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ABSTRACT 

 

How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective 

Hunting in a Spider Society 

 

by 

 

Colin M. Wright 

 

The field of animal personality seeks to understand the potential adaptive value of 

temporally consistent inter-individual differences in behavior. Over the past several decades, 

this personality framework has helped behavioral ecologists better understand how social 

groups structure themselves behaviorally, and how intra-colony variation in personality can 

shape the emergent collective behavior of groups. While studies investigating how collective 

personalities interact with their environments and influence group survival are becoming more 

prevalent, research on this topic is still relatively scant. One important aspect of collective 

personality yet to be given attention is how group personality composition may influence a 

group’s response to invasion by a predator, or how the mere threat of predation can alter the 

collective behavioral phenotypes of groups. Given the near ubiquity of predation as a selective 

force in nature, it is important to incorporate both the direct and indirect effects of predators 

on collective behavior. This will lead to a better understanding about the environmental factors 

that shape the expression of group personality.  
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This dissertation approaches these questions using three experiments. The first 

investigates how the behavioral distribution of colony constituents influences collective 

behavior in the context of colony defense. This study found that colonies of mixed personality 

composition exhibited twice as much defensive behavior as other compositions, and that bold 

compositions were displayed high degrees of behavioral flexibility relative to mixed and shy 

compositions. The second study observed how prolonged exposure to predators feeds back to 

determine the collective behavior of groups, and showed that colonies exposed to predators 

decreased overall collective aggressiveness by half, and eliminated the relationship between 

personality composition and aggressiveness. The last study investigated how groups prioritize 

information regarding predator presence when that information is possessed by the majority, 

or singleton immigrants that vary in leadership traits. This experiment found that groups 

operate under a “better-safe-than-sorry” strategy, and exhibit cautious collective behavior 

when any member of their group had been previously exposed to predators. Together, these 

experiments demonstrate that collective personality is a highly plastic and complex trait, that 

is determined by a combination if internal (group behavioral composition) and external 

(environmental risk) factors. Finally, I conclude this dissertation with a comprehensive review 

on the current state of collective personality research in insects and arachnids.  
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GENERAL INTRODUCTION 

 

The transition from solitary life to living in complex social groups has been described 

as one of the several major transitions in the evolutionary history of life on earth (Szathmary 

and Smith, 1995). Despite the intense organizational complexity of such systems, social 

animals today comprise some of the most successful and numerically abundant species on 

earth. Though the success of social groups like ants, bees, wasps, and termites is clear, the 

proximate and ultimate evolutionary mechanisms giving rise to these complex societies has 

been a central question in both evolutionary biology and behavioral ecology since Darwin’s 

early musings on the topic (Darwin, 1859). Classical theory suggests that individual 

morphological and behavioral variation plays a key role in structuring differential task 

participation, task allocation, and division of labor. These properties, taken together, are 

thought to promote group success via reduced transfer and interference costs, which promote 

a more streamlined flow of materials within the colony and faster response times to variable 

work demands (Beshers and Fewell, 2001; Jeanne, 1986; Oster, 1978; Wilson and Sober, 

1989). Additionally, these traits are thought to be precipitated via inclusive fitness benefits 

(Hamilton, 1964), multilevel selection (Nowak et al., 2010; Wilson, 1975), and indirect genetic 

effects (Wolf et al., 1998). Though the evolution of complex eusocial systems can in principle 

be explained solely by the benefits garnered from increased colony-level efficiency, the 

transition to sociality itself can subsequently alter the fitness landscape in which new traits 

evolve (Moore et al., 1997; Wolf et al., 1999).  

One aspect that is intimately related to the success of social groups and can become 

intensified due to sociality is the ability to effectively combat predation. The methods that 
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social groups deploy to mitigate predation can be either passive or active in nature. For 

instance, individuals in a group can take advantage of “dilution effects,” describing situations 

where individuals cluster and thereby passively reduce their individual exposure to predators 

(Dehn, 1990; Foster and Treherne, 1981; Hamilton, 1971; Krause, 1994). Alternatively, a 

colony or group can mount an active defensive response in a manner that would be simply 

ineffective if performed by a single individual. Musk oxen (Ovibos moschatus), for instance, 

join together to form a defensive barrier around their young to  shield them from wolf predation 

(Tener, 1954), and eusocial bees and wasps can exhibit swarming behavior in response to 

predator disturbances (Breed et al., 2004; Judd, 1998). The efficacy of these orchestrated anti-

predator responses are often also positively associated with group size (Elgar, 1989; Hermann 

and Blum, 1981). And, behavioral variation within a colony or group is often thought to help 

facilitate the execution of many complex tasks, and may for some tasks be even more important 

than group size per se in determining colony success (Keiser and Pruitt, 2014).  

The field of animal “personality,” defined as consistent differences in behavior between 

individuals over time and context (Sih et al., 2004), offers researchers a newer and exciting 

approach for studying animal sociality and its ecology. In the past, much research effort had 

been expended studying morphological variation as being a cause or consequence of division 

of labor and the benefits it confers. Indeed, a robust literature, both classic and contemporary, 

surrounds the question of adaptive ratios of castes and subcastes in many social insects (Harvey 

et al., 2000; Hasegawa, 1997; Herbers, 1980; Oster and Wilson, 1978; Wilson, 1971). 

Morphological caste differentiation among workers, however, is a relatively rare occurrence 

taxonomically. Personality variation, in contrast, occurs commonly and has evolved 

recurrently across a broad swath of animal diversity, including many social taxa (Jandt et al., 
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2013; Sih et al., 2004; Sih et al., 2012). Only recently have scientists begun investigating how 

behavioral variation and behavioral plasticity (in lieu of morphological variation) between 

individuals in monomorphic social species can act as cryptic, yet no less structured or adaptive, 

behavioral castes (Holbrook et al., 2014; Wright et al., 2014a).  

My research is broadly concerned with how colony personality composition, keystones 

presence, and behavioral plasticity interact with predators, and how experience with predators 

feeds back to potentially mediate both the individual and collective behaviors of an animal 

society. While each of these several components have been tested in various systems 

individually (e.g., behavioral composition: (Pruitt, 2013; Pruitt and Riechert, 2011a; Wray et 

al., 2011); behavioral plasticity: (Holbrook et al., 2014; Oliveira, 2009)), rarely are these 

attributes tested in concert. A more inclusive treatment exploring how behavioral composition, 

keystone dynamics, behavioral plasticity and existential threat from predators can combine to 

either mitigate or facilitate predation in any social system is currently lacking.  

An excellent model organism for the study of animal personality and sociality is social 

spiders. These organisms are ideal for addressing many of the above questions because they 

occur in many regions around the world, vary in their degree of sociality, lack morphological 

castes, and perform many measurable tasks, such as foraging, nest defense, brood care, and 

web building that are all important for colony success (Kullmann, 1972; Lubin and Bilde, 

2007; Pruitt and Riechert, 2011a; Wright et al., 2014a). The social spider Anelosimus studiosus, 

for instance, exhibits a bimodal distribution of docile and aggressive behavioral phenotypes 

(Riechert and Jones, 2008). The behavioral differences in this species have been shown to play 

a role analogous to morphological castes in some social insects (Wright et al., 2014a). Another 

social spider, Stegodyphus dumicola—the spider that will serve as the model organism for this 
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dissertation—exhibits strong bold-shy personality variation within a colony. Boldness is a 

measure of the propensity of an individual to engage in risky behavior (Sloan Wilson et al., 

1994). The distribution of personalities in this species is not bimodal like that seen in A. 

studiosus, but rather a zero-inflated negative binomial distribution with a strong shy bias. The 

rarer bold individuals, however, have been shown to act as keystone individuals (Modlmeier 

et al., 2014d): when a single highly bold individual is added to a group of all shy spiders, it is 

able to catalyze behavioral variation within the colony, spurring the shyer spiders into action 

and augmenting their task performance (Pruitt and Keiser, 2014a). Furthermore, this species is 

commonly preyed upon by a voracious social predator—Anoplolepis custodiens, otherwise 

known as the pugnacious ant (Henschel, 1998; Keiser et al., 2015a). All of these factors, 

coupled with the fact that this species is easily manipulated in both the field and laboratory, 

make this system ideal for studying broad questions relating colony personality composition, 

keystone individuals, and behavioral plasticity to colony success in the lab and field when 

natural enemies are present.  

Chapter I investigates the influence of colony personality composition on collective 

defense during mock ant raids. Additionally, the stereotyped sequence of handling dangerous 

prey is observed, as well as the potential protective role their dense retreats may play during 

ant raids in the field. Chapter II is a study that asks whether predator presence may in turn 

influence the collective behavior of groups when foraging on both innocuous (moths) and 

dangerous (ants) prey. Chapter III moves beyond questions pertaining to how personality 

composition or predator presence influences collective foraging, and instead investigates the 

role that individual identity (bold vs. shy immigrants), in concert with individual and colony-

level information regarding environmental threat, determines collective behavior. And lastly, 
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Chapter IV is a comprehensive review on the current scientific knowledge regarding collective 

personality in insects and arachnids. This review also includes two tables: one that surveys 

research on collective behavior performed since 2010, and a second that lists 16 currently 

untested questions, with corresponding hypotheses, pertaining to collective behavior where big 

discoveries could be made.   
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I. COLONY PERSONALITY COMPOSITION ALTERS COLONY-LEVEL PLASTICITY AND 

MAGNITUDE OF DEFENSIVE BEHAVIOR IN A SOCIAL SPIDER 

 

Abstract 

The ways in which animal societies respond to threat has enormous consequences for 

their success. In the present study, we investigated how group personality composition in social 

spiders (Stegodyphus dumicola) alters groups’ average response towards predators and how 

their responses change with experience with important predators, Anoplolepis custodiens ants. 

We found that colonies composed of a mixture of bold and shy personality types exhibited 

twice as much defensive web-making behaviour as other colony compositions. Colony 

defensive behaviour was also more temporally stable following experience with predators for 

mixed colonies than for either monotypic composition (all shy or all bold). Colonies composed 

of bold individuals were particularly erratic in their defensive behaviour over time. Thus, 

colony composition altered colony-level plasticity in response to experience with one of their 

most voracious predators. We additionally observed the behaviour of marked individuals 

within colonies to determine which individual traits were associated with task participation 

during encounters with predators. Individual morphology was the most reliable predictor of 

task participation in monotypic colonies, while a combination of personality and morphology 

predicted task participation in mixed colonies. Lastly, despite a tight association between 

colony composition and colony defensive behaviour, we found no evidence that colony 

composition impacted colony survival during ant attacks in situ. Instead, older and more 

established nests were positively associated with colony persistence during attacks.  
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Introduction 

Animals commonly behave differently in the presence of predators in ways that reduce 

the chance of their being detected and eaten (David et al., 2014; Lima and Dill, 1990). This is 

no surprise, as the risk of predation is one of the most ubiquitous selective pressures 

experienced by any animal. There are many ways in which an organism can avoid predation: 

camouflage (Merilaita et al., 1999; Stevens and Merilaita, 2009), aposematic coloration 

(Mappes et al., 2005), non-overlapping activity times (Lima and Dill, 1990; Suselbeek et al., 

2014), etc. However, there is perhaps nothing more readily amenable to selection and more 

immediately advantageous to the organism than modifications to behaviour (Nonacs and 

Blumstein, 2010). Behaviours, unlike other modes of defense, are rarely constitutive traits and 

therefore have the ability to be deployed immediately in response to cues of threat via 

behavioural plasticity (Dingemanse et al., 2010; Holbrook et al., 2014; Sih et al., 2004). Hence, 

anti-predator behaviour is nearly universal in nature, while morphological adaptations and 

weapons are, in comparison, less common.  

 Social organisms provide us with a particularly intriguing landscape for predator-prey 

interactions. Social organisms can modify their behaviour in response to threat, and have the 

added complexity of a two-tiered system where behaviour can be simultaneously considered 

at both the individual and group level. Social organisms often gain protection in numbers, as 

groups composed of many individuals often exhibit defensive behaviours that would be 

impotent if performed alone (Breed et al., 2004; Judd, 1998; Tener, 1954). Such effects often 

positively scale with group size (Elgar, 1989; Hermann and Blum, 1981). Social organisms 

have also been shown to exhibit varying degrees of behavioural plasticity in response to threat 

of predation (Holbrook et al., 2014). For instance, some ants (Lasius pallitarsis) reduce 
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foraging at sites where they risk predation by larger ant species (Nonacs and Dill, 1990, 1991), 

and paper wasps often build more nest-defensive structure in areas where predation risk is 

higher (Furuichi and Kasuya, 2014). Here we will explore how the phenotypic composition of 

social groups influences their collective defensive behaviour and/or how groups’ defensive 

behaviour changes as a consequence of experience (i.e., repeated exposure to predators). In 

particular, we consider to what degree a group’s personality composition impacts how groups 

respond to repeated interactions with predators.  

A group’s personality composition often has a large effect on its collective behaviour 

(Jandt et al., 2014; Modlmeier et al., 2015a). Here we define animal “personality” as 

temporally consistent individual differences in behaviour (Sih et al., 2004). The ratios of 

different personality types with groups are often major determinants of group behaviour in 

various contexts, as well as group survival and reproductive output (Pruitt, 2013, 2014; Wray 

et al., 2011). For example, personality variation within a group often helps streamline the 

performance of collective tasks (Chittka and Muller, 2009; Pruitt and Riechert, 2011a; Waibel 

et al., 2006; Wright et al., 2014a). In some extreme cases, the effects of personality composition 

on collective behaviour can outweigh the effects of even large differences in group size  (Keiser 

and Pruitt, 2014). Yet, the majority of the studies published on this topic to date have focused 

on foraging tasks or interactions with social parasites (Aplin et al., 2014; Burns and Dyer, 

2008; Dyer et al., 2009; Gordon, 2013a; Hui and Pinter-wollman, 2014), with infrequent regard 

for predator-prey interactions, which are arguably some of the most dire interactions groups 

are likely to endure.  

The African social spider, Stegodyphus dumicola (Araneae: Eresidae) lives in groups 

ranging from only one to several thousand individuals. They build webs that consist of a three-
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dimensional, tough silken retreat permeated with a complex series of tunnels, and two-

dimensional capture webs radiating away from this retreat in one or more directions (Seibt and 

Wickler, 1990). Spiders typically reside within the retreat until they are alerted to prey caught 

in the capture web via vibrational cues. Unlike the social hymenoptera and termites, S. 

dumicola does not exhibit morphological castes, nor does it seem to display reproductive 

division of labor. However, this species does exhibit strongly repeatable bold-shy personality 

variation between individuals within the colony. This variation has been shown to predict 

foraging and escape behaviour at the individual and colony level (Grinsted et al., 2013; Keiser 

and Pruitt, 2014; Wright et al., 2015). Here we assess how a group’s personality composition 

influences its repeated interactions with their most voracious predators, ants of the genus 

Anoplolepis (A. custodiens (Keiser et al., 2015b) and A. steingroveri (Henschel, 1998)). Ant 

raids of spider nests are extremely common where ant and spider ranges overlap, and can often 

lead to 90-100% colony eradication at sites where ants are active (Henschel, 1998). During ant 

raids, S. dumicola can be observed producing special cribellate silk (Henschel, 1998), which 

is used to make a tangled silken barrier during attacks.  

In the present study we subjected colonies to staged encounters with ant predators to 

address the following questions: (1) Do colonies of different behavioral compositions differ in 

their anti-predator behaviour? (2) Does colony composition influence how colonies alter their 

behaviour as a single unit (i.e., collective behavioural plasticity) following repeated exposure 

to predators? Then, by placing colonies within sites with moderate levels of predator density: 

(3) Do differences in colonies’ defense behaviour translate to increased persistence during 

attacks? And lastly, (4) is the time spider colonies are allowed to build their retreats positively 

associated with their ability to withstand ant raids?  
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Methods 

Collection and boldness assays 

Spiders were collected near Upington, Northern Cape, South Africa in January and 

February of 2015 along roadside bushes and fences. Colonies were placed into cloth bags for 

transport to our field site near Griekwastad, South Africa. Once at the field site, colonies were 

sorted and spiders were counted and placed into 500ml plastic containers. Spiders hailing from 

different source colonies were never mixed, in order to preserve natural levels of within-group 

relatedness and familiarity (Laskowski et al., in review; Laskowski and Pruitt, 2014a; 

Modlmeier et al., 2014f). Following colony sorting, we recorded the mass, prosoma width, and 

boldness of each spider. Boldness is a measure of the propensity of individuals to engage in 

risky behaviour (Sloan Wilson et al., 1994). Individual boldness here was estimated by 

administering two rapid puffs of air anteriorly to their prosoma of an isolated spider using a 

rubber squeeze-bulb. This puff of air simulates attack from a flying predator, and elicits a 

death-feigning huddle response in S. dumicola. Spiders were given a maximum of 600s to 

resume normal activity and move one body length following the air puff. Bold spiders were 

defined as those that resume activity between 0-200s, and shy spiders were categorized as those 

taking 400s or more to resume activity (Keiser and Pruitt, 2014). Boldness has been shown to 

be highly repeatable in S. dumicola (r > 0.60) and related species (Keiser et al., 2014a; Keiser 

et al., 2014c). Each spider was then marked with a unique color combination using fast-drying 

acrylic modeling paint.  

 

Colony construction 
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Once morphology (mass and prosoma width) and boldness of all spiders had been 

recorded, individual spiders (20 spiders per colony) were placed into new 250ml plastic 

containers with spiders taken from the same source colony. Colonies were constructed with 

one of three different behavioural compositions: 100% bold (n = 6), 100% shy (n = 27), and 

50% bold/50% shy (n = 20). Each colony was given a small Acacia mellifera branch to provide 

substrate for web building. Colonies were then given 24h to construct a capture web and retreat 

prior to their staged interactions with ants. 

 

Colony behaviour during staged predator-prey encounters 

Colony behavioural assays were performed twice a day for three days between 0800 

and 1500 hours, totaling six replicates per colony. Each assay was performed as follows: the 

lid was removed from the colony’s container, and the colony was allowed to sit undisturbed 

for one minute. A single live A. custodiens worker was then placed in the center of the colony’s 

capture web. We subsequently recorded the latency and color ID of the first spider to emerge 

and attack the ant. Additionally, every two minutes for ten minutes (five time points total) we 

recorded (1) the number and color ID of each spider pinning down the ant’s legs, (2) attacking 

the body, and (3) those participating in defensive cribellate silk making behaviour. Cribellate 

silk is a very fine silk that is extruded from the cribellum and combed out using a specialized 

structure called the calamistrum. This silk is wooly in nature, making it efficient at ensnaring 

insect prey and is therefore commonly used to line capture webs (Vollrath, 2006). In S. 

dumicola, cribellate silk is most commonly produced during the construction and repair of their 

capture web, but has also been reported to be produced during ant raids. Here the silk is laid 

down on the attachment points of the colony to the surrounding substrate in areas where 
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predatory ants are abundant (Henschel, 1998). We checked the number of attackers engaged 

in each of the tasks described above (pinning legs, attacking body, producing cribellate silk) 

every two minutes for ten minutes (5 checks/trial). The majority of colony members had 

abandoned the ant carcass by the end of these ten-minute trials.  

 

Colony survival experiment: colony composition 

Following completion of our staged predator-prey encounters, each colony was placed 

haphazardly into the field on Acacia mellifera trees after dusk at a site with moderate ant 

densities. This site was chosen to help ensure that ant raids were common, but not too 

overwhelming, thus avoiding immediate and total annihilation of all colonies. Colony survival 

was tracked beginning the following morning when ant activity commenced (roughly 0700 

hours). Colonies were checked every hour during daylight to determine when ant raids began 

for each colony, and the time between the beginning of a raid and colony collapse was 

recorded. Raids were identified by the presence of many ants gathering outside the colony, 

biting at silk but not yet infiltrating the spiders’ capture web. A colony was considered 

collapsed when ant raids progressed to the point where ants were present inside the spider’s 

retreat, forcing the resident spiders to evacuate.   

 

Colony survival experiment: retreat density 

An outstanding question in social Stegodyphus pertains to the function of their dense 

retreat (Seibt and Wickler, 1990). We reasoned that these retreats might play a significant role 

in mitigating risk during ant raids. To address the question of whether older and, consequently, 

thicker and denser retreats provide better defense against ant raids, we constructed colonies 
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composed of 100 individuals each that varied in the amount of time that they were allowed to 

construct retreats. The treatment durations were as follows: one day (N = 11), one week (N = 

10), two weeks (N = 12), one month (N = 12), and approximately one year (N = 18). The one-

year colonies were small to medium colonies collected in the field that approximated the size 

of our artificially constructed colonies (80-120 individuals). All colonies (+ their retreats) were 

placed within identical plastic containers, and were attached to A. mellifera trees during the 

night. The following morning we recorded the latency between the start of an ant raid and total 

colony collapse for retreats of different ages. Colony status observations were made every hour 

during the day when ants are active. 

 

Statistical methods 

We used repeated measures ANOVAs to analyze changes in colony defensive paper 

every two minutes over the course of a single trial (Within-Trial Analysis) and across trials as 

a consequence of experience (Across-Trial Analysis). Colonies’ behaviours at each two-minute 

check were averaged together for our analysis of colonies’ change in behaviour across trials. 

The predictor variables for these analyses were the three colony behavioural compositions: 

shy, bold, and mixed. Response variables included the number of spiders pinning legs, the 

number of spiders attacking the ant’s body, and the number of colony members engaged in 

defensive cribellate silk making. Colony ID and source colony ID were included as random 

effects in all of our analyses.  

For individual task-participation analysis, we used GLMMs with the following 

predictor variables: individual mass, prosoma width, and boldness as fixed effects and source 

colony ID and experimental colony ID as random effects. Our individual-level response 
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variables were the number of trials where each individual was the first to emerge and attack, 

and number of trials where each individual participated in leg pinning, body attacking, or 

defensive cribellate silk making behaviour.   

Survival of colonies in the field was analyzed using a Kaplan-Meier survival function 

and Mantel-Cox tests in SPSS by IBM. All other statistics were run in JMP 10. 

