =

B
AR

B
m = e

1
= 1 0 0⎡⎣ ⎤⎦

T
 

where  ei
 is the standard basis vector of   3 .  Since   e3

× e
1
= e

2
, and from the knowledge of the 

cross product of vectors  under matrix transformation   

   

we have 

  a,b  M

Ma( )× Mb( ) = det M( )M −T a × b( )
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e
2
=

A
g ×

A
m

=
B
AR

B
g ×

B
AR

B
m

= det
B
AR( ) B

AR−T
B
g ×

B
m( )

=
B
AR

B
g ×

B
m( )

  (3.27) 

Finally, we have  
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which indicates 

 
  B
AR =

B
m

B
g ×

B
m

B
g⎡

⎣
⎤
⎦
−1

  (3.28) 

Since the accelerometer and magnetometer measurements are noisy, we perform another 

cross product of the second and the third column vector of (3.28) to ensure the estimated rotation 

matrix is orthogonal. Therefore, we have our final estimate of the static orientation 
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 (3.29) 

The reason we modify the first vector of 
  E
AR̂

IMU,s
 is that generally the magnetometer 

measurement is more inaccurate compared to accelerometer readings due to disruption of the 

Earth’s magnetic field due to structures, magnets, and the like.  
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Figure 3.9. Motion reconstruction using IMU 

This static estimate is accurate if the object moves slowly and the measurement error is 

small, that is, in low frequency conditions we have 
  E
AR̂IMU,s ≈ B

AR . 

3.2.2.2.2 Motion,Tracking,Scheme,using,IMU,Model,

After obtaining the static estimate of sensor orientations 
  E
AR̂IMU,s , we then use the passive and 

direct non-linear complementary filters in 3.2.1.2 to find out the estimated rotation of the upper 

arm and forearm from the estimated frame to the Earth frame for the direct 
  

E
AR̂IMU,U

D , E
AR̂IMU,F

D( )  

and passive 
  

E
AR̂IMU,U

P , E
AR̂IMU,F

P( )  complementary filters respectively. We then use the 
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biomechanical model in 3.2.1.3, and parameter optimization in 3.2.1.4 to find the final elbow and 

fist position in the Earth frame 
  

AP̂IMU,W , AP̂IMU,F( )  respectively. The whole model can is 

described in Figure 3.9. 

3.2.2.3 Kinect"and"IMU"Model"

Since measurements form magnetometers get severely distorted when indoors, the idea of using 

such a model of heterogeneous sensors is to try to replace magnetometer readings by Kinect data, 

when available. In this section, we reconstruct motion trajectories using accelerometers, gyros 

and the Kinect. We first introduce how to find the static orientation using accelerometers and the 

Kinect, and then introduce the whole process of acquiring motion trajectories. 

3.2.2.3.1 Static,Orientations,from,Accelerometers,and,Kinect,

In finding the rotation between the body frame of reference  and the Kinect frame of 

reference , from the definition of 3.2.1.1 recall: 

  

Recall the Kinect axes definition in Figure 3.1 with  frame and the bone vector  being 

marked. In this frame of reference we have 
  K

g = 0 −1 0⎡
⎣

⎤
⎦
T

 
pointing to the negative   

 
B{ }

 
K{ }

  

K{ } : Kinect frame of reference

B{ } :  Body frame of reference

K
g : Normalized ideal gravity in Kinect frame when the sensor is not moving

B
g : Normalized ideal gravity in body frame when the sensor is not moving

K
b :  Normalized bone (limb) pointing outward in Kinect frame

B
b :  Normalized bone (limb) pointing outward in body frame

 
B{ }  b

y
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Kg = B
KRBg

Kb = B
KRBb

 

 

Figure 3.1. Kinect axes definition 

direction of Kinect frame
 

(notice difference between 
  A
g = 0 0 1⎡

⎣
⎤
⎦
T

 and 

  K
g = 0 −1 0⎡

⎣
⎤
⎦
T

); and since the bone is aligned with the plus  of body frame, we have 

  B
b = 0 1 0⎡

⎣
⎤
⎦
T

 in the body frame.  

We want to find  B
KR , which is the relationship between frames of reference  and 

, such that 

 

K
g =

B
KR

B
g

K
b =

B
KR

B
b

 

 

y-axis

K{ }

B{ }

    
B{ }

 
K{ }

 b
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Figure 3.10. Relationship between frames of reference 

In order to solve this problem, we introduce a virtual transition frame of reference, named 

. This transition frame has the  aligned with the  of  but the x and z-axis 

may not align with those of the body frame of reference.  is transformed from  with a 

rotation . As shown in Figure 3.10, the frame  can be transformed to the frame  via 

another rotation . Therefore, for any vector , we have 

   Ba = T
BR2 K

TR1  

Thus 

 .  

We solve this problem in 2 stages 

• Stage 1 rotates  frame to  frame through the rotation matrix , thus 

transforms  into , and since the  of  and  frames are aligned, we  

T{ } y-axis y-axis B{ }

 
T{ }  

K{ }

  K
TR

1  
T{ }  

B{ }

  T
BR

2    a ∈3

  B
KR =

T
BR

2 K
TR

1( )T

 
K{ }  

T{ }   K
TR

1

 Kb  Tb   y -axis
 
T{ }  

B{ }
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Figure 3.11. Stage 1 of rotating Bb to Kb  

have . Therefore we have , which means  is a matrix that 

rotates  to .  

• Stage 2 rotates the along the  of  to  using rotation , so we have 

   (3.30) 

And since the  of  is aligned with that of , we also have 

   (3.31) 

From (3.30) and (3.31), and knowing that  and  are not parallel to each other, we 

conclude that the transpose of the multiplication of   T
BR

2
 and   K

TR
1
 is the desired orientation of the 

limb, which is 

   (3.32) 

Below is the detailed explanation of what is being done. 

 Bb =
T
b   Bb =

T
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K
TR

1 K
b   K

TR
1

 Bb  Kb
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2 K
TR

1 K
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  y -axis
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2 K
TR

1 K
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T
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K
TR

1 K
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 g  p

  B
KR =

T
BR

2 K
TR

1( )T

  Axis of ration a

 Angle of ration

  Bb = 0 1 0⎡⎣ ⎤⎦
T
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Stage 1 

In stage 1  rotates  to . This can be shown in the Figure 3.11. 

The axis of rotation  is found from cross product of  and , and the angle of 

rotation is found using dot product of these two vectors as follows 

   

We transform this axis-angle representation into rotation matrix  using 

   (3.33) 

Stage 2 

In stage 2 we rotate the  of  such that the  and  axes of the rotated frame 

are parallel to those of  using matrix . Since  is a rotation along the , we can 

write  as  

   (3.34)  

  K
TR

1  Bb  Kb

 a  Kb  Bb

  

a =
B
b ×

K
b

θ = cos−1 B
b ⋅

K
b

B
b

K
b

⎛

⎝
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⎞

⎠
⎟⎟
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TR

1

  

K
TR

1
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cosθ + a
x
2 1 − cosθ( ) a

x
a

y
1 − cosθ( ) − a

z
sinθ a

x
a

z
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y
sinθ

a
y
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x
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z
sinθ cosθ + a

y
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y
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z
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z
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⎥
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where  is some rotating angle. We find the angle  such that the norm the difference between 

 and the rotated  is minimized, which means we have  

   

We solve this problem using an exhaustive search. The final static estimate of the 

orientation is then shown by (3.32). 

Given we have noisy accelerometer and Kinect signals, in estimating the static rotation 

from the body  to Kinect  frames, we assume the following 

   

This assumption indicates that we use the accelerometer reading   as the indication of 

gravity, and the relative direction of the   joint to the  point, which is the difference 

between positions reported by the Kinect , as the direction of the limb. By following 

the method described above, by equation (3.32) we have the final static estimation using the 

accelerometer and Kinect as 

   (3.35) 

φ φ∗

 K g  Bg

  
φ∗ = argmin

φ∈ −π π⎡⎣ ) T
BR

2 K
TR

1 B
g −

K
g

 
B{ }  

K{ }

  

K
g = 0 −1 0⎡⎣ ⎤⎦

T

B
g = B

â

B
â

K
b = K

p̂
i+1 − K

p̂
i

K
p̂

i+1 − K
p̂

i

B
b = 0 1 0⎡⎣ ⎤⎦

T

  Bâ

  i
th

  i + 1th

  K p̂
i+1 − K

p̂
i

  E
KR̂

KINECT,s
=

T
ER̂

2 K
TR̂

1( )T
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Figure 3.12. Motion reconstruction using Kinect and IMU 

where and are acquired from  (3.33) and(3.34) respectively. 

