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Spatial resolution enhancement using
deep learning improves chest disease
diagnosis based on thick slice CT

Check for updates

Pengxin Yu 1,2,3,16, Haoyue Zhang 4,5,16, Dawei Wang3, Rongguo Zhang6, Mei Deng7, Haoyu Yang8,
Lijun Wu9, Xiaoxu Liu10, Andrea S. Oh5, Fereidoun G. Abtin5, Ashley E. Prosper5, Kathleen Ruchalski5,
Nana Wang10, Huairong Zhang11, Ye Li12, Xinna Lv12, Min Liu13, Shaohong Zhao9, Dasheng Li10,
John M. Hoffman5, Denise R. Aberle5, Chaoyang Liang14, Shouliang Qi1,2 & Corey Arnold15

CT is crucial for diagnosing chest diseases, with image quality affected by spatial resolution. Thick-
slice CT remains prevalent in practice due to cost considerations, yet its coarse spatial resolutionmay
hinder accurate diagnoses. Our multicenter study develops a deep learning synthetic model with
Convolutional-Transformer hybrid encoder-decoder architecture for generating thin-slice CT from
thick-slice CT on a single center (1576 participants) and access the synthetic CT on three cross-
regional centers (1228 participants). The qualitative image quality of synthetic and real thin-slice CT is
comparable (p = 0.16). Four radiologists’ accuracy in diagnosing community-acquired pneumonia
using synthetic thin-slice CT surpasses thick-slice CT (p < 0.05), and matches real thin-slice CT
(p > 0.99). For lung nodule detection, sensitivity with thin-slice CT outperforms thick-slice CT
(p < 0.001) and comparable to real thin-slice CT (p > 0.05). These findings indicate the potential of our
model to generate high-quality synthetic thin-slice CT as a practical alternativewhen real thin-slice CT
is preferred but unavailable.

Slice thickness of computed tomography (CT) constitutes a vital determi-
nant of image quality, which controls the spatial resolutionof the volumetric
image. Thinner slices yield images with higher spatial resolution, facilitating
the detection of abnormalities, the evaluation of intricate anatomical
structures, and the characterization of lesions1–3. For instance, in scenarios
involving incidental pulmonary nodules, recent guidelines recommend
reconstructing chest CT with contiguous thin-slice (thickness ≤ 1.5-mm,
typically 1-mm) to enable precise characterization and measurement of
small nodules4. Despite the diagnostic superiority of high-resolution thin-
slice CT, their broad clinical adoption is hampered by the substantial
financial burden of acquiring high-quality CT scanners and establishing the
necessary data storage infrastructure. Notably, many CT scanners can
acquire thin slices; however, reconstruction and storage protocols often
default to thick-slice settings, adjustments to which are not straightforward
and scanner-specific. This predicament is particularly pronounced in real-
world clinical settings of many developing countries5,6, where transitioning
to advanced CT scanners and establishing large-scale data centers is a
complex and resource-intensive endeavor. Consequently, thick-slice CT,
typically with a slice thickness of 5-mm, remain the prevalent choice in such
regions. The coarse spatial resolution of these thick-slice CT may obscure

subtle anatomical features, increasing the likelihood of misdiagnosis or
unforeseen consequences7.

Another realm susceptible to the influence of slice thickness is
computer-aided medical image analysis. Deep learning (DL), an artificial
intelligence (AI) subfield, has emerged as the dominant technology in
computer-aided medical image analysis, with broad applications in various
tasks such as disease diagnosis, lesion detection, and region of interest
segmentation8. Currently, numerous DL-based algorithms have advanced
from prototypes to commercially available products, having successfully
undergone stringent rigorous approvals by authoritative bodies such as the
United States Food and Drug Administration (FDA) and China National
Medical Products Administration (NMPA)9,10. These regulated AI-assisted
diagnosis products hold immense potential for integration into clinical
practice.However, severalAIproducts are developedaround thin-slice high-
quality images and exhibit suboptimal performance when applied to thick-
slice images11–14. The aforementioned developing countries, in particular,
face significant disparities in accessing and benefiting from AI products,
exacerbating the existinghealthcare inequalities. Therefore, it is promising to
develop amethod to translate thick-sliceCT into synthetic thin-sliceCTwith
higher spatial resolution, thus narrow the application gapwith thin-slice CT.

A full list of affiliations appears at the end of the paper. e-mail: qisl@bmie.neu.edu.cn; cwarnold@mednet.ucla.edu
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The advancement of DL promotes its broadly adoption for medical
image translation15–20. Several studies have demonstrated the feasibility of
using DL to use super-resolution (SR) algorithms to enhance spatial reso-
lution of thick-slice CT, generating synthetic thin-slice counterparts—— a
process known as “spatial SR”. Early methods were inspired by natural
image SR and primarily developed models using convolutional neural
networks (CNN) architectures21–23. Recently, Yu et al.24 proposed a
Transformer-based spatial SR method to overcome the inherent short-
comings of theCNNmodel andobtain state-of-the-art (SOTA)quantitative
performance. Although the image quality of DL-based synthetic thin-slice
CT shows an increasing trend, the absence of comprehensive multicenter
validationposes abarrier to the clinical applicationof such syntheticmedical
images.

The purpose of this cross-regional multicenter study was to develop a
deep learning synthetic (DLS) model for generating synthetic thin-slice
(1mm) CT from thick-slice (5mm) CT, and assess the potential of inte-
grating these synthetic thin-slice CT into clinical workflow. The synthetic
thin-slice CT was evaluated regarding quantitative metrics, qualitative
multi-reader assessment, and diagnostic application for chest diseases.
Additionally, we explored can synthetic thin-slice CT improve the perfor-
mance of regulated AI-assisted diagnosis products that previously under-
performed on original thick-slice CT.

We organize the rest of paper to include the following:We first present
the demographics of participants and the workflow of our DLSmodel, then
provide evaluation results of synthetic thin-slice CT and assess its perfor-
mance in diagnosing chest diseases whenused by radiologists orAI-assisted
products (Results). In theDiscussion,we point the challenges of using thick-
slice CT for diagnosis, explore how our DLSmodel enhances the diagnostic
capability of thick-slice CT for chest diseases, and discuss the study’s lim-
itations and contributions. Finally, we review related work on spatial SR,
detail the architecture of ourDLSmodel, describe the processes for assessing

image quality and clinical applicability, and outline the evaluation metrics
and statistical analysis (Methods).