 

Results 

Among-Trial Analysis 

Latency to emerge and attack. Over six iterative encounters with predatory ants, all 

colonies increased their average latency to emerge by nearly 600% (26s on trial 1 vs. 155s by 

trial 6)(time: F5, 53 = 4.9, p = 0.0012). However, colonies’ latency to emerge was not associate 

with their personality compositions (F2, 53 = 1.6, p = 0.21) nor did we detect a significant 

time*personality composition interaction (F10, 53 = 0.78, p = 0.64)(Figure 1a). Likewise, latency 

to attack for all colonies increased over time (F5, 53 = 6.7, p < .0001), with mixed and shy 

colonies exhibiting a 400% increase over the six trials, and bold colonies showing a nearly 

100% increase. On average, bold colonies took about twice as long to attack prey as both shy 

and mixed colonies every trial (personality composition: F2, 53 = 4.2, p = 0.02)(Figure 1b). Here 

again, we failed to detect a significant time * personality composition interaction (F10, 53 = 0.78, 

p = 0.64). 

 Leg pinning. Over six iterative interactions with predatory ants, all colonies exhibited 

a 75% decrease in the number of individuals that pinned the ant’s legs (time: F5, 53 = 5.6, p = 

0.0005). This effect was not associated with colonies’ personality composition (F2, 53 = 1.95, p 
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= 0.15) nor did we detect a significant time * personality composition interaction (F10, 53 = 0.7, 

p = 0.71) (Figure 1c). 

 Body attacking. Over the six trials, colonies decreased the number of participants that 

responded by attacking the predator’s body by more than 66% (time: F5, 53 = 2.6, p = 0.039). 

Additionally, shy and mixed colonies had nearly twice as many individuals that attacked the 

body than bold colonies (personality composition: F2, 53 = 3.21, p = 0.049). This result is in 

stark contrast to the patterns observed when colonies attack prey; when attacking prey, bold 

colonies attack with 200-400% more individuals than shy or mixed colonies (Keiser and Pruitt, 

2014; Wright et al., 2015). The interaction term time * personality composition was again not 

significant (F10, 52 = 0.79, p = 0.63)(Figure 1d). 

Defensive cribellate silk making. Over six trials, colonies exhibited disparate 

responses to ants in terms of their defensive cribellate silk making behaviour. For example, 

over the six trials, shy and mixed colonies displayed relatively stable numbers of cribellate 

makers, while bold colonies presented wildly erratic and unpredictable numbers of individuals 

engaged in cribellate silk making (time * personality composition: F5, 53 = 5.8, p = 0.004).  

Across all compositions, colonies on average decreased the number of cribellate silk makers 

that they deployed over successive encounters (time: F5, 53 = 4.38, p = 0.0027). Colonies with 

different personality compositions differed as well, with mixed colonies having twice as many 

cribellate silk makers than either shy or bold colonies (personality composition: F2, 53 = 6.69, 

p = 0.0028)(Figure 1e). 

 

Within-Trial Analysis 
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Descriptive Summary. Early on, spiders immediately attacked the legs of ant 

predators, seemingly in order to subdue the predator and to inject venom from a safer distance. 

Over time, the spiders moved from the legs to attacking the ant’s body, where they eventually 

partially consumed the predator. Defensive cribellate making, in contrast, had few participants 

early on, but the number of individuals engaged in this activity quickly increased ~6 minutes 

into the trials (Figure 2).  

Leg Pinning. For leg pinning behaviour, all colonies exhibited a nearly 75% decrease 

in the number of individuals pinning the predator’s legs over the course of a trial (average # 

participants = 0.94 vs. 0.25) (time: F4, 53 = 11.17, p < .0001). The number of leg pinning 

individuals did not differ based on a colony’s personality composition  (F2, 53 = 1.41, p = 0.25) 

nor did we detect a time* personality composition interaction (F8, 53 = 1.19, p = 0.31)(Figure 

2). 

Body Attacking. All colonies steadily increased the number of spiders that participated 

in attacking the ant’s body over 10 minute trials (time: F4, 53 = 17.8, p < .0001), from an average 

0.09 individuals at 2min to 1.46 individuals at 10min. Colonies also differed in participation 

by composition, with shy and mixed colonies deploying twice as many individuals that attacked 

the ant’s body than bold colonies (personality composition: F2, 53 = 3.54, p = 0.036). Here 

again, this is the opposite trend of what we observe when colonies attack prey; when foraging 

on safe prey, bold colonies attack more rapidly and with many more attackers than shy or mixed 

colonies (Keiser and Pruitt, 2014; Wright et al., 2015). Lastly, the interaction term between 

time and personality composition was not significant (F8, 53 = 1.25, p = 0.27) (Figure 2). 

 Defensive cribellate silk making. All colonies generally increased the number of 

cribellate silk making participants by ~200% over 10 minutes (time: F4, 53 = 27.4, p < .0001). 
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Colony compositions also differed in defensive cribellate participation, with mixed colonies 

having twice as many participants of both bold and shy colonies (personality composition: F2, 

53 = 9.3, p = 0.0003). The time * personality composition interaction term was also highly 

significant, revealing that mixed colonies displayed a much greater acceleration in cribellate 

participants than either monotypic composition (F8, 53 = 4.16, p = 0.0003). 

 

Survival. Colony personality composition was not a significant predictor of persistence 

in a habitat of moderate predatory density (χ2, 53 = 0.57, p = 0.75)(Figure 3a). In contrast, the 

age of the colonies’ retreat did have a significant impact on their persistence, with individuals 

taking longer to evacuate older nests (χ4, 63 = 24.8, p < .0001)(Figure 3b). 

 

Individual Task Participation  

Shy colonies. For shy colonies, none of our predictor variables were associated with 

individuals’ tendency to be the first to emerge or attack an ant predator, nor were any of our 

predictor variables associated with individuals’ tendency to defensively spin cribellate silk. 

However, individual mass and prosoma width did predict the likelihood for an individual to 

participate in leg pinning behaviour, with less massive spiders with larger prosomas 

participating more frequently. Similarly, less massive spiders with larger prosomas also were 

most likely to participate in attacking the body (Table 1). Thus, large individuals and those in 

poorer body condition (Jakob et al., 1996) were more likely to attack the predator’s legs. 

Identical patterns  of task differentiation were observed when colonies attack prey (Beleyur et 

al., 2015; Keiser et al., 2014a; Wright et al., 2015). 
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 Bold colonies. For bold colonies, again none of our predictor variables were associated 

with whether or not an individual would be the first to emerge, attack, or participate in leg 

pinning behaviour. For participation in attacking the body, however, a mass * boldness 

interaction term was significant, showing that bolder individuals were more likely to 

participate in this task, but only if they were in poorer body condition. Additionally, less 

massive spiders with larger prosomas participated more frequently in defensive cribellate silk 

spinning (Table 1). 

 Mixed colonies. Boldness was the only predictor for individuals’ probability of being 

the first to emerge in response to an ant predator (F1, 351 = 5.16, p = 0.023). None of our 

predictor variables were associated with individuals’ tendency to be the first to attack the 

predator. Additionally, bolder, less massive, and spiders with larger prosomas were more likely 

to participate in leg pinning, body attacking, and defensive cribellate making behaviour (Table 

1). Thus, bolder individuals, larger individuals, and those in poorer body condition were most 

likely to response to attack predators and to initiate defensive behaviour. Similar patterns of 

task differentiation are observed in mixed colonies when attacking prey (Wright et al., 2015).  

 

Discussion 

 Our study reveals a complex relationship between group personality composition, 

individual body size indices, and experiential effects in determining how colonies respond to 

encounters with predators. A multitude of other studies have shown that a group’s personality 

compositions can influence its collective behaviour, although the majority of these studies 

pertain to foraging tasks (e.g., Aplin et al., 2014; Chang and Sih, 2013; Cote et al., 2011; Dyer 

et al., 2009; Hui and Pinter-wollman, 2014; Modlmeier et al., 2014a; Modlmeier and Foitzik, 
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2011). Our data add the more nuanced component that a group’s personality composition can 

also change how groups respond to experience—a sort of personality composition by 

environment interaction at the group level. More specifically, colonies of social spiders 

composed of a mixture of bold and shy spiders exhibited twice as much defensive cribellate 

silk making behaviour in response to predators as monotypic compositions. Mixed colonies 

were also the most consistent in their response across multiple encounters. Bold colonies, in 

contrast, varied erratically over time in how they responded to predators and were less 

responsive to predators over all (Figure 1). In contrast, bolder colonies are always more 

responsive to prey (Keiser and Pruitt, 2014; Pruitt and Keiser, 2014b; Wright et al., 2015). At 

the level of the individual, we observed that morphological traits and state variables were 

generally better predictors of task participation in monotypic groups, especially shy colonies, 

and less so in bold colonies. For the studies reported here, personality only appears to be a 

reliable predictor of task participation in behaviourally heterogeneous groups.  

Our study is the first to demonstrate that a group’s personality composition can alter 

both its collective behaviour and its behavioural plasticity. While experiential effects on 

behavioural tendencies are well known at the individual level (Dingemanse et al., 2010; Stamps 

and Groothuis, 2010a; Stamps and Groothuis, 2010b), relatively little is known about what 

drives variation in group-level sensitivity or responsiveness to experience (Bengston and Jandt, 

2014a; Jandt et al., 2014). Our data demonstrate that group personality composition is one 

driver in S. dumicola. At the individual level, it is often true that more aggressive or bold 

personality types are less responsive to changes in their environment (Dingemanse et al., 2010; 

Holbrook et al., 2014; Koolhaas et al., 2007), and there is some evidence of this pattern in 

social spiders (Holbrook et al., 2014; Modlmeier et al., 2014f). However, our data reveal that 
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colonies composed of bolder (more inflexible) personality types actually exhibit greater 

flexibility in their emergent group-level plasticity, at least, in response to experience with ant 

predators. This result hints at the possibility that a group of inflexible behavioural types can 

still produce behaviourally flexible societies. By parallel logic, colonies composed of flexible 

individuals might exhibit inflexible, stable collective behaviour. This hypothesis receives some 

circumstantial support from the relatively common finding that behaviourally diverse societies 

often exhibit greater homeostasis in a variety of collective traits, including behaviour (Burns 

and Dyer, 2008; Oldroyd and Fewell, 2007). Therefore, we argue that a hypothesized trade-off 

in behavioural flexibility at the individual vs. group level is deserving of additional scrutiny in 

this and other test systems.  

At the individual level we see a nuanced relationship between colony composition and 

patterns of task differentiation in response to ant predators (see Table 1). Simply put, individual 

personality appears to play little to no role in task differentiation in bold or shy colonies. Rather, 

we see that morphology and state attributes determine task participation in these monotypic 

societies, where less massive spiders with larger prosomas participate more frequently in the 

majority of tasks, including leg pinning (shy colonies), attacking the ant body (shy and bold 

colonies) or deploying cribellate silk (bold colonies). A large prosoma-to-mass ratio is widely 

considered to reflect poor body condition in spiders (Jakob et al., 1996). Thus, it appears that 

spiders in poor condition are those that participate more frequently in the majority of tasks, 

possibly reflecting hunger (argued in Beleyur et al., 2015). Within mixed personality colonies, 

bold individuals and those in poor condition tend to perform the majority of tasks, suggesting 

some role of personality in organizing task differentiation in heterogeneous groups. This is an 

intriguing result, because mixed colonies have twice as many cribellate participants as colonies 
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composed of only bold individuals, and bold individuals tend to be cribellate silk making 

specialists. Thus, one would predict an entire colony of bold individuals would deploy more 

cribellate silk makers, not fewer. We therefore propose that something about the presence of 

unlike, shy phenotypes seems to catalyze greater participation by bold individuals. This is 

counterintuitive to us, because foraging data have repeatedly determined that it is usually bold 

individuals that enhance the responsiveness of shy individuals, and not vice versa (Pruitt and 

Keiser, 2014b; Pruitt and Pinter-wollman, 2015). This result further echoes a general thread 

innervating this entire study: the relationships between personality composition, social 

organization, and collective behaviour in S. dumicola appear to switch based on whether 

colonies are responding to predators or prey. The question of why the patterns appear to reverse 

when colonies encounter predators is fascinating but yet unknown.  

Although we detected no relationship between colony personality composition and 

survival during ant attacks, we are hesitant to make any impassioned claims about this result, 

given that no colony survived more than 22 hours. Despite being chosen for its intermediate 

predation levels, predation pressure at this site is perhaps still too intense to detect any subtle 

effect of personality composition on colony persistence. Ongoing long-term studies at sites 

with varying ant densities will provide us with the final critical test. Nest age, however, proved 

to be somewhat important in determining colony persistence in the field. We reason that this 

effect is likely quite robust, as we managed to detect them despite intense levels of predation.   

 In conclusion, we have demonstrated that colony personality composition can alter both 

groups’ average response and the way in which colonies respond to experience. We therefore 

offer that variation in group composition may represent a general factor underlying the way 

groups behave from moment to moment and their collective behavioural trajectories through 
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time. We again note patterns of task differentiation in S. dumicola, this time in regards to the 

handling of ant predators. As with foraging tasks, a combination of spider’s morphological 

traits and body state are the most consistent contributors to task differentiation, with 

personality contributing to these patterns in colonies harboring greater within-colony 

behavioural variation. Lastly, the available data suggest that colony personality composition 

may not be important for determining  colony survival in situ, at least at intermediate or high 

predation sites (Keiser et al., 2015b). Lastly, we see no reasons to suggest our findings should 

be unique to this system, and encourage other researchers to explore the effects of colony 

personality composition on collective behaviour and plasticity in their own systems.  
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Table headers and figure legends: 

 

Table 1: Effects tests from a GLMM analysis testing for associations between 

individuals' traits and their tendency to participate in various aspects of collective foraging 

against predatory ants in bold, shy, and mixed colony compositions.  

 

Figure 1: Graphs depicting the change in response to predatory ants over time by 

colony composition for (a) latency to emerge from the retreat, (b) latency to attack, and the 

propensity to participate in (c) leg pinning, (d) body attacking, and (e) defensive cribellate 

making behaviour. Solid lines correspond to bold colonies, dashed lines to mixed colonies, 

and dotted lines represent shy colony compositions.  

 

Figure 2: A graph depicting the attack sequence of S. dumicola against a threatening 

insect as a change in the average number of spiders participating in leg pinning (solid line), 

body attacking (dashed line), and defensive cribellate making (dotted line) over time averaged 

across all compositions. 

 

Figure 3: Kaplan-Meier survival curves depicting the proportion of colonies surviving 

over time based on (a) colony composition, and (b) time allowed to construct retreats. For 

survival curve (a), the solid line corresponds to bold colonies, the dashed line to mixed 

colonies, and the dotted line represents shy colonies. For survival curve (b), one-year-old 

colonies are shown in orange, one month colonies in purple, two week colonies in blue, one 

week colonies in green, and one day colonies in red.    
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II. EXPOSURE TO PREDATORS REDUCES COLLECTIVE FORAGING AGGRESSIVENESS 

AND ELIMINATES ITS RELATIONSHIP WITH COLONY PERSONALITY COMPOSITION 

 

Abstract 

 Predation is a ubiquitous threat that often plays a central role in determining community 

dynamics. Predators can impact prey species by directly consuming them, or indirectly causing 

prey to modify their behavior. Direct consumption has classically been the focus of research 

on predator-prey interactions, but substantial evidence now demonstrates that the indirect 

effects of predators on prey populations are at least as strong as, if not stronger than, direct 

consumption. Social animals, particularly those that live in confined colonies, rely on 

coordinated actions that may be vulnerable to the presence of a predator, thus impacting the 

society’s productivity and survival. To examine the effect of predators on the behavior of social 

animal societies, we observed the collective foraging of social spider colonies (Stegodyphus 

dumicola) when they interact with dangerous predatory ants either directly, indirectly, or both. 

We found that when colonies were exposed directly and indirectly to ant cues, they attacked 

prey with approximately 40-50% fewer spiders, and 40-90% slower than colonies that were 

not exposed to any predator cues. Furthermore, exposure to predatory ants disassociated the 

well-documented positive relationship between colony behavioral composition (proportion of 

bold spiders) and foraging aggressiveness (number of attackers) in S. dumicola, which is vital 

for colony growth. Thus, the indirect effects of predator presence may limit colony success. 

These results suggest that enemy presence could compromise the organizational attributes of 

animal societies.  

Introduction 
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Predator-prey interactions are one of the most widely studied phenomena in ecology 

because of their importance in driving community dynamics (Berryman, 1992; Murdoch et al., 

2003; Williams et al., 2004). Traditionally, studies of predator-prey interactions have focused 

on how predators capture and consume prey and the effects of this consumption on prey 

populations. The effects of direct consumption on prey populations are referred to as 

consumptive effects or density mediated interactions. An alternative approach to examining 

predator-prey interactions was to address the non-consumptive effects of predators. These 

indirect effects include changes to the behaviors of prey species, such as dispersal, foraging 

times, general activity level, etc. (Bell and Sih, 2007; Cote et al., 2013; Lima, 1998; Lima and 

Dill, 1990), or induced morphological, developmental, or physiological costs (Barry, 1994; 

Downes, 2001; Orrock et al., 2008; Werner and Peacor, 2003) in response to perceived 

predation risk or intimidation. These non-consumptive effects can influence prey populations 

directly and through changes to trophic interactions. Non-consumptive predator effects are 

sometimes called trait-mediated interactions. Evidence from several meta-analyses that each 

estimated the magnitude of consumptive and non-consumptive effects, and total effects of 

predators on prey survival and density, have demonstrated that the non-consumptive effects on 

predator-prey interactions can be at least as strong as, or even substantially stronger than, 

consumptive effects (Orrock et al., 2008; Preisser et al., 2005; Werner and Peacor, 2003). Both 

density mediated and trait mediated interactions, taken together, now form an integrative 

approach regarding how predators and prey interact, and the effects these interactions have on 

population dynamics.  

The field of animal personalities, which investigates the ecological effects of consistent 

individual differences in behavior within a population or group, has proven effective at 
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explaining many inter- and intra-specific interactions (Modlmeier et al., 2015a; Sih et al., 2004; 

Sih et al., 2012), including predator-prey dynamics (Bell and Sih, 2007; Cote et al., 2013; Sih 

et al., 1990). Common personality axes include aggressiveness/docility, boldness/shyness (or 

the degree to which individuals engage in risky behavior), sociability, activity level, or the 

degree to which individuals explore novel environments. Most studies on predator-prey 

interactions are performed on species of solitary or gregarious animals (Bell and Sih, 2007; 

Castellanos and Barbosa, 2006; Clinchy et al., 2013; Cote et al., 2013; David et al., 2014). 

However, personality studies investigating social taxa have revealed the presence of stable 

differences in behavior at both the individual and group level (Bengston and Jandt, 2014b; 

Jandt, 2013; Wright et al., 2016b). The extent to which behavioral variation at either or both 

of these levels influences predator-prey interactions, or any other kind of species interaction 

for that matter, has been little explored.  

Predator-prey interactions where the predator, prey, or both are cooperative organisms 

offer an intriguing case study for examining how the collective personalities of either predator 

or prey might impact species interactions and outcomes. For instance, when a colony of social 

organisms is the target of predation, the outcome can range from colony annihilation to 

successful predator evasion, without or with individual casualties. Notably, the losses that a 

group sustains during an attack by a predator may reduce its capacity to combat future 

predation attempts or to reproduce, akin to leg or tail autonomy in response to predation in 

individual organisms. Such losses may further curtail a group’s ability to effectively perform 

the various tasks necessary for colony function and growth, such as resource acquisition and 

care for offspring (Oster, 1978). Losses sustained by cooperative hunting groups while 

attacking prey may reduce their ability to successfully overwhelm future prey. Recent data on 
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colony-level personality in fish (Jolles et al., 2015), social arachnids (Keiser and Pruitt, 2014), 

and eusocial insects (Modlmeier and Foitzik, 2011; Wright et al., 2016a) suggest that the way 

prey colonies respond to such attacks might be vary across groups, and conversely, that mere 

presence of predators may alter colonies’ behavioral tendencies in ways that impacts their 

performance in other contexts (e.g., foraging efficiency, hygienic behavior). Colony 

While the effect of predators on group size (direct consumption) has been examined 

(Krause and Godin, 1995), there has been little work on whether the presence of a predator 

may indirectly disrupt the organization and coordination of group activities. Given that groups 

can possess traits that individuals cannot (such as adaptive personality ratios and emergent 

behaviors), observing how predator presence impacts these collective traits could prove 

illuminating. For instance, many groups rely on complex organization and cooperation to 

successfully meet an array of ecological challenges to perform tasks such as collective foraging 

(Beshers, 2001; Bonabeau et al., 1998; Camazine et al., 2001; Deneubourg et al., 1990; 

Robinson, 1992). Examining how predators affect the collective traits of their prey could 

therefore enhance our understanding of the ecology of social animals in particular, as well as 

why the broader ecological impacts of social animals may vary through space and time.   

 

Study system and questions 

The African desert social spider, Stegodyphus dumicola, is abundant and occurs 

throughout southern Africa. These spiders build dense three-dimensional silken retreats that 

are permeated with numerous tunnels where the spiders lay their eggs and reside for protection 

(Seibt and Wickler, 1990). Multiple two-dimensional capture webs radiate away from this 

central retreat, and spiders are recruited to the capture webs through vibrational cues produced 
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by ensnared and struggling prey (Amir et al., 2000; Whitehouse and Lubin, 1999). These 

spiders are a tractable system for evaluating the magnitude of non-consumptive effects on 

group behavior because spider groups rely on the ability of their constituents to organize 

hunting groups to subdue large and occasionally dangerous prey (Keiser and Pruitt, 2014; 

Wright et al., 2015). This species also exhibits a high degree of intracolony behavioral (or 

personality) variation that is predictive of colony performance in foraging (Grinsted et al., 

2013), defensive behavior (Wright et al., 2016a), web repair (Keiser et al., 2016c), bacterial 

transmission rates (Keiser et al., 2016a; Keiser et al., 2016b), and task differentiation among 

colony constituents (Wright et al., 2015). In fact, colony behavioral composition is more 

important than colony size for predicting foraging aggressiveness and efficiency in this species 

(Keiser and Pruitt, 2014). Additionally, S. dumicola colonies are frequently raided by 

pugnacious ants (Anoplolepis custodiens), a voracious social predator that is the main cause of 

death for established S. dumicola colonies in nature, wherever these species’ ranges overlap 

(Henschel, 1998; Keiser et al., 2015b; Wright et al., 2016a).  