3.2.2.3.2 Motion,Tracking,Scheme,using,Kinect,and,IMU,Model,

After obtaining the static estimate of sensor orientations , we then use the 

passive and direct non-linear complementary filters in 3.2.1.2 to find the estimated orientation of 

the upper arm and forearm from the estimated frame to the Kinect frame for the direct 

complementary filter  and for the passive complementary filter 

 respectively. We then use the biomechanical model in 3.2.1.3, and  

  K
TR̂

1   T
ER̂

2

  E
KR̂

KINECT,s

  E
AR̂

KINECT,U
D ,

E
AR̂

KINECT,F
D( )

  E
KR̂

KINECT,U
P ,

E
KR̂

KINECT,F
P( )
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Table 3.2. Comparison of models 

Models Devices Frames 

estimated 

Pros Cons 

Integration Gyro Virtual frame 

  

Only one type of sensor 

needed 

Portable sensors 

Integration drift 

IMU Accelerometer 

Magnetometer 

Gyro 

Earth frame 

  

Consistent direction 

reference 

Portable sensors 

Magnetometer interference 

when indoor 

Kinect and 

IMU 

Acceletometer 

Gyro 

Kinect 

Kinect frame 

  

Accurate tracking indoors Inconsistent direction 

reference 

Background constraint 

Pose constraint 

Power outlet required 

parameter optimization in 3.2.1.4 to find the final elbow and fist position in the Earth frame 

 respectively. The whole model is described in Figure 3.12 

3.2.2.4 Comparison"of"Models"

In this section we compare the 3 different methods of 3.2.2.1, 3.2.2.2, and 3.2.2.3. Table 3.2 

gives a comparison of these methods. The integration model uses only portable MEMS gyros; 

therefore from the power saving perspective this model is the most energy-saving one. However, 

bias and quantization error from measurements cause severe drifts during integration, so the 

 
V{ }

 
A{ }

 
K{ }

  A
P̂

KINECT,W
,
A
P̂

KINECT,F( )
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integration model can only serve as a short-time solution, provided other kinds of sensors are not 

accessible and other models cannot be used.  

For the IMU model, since we estimate sensor orientations in the Earth frame , the 

estimated orientations are always expressed in a consistent reference, and also all MEMS 

accelerometer, magnetometer and gyros are light-weight and portable, such that the model makes 

the realization of orientation estimation in any place possible. However, by using magnetometers 

to measure Earth’s magnetic direction, we experience severe interference when indoors, which 

provides inaccurate static estimations. 

The third method fuses Kinect and IMU models and uses the Kinect to replace 

magnetometers. Therefore we avoid this interference issue, and additionally the Kinect provides 

accurate joint positions information (given its massive amount of training data). But on the other 

hand, the estimation of orientation is expressed in the Kinect frame of reference , which will 

change if the Kinect is moved, and we do not have a consistent reference. Also, the Kinect is 

very background and pose sensitive, which means the background has to be clean and the subject 

has to face the Kinect before it can recognize joint positions. What is worse, we have to have a 

power outlet for Kinect and thus this solution it not easily portable.  

Starting from the next section we will discuss the relationships between frames of 

reference so we can link different models.  

3.2.3 Coordinate"Transformations"

Now that we have described the methods for finding the trajectories, we show how to link 

different models.  As seen in Table 3.2, each model transforms measurements expressed in the 

 
A{ }

 
K{ }
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body frame  to different frames. Therefore, if we want to fuse different models to improve 

tracking accuracies, we have to first find out how these frames of reference are related. In this 

thesis, we use the Earth frame  as our base frame and try to transform other frames to it. The 

reason to do this is because magnetometers and accelerometers are always available when 

collecting data, and they are used to find the positions in the Earth frame. On the other hand, the 

Kinect usually takes a short period of time to recognize human joints, and when there are 

obstacles blocking the camera, the Kinect signal would not be available. Therefore, by using the 

Earth frame we can have a universal basis frame of reference. We will explain how we can find 

the relationship between the Earth frame and other frames of reference. 

3.2.3.1 Kinect"Frame"to"Earth"Frame"

In the Kinect and IMU model described in 3.2.2.3, we end up having the estimated rotation from 

the estimation frame to the Kinect frame of the upper arm and the forearm using the direct 

complementary filter 
 
and passive complementary

 
filter 

 
respectively. In order to describe these orientations in the Earth frame, 

we must find a transformation  that rotates the orientation from Kinect to Earth frames.  

This estimate transformation  is calculated when both the Kinect and magnetometer 

signals are available, and we wait for a short period of time until Kinect signals are stable then 

start calculating the transformation. When Kinect joint information becomes not available we 

will recalculate the transformation once again after the Kinect signals are regained since the 

Kinect may have been moved. After calculating each transformation at the beginning of Kinect  
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  E
AR̂
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D ,
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K
AR̂
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Figure 3.13. Kinect availability 

available period, we apply this transformation to the rest of the period, which completes the 

transformation of orientations estimated in the Kinect frame to Earth frame. 

Suppose the availability of the Kinect signal versus time is shown in Figure 3.13. From 

this figure we can see that after starting the Kinect we have our first Kinect signal available when 

  t = 2  , then at   t = 5   Kinect is being blocked and thus not available. At   t = 6  we regain the 

Kinect signal for only 0.5 second, then at   t = 7.5  we have the third period of available Kinect 

signal. In this study, we set a calculation threshold   cal _th = p  second, indicating that if the 

time period of available Kinect signal is shorter than this time, we would not calculate   K
AR̂  since 

during this short period of time the Kinect just starts to recognize joints and is not stable. If the 

period of the available Kinect signal is longer than this threshold, we calculate   K
AR̂  within this 

period, and then average the estimate rotation   K
AR̂ . Thus, for this example, where the calculation 
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threshold is set to   cal _th = 1  , we calculate   K
AR̂  twice. The first instance is for   t = 2  to   t = 3 , 

the other is for   t = 7.5  to   t = 8.5 . 

We now explain how this   K
AR̂  is actually calculated. Suppose we have the first 

calculation-start time   t = t
s1

, the first calculation-end time   t = t
ew1

, and the second calculation-

start time   t = t
s2

. We want to calculate the average transformation for the first period from the 

Kinect frame  to the Earth frame , which we call   K
AR̂

1
. The first step of this calculation 

is to find the static orientation estimate of the sensor 
  K
AR̂

KINECT,s
 from the estimate frame  to 

the Kinect frame  during 
  
t = t

s1
,t

e1( )  using equation (3.35),  

   (3.36) 

Also, since magnetometer data is available, we use equation (3.29) to find the static 

orientation estimate of the sensor  from the estimate frame  to the Earth frame  

during  

   (3.37) 

Using (3.36) and (3.37), we can find the relative transformation , 

   (3.38) 

K{ } A{ }
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After finding this relative transformation, we will take the average of it and then apply it 

to the rest of the signal until the next calculation-start time . In finding the average of the 

relative transformation, since the rotation matrix is not continuous we convert the relative 

transformation into quaternions  using 

   

Then we find the average of the quaternion 

   

Finally, we transform the quaternion back to matrix form by 

   

  t = t
s2
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This averaged transformation is then applied to the rest of the Kinect signals to find the 

static orientation of the sensor from estimate frame  to Earth frame  until , which 

is  

   (3.39) 

After we find this static orientation estimate, we replace it with the original static estimate from 

the estimate frame to the Kinect frame , then by following procedures described in 

3.2.2.3.2 we complete the Kinect and IMU motion tracking model.  