Results
Dataset characteristics
This multicenter, retrospective study included 2802 participants from
four cross-regional centers between April 2015 and July 2022. The study
population characteristics are summarized in Table 1. Dataset-
Development (Beijing Haidian Hospital, China) included 1576 partici-
pants (683 female [43.3%]; median [interquartile ranges (IQRs)] age, 26
[22–33]), of which 1000 (63.5%) were used for training, 176 (11.2%) for
validation, and 400 (25.4%) for internal testing. Dataset-USA (Uni-
versity of California Los Angeles Hospital, USA) was a physical exam-
ination cohort of older adults, consisting of 174 participants (83 female
[47.7%]; median [IQRs] age, 63 [54–71]) who may be healthy or may
have various abnormalities. Dataset-Pneumonia (Chinese PLA General
Hospital First Medical Center, China) included 300 participants (91
female [30.3%]; median [IQRs] age, 28 [24–38]), with 155 (51.7%)
healthy participants and 145 (48.3%) confirmed with community-
acquired pneumonia (CAP). Dataset-Nodule (China-Japan Friendship
Hospital, China) comprised 752 participants (292 female [38.8%];
median [IQRs] age, 53 [45–63]), including 251 (33.4%) healthy parti-
cipants and 501 (66.6%) patients with lung nodules (mean [Standard
Deviation (SD)] size, 8.7 [3.4] mm). The reference standard of CAP and
lung nodule are detailed in Supplementary Note.

CT scans were acquired using multidetector-row CT scanners from
three vendors (UIH, Siemens Healthineers, and Philips, detailed in Sup-
plementary Table 1). Inclusion criteria required participants to have CT
with 1-mm and 5-mm slice thicknesses reconstructed from identical raw
data. Scans with poor image quality uponmanual inspection were excluded
(Supplementary Fig. 1).

Table 1 | Baseline characteristics of data sets (N = 2802)

No. (%)
Variable Dataset- Development (n = 1576) Dataset- USA (n = 174) Dataset- Pneumonia (n = 300) Dataset- Nodule (n = 752)

Age, Median (IQRs), y 26 (22–33) 63 (54–71) 28 (24–38) 53 (45–63)

Sex

M 893 (56.7) 91 (52.3) 209 (69.7) 460 (61.2)

F 683 (43.3) 83 (47.7) 91 (30.3) 292 (38.8)

Normal participants 1576 (100.0) NA 155 (51.7) 251 (33.4)

CAP patients NA NA 145 (48.3) NA

CAP subtype

Bacterial NA NA 31 (21.4) NA

Non-Bacterial NA NA 114 (78.6) NA

Nodule patients NA NA NA 501 (66.6)

Total No. of nodules NA NA NA 1567

No. of nodules per patient,
Median (Range)

NA NA NA 2 (1–57)

Nodule size on CT

Mean (SD), mm NA NA NA 8.7 (3.4)

3–6mm NA NA NA 122 (7.8)

6–9mm NA NA NA 969 (61.8)

9–12mm NA NA NA 318 (20.3)

12–60mm NA NA NA 158 (10.1)

Internal characteristics of CT findings

Solid nodule NA NA NA 968 (61.8)

Subsolid nodule NA NA NA 108 (6.9)

Calcific nodule NA NA NA 491 (31.3)

IQRs interquartile ranges, CAP community-acquired pneumonia, NA not applicable, CT computed tomography.
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Synthetic thin-slice CT generation
The overview of our DLS model is presented in Fig. 1. During training,
cubes of size 8 × 256 × 256 from real 5-mm CT were used as input, and
the corresponding cubes of size 36 × 256 × 256 from real 1-mm CT
serving as ground truth, where 36 = (8− 1) × 5+ 1. For inference, we
employed a sliding window approach, feeding cubes of size 8×256×256
from the real-5mmCT into the trained DLSmodel. The axial dimension
overlap was set to 1, while overlaps in the other dimensions were set to 0.
Multiple predictions for the same coordinate were averaged to obtain the
final value. The original thick-slice CT from each test set were processed
by the trained DLS model, successfully generating the corresponding
synthetic thin-slice CT.

Typical medical image processing tools often employ traditional
methods like interpolation resampling to modify image resolution. For
comparison, we resampled thick-slice CT in each test set by using Sim-
pleITK (version2.0, https://simpleitk.org/doxygen/v2_0/html/), resulting in
bicubic interpolation-based synthetic (BIS) thin-slice CT25. Illustrative
examples are shown in Figs. 2, 3 and Supplementary Figs. 2, 3.

Image quality: quantitative evaluation
Table 2 showed the image quality comparison results in terms of
quantitative metrics, including peak signal-to-noise ratio (PSNR)26 and
structural similarity index measure (SSIM)27. DLS 1-mm demonstrated

robust performance on internal and external test sets, surpassing tra-
ditional BIS 1-mm (all p < 0.001). Particularly, DLS 1-mm achieved a
median PSNR of 44.08 and SSIM of 0.99 on the internal test set. For
external test sets, the PSNRs of Dataset-USA, Dataset-Pneumonia, and
Dataset-Nodule were 36.64, 42.95, and 38.69, and SSIMs were 0.92, 0.98,
and 0.94, respectively. Compared to several SOTA spatial SR methods,
including three CNN-based methods21–23 and a Transformer-based
method24, our DLS model not only had higher PSNR and SSIM in
internal and external test sets (all p < 0.001), but also demonstrated a
better trade-off between quantitative image quality (PSNR and SSIM),
running time, and graphics processing unit (GPU) memory (Supple-
mentary Table 2, Fig. 4).

For the ablation studies, the results of the first study indicated that
our DLS model, trained on 200 samples (20%), outperforms all CNN-
based methods trained on all samples (100%). Furthermore, when our
DLS model was trained on 500 samples (50%), it demonstrated superior
performance compared to the Transformer-based method using all
samples (Supplementary Fig. 5). These findings suggest that our DLS
model is the most suitable option, even for fine-tuning purposes on new
datasets. The results of the second ablation study were shown in Sup-
plementary Table 3. Compared with five vision Transformer-based
methods, our DLSmodel achieves higher PSNR (all p < 0.001) and SSIM
(all p < 0.001).

