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Abstract: Observables which distinguish boosted topologies from QCD jets are playing

an increasingly important role at the Large Hadron Collider (LHC). These observables are

often used in conjunction with jet grooming algorithms, which reduce contamination from

both theoretical and experimental sources. In this paper we derive factorization formulae

for groomed multi-prong substructure observables, focusing in particular on the groomed

D2 observable, which is used to identify boosted hadronic decays of electroweak bosons at

the LHC. Our factorization formulae allow systematically improvable calculations of the

perturbative D2 distribution and the resummation of logarithmically enhanced terms in

all regions of phase space using renormalization group evolution. They include a novel

factorization for the production of a soft subjet in the presence of a grooming algorithm, in

which clustering effects enter directly into the hard matching. We use these factorization

formulae to draw robust conclusions of experimental relevance regarding the universality

of the D2 distribution in both e+e− and pp collisions. In particular, we show that the

only process dependence is carried by the relative quark vs. gluon jet fraction in the sam-

ple, no non-global logarithms from event-wide correlations are present in the distribution,

hadronization corrections are controlled by the perturbative mass of the jet, and all global

color correlations are completely removed by grooming, making groomed D2 a theoretically

clean QCD observable even in the LHC environment. We compute all ingredients to one-

loop accuracy, and present numerical results at next-to-leading logarithmic accuracy for

e+e− collisions, comparing with parton shower Monte Carlo simulations. Results for pp col-

lisions, as relevant for phenomenology at the LHC, are presented in a companion paper [1].
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1 Introduction

The efficient and robust identification of hadronically-decaying boosted electroweak bosons

is a problem of fundamental importance at Run 2 and into the future of the Large Hadron

Collider (LHC) physics programme. The identification of boosted hadronically-decaying

H/W/Z bosons requires two key ingredients: observables for discriminating multi-prong

jet substructure, and a method for removing contamination within the jets. There has been

substantial progress in both of these aspects of jet physics over the past few years.1,2 One of

the most powerful observables for discrimination of two-prong substructure is D2 [14, 15],

based on the n-point energy correlation functions [16]. D2 parametrically separates jets

1For a recent review of theory and machine learning aspects of jet substructure, see [2].
2A summary of studies from the LHC using jet substructure can be found at https://twiki.cern.ch/

twiki/bin/view/AtlasPublic and http://cms-results.web.cern.ch/cms-results/public-results/

publications/. For the Run 2 experimental status, see the performance documentation in [3–13].
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with one- and two-prongs, and has been used extensively during Run 2 by ATLAS [17–

26]. Because of the high-luminosity environment of the LHC, the robust measurement

of the substructure of jets requires methods for removing contamination from underlying

event, pile-up, or other sources that are mostly uncorrelated with the hard scattering. Of

these so-called jet grooming techniques, the modified mass drop (mMDT) [27, 28] and

soft drop [29] groomers are theoretically most well-understood. Soft drop groomed mass

distributions of jets initiated both by light QCD partons and by hadronically decaying Z

bosons were measured recently by CMS [30].

Many theory advancements in understanding these observables and techniques have

been made recently. The groomed jet mass and several related single prong observables

have been calculated, both for QCD jets and electroweak bosons, up to next-to-leading log-

arithm (NLL) [27–29, 31], and very recently for top jets [32]. Refs. [33, 34] presented the

first jet substructure calculation to next-to-next-to-leading logarithmic accuracy (NNLL)

matched to fixed-order at O(α2
s) for the mMDT or soft drop groomed jet mass. A number

of two-prong observables, both ungroomed [35] and groomed [36, 37], have been computed

at leading-logarithmic accuracy (LL), and the observable D2 was calculated for QCD jets

and boosted Z bosons produced in e+e− collisions to next-to-leading logarithmic accuracy

(NLL) [15]. These calculations have helped to put the understanding of jet substructure ob-

servables on firmer theoretical footing, and have inspired a number of new jet substructure

techniques currently used at the LHC.

In this paper, we present the first theory calculations to NLL accuracy for groomed

jets on which two-prong observables like D2 are measured, and present a systematically

improvable framework for their calculation. This is achieved using factorization formulae

for groomed two-prong jet observables derived using the techniques of soft-collinear effective

theory (SCET) [38–42]. These allow for the resummation of logarithmically enhanced terms

in all regions of phase space using the renormalization group evolution of field theoretic

operators, significantly simplifying higher order calculations, and also provide operator

definitions of non-perturbative effects. We will illustrate our framework by performing a

calculation of the D2 observable on jets produced in e+e− collisions, although our approach

is more general, and could be applied to related observables, such as N2 [43]. In a companion

paper [1] we present D2 distributions for mMDT/soft drop groomed jets produced in pp

collisions for processes of phenomenological relevance for jet substructure at the LHC.

Schematically, the soft drop groomer steps through the clustering history of a jet and

removes those branches in the jet which fail the requirement

min[Ei, Ej ]

Ei + Ej
> zcut

(
θij
R

)β
. (1.1)

Here, Ei is the energy of branch i, θij is the angle between branches i and j, and R is

the jet radius. zcut and β are parameters of soft drop; in this paper, we will only consider

β = 0, for which soft drop coincides with the mMDT groomer (Due to their equivalence we

will use their names interchangeably.). Typical values of zcut are zcut ≈ 0.1. When eq. (1.1)

is satisfied, the procedure terminates. On jets that have been groomed with soft drop, we

– 2 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
4

will measure both the jet mass and the observable D2.3 We will work in the formal limit

m2
J

E2
J

� zcut � 1 , (1.2)

where mJ is the groomed jet mass and EJ is the jet energy. This limit is both relevant for

phenomenology and vital for theoretical simplicity. Eq. (1.2) is satisfied for electroweak

scale masses, TeV scale jet energies, and zcut = 0.1. By working in the regime of eq. (1.2),

only collinear emissions pass the soft drop requirement, no non-global logarithms arising

from color-connections to the rest of the event [46] contribute to the shape of the distribu-

tion, and corrections from hadronization are significantly reduced. This will enable us to

make precise and robust predictions for the distribution of D2 as measured on these jets.

In fact, the factorization formulae that we derive for the mMDT/soft dropped D2

exhibit a universality, and the resulting D2 distribution is largely independent of the jet

energy. From the factorization formulae, we will show that:

• the leading non-perturbative corrections are suppressed by powers of the groomed jet

mass, and are independent of the jet energy;

• the endpoint of the distribution is set by the grooming parameter zcut, and is inde-

pendent of the jet mass and energy;

• perturbative power corrections are suppressed by m2
J/(zcutE

2
J) � 1 throughout the

distribution;

• the quark or gluon flavor of a jet is well-defined at leading power in zcut � 1.

These properties imply that the full mMDT/soft drop D2 is only very weakly dependent on

the jet mass mJ and the jet energy EJ . This is a desirable property, especially for experi-

mental applications. The explicit design of observables that are independent of mass and

pT (or energy) cuts has been a subject of recent research [43, 47]. Due to the final property,

quark and gluon jet distributions can be individually extracted from D2 distributions of

jets produced in different processes.

The outline of this paper is as follows. In section 2, we define the mMDT and soft drop

groomers appropriate for both jets produced in e+e− and pp collisions, and define the energy

correlation functions and the ratio observable D2. In section 3, we will review the previously

published factorization formulae for D2 and groomed jet mass and derive new factorization

formulae for the groomed D2 cross section in e+e− collisions. Collinear factorization enables

us to use all of the results from e+e− collisions to formulate the factorized cross section for

the groomed D2 observable for jets produced in pp collisions in section 4. From the form of

the factorization formula, we are immediately able to make all-orders statements regarding

properties of the distribution. We will review those properties that are identical to those

of the groomed jet mass and discuss in some detail reduced hadronization corrections for

the D2 distribution in section 5. In section 6, we present numerical results, comparing

3Without a mass cut, D2 is not infrared and collinear safe, but is Sudakov safe [44, 45]. It can therefore

be calculated in resummed perturbation theory.

– 3 –
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our NLL predictions in e+e− collisions to parton shower Monte Carlo. A comparison of

robust qualitative features of the distribution derived from the factorization formula for pp

are compared with parton shower Monte Carlo predictions in section 7. We conclude in

section 8. Technical details and calculations are presented in appendices.