3.2.3.2 Virtual"Frame"to"Earth"Frame"

In the integration model described in 3.2.2.1, since there is no static orientation estimate of any 

kind in this model, this model uses the last frame where the accelerometer and 

magnetometer/Kinect is accessible. Then the integration model calculates the relative rotations to 

the last orientation where we have such devices indicating either the Earth frame  or Kinect 

frame .  

3.2.4 Coordinate"weighting"

In this section, we describe how we evaluate the trustworthiness of each model. This is necessary 

when we fuse different models to acquire more accurate tracking results. By knowing how 

trustworthy certain methods are we can determine which models we prefer when fusing them.   
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3.2.4.1 Trustworthiness"of"Kinect"and"IMU"Model"

From [23], we know that every joint has a tracking state, where “tracked” means the joint 

is clearly visible; “inferred” when it is not clearly visible and being inferred by the Kinect; “non-

tracked” when it is not tracked. In this study, we use this tracking state as the indication whether 

to use the Kinect and IMU model described in 3.2.2.3. In our study, since the sampling rates for 

heterogeneous sensors need not to be the same, we re-interpolate not only the collected Kinect 

data, but also the trustworthiness. After we re-interpolate the trustworthiness of the Kinect signal, 

we then define a threshold. The joint position is inferred when its trustworthiness is below this 

threshold, and tracked if above the threshold. Figure 3.14 shows an example of the X, Y, and Z 

data of the collected Kinect signals for the right wrist, while the solid lines represent the tracked 

positions, and the dotted lines the inferred positions. Figure 3.15 shows the trustworthiness of the 

Kinect signal for the right wrist, where the decision threshold is set to 0.5. From Figure 3.15 we 

can see that we have the first tracked Kinect right wrist positions starting from  and 

ending at , the second tracked signal from  to , with a short drop to 

inferred signals at . The third tracked signal starts from  to .  

Notice that this trustworthiness of Kinect position is equivalent to the availability of the 

Kinect signal mentioned in 3.2.3.1, where we use the period within the calculation threshold after 

each rising edge to calculate the relative transformation from Kinect frame  to Earth frame 

. 
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Figure 3.14. Kinect collected signals for the right wrist with tracking status 

 

Figure 3.15. Trustworthiness (interpolated) of Kinect signals for the right wrist  
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3.2.4.2 Trustworthiness"of"IMU"Model"

The trustworthiness of the IMU model measures how much we prefer this model and use it to 

track joint motions.  

Ideally, if we have the perfect measurement of accelerometers while the subject is not 

moving, with no external force applied to the sensor the collected data should reflect the 

direction of gravity only. Therefore, if you move the accelerometer around this reflection of 

gravity should be scattered around a sphere centered at the origin and with radius around 

. However, since the subject applies forces to the sensor when moving, and given the 

measurement is noisy, the data actually collected will be scattered around a sphere that is not 

centered at the origin, with various distances different from . Similarly for the 

magnetometer given we have interference, the measurement will not be scattered around a sphere 

centered at the origin.  

In this study, given accelerometer and magnetometer collected data we first find a best-fit 

sphere, then with the center and the radius of that sphere we normalize the collected data. After 

that, by comparing the distance of collected data to the origin we define a curve mapping this 

distance to trustworthiness, which completes the whole procedure. The detailed explanation is 

given below. 

In the first step we find the best fit sphere given noisy accelerometer and magnetometer 

measurements. Suppose the we have a total of  measurements, and the  measurement of the

, ,  components of the accelerometer data is expressed as 
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The center of the best-fit sphere  is acquired using a closed form 

for the solution 

   (3.40) 

According to [84] this can be done by first defining an auxiliary matrix , a vector , 

and a scalar    

 

where   is the expected value of a random variable. The center of the best-fit sphere is then 

given by 

   (3.41) 

and the radius of the best-fit sphere  R
∗  is given by  

 
  
R∗ =

B
â

Xi
−C

X
∗( )2 + B

â
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Once we find the center and the radius of the best-fit sphere, we then normalize the noisy 

measurement by 

 
  
B
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T

 (3.43) 

By following the similar procedure we can find the normalized magnetometer data .  

Figure 3.16 and Figure 3.17 show the normalized measurements and the fest-fit sphere for 

accelerometer and magnetometer data respectively. 

After having the normalized measurements, we find the distances of them to the origin. 

The distances are expressed as the norms of the measurements  and   for 

accelerometer and magnetometer data respectively. If the distance equals 1, it means that the 

measurement falls on the best-fit sphere, and we say at this moment we have a good 

measurement, and we are more in favor of using the IMU model described in 3.2.2.2; if the 

distance is smaller or larger than 1, then we decrease our trustworthiness following some 

functions. In our study, we set the trustworthiness of IMU model to 1 to infer that we are very 

confident of using this model, and 0 to infer that we do not use the model. The function 

calculating the trustworthiness is defined in the following way 

   (3.44)  

where  are some parameters we have previously defined. Figure 3.18 shows this model.  

B ′m

da = B ˆ′a dm = B ′m̂

T d( ) =
e−λ1 d−1( ),             d ≥1

eλ2t+b − eb ,          0 ≤ d <1

⎧
⎨
⎪

⎩⎪

λ1,λ2,b
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This function transforms the distances of the normalized measurements to the 

trustworthiness of the IMU model of estimating joint motions. Once both the trustworthiness of 

the accelerometer and the magnetometer are calculated, we multiply them to form the final 

trustworthiness. 
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Figure 3.16. Accelerometer sphere 



 

116 

 

Figure 3.17. Magnetometer sphere

 

Figure 3.18. Trustworthiness of IMU model 
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Figure 3.19. Coordinate fusion 

3.2.5 Coordinate"Fusion"

After we know how to reconstruct human motions using different methods as described in 3.2.2, 

how to link each model so that they can all expressed in the Earth frame in 3.2.3, and how to 

weight each method in 3.2.4, we are ready to fuse all models together and have the final 

algorithm as shown in Figure 3.19. 

At first, we have the measurements from various sensors 

  .  
simn m = 1,2,,K{ },n = 1,2,,Nm{ }{ }
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The index  means that we have a total of  models finding motion trajectories, and index  

means that for the model  there are  sensor measurements fed to the motion reconstruction 

algorithm  m  .  

For each set of sensor data , we develop a motion reconstruction algorithm to find out 

the reconstructed  joint positions  

   

 which are expressed in the frame of reference  . These estimated positions are then 

transformed to a basis frame of reference  using  

 
   Z

p̂
mj{ } = Fm

ZR̂
Fm

p̂
mj{ }      j = 1,2,,L  

so that every estimated position from all motion reconstruction algorithms is expressed in the 

same frame of reference.   

After we expressed estimated positions in the same frame , we find the 

trustworthiness for each model  

  

We also define a set of prior multipliers  

  . 

This set of prior multipliers defines our confidence regarding the environments and conditions 

under which the different motion reconstruction algorithms are operating. For example, in using  

m K n

m Nm

m

L

 Fm
p̂mj{ },          j = 1,2,,L

Fm

Z{ }

Z{ }

 Tj ,          j = 1,2,,K

 α j ,          j = 1,2,,K
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Figure 3.20. Final design flow 

the IMU model indoor we would decrease the prior multiplier corresponding to the IMU model, 

since we know that the magnetometers are generally not accurate when indoors.  

The final estimate of joint positions in the base frame  is then expressed as 

   (3.45) 

The condition  in equation (3.45) ensures that the final estimated positions are 

normalized.  