Fig. 1 | Overview of deep learning synthetic model: a convolutional-transformer
hybrid encoder-decoder architecture synthesizes thin-slice CT from thick-slice
CT by recovering masked regions from visible regions. a The Encoder maps the
input L slices from the original thick-slice CT (visible regions) to a latent repre-
sentation. Masked regions are introduced via the Mask Token Add Module and
combined with the latent representation. The Decoder then recovers the masked
regions from the latent representation, producing an output size of 5 × (L–1)+ 1
through the final Linear Projection. b The CTH Block comprises four successive
STLs and a Conv. The 3DCTHBlock consists of 3D STL and 3DConv, while the 2D

CTH Block consists of 2D STL and 2D Conv. c The T-CTH Block has two parallel
branches that perform feature extraction from the coronal and sagittal views,
respectively. The permutation operation P is used to transform the input view to
coronal or sagittal views, or vice versa. d Details of two successive 2D or 3D STLs.
CTH Block indicates convolutional-transformer hybrid block; T-CTH Block,
through-plane convolutional-transformer hybrid block, Conv convolutional, P
permutation operation, W-MSA window multi-head self-attention, SW-MSA shift
window multi-head self-attention, MLP multi-layer perceptron.
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Image quality: qualitative evaluation
For qualitative evaluation, 20 participants were randomly chosen
from each test set, resulting in 80 participants, to conduct a blinded
multi-reader study. CT of three types (Real 1-mm, BIS 1-mm, DLS 1-
mm) were included for each participant. Eight radiologists (4–23
years’ experience, four from the USA and four from China) inde-
pendently rated subjective image quality of each CT scan using a five-
point Likert scale (1 indicates unacceptable, 5 indicates excellent, ≥3
indicates diagnostic quality) referring to the European guidelines on
quality criteria for CT (https://www.drs.dk/guidelines/ct/quality/
htmlindex.htm). Eight radiologists rated Real 1-mm from 3.6 to 4.9,
DLS 1-mm from 3.6 to 4.8, and BIS 1-mm from 2.0 to 4.2 (Supple-
mentary Table 4).

For each radiologist, the count of DLS 1-mm rated as the diag-
nostic quality was non-inferior to Real 1-mm (all p > 0.05; Fig. 4). All
radiologists’ combined rating was shown in Tables 3, 99.1% (634/640)
of real 1-mm, 97.7% (625/640) of DLS 1-mm, and 63.6% (407/640) of
BIS 1-mm were rated as the diagnostic quality (Real vs. DLS, p = 0.16;
Real vs. BIS, p < 0.001). For Real 1-mm, most were rated as 5
(excellent, 393 of 640 [61.5%]), followed by 4 (good, 180 of 640
[28.1%]), and the prespecified non-inferiority criterion was 4. DLS
1-mm received ratings of 4 or 5 for 542 of 640 (84.6%) with median
[IQRs] score of 54,5, affirming the non-inferiority to Real 1-mm
(p < 0.001); in contrast, BIS 1-mm did not (median [IQRs],
32–4; p > 0.99).

Fig. 2 | Different CT images for 24-year-old man from dataset-development.
a Axial view displayed as the lung window. b Coronal view displayed as the lung
window. c Sagittal view displayed as the bone window. BIS indicates bicubic inter-
polation synthetic; DLS deep learning synthetic.

Fig. 3 | Different CT images for 26-year-old woman from dataset-USA. a Axial
view displayed as the lung window. b Coronal view displayed as the lung window.
c Sagittal view displayed as the bone window. BIS indicates bicubic interpolation
synthetic, DLS deep learning synthetic, CT computed tomography, USA United
States of America.

Table 2 | Quantitative image quality

Variables BIS 1-mm CT DLS 1-mm CT P valuea

Dataset-Development

PSNR,
median [IQRs]

34.31 [33.75–34.91] 44.08 [43.32–44.66] <0.001

SSIM,
median [IQRs]

0.96 [0.95–0.96] 0.99 [0.99–0.99] <0.001

Dataset-USA

PSNR,
median [IQRs]

31.75 [31.41–32.28] 36.64 [35.65–37.33] <0.001

SSIM,
median [IQRs]

0.87 [0.86–0.89] 0.92 [0.90–0.93] <0.001

Dataset-Pneumonia

PSNR,
median [IQRs]

34.74 [34.50–35.13] 42.95 [42.46–43.41] <0.001

SSIM,
median [IQRs]

0.95 [0.95–0.96] 0.98 [0.98–0.98] <0.001

Dataset-Nodule

PSNR,
median [IQRs]

33.73 [33.16–34.37] 38.69 [37.69–39.68] <0.001

SSIM,
median [IQRs]

0.91 [0.89–0.92] 0.94 [0.92–0.95] <0.001

IQRs interquartile ranges, BIS bicubic interpolation synthetic, DLS deep learning synthetic, PSNR
peak signal-to-noise ratio, SSIM structural similarity index measure, CT computed tomography.
aP-values are derived from the Wilcoxon Signed-Rank test with Bonferroni correction.
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Clinical applicability evaluation: CAP diagnostic
The clinical application potential of DLS 1-mm CT was examined
through two reader studies of chest diseases, including CAP diagnosis
and lung nodule detection. For CAP diagnostic, 100 participants were
randomly selected from Dataset-Pneumonia (CAP positive, 50% [50/
100]). Four radiologists (3–14 years’ experience) achieved greater
accuracy with synthetic thin-slice CT (DLS 1-mm) than original thick-

slice CT (Real 5-mm) (Reader 1: 93.0% [93/100] vs. 85.0% [85/100],
p = 0.02; Reader 2: 89.0% [89/100] vs. 81.0% [81/100], p = 0.04; Reader 3:
89.0% [89/100] vs. 79.0% [79/100], p = 0.04; Reader 4: 90.0% [90/100] vs.
80.0% [80/100], p = 0.004), indicating the utility of synthetic images on
CAP diagnosis (Table 4). Three radiologists had higher diagnostic
sensitivity using DLS 1-mm than using Real 5-mm (Reader 1: 88.0% [44/
50] vs. 76.0% [38/50], p = 0.06; Reader 2 80.0% [40/50] vs. 66.0% [33/50],

Fig. 4 | Stacked bar graphs display the distribution of quality scores. Eight radi-
ologists independently rated Real, BIS, and DLS 1-mm CT using a five-point Likert
scale (1 = unacceptable, 2 = poor, 3 = acceptable, 4 = good, 5 = excellent). In the
Likert scale, scores of ‘unacceptable’ and ‘poor’ are defined as nondiagnostic

(displayed in varying shades of red); scores of ‘acceptable’, ‘good’ and ‘excellent’ are
defined as diagnostic (displayed in varying shades of green). BIS indicates bicubic
interpolation synthetic, DLS deep learning synthetic, CN China, US United States.
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p = 0.08; Reader 4: 68.0% [34/50] vs. 80.0% [40/50], p = 0.06), while
maintaining specificity higher than Real 5-mm (all p > 0.05). Reader 3
obtained the same sensitivity but higher specificity using DLS 1-mm
compared to using Real 5-mm (92.0% [46/50] vs. 72.0% [36/50],
p = 0.01). All radiologists also had higher precision and F1-score when
usingDLS 1-mm than using Real 5-mm (all p > 0.05; except for precision
of Reader 3, p = 0.02). Of note, all radiologists achieved non-inferior
accuracy, sensitivity, specificity, precision, and F1-score on DLS 1-mm
compared to Real 1-mm (all p > 0.99).