2 Observables

In this section, we review the definitions of the observables and grooming procedures that

will be studied in this paper. As mentioned in the introduction, we will restrict our focus to

grooming with mMDT [27, 28] or equivalently, soft drop with angular exponent β = 0 [29].

Definitions of mMDT and energy correlation functions will be presented for jets produced

in both e+e− and pp collisions.

2.1 Modified mass drop/soft drop grooming

The modified mass drop/ soft drop groomer proceeds in the following way. The identified

jet is reclustered with the Cambridge/Aachen algorithm [48–50], which orders emissions

in the jet by their relative angle. Then, starting at the widest angle, the two branches

following from each splitting in the jet are required to satisfy an energy fraction constraint.

For branches i and j in a jet produced in e+e− collisions, this requirement is

min[Ei, Ej ]

Ei + Ej
> zcut , (2.1)

where Ei is the energy of branch i. For a jet from pp collisions, the requirement is

min[pT i, pTj ]

pT i + pTj
> zcut , (2.2)

where pT i is the transverse momentum with respect to the proton beam of branch i. If these

requirements are not satisfied, the softer (lower energy/transverse momentum) branch is

removed from the jet, and the procedure iterates to the next splitting on the harder branch.

The process terminates when the two branches in a splitting in the jet satisfy eq. (2.1) or

eq. (2.2), as appropriate. The cut parameter zcut is typically taken to be zcut ∼ 0.1. In this

paper, we will formally assume that zcut � 1, so that emissions that fail these requirements

are necessarily soft. Once a jet has been groomed, any observable can be measured on its

remaining constituents.

2.2 Energy correlation functions and D2

For powerful identification of hadronic decays of electroweak bosons, we use the energy

correlation functions [16].4 The n-point energy correlation function is sensitive to radiation

about n−1 hard cores in the jet. Therefore, for this application, we use the two- and three-

point energy correlation functions, which are sensitive to radiation about one or two hard

4Another common approach is to use the N -subjettiness ratio observables [51, 52]. However, these are

poorly behaved in perturbation theory [53].

– 4 –
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cores in the jet. For a set of particles {i}, in a jet J , the energy correlation functions in

e+e− collisions are defined as

e
(α)
2

∣∣∣
e+e−

=
1

E2
J

∑

i<j∈J
EiEj

(
2pi · pj
EiEj

)α/2
, (2.3)

e
(α)
3

∣∣∣
e+e−

=
1

E3
J

∑

i<j<k∈J
EiEjEk

(
2pi · pj
EiEj

2pi · pk
EiEk

2pj · pk
EjEk

)α/2
. (2.4)

For jets produced in pp collisions, the energy correlation functions are simply modified as

e
(α)
2

∣∣∣
pp

=
1

p2
TJ

∑

i<j∈J
pT ipTjR

α
ij , (2.5)

e
(α)
3

∣∣∣
pp

=
1

p3
TJ

∑

i<j<k∈J
pT ipTjpTkR

α
ijR

α
ikR

α
jk . (2.6)

Here Rij is the distance between particles i and j in the pseudorapidity-azimuth angle

plane. For jets that are central (pTJ ∼ EJ) and if all emissions in the jet are collinear, the

definitions of the two- and three-point energy correlation functions for jets in pp collisions

are equivalent to those for e+e− collisions.

The angular exponent α in the definition of the energy correlation functions is a pa-

rameter that controls sensitivity to wide-angle emissions. For jets that consist of massless

particles, the two-point energy correlation function in e+e− collisions reduces to a function

of the jet mass, mJ , if α = 2:

e
(2)
2

∣∣∣
e+e−

=
m2
J

E2
J

. (2.7)

It has been shown that the optimal observable, formed from e
(α)
2 and e

(α)
3 , for discrimination

of boosted hadronic decays of electroweak bosons (with a hard two-prong substructure)

from QCD jets (typically with a single hard prong) is a particular ratio of the energy

correlation functions called D
(α)
2 [14, 15]. D

(α)
2 is defined as

D
(α)
2 =

e
(α)
3

(e
(α)
2 )3

. (2.8)

In this paper, for jets which have been groomed with mMDT, we subsequently measure

D
(α)
2 . For brevity, we will often denote D

(α)
2 generically as D2.

2.3 Phase space and behavior of groomed D2

In this section, we use the power counting techniques of [14] to review the phase space

structure of a jet on which the observables e
(α)
2 and e

(α)
3 are measured. We then discuss

how this is modified when the jet is groomed with mMDT or soft drop. In particular, we

emphasize the parametric features of the groomed D2 distribution that will be reproduced

by our calculation, as well as demonstrating that D2 remains a powerful discriminant even

after grooming has been applied.

– 5 –
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We begin with a brief review of the structure of the e
(α)
2 and e

(α)
3 phase space without

grooming, as was considered in detail in [14, 15]. With no grooming the dominant emissions

in a one-prong jet with e
(α)
2 , e

(α)
3 � 1 are either soft (low energy) or collinear to the jet

core. These contributions to the value of e
(α)
2 and e

(α)
3 scale like

e
(α)
2 ∼ θαcc + zs ,

e
(α)
3 ∼ θ3α

cc + θαcczs + z2
s , (2.9)

where zs is the characteristic energy fraction of soft emissions and θcc is the characteristic

angle of collinear emissions. Depending on the assumptions made about the relative scaling

of zs and θcc, one finds the upper and lower boundaries of the phase space for one-prong

jets. The upper boundary is the so-called soft haze region where

e
(α)
3 ∼ (e

(α)
2 )2 , (2.10)

while the lower boundary corresponds to the scaling

e
(α)
3 ∼ (e

(α)
2 )3 . (2.11)

Therefore, up to order-1 coefficients, one-prong jets have a measured value of e
(α)
3 that lies

between (e
(α)
2 )3 and (e

(α)
2 )2.

To determine the region of phase space where a two-prong jet lives, it is sufficient

to consider a jet with two hard, collinear prongs, with all other radiation at much lower

energy. In this case, the scaling of the contributions to e
(α)
2 and e

(α)
3 are

e
(α)
2 ∼ θαab ,
e

(α)
3 ∼ θαccθ2α

ab + θ3α
ab zcs + θαabzs . (2.12)

Here, θab is the angle between the hard prongs, θcc is the characteristic angular size of each

of the hard prongs individually, zcs is the energy fraction of collinear-soft radiation emitted

from the dipole of the two hard prongs, and zs is the energy fraction of soft radiation

emitted at large angles. The requirement that the hard prongs are well-defined restricts

the energy fraction of the collinear-soft radiation to be small:

zcs ∼
e

(α)
3

(e
(α)
2 )3

� 1 . (2.13)

That is, two-prong jets have measured values of e
(α)
3 that are much smaller than (e

(α)
2 )3. The

one- and two-prong regions of phase space in the (e
(α)
2 , e

(α)
3 ) plane are illustrated in figure 1a.

We now consider how this phase space is modified in the presence of grooming. First,

we consider the parametric scaling of contributions in the one-prong region of phase space.

We assume that there exists radiation in the groomed jet whose energy fraction is set by

zcut at a characteristic angle θsc from the jet core, in addition to the collinear modes. The

– 6 –
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Figure 1. The phase space for one- and two-prong jets on which the energy correlation functions

e
(α)
2 and e

(α)
3 are measured. (a) Phase space for ungroomed jets, with the absolute upper boundary

scaling like e
(α)
3 ∼ (e

(α)
2 )2. (b) Phase space for mMDT/soft drop groomed jets, where the two-prong

region is unchanged, while the absolute upper boundary now scales like e
(α)
3 ∼ (e

(α)
2 )3/zcut.

soft modes (which had energy fraction zs) have been removed by the mMDT/soft drop

procedure. The contributions to the observables are then

e
(α)
2 ∼ zcutθ

α
sc + θαcc ,

e
(α)
3 ∼ θ3α

cc + θαccθ
2α
sc zcut + θ3α

sc z
2
cut . (2.14)

From this we can determine the boundaries of the phase space by imposing different re-

lationships between the characteristic angles and energy fractions. As in the ungroomed

case, the lower bound of this phase space region occurs when collinear emissions dominate

the value of e
(α)
2 :

e
(α)
2 ∼ θαcc � zcutθ

α
sc , e

(α)
3 ∼ (e

(α)
2 )3 . (2.15)

This is the same lower boundary as with ungroomed jets. This implies in particular, that

D2 remains a powerful discriminant, even after grooming has been applied.