The defensive behavior of S. dumicola towards Anoplolepis ants hints at an important 

evolutionary history between these species. S. dumicola colonies exhibit a unique, stereotyped 

defensive behavior when ants lay siege to the colony: the spiders immediately begin producing 

cribellate silk that they then use to ensnare individual ants and to construct tangled silken 

barriers that help prevent the advancement of ant workers into the spiders’ vulnerable retreat 

(Henschel, 1998; Wright et al., 2016a). Cribellate barriers are constructed prophylactically at 

the attachment points of colonies to the surrounding substrate in regions where ant raids are 

particularly common (Henschel, 1998). Previous studies have shown that the magnitude of this 

defensive response depends on the colony’s personality composition, where colonies 
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composed of a mixture of bold and shy spiders exhibited twice as much defensive cribellate 

making as monotypic colonies (Wright et al., 2016a). S. dumicola colonies attack A. custodiens 

workers progressively slower and with fewer individuals after repeated exposures to dangerous 

ants in the lab, and colonies receiving ant treatments exhibit a reduction in mass gain (Pruitt et 

al., 2016; Wright et al., 2016a). This stands in contrast to how colonies behave when they 

forage on an innocuous prey item, such as a moth. Under these conditions, colonies attack 

progressively faster after repeated exposures and do not lose significant mass (Pruitt et al., 

2016). Thus, it is clear that S. dumicola colonies can acquire information about their 

environment during foraging bouts, and are able to adjust their foraging behavior depending 

on the representation of innocuous vs. dangerous prey in their environment. Yet, it is unknown 

whether S. dumicola colonies can acquire information about predator presence/absence using 

indirect methods (e.g., via chemical cues), without physically interacting with the predator. 

Such an ability could have substantive benefits if early detection proves important in 

preparation for a raid or (Kleeberg et al., 2014), conversely, this ability could have appreciable 

costs if predator presence causes individuals or groups to behave suboptimally.  

The fact that S. dumicola relies so heavily on complex and well-orchestrated collective 

behaviors to execute important tasks make this species ideal to evaluate the effects predator 

presence may have on colony organization and performance. Here we hypothesize that the 

threat of predation may negatively impact any number of these organizational traits, such as 

decreasing colony responsiveness towards prey vibratory cues or the number of attackers that 

respond to prey (Harwood and Aviles, 2013), thus adversely impacting colony performance.  

 To uncover how predators influence the collective behavior of their prey, we 

constructed experimental colonies that varied continuously in their proportion of bold versus 
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shy individuals that composed them.  We tested the collective prey capture of groups of 

different behavioral composition before subjecting them to either direct, indirect, direct + 

indirect, or no predatory cues and reevaluated their collective behavior every five days to assess 

whether and how interactions with ants altered spiders’ foraging aggressiveness. In addition to 

tracking colony behavior over time, we also collected data on membership mortality, and the 

average change in mass in colony constituents.  

 

Methods 

Collection and measurement  

Spider colonies were collected from Upington, South Africa in October 2015. Colonies 

were brought into the lab, and each spider was individually isolated from its nestmates in 30ml 

plastic condiment containers. Once isolated, we measured the boldness of each spider by 

administering two puffs of air to their anterior prosoma using a rubber squeeze-bulb. Boldness 

is defined as the propensity of an individual to engage in risky behavior (Sloan Wilson et al., 

1994). The puffs of air simulate an attack from an avian predator, and cause the spider to pull 

its legs toward its body and huddle (Pruitt et al., 2013; Riechert and Hedrick, 1990). The 

latency to unhuddle and move one whole body length following this aversive stimulus is our 

measure of boldness. We operationally define bold, intermediate, and shy individuals as those 

having latencies between 0-199, 200-399, and 400-600 seconds, respectively (Keiser et al., 

2014b). These boldness scores are then subtracted from 600 (the maximum value) so that 

higher numbers reflect greater boldness scores.  

Following boldness assays, we measured the mass and prosoma width of each spider. 

The body condition of each spider was estimated as its residual from a linear regression of 
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mass versus body size, measured as prosoma width, for all spiders in our study (Jakob et al., 

1996). Using this technique, positive values indicate spiders that are heavier for any given 

prosoma width, and negative values indicate spiders that are relatively lighter for their prosoma 

width. At the end of the experiment, we re-measured the mass and prosoma width of each 

spider, to examine whether predator-exposure treatment had an effect on average body 

condition.  

 

Colony composition 

Following boldness, mass, and prosoma measurements, we constructed a total of 84 

colonies (21 colonies per treatment group) containing 20 spiders each. Each experimental 

colony was derived from a single source colony, and spiders from different source colonies 

were never mixed, to preserve natural levels of within-group relatedness and familiarity 

(Laskowski et al., 2016a; Laskowski and Pruitt, 2014b; Modlmeier et al., 2014e). Each of the 

21 colonies per treatment group varied along a gradient in the proportion of bold and shy 

individuals contained within the colony (from 100% bold to 100% shy and every composition 

in-between). For example, the first colony contained only 20 bold spiders, the next colony 

contained 1:19 shy:bold, followed by 2:18 shy:bold, and so on, ending with a colony containing 

only 20 shy spiders.  Each colony was housed in a 230ml plastic cup with a lid and contained 

three Acacia mellifera twigs as web-building substrate. We assigned each colony to one of the 

following four treatment groups: (1) exposed to ants indirectly, (2) daily direct exposure to 

ants in the capture webs, (3) both direct and indirect exposure to ants, and (4) neither direct 

nor indirect cues (control) (in a 2 x 2 design). Colonies were provided 24 hours to construct 

capture webs prior to any ant exposures providing sufficient time to construct a retreat structure 
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and a small capture web within the enclosure.  

 To expose colonies indirectly to ants, five A. custodiens workers were placed in a 

230ml cup with water and sugar. The cup of the experimental spider colony was then stacked 

on top of the ant cup, containing the ants, sugar, and water in the small space (10mm high) 

between the two stackable cups. We punched many small holes in the bottom of the spider 

colony cup to allow indirect cues, such as chemical compounds, to permeate into the spider 

nest. For treatments that were allowed to interact only directly with ants, a single A. custodiens 

worker was placed in the center of the capture web once daily. Spiders were allowed to attack 

and subdue the ant, but the ant was removed from the colony before the spiders were able to 

consume them. These colonies were stacked on top of cups containing water and sugar, but no 

ants. Colonies exposed simultaneously to both direct and indirect ant cues were stacked on 

cups containing ants, sugar and water, and received an ant in their capture web once daily. 

Lastly, our control colonies were stacked inside cups that contained only sugar and water, and 

never received direct or indirect ant cues.  

  

Colony aggressiveness 

To assess each colony’s baseline aggressiveness in response to prey prior to 

manipulation, all colonies were assayed for colony level aggressiveness in prey capture four 

times over two days prior to setting up our treatment groups. To assess colony aggressiveness, 

we placed a small piece of white paper (1x1cm) in the center of the colony’s capture web. 

Colonies were given a 30 second acclimation period following this initial disturbance. We then 

vibrated the paper using a handheld vibrator, which causes the paper to flutter about, 

resembling a struggling winged insect. We recorded the latency for the first spider to attack 
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the paper, as well as the number of attacking spiders on the capture web at the moment the 

paper was first attacked. These values give us a measure of both the speed and magnitude of 

prey attack each colony exhibits. After assigning colonies to the various predator-exposure 

treatments, we re-measured colony level aggressiveness four more times every five days, to 

determine the impacts of our predator-exposure treatments on colony aggressiveness over time 

(i.e. whether differences were exacerbated or perhaps attenuated through habituation). 

Colonies were given a maximum of 5 minutes to attack the simulated prey item. All colonies 

were fed a single, dead, previously frozen and thawed termite worker (to ensure termites did 

not damage capture webs), every three days over the course of the experiment. We removed 

termite corpses the following day to reduce clutter in the capture webs, which could subtly 

influence colony behavior due to their propensity to vibrate during mock prey trials using the 

vibratory device.  

 Blinded methods across treatments were not used, given that it was necessary to 

spatially separate treatment groups so as not to inadvertently contaminate other treatments with 

indirect (chemical) ant cues. Therefore, we knew which treatment groups we were testing 

during observations. However, within each treatment group, the experimenter was blind to 

colony ID during observations, and thus data obtained on relating to group composition was 

gathered blind. Please see Supplementary Table (S1) for the complete experimental timeline.   

 

Statistical analysis 

To assess whether our treatment groups impacted colonies’ aggressiveness measured 

as their latency to attack or the number of attackers deployed in response to a novel prey 

stimulus over time, we used normally distributed GLMMs with an identity-link function. 
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Inspection of Q-Q plots and the distribution of the model residuals conveyed a strong fit for 

this model structure. We included time (day number), treatment, and a treatment × time 

interaction term as predictor variables in our model. “Time” is a categorical variable denoting 

the day number the behavioral assessments occurred, such as colony aggressiveness on day 0, 

day 5, day 10, and day 15. Source colony ID and experimental colony ID nested within source 

colony ID were included as random effects. A significant interaction term between trial number 

and treatment indicates that colonies change in their response over time as a result of their 

treatment group. Post hoc comparisons for latency to attack and number of attackers were 

performed between each treatment group at each time point using Tukey’s HSD groupings. 

We performed an additional analysis at each time point using 2-Way ANOVAs to determine 

whether any interaction between exists between direct and indirect effects, and their relative 

importance. 

Previous studies have shown a strong correlation between the proportion of bold 

spiders within a colony and both the latency to attack and average number of attackers. We 

used multiple bivariate linear regressions to verify this relationship in each treatment group 

prior to any ant exposures, and again at each time point to observe how this relationship may 

change with exposure to predators. We compared our initial observations (day 0) to our final 

observations (day 15) using ANCOVAs in order to determine whether the relationship between 

colony composition and foraging aggressiveness changed before vs. after extended exposure 

to predatory ants. 

 To determine the potential effects of predator-exposure treatments on spider mortality 

(measured as the number of dead individual spiders found in each colony at the end of the 

experiment), and change in body condition, we again used GLMMs with a normal distribution 
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and identity-link function with source colony ID and experimental colony ID nested within 

source colony ID included as random effects. All statistics were performed in JMP 12, by SAS. 

An independent model was created for both of these colony performance metrics (mortality 

and change in body condition).  

 

Results 

Effects of treatment on number of attackers and latency to attack 

Exposure to any predator cues decreased the magnitude of prey attacks over time, 

which could impair the colony’s ability to capture large prey. All colonies that received direct, 

indirect, or both predator cues displayed a decrease of up to 50% in the number of attackers 

that responded to simulated prey relative to the control colonies (whole model: p < 

0.0001)(Figure 1). Indirect cues were also over 2.5X more effective than direct cues in 

influencing colony behavior when comparing LogWorth, which is defined as –log(p-value), 

and is used to show the relative strengths of predictor variables (direct vs. indirect effects in 

this case). All colonies, including the control treatment, showed an increase in latency to attack 

the simulated prey over time (day #: p = 0.0001). However, treatments that received any ant 

cue attacked slower on average than control colonies (treatment: p = 0.0077). The interaction 

term Time * Treatment was not significant (p = 0.29) indicating that treatments only differed 

in their average attack latencies, and these differences did not change over time (Figure 2). 

Post hoc comparisons between treatment groups at each time point did not reveal significant 

differences in latency to attack at any one time point. See Table 1 for the full model outputs, 

Table 2 for comparisons between treatment groups at each time point, and Table 3 for 2x2 

analyses. In short, exposure to any predatory cue reduced the magnitude and speed at which 
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colonies attack prey, and indirect cues proved to be over 2.5 times more important than direct 

cues in influencing colony behavior.  

 

Effects of personality composition and treatment on prey attack 

 The well-documented, positive association between the proportion of bold spiders in a 

colony and collective foraging disappeared over time for colonies that were exposed to 

predator cues. On day 0, prior to exposing any colonies to predator cues, all colonies displayed 

the characteristic positive relationship between the proportion of bold spiders within the colony 

and the number of attackers that were deployed in response to prey (Keiser et al 2014). 

However, this positive relationship gradually diminished in all experimental colonies over time 

following exposure to ants (indirectly, directly, or both), while the relationship was maintained 

in control colonies (Figure 3). Comparisons between the slopes at day 0 versus day 15 for each 

treatment group independently using ANCOVA further suggests that the effect of colony 

personality composition on the number of individuals that respond to prey decays over time in 

some treatments groups (control: F1, 42 = 0.23, p = 0.63; indirect cues: F1, 42 = 12.2, p = 0.0012; 

direct cues: F1, 42 = 0.75, p = 0.39; both direct and indirect cues: F1, 42 = 6.02, p = 0.018). Most 

notably, this change over time was only significant for treatments where ants were placed 

beneath the colony (i.e. those colonies provided with indirect cues) but not for control colonies 

or colonies that only interacted with ants directly on the capture web. This result conveys that 

the persistent exposure to indirect cues of nearby ants is key in ablating the collective 

aggressiveness of S. dumicola societies composed of bold spiders. For latency to attack, no 

clear patterns emerged over time or between treatments. 
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Mortality and body condition 

We did not observe any significant differences between ant exposure treatment groups 

in mortality rate (χ23 = 1.86, p = 0.60), or change in body condition (χ23 = 0.76, p = 0.85). 

 

Discussion 

Our study demonstrates that the non-consumptive effects of predatory ants may impair 

the foraging efficiency of S. dumicola colonies, which may in turn reduce colony success. 

When spider colonies were exposed directly or indirectly to ant cues, S. dumicola colonies 

attacked prey with 40-50% fewer spiders, and at speeds that were 40% to 90% slower than 

control colonies. This finding is important because S. dumicola colonies, like other social 

spiders, require quick attack speeds to reach prey before they can escape, and colonies rely on 

deploying large numbers of spiders to successfully overwhelm large or dangerous prey items 

(Harwood and Aviles, 2013; Pruitt and Riechert, 2011a). More broadly, spider societies are 

thought to have evolved because of their ability to subdue large and particularly profitable prey 

that are unavailable to singleton spiders (Agnarsson et al., 2006; Aviles and Purcell, 2012; 

Nentwig, 1985; Powers and Aviles, 2007; Yip et al., 2008). In fact, large colonies require very 

large prey to persist (Yip et al., 2008). We consequently reason that exhibiting a 40-90% 

reduction in attack speed and a 50% reduction in the number of attackers could diminish a 

colony’s ability to capture prey and, consequently, reduce colony growth and overall fitness. 

Furthermore, indirect exposure to ant cues alone was sufficient to drastically reduce colonies’ 

responsiveness towards prey, and proved to be more than 2.5 times more important than 

indirect cues in influencing colony behavior. So, colonies that never directly experience an ant 

raid may still suffer by simply residing in proximity to these predators.  
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Our results further revealed that ant presence, in addition to their negative effects on 

colony foraging speed and intensity (Figures 1 and 2), weakens the relationship between 

colony personality composition and foraging aggressiveness (number of attackers) in S. 

dumicola (Figure 3). Past studies have demonstrated a strong positive relationship between the 

proportion of bold spiders within a colony and the number of attackers that respond during 

foraging events. Our results demonstrate that this effect vanishes when S. dumicola colonies 

are exposed to cues of predatory ants. In particular, it seems that persistent, indirect cues are 

necessary and sufficient for weakening this well-established relationship: indirect cues proved 

more consequential than direct cues in diminishing the link between colony composition and 

foraging aggressiveness (Figure 3). The sufficiency of indirect cues to alter colony behavior 

hints at a long evolutionary history with these dangerous predators.  

These findings suggest that the presence of predatory ants could weaken the role of 

bold spiders in S. dumicola colonies as “keystone individuals” (Modlmeier et al., 2014d). 

Adding a single, highly bold spider into a colony composed of only shy spiders dramatically 

decreases colonies’ latency to attack and increases the number of attackers that respond to prey 

(Pruitt et al., 2013; Pruitt and Keiser, 2014a). Bold spiders appear to achieve this social 

influence by catalyzing aggressiveness in their otherwise shy, non-aggressive group mates, 

eventually leading to a lasting shift in colonies’ behavioral composition (Pruitt et al., 2013; 

Pruitt and Keiser, 2014a; Pruitt and Pinter-Wollman, 2015). The degree to which keystones 

catalyze this behavioral variation is directly proportional to the magnitude of their boldness 

scores (Pruitt and Keiser, 2014a) and the length of time these individuals remain in the group 

(Pruitt and Pinter-Wollman, 2015). Having just one bold individual also increases colonies’ 

collective mass gain and survival in laboratory conditions (Lichtenstein et al., 2016b; Pruitt 
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and Keiser, 2014a). Thus, S. dumicola colonies may only gain the benefits of bold keystone 

individuals in environments where Anoplolepis ants (or perhaps a wide range of other predators 

or risky cues) do not occur, or are rare. Populations of S. dumicola and A. custodiens are both 

ephemeral and patchy, so many regions exist where one, both, or neither species occur. Field 

studies that span across a diversity of environments are needed to critically evaluate these 

hypotheses.  

Ant presence did not appear to affect any measure of colony growth that we considered, 

including individual mortality rates, or average changes in body condition. However, given the 

short duration of our study (two weeks), we are hesitant to state definitively that ant presence 

does not influence any of these elements. It might merely take more time, or the ill effects 

might only appear under a limited set of conditions. For instance, high stress environments 

have been known to shorten life spans and generate weight loss in many species (Clinchy et 

al., 2013; Perez-Tris et al., 2004; Thomson et al., 2010). It is possible that our feeding regime, 

a termite every three days, was overly generous and consequently negated any predator-

induced stress effects on colony performance. More restricted diets, longer-term experiments, 

or both, might reveal nuanced performance effects. Alternatively, ant presence might not cause 

spiders sufficient physiological stress to reduce their performance. 

In summary, we provide experimental evidence that the mere presence of predators can 

alter and possibly impair the collective foraging traits of complex animal societies. 

Specifically, indirect cues from a prominent predator—Anoplolepis ants—were necessary and 

sufficient to reduce participation in collective prey capture and attack speed during staged 

foraging events. Furthermore, predator cues, and indirect cues in particular, nullified the well-

documented effects of colony personality composition on collective foraging behavior. So, 
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while colony predation rates on S. dumicola by Anoplolepis ants are high, it appears that S. 

dumicola colonies might also pay an additional price for ants being present in the vicinity of 

their nest in the form of depressed foraging aggressiveness, and therefore, efficacy (Pinter-

Wollman et al., 2017). This further suggests that these ant predators could suppress the positive 

effects of bold individuals on group success, even if S. dumicola colonies are lucky enough not 

to be subjected to a physical raid, which are typically lethal for the entire spider colony 

(Henschel, 1998; Keiser et al., 2015b; Wright et al., 2016a).  

Given the diversity and abundance of species spanning varying degrees of sociality and 

complexity, from herding animals to eusocial insect societies, the findings herein could have 

far-reaching implications. Consistent individual differences in behavior that impact collective 

outcomes, like those seen in S. dumicola, have been discovered in countless animal species 

such as spiders (Johnson and Sih, 2005), water striders (Sih et al., 1990), ants (Modlmeier et 

al., 2012), bees (Wray et al., 2011), wasps (Wright et al., 2017a; Wright et al., 2016b), fish 

(Bell and Sih, 2007), rodents (Daly et al., 1992), birds (Aplin et al., 2014), primates (Flack et 

al., 2006), and more. For many animals, such variation has proven to be of ecological 

importance (Jandt, 2013; Modlmeier et al., 2015a; Sih et al., 2004; Sih et al., 2012). The ratios 

of different personality types within groups often predict group behavior (Pinter-Wollman, 

2012), survival and reproductive output (Pruitt, 2013; Pruitt and Goodnight, 2014; Wray et al., 

2011), and can be associated with societal efficiency  (Chittka and Muller, 2009; Modlmeier 

et al., 2012; Pruitt and Riechert, 2011a; Waibel et al., 2006; Wright et al., 2014b; Wright et al., 

2015). Most, if not all, animals must respond at some time to the threat of predation, and shifts 

in prey behavior are often used as a first line of defense (Nonacs and Blumstein, 2010). Our 

findings that predators may disrupt the effects of group composition on group function suggests 
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that the mere presence of predators could negatively impact the performance of a diversity of 

animal societies.  
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Table headers and figure legends: 

 

Table 1: Results of the GLMM examining the effects on response to a simulated prey 

including degrees of freedom (df), chi-square test statistic, and p-values.  

 

Table 2: Results of a GLMM examining the changes in number of attackers and latency 

to attack in the different treatment groups over time. 

 

Table 3: Results from 2-Way ANOVAs comparing direct and indirect effects, as well 

as the interaction between these two modalities.  

 

Figure 1: Mean number of spider attackers observed over time in the four predator-

exposure treatment groups. Different letters depict significant differences between treatments 

(p<0.05).  When no letters are present, treatments do not significantly differ. Error bars show 

standard error.  

 

Figure 2: Mean latency to attack over time in the four predator-exposure treatment 

groups. Different letters depict significant differences between treatments (p<0.05). When no 

letters are present, treatments do not significantly differ. Error bars show standard error.  