Clinical applicability evaluation: lung nodule detection
For lung nodule detection, 84 patients with 200 nodules were randomly
selected from Dataset-Nodule, same four radiologists achieved greater
nodule detection sensitivity on DLS 1-mm ranging from 41.5% [83/200]
to 43.5% [87/200] than that of Real 5-mmwhich ranged from 25.5% [51/
100] to 29.0% [85/100] (all p < 0.001; Fig. 5A). For solid nodules, sen-
sitivities on DLS 1-mm (37.1% [49/132] to 38.6% [51/132]) exceeded
that on Real 5-mm (21.2% [28/132] to 25.8% [34/132], all p < 0.05), and
were comparable to that on Real 1-mm (43.9% [58/132] to 46.2% [61/
132], all p > 0.05), as shown in Fig. 5B. A similar tendency was observed

Table 4 | Evaluation of CAP diagnosis

Variables Real 5-mm Real 1-mm DLS 1-mm

Reader 1

Accuracy, % (No./total No.) 85.0 (85/100) 93.0 (93/100) 93.0 (93/100)

95% CI 78.0–92.0 87.0–97.0 88.0–98.0

P-value (vs. DLS 1-mm) 0.02* >0.99 NA

Sensitivity, % (No./total No.) 76.0 (38/50) 90.0 (45/50) 88.0 (44/50)

95% CI 63.8–87.3 80.4–97.6 78.2–96.0

P-value (vs. DLS 1-mm) 0.06 >0.99 NA

Specificity, % (No./total No.) 94.0 (47/50) 96.0 (48/50) 98.0 (49/50)

95% CI 86.0–100.0 90.2–100.0 93.5–100.0

P-value (vs. DLS 1-mm) >0.99 >0.99 NA

Precision, % (No./total No.) 92.7 (38/41) 95.7 (45/47) 97.8 (44/45)

95% CI 82.9–100.0 89.1–100.0 92.7–100.0

P-value (vs. DLS 1-mm) 0.50 >0.99 NA

F1-score 83.5 92.8 92.6

95% CI 74.4–91.1 86.0–97.3 86.3–97.4

P-value (vs. DLS 1-mm) 0.85 >0.99 NA

Reader 2

Accuracy, % (No./total No.) 81.0 (81/100) 91.0 (91/100) 89.0 (89/100)

95% CI 73.0–88.0 85.0–96.0 82.0–95.0

P-value (vs. DLS 1-mm) 0.04* >0.99 NA

Sensitivity, % (No./total No.) 66.0 (33/50) 84.0 (42/50) 80.0 (40/50)

95% CI 52.3–78.7 73.1–93.8 68.1–91.1

P-value (vs. DLS 1-mm) 0.08 >0.99 NA

Specificity, % (No./total No.) 96.0 (48/50) 98.0 (49/50) 98.0 (49/50)

95% CI 89.6–100.0 93.6–100.0 93.6–100.0

P-value (vs. DLS 1-mm) >0.99 >0.99 NA

Precision, % (No./total No.) 94.3 (33/35) 97.7 (42/43) 97.6 (40/41)

95% CI 84.6–100.0 92.3–100.0 91.9–100.0

P-value (vs. DLS 1-mm) 0.70 >0.99 NA

F1-score 77.6 90.3 87.9

95% CI 66.7–86.8 82.9–96.0 79.5–94.4

P-value (vs. DLS 1-mm) 0.95 >0.99 NA

Table 3 | Image quality assessments according to multi-
reader study

Variables Real 1-mm DLS 1-mm BIS 1-mm

Combined five-point (n = 640)

Unacceptable, No. (%) 2 (0.3) 3 (0.5) 39 (6.1)

Poor, No. (%) 4 (0.6) 12 (1.9) 194 (30.3)

Acceptable, No. (%) 61 (9.5) 83 (13.0) 193 (30.2)

Good, No. (%) 180 (28.1) 194 (30.3) 143 (22.3)

Excellent, No. (%) 393 (61.5) 348 (54.3) 71 (11.1)

Combined binary (n = 640)

Nondiagnostic, No. (%)a 6 (0.9) 15 (2.3) 233 (36.4)

Diagnostic, No. (%)b 634 (99.1) 625 (97.7) 407 (63.6)

Score

Mean [SD] 4.5 [0.7] 4.4 [0.8] 3.0 [1.1]

Median [IQRs] 5 [4, 5] 5 [4, 5] 3 [2, 4]

DLS deep learning synthetic, BIS bicubic interpolation synthetic, CN China, US United States.
aNondiagnostic included unacceptable (score = 1) and poor (score = 2).
bDiagnostic included acceptable (score = 3), good (score = 4) and excellent (score = 5).

Table 4 (continued) | Evaluation of CAP diagnosis

Variables Real 5-mm Real 1-mm DLS 1-mm

Reader 3

Accuracy, % (No./total No.) 79.0 (79/100) 90.0 (45/50) 89.0 (89/100)

95% CI 70.0–87.0 84.0–95.0 82.0–95.0

P-value (vs. DLS 1-mm) 0.04* >0.99 NA

Sensitivity, % (No./total No.) 86.0 (43/50) 86.0 (43/50) 86.0 (43/50)

95% CI 75.0–95.2 75.6–95.2 75.6–94.8

P-value (vs. DLS 1-mm) >0.99 >0.99 NA

Specificity, % (No./total No.) 72.0 (36/50) 94.0 (47/50) 92.0 (46/50)

95% CI 58.5–84.1 86.4–100.0 83.0–98.2

P-value (vs. DLS 1-mm) 0.01 >0.99 NA

Precision, % (No./total No.) 75.4 (43/57) 93.5 (43/46) 91.5 (43/47)

95% CI 63.2–86.2 84.8–100.0 82.2–98.0

P-value (vs. DLS 1-mm) 0.02* >0.99 NA

F1-score 80.4 89.6 88.7

95% CI 71.0–88.0 82.3–95.5 80.9–95.0

P-value (vs. DLS 1-mm) 0.78 >0.99 NA

Reader 4

Accuracy, % (No./total No.) 80.0 (80/100) 89.0 (89/100) 90.0 (90/100)

95% CI 74.0–89.0 83.0–95.0 82.0–95.0

P-value (vs. DLS 1-mm) 0.004* >0.99 NA

Sensitivity, % (No./total No.) 68.0 (35/50) 80.0 (40/50) 80.0 (40/50)

95% CI 53.8–80.9 68.1–91.1 65.3–88.9

P-value (vs. DLS 1-mm) 0.06 >0.99 NA

Specificity, % (No./total No.) 91.0 (46/50) 98.0 (49/50) 100.0 (50/50)

95% CI 86.0–100.0 93.5–100.0 100.0–100.0

P-value (vs. DLS 1-mm) 0.25 >0.99 NA

Precision, % (No./total No.) 89.5 (34/38) 97.6 (40/41) 100.0 (40/40)