The upper boundary of this region is more interesting. Assuming that the contributions

to e
(α)
2 are democratic

e
(α)
2 ∼ zcutθ

α
sc + θαcc , (2.16)

we find the characteristic angular scale of the radiation sensitive to zcut to be

θαsc ∼
e

(α)
2

zcut
. (2.17)

Using this scaling, for e
(α)
3 for groomed jets, we then find

e
(α)
3 ∼ (e

(α)
2 )3

zcut
. (2.18)

– 7 –
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We refer to the region of phase space near this upper boundary as “collinear-soft haze”.

Note that, assuming that two-prong jets have two hard prongs, their phase space is un-

changed from the ungroomed case.

This is quite interesting. Since we formally assume zcut � 1, there is a separation of

the collinear-soft haze region from the lower boundary of groomed one-prong jets. However,

both boundaries have the same cubic relationship between e
(α)
2 and e

(α)
3 . The phase space

for groomed jets is illustrated in figure 1b. Grooming the jet removes the region of phase

space where e
(α)
3 ∼ (e

(α)
2 )2. From this analysis, it is straightforward to determine the

maximal value of D2 with and without grooming. For the ungroomed jet, the maximal

value of D2 is when

D
(α)
2

∣∣∣
max
∼ e

(α)
3

(e
(α)
2 )3

∣∣∣∣∣
e
(α)
3 ∼(e

(α)
2 )2

∼ 1

2e
(α)
2

. (2.19)

With a more careful analysis (discussed in ref. [14]), one can derive the factor of 1/2 in the

location of the endpoint. Note that for α = 2 this maximum value is sensitive to both the

energy and mass of the jet:

D
(2)
2

∣∣∣
max
∼ E2

J

2m2
J

. (2.20)

The endpoint of the D2 distribution formally increases without bound as the energy of the

jet increases, for a fixed mass cut.5 On the other hand, when the jet is groomed, we find

D
(α)
2

∣∣∣
max, soft drop

∼ e
(α)
3

(e
(α)
2 )3

∣∣∣∣∣
e
(α)
3 ∼(e

(α)
2 )3/zcut

∼ 1

2zcut
. (2.21)

Therefore, when a jet is groomed with mMDT or soft drop, the endpoint of the D2 dis-

tribution is independent of both the jet mass and energy. This property will be one part

of the reason why the groomed D2 distribution is incredibly robust to changes in energy

and/or mass cuts.

To demonstrate that this scaling is satisfied in simulation, in figure 2 we plot the

distribution of jets in the (e
(α)
2 , e

(α)
3 ) phase space plane as simulated in parton shower Monte

Carlo. The details of the Monte Carlo simulation will be described in section 6. Here we use

the angular exponent α = 1 and impose an upper cut on the mass of mJ < 100 GeV, which

more clearly illustrates the phase space regions. The same general features are present for

other values of α. On these jets we then measure e
(α)
2 and e

(α)
3 , either before grooming or

after mMDT/soft drop grooming, with zcut = 0.1. In figure 2a, we show the ungroomed

phase space, and jets populate up to the curve where e
(α)
3 ∼ (e

(α)
2 )2. Once grooming is

applied, however, jets only populate up to the curve e
(α)
3 ∼ (e

(α)
2 )3/zcut, as illustrated in

figure 2b. This demonstrates that our parametric scaling analysis of the phase space is

satisfied by parton shower simulation. More detailed tests will be provided in section 6,

when we study the structure of the D2 distribution in our analytic calculation, and in

parton shower Monte Carlo.

5Of course, this isn’t quite true because there is a characteristic mass scale of QCD. Even perturbatively

this isn’t true because the Sudakov factor will exponentially suppress low masses.
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Figure 2. Illustration of the population of jets from 1 TeV e+e− collisions in the (e
(α)
2 , e

(α)
3 ) phase

space plane as simulated in parton shower Monte Carlo. Here, α = 1 and the mass of the jet is

restricted as mJ < 100 GeV. (a) Ungroomed jets, that extend up to e
(α)
3 ∼ (e

(α)
2 )2. (b) mMDT/soft

drop groomed jets, with zcut = 0.1, that extend up to e
(α)
3 ∼ (e

(α)
2 )3/zcut.

The location of the endpoint for the groomed D2 distribution also has important

consequences for its calculation. In particular, for the ungroomed D2 distribution, the

endpoint is at ∼ 1/e
(α)
2 . In the limit e

(α)
2 � 1, this is formally large, and can be neglected.

This is what was done in ref. [15]. However, for the groomed D2 distribution, the endpoint

of the distribution is at ∼ 1/zcut. Since we assume zcut � e
(α)
2 , we must compute the matrix

element in this region of the phase space, and match it to our resummed calculation, to

accurately predict the endpoint of the distribution.

3 Factorized cross section in e+e− collisions

In this section we present factorization formulae for mMDT/soft drop groomed D2. These

allow for a systematically improvable calculation of the D2 distribution, and the resum-

mation of logarithmically enhanced terms in all regions of phase space to be resummed by

renormalization group evolution. The factorization formulae are presented in the language

of SCET [38–41], an effective field theory describing soft and collinear radiation in the

presence of a hard scattering. For the case of jet substructure observables, where multiple

hierarchies are present within the jet, extensions of SCET are required. These have been

developed in refs. [15, 54–56], and were discussed in detail in the context of the D2 observ-

able in ref. [15]. In this section we will restrict ourselves to giving physical descriptions

of the functions appearing in the factorization formulae. Field theoretic definitions, and

one-loop calculations, are given in the appendices.

Our approach to deriving the factorization formulae will closely follow the techniques

used to study the groomed jet mass and the ungroomed D2 observable. In particular, we
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will begin from the factorization for the groomed jet mass cross section, and then perform a

refactorization of the resolved substructure. Because of this, we begin in section 3.1 with a

review of the factorization formulae in both these cases. We then present the factorization

for groomed D2 in section 3.2. Throughout this section, we will restrict ourselves to the

case of e+e− collisions for simplicity. In section 4, we will then show that the grooming

algorithm allows us to trivially extend this factorization formula to the case of pp collisions.

3.1 Review of known results

Factorization formulae are known for both the groomed jet mass [33, 34] and for the

ungroomed D2 observable [15]. Since our factorization for the groomed D2 observable will

rely heavily on ingredients from both these analyses, we begin by reviewing the essential

ingredients of the factorization formulae for these two cases. The discussion will be brief,

and more details can be found in the respective papers.

3.1.1 Groomed jet mass factorization formula

A factorization formulae was presented in SCET for the soft dropped two-point energy

correlation functions e
(α)
2 , and was used to calculate the distribution to NNLL order [33, 34].

Throughout this section we will always take the soft drop parameter β = 0. The case β > 0

follows an identical logic, and is discussed in detail in refs. [33, 34].

The factorization formula is valid in the limit e
(α)
2 � zcut � 1. It can be derived

through a multi-stage matching procedure from the standard SCET involving a global

soft function and jet functions. The first stage of the matching is a soft and collinear

factorization, with the soft virtuality set by Qzcut, and the collinear virtuality set by e
(α)
2,R:

d2σ

de
(α)
2,Lde

(α)
2,R

= H(Q2)S(zcut)
[
J(e

(α)
2,L, zcut)

] [
J(e

(α)
2,R, zcut)

]
. (3.1)

The soft drop grooming has isolated the jet dynamics from the rest of the event, due

to the angular ordering of the algorithm. However, this factorization still contains large

logarithms within the collinear sector. These can be resummed by refactorizing into a

collinear-soft function, which allows for the resummation of all logarithms of e
(α)
2,R. The

final factorization formula for measuring e
(α)
2 in each of the groomed hemispheres in e+e−

collisions is given by

d2σ

de
(α)
2,Lde

(α)
2,R

= H(Q2)S(zcut)
[
J(e

(α)
2,L)⊗ Sc(e(α)

2,Lzcut)
] [
J(e

(α)
2,R)⊗ Sc(e(α)

2,Rzcut)
]
. (3.2)

The physical interpretation of the functions entering this factorization formula are as follows

(field theoretic definitions can be found in [33, 34]):

• H(Q2) is the standard hard function, describing in this case the production of two

back to back jets in an e+e− collision.

