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Abstract—High wind energy penetration critically challenges
the economic dispatch of current and future power systems.
Supply and demand must be balanced at every bus of the grid,
while respecting transmission line ratings and accountindor the
stochastic nature of renewable energy sources. Aligned tdhat
goal, a network-constrained economic dispatch is develodein
this paper. To account for the uncertainty of renewable enegy
forecasts, wind farm schedules are determined so that theyaa
be delivered over the transmission network with a prescribd
probability. Given that the distribution of wind power fore casts is
rarely known, and/or uncertainties may yield non-convex fasible
sets for the power schedules, a scenario approximation tenigque
using Monte Carlo sampling is pursued. Upon utilizing the
structure of the DC optimal power flow (OPF), a distribution-
free convex problem formulation is derived whose complexit
scales well with the wind forecast sample size. The efficacyf o
this novel approach is evaluated over the IEEE 30-bus power
grid benchmark after including real operation data from seven
wind farms.

|. INTRODUCTION

By using a here-and-now approach, a loss-of-load proba-
bility (LOLP)-guaranteed dispatch is obtained. A stocltast
programming approach for economic dispatch simultangousl
penalizing overestimation and underestimation of wind @ow
is investigated in[[4]. Multi-period economic dispatch hwit
spatiotemporal wind forecasts is pursued [in [5]. By upper
bounding wind power schedules by their forecasts, a determi
istic optimization formulation is derived. Its solutionatigh
can be very sensitive to the accuracy of the wind power
forecast. Chance-constrained multi-period economicadip
with multiple correlated wind farms has been explored rédgen

in [6].

All aforementioned works limit their focus on the economic
dispatch problem, which ignores the transmission network.
Accounting for the transmission network leads to the opitima
power flow (OPF) problem, which includes balance constsaint
for every network node, and flow limit constraints for every

The scarcity and the environmental impact of conventionghe: see e.g.,[]7]. If not properly considered during syste

energy resources raise major concerns worldwide, and drig¢eduling, the aforementioned constraints are moreylikel
industry to aggressively incorporate renewable energyctwh i pe violated due to the stochastic and intermittent nature
is su;tainable gnd cle.an. Coming from natural resources s renewable energy injections. To this end, relying upon
as wind, sunlight, biomass, and geothermal heat, renewayssianity assumptions for the wind power output and conic
able energy-based electricity production has been dev&opprogramming techniques, chance-constrained optimal powe
rapidly in the past decade. Wind power generation for iranow has been recently pursued [ [8] afid [9].
is growing at an annual rate &0%, and has already met
a worldwide installed capacity 0282.5 GW by the end  Thjs paper deals with chance-constrained DC OPF for
of 2012 [1]. The U.S. Department of Energy proposed afghyer systems with renewables; but different fréin [8] drid [9
examined a goal of using wind energy to genetil¥ of the it gevelops a scheduling methodology that does not rely on
nation’s electricity demand by 2030][2]. o Gaussianity. To address the stochastic nature of renewable
The goal of high renewable energy penetration is challenggfly, the proposed formulation introduces scheduled rebkew
by the stoc_hastic availability and intermittency of renblea energy injections as design variables, and allows the hctua
energy, which must be accounted for by system operai@fgrvested energy to be inadequate with low risk. To effebtiv
during scheduling of generation, reserves, and dispatehagype with the intractability of risk constraints, the prepd
loads. This paper devglops a chance-co.nstra|.ned optionzaty|gorithm builds upon the scenario approximation [6].
approach for economic power scheduling with renewablagymerical tests are performed to corroborate the effeutise
yv|th focus on controlling the risk stemming from potenyall ot the novel approach using real wind farm operation data,
inadequate supply of renewable energy. _ and the IEEE 30-bus power grid benchmarkl [10],| [11]] [12].
Prior works have dealt with the supply-demand imbalance
issue under the uncertain supply of renewables. Single®er The remainder of the paper is organized as follows. Sec-
chance-constrained economic dispatch is studied for a Powgn [ formulates the risk-constrained energy management
system with both thermal generators and wind turbineslin [3;oplem, followed by the development of the scenario approx

This work was supported by the Inst. of Renewable Energy dmed t!mat'on. approach in SeCtI@II. Numerical fesults are regm
Environment (IREE) grant no. RL-0010-13, Univ. of Minnesot in Section IV, and conclusions are drawn in Secfidn V.
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Il. RISK-AWARE ENERGY MANAGEMENT vector inequalityz = w to be violated with very low risk.