95% CI 78.0–97.6 91.7–100.0 100.0–100.0

P-value (vs. DLS 1-mm) 0.22 >0.99 NA

F1-score 77.3 87.9 88.9

95% CI 65.6–86.9 80.0–94.6 81.0–95.1

P-value (vs. DLS 1-mm) 0.77 >0.99 NA

DLS deep learning synthetic, CI confidence interval, NA not applicable.
*Statistically significant difference at a significance level of P < 0.05.
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for calcified nodules, sensitivities onDLS 1-mm (46.2% [24/52] to 57.7%
[30/52]) surpassed that on Real 5-mm (25.0% [13/52] to 40.4% [21/52],
all p < 0.05), and was non-inferior to that on Real 1-mm (40.4% [21/52]
to 53.8% [28/52], all p > 0.05), as shown in Fig. 5C. As for subsolid
nodules, Real 1-mm sensitivities (56.2% [9/16] to 68.8% [11/16]) were
higher than DLS 1-mm (43.8% [7/16] to 56.2% [9/16]), which in turn
outperformed Real 5-mm (31.2% [5/16] to 43.8% [7/16]), albeit not
significant (all p > 0.05; Fig. 5D).

Regulated AI-assisted product
InferRead CT Pneumonia (Infervision, China), a NMPA-approved AI-
assisted product, was employed to evaluated CAP diagnosis performance
variability on the Dataset-Pneumonia. We calculated the area under the
receiver operating characteristic curve (AUC), sensitivity, specificity, pre-
cision, and F1-score using Real 1-mm, Real 5-mm, BIS 1-mm, and DLS
1-mm CT as input, respectively. As shown in Fig. 6A, the AUC of AI-
assistedCAPdiagnosis variedbyCT type: 0.93with 95%confidence interval
(CI) was 0.90 and 0.96 on Real 1-mm, 0.81 (95% CI, 0.76–0.86) on Real 5-
mm, and 0.91 (95% CI, 0.87–0.94) on DLS 1-mm. The AUC of DLS 1-mm
was superior to Real 5-mm (p < 0.001) and non-inferior to Real 1-mm
(p = 0.42; Table 5). At a specificity of 90.3% [140/155], higher accuracy
(85.7% [257/300]), sensitivity (80.7% [117/145]), precision (88.6% [117/
132]), and F1-score (84.5) were obtained on DLS 1-mm than Real 5-mm
(accuracy, 74.3 [223/300], p < 0.001; sensitivity, 57.2 [83/145], p < 0.001;

precision, 84.7 [83/98], p > 0.99; F1-score, 68.3, p = 0.02), and comparable to
Real 1-mm (all p > 0.05).

InferRead CT Lung (Infervision, China), approved by both FDA and
NMPA, evaluated performance variability in lung nodule detection. We
calculated the detection sensitivity for various types of nodules in Dataset-
Nodule when using Real 1-mm, Real 5-mm, BIS 1-mm, andDLS 1-mmCT
as inputs. As shown in Fig. 6B, AI-assisted sensitivity using DLS 1-mmwas
higher (69.9% [1096/1567]) than Real 5-mm (35.4% [554/1567], p < 0.001)
but lower than Real 1-mm (84.7% [1327/1567], p < 0.001). DLS 1-mm
enabled higher sensitivity for solid (71.1% [688/968]) and calcified nodules
(64.8% [318/491]) compared to Real 5-mm (solid, 30.9% [299/968],
p < 0.001; calcific, 45.0% [221/491], p < 0.001), yet it was lower than Real
1-mm (solid, 82.3% [797/968], p < 0.001; calcific, 89.2% [438/491],
p < 0.001). For subsolid nodules, DLS 1-mm sensitivity (83.3% [90/108])
exceeded Real 5-mm (31.5% [34/108], p < 0.001) and was non-inferior to
Real 1-mm (85.2% [92/108], p > 0.99; Table 6).

Discussion
Thick-slice CT remain prevalent in clinical practice, particularly in devel-
oping countries, where upgrading to advanced CT scanners and expanding
data centers is not trivial. The coarse spatial resolution of thick-slice CT
challenges radiologists and computer-aided analysis, potentially leading to
misdiagnosis or unforeseen consequences. Especially for existing regulated
AI-assisted diagnostic products, which often have explicit input constraints,

Fig. 5 | Diagnostic Evaluation of Lung Nodule Detection. Sensitivity of each reader using various types of CT images, shown for a all nodules (N = 200), b solid nodules
(N = 132), c calcific nodules (N = 52), and d subsolid nodules (N = 16). DLS indicates deep learning synthetic, R reader, CT computed tomography.
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re-developing the product to accommodate differences in slice thickness
would incur significant effort and cost. In this study, we developed a DL-
based model to generate synthetic thin-slice CT from thick-slice counter-
parts and accessed the potential for integrating these synthetic images into
clinical workflows to overcome the aforementioned disadvantages. To this
end, we make the following key contributions: (1) We propose a novel

encoder-decoder network with a Convolutional-Transformer hybrid
architecture for generating synthetic thin-slice CT from thick-slice CT; (2)
We demonstrate that the image quality of synthetic thin-slice CT is com-
parable to that of real thin-slice CT through multicenter quantitative and
qualitative evaluations; (3)We verify the clinical applicability of ourmethod
in enhancing the diagnosis of CAP and detection of lung nodules, revealing

Fig. 6 | Evaluation of AI-assisted diagnostic pro-
duct. a ROC curves of AI-assisted CAP diagnosis
with different CT images. b Sensitivity of AI-assisted
lung nodule detection with different CT images. AI
indicates artificial intelligence, ROC receiver oper-
ating characteristic, CAP community-acquired
pneumonia, DLS deep learning synthetic, BIS bicu-
bic interpolation synthetic, CT computed
tomography.
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that radiologist using synthetic thin-slice CT outperform those using ori-
ginal thick-slice CT, and comparable to those using real thin-slice CT; (4)
We confirm that synthetic thin-slice CT provides improvements in AI-
assisted CAP diagnosis and lung nodule detection compared to the original
thick-slice CT.

DL algorithms have proven capable of enhancing medical images
across various scenarios15–20, including spatial SR to improve image quality
of CT. Early methods focused primarily on the quantitative similarity of
synthetic thin-slice CT to real thin-slice CT21–24. In addition to quantitative
image quality, several studies explored potential clinical applications of
synthetic thin-slice CT, including radiologist diagnosis23 and computer-
aided systems11. However, integrating synthetic thin-slice CT into clinical
practice encounters two obstacles.