Equation (3.45) and Figure 3.19 describe the most general case of how we can fuse 

different models and frames of reference to track human motions in a more accurate way. In this 

study, we have three ways of motion tracking, which are the integration model in 3.2.2.1, IMU 

model in 3.2.2.2, and Kinect and IMU model in 3.2.2.3. By combining these three models and 

specializing the general model in Figure 3.19, we end up with the final design flow in Figure 

3.20. In this figure, we first examine if the Kinect trustworthiness is high enough; if yes then we 

Z{ }

 
Z pj{ } = α iTi Z pij{ }

i=1

K

∑ ,         α iTi
i=1

K

∑ = 1,  j = 1,2,,L

α iTi
i=1

K

∑ = 1
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will use the Kinect and IMU model. This is achieved by setting the prior multiplier  

corresponding to Kinect and IMU model high relative to multipliers corresponding to the IMU 

and integration models in equation (3.45). If the trustworthiness of the Kinect is not high enough, 

we use the IMU model to estimate motions, which occurs in equation (3.45) by setting the 

multiplier of IMU model higher than that of integration model. In this study, we use Earth frame 

of reference  as the base frame, and thus every estimate of trajectory is expressed in NED 

base.  

3.3 Experiments"and"Simulations"

In this study, for motion reconstruction we did several types of experiments, which can be 

categorized into 3 parts. The first part was done outside, where we have good magnetometer 

measurements. In this part we want to show that the use of complementary filters, which 

combines high frequency part of gyro and low frequency part of magnetometer and 

accelerometer, achieves higher accuracy than using them alone. The second part was done 

indoors, where we have the Kinect to measure joint positions but the magnetometer 

measurements are assumed to be inaccurate. In this part we want to show that by using the 

Kinect to replace the magnetometer indoors we can more accurately track joint motions. The 

third part simulates the time when Kinect data are sometimes unavailable, and we use the 

coordinate fused model described in 0 to overcome this.  

We begin by introducing the devices used for this study, the different types of 

experiments performed, and the reconstruction error calculations. We then discuss the 

experiments. 

 α i

 
A{ }
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3.3.1 Devices"

We used Sparkfun 9 degrees of freedom IMU sensor chips [85] and the Microsoft Kinect (see 

3.2.1.1.3.4) for the experiments. These Sparkfun sensors consist of a tri-axial accelerometer (see 

3.2.1.1.3.1), gyro (see 3.2.1.1.3.2), and magnetometer (see 3.2.1.1.3.3). The sensors have a 

sampling rate of 50 Hz and the Kinect has a sampling rate of between 15-30 Hz. Since the 

sampling rates for the Kinect and IMU are different, and they are not synchronized to each other 

when doing experiments, we synchronize and re-interpolate the collected data to 50 Hz after 

collecting them. These two sensors were placed on the subject's right arm using adjustable velcro 

straps, shown in Figure 3.21: one was placed in the middle of the forearm and the other was 

placed in the middle of the upper arm. Since there are no handshake communications between 2 

sensors mounted in the upper arm and the forearm, when doing experiments we asked the subject 

to lift his/her heels and hit them hard to the ground for several times to make significant 

signatures in the collected signals which helped us to align the measured data.  

As for Kinect setup, since the best detection range for the Kinect is from 1.8 to 2.4 meters 

[23], we placed the Kinect 2 meters in front of the subject. When turned on, the Kinect will 

record 20 joint positions and write them into a log file. We asked the subject to lift his/her arms 

before and after doing experiments to serve as significant signatures both in Kinect and sensor 

data. We then align the data sets. 

3.3.2 Performed"Experiment"Types"

The general process of each experiment consists of training and testing procedures. During the 

training procedure, the subject was asked to draw a square for 3 times. This square drawing  
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Figure 3.21. Sensor placement 

procedure was used to find the best set of parameters, which would be used in the testing 

procedure as described in 3.2.1.4. In the training procedure there were 5 possible experiments 

performed in each part, which are square, triangle, bookshelf tapping, bookshelf sliding, and 

vertical arm-swing experiments. These 5 experiments are described below. 
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Figure 3.22. Drawn square 

 

 

Figure 3.23. Drawn triangle 

 

3.3.2.1.1 Square,and,Triangle,Experiments,(Shape,Drawing),

In the square experiment, we placed a square of length 20 inches in front of the subject. The 

subject was asked to follow the sides of a clearly marked square in the clockwise direction for 10 

times while we recorded sensor data. The subject stood around 20 inches in front of the square so 

that when the arm was moved the shoulder was stationary. Each shape took no more than 5 

seconds to complete, and during the experiment, we did not instruct subjects how to draw, that is, 

how the subject bent and twisted the arm. Figure 3.22 shows the drawn squares.   

For the triangle experiments, the subject was asked to draw a triangle of height 20 inches, 

and also repeated for 10 times. All other settings are the same as those of the square experiment. 

Figure 3.23 shows the triangle.  
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Figure 3.24. Bookshelf reaching shape, red starts indicating vertices to be touched 

3.3.2.1.2 BookMreaching,experiments,

To simulate a more lifelike activity like reaching for a book on a bookshelf, we performed two 

experiments that involved sliding and tapping of the subject's hand using the square shape as a 

template. We partitioned the square of side length 20 inches into a 3x3 array and the subject 

would tap each vertex in the array. These actions were repeated for 10 times, and then we 

calculate the distances of the estimated vertex positions versus the ground truth. The shape is 

illustrated in Figure 3.24.  
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Figure 3.25. Vertical arm swing shape 

3.3.2.1.3 Vertical,ArmMswing,Experiments,(Arm,Lifting),

Lastly, to simulate how high a subject could reach with our experimental setup, we performed an 

arm raising experiment where the subject would raise their arm vertically upwards so that they 

trace out a half circle with their arm as the radius of the circle. During this experiment, the 

subject’s arm was kept straight and each arm swing took no more than 3 seconds to complete. 

Figure 3.25 shows such patterns. 

3.3.2.2 Error"Measurements"

We define two error measures: the best-fit shape error, and the length-estimation error.  

3.3.2.2.1 BestMfit,Shape,Error,

In the best-shape error, for each kind of shape we use the reconstructed vertices to define the 

corresponding ground truth shape. For example, in the square experiments, for each time after 

we draw a square there would be 4 reconstructed vertices. We then find the best-fit square given 

those 4 vertices such that the total distance of the reconstructed vertices to the vertices of the 
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best-fit square is minimized. In the vertical arm-swing experiment, we first calculate the range of 

angles through which the subject’s arm has swung. We then took the mean of that range of 

angles as the mid-angle, then plus and minus 90 degrees. The arc defined by these 180 degrees is 

the best-fit arc. Figure 3.26, Figure 3.27, and Figure 3.28 illustrate these best-fit shapes for 

squares, triangles, and vertical arcs respectively. After we found the best-fit shape, we calculated 

the closest distances from reconstructed paths (green curves) to the best-fit shape. 

We did not define the best-fit shape error for book-reaching experiments.  
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Figure 3.26. Reconstructed and best-fit square 

 

Figure 3.27. Reconstructed and best-fit triangle 
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Figure 3.28. Reconstructed and best-fit vertical arc 

3.3.2.2.2 Length,Estimation,Error,

In length-estimation error, we calculated the length of each side of reconstructed pattern, and 

compared them to the ground truth. In the square and triangle experiments, we calculated the 

edges linked by reconstructed vertices and compared them to the true length of the shape as 

described in Figure 3.26 and Figure 3.27. For example, in Figure 3.29, the edges connected by 

reconstructed vertices are 18.0, 19.7, 15.5, and 17.6 inches, where the true length of the square is 

20 inches, and therefore we have the sum of absolute error of 9.2 inches, or 11.4% of error. For 

the triangle, in Figure 3.30, the edges connected by reconstructed vertices are 19.3, 22.1, and 

23.4 inches, where the true length of the square is  inches, and therefore we have the sum 

of absolute error of 5.1 inches, or 7% of error.  

 40 3
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For the sliding and tapping book-reaching experiment, we calculated the distance of 

adjacent reconstructed vertices. Since there are 9 vertices, we calculated 6 horizontal and 6 

vertical distances as shown in Figure 3.31. As shown in Figure 3.31, the edges formed by 

adjacent vertices are of lengths ranging from 7.4 inches to 14.7 inches, where the true length is 

10 inches, and therefore we have the sum of absolute error of 18.9 inches, or 15.7% error.  