Consider a power system with! buses. ety denote Specifically, the followingchance constrainis imposed:

the power output of a thermal generator gngl, the power Prob(z=w)>1—-a ©)
dissipation of a load, both residing at bus While pg,, is

a decision variable, loagp  is considered fixed here forand typical values for the risk level are 1-5¢.

simplicity. Due to plant limitations, the generator powetput There are two main challenges in dealing with (3). The
is constrained to lie between lower and upper boup|g§l first one is that the distribution of is rarely known, as it is
and p™*, respectively. Furthermore, if a renewable energyictated by complex meteorological and harvesting teasgpl
producer is located at bus, two quantities will be associatedrelated considerations. For the case of wind energy, Siiegli
with it: the predicted wind power generatioy,, and the power models for the power generated by individual wind farms are
wy, Scheduled to be injected to bus. Note that the former available—see e.g.[[3]_[14]—but accounting for the sgati
is a random variable, whereas the latter is a decision Marialcorrelation among wind power producers still renders the

Define further theM -dimensional vectors distribution of z intractable. The second challenge is that
- constraint[(B) is generally nonconvex.
PG = PGy - PGl Let C,,(pg,,) be the cost associated with theth thermal
Pp = [pp, - pDM]T generator. Functiold,,,(p¢,,) is convex and strictly increas-
z2:=[21 ... 2n]T ing, with typical forms being quadratic or piecewise linear
T The scheduling problem amounts to minimizing the total
W= [w .. wM] . production cost subject to the constraints presentedeearli
pa™ = [pE" ... pEn that is,
plélax [pmax pgldX]T M
M
where (-)7 denotes transposition. With these definitions, the P60 Z Cm (PG, (42)
podal injections into the transmission grid can be expiksse subj. 10 p +w — pp = BO (4b)
in vector form aspg +w — pp. s o
Focusing next on the transmission network,leienote the - f <HO=f (4c)
number of lines in the grid ang} the reactance of thieth line. P¢" 2 Pc 2 pg™” (4d)
Define then thd. x L diagonal matrixD := diag ({xl 1}l 1); 6, =0 (4e)
and theL x M branch-bus incidence matriX, such that if its Prob(z = w) > 1—a. (4f)
I-th row a] corresponds to the brangm, n), then[a;],,, :=
+1, [a], := —1, and zero elsewhere. Formulation [(#) extends to the DC optimal power flow

Flow conservation dictates that the aggregate power ijec{ OPF) problem—see e.gl1[7]—to account for uncertain re-
per bus should equal the power flowing away from the busewable energy injections. To this end, the scheduled renew
The DC power flow model gives rise to thedal balance able energyw is used as a basis for optimizing the power

constraint[13] outputs of thermal generators based [0 (4b). The risk tleat th
pc+w—pp=B8 (1) produced renewable energy will not be adequate to provide
the scheduled one is limited as per constrdint (4f). If dyrin
where @ := [0, ... 0)]" is the vector of nodal voltage the actual system operation the harvested renewable energy

phases{f,,})/_,, and B := ATDA is the bus admittance exceeds the scheduled value, then curtailment is effected.
matrix. Since the all-ones vector belongs to the nullspdce o Note that constraintd (#bJ=(4d) are linear and the objec-
B, the node balance equatidd (1) is invariant to nodal phagge (@3) is convex. Nevertheless, convexity of the overaib-
shifts. Hence, without loss of generality, the first bus can hem (@) is lost due to[{4f). Recall also that the left-hancesid
the reference bus with phase set to zero, thatis- 0. of @) is difficult to be expressed as a function of the demisi
According again to the DC flow model, the power flows oRariable w, while the constraint is generally nonconvex. To
all transmission lines can be expressed®sfor H := DA. this end, the ensuing section develops a numerically toéeta
Physical considerations enforce a linfift** on the transmis- convex approximation of (4f).
sion power flows leading to thine flow constraint

I1l. SCENARIO APPROXIMATION APPROACH
The convex approximation of_(4f) relies on the scenario-

where =< denotes entry-wise inequality. based approximation proposed originally for robust con-
Recall that the power system is dispatched several hotnal [15], and recently used for chance-constrained ecanom

or even one day prior to the operation period of intereslispatch in [[6]. The method relies on the availability of