The first is the need for large-scale external validation, both
quantitative and qualitative. This study externally validated image
quality of synthetic thin-slice CT across three centers from two coun-
tries. The quantitative assessment showed that our DLS model con-
sistently surpassed other spatial SR methods like bicubic interpolation25

and various DL models21–24 in terms of PSNR and SSIM. In a qualitative
assessment by eight radiologists, no significant differences were
observed between synthetic and real thin-slice CT, highlighting the

potential of synthetic thin-slice CT as a complementary view to thick-
slice CT in diagnosis. The second obstacle is the need to evaluate of
synthetic images’ applicability in clinical practice. Liu et al.23 demon-
strated that radiologists achieve higher sensitivity and precision in lung
nodule detection with synthetic thin-slice CT than original thick-slice
CT, yet comparisons with real thin-slice CT were absent. Our study
compared the real thin-slice CT, synthetic thin-slice CT, and original
thick-slice CT through diagnostic evaluation, including CAP diagnosis
and lung nodule detection. Results showed that synthetic thin-slice CT
significantly outperformed the original thick-slice CT and was com-
parable to real thin-slice CT. Notably, our DLS model’s training data
comprised only healthy participants and were acquired on a CT scanner
different from the external test sets, which included patients with
complex anomalies. Despite these challenges, the synthetic thin-slice CT
maintained high image quality, underscoring the model’s robust gen-
eralization and its potential for further improving synthesis quality
through diversifying training data or fine-tuning for specific datasets.

Moreover, the potential benefits of synthetic images for AI-assisted
diagnostic products deserve attention.NumerousAI-assisted products have
received approval from authoritative organizations such as the FDA and
NMPA are currently utilized in clinical settings9,10.

Table 5 | CAP diagnosis performance of AI-assisted product

Variable Value Pairwise comparisons

P value P value P value P value

AUC (95% CI) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 0.93 (0.90–0.96) Ref

Real 5-mm 0.81 (0.76–0.86) <0.001* Ref

BIS 1-mm 0.86 (0.81–0.90) <0.001* 0.03* Ref

DLS 1-mm 0.91 (0.87–0.94) 0.42 <0.001* 0.02* Ref

Accuracy, % [No./total No.] (95% CI) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 84.0 [252/300] (79.7–88.0) Ref

Real 5-mm 74.3 [223/300] (69.3–79.0) 0.001* Ref

BIS 1-mm 78.0 [234/300] (73.0–82.7) 0.11 0.91 Ref

DLS 1-mm 85.7 [257/300] (81.3–89.3) >0.99 <0.001* 0.02* Ref

Sensitivity, % [No./total No.] (95% CI) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 77.2 [112/145] (70.1–83.8) Ref

Real 5-mm 57.2 [83/145] (49.0–64.8) <0.001* Ref

BIS 1-mm 64.8 [94/145] (56.8–71.5) 0.013* 0.31 Ref

DLS 1-mm 80.7 [117/145] (73.9–86.8) >0.99 <0.001* <0.001* Ref

Specificity, % [No./total No.] (95% CI) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 90.3 [140/155] (85.4–94.7) Ref

Real 5-mm 90.3 [140/155] (85.4–94.7) >0.99 Ref

BIS 1-mm 90.3 [140/155] (85.7–94.6) >0.99 >0.99 Ref

DLS 1-mm 90.3 [140/155] (85.5–94.7) >0.99 >0.99 >0.99 Ref

Precision, % [No./total No.] (95% CI) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 88.2 [112/127] (82.4–93.3) Ref

Real 5-mm 84.7 [83/98] (77.1–91.8) >0.99 Ref

BIS 1-mm 86.2 [94/109] (79.8–92.2) >0.99 >0.99 Ref

DLS 1-mm 88.6 [117/132] (82.9–93.5) >0.99 >0.99 >0.99 Ref

F1-score (95% CI) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 82.3 (77.4–87.0) Ref

Real 5-mm 68.3 (61.3–74.4) 0.04* Ref

BIS 1-mm 74.0 (67.8–79.4) 0.16 0.28 Ref

DLS 1-mm 84.5 (79.5–88.8) >0.99 0.02* 0.10 Ref

CAPCommunity-Acquired Pneumonia,AIArtificial Intelligence,AUC area under the receiver operating characteristic curve,BIS bicubic interpolation synthetic,DLS deep learning synthetic,Ref reference.
*Statistically significant difference at a significance level of P < 0.05.
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However, products primarily designed for thin-slice CT often exhibit
suboptimal performance with thick-slice CT11–14. Consequently, the afore-
mentioned developing countries face disparities in benefiting from AI,
exacerbating existing healthcare inequalities. In this study, wefirst evaluated
the performance difference between synthetic CT and real CT using a
NMPA-approvedAI software for diagnosingCAP. Compared to thick-slice
CT, synthetic thin-slice CT exhibited superior performance, which even
proved noninferior to real thin-slice CT. Furthermore, we evaluated the
performance of lung nodule detection with an FDA-approved AI software,
and found that although synthetic thin-slice CT was inferior to real thin-
slice CT, it is still much better than thick-slice CT. For subsolid nodules,
synthetic thin-slice CT showed noninferior sensitivity compared to real
thin-slice CT, which is clinically important as subsolid nodules, particularly
part-solid nodules, have a higher malignancy rate than solid nodules28–30.
Our study revealed a noticeable decrease in the performance of two regu-
lated AI products when using thick-slice CT, whereas synthetic thin-slice
CT effectively counteracted this decline, suggesting that our model has
definite use and merit in empowering AI-assisted products deployment in
regions with scarce medical resources.

This study had limitations. First, this study aimed to externally validate
the clinical utility of synthetic thin-slice CT in a multicenter, multiregional
setting. However, its generalizability was limited because only the smallest
test set came from outside the country of most data sources. Moreover, this
preliminary study was restricted to chest CT and did not assess the model’s
suitability for other anatomical structures. Future studies will extend the
validation across different anatomical structures and diagnostic tasks
internationally. Second, our DL model’s evaluation used pairs of thin-slice
and thick-slice CTs reconstructed from identical raw data. Therefore,
assessing the model’s performance with directly scanned thick-slice CT
remains necessary, and this will be incorporated into our continued vali-
dation efforts. Third, although ourDLSmodel achieves significantly highest
quantitative image quality, its running time lags behind other two DL
method23,24. This discrepancy may stem from the incorporation of spatial

computations in the DLS model to leverage spatial context, consequently
elevating the complexity of the model. Reducing running time is pivotal for
user experience and facilitate the integration of the synthetic model into
clinical workflow, so an important future work is to improve the compu-
tational efficiency of our DLS model while maintaining synthetic quality.
Lastly, the state-of-the-art diffusionmodels exhibit superior performance in
image synthesis31, but their significant computational demand prevented
the exploration in this study. For occasional inaccurate synthesis, enhancing
robustness throughexploring advanced synthesismethods remain apriority
for future research.