For vertical arc-swing experiments, we calculated the range of angles that the subject’s 

arm had swung. As shown in Figure 3.32, this subject had swung 177.5 degrees, where the true 

range of the arc is 180 degrees, and therefore we have the absolute error of 2.5 degrees, or 1.4% 

of error.  
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Figure 3.29. Reconstructed square and estimated length 

 

Figure 3.30. Reconstructed triangle and estimated length 
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Figure 3.31. Reconstructed book reaching and ground truth length 

 

Figure 3.32. Reconstructed vertical arm swing and estimated angle 
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Figure 3.33. Experiment setup when outdoor 

3.3.3 Experiment"Part"1"–"Outdoor"Experiments"

In this part, the experiments were done outside, where good magnetometer measurements were 

available. We used the Sparkfun 9DoF IMU chip with sampling rate 50 Hz. Two sensors were 

placed in the middle of the upper arm and the forearm as depicted in Figure 3.6. Twelve subjects 

participated in the experiments. We did three types of experiments in this part. The setup of this 

part of the experiments is shown in Figure 3.33. In this figure, the subject was standing about 20 

inches in front of the shape, while the shape was created using tape and posterboard. There was a 

computer next to the subject to collect sensor data, which are transmitted via Bluetooth. Since 

the sampling rates of the two sensors were not exactly the same, and the clocks were not 
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synchronized, the subject was asked to raise his/her heels and hit them hard on the ground. This 

produced significant signals in the accelerometer measurements so later on we can synchronize 

signals from the sensors. The subject was asked to do the heel-strike actions before and after the 

whole experiment. In each experiment, the subject drew the 20’ x 20’ square for 3 times first, 

which served as the training procedure to find the optimal parameters for complementary filters 

as in 3.2.1.4. Then the subject would do the designated experiments 10 times, which completed 

the whole experiment process. 

In the first experiment subjects drew squares and triangles on a wall. The shape of 

squares and triangles are described in Figure 3.22 and Figure 3.23. Each shape took no more than 

5 seconds to complete and was repeated for 10 times.  

The second experiment was conducted to simulate reaching for and grasping books. In 

this experiment we portioned a 20’ by 20’ square hanging on a wall into a  array as 

described in Figure 3.24. Then we tapped each point 10 times to simulate patients taking books 

out of a shelf.  

In the third experiment, the subjects were asked to perform 10 rotations around their 

shoulders from bottom to top for 10 times. This vertical arc is depicted in Figure 3.25. 

After the experiments, we used the combination of non-linear complementary filters 

(direct and passive type), human biomechanical models, and parameter optimization of 

complementary filters to process the data, as described in 3.2.2.2.  

 

 

 3 × 3
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3.3.4 Experiment"Part"2"–"Indoor"Experiments"

For this part of experiment, we continued to use the Sparkfun sensors but added the Microsoft 

Kinect as a way to increase the accuracy of our results, since there is severe interference of 

magnetometer measurements in many indoor settings. There were a total of ten subjects who 

participated in our experiments.  

To see whether or not our choice of incorporating the Kinect as a means of making 

measurements and collecting data was accurate, we performed several experiments. The setup of 

our experiments is shown in Figure 3.34.  

The frame was constructed using PVC pipes for stability and consistency in the 

experimental setup. This setup enables a thin, hanging shape in front of the subject which gives 

us an accurate ground truth; in addition, because the shape was thin enough, it would not block 

the Kinect's ability to recognize joint positions. We fastened threads to our shape in order to 

suspend it through holes in the PVC pipes and used velcro to hold the wires in place during the 

experiment. These wires not only helped us assemble and disassemble the experiment quickly, 

but also allowed for easy adjustment of the height of the shape corresponding to the subject’s 

height. The subject would extend their arm forward and parallel to the ground with their fist 

clenched, and we would adjust the height of the shape so that the subject's fist was in the center 

of the shape. This is necessary because we need to make sure that the subjects do not move their 

shoulders. We placed the Kinect on a movable cart 2 meters in front of the subject and facing 

away from the door so that it would not accidentally record other skeletons of passersby. We 

attached two 9DoF sensors to the subject’s right arm in a similar fashion as shown in Figure 3.34 

using adjustable velcro straps. 
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Figure 3.34. Experiment setup when indoor 

Using the setup shown in Figure 3.34, we had the subject first perform signature and 

training motions before performing any of the experiments: three heel strikes, one arm raise, and 

three square traces. The arm raise was performed by having the subject raise and three square 

traces. The arm raise was performed by having the subject raise their arm vertically upward from 
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their side which traces a half circle in the air with their arm acting as the radius of the circle (See 

Figure 3.25 for more details). The three square traces are performed by having the subject trace 

the square with their hand in a fist in a clockwise fashion starting with the upper left corner, as 

shown in Figure 3.22. 

Because the sensors did not start collecting data at the same time, the three heel strikes 

are a way to sharply disrupt the sensor data so we know exactly how to align the signals later, as 

was the case in the previous section. The arm raise was used so that we can align the sensor data 

with the Kinect’s data since a heel strike is not clearly visible from the Kinect’s point of view. 

Lastly, the square traces are used as training in order to find the best filter parameters of the 

complementary filters as in 3.2.1.4. 

Similarly to the previous section, we performed three experiments after the completion of 

the motion signatures: shape tracing, tapping, and arm-raising. The experiments were performed 

in the same way as before, but we added the Kinect to collect 3D motion data in addition to the 

IMU's and we used a new experimental location and setup. This section focuses on the 

differences and additions that were necessary as we introduced the Kinect into our data 

collection methods. 

 First, we performed the shape tracing experiment using a square with a side length of 20 

inches and the triangle with a height of 20 inches. The subject would trace the shape for a total of 

ten times, pausing at each corner for about one second. 

To simulate a more lifelike activity like reaching for a book on a bookshelf, we 

performed an experiment that involved tapping of the subject's hand using the square shape as a 

template. The positions of the taps are shown in Figure 3.24. We partitioned the square into a 
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3x3 array and the subject would tap each vertex in the array. This is repeated for 10 rounds for a 

total of 90 taps. 

Lastly, to simulate how high a subject could reach with our experimental setup, we 

performed an arm raising experiment where the subject would raise their arm vertically upwards 

so that they trace out a half circle with their arm as the radius of the circle. This shape is shown 

in Figure 3.25. Likewise, the subjects kept their arm straight during this experiment. 

There were several differences between these experiments and the experiments from the 

previous section. For instance, while using the Kinect, if the subject performed the experiment 

too quickly, the Kinect had difficulty in keeping up with the subject. In other words, if the 

movements were too fast, the Kinect could not detect the subject's arm as easily and there would 

sometimes be a delay between the Kinect and the person's actual arm movement. This was a 

problem that was especially apparent in the arm raise experiment. To remedy this, we made sure 

that the subject did not perform the experiment too quickly. Another difference is that we needed 

to perform more arm raising motion signatures to make sure we aligned the IMU data with the 

Kinect properly. Lastly, the experimental design and environment were different.  

3.3.5 Experiment"Part"3"–"Coordinate"Fusion"

The third part of the experiment was conducted to verify our coordinate fusion algorithm 

described in 3.2.5. We used our current pool of experimental data collected in 3.4.1 to simulate 

situations where our algorithm would switch to a different model to analyze the data. There are 

two motivations for improving our previous Kinect model and for creating and testing the fused 

model. First, the magnetometer was very noisy especially indoors where there can be large 

amounts of interference contained in a room. Second, sometimes the Kinect cannot always 
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determine the joints of the subject, which results in inferred joint positions. Finally, the Kinect 

did not perform optimally in the outdoor environment. Therefore, our goal for this simulated 

experiment was to determine whether or not our algorithm was working properly when the 

environment suddenly changed, i.e., how well it would switch models according to the 

trustworthiness described in 3.2.4. 

To test the trustworthiness of the Kinect, rather than designing a physical experiment, we 

simulated the results of the square, triangle, and arm raising experiments by randomly destroying 

a certain percent of the Kinect's data using our previous data, and set the trustworthiness to 0. 