Given a wind power generation forecasthe system operator independent samples from the distributionzof

wishes to schedule an injectiow that is expected to be Specifically, let{z(s)}3_, denoteS independent samples

furnished. This requirement is captured here by allowirgy tlavailable. The scenario approximation approach relies on



substituting [(4f) with its sampled version IV. NUMERICAL TESTS

The performance of the novel scheduling approach is cor-
roborated via numerical tests using the IEEE 30-bus power

Then, the optimization problem consisting BTI(4&)%(4d) @d system [_[Ill]. The latter incll_Jd_es 41 transmission lines and 6
is solved. conventional generators residing at bu$es2, 13,22, 23,27}

As () is an approximation of (4f), the question of whethédcf- Fig[d). Load demands, guadratic generation costs; gen

the solution of the resultant optimization problem is fesi €rator capacities, and transmission line ratings, arepsts

for the original problem is raised. In fact, notice that thdied in [12]. Seven wind farms have been added on buses

solution of the approximate problem is a random variablé): 2: 5,9, 15,24,30}. The convex problem in18) is solved

because the sample&(s)}S_, are random. Referencs [15]USiNg thecvx package and theprT3 solver [16], [17].

develops a bound on the sample sfzas a function of the risk To simulate wind farm operation, real data originally pro-

level o which guarantees that the solution of the approximaYéed for a wind energy forecasting competition organizgd b
problem is feasible for the original one with high probayili <adgle platform were utilized [10]. Among other data, the

Notice that[[) is linear inw, a fact that renders the overaliSPecific dataset contains the actual hourly power output of

scheduling problem convex. On the negative side, the requilsev_en Wi_n_d farms over Fhree years. To eIiEninate posﬂble hon
S to achieve feasibility of the approximate solution is tygiig stationarities, or)(ljy ths mFeIr(\j/_al from M?ysf to Jur;]e26 gf
very large. This implies that the resultant optimizatioogem 2012 was considered, yielding a total of 589 hours due to

will have a very large number of constraints [df] (5)], whichn'SSINg entries. ,
may pose significant computational burden. It is possible toVind power outputs have been normalized per farm due

exploit the structure of the problem at hand, in order t Privacy concemns. To preserve the total installed geivera

overcome this difficulty and come up with a sample size fréapacity fixed after adding the wind farms, the conventional

approximation. Specifically, it is not hard to see tHat (5) i§aPacity is scaled down by 80%. Then, all wind farm outputs
equivalent to are scaled to contribute equally to the rest of the installed

capacity, hence yielding a 20% wind energy penetration.
W < min {z,(s)}, m=1,..., M. (6) Recall that the developed scenario approximation-based
s=1,...,§ scheduling requires drawing independent samples from the

A complication of this sampling mechanism is that the rightind energy forecast. As a proof of concept, it is assumed
hand side of{{B) can become very smallagrows. Recall that h_ere thatz is Gaussian dls_trlbuted. Its expected value is con-
2m is the power output of theath renewable energy producerSidered to be the actual wind power generated. A “low-wind”
As such, it is lower bounded by zero, and there is in fa@"d @ “high-wind” scenario were considered. The low-wind
nonzero probability that,, = 0. This shortcoming can drive SCenario yieldgs, = [1.15 1.37 0.47 1.05 1.45 1.64 0.00]"
the decision variable:,,, to very small values or even to zero@nd corresponds to May %t 8 a.m. The high-wind scenario

_ T .
In a nutshell, there is a degree of conservatism inhereriteto 128 #n = [6.00 0.31 7.66 8.01 8.42 8.44 8.46]" and is
scenario approximation method. observed on May 29 at 8 a.m. To model correlation across

A straightforward modification of[{6) can alleviate thefarms, it is further postulated that the covarianceza$ that

aforementioned conservatism. Specifically, a small qt;antimc the wind farm power outputs. The latter is empirically

s{zm(s)}, in which case estimated as the sample covariance and it is denoted by
m L -

@) is surrogated by 3. Samples ofz can then be drawn fromV'(p;, 3) and

N(un,X), respectively for the two scenarios.

Wy < min {2 (8)} +0m, m=1,...,M. (7) Before solving [(B), the boosting parametdis, }_, in-
s=L,...,.8 troduced in [(¥) must be selected. An intuitive and easily-

The effectiveness of this adjustment will be demonstratdgjPlementable heuristic for doing so is described nexteiad
numerically. Withz's = [216S .. 2'¢5| denoting the right-hand of constrainingw,, to be no larger thaall samples:,,(s) as

side of [7), the following problem is solved instead f (4): dictated by [(B), it is natural to require,, to be no larger
than only the(1 — «)% largest samples. Algorithmically, if

w=1z(s), s=1,...,5 (5)

.....