 

Figure 3:  Mean number of attackers vs the proportion of bold individuals in the group 

over time for the four predator-exposure treatment groups. P-values indicating the significance 

of the linear relationship from a regression analysis are noted on each plot. 
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Table 1: 

 

 

	
  

 
 

 

 

 

 

 

 

 
 
 
  

Predictor variable df χ2 p-value 
No. of attackers  

   Day # 3 90.4 < 0.0001* 
Treatment 3 69.7 < 0.0001* 
Day # * Treatment 9 30.6 0.0003* 
Whole model 15 165.2 < 0.0001* 

    Latency to attack  
   Day # 3 20.7 0.0001* 

Treatment 3 11.9 0.0077* 
Day # * Treatment 9 10.7 0.29 
Whole model 15 41.7 0.0002* 

        
	1	
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Table 2: 
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Table 3: 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

  

  Number of attackers Latency to attack 
Day # and cue F Ratio p LogWorth F Ratio p LogWorth 

Day 0   
 

  
  

  
Direct 0.0021 0.96 0.016 0.14 0.71 0.15 
Indirect 0.54 0.46 0.33 0.19 0.66 0.18 
Direct*Indirect 0.684 0.41 0.39 0.32 0.57 0.24 
    

 
  

  
  

Day 5   
 

  
  

  
Direct 5.71 0.019* 1.71 1.56 0.21 0.67 
Indirect 15.6 0.0002* 3.77 3.27 0.074 1.13 
Direct*Indirect 4.91 0.029* 1.53 0.29 0.58 0.23 
    

 
  

  
  

Day 10   
 

  
  

  
Direct 4.95 0.029* 1.54 3.87 0.052 1.28 
Indirect 30.6 < 0.0001* 6.42 0.17 0.68 0.16 
Direct*Indirect 9.85 0.0024* 2.65 6.22 0.0146* 1.83 
    

 
  

  
  

Day 15   
 

  
  

  
Direct 11.1 0.0013* 2.87 3.89 0.052 1.28 
Indirect 25.3 < 0.0001* 5.53 0.017 0.89 0.048 
Direct*Indirect 14.8 0.0002* 3.62 0.14 0.71 0.15 
              

	1	
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Figure 1: 
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Figure 2:  
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Figure  3:
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III. BOTH GROUP AND IMMIGRANT EXPERIENCE ARE MORE IMPORTANT 

THAN BEHAVIORAL COMPOSITION IN DETERMINING COLLECTIVE LEARNING 

 

Abstract 

In social animals, individuals can vary in the information they have about their 

environment. Specifically, information held by the group majority or by socially influential 

individuals can have a substantial impact on group function. In this study, we examined 

whether the information about a predatory cue held by a single individual can influence the 

behavior of a naïve or an experienced group. We created experimental groups of the social 

spider Stegodyphus dumicola that were either iteratively exposed to a dangerous predator, the 

ant Anoplopepis custodiens, or kept in safety. We then seeded these groups with an 

“immigrant” individual that either had or did not have prior experience with the predator and 

was either shy or bold. We evaluated colonies’ response towards predators over multiple trials 

to determine the effect of the immigrant’s and the majority’s prior experience with the predator 

and the immigrant’s boldness. We found that groups adopt a “better safe than sorry” strategy, 

where groups avoided predators when either the group or the immigrant had been previously 

exposed to predatory ants, regardless of immigrant boldness. These findings suggest that past 

experience with predators, even if only by a single individual in the group, can alter the 

collective learning of societies in a seemingly advantageous manner.  
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Introduction 

 Many animals live in groups, as group living often confers advantages to its 

constituents (Krause and Ruxton, 2002). The advantages of sociality include increased 

vigilance toward predators (Lima, 1995; Roberts, 1996), decrease in vulnerability to predators 

via “dilution effects” (Dehn, 1990; Foster and Treherne, 1981; Hamilton, 1971), increased 

offspring survival (Silk, 2007), and higher efficiency in foraging and thermoregulation (Clark 

and Mangel, 1986; Gilbert et al., 2006; Jones and Oldroyd, 2007; Kerth, 2008). A crucial, yet 

cryptic, benefit of group living is the ability of social groups to acquire wide-ranging 

information about the current state of their environment by collectively accumulating the 

narrow experiences of many individuals (Brodbeck and Greitemeyer, 2000; Pacala et al., 1996; 

Thornton and Clutton-Brock, 2011). Important environmental information, such as the 

presence of predators and other threats, is often initially picked up by only one or a few 

individuals. When this information is vital for the longevity and survival of the individuals in 

the group, the informed individuals often accurately convey the information to others, for 

example by emitting specific alarm calls (Ferkin et al.; Seyfarth et al., 1980). The information 

may be further amplified by naïve individuals transmitting the new information to others, or 

responding appropriately and providing example to others (Chivers and Ferrari, 2015).  

Groups can benefit from assimilating the experiences of individuals in many ways. For 

instance, in elephants, older females (matriarchs) have had more time to accumulate 

information over their lifetime, such as the location of seldom used water holes (Foley et al., 

2008), or the identities of other elephant groups (McComb et al., 2011). This information 

increases both the survival and reproductive success of herds led by older matriarchs. Group 

members can garner useful information from individuals via social learning (Thornton and 
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Clutton-Brock, 2011). Some prominent examples of social learning include the spread of novel 

behavioral innovations such as tool use (Hobaiter et al., 2014; Pescetta et al., 2008) and food 

washing (Itani, 1958), as well as novel foraging strategies (Aplin et al., 2015; Heyes and Galef, 

1996; Lefebvre, 1995) and learning to avoid unfamiliar predators (Crane et al., 2015; Griffin, 

2004). The primary benefit of social learning is that it enables animals to acquire the fitness 

advantages associated with a behavior without needing to discover it anew or be near the 

innovator after the behavior is learned. However, these advantages might be impacted by what 

information is learned and from whom it is learned. For example, groups might receive 

disparate or conflicting information from different individuals, which then need to be 

negotiated (Conradt, 2012).  

 Individuals may possess different, sometimes mutually exclusive, information about 

their environment and may have different preferred outcomes (Couzin et al., 2005; Dostalkova 

and Spinka, 2007). For example, individuals could differ in desired food types (Fennessy, 

1984; Ruckstuhl and Neuhaus, 2002), hunger level (Krause et al., 1992), and levels of 

exhaustion (King et al., 2008; Krause et al., 1992). In contrast, some group members may lack 

relevant information about their environment, such as about the presence of predators or the 

location of resources (Couzin et al., 2005; List et al., 2009; Sumpter and Pratt, 2009). 

Successfully negotiating these conflicting levels of information requires information sharing 

between individuals, and the risk of reaching erroneous decisions tends to decrease as the 

number of informed decision makers increases (Sumpter and Pratt, 2009). Such information 

sharing has been extensively studied in the nest selection process of honeybees (Seeley, 2010). 

Honeybee scouts often discover several new nest locations of varying quality, and each scout 

conveys both the location and quality of a potential nest site to recruit other workers who will 
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form a preference to a particular site. When a quorum is reached, i.e., nearly everyone in the 

colony reaches a similar preference to a particular site, the colony will relocate to the new nest 

(Seeley and Buhrman, 1999). Similar information sharing also takes place for relocating nests 

in ants (Franks et al., 2009), predator avoidance in fish (Ward et al., 2011; Ward et al., 2008), 

and finding optimal migration routes in birds (Simons, 2004; Wallraff, 1978). In these cases, 

individuals appear to have an equal say, and consensus is eventually reached by a majority 

vote (Krause et al., 2010). But not all animal societies are democracies; in some societies, 

certain individuals are far more influential than others.  

Individuals that wield disproportionate influence on their groups are referred to as 

“keystone” individuals (Modlmeier et al., 2014d), and they can act as leaders (Stroeymeyt et 

al., 2011), catalysts (Donahoe et al., 2003), organizers (Robson and Traniello, 2002), tutors 

(Knoernschild et al., 2010), etc. Given their influence on groups, one might suppose that the 

consequences of information held by these individuals would be amplified in comparison to 

similar information held by non-keystones, as in the example of the elephant matriarchs above. 

When keystones possess accurate information about their environment, this influence should 

therefore have a large positive effect on group success. However, when keystones possess 

inaccurate information about their environment, we would expect the ramifications on their 

groups to be quite costly (Pruitt et al., 2016). In fluid groups, such as those with fission-fusion 

dynamics, or frequent dispersal, immigrants have the potential to introduce new information 

that may be different or in conflict with the information possessed by the group majority (Kerth 

et al., 2006; Sueur et al., 2011). If these immigrants also possess keystone traits, groups may 

be more susceptible, for better or worse, to their arrival.  
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 The African desert social spider, Stegodyphus dumicola, is an emerging model system 

for the study of highly influential, or “keystone”, individuals (Keiser et al., 2016c; Pruitt and 

Keiser, 2014a; Pruitt and Pinter-Wollman, 2015; Pruitt et al., 2016). Colonies of up to ~1000 

spiders are found in southern Africa, and collectively build dense three-dimensional silken 

retreats surrounded by multiple two-dimensional capture webs (Seibt and Wickler, 1990). In 

these spiders, the group’s boldest individual has a disproportionately large influence on colony 

behavior, such as increasing foraging speed and magnitude, participation in web maintenance, 

colony mass gain, and altering patterns of disease transmission (Keiser et al., 2016a; Keiser et 

al., 2016c; Pruitt and Keiser, 2014a; Pruitt et al., 2016). Bold individuals achieve these feats 

by catalyzing activity within their normally sedentary, shy colony mates. The magnitude of 

this catalytic effect is directly proportional to the boldness of the boldest individual, as well as 

to the duration of their presence within the colony (Pruitt and Keiser, 2014a; Pruitt and Pinter-

Wollman, 2015). Furthermore, bold individuals can transfer information to other group 

members. Colonies containing bold individuals with accurate information about their 

environment learn to attack novel prey stimuli more quickly than colonies without informed, 

or colonies with misinformed, individuals. Furthermore, colonies containing bold individuals 

with inaccurate information take longer to attack prey and avoid predators, consequently 

gaining less weight than other colonies. Thus, keystone individuals can be potentially harmful 

to colonies when their information about the environment is inaccurate (Pruitt et al., 2016). S. 

dumicola colonies also do not expel or attack foreign conspecifics, or even foreign congeners 

(Seibt and Wickler, 1988), and colonies in proximity to one another in nature will often fuse, 

share a capture web, and exchange individuals (Seibt and Wickler, 1988). Along with the 

arrival of new colony members comes an influx of new individual experiences and information 
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to be exchanged and incorporated. It is therefore plausible that bold “keystone” individuals 

with inaccurate information about the environment may immigrate into colonies composed of 

individuals with conflicting accurate information, or vice versa. Here we examine how 

conflicting information is negotiated in this system. 

 S. dumicola colonies are commonly raided by predatory ants (Anoplolepis custodiens 

and A. steingroveri), and these raids can be responsible for up to 90% of colony extinction 

events where the range of the spiders and ants overlap (Henschel, 1998; Keiser et al., 2015b). 

Spider colonies reduce their speed and magnitude of response to the predatory ants over 

repeated exposures (Wright et al., 2016a). Furthermore, exposure to predatory ants eliminates 

the well-studied relationship between colony personality composition and collective behavior, 

and thus may disrupt keystone and other leader-follower effects observed in S. dumicola 

(Wright et al., 2017b).  

In this study, we compare the effects of immigrant and colony information on collective 

behavior in S. dumicola. Specifically, we compare situations where colony experience matches 

or mismatches the experience of newly introduced immigrant individuals of varying boldness. 

We ask whether the information held by immigrants takes precedence in determining colonies’ 

response towards both dangerous predators and innocuous prey, and whether immigrant 

personality (bold vs. shy) plays a role in this dynamic. To do this, we created experimental 

colonies that varied their experience with predators, and added to them immigrants of varying 

boldness and varying experience with predators. We test the following hypotheses: (1) the 

democratic hypothesis: colonies will behave according to the information possessed by the 

majority of individuals; (2) the dictator hypothesis: colonies will behave in accordance with 

the experience of influential keystone immigrants; (3) the better safe than sorry hypothesis: 



 

  59 

colonies will behave in a manner that mitigates overall risk and respond with caution if either 

the immigrant or colony has experience with predators, regardless of immigrant keystone 

status.  

 

Methods  

Colony collection and behavioral assays 

Colonies of S. dumicola were collected from fences and bushes around Upington in the 

Northern Cape of South Africa, and brought into the lab the same day. Each spider was 

individually isolated from its nest mates in small 30ml plastic condiment containers. We then 

measured each spider’s boldness by placing them into a larger arena, allowing them to 

acclimate to the new container for 60s, and administering two gentle puffs of air to their 

anterior prosoma using a rubber squeeze-bulb. These air puffs resemble an attack from an avian 

predator, causing the spider to cease activity and pull its legs in against their body in a “huddle” 

position (Lohrey et al., 2009; Pruitt et al., 2013; Riechert and Hedrick, 1990). The latency to 

unhuddle and move one whole body length following these air puffs is our measure of 

boldness. Boldness is defined as the propensity of an individual to engage in risky behavior 

(Sloan Wilson et al., 1994) and resuming normal activity quickly after interacting with a 

possible predator (air puffs) is here deemed risky or “bold” behavior. These latencies scores 

are then subtracted from 600 (the maximum value) so that higher numbers reflect greater 

boldness scores. Spiders with intermediate boldness values were not used in the present study. 

We used maximally shy spiders for our colony constituents and for the shy immigrants (i.e., 

spiders that never unhuddled during boldness trials and had a boldness score of zero). Bold 
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immigrants all had latencies to resume movement under 60s (i.e., boldness scores greater than 

540).  

 

Colony creation 

Following individual boldness trials, we constructed 80 experimental colonies 

containing 9 shy spiders each. Each colony was housed in a separate 250ml clear, plastic parfait 

cup containing a few twigs of acacia hookbush (Acacia mellifera) for the spiders to use as 

nesting substrate. One bold or shy future “immigrant” spider from the same source colony was 

kept separately in a 30ml plastic condiment cup until its addition to the 9-individual colony 

after 7 days. Each experimental colony, and its respective immigrant, was derived from a single 

source colony from an area where ants were not abundant, and spiders from different source 

colonies were never combined so that within-group relatedness and familiarity was maintained 

(Laskowski et al., 2016a; Laskowski and Pruitt, 2014b; Modlmeier et al., 2014e). Half of the 

experimental colonies (N = 40) were exposed to predatory A. custodiens ant workers twice a 

day for 7 days prior to immigrant additions (ant+ colonies treatment), and the other 40 colonies 

were not exposed to ants prior to immigrant additions (ant- colonies treatment). Details of ant 

exposures are outlined below.  Within each of the above groups, half (20) of the colonies 

received a bold immigrant and the other half a shy immigrant. Half of the immigrants in each 

of these groups were pre-exposed to predatory ant cues (ant+ immigrants treatment), and the 

other half were not (ant- immigrants treatment). Thus, we established 8 treatments in total, 10 

replicates in each, which were deployed in a fully factorial 2 ´ 2 ´ 2 design: colony experience 

(ant presence +/-), immigrant experience (ant presence +/-), and immigrant personality 

(shy/bold).  
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Immigrant Predator Exposure Treatments 

Following individual boldness trials, we exposed half of the future immigrants to 

predatory ants (ant+ immigrants treatment). We punctured small holes in the bottom of the 

30ml container of the spider and nested it within another identical cup with two predatory ants 

that were free to move around in the space between the bottoms of the stacked cups. We kept 

spiders in this set up for 7 days and dead ants were replaced with live ones immediately when 

discovered. This set up allowed any ant cues to permeate to the spiders without direct contact. 

S. dumicola respond to these cues by decreasing their foraging activity and increasing their 

latency to attack ants that encounter their webs (Wright et al., 2017b). The other half of the 

immigrant spiders (ant- immigrants treatment) experienced an identical procedural control 

treatment in which the chamber between the two cups was free of ants.  

 

Colony Predator Exposure Treatments  

To expose colonies to predator cues we followed a similar procedure to the one for the 

isolated immigrants. We punctured small holes in the bottom of the containers of the 

experimental colonies and nested them within other identical cups. To half of the experimental 

colonies (ant+ colonies treatment) we added 5 A. custodiens workers to the space between the 

nested cups for 7 days. In addition to ants being placed beneath the colonies, each ant+ colony 

was exposed directly to ants twice daily, 6 hours apart, over the course of the same 7-day 

period. In each direct exposure, we placed a single A. custodiens worker in the capture web 

and allowed the spiders to briefly interact with the ant. Ants were removed after we observed 
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spiders interacting with them so that the colonies were unable to consume the ants to keep 

feeding regimes constant across all treatments.  

We tested each ant+ colony for their initial aggressiveness and defensive behavior 

toward ants by placing a single A. custodiens worker in the center of the colony’s capture web 

and measuring colonies’ latency to attack the ant and the number of attackers that responded. 

This was a separate occasion from the daily ant “exposures.” We also recorded the number of 

spiders that were observed spinning cribellate silk every 2 minutes over a 10-minute period (5 

scan samples per trial). Cribellate silk is a particularly tangly type of silk these spiders produce 

defensively when exposed to predatory ants to line their capture webs and impede the 

advancement of ants into their vulnerable retreats (Henschel, 1998). The two trials of direct 

exposure to ants on the first day were averaged to obtain an estimate of initial colony 

aggressiveness and defensive behavior.  

 

Impact of experience on collective response 

After the 7 days of ant exposures to the ant+ colonies and immigrants, the bold and shy 

immigrants previously set aside were added to colonies that either matched or mismatched 

their own experience. To determine whether and to what degree immigrant boldness, or 

previous experience with predators, shapes collective behavior, colonies were tested twice a 

day, for 5 days following immigrant additions, for aggressiveness toward innocuous (paper) 

prey (details below), and once a day for aggressiveness and defensive cribellate spinning 

behavior toward a dangerous (ant) predator (as detailed above). See Supplementary Table S1 

for a visual breakdown of the experimental timeline.  
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 Collective attack of prey  

To evaluate each colony’s initial aggressiveness towards innocuous prey, we tested the 

colonies containing 9 shy spiders prior to the 7 days of ant exposure treatments 4 times in a 

24-hour period (each 4 hours apart). These baseline aggressiveness assays were performed to 

uncover how colonies initially responded to prey before treatments were administrated. This 

was initiated by placing a 1´1cm piece of paper (representing an innocuous prey item) in the 

center of the capture web and vibrating the paper with a small handheld vibrator. This causes 

the paper to flutter, resembling the vibrations that a small winged insect might make whilst 

struggling in the capture web. We recorded the latency for the first spider to attack - make 

physical contact with the paper and the number of spiders that were recruited to the capture 

web during the attack sequence. These measures give us an estimate of both the speed and 

magnitude of an attack. All 4 trials were then averaged to get an estimate of average colony 

aggressiveness. On the day following the baseline aggressiveness trials to innocuous prey, we 

initiated our ant exposure (+/-) treatment colonies described above.  

 

Statistical methods 

We analyzed this experiment as a 2´2´2 fully factorial design using ANOVAs with 

colony experience (predators +/-), immigrant experience (predators +/-), immigrant personality 

type (bold/shy), and their interactions as independent variables and either response to prey or 

response to predator (latency to attack, # of attackers, and defensive cribellate silk spinning) 

on each of the 5 days as the dependent variables. To correct for multiple testing (two ANOVAs 

at each of five time points = 10 time points total), we used a conservatively Bonferroni-

modified a of 0.005.   
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Results  

Colony Response Towards a Dangerous Predator (ants) 

Colony experience: Exposure to predators decreased aggressiveness towards them 

over time. Unexposed colonies were faster to attack ants in the capture web than predator-

exposed colonies early on (~850% faster on day 1 (p < 0.0001), ~300% faster on Day 2 (p < 

0.0001), and ~230% faster on Day 3 (p = 0.0004)) (Figure 1A & 1B). Unexposed colonies also 

initially deployed more attackers than exposed colonies (~240% more on day 1 (p < 0.0001), 

~260% more on day 2 (p < 0.0001), and ~240% more on day 3 (p = 0.0025) (Figure 1C & 1D). 

Colony experience had no influence on the number of defensive cribellate silk spinners 

observed (Table 1).  

 

Immigrant experience: Unexposed colonies that received predator-experienced 

immigrants displayed similar attack latencies to those of unexposed colonies that received 

unexperienced immigrants in days 1-3. However, unexposed colonies that received 

experienced immigrants dramatically increased their latency to attack ants by over 200%, to 

resemble attack latencies comparable to those of exposed colonies, by days 4 and 5 (Day 4: p 

= 0.0012; Day 5: p = 0.0036), while attack latencies of unexposed colonies that received 

unexperienced immigrants did not exhibit a similar shift (Figure 1A & 1B). A nearly identical 

pattern emerged for the number of attackers deployed: early on (days 1-3) there were no 

differences between unexposed colonies that received experienced immigrants and unexposed 

colonies that received unexperienced immigrants. However, a shift occurred on day 4, when 

unexposed colonies that received experienced immigrants radically decreased the number of 
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attackers to resemble attack numbers of exposed colonies (Figure 1C & 1D). The delayed effect 

of immigrant experience on colony behavior suggests that a combination of personal and 

socially obtained information is necessary to detect a colony level response, or that it takes 

time for social information to spread through the group. Immigrant experience, however, had 

no influence on the number of defensive cribellate silk spinners observed.   

 

Colony Response Towards Innocuous Prey (paper) 

Colony experience: Exposure to predators had no observable influence on colonies’ 

latency to attack or on the number of attackers deployed to an innocuous prey stimulus. 

 

Immigrant experience: The number of attackers that responded to innocuous prey 

depended on the boldness of the immigrant. Immigrant boldness had increasingly stronger 

catalyzing effects on group foraging as the experiment went on, with bold immigrants 

ultimately increasing colony foraging on innocuous prey by 46% on average on day 5, 

regardless of whether the immigrant or the colony had been exposed to predators (p < 0.0001). 

All four treatment groups with bold immigrants deployed more foragers than all four treatment 

groups with shy immigrants on days 3 and 5, and most treatments with bold immigrants 

deployed more attackers than colonies with shy immigrant treatments on the other days as well 

(Table 1). We did not detect a difference among any of the treatments in latency to respond to 

prey at any time point. 

 

Discussion  
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 Our results support the ‘better safe than sorry’ hypothesis by demonstrating that 

information content, rather than majority experience or the experience of highly influential 

“keystone” immigrants, takes precedence in determining collective behavior in S. dumicola 

colonies when that information signals risk. Specifically, immigrants that had previous 

experience with predator cues caused unexposed colonies to dramatically reduce their speed 

of response to ants by 200%, and the number of attackers on ants by nearly 400%, ultimately 

yielding attack speeds and numbers indistinguishable from those of previously exposed 

colonies (Figure 1A). Immigrant personality (bold vs. shy), which reflects their status as a 

keystone (Pruitt et al., 2013), had no influence on response to dangerous ants. For innocuous 

prey (paper), we did not find any relationship between immigrant experience and collective 

behavior. We did however find a strong positive relationship between immigrant boldness and 

the number of attackers deployed to innocuous (but not dangerous) prey, which is 

corroborative of the keystone dynamics that have been described previously in this system. 