• S(zcut) is the global soft function. It describes wide angle soft radiation, which is

removed by the groomer. It is therefore independent of the observable, and depends

just on zcut.
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Figure 3. An illustration of the multistage matching procedure for the factorization of the soft

dropped energy correlation function e
(α)
2 . For simplicity, we have taken the soft drop angular

exponent, β = 0.

• J(e
(α)
2 ) is a jet function describing collinear radiation. Since this radiation is energetic,

it is not affected by the groomer, so that this function does not depend on zcut.

• S(e
(α)
2 zα−1

cut ) describes collinear soft radiation, which contributes to the observable, but

is sensitive to the groomer. It can be shown that it depends only on the scales zcut and

e
(α)
2 through the combination e

(α)
2 zα−1

cut , as indicated by the argument of the function.

The multi-stage matching procedure is shown in figure 3, which also shows the virtu-

alities of the modes contributing to the factorization formula. The results for all functions

appearing in the factorization formula of eq. (3.2) allowing for resummation up to NNLL

were computed in refs. [33, 34]

3.1.2 Ungroomed D2 factorization formula

In ref. [15] a factorization formula was presented for the D2 observable. For a two-prong

substructure observable such as D2, multiple kinematic regimes with distinct hierarchies

exist, each of which contribute to a different region of the multi-dimensional phase space

discussed in section 2.3. The approach taken in ref. [15] was to identify all parametric

regions of phase space where hierarchies occur, and to develop distinct effective field theories

describing each of these regions. The different effective field theories can then be pieced

together to give a complete description of the entire phase space region.

In ref. [15], three phase space regions were required to provide a description of the D2

observable:

• Soft Haze: the jet does not have a resolved substructure, and is formed from unre-

solved soft and collinear radiation, as in figure 4a. Here the factorization formula

involves multi-differential jet and soft functions as developed in refs. [57–59].

• Collinear Subjets: the jet is formed of two subjets with small opening angle, and large

energies, as shown in figure 4b. The factorization formula in this region of phase space

– 11 –
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Figure 4. Regions of interest for studying the two-prong substructure of a jet. (a) Soft haze region

in which no subjets are resolved. (b) Collinear subjets with comparable energy and a small opening

angle. (c) Soft subjet carrying a small fraction of the total energy, and at a wide angle from the

hard subjet.

is formulated in the SCET+ theory of ref. [54]. In addition to the standard soft and

collinear modes of SCET, it involves collinear-soft modes emitted from the dipole

formed by the two subjets. In this factorization formula, the modes describing the

radiation within the subjets are not sensitive to the presence of the jet boundary.

• Soft Subjet: the jet is formed of a single highly-energetic subjet, and a wide-angle

subjet with energy fraction zsj � 1, as shown in figure 4c. The effective field theory

description of this region of phase space was first presented in ref. [55]. Its complexity

arises due to the fact that the soft subjet is sensitive to the presence of the jet

boundary.

A smooth transition between the collinear subjets and soft subjet regions of phase space

was achieved using a zero bin-like procedure to remove any overlap. A similar approach

was advocated in ref. [56].

3.2 Groomed D2 factorization formula

Having reviewed the factorization formula for the soft dropped energy correlation functions,

as well as for the D2 observable, we can now combine these two approaches to provide a

factorized description for groomed D2. This will be accomplished by refactorizing an anal-

ogous parent effective theory to the expression eq. (3.1) in the different parametric regions:

d4σ

de
(α)
2,Lde

(α)
3,Lde

(α)
2,Rde

(α)
3,R

= H(Q2)S(zcut)
[
J(e

(α)
2,L, e

(α)
3,L, zcut)

] [
J(e

(α)
2,R, e

(α)
3,R, zcut)

]
. (3.3)

The merging and region analysis will be similar to that performed in ref. [15] for D2

without soft drop. Before giving a detailed discussion of each of the factorized expressions
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in the different phase space regions, we give a brief overview of the different regions of phase

space that can contribute and the dynamics occurring in each region, as well as comparing

them to the three phase space regions which contributed to ungroomed D2, as shown in

figure 4.

To describe the D2 distribution of a jet on which the soft drop grooming algorithm has

been applied, we will similarly need three regions of phase space. Note, however, that since

all the factorizations will appear as refactorizations of the eq. (3.3), all components of the

factorized expression which contribute to D2 will be collinear in nature. This will signifi-

cantly simplify the analysis. In particular, the wide-angle soft subjet region of phase space

is completely removed from contributing to the observables by the soft drop algorithm. In

the soft subjet region of phase space, we would have e
(α)
2 ∼ zsj . However, by assumption,

we take e
(α)
2 � zcut, and therefore, the wide angle soft subjet is removed by the soft drop

algorithm. This region of phase space will instead be replaced by a collinear-soft subjet

which has characteristic energy fraction zcs ∼ zcut. The effective field theory description

for this hierarchy is new, and will be described in section 3.2.3.

The three phase space regions that will contribute to the D2 observable as measured

on a soft dropped jet are shown schematically in figure 5. A brief description of each of

the different phase space regions is as follows:

• Collinear-Soft Haze: the jet does not have a resolved substructure. It is formed

entirely from unresolved collinear-soft radiation. This is shown schematically in fig-

ure 5a.

• Collinear Subjets: as shown in figure 5b, in the collinear subjets region of phase

space, the jet consists of two subjets of approximately equal energies, and a small

opening angle, surrounded by collinear-soft radiation.

• Collinear-Soft Subjets: the jet is formed of two subjets, of parametrically different

energies, with the softer jet energy set by zcut, but where the opening angle between

the jets is still assumed to be small. Unlike the previous two phase space regions, be-

cause zcut sets the energy of the soft jet, there is no additional collinear-soft radiation

at a wider angle than the soft subjet. This is shown schematically in figure 5c.

It is interesting to contrast the different phase space regions for the D2 observable with

and without the soft drop grooming algorithm applied, as shown in figures 4 and 5. These

configurations are similar, with the exception that the wide angle radiation is removed by

the soft drop algorithm, so that only collinear-soft radiation remains. Importantly, this

radiation is boosted along the direction of the jet. It is therefore not sensitive to the

directions of other jets in the event, all of which appear boosted in the opposite direction,

and it is also not sensitive to the radius of the jet. This will lead to a large degree of

universality for the soft dropped D2 distributions, and simplify their calculation in the

presence of additional jets.

We now discuss each of the phase space regions in figure 5 in detail, and present factor-

ization formulae describing the radiation in these different regions of phase space. These
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Figure 5. Regions of interest for studying the two-prong substructure of a jet on which the soft

drop grooming algorithm has been applied. (a) Collinear-soft haze region in which no subjets are

resolved. (b) Collinear subjets with comparable energy and a small opening angle. (c) Collinear-soft

subjet carrying a small fraction of the total energy, with zcs ∼ zcut.

factorization formulae will allow for the radiation at each hierarchical scale to be described

by a different function, allowing for large logarithms in the perturbative calculation to be

resummed. A complete description of the groomed D2 distribution can then be obtained

by merging these different factorization formulae. We will discuss how this is done in

sections 3.2.4 and 3.2.5.

3.2.1 Unresolved substructure: collinear-soft haze

We begin by discussing the factorization in the region of phase space where the jet has no

resolved subjets. The factorization formula in this region of phase space will follow almost

identically the soft-haze factorization formula of ref. [15], except that the soft function

will be replaced by a boosted collinear-soft function due to the implementation of the soft

drop algorithm. Recall that in this region of phase space we have collinear modes and

collinear-soft modes, and the power counting for the observables is

e
(α)
2 ∼ zcutθ

α
sc + θαcc ,

e
(α)
3 ∼ θαccθ2α

sc zcut + θ3α
sc z

2
cut . (3.4)

In this region of phase space, e
(α)
3 can be expressed as the sum of two contributions. One is

just the three-point energy correlation function e
(α)
3 measured in the collinear-soft function

and the other is a product of two-point energy correlation functions with different exponents

as measured in the jet function and the collinear-soft function. The factorization formula
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Figure 6. An illustration of the multistage matching procedure and relevant scales for the collinear-

soft haze region of phase space. Because the jet and collinear-soft functions are not factorized, this

is the same structure as with just measuring e
(α)
2 on a groomed jet.

in this region of phase space is then given by

d2σ

de
(α)
2 de

(α)
3

= HS(zcut)

∫
dec2 de

sc
2 de

(2α)sc
2 desc3 δ(e

(α)
3 − esc3 − ec2 · e(2α)sc

2 )δ(e
(α)
2 − esc2 − ec2)

× J(ec2)Ssc(e
sc
2 , e

(2α)sc
2 , esc3 , zcut) . (3.5)

For brevity, we only write the e
(α)
2 and e

(α)
3 dependence of a single hemisphere; including

both hemispheres is trivial. Since the e
(α)
3 observable is first non-zero with two emissions,

this factorization formula first gives a non-trivial contribution at NNLL′ order, i.e., it

requires the two-loop matrix elements (and the product of two one-loop matrix elements).