{{z,[,i]} : z,[ﬂ > z,[,%] >0 > z,[g]} denote the order statistics

M
min Z Cm(pc,,) (8a) | of the original samplegz,,(s)};_, for m = 1,..., M, the
pow.d 2 right-hand side of[{7) can be selected 2% = »/[(!~*)*51),
subj. to pc +w — pp = BO (8b) | Negative-valued entries of®® are truncated to zero.
— fmax < [ < foax (8c) Dispatching the IEEE 30-bus power system for a risk level

min max of o = 0.05 yields the optimal costs listed in Tallke I. The
< <

Pe =Pe =Pc (8d) Lagrange multipliers corresponding tb [8b), also known as

61 =0 (8e) | |ocational marginal priceLMPs), are also listed in the same

w <z (8f) table. LMPs are important components of electricity market

since they represent the cost of selling or buying eletyrati a
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Fig. 1. Seven wind farms have been added to the IEEE 30-bdssgstem [[11L].

TABLE |
OPTIMAL COSTS ANDLMPS FOR HIGH/LOW-WIND SCENARIOS 600 . . : .
(e =10.05).
550 : .
Scenar Cost LMP = 500 ]
High-wind 481.42 | 364.97 @
Low-wind 565.21 | 378.91 g 40 1
o
S 400t 1
TABLE Il =
PRESCRIBED RISK LEVEL AND ACTUAL RISK(HIGH-WIND SCENARIO). © 50! .
«a 0.01 0.03 0.05 0.1 300 ]
Actual risk || 0.0072 | 0.0075| 0.0076 | 0.0087
250 0.03 0.05
Risk level a

particular bus; see e.g., [18], ]13]. Due to lack of transiais
line congestion, all LMPs turn out to be equal to the value
provided in Tabléll. The high-wind scenario attains lowestco TABLE Il

and LMPs than the low-wind scenario, since less conventtiona OPT!MALCOSTS FOR VARYINGa AND 3 (HIGH-WIND SCENARIO).
power is needed when more free wind power is available. It

Fig. 2. Optimal costs for varyinge (high-wind scenario).

! - : B

is worth mentioning that due to the risk-aware constrahm, t a 1.05 11 12 13

low-wind scenario essentially boils down to schedulinghwit 8-8; gg%ggg ggg-ggz; ggg-;ggg ;ig-‘l‘rggg

no wind power at all. o 0.05 || 515.6234| 549.3798| 623.0269| 697.1422
Figs.[2 andB illustrate the effect of the prescribed rislelev 0.1 496.8349 | 530.5984 | 603.5701| 677.1949

« on the optimal costs and the LMPs, respectively. The optimal
net cost decreases with increasimgsince higher risk allows
more wind power to be committed. numerically validating the boosting step.

To justify the heuristic boosting procedure, the risk imedr ~ The effect of the risk levelv on LMPs under transmission
by the w minimizing (8) is empirically evaluated by draw-network congestion is investigated next. To simulate cenge
ing 10° independent wind forecast samplesand checking tion, load demand at all buses is scaled upsyrhe optimal
whether [B) holds. Tablglll shows the validation resultse Trtosts listed in Tablé_lll decrease with decreasjhgnd/or
actual risk is always smaller than the predefined one, henereasinga, as expected. The corresponding 30 LMPs (one
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(7]

per bus) obtained wheg = 1.330 and 8 = 1.342 and for
varying values ofx are plotted in Figd4 arfd 5, respectively.
The two figures indicate that high risk levels result in lowery
prices in general. However, by varying and 3, different
congestion patterns may occur due to the grid topology.

(8]

[10]

[11]
V. CONCLUSIONS
[12]
Network-constrained economic dispatch with multiple wind

farms was considered in this paper. A risk-constrained- opti
mization problem was formulated based on the loss-of-lo&d!
probability over all wind farm injection points. To address
the imperfect knowledge of the wind power forecasts, a sdé4]
nario approximation technique via Monte Carlo sampling was
proposed. The attractive features and practical impachisf t[15)
work are two-fold: i) the scenario approach enables ecooomi
and risk-limited scheduling of smart grids with increagyng [16
higher renewable energy penetration, without relying og-sp17]
cific probabilistic assumptions about the renewable gdivera [18]
and, ii) the special problem structure renders the approach
applicable to large-scale problems. Multi-period forntialas
constitute an interesting future direction.
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