These three experiments are described in previous sections. We corrupted the Kinect data in 

steps of 10% starting from 0% to 100% and examined the error between our reconstruction and 

the ground truth. Figure 3.35 and Figure 3.36 illustrate the corrupted Kinect signals of right 

elbow for different percentages and the trustworthiness respectively. 
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Figure 3.35. Corrupted Kinect signals for different percentages 
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Figure 3.36. Corrupted Kinect trustworthiness for different percentages 
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3.4 Results"

3.4.1 Experiment"Part"1"–"Outdoor"Experiments"

This section shows the results of indoor reconstruction using the IMU model described in 3.2.2.2. 

Table 3.3 and Table 3.4 show the mean and variance of distances to the best-fit shape for square, 

triangle, and vertical arm-swing experiments respectively. Table 3.5 and Table 3.6 show the 

mean and variance of percentages of length-estimation error of square, triangle, book reaching, 

and vertical arm-swing experiments respectively. 

The results of 3D motion reconstruction of the fist are shown from Figure 3.37 to Figure 

3.39. We show total of 6 reconstructed trajectories using different methods, which are the Kinect 

raw data, static model using the accelerometer and the magnetometer, direct integration using the 

gyro signal (dynamic models), the direct filter, and the passive filter. For the first experiment of 

square and triangle plotting, Figure 3.37 show the 3-dimensional motion reconstruction of the 

fist movements. Figure 3.38 shows the reconstructed trajectories of triangle-drawing experiments. 

Figure 3.39 shows the reconstructed result of book-reaching experiments, and finally Figure 3.40 

shows the reconstructed result of vertical arm-swing experiments. 
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Table 3.3. Mean of distances to best-fit shape of outdoor experiments (inches) 

Experiments Static Dynamic Passive Direct 

Square arc 4.49 10.78 4.31 4.25 

Triangle 7.60 12.48 7.12 7.23 

Vertical arc 7.39 9.24 5.94 5.97 

 

 

 

Table 3.4. Variance of distances to best-fit shape of outdoor experiments (inches) 

Experiments Static Dynamic Passive Direct 

Square arc 1.60 4.19 1.70 1.73 

Triangle 4.75 4.91 4.10 4.39 

Vertical arc 1.74 2.54 1.36 1.41 

 

 

 



 

143 

 

 

Table 3.5. Mean of percentage of length-estimation error of outdoor experiments (%) 

Experiments Static Dynamic Passive Direct 

Square arc 10.66 30.47 6.28 5.27 

Triangle 10.37 27.17 6.41 5.86 

Reaching 17.79 38.86 12.05 13.01 

Vertical arc 16.11 21.69 10.42 5.56 

 

 

 

Table 3.6. Variance of percentage of length-estimation error of outdoor experiments (%) 

Experiments Static Dynamic Passive Direct 

Square arc 0.88 4.84 0.43 0.35 

Triangle 0.05 1.90 0.01 0.01 

Reaching 4.36 5.18 3.27 4.28 

Vertical arc 2.13 4.01 0.16 0.13 
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Figure 3.37. Reconstruction of square drawing of outdoor experiments, ground truths are shown 

in black curves 
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Figure 3.38. Reconstruction of triangle drawing of outdoor experiments, ground truths are shown 

in black curves 
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Figure 3.39. Reconstruction of book reaching of outdoor experiments, ground truths are shown in 

black stars 
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Figure 3.40. Reconstruction of vertical arm swing of outdoor experiments, ground truths are 

shown in black curves 
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3.4.2 Experiment"Part"2"–"Indoor"Experiments"

This section shows the results of indoor reconstruction results using the Kinect and IMU model 

described in 3.2.2.3. Table 3.7 and Table 3.8 show the mean and variance of distances to the 

best-fit shape for square, triangle, and vertical arm-swing experiments respectively. Table 3.9 

and Table 3.10 show the mean and variance of percentages of length-estimation error of square, 

triangle, and vertical arm-swing experiments respectively. These figures show the static result 

using the magnetometer and accelerometer, Kinect only, Kinect and accelerometer, dynamic 

model using gyro, and complementary filtered result (passive and direct).  

The results of 3D motion reconstruction of the fist are shown from Figure 3.41 to Figure 

3.43. We show a total of 6 reconstructed trajectories using different methods, which are the 

Kinect raw data, static model using the accelerometer and the magnetometer (ACC+MAG), 

static model using the accelerometer and the Kinect (ACC+KIN), direct integration using the 

gyro signal (Dynamic models), the direct filter, and the passive filter. For the first experiment of 

square and triangle plotting, Figure 3.41 shows the 3-dimensional motion reconstruction of the 

fist movements. Figure 3.42 shows the reconstructed trajectories of triangle-drawing experiments, 

and Figure 3.43 shows the reconstructed result of vertical arm-swing experiments. 
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Table 3.7. Mean of distances to best-fit shape of indoor experiments (inches) 

Experiments 
Static 

(M+A) 

Static 

(K) 

Static 

(K+A) 

Dynamic 

(G) 

Passive 

(K+A+G) 

Direct 

(K+A+G) 

Square  1.33 0.76 0.41 1.04 0.34 0.33 

Triangle 1.34 0.78 0.37 1.06 0.36 0.35 

Vertical arc 1.77 0.95 1.19 0.94 1.02 1.19 

 

 

 

Table 3.8. Variance of distances to best-fit shape of indoor experiments (inches) 

Experiments 
Static 

(M+A) 

Static 

(K) 

Static 

(K+A) 

Dynamic 

(G) 

Passive 

(K+A+G) 

Direct 

(K+A+G) 

Square  0.291 0.048 0.024 0.347 0.022 0.019 

Triangle 0.35 0.07 0.03 0.32 0.03 0.03 

Vertical arc 0.61 0.07 0.07 0.06 0.19 0.15 
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Table 3.9.  Mean of error percentages of length-estimation error of indoor experiments (%) 

Experiments 
Static 

(M+A) 

Static 

(K) 

Static 

(K+A) 

Dynamic 

(G) 

Passive 

(K+A+G) 

Direct 

(K+A+G) 

Square  24.06 24.79 20.44 28.11 13.12 13.54 

Triangle 22.54 25.84 16.10 24.86 10.27 9.95 

Vertical arc 55.65 17.21 19.54 12.48 6.57 11.09 

 

 

 

Table 3.10. Variance of error percentages of length-estimation error of indoor experiments (%) 

Experiments 
Static 

(M+A) 

Static 

(K) 

Static 

(K+A) 

Dynamic 

(G) 

Passive 

(K+A+G) 

Direct 

(K+A+G) 

Square  0.18 0.11 0.092 1.50 0.029 0.058 

Triangle 0.28 0.11 0.28 1.34 0.04 0.07 

Vertical arc 8.06 0.32 1.78 1.46 0.61 0.80 
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Figure 3.41. Reconstruction of square drawing, of indoor experiments ground truths are shown in 

black curves 
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Figure 3.42. Reconstruction of triangle drawing of indoor experiments, ground truths are shown 

in black curves 
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Figure 3.43. Reconstruction of vertical arm swing, of indoor experiments ground truths are 

shown in black curves
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3.4.3 Experiment"Part"3"–"Coordinate"Fusion"

This section shows the experimental results of the coordinate fusion model described in 3.2.5 on 

the simulated date described in 3.3.5. In this simulation, we destroyed a portion of the Kinect 

data and saw how the coordinate fused model behaved in comparison to other methods.  

In the following graphs in this section, we show the simulation results using best-fit 

shape and length estimation error evaluations described in 3.3.2.2.1 and 3.3.2.2.2 respectively. 

For best-fit shape error, we plot the average and variances of distances to the best-fit shape (in 

inches); for length-estimation error, we plot the average and variances of error percentages of 

length estimation. We show the simulation results using static model with magnetometer and 

accelerometer, using Kinect, using Kinect and accelerometer, dynamic model using gyro, and the 

fused result averaging passive and direct filters using IMU model in 3.2.2.2, using Kinect and 

IMU model in 3.2.2.3, and the proposed coordinate fusing model in 3.2.5.  

For square-plot experiments, the average and variances of distances to the best-fit square 

are described in Figure 3.44 and Figure 3.45 respectively. The average and variances of error 

percentages of square side length estimation are shown in Figure 3.46 and Figure 3.47 

respectively.  