A brief description of the different functions entering the factorization formula in the

collinear soft haze region is as follows

• H(Q2) is the hard function describing the underlying hard process, namely e+e− →
qq̄.

• S(zcut) is the global soft function, describing radiation which has been removed by the

soft drop procedure. It depends only on zcut, and not on the observables e
(α)
2 , or e

(α)
3 .

• J(ec2) describes the collinear dynamics within the jet. It is independent of the soft

drop algorithm. It contributes to the e
(α)
3 observable only through the product form

entering eq. (3.5).

• Ssc(esc2 , e
(2α)sc
2 , esc3 , zcut) describes the soft collinear radiation within the jet. It is sen-

sitive both to the soft drop criterion as well as contributing to the e
(α)
2 , e

(2α)
2 , and

e
(α)
3 observables. Here, e

(2α)
2 means that the angular exponent is 2α.
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An illustration of the multi-stage matching for this factorization theorem is illustrated in

figure 6.

A similar factorization formula was proposed in ref. [15] for describing the unresolved

region of phase space for the D2 observable without the soft drop algorithm. This region

also first contributed to the observable at NNLL′ order, and was therefore not considered.

This was because the endpoint of the ungroomed distribution is 1/e
(α)
2 � 1, and there-

fore the distribution has a smooth long tail, which can be well-approximated by simply

extending the factorization formulae from the two-prong region of phase space. However,

in the case that the soft drop algorithm is applied, it was shown in section 2.3 that the

D2 distribution has an upper boundary at Dmax
2 = 1/(2zcut). This endpoint feature is not

described by the factorization formulae in the two-prong region of phase space, as it is

expanded away. Matrix elements in the collinear-soft haze region of phase space are re-

quired to describe this kinematic feature. We will therefore compute the fixed-order matrix

elements at O(α2
s) and match within the effective theory.

The most convenient way to calculate the D2 distribution in the soft haze region to

O(α2
s) is to integrate the appropriate 1→ 3 splitting functions, as described in appendix D.

This is equivalent to calculating the D2 distribution in the parent theory of eq. (3.3). One

can explicitly check that one reproduces the matrix elements of the collinear-soft haze

factorization when two of the emissions in the 1 → 3 splitting functions are taken to be

soft, and when two are taken to be collinear and one is soft. These contributions reproduce

the two-loop soft function, and the convolution between the one-loop jet and one-loop soft

functions within the factorization formula of eq. (3.5).

A critical feature of the 1 → 3 splitting functions, as shown in appendix D, and by

extension, also the collinear-soft haze factorization formula, is that at O(α2
s) all the e

(α)
2

dependence explicitly scales out of the matrix element when we scale e
(α)
3 to the D2 ratio.

Thus the e
(α)
2 dependence merely becomes a multiplicative factor to the shape of the D2

distribution in the collinear-soft haze region. This implies to N3LL logarithmic counting in

the e
(α)
2 logarithms, that the e

(α)
2 spectrum is simply multiplicative to the normalized D2

distribution. This is consistent with the arguments given in section 2.3 about the endpoints

of the groomed and ungroomed D2 distributions. The endpoint of the ungroomed D2

distribution is set by the value of e
(α)
2 at fixed order, so the functional dependence of the

ungroomed D2 spectrum is highly nontrivial. One would have to convolve the Sudakov

resummation of the e
(α)
2 spectrum with the ungroomed D2 distribution as a function of

e
(α)
2 in order to accurately describe even the normalized endpoint of the ungroomed D2

distribution. The grooming procedure decouples the shape of the endpoint from the value

of e
(α)
2 , significantly simplifying the calculation of the D2 distribution at large values of

D2. We explain in more detail the importance of these observations when considering the

matching between resolved and unresolved limits in section 3.2.5.

As a check of the splitting function integration, we also compute the D2 distribution

with EVENT2 [60] and then match to the factorization formulae for the two-prong phase

space regions.
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3.2.2 Resolved substructure: collinear limit

Here, we will determine the factorization formula in the limit when the jet has two relatively

hard collinear subjets. To derive this factorization formula, we must return to the parent

theory of eq. (3.3) (for brevity, we just focus on one hemisphere):

dσ

de
(α)
2 de

(α)
3

= H(Q2)S(zcut)J
(
e

(α)
2 , e

(α)
3 , zcut

)
. (3.6)

Now, on this soft dropped jet on which we have measured e
(α)
2 , we additionally measure e

(α)
3 ,

with the assumption that e
(α)
3 � (e

(α)
2 )3. In this limit, and using the mode decomposition

outlined in ref. [15], we can factorize the jet function into a hard, collinear splitting:

J
(
e

(α)
2 , e

(α)
3 , zcut

)
→ H2(z, e

(α)
2 )J1(e

(α)
3 )⊗ J2(e

(α)
3 )⊗ Cs(e(α)

3 , zcut) . (3.7)

Here, z is the momentum fraction of one of the subjets, and H2(z, e
(α)
2 ) is a function that

depends on e
(α)
2 that describes the hard, collinear splitting.6 J1(e

(α)
3 ) and J2(e

(α)
3 ) are

the jet functions that describe the collinear radiation off of the two hard prongs in the

splitting. Cs(e
(α)
3 , zcut) is the collinear-soft function that describes relatively soft radiation

emitted off of the dipole formed by the two hard prongs. In contrast to the ungroomed

D2 distribution, there is no global soft contribution (and thus for e+e−, no two-eikonal

line soft function depending on e
(α)
3 ), as the jet has already been isolated by the grooming

procedure. The factorization formula in the two-prong collinear limit is then:

d3σ

dz de
(α)
2 de

(α)
3

= H(Q2)S(zcut)H2(z, e
(α)
2 )J1(e

(α)
3 )⊗ J2(e

(α)
3 )⊗ Cs(e(α)

3 , zcut) . (3.8)

We could stop with this factorization, and begin calculating the resummation of D2; how-

ever, it is worthwhile to further analyze the structure of the collinear-soft function.

As e
(α)
3 → 0, this forces the energy of the soft modes within Cs(e

(α)
3 , zcut) to zero.

All emissions generated off of the eikonal lines within the collinear-soft function can only

contribute to the observable by being clustered with one of the legs of the hard prongs,

before the legs themselves are clustered together. Otherwise, the emission will be at too low

an energy scale and too wide of an angle to be included in the groomed jet. Correspondingly,

emissions that do contribute to e
(α)
3 from Cs(e

(α)
3 ) cannot be emitted at too wide of an angle.

If these emissions are not first clustered with one of the two hard prongs, then they are

necessarily groomed away. Therefore, we separate out two angular regions of the collinear

soft function and write:

Cs(e
(α)
3 , zcut)→ Cs(e

(α)
3 , θ < θab)Sc(zcut, θ > θab)⊗ CNG

s (e
(α)
3 , zcut) . (3.9)

Again, we emphasize that the constraint θ < θab or θ > θab is schematic; the precise

constraint will depend on the detailed clustering history, however it is purely geometrical

6While the momentum fraction of the subjets is not well-defined in the unresolved region, we may use

a combination of energy correlation functions with different angular exponents to give a definition to z

outside the two prong region; see ref. [15].