In conclusion, this multicenter study found that the DLS model gen-
erates synthetic thin-sliceCT from thick-slice chest CT, yielding images that
match the image quality of real thin-slice CT. The synthetic thin-slice CT
exhibited good performance in CAP diagnosis and lung nodule detection,
superior to the original thick-slice CT and comparable to real thin-slice CT.
Furthermore, the performance of AI-assisted diagnosis products that pre-
viously underperformedwith original thick-sliceCTwas improved byusing
synthetic thin-slice CT. With additional research and validation, synthetic
thin-slice CT could serve as a practical alternative to real thin-slice CT,
especially when the latter is preferable but unavailable. Prospective studies
are essential to substantiate these findings.

Methods
This cross-regional, multicenter study was performed in four centers,
including one in the United States and three in China. We developed our
DLS model on one center and evaluated synthetic thin-slice CT with
internal and external validation on all four centers. Considering the study’s
retrospective nature, all participating centers’ institutional review boards
(IRB) either approved this study (Beijing Haidian Hospital Medical Ethics
Committee, BHHMEC-YJ-2021-02; Ethics Committee of Chinese PLA
General Hospital, S2023-498-01; Ethics Committee of China-Japan
Friendship Hospital, 2022-KY-127) or exempted it from review (Uni-
versity of California Los Angeles Office of the Human Research Protection

Table 6 | Lung nodule detection performance of AI-assisted product

Variables Sensitivity, % [No./total No.] 95% CI, % Pairwise comparisons

P value P value P value P value

All Nodules (N = 1567) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 84.7 [1327/1567] 82.8–86.5 Ref

Real 5-mm 35.4 [554/1567] 33.0–37.8 <0.001* Ref

BIS 1-mm 51.9 [813/1567] 49.4–54.4 <0.001* <0.001* Ref

DLS 1-mm 69.9 [1096/1567] 67.6–72.2 <0.001* <0.001* <0.001* Ref

Solid nodules (N = 968) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 82.3 [797/968] 80.0–84.8 Ref

Real 5-mm 30.9 [299/968] 28.1–34.0 <0.001* Ref

BIS 1-mm 53.7 [520/968] 50.6–56.8 <0.001* <0.001* Ref

DLS 1-mm 71.1 [688/968] 68.2–73.9 <0.001* <0.001* <0.001* Ref

Subsolid nodules (N = 108) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 85.2 [92/108] 77.9–91.7 Ref

Real 5-mm 31.5 [34/108] 23.3–40.7 <0.001* Ref

BIS 1-mm 59.3 [64/108] 49.5–69.2 <0.001* <0.001* Ref

DLS 1-mm 83.3 [90/108] 76.4–89.9 >0.99 <0.001* <0.001* Ref

Calcific nodules (N = 491) Real 1-mm Real 5-mm BIS 1-mm DLS 1-mm

Real 1-mm 89.2 [438/491] 86.4–91.7 Ref

Real 5-mm 45.0 [221/491] 40.5–49.2 <0.001* Ref

BIS 1-mm 46.6 [229/491] 42.2–51.2 <0.001* >0.99 Ref

DLS 1-mm 64.8 [318/491] 60.6–69.0 <0.001* <0.001* <0.001* Ref

AI Artificial Intelligence, BIS bicubic interpolation synthetic, DLS deep learning synthetic, Ref reference.
*Statistically significant difference at a significance level of p < 0.05.

https://doi.org/10.1038/s41746-024-01338-8 Article

npj Digital Medicine |           (2024) 7:335 10

www.nature.com/npjdigitalmed


Program, IRB#23-001216). When IRB review was performed, written
informed consent was waived. All collected CT were deidentified.

Related work
CNN-based algorithms have demonstrated exceptional performance in
SR for natural images26, and these techniques have been introduced for
spatial SR. Bae et al. were the first to apply CNN to spatial SR, using a 2D-
based approach on coronal or sagittal planes and then composing the
results into a 3D output32. Recognizing the limitations of 2D networks in
modeling spatial context, Ge et al. introduced a 3D-based approach to
capture expressive volumetric representations with inter-slice correla-
tion, resulting in excellent image quality21. Peng et al. proposed a multi-
stage 3D method that allows for arbitrary upsampling ratios in spatial
SR22, later expanding this to a domain-adaptive mode33. Chen et al. also
explored arbitrary resolution spatial SR using a neural radiance field-
based zero-shot framework34. Additionally, certain studies have delved
into refining spatial SR model via self-supervised learning strategies to
mitigate the impact of data quality35,36. Despite substantial progress,
CNN-based algorithms are still constrained by the inherent limitations
of Convolutional operators. One limitation is the potential oversight of
content relevance when applying the same Convolutional kernel across
diverse regions. In response, Liu et al.23 proposed a CNN-based multi-
stream architecture that leverages lung segmentation to separately
restore different regions, albeit this strategy may not universally apply.
Furthermore, the non-local similarity of image content has proven to be
a valuable prior in image restoration37. However, the local processing
nature of Convolutional operators impedes their capacity to effectively
model the non-local relationship.

In contrast to CNN-based algorithms, Transformer excel at capturing
long-range dependencies and dynamically aggregating feature weights to
enhance input-specific feature representations38. These capabilities moti-
vated Yu et al. to develop a Transformer-based spatial SR approach, known
as the Transformer Volumetric Super-Resolution Network (TVSRN)24.
TVSRN frames spatial SR as a task of recovering masked regions from
visible regions. It adopts an encoder-decoder architecture with Swin-
Transformer layer39, where the encoder maps the thick-slice CT (visible
regions) to a latent representation, and the decoder recovers the thin-slice
CT (masked regions) from this latent representation. The Swin-
Transformer layer extracts non-local feature through shifted windows,
thereby reducing computational complexity to linear in relation to input
size, making it more suitable for high-resolution images.

Deep learning synthetic model
To generate synthetic 1-mm thin-slice CT from real 5-mm thick-slice CT,
we developed a DLS model based on an asymmetric encoder-decoder
architecture, extending TVSRN with three notable improvements to
enhance synthetic CT quality. First, we incorporated a Convolutional layer
at the end of each block in the TVSRN, generating a Convolutional-
Transformer hybrid module. This design, inspired by Liang et al.40,
improved model performance and accelerated convergence in our experi-
ments. Second,we eliminated allmaskingmechanisms fromTVSRN,which
serve to restrict self-attention computation to within each sub-window
during cyclic-shift computation. This mechanism constrains long-range
information interaction and introduces extra computation that may impair
the model performance for the spatial SR task. Lastly, we replaced the 2D
Swin-Transformer layer in TVSRN encoder with a 3D Swin-Transformer
layer41, facilitating more effective spatial context utilization and resulting in
more representative features.