For triangle-plot experiments, the average and variances of distances to the best-fit 

triangle are described in Figure 3.48 and Figure 3.49 respectively. The average and variances of 

error percentages of triangle side length estimation are shown in Figure 3.50 and Figure 3.51 

respectively.  
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For vertical arm-swing experiments, the average and variances of distances to the best-fit 

arc are described in Figure 3.52 and Figure 3.53 respectively. The average and variances of error 

percentages of swung angle estimation are shown in Figure 3.54 and Figure 3.55 respectively.



 

 
 

156 

 

Figure 3.44. Average distance to the best-fit shape, square experiment 
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Figure 3.45. Variance of  distance to the best-fit shape, square experiment 
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Figure 3.46. Average error of length estimation, square experiment 
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Figure 3.47. Variance of  error of length estimation, square experiment 
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Figure 3.48. Average distance to the best-fit shape, triangle experiment 
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Figure 3.49. Variance of distance to the best-fit shape, square experiment 
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Figure 3.50. Average error of length estimation, triangle experiment 
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Figure 3.51. Variance of error of length estimation, triangle experiment 
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Figure 3.52. Average distance to the best-fit shape, arm-swing experiment 
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Figure 3.53. Variance of distance to the best-fit shape, arm-swing experiment 
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Figure 3.54. Average error of angle estimation, arm-swing experiment 
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Figure 3.55. Variance of error of angle estimation, arm-swing experiment 
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3.5 Discussion+

3.5.1 Complimentary+Filters+with+Human+Biomechanical+Model+using+

Accelerometer,+Gyro+and+Magnetometer+–+Outdoor+Case+

From the outdoor experiment results presented in 3.4.1, we can see from Table 3.3 and Table 3.4 

that only integrating the gyro signals will give us a gradually shifted shape due to error 

accumulation during integration. Therefore, the average distance to the best-fit shape is almost 

twice as large as the passive and direct complementary filtered results, and so is the variance of 

distances to the best-fit shape. The drifts from integration can also be seen from Figure 3.37 to 

Figure 3.40, where initially the first few shapes were close to their best-fit shapes, but eventually 

they will deviate and thus it suggests how inaccurate the dynamic model will be as time goes by. 

Similar results can be seen from Table 3.5 and Table 3.6, which tell us the average and variance 

of error percentages of length estimation. In these tables we can see that the error percentages of 

dynamic models ranged from twice to even four times larger than using complementary filters, 

and their variances were more than 20 times larger than the filtered results, indicating that even 

for a short period of time, using integration to estimate the lengths or distances of human 

motions would give us inaccurate and highly variable results.   

For the static estimate using accelerometers and magnetometers, from Figure 3.37 to 

Figure 3.40 we can see that generally the patterns were recognizable; in the book-reaching 

experiments, the static estimates were very close to the ground truth. This can also be explained 

in Table 3.3 where the average distances to their best-fit shape were comparable to the 

complementary filtered results. However, from the reconstructed patterns shown in Figure 3.37, 

Figure 3.38 and Figure 3.40 we can see that the reconstructed results using static models with 
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accelerometers and magnetometers were very noisy, and the reason behind this noisy 

reconstruction results came from first the sensor measurements themselves were very noisy, and 

thus made the static reconstruction without any kind of filters produce noisy results. Second, 

when moving we applied forces to the accelerometers, so that it made the estimation of the 

direction of gravity inaccurate. Third, in using magnetometers they experienced more or less 

interference, and with the lack of more advanced calibration devices we could not correct them. 

Finally, from the passive and direct complementary filters results of Figure 3.37 to Figure 

3.40 we can see that by using the non-linear complementary filters combined with the human 

biomechanical model, we successfully filtered the noise from static models, while avoiding 

integration drift from dynamic models. The drawn patterns were clearly recognizable and very 

close to the ground truth, with small errors, which were mainly caused from twists of subjects’ 

wrists and deformations of forearms. From Table 3.3 and Table 3.4 of tabular errors, we can see 

that the proposed IMU model not only has lower error to the ground truth, BUT also with lower 

variance it means that our model was less noisy. Compared to prior works [68][77], the proposed 

method can track more complex and rapid arm movements.  

3.5.2 Complimentary+Filters+with+Human+Biomechanical+Model+using+

Accelerometer,+Gyro+and+Kinect+–+Indoor+Case+

After the outdoor experiments using IMU model utilizing accelerometers, gyros and 

magnetometers, we then moved inside and did the same experiments indoors while the Kinect 

was available, but severe magnetometer interference would exist.  

First, from the reconstruction results with static models using accelerometers and 

magnetometers, which are the pink-colored lines from Figure 3.41 to Figure 3.43, we can see 
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that because of severe interference to magnetometer measurements when indoors, the estimated 

traces were very inaccurate. Also, as said in 3.5.1 because of measurement noise the 

reconstructed results were very noisy. From Table 3.7 and Table 3.8 we can see that the average 

and variances of distances to the best-fit shape were the largest compared to using other models. 

Similar results can also be seen in Table 3.9 and Table 3.10, where we had very large error 

estimating lengths of drawn patterns, and angle of swung vertical arcs.  

We now discuss the motion reconstruction using static models utilizing Kinect solely, 

and the fused model of Kinect and accelerometers. The results of only using the Kinect are 

shown in yellow lines, and those of using the Kinect and accelerometers are shown in red lines 

from Figure 3.41 to Figure 3.43. Compared to the reconstruction results using accelerometers 

and magnetometers depicted in the previous paragraph, we saw a great improvement while using 

the Kinect. However, in the reconstruction result only using Kinect’s raw data, we first saw that 

the Kinect measurements were still noisy and its measurements were not accurate enough such 

that the reconstructed patterns looked smaller than the ground truth since in this model the 

human biomechanical constraints were not incorporated and we might have inaccurate 

information regarding to the lengths of limbs. On the other hand, the reconstruction results with 

the static model using the Kinect and accelerometers were skewed. This was mainly due to fact 

that the extra force that we applied to the accelerometers made the judgment of the direction of 

gravity incorrect. From Table 3.7 and Table 3.8 of the average and variances of distances to the 

best-fit shape we can see that though these distances were less accurate compared to the static 

model with accelerometer and magnetometer, they were still more accurate compared to the 

complementary filtered results. Table 3.9 and Table 3.10 of estimated side lengths of the shapes 

and angles of swung also suggested similar results, where the error percentages were less than 
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static model using magnetometers and accelerometers, but larger than fused model using Kinect 

and IMU. 

Third, we discuss the reconstruction result using purely gyro signals. This was shown in 

blue lines from Figure 3.41 to Figure 3.43. Similar to the integration results of the previous 

section, during short time intervals we avoid the measurement noise, which suggests this model 

is accurate in high frequency. However, as time goes by this dynamic model experienced 

gradually increased drift since error accumulates from numerical integration. Table 3.7 and Table 

3.8 show that the average and variances of distances to the best-fit shape were much larger than 

the fused model results. Table 3.9 and Table 3.10 also suggested high average percentage of 

errors, and high variances in estimating the lengths of the drawn shape, and angles of vertical 

arm swing. 

Finally, the filtered results using direct and passive non-linear complementary filters and 

human biomechanical models utilizing the Kinect, accelerometers and gyros gave us the most 

accurate estimation of scatterplot and arm movements. Not only did it filter out the noise from 

sensor measurements and avoid drifts from integration, but also the use of the Kinect indoors 

provided more accurate joint position information than that of magnetometer did. Therefore, 

from the discussion in this section and that in 3.5.1, we conclude that under different 

environments and resources, different strategies are required for human motion tracking and 

reconstruction.  
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3.5.3 Coordinate+Fusion+Model+using+Accelerometers,+Gyros,+

Magnetometers+and+Kinect+

In this section we discuss the effect of using the coordinate fusion model depicted in 3.2.5, which 

fuses the integration model in 3.2.2.1, the IMU model in 3.2.2.2, the Kinect and IMU model in 

3.2.2.3 to deliver even better estimation results.  