– 17 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
4

Snn̄

SCET
Match To

H

Jn

Refactorize
Jet Function

µ ⇠ EJ

0
B@ e

(2)
3⇣

e
(2)
2

⌘2

1
CA

1/2

µ ⇠ EJ
e
(2)
3⇣

e
(2)
2

⌘3

⇣
e
(2)
2

⌘(1/2)In
cr
ea
si
n
g
V
ir
tu
al
it
y µ ⇠ EJzcut

µ ⇠ EJ

µ ⇠ EJe
(2)
2

µ ⇠ EJzcut

 
e
(2)
3

e
(2)
2 zcut

!1/4

Figure 7. A schematic of the multistage matching procedure in the collinear limit of resolved

substructure. The function incorporating non-global collinear effects is not shown, but is discussed

in the text.

in its implementation. The last function is independent of the renormalization group, and

encodes local-to-the-jet non-global correlations. The presence of the hard splitting with an

opening angle set by e
(α)
2 implies that an effective jet area is created within the two prong

region. This will lead to non-global correlations between emissions that are groomed away,

but emit into this opening angle, and the emissions which come off of the primary hard legs.

An illustration of the origin of these non-global logarithms (NGLs) is illustrated in

figure 8. In this figure, a hard collinear quark and collinear gluon (denoted by the curly

curve with a line through it) sets the mass of the jet, and then their dipole emits a soft-

collinear gluon. This soft-collinear gluon has sufficiently low energy and fails soft drop, but

re-emits another soft-collinear gluon that is clustered into the hard collinear particles. Such

a re-emission is non-global in origin, as it is simultaneously sensitive to the infrared scales

zcut and e
(α)
3 . However, all particles in this picture are collinear, as the jet was already

isolated from the rest of the event in the first stage of matching. Therefore the resulting

NGLs only depend on the fact that the jet was initiated by a hard quark (in general,

they depend on the flavor structure of the splitting). Because of this universality, these

non-global logarithms are significantly less worrying than more standard NGLs that occur

in (ungroomed) jet mass distributions. Techniques have been developed for systematic

calculation of NGLs [55, 61–68], and these NGLs associated with the soft drop procedure

have interesting features not previously encountered due to the clustering history. We have

performed some preliminary estimations of these NGLs, and find their numerical effect

is small, well within our uncertainties for the purely global (Sudakov) contributions. At

leading logarithmic accuracy in the large-Nc limit, they can be computed using an extension

of the Monte Carlo algorithm of Dasgupta and Salam [46], which is described in appendix E.
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Figure 8. Schematic illustration of a configuration of emissions that contributes to collinear non-

global logarithms. The soft-collinear gluon emission off of the hard-collinear gluon is groomed away,

but not before it re-emitted into the ungroomed region between the two hard prongs.

With these replacements, the factorization formula now becomes

d3σ

dz de
(α)
2 de

(α)
3

= H(Q2)S(zcut)Sc(zcut, θ > θab)H2(e
(α)
2 ) (3.10)

× J1(e
(α)
3 )⊗ J2(e

(α)
3 )⊗ Cs(e(α)

3 , θ < θab)⊗ CNG
s (e

(α)
3 , zcut) ,

where the functions are as follows

• H(Q2) is the hard function, in this case for e+e− → dijets.

• S(zcut) is the soft function describing wide angle soft radiation which has been soft

dropped.

• Sc(zcut, θ > θab) describes collinear soft radiation at θ > θab.

• H2(e
(α)
2 ) is a hard function describing the production of the two collinear subjets.

• J1,2(e
(α)
3 ) are the jet functions for the collinear subjets.

• Cs(e(α)
3 , θ < θab) describes collinear soft radiation emitted from the dipole formed

from the subjets at θ < θab.

• CNG
s (e

(α)
3 , zcut) describes the entanglement between the groomed soft-collinear emis-

sions and the two-prong region.

The hierarchy of scales of the functions in this region of phase space is illustrated in figure 7.

The calculations of the functions in this factorization formula to one-loop accuracy are

presented in appendix A. There, we also demonstrate the consistency of this factorization

formula by showing that the sum of anomalous dimensions is indeed 0.
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(a) (b) (c)

Figure 9. Structure of emissions at one-loop order that contribute to the hard matching function

in the soft subjet factorization formula for groomed jets. The emission at a wider angle will be

groomed away, while the other emission sets the mass of the jet. (a) corresponds to the Abelian

emission of gluons, and will contribute proportional to CF ; (b) corresponds to non-Abelian gluon

emissions, and will contribute proportional to CA; and (c) corresponds to a gluon splitting to quarks,

which contributes proportional to nF .

3.2.3 Resolved substructure: soft limit

When the jet has two subjets whose energies are hierarchically separated we can determine

the form of the appropriate factorization formula in the same manner as in the previous

section. As in that case, we start with the parent jet function from eq. (3.3):

J
(
e

(α)
2 , de

(α)
3 , zcut

)
→ HCs2(z, e

(α)
2 , e

(α)
3 , zcut)⊗ Jsc(e(α)

3 )⊗ J2(e
(α)
3 ) . (3.11)

This preliminary factorization has removed the collinear subjet contributions, but has

not distentangled all the soft scales. This requires a matching procedure that cannot

be implemented at the level of the amplitude, but must be performed at the amplitude-

squared.7 The matching procedure is complicated by essentially the same physics that

determines the NGLs encountered in the collinear-subjets of the resolved region, but now

we must take the energy scale of one of the legs to be just above zcut, and hence not

parametrically separated from the soft-collinear emissions which are groomed away just

below zcut. Thus we write

HCs2(z, e
(α)
2 , e

(α)
3 , zcut)→ Hsj

2 (z, e
(α)
2 , zcut)Cs(e

(α)
3 , θ < θab)⊗ Csj−NG

s (e
(α)
3 , zcut) . (3.12)

Where Csj−NG
s (e

(α)
3 , zcut) denotes hard matching contributions where additional Wilson

lines and jet functions are introduced to capture the non-global correlations. The function

Cs(e
(α)
3 , θ < θab) is the same as found in eq. (3.10). As it stands, this factorization is suffi-

cient to resum all large global (Sudakov) logarithms, and to leading logarithmic accuracy

in the NGLs, the function Csj−NG
s (e

(α)
3 , zcut) is identical to that found in eq. (3.10).8

There are a few things to note about this factorization formula. First, there is a jet

function Jsc(e
(α)
3 ) that describes collinear radiation off of the soft subjet in the larger jet.

To leading power, this subjet is always a gluon and is identical to the z → 0 limit of the

7This is similar in spirit to ref. [62].
8At higher orders we would have to keep track of the color correlations between multiple directions at

the soft subjet scale being integrated out and groomed away, and the soft emissions into the opening angle

of the 1→ 2 splitting.
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corresponding gluon jet function in the factorization formula in the case of hard, collinear

subjets. Additionally, there is the identical collinear-soft function as in the hard collinear

subjets factorization formula. Because we assume that D
(α)
2 � zcut, emissions that set the

value of D
(α)
2 must be at parametrically lower energies than either of the subjets. Therefore,

the soft drop constraint on these emissions is just a geometric constraint that enforces the

emissions to first cluster with one of the hard subjets. This geometrical constraint is

necessarily independent of the energy of the subjets of the larger jet, and therefore this

collinear-soft function is identical to that which appears in eq. (3.10).

The novel part of this factorization formula is the hard matching function,

Hsj
2 (z, e

(α)
2 , zcut) that describes the production of the soft subjet. This function has now

two contributions relevant for a NLL resummation, or one-loop calculation. First, there

are the standard virtual contributions, which just correspond to the z → 0 limit of the

corresponding matching coefficient in eq. (3.10). There is, however, a new contribution

to the matching function in this factorization formula. Because we apply soft drop, it is

possible that there is an initial emission in the jet that fails soft drop, and so does not seed

the production of a soft subjet. However, a secondary emission could then pass soft drop,

and produce the soft subjet. These different configurations are shown in figure 9.

The calculation of this two emission contribution to the hard matching function

Hsj
2 (z, e

(α)
2 , zcut) is presented in appendix B.1, but we will describe its features here. We

must consider all possible pairs of soft emissions which are reclustered in such a way that

the first angular-ordered emission fails soft drop, while the second passes. This is the rea-

son why we explicitly show the zcut dependence in this function. Note that the constraint

that one emission fails soft drop while the other passes eliminates the collinear singularity

when the emissions become close in angle. If the two emissions are sufficiently close in

angle compared to their collective angle to the hard jet core, then they will be clustered

together first, which is forbidden by assumption. This implies that the contribution to

this hard function from the emission of a soft quark-anti-quark pair does not contribute to

NLL order. The emission of soft gluons will contribute at NLL order. Figure 9 shows a

schematic picture of these two-emission contributions to the hard matching function.