Thus, we found no evidence that colonies preferentially base collective decisions on majority 

information or on immigrant keystone status, and therefore we reject both the democracy 

hypothesis and the dictator hypothesis. Colonies, however, remained cautious when 

constituents had prior experience with predators and quickly became more cautious when 

immigrants with prior predator experience were introduced to unexposed colonies. This result 

supports the better safe than sorry hypothesis, where colonies act based on information alone 

to mitigate risk.  

 Our results demonstrate high levels of behavioral plasticity in S. dumicola colonies, 

where groups can modify their behavior quickly in response to useful information regarding 

risk. The presence of behavioral plasticity in S. dumicola is not entirely surprising, as several 
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studies have shown high levels of behavioral plasticity in this species in other contexts, such 

as in foraging and defensive cribellate silk spinning behavior (Wright et al., 2016a; Wright et 

al., 2017b). However, this plasticity has always been linked to the collective personalities of 

the groups, or the personality of “keystone” individuals due to their ability to alter the collective 

behavior of groups containing shy individuals (Pruitt et al., 2013; Pruitt and Keiser, 2014a). 

The present study differs from these in its focus on information and personality rather than 

personality per se, and demonstrates that information can override majority experience and 

personality effects when the information is pertinent for colony survival. A past study on how 

colonies deal with keystone information/misinformation demonstrated that colonies are less 

susceptible to mistakes when responding to predators vs. innocuous prey (Pruitt et al., 2016), 

perhaps mirroring the cautious behavior revealed in this study. The ability of uninformed 

colonies to quickly shift their behavioral phenotypes to match those of informed colonies hints 

at a long evolutionary history with predatory ants, and at the possible benefits of being 

forewarned to their presence (Henschel, 1998; Keiser et al., 2015b). Colonies thus appear to 

adopt a “better safe than sorry” strategy. This is likely because preparing for an ant raid that 

never comes (false positive) is considerably less costly than failing to adequately prepare when 

a raid occurs (false negative), especially when raids are common and typically result in total 

colony annihilation (Keiser et al., 2015b; Wright et al., 2016a).    

 While our results suggest that the immigrants can transmit information regarding their 

past experience to their new nest mates, the mechanism of this information transfer is 

unknown. It is unlikely that colonies are responding to ant cues that have hitchhiked onto the 

immigrants, because immigrant additions coincide with exposure to ants in this study. 

Additional control groups using exposed and unexposed plastic bead “immigrants” would have 
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been useful to fully flesh out these details. Another possible mechanism for information 

dissemination includes leader-follower dynamics that are commonly described in this species 

in the context of “keystone” individuals (Grinsted et al., 2013; Pruitt et al., 2013; Pruitt and 

Keiser, 2014a; Pruitt et al., 2016). While keystones in this species usually refer to spiders with 

a bold behavioral type, this study highlights the fact that bold individuals are not the only kinds 

of individuals to wield situational influence. In environments where predatory ants are absent, 

or at tolerably low abundance, keystone boldness may be more important in of augmenting 

colony foraging rather than responding to seldom encountered predators. However, when 

predatory ants are abundant, as simulated by the repeated exposures to the ants that we 

performed, individual-level traits, like boldness, appear far less important in shaping colony 

collective behavior than acquired information about the predator. 

 Keystone effects of bold immigrants on foraging on innocuous prey were retained in 

all treatments, regardless of whether the colonies or the immigrants had been previously 

exposed to predators. This retention of keystone effects was not expected, as a previous study 

(Ferkin et al.) had shown that exposure to predators appeared to over-ride the link between 

colony personality composition and collective foraging on innocuous prey. In the previous 

study, groups containing a higher proportion of bold individuals attacked innocuous prey in 

larger numbers than those containing more shy spiders. However, this positive relationship 

between the proportion of bold individuals and attack magnitude vanished when colonies were 

exposed to predatory ants as in the present study.  Given that the addition of bold keystones to 

shy colonies alters colony composition, it was thought likely that predator presence could 

potentially nullify keystone effects (Wright et al., 2017b). Apparently, keystone effects can be 

retained and be up- or down-regulated in a context-specific manner, depending on perceived 
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levels of threat. An important difference between Wright et al (2017b) and the present study is 

that colonies in the previous study did not receive added keystones/immigrants and were larger 

(20 individuals vs 10 here). Instead, colonies maintained their compositions throughout the 

study during predator exposures while being repeatedly tested for group foraging on innocuous 

prey. The addition of outside individuals to otherwise stable groups appears to be a necessary 

condition to both augment (in the case of bold “keystones”) or curtail (in the case of forewarned 

immigrants) group foraging in a context-specific manner.  

  An often-overlooked aspect of social living is the potential for acquiring information 

about the environment via immigrants (Aparicio et al., 2007; Galef and Laland, 2005; Laland 

and Williams, 1998). In many animal societies, the willingness to leave and join groups can 

often be tightly linked with animal personality (Cote et al., 2010; Pruitt et al., 2012a), and 

personality can further dictate the roles that individuals play within their societies (Grinsted et 

al., 2013; Holbrook et al., 2014; Wright et al., 2014b), as well as their degree of social influence 

(Modlmeier et al., 2014d; Pruitt and Keiser, 2014a). These properties, in turn, create situations 

where the mixture of behavioral types within groups can change the collective behavior and 

success of groups. Nowhere is this property more impressive than in cases where singleton 

individuals come to wield a disproportionately large influence over their societies (Modlmeier 

et al., 2014d). However, such immigrants can be advantageous, harmful, or otherwise 

influential for reasons that transcend innate behavior, such as when one comes to possess 

important information about the state of the environment. When the information transmitted 

between individuals in a group is inaccurate or suboptimal, maladaptive traits can sometimes 

spread throughout a group (Laland and Williams, 1998; Pruitt et al., 2016). However, if a threat 
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is both constant and severe, as is the case with Anoplolepis ants to S. dumicola colonies, 

responding to uncertain information may be less costly than doubt when the stakes are high.  

 

Conclusion  

Our data suggest that the experience of bold immigrant individuals is insufficient to 

outweigh the personal experiences of an entire colony: colonies forewarned about predators do 

not reverse their cautious behavior tendencies merely because an unexposed bold individual 

arrives. Moreover, in situations where we detected an effect of immigrant information on 

colony behavior, bold immigrants appeared to be no more influential than their shy 

counterparts. Forewarned immigrants, regardless of their personality, accelerated the rate at 

which naive colonies altered their behavior in response to interactions with predatory ants. This 

finding suggests that in certain situations, such as being under predator attack, the effect of 

colony experience and individual history can outweigh the effects of personality-dependent 

social influence. Colonies disregard the majority opinion and keystone influence in favor of a 

better safe than sorry strategy to mitigate risk. Our results show that S. dumicola colonies 

respond to their environment, and begin to tease apart when certain kinds of individuals (e.g., 

particular personality types) are likely to be influential, and when they are not. Future 

experiments will aim to more finely manipulate the proportion of colony members that have 

experienced predators and the personality types of the individuals with and without predator 

exposure.  

 

Acknowledgements 

 We would like to thank the Tramonto Lodge in Upington, South Africa for providing 



 

  71 

us with laboratory space for this experiment. Funding for this research was generously 

provided by NSF IOS grants 1352705/1455895 to JNP, 1456010/1708455 to NPW, and NIH 

GM115509 to JNP and NPW.   

  



 

  72 

Table headers and figure legends: 

 

Table 1: P-values of the ANOVA tests for our 2´2´2 fully factorial design for each of 

the 5 days.  

 

Figure 1: Colony collective responses over time. Latency to attack ants (dangerous 

prey) over time when colonies were (A) previously exposed to ants or (B) not previously 

exposed to ants. Latency to attack paper (innocuous prey) over time when (C) colonies were 

previously exposed to ants and (D) not previously exposed to ants. Immigrants added to 

colonies on day 1 differed in predator experience (experienced = red; unexperienced = green) 

and personality (bold = solid; shy = dashed). Asterisks indicate statistically significant 

differences between treatments (p<0.005). 
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Table 1: 

  Day 1 Day 2 Day 3 Day 4 Day 5 
Latency to attack innocuous prey           

Immigrant BT 0.6129 0.6438 0.9345 0.3273 0.9253 

Immigrant exp. 0.6664 0.4592 0.3647 0.758 0.7915 

Colony exp. 0.6546 0.7689 0.5403 0.7975 0.0942 

Colony exp.*Immigrant BT 0.661 0.2681 0.1703 0.3176 0.3939 

Immigrant exp.*Immigrant BT 0.7668 0.6293 0.5386 0.6731 0.6277 

Colony exp.*Immigrant exp. 0.5151 0.5324 0.6934 0.7441 0.5912 

Colony exp.*Immigrant exp.*Immigrant BT 0.7422 0.3854 0.1433 0.9083 0.2116 

            
Latency to attack dangerous prey           

Immigrant BT 0.5169 0.1428 0.273 0.4944 0.8328 

Immigrant exp. 0.2302 0.5358 0.775 0.5763 0.3106 

Colony exp. <.0001 <.0001 0.0004 0.3063 0.21 

Immigrant exp.*Immigrant BT 0.125 0.3 0.8299 0.9724 0.7534 

Colony exp.*Immigrant BT 0.6263 0.6004 0.4314 0.89 0.8469 

Colony exp.*Immigrant exp. 0.1456 0.3873 0.5782 0.0012 0.0036 

Colony exp.*Immigrant exp.*Immigrant BT 0.0827 0.988 0.4492 0.3042 0.3981 

            

No. of attackers to innocuous prey           
Immigrant BT 1 0.0038 0.0007 0.0455 <.0001 

Immigrant exp. 0.3336 0.0054 0.0121 0.393 0.8116 

Colony exp. 0.7465 0.2656 0.8308 0.6203 0.8116 

Immigrant exp.*Immigrant BT 0.8716 0.0655 0.3939 0.5584 0.6681 

Colony exp.*Immigrant BT 0.2599 0.3857 0.0906 0.0986 0.2357 

Colony exp.*Immigrant exp. 0.8716 0.8038 0.3378 0.8924 0.2749 

Colony exp.*Immigrant exp.*Immigrant BT 0.7465 0.3219 0.9149 0.226 0.1696 

            

No. of attackers to dangerous prey           
Immigrant BT 0.6241 0.2048 0.9491 0.873 0.404 

Immigrant exp. 0.7262 0.1644 0.7497 1 0.2331 

Colony exp. <.0001 <.0001 0.0025 0.153 0.2572 

Immigrant exp.*Immigrant BT 0.0326 0.9227 0.8481 0.7492 0.91 

Colony exp.*Immigrant BT 0.1103 0.399 0.6552 0.425 0.827 

Colony exp.*Immigrant exp. 0.0451 0.5988 0.2798 0.1129 0.0009 

Colony exp.*Immigrant exp.*Immigrant BT 0.9441 0.5988 0.1827 0.2033 0.6459 
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No. of defensive cribellate spinners           

Immigrant BT 0.3216 0.0334 0.7343 0.2151 0.9103 

Immigrant exp. 0.8809 0.7954 0.0822 0.4272 0.6186 

Colony exp. 0.6929 0.8492 0.2342 0.7075 0.1017 

Immigrant exp.*Immigrant BT 0.6145 0.2489 0.5456 0.9641 0.7589 

Colony exp.*Immigrant BT 0.6337 0.278 0.5456 0.5191 0.3125 

Colony exp.*Immigrant exp. 0.9457 0.278 0.8019 0.1941 0.3537 

Colony exp.*Immigrant exp.*Immigrant BT 0.9024 0.9311 0.1551 0.3611 0.0083 
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Figure 1: 
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GENERAL DISCUSSION 

 

The series of experiments presented herein address an important aspect of collective 

personality that has yet to be addressed empirically: how the behavioral distribution of colony 

constituents influences collective behavior in the context of colony defense, how prolonged 

exposure to predators feeds back to determine the collective behavior of groups, and how 

groups prioritize information regarding predator presence when that information is possessed 

by the majority, or singleton immigrants that vary in leadership traits.  

Chapter 1 revealed the importance of group composition in determining the magnitude 

of their defensive response when attacked by deadly social predators. In all previous studies 

on collective behavior in S. dumicola, bold colonies appeared to outperform shy compositions 

in every measured collective trait, such as prey capture and web repair. Our finding that mixed 

compositions exhibited twice as much defensive behavior as other compositions helps explain 

the near ubiquity of of mixed compositions in nature. In Chapter 2, we saw that prolonged 

exposure to predators, either directly or indirectly, is sufficient to cut colony attack speeds and 

numbers in response to all prey stimuli in half. And furthermore, exposure to predators 

effectively erased the well-documented link between colony personality composition and 

aggressiveness during prey capture. Chapter 3 addressed the question of how groups use 

information about environmental risk when that information is possessed by singleton 

immigrants of contrasting behavioral types, or the group majority. This study found that 

colonies operate on a “better-safe-than-sorry” strategy, and groups rapidly exhibit cautious 

foraging behavior when either the group or immigrant had previously been exposed to 

predators, regardless of immigrant behavioral type.  
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These experiments, both in alone and in combination, reveal a complex relationship 

between collective personality and predation risk. While these studies further enhance our 

understanding of ecology of S. dumicola, they further demonstrate that the behavior exhibited 

by a group at any one time is a combination of both internal (group composition) and external 

(predator presence/absence) factors that may represent a tradeoff between prey capture 

efficiency and vulnerability to predators. Given the ubiquity of predation as a strong selective 

force for the vast majority of taxa, social or otherwise, the generalizability of these results 

cannot be understated. It is my hope that other ecologists will use these findings to better 

understand the role that fear might play in shaping the collective behavior of their focal 

systems.  
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IV. COLLECTIVE PERSONALITY: WHAT WE DO AND DO NOT YET KNOW 

 

Introduction  

If you have ever had the misfortune of being swarmed by bees or wasps, or have 

witnessed ants or termites angrily emerge, en masse, from underground tunnels in response to 

your disturbance, then you have observed, or perhaps directly experienced, a type of collective 

behavior. And, if you repeatedly antagonize many colonies and pay close enough attention, 

you might notice that colonies often differ consistently in how they respond to your meddling. 

That is to say, different colonies exhibit distinct “personalities.” But while societal traits like 

aggressiveness in response to a threat may be the most readily observable and conspicuous, 

there are many other ways that colonies can differ behaviorally that is relevant to their 

functioning and survival. For instance, individual societies may also differ in how broadly 

they explore and forage, how well they attend to their young, how finely they divide their 

labor among tasks, or how they build or excavate complex 3-dimensional nest structures, to 

name only a few.  

In this review article we look back at the last five years of research aimed at exploring 

the presence and consequences of collective personality, and then provide a roadmap for 

where this field might go next. Approximately five years ago, Jandt et al. (2014) and Bengston 

and Jandt (2014a) produced a pair of expansive and exhaustive reviews of the literature on 

this topic, which have since inspired more than 100 descendant papers. Model taxa for these 

investigations have included some vertebrates (e.g., birds, fish), however, the majority of 

studies have used social arthropods for their investigations. Here we aim to summarize earlier 

work, comment on the field’s progress since the 2014 reviews, and compare and contrast the 
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findings gleaned from the field’s most prominent model systems (i.e., social spiders and 

eusocial insects). We then provide the reader with a variety of new hypotheses regarding how 

collective personality might interact with several other fields of study, including colony life 

history and performance, population and community ecology.    

 

What is collective personality?  

 

Personality, which is a property of a population or group, is defined as the presence of 

temporally consistent behavioral differences between individuals (Sih et al., 2004; Sih et al., 

2012). The aggregate is said to have personality, while each individual comprising the 

aggregate is said to possess a particular “behavioral type” or BT or sometimes “personality 

type” (e.g., docile vs. aggressive individuals). However, the term “individual” can apply both 

to individual organisms as well as cohesive social groups (Jandt, 2013). This is particularly 

relevant in eusocial insects, where colonies can be viewed as extended phenotypes of the 

queen, and the queen + workers as a type of “superorganism” (Hölldobler and Wilson, 2009). 

But individuality can apply to other cooperative social groups as well, such as social arachnids 

and other non-arthropods. And thus, “collective personality” refers to the presence of 

temporally consistent behavioral differences exhibited between distinct social groups 

(Bengston and Jandt, 2014b; Jandt, 2013; Jandt and Gordon, 2016).  

 

How does collective personality arise? 
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One of the central question to those studying collective personalities, after the near-

ubiquity of this phenomenon had been thoroughly documented, has been to understand the 

mechanisms that give rise to both intra- and inter-group variation in behavioral types and 

therefore personality. Concerning the origin of colony personality, explanations fall within 

three, non-mutually exclusive and oft intertwined, categories of influence: genetics, 

physiology, and environment.  

 

Genetics. The queens of eusocial insects can be either inseminated by one or multiple 

males (Kronauer et al., 2004; Strassmann, 2001). And, this tends to vary widely among 

species, as well as within certain species (Cole, 1983; Strassmann, 2001). The more males a 

queen mates with, the more genetically diverse her workers will be, which will result in the 

expression of a variety of genetic-based behavioral tendencies. In honey bees, for instance, 

genes affect worker learning ability (Chandra et al., 2000), foraging propensity and preference 

(Page et al., 1998; Page and Robinson, 1991), defensive behavior (Breed et al., 2004), as well 

as division of labor (Page et al., 1998; Page and Robinson, 1991; Robinson, 1989). However, 

species where queens only mate once, and are thus less genetically diverse, still give rise to 

behaviorally diverse societies (Dornhaus et al., 2008; Jandt and Dornhaus, 2009; Jandt et al., 

2009). Genetic variation both within and between queens, then, is thought to contribute to the 

emergence of individual- and colony-level personality. However, personality variation can 

also arise in genetically curbed social taxa, such as most social spiders (Holbrook et al., 2014; 

Pruitt and Riechert, 2011a; Wright et al., 2014b; Wright et al., 2015). Personality in social 

spiders can arise due to differences in gene expression (Ben-Shahar et al., 2002; Ingram et al., 

2005; Rittschof, 2017; Zayed and Robinson, 2012), which can be influenced by a multitude 
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of factors such as individual or colony experience (Niemela et al., 2012; Rittschof, 2017), 

nutrition (Ament et al., 2008; Ament et al., 2010; Toth and Robinson, 2005; Wheeler et al., 

2006), social environment (Beshers et al., 2001; Huang and Robinson, 1996), or age (Beshers 

et al., 2001; Robinson and Ben-Shahar, 2002; Sullivan et al., 2000). Also, discrete colony-

level social polymorphisms can be the result of strong genetic control, such as in the fire ant 

Solenopsis invicta, where worker tolerance of polygyny as well as nest initiation behavior 

rests on a single locus polymorphism (Keller and Ross, 1998; Ross and Keller, 2002; Wang 

et al., 2013). Special consideration should be given to the traits of singularly influential 

individuals, such as queens or other colony initiators, that may influence the behavioral 

makeup of their future workforce (Doering and Pratt, 2016; Wright et al., 2016b) and, in turn, 

the collective behavioral tendency of the group. It is important to note that genetic 

underpinnings of collective personality are indeed required for there to be an effective 

response to selection on inter-group variation. But the transmission of colony-level 

phenotypes has rarely been demonstrated (Pruitt and Goodnight, 2014; Pruitt et al., 2017a), 

even circumstantially (Gordon, 2013b). 

 

Physiology. As individuals age, many physiological changes occur that can often lead 

to changes in their behavior. In social insects, the best example of this is the age-related 

division of labor seen in honeybees known as temporal polyethism (Seeley, 1982). Newly 

eclosed workers tend to remain inside the colony as nurses, but after several weeks take on 

more complex foraging duties outside the colony. Changes in the patterns of brain gene 

expression co-occur during this transition. Thus, variation in age demographics between 

colonies can contribute to the expression of colony-level phenotypes. Many behavioral 
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differences also arise due to individuals producing different levels of certain hormones. One 

well-studied example is juvenile hormone (JH), which has been linked with aggressiveness 

(Pearce et al., 2001; Tibbetts and Huang, 2010), dominance behavior (Barth et al., 1975; 

Tibbetts and Huang, 2010), behavioral development (Fahrbach and Robinson, 1996; Sullivan 

et al., 2000), division of labor (Schulz et al., 2002), and reproductive behavior (Barth et al., 

1975; Riddiford, 2012). Other factors that can influence physiology and, subsequently, 

behavior, include diet and nutrition, and even fat content (corpulence) (Blanchard et al., 2000). 

Variation in any of the above physiological features in group constituents or the emergent 

physiology of the colony can conceivably shape the way an individual colony will behave.  

 

Environment. Often times different collective behaviors are the result of external (i.e. 

environmental) factors rather than internal (i.e. genetics and physiology) factors (Bengston 

and Jandt, 2014b). And, these environmental factors can be both biotic and abiotic in nature. 

For instance, the location of a colony can determine how much light a colony is exposed to, 

its internal temperature, humidity, maximum size, and nest architecture. Many of these 

elements have been shown to directly influence colony-level behavior (Dornhaus et al., 2012; 

Gordon, 1996; Gordon et al., 2013; Gordon et al., 2011; Modlmeier et al., 2014b; Pinter-

Wollman, 2015; Pinter-Wollman et al., 2012; Segev et al., 2017; Traniello et al., 1984; Wray 

and Seeley, 2011). Additionally, weather (Pinter-Wollman et al., 2012), resource abundance 

(Bengston et al., 2014; Downs and Ratnieks, 2000; Pruitt and Goodnight, 2014), and 

environmental variation across their range can also greatly influence the collective behavior 

of groups (Bengston and Dornhaus, 2014; Bengston et al., 2014; Pankiw, 2003; Segev et al., 

2017). But biotic factors, such as social environment, the presence or absence of predators, 
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distance to neighbors, the presence of “keystone” individuals, adults, or queens, or previous 

group experience can also dictate group behavior (Keiser et al., 2018; Kleeberg et al., 2014; 

Laskowski and Pruitt, 2014b; Modlmeier et al., 2015b; Modlmeier et al., 2014e; Norman et 

al., 2017; Pamminger et al., 2011; Pruitt and Keiser, 2014a; Suryanarayanan et al., 2011; 

Suryanarayanan and Jeanne, 2008; Wright et al., 2016a; Wright et al., 2017b).   