First we notice that from Figure 3.44 to Figure 3.55 the distance or error were unchanged 

for models that did not include Kinect data (static model using magnetometers and 

accelerometer, dynamic model using gyros, and IMU model using magnetometer, accelerometer, 

and gyros), since the simulated data being destroyed was the Kinect data. And for these models, 

the distance to the best-fit shape and the error percentage of length estimation are higher than 

filtered results, indicating that without the use of the Kinect we would get a very high error. 

The other static models including that using the Kinect (red lines) and that using the 

Kinect and accelerometers (cyan-blue lines) would give us high average and variances of 

distances to the best-fit shapes, and estimated lengths and angles of plotted patterns. And as the 

destruction ratio of Kinect data increased, so did these error and distances, suggesting that if we 

tried to use Kinect data that were not trustworthy, the error caused by doing so would be even 

higher than using integration with gyro measurement. 

For the integration model (purple lines), there is always high distance and error 

percentage of distance to the best-fit shapes and estimation lengths and angles respectively. 

Except for vertical arm-swing experiments, we have low average distance to the best-fit arc, and 

low error percentages of estimation swung angles. This is because arm-swing movements 

involved only rotations among one axis (in our coordinate system it was the  of the   z -axis
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sensor), and thus the errors were fewer compared to those of reconstructed plotted squares and 

triangles. 

We also notice that the distances and error percentages of the integration model were the 

top limit of the proposed coordinate fusion model. This was because when we had 100% of 

Kinect data destroyed, unless the magnetometer was trustworthy (which usually was not true 

when indoors), the fused model would select the integration model as its reconstruction strategy, 

thus making the errors to increase to be close to those using the integration model.  

When we compared the distance to the best-fit shape and error percentages of estimation 

lengths and angles using the IMU model in 3.2.2.2 with the Kinect and IMU model in 3.2.2.3, we 

found that the errors of the IMU model were higher than the later ones, even if data provided by 

the Kinect started getting untrustworthy. This suggested that we should use Kinect whenever we 

had it, to collect data and fuse Kinect data with the IMU data. 

Finally, if we compared the Kinect and IMU model in 3.2.2.3 and coordinate fusion 

model in3.2.5, we found that unless the Kinect data were totally destroyed and totally not 

trustworthy, the coordinate fusion model always performed better than the Kinect and IMU 

model. Compared to other methods, the proposed coordinate fusion model always gave the 

lowest average and variances distance to the best-fit shape and those of length and angle 

estimation. As described in the previous paragraph, the gyro based integration models served as 

the lower limit of the reconstruction accuracy. 
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3.6 Conclusion+

To conclude, in this chapter we present a coordinate fusion system that tracks and reconstructs 

human motions using commercial MEMS and other sensors off the shelf. The system combines 

several existing motion reconstruction methods, thus making it more adaptable to various 

environments with different sensors available. Further, the proposed system is expandable when 

new type of sensors and motion reconstruction methods become available. This system will not 

only benefit medical professional and therapists who want to analyze more detail in human 

motion trajectories, but this system can also be included in the medical remote monitoring 

system for many medical purposes, e.g., a medical surveillance system which keeps track of 

patients requiring long-term care and reports to emergency if necessary, or a system to see if the 

patients in rehabilitation have followed doctors’ directions to exercise for a prescribed amount of 

time daily. 
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Chapter 4  

CONCLUSIONS AND FUTURE RESEARCH 

4.1 Research+Contribution+

This research mainly concerns machine learning on activity classification and motion tracking / 

reconstruction using various off-the-shelf sensors and digital filtering techniques. That is, this 

research tries to construct a system, which collects data from sensors attached to human bodies, 

and then makes inferences from collected data. The system either tries to tell which activities the 

subject is doing at any given moment (activity classification in Chapter 2), or to show detailed 

movements of human actions (motion tracking / reconstruction in Chapter 3).  

 The research is a building block for end-to-end wireless health systems that target either 

patients requiring long-term care or the general public. For patients requiring long-term care, 

such as people in the rehabilitation process or people with chronic diseases, traditional treatments 

require them to stay at hospitals each day. The system will serve as a remote monitoring system 

that can record and store patients’ activities in their daily lives while patients stay at home, then 

doctors can access the data and make diagnostics remotely, which will save tremendous medical 

costs and resources. 

For the general public, this system will monitor people’s health status day by day and 

make suggestions based on their health level. As mentioned in Chapter 1, according to WHO 

more than 60 percent of populations fails to exercise 30 minutes per day, which is the least 

requirement for fitness. Therefore, if there is a system that can accurately classify human 
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activities, and then compute health inferences, statistics, and suggestions from the data, all at low 

cost, then it can greatly improve our health levels.  

4.2 Future+Research+

This section points out some potential research directions in the future. On one hand, we wish to 

develop a larger system of activity classification / motion reconstruction with various levels, 

where the current research contributes to two such levels. On the other hand, in order to acquire 

the more accurate ground truth, another project named Virtual Sensor Platform in cooperation 

with UCLA Rehabilitation Unit of the Ronald Reagan Hospital to collect data using a multi-

camera motion capture system will also be launched.  

4.2.1 Multilevel System Optimization 

As mentioned in 4.1, we expect an end-to-end wireless health system that will have better 

performance for targeted applications. To achieve this, in the future it is desirable to expand the 

current research to create a broader system operating at multiple levels of abstraction. In this 

dissertation we have already proposed 2 systems. For activity classification, the use of hybrid 

tree classifiers in 2.4 combines decision tree classifiers with naïve Bayes classifiers and support 

vector machines to adapt to many more kinds of complicated activities; the idea of coordinate 

fusion in 3.2.5 weights different motion reconstruction methods to perform better motion 

tracking under various environments and circumstances. In the future, these two systems will 

become levels of an even larger system; the levels of this system will communicate with each 

other to optimize the performance as a whole.  

One instance of such levels can be the concept of determining and using contexts. 

Contexts identify the surrounding environments, and hence suggest possible constraints and 
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available resources. For example, if from the Wi-Fi connection the system knows that the subject 

stays at the office, then chances are this subject would not do any intense exercises, thus we can 

lower the prior of corresponding classes in the naïve Bayes classifier. Another context example 

is that by knowing the phone is plugged into a power outlet, the system can increase the 

sampling rate to achieve better classification accuracy. Therefore, by knowing the contexts we 

can have a better activity classification / motion reconstruction result.  

What is more, the research of context detection is not a one-way thing as the context will 

help with increasing activity classification / motion reconstruction accuracy. The current systems 

of activity classification / motion reconstruction can also improve context detection. For instance, 

if by using the universal hybrid tree classifier we know that the subject was sitting for a long 

time in the afternoon, and then we can suspect that he/she was in the office during that time. 

Therefore, not only do we need to find the new levels in the larger system, but also how the 

levels interact with each other.  

4.2.2 Virtual Sensor Platform and Vicon Motion Capture System 

The idea of the Virtual Sensor is to construct a platform that simulates outputs of MEMS sensors 

including accelerometers, gyros and magnetometers as if they were put on the subject’s body 

parts while he/she is doing various activities. This platform will provide a simulated ground truth, 

that is, the sensor output should be given as if the subject were doing prescribed motions. This is 

exactly the reverse of what this dissertation tries to achieve – to reconstruct the subject’s motions 

given the sensor output. Therefore, with this platform, not only can it provide an approximate 

signal template for a given motion, but through the bootstrap process, of which this platform and 

the proposed motion reconstruction system help each other, we can improve the accuracies of 

both systems. 
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 Another accurate ground truth will also be acquired using an eight-camera Motion 

Capture System here at the University of California, Los Angeles (UCLA) [86]. This is a high-

speed motion capture system that can capture locations of special markers attached on the human 

body using cameras. With the aid of this system, we can accurately record human motions and 

thus provide better and more detailed motion trajectories. In the future, with the cooperation of 

the UCLA Rehabilitation Unit of the Ronald Reagan Hospital and by accessing this system not 

only can we accurately record human motions and thus provide better and more detailed motion 

trajectories, but also we will discover more potential ways of realizing the system of activity 

classification and motion reconstruction for real-life medical applications.  
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