We trainedDLSmodel using theDataset-Development training set,
which consists of paired Real 1-mm and Real 5-mmCT scans from 1000
healthy participants. Prior to input, the intensities of CT scans were
normalized from the range [−1024, 2048] to [0, 1]. Data augmentation
included random cropping and horizontal flipping. The model was
trained with the AdamW optimizer42, using an initial learning rate of
0.0003 and aweight decay of 0.0001. Themini-batch size was set to 1 and

the max training epoch was 2000. For model checkpoint selection and
hyperparameter optimization, we evaluated the PSNR of models on the
Dataset-Development validation set (176 healthy participants, from the
same center as the training set) every 5 training epochs. The model
achieving the highest PSNR on the validation set was selected for eva-
luation on the test sets. During training, the learning rate was reduced to
1/10 of its current value if three consecutive evaluations showed no
improvement, and training was stopped after three reductions in the
learning rate. The framework is implemented in PyTorch framework
1.9.0 on an NVIDIA A6000 GPU.

We compared the performance of DLS model with several SOTA
spatial SRmethods, including threeCNN-basedmethods21–23 andTVSRN24.
Additionally, we conducted two ablation study on the Dataset-
Development to deeply analyze our DLS model. The first experiment
assessed the effects of employing different amounts of training data (100
[10%], 200 [20%], 500 [50%], 800 [80%], 1000 [100%]). The second
experiment compared the performance of our DLS model with various
vision Transformer-based image synthetic methods, including IPT43,
Uformer44, Resformer45, ART46, and ShuffleFormer47.

Image quality evaluation
For quantitative evaluation of synthetic thin-slice CT, we employed two
standard objectivemeasures widely used in image generation, i.e. PSNRand
SSIM, for our four test sets. The higher the PSNR and SSIM, the better
quantitative quality of the synthetic thin-slice CT.

For qualitative evaluation, 20 participants were randomly chosen from
each test set to conduct the multi-reader study, resulting in 80 participants.
CT scans of three types (real 1-mm, BIS 1-mm, and DLS 1-mm) were
included for each participant, resulting in a total of 240 CT scans. To
minimize potential biases, the 240 CT scans were randomly ordered and
distributed in such a way that no consecutive scans from the same partici-
pantwere shown to the radiologists. Each radiologist viewed theCTscans in
the same order.

Clinical applicability evaluation
The clinical application potential of DLS 1-mm CT was examined through
two reader studies of chest diseases, including CAP diagnosis and lung
nodule detection. Four radiologists (3–14 years’ experience, from China)
joined in both reader studies and each study was divided into three distinct
rounds, with an interval of 1-month as the washout period. For each par-
ticipant, three types of CT (real 1-mm, real 5-mm, and DLS 1-mm) were
anonymized and randomly assigned to one of the three rounds, ensuring
that each round featured only one type per participant.

For CAP diagnosis, each radiologist was required to make a diagnosis
ofCAPbasedon eachCT, blinded to clinical data. The datawere selected for
this study through stratified random sampling from Dataset-Pneumonia,
yielding a balanced set of 100 cases, evenly divided into 50 pneumonia-
positive and 50 pneumonia-negative cases.

For lung nodule detection, each radiologist was required to identify all
lungnodules oneachCT, blinded to clinical data. For this study, 200nodules
were randomly selected from Dataset-Nodule, following this procedure:
initially, patients with nodules in Dataset-Nodule were randomized, then
sequentially included. During this process, a patient was included if the sum
of their nodules and the accumulated total frompreviously includedpatients
did not exceed 200; otherwise, that patient was bypassed. The enrollment
concluded once the total count of nodules from the included patients
reached precisely 200. Finally, 84 patients were enrolled.

The clinical application potential of DLS 1-mm CT was further
examined by comparing it with real 5-mm and real 1-mm CT on the same
two tasks, i.e., CAP diagnosis and lung nodule detection, when used for
regulated AI-assisted diagnostic products. InferRead CT Pneumonia
(Infervision, China), approved by the NMPA was employed to evaluated
CAP diagnosis performance variability. InferRead CT Lung (Infervision,
China), approved by both FDA and NMPA, evaluated performance
variability in lung nodule detection.
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Evaluation metrics
PSNR is a widely used metric in image processing and computer vision for
assessing image or video quality. It quantifies the ratio between the max-
imum possible power of a signal and the power of the noise corrupting the
signal, expressed in decibels. A higher PSNR value signifies superior image
quality and reduced distortion. SSIM calculates the structural similarity
between the original and processed images by comparing their mean, var-
iance, and covariance of pixel intensitieswithin a local window. SSIMvalues
range from 0 to 1, with a value of 1 signifying identical images and a value of
0 indicating complete dissimilarity.

For qualitative evaluation, radiologists offered a qualitative assessment
of diagnostic image quality by scoring on a 5-point Likert-type scale
(5 = excellent, 4 = good, 3 = acceptable, 2 = poor, and 1 = unacceptable; ≥3
indicates diagnostic quality) referring to the European guidelines (https://
www.drs.dk/guidelines/ct/quality/htmlindex.htm).

The CAP diagnosis performance of radiologists and AI-assisted pro-
duct were evaluated using accuracy, sensitivity, specificity, precision, F1-
score, and AUC (only AI-assisted product). For lung nodule detection,
sensitivity was used to evaluate the performance of radiologists and AI-
assisted product.

Statistical analysis
PSNR and SSIM were visualized with box plots and compared using the
Wilcoxon Signed-Rank test. For the multi-reader study, the non-inferiority
of synthetic to real CT was tested using one-sided Wilcoxon test at a 0.25-
point threshold. The count of CT rated diagnostically acceptable was
compared using the chi-square test. For CAP diagnosis, the sensitivity and
specificity were compared with the McNemar test, the precision and F1-
score were compared with the permutation test, and the AUC was com-
pared with the DeLong test. For nodule detection, the sensitivity was cal-
culated and compared with the McNemar test.

Bootstrappingwas used to estimate 95% confidence intervals. Pairwise
comparisons were conducted with Bonferroni correction by multiplying p-
values by the number of comparisons. P < 0.05 was considered to indicate a
statistically significant difference. All analyses were carried out using Sta-
tistical Package for Social Sciences (SPSS), version 28.0 (IBM).

Data availability
The data used formodel development of this study are not publicly available
by hospital regulations to protect patient privacy. Limited data access is
obtainable upon reasonable request by contacting the corresponding
author.

Code availability
The framework is implemented inPyTorch framework 1.9.0 on anNVIDIA
A6000 GPU. Code and model weights are available at https://github.com/
smilenaxx/CTHNet-for-CT-Slice-Thickness-Reduction.
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