We therefore find that the complete factorization formula for a soft dropped groomed

jet with a soft subjet is

d3σ

dzde
(α)
2 de

(α)
3

= H(Q2)S(zcut)Hsj
2 (z, e

(α)
2 , zcut)Cs(e

(α)
3 , θ < θab)⊗ Jsc(e(α)3 )⊗ J(e

(α)
3 )⊗Csj,NG

s (e
(α)
3 , zcut) .

(3.13)

A brief review of the different functions entering the factorization is as follows

• H(Q2) is the hard function, in this case for e+e− → dijets.

• Hsj
2 (z, e

(α)
2 , zcut) is a hard function describing the production of the soft subjet.

• J(e
(α)
3 ) is the jet function for the energetic jet.

• Jsc(e(α)
3 ) is the jet function for the soft jet.

• Cs(e(α)
3 , θ < θab) is the collinear-soft function describing the radiation entering the

dipole off of the primary eikonal lines.
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Figure 10. A schematic of the multistage matching procedure in the soft-collinear subjet region of

phase space. The function incorporating non-global collinear effects is not shown, but is discussed

in the text.

• Csj,NG
s (e

(α)
3 , zcut) describes the non-global correlations arising from groomed soft-

collinear emissions.

• S(zcut) is the soft function describing wide angle soft radiation which has been soft

dropped.

For future use, we record the virtualities of the different modes, which are also shown in

figure 10:

µsj ∼ zsjEJ
(

e
(α)
3

(e
(α)
2 )2

)1/α

, µcs ∼ z2
sjEJ

e
(α)
3

(e
(α)
2 )3

(
e

(α)
3

e
(α)
2 zcut

)1/(2α)

. (3.14)

The scalings of these modes will play an important role when studying the behavior of

non-perturbative power corrections. Note that while the functions in the factorization

theorems in the collinear and soft subjet regions are similar, the hierarchy of scales is

different. These differences are present in figures 7 and 10, and are related to the different

sensitivities to infrared scales in the two factorization theorems. For example, the Jsc(e
(α)
3 )

and Csj,NG
s (e

(α)
3 , zcut) functions in figure 10 are explicitly sensitive to the soft energy of

the subjet, while no such dependence exists in the functions of the hard, collinear subjet

factorization.

3.2.4 Merging collinear and soft resolved limits

To perform a complete calculation, we must merge our description of the different re-

solved regions. We merge between the soft-collinear subjet and collinear subjet region by
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subtracting their overlap. This gives:

d3σ

dzde
(α)
2 de

(α)
3

=H(Q2)S(zcut)

[
Sc(zcut,θ>θab)C

NG
s (e

(α)
3 ,zcut)

[
H2(z,e

(α)
2 )−H2(e

(α)
2 ,z→zcut)

]

+Hsj
2 (z,e

(α)
2 ,zcut)C

sj,NG
s (e

(α)
3 ,zcut)

]
⊗Cs(e(α)

3 ,θ<θab)⊗Jsc(e(α)
3 )⊗J(e

(α)
3 ). (3.15)

However, to NLL accuracy, including NGLs, we can show that the collinear factorization

suffices to capture all large logarithms with the appropriate scale setting. First we note that

the tree-level results of the subtracted hard matching of the collinear factorization and the

soft-collinear subjet agree. Then all one must check is that the resummation in the collinear

sector arising from running Sc(zcut, θ > θab) naturally merges with the resummation in

the soft-collinear sector of the function Hsj
2 (z, e

(α)
2 , zcut). For this to happen, the natural

renormalization scales of product:

Sc(zcut, θ > θab)H2(z, e
(α)
2 ) , (3.16)

must merge to the natural renormalization scale found in Hsj
2 (z, e

(α)
2 , zcut) when z → zcut.

This is accomplished so long as we use the transverse momentum of the collinear splitting

as the renormalization scale for the collinear hard splitting function. We then compare the

scales take from appendix A.10 (for simplicity, we take α = 2):

µ2
H2

=
z(1− z)e

(2)
2 Q2

4
, (3.17)

µ2
Sc =

z2
cute

(2)
2 Q2

4z(1− z)
. (3.18)

In the limit z → zcut, we have:

µ2
H2
→ µ2

Sc , (3.19)

showing that the two scales merge.

Finally, we note that the sum of the anomalous dimensions in eq. (A.62) gives eq. (B.7)

in the limit 1 − zq → zcut, that is, the collinear subjets approach the soft-collinear region.

That this must be the case stems from the purely geometrical character of the soft drop

constraint. Regardless of the relative energy scales between the emissions that sets the

1 → 2 splitting, and the emission which fails soft drop, once all additional emissions are

required to fail on their own, whether or not it can contribute to D2 depends on whether it is

clustered into the hard splitting, that is, the angular structure of the emissions. Indeed, we

exploit this fact to simplifiy the calculation of the collinear-soft subjet matching presented

in appendix B. Thus to NLL accuracy, the merging of the collinear and soft resolved limits

is accomplished by simply running the splitting scale to the transverse momentum of the

collinear splitting that sets e
(2)
2 , and only using the collinear factorization formula for the

resummation. Note that the analogous simplification could not be made in the case of

the ungroomed D2 distribution, mainly due to the presence of boundary soft modes in the

soft-subjet factorization.
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3.2.5 Matching resolved and unresolved limits

In this section we discuss how the factorization formulae in the resolved and unresolved

limits can be merged to provide a complete description of the entire D2 distribution. We

consider two distinct merging schemes: one using profile functions [69, 70] to turn off the re-

summation at the endpoint of the distribution, and a second using only canonical scales for

the resummation at all values of D2, never turning off the resummation. We scale set at the

level of the cumulative distribution, and take the derivative for the differential cross section.

When using profiles, we retain all the logarithms of µ over the natural scale of the function

in the matching, jet, and soft-collinear/collinear-soft functions to order O(αs).
9 Thus when

we turn off the resummation by taking all scales to be the factorization scale, we are left with

the singular terms of the fixed-order D2 distribution. When resummation is fully turned

on by the profile function, this trivializes the contribution from the factorized functions.

The specific profile used and the canonical scale choices are summarized in appendix A.10.

For all distributions (quark, gluon, and signal), the use of canonical scales in the re-

summation gives a resummed distribution that completely over-shoots the singular terms

of the fixed order result throughout the range of D2, leading to an unphysical endpoint

of the distribution much greater than 1/(2zcut). If one were to additively match and nor-

malize, the resulting curve would be equivalent to just the normalized resummed canonical

prediction, with completely unphysical behavior in the large D2 region, and with a peak

much too low due to the broad tail. Thus we adopt a strategy of multiplicative matching

for the distribution

dσ

de
(2)
2 de

(2)
3

∣∣∣∣∣
matched

=
dσ

de
(2)
2 de

(2)
3

∣∣∣∣∣
resum




dσ

de
(2)
2 de

(2)
3

∣∣∣
fo

dσ

de
(2)
2 de

(2)
3

∣∣∣
resum fo


 . (3.20)

Here “fo” stands for the fixed-order distribution, which is determined from the 1 → 3

splitting functions (as discussed in appendix D) or from EVENT2 [60]. Thus, regardless of

whether we use canonical scale choices in the resummed distribution or profiles to turn off

the resummation, the distribution will always terminate at the physical value 1/(2zcut).

The only subtlety is if the singular distribution has a zero in the physical range of D2.

This occurs in some cases, and we are then forced to only use distributions where the resum-

mation is turned off via profiles before this zero is reached. We find this to be the case gener-

ically for the signal distributions if zcut < 0.2, and for the quark distribution if zcut ≤ 0.05.