 

How is within-colony and between-colony variation in collective personality maintained? 

 

Now that we have outlined some mechanisms that can cause behavioral differences 

between societies, the next and perhaps more difficult endeavor is to discover how or why this 

variation is maintained. After all, if there are fitness costs and benefits associated with 

behaving a certain way, we might expect selection to act as a homogenizing force on within-

colony behavioral variation and among-colony differences in collective personality. But the 

ubiquity of personalities within animal societies and across groups suggests both notions are 

false. We will now discuss some of the most salient causes of between-group behavioral 

diversity.  

 

Frequency-dependent selection. The hawk/dove model is a classic model in game 

theory that describes how the costs and benefits associated with one behavioral strategy can 

be inversely related to an alternate strategy in a population (Smith, 1979). That is, the costs 

and benefits of a behavior are frequency-dependent, and can result in fluctuations in the 

genetic and behavioral makeup of a population (Nonacs and Kapheim, 2007, 2008). A similar 

phenomenon can occur in social groups, as opposed to a population, where different 
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behavioral types enjoy a selective advantage relative to others, until a point is reached where 

the pendulum of selection begins to swing the other way. This type of selection keeps any one 

individual level BT from becoming fixed, and thus promotes behavioral diversity within a 

group over generations. We propose that similar forces could play a role in maintaining 

among-group variation in collective personality as well. Nearly every study examining the 

functional consequence of collective personality has detected directional selection on 

collective personality, but the maintenance mechanisms enabling this variation remains 

unscrutinized. We propose that frequency-and density-dependent selection acting on 

collective personality could be one such mechanism. The behavioral distribution of 

conspecifics may also drive group-level diversity, though this hypothesis remains untested. 

For instance, aggressive colonies may be favored in populations of strictly docile colonies, 

but suffer unreasonable costs that drive their performance beneath that of docile colonies when 

aggressive societies primarily interact with aggressive neighbors. The costs of aggressive-

aggressive conflict at the colony level, a la the hawk-dove game, are plausibly quite high and 

could be fairly estimated. 

 

Social heterosis. An individual’s behavior can’t be two things at the same time; they 

can’t be simultaneously bold and shy, or aggressive and docile. But while individuals might 

be able to modulate their behavior somewhat throughout the day, the field of animal 

personalities rests on the observed fact that individuals are not infinitely plastic. Groups, 

however, face no such identity crisis. Unlike a single individual, a group can harbor as many 

genetic and behavioral variants as there are individuals, which allows for any mutual benefits 
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of this diversity to be shared by all group members, and even the group as a whole. The benefit 

of within-group behavioral diversity is commonly referred to as “social heterosis”.  

In the social spider Anelosimus studiosis, for instance, different colony compositions 

are selected in different habitats based on resource abundance (Pruitt and Goodnight, 2014). 

Furthermore, A. studiosus colonies of mixed (docile + aggressive) compositions outperform 

monotypic compositions in nature (Pruitt, 2013). Thus, environmental differences in resource 

availability and predator abundance/presence may be a large factor in maintaining colony-

level behavioral variation in social taxa. Just like individuals, we reason that colony 

performance may be contingent on the phenotypic neighborhood in which it resides, and social 

heterosis at the level of the group is one plausible outcome. For example, one might propose 

that colonies surround by neighbors of unlike behavioral tendencies may compete less for 

resources, they may occupy different kinds nests, or they subtly partition their activities 

temporally in a manner that reduces conflict. We even propose that neighboring colonies may, 

over time, begin to behave more dissimilarly as to enjoy such benefits. More attention on such 

topics is sorely needed.  

 

Behavioral reaction norms. Individuals often vary in their average behavior across 

contexts.  But they also often vary in behavioral plasticity, or the degree to which they respond 

to changes in their environment. Previously, these two aspects of an individual—personality 

and plasticity—had been treated as separate entities. In fact, personality and plasticity had 

often been envisioned as two ends of a spectrum. If individuals are infinitely plastic, how can 

they be said to behave differently? However, these two factors are now seen as tightly 

intermingled. Simply put, a behavioral reaction norm approach describes how an animal varies 
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in a certain behavior, say aggressiveness, over some environmental gradient, such as 

temperature, population density, or predation risk (Dingemanse et al., 2010). In a social group, 

one might expect selection on optimal response curves to erode group behavioral diversity 

and its genetic underpinnings, but limits and costs to plasticity at the individual level can allow 

such variation to persist. In some cases, such plasticity may even protect underlying genetic 

variation from the paring force of stabilizing selection (West-Eberhard, 2003). At the colony 

level, it is almost certainly true that entire societies will vary in their collective behavioral 

reaction norms. However, the functional consequences of the variability remain entirely 

unknown. 

 

Temporal tradeoffs. Sometimes the behaviors that promote success in one life stage 

are suboptimal for a later life stage, and the same may be true across ecological contexts and 

situations as well. When this occurs, natural selection can pull in opposite directions 

depending on the time of year, the situation, or life stage of the organism, and this can help to 

maintain spatiotemporal variation in behavior (Wolf et al., 2007). We propose that conflicting 

selection pressures across situations could play an important role in the maintenance of genetic 

variation in collective personality as well (e.g., (Lichtenstein et al., 2015; Pruitt et al., 2017b)). 

Whether tradeoffs associated with collective behavioral types are common is mostly 

unknown, but the possibility is difficult to ignore. They merely wait to be examined, and the 

time is ripe (Table 1).  

 

Social Insect and Arachnid Societies  
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 Some of our deepest understandings of collective personalities come from studies on 

social insects and spiders. We have already broadly covered some of the mechanisms that lead 

to and maintain behavioral variation and collective phenotypes. We will now review the 

current state of our knowledge surrounding collective personalities in the field’s most 

prominent systems, and call attention to several perceived gaps in our knowledge. We will 

cover examples of how the personalities of group constituents shape the collective behavioral 

types of their groups, and how individual and collective personality interact with other 

elements of social ecology, including division of labor, colony defense, colony 

aggressiveness, collective decision making, and nest construction. It is an impossible task to 

truly discuss any one of these collective traits in isolation, as they are often interrelated both 

statistically and functionally. For instance, colony aggressiveness is often a major factor in 

colony defense, and exploration is both a component of foraging competence and a colony’s 

interaction rate with rival groups. Thus, while we will attempt to discuss these traits in 

functional clusters, there is much unavoidable crossover.  

 

Social insects: what we do and do not know 

 

 Division of labor. Perhaps the most studied influence of individual personality on 

collective outcomes is personality-linked division of labor. Division of labor (DOL) describes 

a process where workers increase overall group productivity and efficiency by having 

different individuals specialize on different jobs. For social insects, this phenomenon has 

primarily been studied in the context of adaptive caste ratios or continuous morphological 

variation among workers (Holldobler and Wilson, 1990). Age-related DOL (or temporal 
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polyethism), as exhibited in honeybees, has also been given its due attention (Seeley, 1982). 

Recently, however, DOL in association with individuals’ personality types, rather than their 

morphology or age, has captured the attention of behavioral ecologists. This trend is notable 

because most social insect species lack discrete morphological castes beyond queens and 

workers. In the absence of distinct morphological differences, personality variation potentially 

provides another cryptic axis of functional diversity that can help to predict which workers 

will tend to perform which tasks, as well as their aptitudes for those tasks, and their propensity 

to engage in task switching. We argue that DOL can and should be considered a collective 

personality trait, since different groups can exhibit different degrees of DOL, and many 

models of DOL, such as response thresholds (Robinson, 1992) and personality-based models 

(Holbrook et al., 2014; Wright et al., 2014b), assume an innate, genetically-based mechanism 

for task participation. However, it is important to note that some models of DOL do not 

assume intrinsic differences among workers, and instead rely on interactions between workers 

and their physical or social environment. These include self-reinforcement (Theraulaz et al., 

1998b), age demographic (Robinson et al., 1994; Seeley, 1982), social dominance (Vanhonk 

and Hogeweg, 1981), foraging for work (FEW) (Franks and Tofts, 1994), social inhibition 

(Huang and Robinson, 1992, 1996), and network models (Gordon, 1986, 1989) of DOL.  

 For many insect societies, the collective personalities are the result of individual 

variation in the fixed response thresholds of the group’s constituents, which also shape which 

individual tend to perform which tasks inside of a society. In bees, for instance, variation in 

sucrose responsiveness between individuals dictates colony-level nectar foraging behavior 

(Pankiw and Page, 1999, 2003; Pankiw et al., 2001). Similar individual response thresholds, 

but for pheromones produced by larvae, influence recruitment to pollen (protein) foraging 
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(Pankiw et al., 1998). Individuals can vary in their response thresholds to a number of 

phenomena, such as task-related social interactions with larvae and other workers (Gordon, 

1996), and individual differences in how workers respond to these interactions can produce 

marked differences collective behavior. In contrast to classical studies on individuals’ fixed 

response thresholds, which are a sensory-based approach, studies on animal personality tend 

to focus on individuals’ latency to participate in one task or the frequency with which they 

engage in it (Wright et al., 2014b). We propose that individuals’ performance in personality 

assays might well be linked with their fixed response thresholds or perhaps even the flexibility 

of their thresholds in response to experience. If true, this would provide a plausible thread of 

cause and effect linking individual personality with explicit sensory biases, and help to 

mechanistically explain the large number of studies linking the personality composition of 

groups with colony level personality.  

 

 Foraging, exploration, and boldness. Differences in the collective foraging and 

exploratory tendencies of colonies have been the subject of much recent study, for several 

reasons. First, foraging is something social insects do mostly outside their nest, and it is 

therefore easy to observe in intact colonies in situ. Second, it is vital for colony growth and 

survival because it is how colonies discover and acquire resources (e.g., food, water, nesting 

materials) and new nesting locations. Boldness, on the other hand, is defined as the propensity 

of an individual to engage in risky behavior (Sloan Wilson et al., 1994). While prima facie it 

may seem that boldness bears no relation to foraging and exploration, these traits are often 

highly interdependent: foraging and exploration requires leaving the safety of the nest, and 

thus presents risk. In fact, boldness is often measured as the latency to enter a new 
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environment, which is the necessary first step to exploration and foraging. It is therefore no 

surprise that studies on collective personality regularly detect associations between these 

aspects of colony activity.  

Inter-colony differences in foraging behavior have been documented in ants and bees, 

though wasps, termites, and other social insects remain absent from the literature. Moreover, 

much of our current understanding of collective foraging comes from ants. In harvester ants, 

for instance, colonies often vary in their active foraging window: some colonies consistently 

begin foraging earlier each day, and cease foraging later than other colonies, which influences 

total resource intake and colony growth (Cole et al., 2008; Cole et al., 2010). This has been 

shown to be directly related to the colony’s genetic diversity. Other work has shown that the 

proximate mechanism driving these inter-colony differences may be related to variation in 

how colonies regulate their foraging in response to environmental feedbacks (Gordon et al., 

2011). However, colony survival is apparently not associated with overall foraging activity, 

at least in some species (Gordon, 2013b). Rather, in harvester ants, it is colonies that mitigate 

their foraging on hot and dry days that produce more daughter colonies (Gordon, 2013b), 

likely due to water conservation. Nearly identical results have been found in other ant species 

as well (Blight et al., 2016). In both instances, it appears that colony foraging behavior 

interacts with their risk-taking behavior in somewhat surprising ways.  

In ants, relatively little has been done looking at the effects of exploration per se on 

colony performance. Usually, exploration is identified to be important as part of a syndrome 

with other group behaviors like aggressiveness or overall activity. Some studies, however, 

have linked inter-group foraging differences to differences in colony exploration and worker 

route learning ability (Pasquier and Gruter, 2016). In fire ants, differences in exploratory 
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behavior are correlated with foraging, and predict colony growth in situ (Bockoven et al., 

2015). In acorn ants, success in competition for nests between species was determined by an 

interaction between colony exploratory behavioral types. Temnothorax longispinosus 

performed best in rival house hunting when their opponent (T. curvispinosus) had similar 

exploratory tendencies to their own. Conversely, T. curvispinosus tended to win resource 

competitions for nests when their opponent (T. longispinosus) exhibited a contrasting 

exploratory behavioral type (Lichtenstein et al., 2015). Another house-hunting study, but in 

Argentine ants, observed colony-level differences in the speed and accuracy of collective 

house-hunting decisions (Hui and Pinter-wollman, 2014). Exploration, as well as other 

personality traits, is also thought to be a factor in biological invasions (Carere and Gherardi, 

2013; Chapple et al., 2012), possibly due to its effects on resource competition. In Argentine 

ants, colonies from introduced ranges tend to be more explorative, and more aggressive, than 

colonies from their native ranges (Blight et al., 2017). Boldness, like exploration, also 

frequently forms a syndrome with other group personality traits like exploration and 

aggressiveness. But in at least one study, colony-level boldness was directly related to colony 

response to alarm pheromone, which could be important for colony defense (Chapman et al., 

2011). 

Studies on honeybees and bumblebees make up the remainder of collective personality 

studies on foraging studies in insects. Perhaps the most well-known example of honeybee 

collective behavior, and its consequences for fitness, is outlined in a study by Wray et al. 

(Wray et al., 2011). This study showed behavioral consistence in many colony-level traits, 

particularly foraging and defensive behavior. More defensive colonies also were better 

foragers, and this syndrome was positively correlated to both colony productivity and over 
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winter survival. There have been many studies detailing the genetic basis for collective traits 

such as foraging and aggressiveness (Alaux et al., 2009; Breed et al., 2004; Guzman-Novoa 

et al., 2004; Hunt, 2007), but Wray and colleagues demonstrated that selection on these genes 

should be under strong selection, given that only 24% of new colonies survive their first winter 

in temperate climates (Seeley, 1978). In bumblebees, inter-colony differences in collective 

foraging have been shown to be influenced by innate color preferences and learning speed of 

workers (Raine and Chittka, 2007, 2008), and colony foraging remains consistent over a 

colony’s lifespan (Evans and Raine, 2014). Lastly, anthropogenic factors, such as the use of 

agricultural pesticides, have been shown to negatively impact bumblebee foraging behavior, 

and potentially colony success (Gill et al., 2012), and exposure to such stressors provides one 

potential mechanism to explain non-adaptive differences in colony behavior.  

 

 Defensive behavior and aggressiveness. The ability of a colony to successfully defend 

itself, or defeat a rival, is vitally important for its survival. Therefore, small differences in this 

trait could have large implications during competition for resources (Bengston and Dornhaus, 

2014; Cerda et al., 2013; Davidson, 1998; Parr, 2008; Rowles and O'Dowd, 2007). In some  

Temnothorax ants, for instance, more aggressive colonies exhibited greater defensive behavior 

against intruders (Modlmeier et al., 2014c), tend to be better foragers (Lichtenstein et al., 

2016a) and prove more efficient at nest relocation (Modlmeier et al., 2014c). Highly 

aggressive Aphaenogaster ant colonies also tend to be better foragers, more thoroughly 

explore their environment, and are overall better conspecific competitors compared to more 

docile colonies (Blight et al., 2016). However, high aggressiveness appears to be a double-

edged sword: more aggressive Aphaenogaster colonies continue to forage in dangerously high 
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temperatures, resulting in increased mortality rates relative to less aggressive colonies (Blight 

et al., 2016).  

Aggression also plays an important role in colony defense. More aggressive harvester 

ant colonies exhibit less nest damage than less aggressive colonies, suggesting that they are 

better defended (Wiernasz et al., 2014). Furthermore, some ant species become more 

collectively aggressive when they encounter social parasites, such as slave making ants. These 

forewarned colonies are less likely to be the target of slave raids and lose fewer brood when 

raids occur (Kleeberg et al., 2014). Temnothorax colonies also vary in their collective 

aggressiveness depending on whether they are raised by their own queen, or a parasitic slave-

making queen (Keiser et al., 2015c), suggesting that developmental differences likely play a 

role in the maintenance of inter-colony variation in collective aggressiveness. Lastly, the 

consequences of collective personalities also play a role in insect-plant mutualisms. A recent 

study showed that Cecropia trees harboring more aggressive Azteca constructor ant colonies 

suffered less leaf damage than trees harboring docile colonies (Marting et al., 2018). Other 

potential mutualisms that could be influenced by collective behavior have been hypothesized, 

such as that between paper wasps and weaver birds, but this has yet to be rigorously evaluated 

(Bologna et al., 2007).  

Honeybees also display marked differences in collective aggressiveness (Breed et al., 

2004; Breed and Rogers, 1991; Collins et al., 1982), and colony aggressiveness and defensive 

behavior is positively correlated with foraging behavior, which have been demonstrated to 

influence colony success. Colony-level defensive behavior is highly influenced by the 

behavioral distribution of its workers. Interestingly, one study showed that colonies composed 

of a 1:1 mixture of aggressive and docile bees displayed the most defensive behavior, but that 
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colonies containing more individually aggressive bees are more hygienic than other 

compositions (Paleolog, 2009). This conveys that the links between the behavioral tendencies 

of individual group members and that of the collective are not always linear and intuitive. 

Honeybee colony aggressiveness is also shaped by a few particularly aggressive workers that 

recruit more docile bees to attack intruders, as indicated in co-fostered colonies of European 

(docile) and Africanized (aggressive) bees (Guzman-Novoa et al., 2004).  

Work on collective aggressiveness in social wasps is comparatively scant, and 

nonexistent in termites. Recently, however, it has been shown that inter-colony differences in 

aggressiveness is linked with queen behavioral type in paper wasps (Polistes metricus) 

(Wright et al., 2016b). Aggressive queens are more likely to remain on their nest after being 

repeatedly antagonized, and give rise to workforces that are also more likely to remain nest-

bound when the colony is agitated. Conversely, docile queens tend to temporarily abandon 

their nest when agitated, but these queens produce aggressive workers that readily leave their 

nest to attack mock predators. In a follow-up study study, aggressive queens enjoyed greater 

fitness (growth) than docile queens in the wild. Other insects that exhibit some degree of social 

organization also display group-level behavioral variation in defensive behavior, such as 

sheltering in domiciliary cockroaches when exposed to light (Planas-Sitja et al., 2015; Salazar 

et al., 2018), and evasion in pea aphids when exposed to predatory cues (Muratori et al., 2014). 

However, these represent more passive forms of defensiveness in comparison to other species 

that defend themselves aggressively.  

 The trend among many of these systems is that aggressiveness is often an important 

component determining a group’s ability to successfully defend itself, or win contests against 

competitors. Another pattern emerging from these studies is that increased aggressiveness, 
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while predictive of success in a wide variety of contexts, can come with costs. Colony 

aggressiveness may therefore regularly be under balancing selection in many insect systems. 

Thus, we offer that researchers should use caution when reporting the benefits of colony 

aggressiveness when only a narrow set of contexts is considered. Furthermore, researchers 

performing manipulation studies (particularly those occurring in the lab) that appear to 

discover “optimal” collective phenotypes should be skeptical regarding the ecological validity 

of their results, especially if these “optimal” phenotypes deviate greatly from those observed 

in natural populations. 

 

 Decision-making, cognition, and learning. Between-individual variation in traits like 

cognition and learning might more appropriately be viewed as traits that may inform 

personality, rather than being a personality trait per se (Carere and Locurto, 2011; Griffin et 

al., 2015). Nevertheless, variation in traits such as cognition and learning are likely important 

in determining collective behaviors in insects such as choosing nesting sites (Mallon et al., 

2001; Passino et al., 2008; Pratt et al., 2002; Seeley and Buhrman, 1999; Sumpter and Pratt, 

2009), foraging (Beckers et al., 1993; Beekman et al., 2001), engaging in collective 

movements, or constructing complex three-dimensional structures. Overall cognitive capacity 

is larger in groups than individuals, suggesting that groups may be more adept at making 

optimal choices than individuals (Sasaki et al., 2013; Sasaki and Pratt, 2012), and that this 

accuracy may scale with group size. Different tasks performed within a colony might also 

have different cognitive demands, and thus, cognitive ability could determine how efficient 

individuals and, in turn, their colonies are at executing certain tasks (Reznikova, 2008). Some 
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investigators have even argued that colonies themselves might profitably be viewed as single 

cognitive units (Sasaki and Pratt, 2018).  

 The bulk of studies investigating collective decision-making, cognition, and learning 

in social insects comes from work on ants and bee, often during nest choice. Colonies often 

must find alternative nest sites, which involves moving many different colony components 

(e.g., queens, broods, other workers). Nest sites also vary widely in quality, and colonies are 

known to prioritize some attributes over others (Visscher, 2007). In ants, while studies abound 

describing the processes involved in decision-making, from individuals up to their colonies, 

none to our knowledge have quantified between-colony variation in any cognitive trait. At 

least one study in Temnothorax ants, however, has demonstrated that nest relocation efficiency 

increases with increased colony aggressiveness (Modlmeier et al., 2014c), suggesting that 

collective personality represents another axis of decision-making strategies not captured by 

studies that evaluate group size effects. But, how aggressiveness may have influenced 

cognitive decision-making processes has not been investigated.  

In honeybees, individual bees have been shown to differ widely in their cognitive and 

learning abilities using proboscis extension reflex (Bitterman et al., 1983) and sucrose 

responsiveness (Scheiner et al., 1999; Scheiner et al., 2004). Honeybee learning ability can be 

affected by the presence of parasitic mites (Kralj et al., 2007), exposure to certain pesticides 

(Frost et al., 2013), and age (Scheiner et al., 2003). These individual differences frequently 

occur within the same colony, and could potentially have implications for colony-level 

behavior. At present, we know of no studies that have tested for colony-level differences in 

cognition in honeybees, or its possible effects on colony success or fitness. In bumblebees, 

however, different populations have been shown to exhibit differences in learning ability in 
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response to rewarding stimuli (Ings et al., 2009; Raine et al., 2006). These differences in 

learning ability were correlated with differences in color preference, which has been shown 

to influence foraging performance and colony fitness (Raine and Chittka, 2005). Additionally, 

higher learning speeds have been linked with increased foraging success in bumblebees (Raine 

and Chittka, 2008).  To what degree standard personality assays at the individual level or 

colony level may enhance the predictability of inter-colony differences in learning and 

performance remains unexamined. 

