Lawrence Berkeley National Laboratory

Recent Work

Title

Methods for the prediction, monitoring and verification of co2 movement: results from the iea weyburn co2 storage and monitoring project

Permalink

https://escholarship.org/uc/item/4pk4j6rr

Authors

White, Don Hirsche, Keith Tom, Davis et al.

Publication Date

2004-02-06

Methods for the Prediction, Monitoring and Verification of CO2 Movement: Results from the IEA Weyburn CO2 Storage and Monitoring Project

Don White¹, Keith Hirsche², Tom Davis³, Ernie Majer⁴, Ian Hutcheon⁵, Geoff Burrowes⁶, Ryan Adair⁶, Sean Maxwell⁷ and Hubert Fabriol⁸ Geological Survey of Canada¹, Hampson- Russell Software², Colorado School of Mines³, Lawrence Berkeley National Lab⁴, University of Calgary⁵, EnCana Corporation⁶, Engineering Seismic Group⁷, Bureau de Recherches Géologiques et Minières⁸

The International Energy Agency (IEA) Weyburn CO_2 Monitoring and Storage Project is designed to investigate the technical and economic feasibility of CO_2 storage in a partially-depleted oil reservoir in conjunction with enhanced oil recovery operations. A key element of the project is development and application of monitoring and verification methods to track the spread of CO_2 within the thin (~25 m) reservoir located at ~1450 m depth.

The ability of seismic and geochemical methods to detect changes in the Weyburn reservoir induced by CO₂ injection has been clearly demonstrated. The path of injected CO₂ can be traced geochemically due to distinct isotopic signatures associated with the injected CO₂. The primary effect observed by P-wave seismic monitoring is CO₂ saturation with pressure effects being a secondary factor. Generally, the time-lapse seismic anomalies around the horizontal injection wells are proportional to the cumulative amount of CO₂ injected. There are also smaller off-trend anomalies that suggest that channelling of the CO₂ is occurring in some areas, supported by S-wave images of fracture-related anisotropic zones, and high-resolution images from horizontal crosswell tomography. Reservoir simulation-production history matching is integrated with time-lapse seismic measurements in an iterative process to reduce the non-uniqueness in the time-lapse seismic interpretation and to provide more efficient history matching. Low levels of microseismicity concentrated around a production area (~12 events of M=-1.5 to -2.5) have been observed over a 4-month period at distances of 200 to 500 m from a downhole passive monitoring array located above the reservoir.