 

 Nest construction. One of the most impressive collective behaviors of social insects 

is cooperative nest-building. These nest structures can vary widely in size and shape, from 

small inconspicuous piles of sand blocking nest entrances in Temnothorax ants, to large 

termite mounds from the genus Macrotermes that reach heights of 4 meters or more (2011). 

The building of many of these structures is a self-organizing process, where higher-level 

patterns emerge from the interactions between individuals eliciting both positive and negative 

feedback responses. These responses are mediated indirectly by stigmergy, a process where 

modifications of the environment by one individual stimulates the performance of a second 

modification by others (Bonabeau et al., 1997; Camazine, 1991; Karsai and Penzes, 1993; 

Theraulaz and Bonabeau, 1995; Theraulaz et al., 1998a; Theraulaz et al., 2002). However, 

despite the large variation of nest structures observed between species, and even within 

species, studies testing for consistent between-colony differences in nest architecture that 

control for environment are limited.  

 Between-colony variation in nest construction behavior has been observed in a handful 

of studies. Temnothorax regatulus ants can be found nesting in small rock crevices. Crevices 
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vary in quality, but T. regatutlus prioritizes crevices with small openings, as these are often 

more easily defended (Visscher, 2007). When no ideal crevice presents itself, T. regatulus 

workers forage for small grains of sand and other debris, which they then use wall-in their 

crevice. In a study looking at the consistency of this wall-building behavior in T. regatulus, 

researchers found that individual colonies differed consistently in the wall architectures they 

constructed both across environment and repeated building events (DiRienzo and Dornhaus, 

2017). The subterranean termite, Reticulitermes speratus, builds shelter tubes that protect 

individual termites while foraging. When groups of termites are separated from their colony, 

they still happily perform collective shelter tube-building. When researchers split larger 

colonies into smaller sub-colonies and observed their shelter tube-building, they found that 

sub-colonies from the same colony built similarly-patterned tubes that were distinct from the 

tubes build by sub-colonies created from foreign colonies (Mizumoto and Matsuura, 2013). 

These differences can be attributed to the degree of positive feedback exhibited, as well as the 

number of termites actively building the structures (Mizumoto et al., 2015). More studies are 

needed to understand the mechanisms driving nest variation across colonies, as well as their 

performance implications for societies. 

One system ripe for evaluating the effects of nest architecture are tent caterpillars. 

These groups are known to perform a variety of collective behaviors (Casey et al., 1988; Costa 

and Ross, 2003; Fitzgerald and Costa, 1986; Fitzgerald and Peterson, 1988), and between-

individual differences in activity, and its relation to individual growth rates, have already been 

established (Nerniroff and Despland, 2007). To what degree these individual differences scale 

to impact colony traits is yet unknown. Aphids behavior too is known to vary across 

genotypes; the situational parthenogenetic nature of these insects and their ease of 
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manipulation likewise poises them for investigations on collective personality and colony 

performance in contrasting circumstances.  

 

Social arachnids: what we do and do not know 

 

Division of labor. In arachnids, studies of personality-based DOL have been 

conducted in three genera: tangle web spiders in the genus Anelosimus, arid-dwelling spiders 

from the genus Stegodyphus, and the New Guinean social spider Achaearanea wau (Lubin, 

1995). In An. studiosus, individuals within a colony exhibit one of two behavioral types, docile 

or aggressive (Pruitt et al., 2008), and this distinction predicts individuals’ participation and 

proficiency at various tasks  (Holbrook et al., 2014; Wright et al., 2014b). Docile individuals 

assume brood care duties, while aggressive spiders are more engaged in colony defense 

(Wright et al., 2014b). The degree of DOL in this species is high (Holbrook et al., 2014), on 

par with those of many social insects, such as bumblebees (Jandt and Dornhaus, 2009) and 

harvester ants (Holbrook et al., 2011; Jeanson and Fewell, 2008). In the field, colonies 

composed of only docile individuals grow more quickly but die off in fewer generations 

because of invasion by predatory inquilines. Conversely, aggressive colonies do not 

accumulate inquilines, but their deficient—and often cannibalistic—brood care practices 

prevent them from growing or proliferating as quickly as their docile rivals. Colonies with 

both docile and aggressive individuals enjoy highest overall success (Pruitt, 2012, 2013; Pruitt 

et al., 2012a; Pruitt and Riechert, 2011a, b). A closely related species, Anelosimus exemius, 

also exhibits DOL, but this is related to age (Settepani et al., 2013), body size, and body 

condition (Ebert, 1998) rather than personality. Three other social Anelosimus species—A. 
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rupununi, A. guacamayos, and A. oritoyaku—exhibited higher foraging success when 

colonies are composed of a mixture of docile and aggressive spiders, suggesting that these 

species may also exhibit some degree of DOL during foraging (Pruitt et al., 2012b). Recent 

work suggests that behavioral compositions could be locally adapted in on species of 

Anelosimus, and that this species may have evolved mechanisms of maintaining these optimal 

compositions if perturbed (Pruitt and Goodnight, 2014; Pruitt et al., 2017a). Little, however, 

is known about the proximate cues that individuals and/or groups use to execute these shifts 

or whether similar biology occurs in other social Anelosimus.  

African desert social spiders from the genus Stegodyphus build a three-dimensional 

communal nest, and construct numerous two-dimensional capture webs that radiate away from 

it. Several Stegodyphus species exhibit between-individual variation in boldness which has 

been linked to colonies’ DOL and collective behavioral type. For instance, participation in 

prey capture is positively related to individuals’ boldness and negatively associated with body 

condition in S. dumicola (Keiser et al., 2014b; Wright et al., 2015; Wright et al., 2017b). S. 

dumicola has also exhibits DOL in defensive behavior, where bolder individuals are more 

likely to engage in defensive silk-spinning when attacked by predatory ants (Wright et al., 

2016a). There is evidence that DOL increases over time as individuals become familiarized 

with nest mates, and conversely, sudden changes in group membership decreases group sucess 

in collective tasks and social niche construction (Laskowski et al., 2016b). In S. sarisanorum, 

boldness and condition were similarly related to participation in prey capture (Beleyur et al., 

2015; Grinsted et al., 2013; Settepani et al., 2013). In S. mimosarum, DOL in prey capture has 

been linked to body size (Wickler and Seibt, 1993). Thus, across all three independently 
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evolved social species of Stegodyphus, similar patterns of personality-based DOL emerge and 

appear to play a role in colony success. 

Division of labor, whether personality-based or not, has been observed in some 

subsocial spiders and other social arachnids. In the subsocial spider, Amaurobius ferox, there 

is some evidence for foraging DOL, since it has been observed that only a small, but 

consistent, subset of individuals initially attack prey, whilst most colony members never 

participate in subduing prey (Kim et al., 2005). In another subsocial species, Australomisidia 

ergandros, it was found that feeding type compositions shifted in favor of scroungers over 

producers as group sizes increased (Dumke et al., 2016). Yet, in another arachnid, the 

cooperative pseudoscorpion Paratemnoides nidificator, which also exhibits DOL, the tasks 

that individuals perform in these groups is related to age and sex, but personality has not been 

considered (Tizo-Pedroso and Del-Claro, 2011).  

 

Foraging and boldness. In arachnids, foraging behavior is by far the most well-studied 

aspect of collective personality. This is, in part, because the ability to subdue large prey has 

long been thought to underlie the evolution of sociality in these systems (Avilés and Guevara, 

2017; Lubin and Bilde, 2007; Nentwig, 1985; Powers and Aviles, 2007; Pruitt and Avilés, 

2017; Yip et al., 2008). Unlike in the above section on social insects, exploration will not be 

considered here because social arachnids often do not explore the environment beyond their 

nests and webs. Boldness, however, does appear to be linked to foraging efficiency in several 

social species. In S. dumicola and S. sarisonorum colonies, individuals vary in their boldness. 

In S. dumicola, between-colony variation in the proportion of bold individuals present is 

positively related to both the speed and magnitude of collective foraging response to simulated 
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prey in both the lab and field (Grinsted and Bacon, 2014; Grinsted et al., 2013; Keiser et al., 

2014b; Keiser and Pruitt, 2014; Lichtenstein et al., 2016b; Wright et al., 2015). Boldness in 

this species is also directly related to the propensity to transmit cuticular bacteria to other nest 

mates (Keiser et al., 2016b), and the proportion of bold individuals within a colony can 

influence the ease at which bacteria spread throughout a colony (Keiser et al., 2017), which 

could determine a colony’s vulnerability to disease outbreaks. Participation is web repair is 

also positively associated with individuals’ boldness in S. dumicola (Keiser et al., 2016c). 

Boldness further determines the degree to which an individual spider will exhibit a “keystone” 

behavioral phenotype. In behavioral ecology, keystone individuals are defined broadly as 

individuals that have a disproportionately large influence of group dynamics relative to their 

abundance in groups (Modlmeier et al., 2014d). In S. dumicola, bold individuals act as 

keystones because they catalyze greater task participation in shy colony members, which leads 

to a 400% increase in the number of attackers, and a -80% decrease in latency to attack prey 

(Pruitt et al., 2013; Pruitt and Keiser, 2014a). However, not all populations are susceptible to 

keystone influence. Putative keystones do not have any behavioral catalyzing effects on S. 

dumicola colonies from wet habitats, while colonies from arid habitats are highly susceptible 

to their influence (Pruitt et al., 2017b).  

In social Anelosimus, collective foraging aggressiveness can be determined by the 

presence of aggressive or bold individuals. In A. studiosus, aggressive spiders are more likely 

to engage in prey capture, attacked prey more quickly, and secured prey more efficiently, than 

their docile nest mates (Holbrook et al., 2014; Pruitt et al., 2012a; Pruitt et al., 2008; Wright 

et al., 2014b), which makes colonies behave more aggressively in aggregate. Aggressive 
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foraging behavior is linked with individual boldness in several other Anelosimus spiders, such 

as A. domingo and A. eximius (Pruitt et al., 2011).  

 

Defensive behavior and aggressiveness. The ratios of behavioral types also determine 

the collective defensive behavior in several species of social spider. The webs of A. studiosus, 

can be expansive (several meters across), containing a rich community of heterospecific 

inquilines, ranging from kleptoparasites to colony-level predators (Agnarsson, 2006; Perkins 

et al., 2007). Inquiline communities also increase in both abundance and richness with A. 

studiosus colony size (Pruitt and Riechert, 2011b), and are negatively associated with colony 

survival (Pruitt and Riechert, 2011b). Aggressive A. studiosus colonies, while prone to 

infighting (Pruitt and Riechert, 2009), are also better defended against inquiline invaders 

(Pruitt and Riechert, 2011b). Aggressive colonies are more likely to respond to invaders  

(Pruitt and Riechert, 2011b) and repel them (Pruitt and Ferrari, 2011; Wright et al., 2014b).  

In S. dumicola, colonies are frequently raided by predatory ants from the genus 

Anoplolepis (Henschel, 1998). S. dumicola colonies commonly experience high annual 

extinction rates of over 90% per year. In some years, nearly 80% of these colony extinctions 

are the result of ant attacks (Henschel, 1998). These attacks can wipe out an entire S. dumicola 

colonies in minutes (Wright et al., 2016a). During an attack by ants, S. dumicola spins walls 

of defensive silk to help impede ants from entering the spiders’ nest, which leads to colony 

demise (Wright et al., 2016a). Participation in defensive silk-spinning behavior is positively 

associated with individual boldness, yet colonies containing a mixture of bold and shy spiders 

exhibit over two-times as much defensive silk-spinning behavior as monotypic colonies 

(Wright et al., 2016a). Here again, none additive effects of group composition on collective 
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personality appear to be the norm rather than the exception. Finally, many of the links between 

individual and collective personality sense in Stegodyphus disappear when colonies are 

consistently subjected to predation risk, suggesting that some environmental conditions can 

remove the signature of collective personality by forcing all colonies into a singular behavioral 

tendency (Wright et al., 2017b).  

 

Decision making, cognition, and learning. Many have viewed arachnid behavior as 

being primarily governed by instinct (Jackson and Cross, 2011; Jakob et al., 2011). However, 

numerous investigations on solitary spiders suggest this is not always the case (Herberstein et 

al., 2013; Peckmezian and Taylor, 2015; Wilcox and Jackson, 1998). To what degree social 

living promotes greater or reduced cognitive ability, often referred to as the social brain and 

distributed intelligence hypotheses, in social spiders and other arachnids is unknown. Studies 

on S. dumicola have shown that both individuals and whole colonies of spiders are capable of 

associative learning tasks using seismic cues (Holbrook et al., 2014; Pruitt et al., 2016). 

Evidence further suggests that information can be spread from trained to untrained spiders at 

different rates depending on the behavioral type of trained individuals (Pruitt et al., 2016). 

This is the only study investigating links between learning, personality, and collective 

behavior in arachnids to date. Thus, many avenues remain open to further exploration.  

 

Nest construction. No current studies exist addressing collective personalities and the 

types/shapes/sizes of webs they construct, though this is an area worthy of investigation. We 

know from a study in A. studiosus that webs constructed by aggressive individuals retain prey 

64% longer than webs constructed by docile spiders (Wright et al., 2014b). However, finer 
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details of web structure between the two behavioral types was not investigated. In S. dumicola, 

the shape of the substrate architecture available to construct capture webs influences both the 

mean and repeatability of collective foraging behavior across colonies (Modlmeier et al., 

2014b), conveying that architectural differences in the landscape surrounding colonies is 

likely to constrain the kinds of collective behavior they exhibit. Future studies that more finely 

quantify aspects of web architecture in association with colonies’ collective behavioral type 

or the distribution of behavioral types of their workers are still needed.   

  

Similarities and differences 

 

 Social insects and arachnids differ in many ways that may influence how groups 

behave collectively, and which collective personality traits may be favored by natural 

selection. Some of these differences include the ways insects and arachnids found colonies, 

colony mobility, foraging strategies, degree of interactions with local competitors, group 

mortality rates, intra-colony relatedness, as well as sensory modalities. We will now briefly 

discuss how differences in life history traits between social insects and arachnids may guide 

differences in the group-level traits we have discussed in the previous sections. 

 

Division of labor. One commonly observed phenomenon in social insects and 

arachnids is that within-colony DOL tends to increase with group size (Gautrais et al., 2002; 

Holbrook et al., 2011; Robinson, 1992). This is because, as colonies grow, they become more 

complex and it pays to be more fastidious in work organization. While colony sizes in 

arachnids varies from two to several thousand individuals, colony sizes approach 100,000 in 
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honeybees and more than 1,000,000 in some wasps, ants, and termites (Bourke, 1999). 

Furthermore, social insects need to perform numerous complex tasks that are wholly absent 

in arachnid societies, including active foraging for resources such as food, water, and nesting 

materials. This requires insect societies to be comparatively active, and DOL may help to 

avoid resource bottlenecks. In contrast, arachnid societies passively wait for prey to become 

ensnared, and spiders produce their own nesting materials endogenously. Both societies 

engage in brood care and the feeding of young. Finally, the lack of morphological castes in 

arachnid societies further conveys they may be limited in the levels of task specialization they 

can achieve. Despite these observations, the small number of studies on DOL in social 

arachnids have revealed surprisingly high levels of DOL, especially for the small experimental 

group sizes investigated (Holbrook et al., 2014; Wright et al., 2014b). Thus, relative to their 

size, arachnid societies appear to have higher levels of task specialization and associated task 

efficiencies than their social insect counterparts. One might argue that their collective 

personalities are therefore comparatively more orderly — the one exception being the obligate 

sterility and reproductive division of labor that characterize the eusocial insects. More studies 

on DOL and the mechanisms governing task specialization in both groups are needed to reveal 

any true consistent differences in how they organize work, and whether differences in DOL 

are functionally significant in situ.  

 Foraging, exploration, and boldness. Insect and arachnid societies differ in the ways 

they explore and acquire resources and interact with their environment. For example, insect 

societies are often initiated by one or sometimes a few individuals. These queens, or 

foundresses, search their environment for suitable nesting sites according to various criteria. 

Once a nesting site is chosen, these individuals must then explore their environment for 
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building materials, and must continually forage for food and water to produce eggs and feed 

young. When workers emerge, they then take over these foraging and defensive tasks. 

Foraging in social insects is quite often individualistic, where single foragers explore their 

surroundings for resources. Once a resource is discovered, they can recruit others to help if 

needed. In social spiders, gravid females occasionally disperse long distances via “ballooning” 

(Schneider et al., 2001). This process involves producing a silken parachute of sorts, and 

having the wind take them where it may. This method of dispersal is completely passive, and 

involved no exploration. Likewise, social spiders do not forage similarly to social insect 

colonies. Rather than individually exploring their environment for resources, social spiders sit 

and wait for prey to become ensnared, and quickly attack as a group when this occurs. Thus, 

prey capture in social spiders is orchestrated and quickly executed, baring closer resemblance 

to prey capture in a pride of lions than to any social insect. For these reasons, studies on 

collective exploratory tendencies and activity level assays are almost wholly absent in social 

spiders, and research instead focuses on more salient traits such as boldness and foraging 

aggressiveness toward prey. Other social arachnids, however, such as the social huntsman 

Delena cancerides, which actively hunt their prey, might be more amenable to studies 

focusing on collective foraging and exploration. This species hunts prey solitarily, like some 

species of wasps and ants, but then shares some portion of this prey with fellow colony mates 

(Yip and Rayor, 2011, 2013).  

Collective exploration and boldness, however, may be more relevant in social spiders 

during the process of founding colonies via “bridging.” Bridging occurs when individuals 

send out strands of silk that anchor to a nearby bush (Schneider et al., 2001). Spiders then 

chain along these silken bridges and found a new colony together. It would be interesting to 
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observe whether individual or colony-level boldness positively correlates with bridging 

behavior versus ballooning, and how this changes colony life history patterns in association 

with their collective behavioral tendencies. Once a new bush has been colonized, it is 

conceivable that pioneering individuals explore the new habitat for the best suitable site. 

Habitat selection in many social arachnids is unknown, save for species that occupy limited 

real estate in rock cavities and under the bark of trees such as D. cancerides (Rowell and 

Aviles, 1995). 

Currently, given the vast differences in life history between social insects and 

arachnids, it is no surprise that social insects currently outpace social arachnids in studies 

pertaining to collective foraging, exploration, and boldness. However, social spiders currently 

appear to be outpacing social insects in studies using an animal personality framework, likely 

owing to the ease at which spider societies can be manipulated in the lab, and career biases. 

Social spider colonies also remain where they are deployed, due to their limited dispersal 

capabilities, and this enhances their tractability for experimental studies in situ. However, we 

note that there are several insects, including familiar models (paper wasps, honeybees) and 

lesser-known models (aphids, tent caterpillars) in which experimental colonies can be 

generated and deployed. Thus, careful selection of one’s focal system and questions is likely 

key. 

 

Defensive behavior and aggressiveness. The ecological and life history differences 

between social insects and arachnids, particularly regarding their nesting structures and 

individual morphology, influences how these societies respond to predators, competitors, and 

general disturbances to their colonies. Many social insects, such as ants, bees, and wasps can 
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respond to a larger range of threats, from small arthropods to much larger vertebrates, than 

arachnids. This is perhaps owing to insects’ ability to leave their nests, en masse, with several 

thousand venomous, stinging, biting, and often flying, individuals. Most vertebrates, in 

contrast, have little to fear from social arachnids, as these societies are often smaller, and 

individuals are incapable of flying and stinging, and their bites are often ineffective. Only a 

handful of studies have investigated defensive behavior in social arachnids (Keiser et al., 

2015a; Pruitt, 2013; Wright et al., 2016a; Yip, 2014), while colony defensive behavior has 

been documented across a broad swath of social insect taxa (Breed et al., 2004; Eisner et al., 

1976; Judd, 1998). We therefore might predict strong positive selection on collective 

defensive behavior in social insects as compared to arachnids.  

Another difference between social insects and arachnids is how they display 

aggressiveness. In arachnid societies, aggressiveness is often a reactive behavior in response 

to disturbance in their capture webs. Beyond this surface, social spiders are typically 

unresponsive. In insect societies, however, aggressiveness is often used both reactively against 

intruders and proactively against competitors and prey. We therefore might expect broader 

syndromes of correlated behavioral traits in association with aggressiveness and overall 

activity levels in social insects as compared to arachnids, and that the situational costs and 

benefits of collective aggressiveness should be more pronounced.  

One notable similarity between social spiders and ants appears to be tradeoffs 

associated with aggressiveness. In ants, more aggressive societies tend to have increased 

foraging activity. While this appears to enhance resource acquisition, this also results in higher 

worker mortality due to overactive foraging in unfavorable environmental conditions. 

Colonies that take a more nuanced approach to foraging, and mitigate foraging in adverse 
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conditions tend to be more successful. Similarly, in A. studiosus spider colonies, laboratory 

studies showed that colonies composed of more aggressive spiders performed better across 

the board. It had even been postulated that docile spiders were do-nothing social parasites. 

However, field studies demonstrated that aggressiveness came with great costs—colonies 

composed of more aggressive spiders cannibalized their own young, and did not provision 

young proficiently. In situ, mixed colonies enjoyed greater overall fitness. In the African 

social spider S. dumicola, a similar phenomenon occurs. In the laboratory and field, numerous 

studies demonstrated that more aggressive colonies (which are composed of bolder 

individuals) attacked prey faster, and attacked with more individuals than docile colonies 

(Keiser and Pruitt, 2014; Wright et al., 2015). However, colonies of mixed composition 

exhibit twice as much defensive behavior when being raided by predatory ants (Wright et al., 

2016a), which may help explain why mixed colonies are the norm in the wild. We believe this 

tradeoff may be common across many social taxa, invertebrate or otherwise.  

 

Decision making, cognition, and learning. There are many reasons to suppose that 

selection on traits like collective cognition, learning, and collective decision-making should 

differ between social insects and arachnids. Social insects interact with their broader 

environments much more intimately than most arachnid societies in almost all aspects. Thus, 

we might expect a higher capacity for collective learning and information transfer in social 

insects relative to arachnids, especially in a spatial and visual learning and memory. We see 

evidence for this in bumblebees, where there is a link between colony and individual learning 

speed and visual memory (Raine and Chittka, 2012). This individual variation in learning 

scales up to the collective behavioral tendencies of colonies, where learning speed is directly 
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related to the amount of nectar a colony acquires (Raine and Chittka, 2007). Honeybees also 

have high demands for visual learning and memory (Zhang et al., 1999). When a new resource 

patch is discovered, individual workers must gather information about the quality, distance, 

and direction of floral resources and communicate this information back to naïve workers in 

a dance (Detrain and Deneubourg, 2008). This also occurs when honeybee colonies need to 

relocate to a new nesting site (List et al., 2009; Seeley, 1985; Seeley and Visscher, 2004). 

And, many ant species also rely on spatial learning and memory in house-hunting and 

collective foraging (Detrain and Deneubourg, 2008; Mallon et al., 2001; Pratt et al., 2002; 

Sumpter and Pratt, 2009).  

Arachnid societies, on the other hand, might perform as well or better than insects on 

associative learning and memory tasks, especially via seismic cues, given that predator/prey 

vibratory discrimination tasks characterize most of their actions. As mentioned above, this 

type of collective learning and information transfer had been demonstrated in S. dumicola 

spiders (Pruitt et al., 2016). Social arachnids have poor eyesight, thus visual learning tasks are 

not relevant for this system. Studies on collective cognition in arachnids are also needed to 

determine how/whether group cognitive ability scales with group size as seen in some social 

insects. While there are an ever growing number of studies linking individual personality with 

learning styles, the intersection of collective personality and group cognition is a wide-open 

field with many discoveries waiting to be made.  

 

 Future directions. While the literature on collective personality has been steadily 

growing, this field is still in its infancy. For instance, although many studies have linked 

collective personality with colony performance, very few of these studies have been 



 

 112 

conducted in situ. Field studies are likely to be particularly illuminating because they may 

reveal situational costs and benefits to colonies’ collective behavioral tendencies that would 

be difficult to forecast or characterize in lab studies. In essence, we argue that by approaching 

collective personality traits with the same framework that evolutionary behavioral ecologists 

approach individual traits, we are likely to enhance our understanding of how and why 

collective behavioral traits evolve, how they interact with colonies’ life history and niche, and 

the degree to which such traits can respond to selection. 

 We believe there are many interesting and currently untouched areas in collective 

behavior awaiting thorough investigation. For instance, in groups that experience fission-

fusion dynamics, how might collective personalities change as groups fractionate or merge? 

Does group personality influence collective cognition and inform group decision-making? 

Can parasites modify or exploit the collective behavior of a group to their own advantage 

similar to the way some entomopathogenic fungi manipulate the behavior of individuals 

(Andersen et al., 2012; Lefevre et al., 2009)? We therefore conclude with a brainstorming 

table of themes and hypotheses that relate collective personality to a large variety of other 

fields in evolutionary behavioral ecology (Table 2) that move beyond merely echoing the 

classic and foundational inferences in Table 1. However, the types of studies found in Table 

1 will obviously often serve as the preconditions necessary for testing the questions and 

hypotheses in Table 2. These hypotheses are meant to inspire interested parties, and especially 

new graduate students, to think diversely about how the collective behavioral tendencies of 

whole groups stand to influence group functioning and success, as well as how groups interact 

in a broader ecological context in populations and communities. These are just a few areas in 

which we believe large discoveries could be made should they be given adequate attention.  
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Conclusions 

 

The aim of this review has been to broadly survey our current knowledge surrounding 

collective animal personalities, and the progress that has been made since the 2013 review on 

collective personalities by Jandt and colleagues (Jandt, 2013). In ants, we have seen some 

progress in moving out of the laboratory and into the field, which has produced valuable 

information about tradeoffs between foraging activity and colony success in variable 

environments (Gordon, 2013b; Gordon et al., 2013; Gordon et al., 2011). Honeybees, too, 

have enjoyed success in testing colony personality in the field, and relating it to colony fitness 

(Wray et al., 2011), though more studies on the benefits of colony personality in various 

environments could potentially illuminate mechanisms driving inter-colony differences in 

behavior. Bumblebees, alternatively, have served as prominent model systems for colony 

learning and speed-accuracy tradeoffs (Evans and Raine, 2014; Ings et al., 2009; Raine and 

Chittka, 2008, 2012), though field studies relating personality directly to fitness are rare 

(Raine and Chittka, 2005; Raine and Chittka, 2008). Personality work in social wasps and 

termites is currently in its infancy (but see (Mizumoto et al., 2015; Mizumoto and Matsuura, 

2013; Wright et al., 2017a; Wright et al., 2016b)), and we greatly urge researchers to turn their 

gaze to these diverse, yet understudied, groups. Social arachnids, on the other hand, though a 

much less diverse group when compared to social insects, compose more than their market 

share of laboratory and field studies on collective behavior. However, work on collective 

learning and cognition is well behind that of social insects, and we believe there are many 

impactful discoveries to be made in arachnid cognition and learning.  
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Collective personality, as a framework, has the potential to broadly inform our 

understanding of social evolution and the evolution of collective phenotypes and their pros 

and cons in contrasting environments and situations. If we have succeeded, this review will 

have served as both a roadmap and compass for pushing the field of collective personalities 

forward. 

 

Table headers: 

 

Table 1: This table summarizes some of the classic foundational hypotheses relating 

to collective behavior, and details the specific traits, time scales, and taxa that have been 

investigated over the last 8 years. These hypotheses often serve as a foundational starting point 

when new systems are being studied. For systems that have this groundwork established, we 

recommend researchers focus on testing the hypotheses in Table 2. For new or understudied 

systems (e.g. wasps and termites), we suggest researchers begin their point of inquiry relating 

to one or all the hypotheses outlined below.  

 

Table 2: General questions and specific hypotheses relating to collective personality 

that remain open to investigation. In systems where foundational questions pertaining to 

collective personality (Table 1) have been achieved, we suggest researchers pursue the 

frontier questions outlined below. 
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Table 1: 

Hypothesis Collective Personality Trait Temporal Scale Taxa Source 

H1: Groups exhibit stable 
differences in collective 
behavior 

Collective Aggressiveness Days Ants Lichtenstein et al. (2015), 
Marting et al. (2017), 
Weirnasz et al. (2014) 

 

   
Spiders Pruitt et al. (2013), Pruitt 

& Keiser (2014) 
   

Weeks Ants Bengston & Dornhaus 
(2014), Blight et al. 
(2017), Scharf et al. (2012) 

 

   
Bees & Wasps Wray et al. (2011) 

   
Months Ants Blight et al. (2015,2016), 

Buczkoski & Silverman 
(2006), Crosland (1990) 

    
Bees & Wasps Pearce et al. (2001) 

   
One year Ants Suarez at al. (2002) 

  
Exploratory and foraging 
behavior 

Days Ants Marting et al. (2017), 
Gordon et al. (2011), 
Lichtenstein et al. (2015) 

    
Bees & Wasps Raine & Chittka (2008) 

    
Fish Jolles et al. (2018) 

   
Weeks Ants Bengston & Dornhaus 

(2014), Blight et al. 
(2017), Bockoven et al. 
(2015), Scharf et al. (2012) 

    
Bees & Wasps Wray et al. (2011) 

   
Months Ants Blight et al. (2015, 2016) 

   
Years Ants Cole et al. (2010), Gordon 

et al. (2013) 
  

Nest repair/relocation Days Ants Cronin et al. (2015) 
    

Cockroaches Planas-Sitja et al. (2015) 
   

Weeks Ants Scharf et al. (2012) 
    

Bees & Wasps Wray et al. (2011) 
     

Hypothesis Collective Personality Trait Member Trait Taxa Source 

H2: The personality 
scores of group members 
determine the collective 
personality of the group 

Aggressiveness Aggressiveness Ants Modlmeier et al. (2014) 

   
Bees & Wasps Rittschof et al. (2017) 

   
Boldness Bees & Wasps Wright et al. (2017) 
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Spiders Pruitt et al. (2013), Pruitt 

& Keiser (2014), Pruitt & 
Pinter-Wollman (2015), 
Wright et al. (2015) 

  
Exploratory and foraging 
behavior 

Activity level 
and sociability 

Fish Brown & Irving (2013), 
Jolles et al. (2017) 

    
Lepidopterans Dussutour et al. (2008) 

   
Boldness Fish McDonald et al. (2016) 

   
Exploratory 
behavior 

Birds Aplin et al. (2014) 
    

Slime molds Vogel et al. (2015) 
  

Nest repair/relocation Activity level Termites Mizumoto et al. (2015) 
   

Aggressiveness Ants Modlmeier et al. (2014) 
   

Exploratory 
behavior 

Ants Hui & Pinter-Wollman 
(2014)      

Hypothesis Collective Personality Trait Performance 
Metric 

Taxa Source 

H3: Collective personality 
predicts colony 
performance 

Aggressiveness Contests over 
resources 

Ants Bengston & Dornhaus 
(2015), Blight et al. 
(2015), Lichtenstein et al. 
(2015) 

   
Colony mass Bees & Wasps Wray et al. (2011) 

    
Spiders Pruitt et al. (2017), Pruitt 

& Keiser (2014) 
   

Damage to nest Ants Weirnasz et al. (2014) 
   

Host plant health Ants Marting et al. (2017) 
   

Repelling 
parasites 

Ants Jongepier et al. (2014), 
Pamminger et al. (2011, 
2012) 

   
Survival and 
reproduction 

Spiders Pruitt et al. (2017) 
 
  

Exploratory and foraging 
behavior 

Contests over 
resources 

Ants Bengston & Dornhaus 
(2015), Blight et al. 
(2015), Lichtenstein et al. 
(2015) 

   
Colony mass Bees & Wasps Wray et al. (2011) 

     

Hypothesis Collective Personality Trait Life History 
Trait 

Taxa Source 

H4: Collective personality 
shapes colony life history 

Aggressiveness Productivity Ants Bengston et al. 2016, 
Blight et al. (2016), 
Bockoven et al. (2015), 
Scarf et al. (2012) 

   
Reproductive 
investment 

Ants Bengston et al. (2016) 
 

 
Exploratory and foraging 
behavior 

Productivity Ants Bengston et al. (2016), 
Blight et al. (2016) 

   
Reproductive 
investment 

Ants Bengston et al. (2016) 
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Nest repair/relocation Productivity Ants Scharf et al. (2012) 
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Table 2: 

    
   

General question Specific Hypotheses 
   

Q1: In colonies that experience fission-fusion dynamics, how do the personalities of groups change as 
they divide or merge? 

   

 
Hypothesis 1a: In social species whose colonies fragment, daughter colonies will 
initially resemble their mother colony in collective personality. 

   

 
Hypothesis 1b:  Daughter colonies will develop distinct collective personalities, 
which predict division of labor within the super-colony. 

   

  Hypothesis 1c: Variation in collective personality between the nests of a single 
polydomous colony can change to benefit the super-colony, akin to division of 
labor across multiple nests. 
 

   

Q2: Do colonies' collective behaviors determine non-linear relationships between colony mass and 
metabolism? 

   

 
Hypothesis 2a: The presence of seemingly inactive "lazy individuals" will reduce 
colony metabolic rate and collective activity level. 

   

 
Hypothesis 2b: The metabolic rate of active colonies will scale like single 
organisms, whereas the metabolic rates of inactive colonies will plateau at a 
shallower threshold. 
 

   

  Hypothesis 2c: The presence of inactive individuals will be locally adapted 
(perhaps in patchy resource areas), driving geographic variation in metabolic 
scaling patterns driven by collective personality. 

 

   

Q3: Colony Personality and Collective Cognition/Learning 
   

 
Hypothesis 3a: Groups will differ in their collective cognitive capacity based on 
the cognitive capacities of individual constituents. 

   

 
Hypothesis 3b: Groups will differ in collective learning based on the distribution 
of learning types within the group (e.g., proportion or presence of associative vs. 
spatial learners). 
 

   

 
Hypothesis 3c: Groups will perform better at certain tasks based on the learning 
types they contain. For instance, spatial learners might be better foragers, whereas 
associative learners might defend their colonies more closely. 

   

 
Hypothesis 3d: Mixed colonies will benefit from having a diversity of learning 
types, based on environmental/population differences such as food abundance or 
threat level.  
 

   

  Hypothesis 3e: The presence of one or a few individuals of high cognitive ability 
will be sufficient to drive fast collective learning rates and low error rates for the 
group. 
 

   

Q4: Do groups exhibit consistent differences in their decision-making strategies? 
   

 
Hypothesis 4a: Different colonies will consistently tend to favor speed over 
accuracy and vice versa during migrations to new nests. 
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Hypothesis 4b: Different colonies will consistently tend to favor cohesion over 
speed and vice versa during migrations to new nests. 

   

  Hypothesis 4c: Low nest competition will favor high accuracy, which will require 
more time, and high competition favors high speed. 

 

   

Q5: Can autocorrelation of group-level personality be used as an indicator of incipient group collapse? 
   

 
Hypothesis 5a: Groups will exhibit stable colony personalities across their 
lifespans with some stochastic variation and predictable seasonal variation. 

   

 
Hypothesis 5b: The emergence of reduced temporal autocorrelation or increased 
within-colony variance in personality will signal the collapse or disbanding of a 
group. 
 

   

 
Hypothesis 5c: The emergence of reduced temporal autocorrelation or increased 
within-colony variance in personality will precede other indicators of colony 
collapse such as increase internal violence, decreased nest maintenance, and 
decreased reproductive rate. 
 

   

  Hypothesis 5d: Across the lifespans of colonies, predictable patterns in collective 
personality will emerge. 

   

Q6: Do collective personalities of colonies determine their interior carrying capacity and population 
biology? 

   

 
Hypothesis 6a: Colonies will have internal carrying capacities and intrinsic growth 
rates specific to colonies that depend on their collective personalities. 

   

 
Hypothesis 6b: The collective personality of colonies will determine their intra-
colony intrinsic growth rate and carrying capacity. 

   

 
Hypothesis 6c: Colonies with low intra-colony carrying capacities and intrinsic 
growth rates will grow and reproduce less readily. 

   

  Hypothesis 6d: Populations composed of colonies with low carrying capacities and 
intrinsic growth rates will be more stable, will reach higher densities of colonies, 
and be less likely to overshoot their population carrying capacity. 

   

Q7: Can parasites shape colony personality to increase parasite reproduction and dispersal? 
   

 
Hypothesis 7a: Social parasites will manipulate the collective behavior of groups 
to further their own propagation (increase affinity to foreign conspecifics, decrease 
colony aggressiveness so more parasites can infect colony, increase exploration so 
parasites can propagate easier, etc.). 

 

   

  Hypothesis 7b: Infected colonies will differ behaviorally from uninfected colonies, 
and this difference in collective behavior increases the infection risk of neighboring 
colonies and increases host colony competence. 

 

   

Q8: Do colonies' collective personalities influence associated inquiline communities? 
   

 
Hypothesis 8a: Non-aggressive colonies will foster more inquilines and associated 
animal life, thereby destabilizing the colonies. 

   

 
Hypothesis 8b: Aggressive colonies will repel inquilines, and consequently will 
not benefit from potential mutualistic interactions with inquilines. 

   

 
Hypothesis 8c: Colonies with moderate aggressiveness and greater intracolonial 
behavioral diversity will foster an intermediate load of inquilines that involve more 
mutualistic interactions. 

   



 

 120 

 

  Hypothesis 8d: Colonies of intermediate aggressiveness and mutualistic 
interactions with inquilines will be more temporally stable than extremely 
aggressive and docile colonies. 
 

   

Q9: To what degree does the evolution of colony personality mimic the evolution of individual level 
traits? 

   

 
Hypothesis 9a: The heritability of colony personality is greater in colonies that 
operate more as a single selective unit (e.g., highly eusocial societies, inbred 
groups) or in instance where societies are established by a single or group of related 
foundresses.  
 

   

 
Hypothesis 9b: Among-group variation in collective personality and the 
effectiveness of selection on it positively co-varies with the level of genetic 
divergence across groups 
 

   

 
Hypothesis 9c: Negative frequency-dependent selection and cross-contextual 
trade-offs associated with colony personality acts to maintain heritable variation in 
colony traits within populations. 

 

   

 
Hypothesis 9d: Colonies surrounded by neighbors of unlike collective personality 
will compete less for resources, and increase the collective performance of that 
neighborhood of colonies. 

   

  Hypothesis 9e: Through time, neighboring colonies will exhibit stronger 
differences in their collective personalities to adopt distinct niches and reduce 
competition across societies. 

 

   

Q10: Colony Personality & Queen Number and Behavior: Are polygynous colonies (multiple queens) 
aggressive than monogynous colonies (single queen) towards intruders? 

 

  

 
Hypothesis 10a: Workers from polygynous colonies will be less aggressive to 
foreign queens and other intruders. 

   

 
Hypothesis 10b: Polygynous colonies will be more willing to accept and rear 
foreign queens than monogynous colonies, due to reduced overall collective 
aggressiveness. 
 

   

  Hypothesis 10c: Polygynous colonies will be more susceptible to parasitism by 
inquilines. 

 

   

Q11: How does collective personality determine tolerance/affinity of neighbors? 
   

 
Hypothesis 11a: Presence of highly aggressive colonies members will increase 
collective aggressiveness of colonies, and yet aggressive individuals will be more 
likely to perish in fights between colonies. 

 

   

 
Hypothesis 11b: On a short time scale, aggressive interactions between colonies 
will decrease collective aggressiveness by depleting aggressive individuals. 

   

 
Hypothesis 11c: Colonies that quickly create aggressive individuals and recover 
their collective aggressiveness will outcompete colonies still depleted of aggressive 
individuals. 
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Hypothesis 11d: Cycles of colonies depleting and replenishing aggressive 
individuals will lead to arms race to create more and more aggressive colonies. 

   

  Hypothesis 11e: Colonies with very low aggressiveness may outperform 
aggressive colonies when aggressive colonies are at high representation, because 
they avoid the cost of inter-group conflict, akin to a colony level hawk-dove game. 
 

   

Q12: How does collective personality relate to the social responsiveness or social susceptibility of its 
members? 

   

 
Hypothesis 12a: The social responsiveness of a colony will depend on the 
behavioral distribution of its individuals. Certain behavioral types (e.g. docile or 
shy types) will be more responsive to fellow group members than others. 

   

 
Hypothesis 12b: The behavioral types that are socially responsive to the behavior 
of fellow colony members (e.g., shy individuals) may not be the most socially 
responsive to individuals from other colonies (e.g., aggressive individuals).  

 

   

  Hypothesis 12c: Colonies' social responsiveness will have a concave-down 
relationship with state (starvation level, condition, infection status): small 
reductions in colony condition will increase social responsiveness before reaching 
such threshold where responsiveness to fellow colony members and enemies alike 
will drop off dramatically. 
 

   

Q13: How does collect personality influence horizontal transmission of group members across colonies? 
   

 
Hypothesis 14a: Less collectively aggressive colonies will be more likely to 
exchange individuals, whereas aggressive colonies will be more likely to retain 
members and repel interlopers. 

 

   

 
Hypothesis 14b: The transmission of individuals between colonies will erode 
between-colony behavioral variation. 

   

  Hypothesis 14c: Polydomous (multi-nest) colonies will exchange more individuals 
than monodomous colonies, thereby homogenizing inter-subcolony behavioral 
variation. 
 

   

Q14: Can colony mortality and collective behaviors form positive feedback loops? 
   

 
Hypothesis 15a: Colonies that exhibit a reduced tendency to forage, defend 
themselves, or engage in hygienic behaviors will suffer increased mortality of 
colony members. 
 

   

 
Hypothesis 15b: The mortality of colony members will reduce collective foraging, 
defense, and hygienic behaviors at the colony level, and may bias the representation 
of personality types in the remaining members. 

 

   

 
Hypothesis 15c: Mortality of group members and reduced collective foraging, 
defense, and hygienic behavior will form positive feedback cycles that leads to 
colony collapse. 
 

   

  Hypothesis 15d: The beginning of this feedback cycle will generate reduced 
temporal autocorrelation and increases in within-colony variance in collective 
personality, foretelling of imminent collapse. 

 

   

Q15: Does social heterosis (i.e., within-colony behavioral diversity) generate variation in the flexibility 
of collective behavior? 
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Hypothesis 16a: Diversity in member colony personality will beget greater 
behavioral flexibility in collective behavioral tendencies. 

   

 
Hypothesis 16b: Colonies with more flexible collective personalities will prove 
more successful at exploiting a range of resources and conditions, whereas more 
consistent colonies will before better than flexible colonies only under a narrow 
range of environmental conditions. 

 

   

  Hypothesis 17d: Stable environments will select for behavioral consistency in 
collective personality, whereas dynamic environments will favor greater plasticity 
in collective personality. 

 

   

Q16: How does collective personality shape patterns of niche construction by large colonies? 
   

 
Hypothesis 17a: The collective personality of large social arthropod colonies will 
change how they alter local ecosystem or community properties (e.g. deposits of 
nutrients, excessive nest structures, or inquiline communities). 

   

 
Hypothesis 17b: Such alterations to local environments will favor the performance 
of certain collective behavioral phenotypes, often of the phenotypes of the colonies 
that made them. 
 

   

 
Hypothesis 17c: When a collective behavioral phenotype alters the local 
environment, and the local environment in turn favors that collective behavioral 
phenotype, can generate a feedback loop. 

 

   

  Hypothesis 17d: Behavior vs. local environment feedback loops could generate 
behavioral correlations. For instance, intense collective foraging may create large 
midden heaps, which might attract parasites or predators, and this might favor 
collective aggressiveness. This result would be a correlation between collective 
foraging and collective aggressiveness. 
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