It is worthwhile to understand how the merging interplays with the resummation of

the e
(α)
2 spectrum, and the counting of logs of D2 versus logs of e

(α)
2 . As can be directly

seen from appendix D, the D2 spectrum in the large D2 region, which is controlled by

the factorization in the soft-haze region of section 3.2.1, is independent of the value of

e
(α)
2 . Since the D2 spectrum at leading order is set by the two-loop matrix elements in the

soft-haze region, we may write

dσ

de
(α)
2 dD2

=
dσ

de
(α)
2

∣∣∣∣∣
N3LL

×
[
F (D2, zcut)

]
+

+O
(
α4
s log e

(α)
2

)
, (3.21)

9If we had also retained the constants, this would be equivalent to NLL′.
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where F (D2, zcut) reproduces the fixed order spectrum in D2. The subscript N3LL indicates

that this expression is valid up to N3LL order. Although the fixed order distribution

diverges at D2 = 0, the plus distribution ensures that the singularity at D2 = 0 is formally

cancelled by the appropriate virtual corrections, so that we have
∫ ∞

0
dD2

[
F (D2, zcut)

]
+

= 1 . (3.22)

The factor multiplying the fixed order D2 spectrum is simply the groomed e
(α)
2 spectrum

to N3LL accuracy. Once we match the resummed D2 spectrum to the fixed-order D2

spectrum, we replace
[
F (D2, zcut)

]
+
→ Fmatched(D2, zcut, Qe

(α)
2 ) . (3.23)

The matched function satisfies the properties:
∫ ∞

0
dD2F

matched(D2, zcut, Qe
(α)
2 ) = 1 , (3.24)

Fmatched(D2, zcut, Qe
(α)
2 )→ F (D2, zcut) as D2 →

1

2zcut
. (3.25)

The resummation ensures the integrability of the matched distribution, and the matching

ensures that in the region of validity of the soft-haze factorization, we reproduce the soft-

haze spectrum. Thus we may simply replace the plus-distribution for the fixed order result

within eq. (3.21)

dσ

de
(α)
2 dD2

=
dσ

de
(α)
2

∣∣∣∣∣
N3LL

× Fmatched(D2, zcut, Qe
(α)
2 ) +O

(
α4
s log e

(α)
2

)
. (3.26)

This result is still valid to the same logarithmic accuracy in the log counting for the e
(α)
2

spectrum, while maintaining the correct sum rules on the D2 variable, and gives the correct

shape of the end-point of the distribution where the soft-haze factorization applies. Since

the resummation of the groomed e
(α)
2 spectrum is multiplictative to the D2 spectrum, we

can correctly predict the shape of the distribution for both large and small D2 without

resumming any logs of e
(α)
2 to at least N4LL accuracy, which is far beyond the practically

achievable accuracy.

We stress that such a simple matching procedure does not work when considering the

ungroomed D2 distribution. For the ungroomed distribution in the soft haze region, we

are forced to write

dσ

de
(α)
2 dD2

=
dσ

de
(α)
2

∣∣∣∣∣
N3LL

⊗
[
F (D2, e

(α)
2 )
]
+

+O
(
α4
s log e

(α)
2

)
, (3.27)

where we now have a convolution in the e
(α)
2 variable, denoted by the ⊗. We may still

replace the fixed order distribution in D2 with the matched distribution, both normalized

to obey the correct D2 sum rule, but now we must perform a convolution in e
(α)
2 ! Given

that the endpoint of the ungroomed distribution behaves as the inverse of e
(α)
2 , performing

such a convolution would be daunting and computationally expensive, since at each e
(α)
2

value, one would need to calculate the full matched and normalized D2 distribution.
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Figure 11. The collinear subjets configuration for a boosted color singlet decay is shown in (a).

The structure of factorization formula is shown in (b). Figure from [15].

3.2.6 Signal jets

In this section, we give the effective field theory description for a groomed hadronically-

decaying color singlet, which we take for concreteness to be a Z boson:

d3σ

dz de
(α)
2 de

(α)
3

= H(Q2)HZ→qq̄
2 (e

(α)
2 ,m2

Z)Ja(e
(α)
3 )⊗ Jb(e(α)

3 )⊗ S(e
(α)
3 , zcut) . (3.28)

A brief description of the functions appearing in eq. (3.28) is as follows:

• H(Q2) is the hard function describing the production of the on-shell Z boson.

• HZ→qq̄
2 (z, e

(α)
2 ,m2

Z) is a hard function describing the decay of the Z boson into a qq̄

pair.

• Ja(e(α)
3 ), Jb(e

(α)
3 ) are the jet functions describing the two collinear subjets.

• S(e
(α)
3 , zcut) is the collinear-soft function describing the radiation emitted from the

qq̄ dipole.

The factorization formula, and the region of phase space it describes is shown schematically

in figure 11. One-loop calculations are given in appendix C.

The factorization formula of eq. (3.28) is valid when e
(α)
3 � (e

(α)
2 )3. The structuring

of the radiation within S(e
(α)
3 , zcut) is similar to the collinear-soft function in eq. (3.9), and

can also be refactorized similarily, except that there is no third Wilson line corresponding

to the hard recoil direction of the jet. When e
(α)
3 & (e

(α)
2 )3, one must match to the full

Z → qq̄g matrix element.

4 Factorized cross section in pp collisions

In this section we will discuss the extension of the e+e− factorization formulae of section 3.2

to pp collisions. In particular, we show that for phenomenologically relevant parameters for

– 26 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
4

the jet mass and pT , the assumptions of the factorization formula hold, and no new ingredi-

ents are required to extend the factorization formula to pp. The only process dependence is

carried by the quark, anti-quark and gluon fractions of the process. This will follow straight-

forwardly from the universality of collinear factorization and the fact that all the factoriza-

tion formulae of section 3.2 were obtained through a refactorization of the jet or collinear-

soft functions. For concreteness, in this section we will consider the factorization for the

groomed D2 observable in pp→ Z+j. We identify the highest pT jet satisfying |ηJ | < ηmax,

groom it with the mMDT/soft drop algorithm, and then measure D2 on the groomed jet.

It is important to emphasize that here we are completely inclusive over additional hadronic

activity throughout the event. We do not need to apply any form of veto on out-of-jet ra-

diation, as is sometimes imposed to study ungroomed jet mass (for example, see ref. [71]).

Since our factorization formula for the groomed D2 observable is obtained as a refac-

torization of the cross section for mMDT/soft drop groomed e
(α)
2 observable, we begin by

summarizing its factorization in pp collisions. In ref. [34] it was shown that in the region

where the factorization formula applies, namely e
(α)
2 � zcut � 1, the cross section can be

written as

dσpp

de
(α)
2

=
∑

k=q,q̄,g

Dk(p
min
T , ymax, zcut, R)SC,k(zcut, e

(α)
2 )⊗ Jk(e(α)

2 ) . (4.1)

Here, it is important to emphasize that since we are inclusive over hadronic activity in the

event, a strict factorization into jet and soft functions does not apply. Indeed, it is clear

that this must be the case, since the number of jets in the event is not fixed. Nevertheless,

eq. (4.1) shows that all dependence on the rest of the event can be absorbed into a process

dependent normalization factor Dk, which does not depend on the e
(α)
2 observable. In

general, Dk depends on the minimum pT cut, the jet radius R, rapidity cuts, parton

distributions, zcut, etc. The e
(α)
2 observable is set by universal collinear physics described

by the convolution between the collinear-soft function and the jet function. Since these

are collinear matrix elements, they depend only on the collinear dynamics of the particular

jet in question, and are independent of other jets in the event. In particular, global color

correlations are absent.

The Dk functions depend on the parton flavor, which must be summed over, an added

complication of jets in pp collisions. While parton flavor is not in general an IRC safe

quantity, due to the fact that soft partons can radiate flavor into or out of the jet, it was

shown in ref. [34] that the parton flavor can be defined on soft dropped jets in the limit

e
(β)
2 � zcut � 1, where the factorization formula applies. On a soft dropped jet, we can

define the flavor of the jet as

fJ =
∑

i∈JSD

fi , (4.2)

where fq = 1, fq̄ = −1, fg = 0, and JSD indicates the constituents of the jet after the

soft drop algorithm has been applied. If fJ = ±1, then the jet is defined as quark type,

while if fJ = 0, the jet is defined as gluon type. In the normalized distribution, the Dk can

therefore be interpreted as quark, anti-quark, and gluon jet fractions in the event sample
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under consideration, and can easily be extracted from fixed-order Monte Carlo codes, such

as MCFM [72–74].

The factorization of D2 in pp collisions now follows trivially from combining the factor-

ization formula of eq. (4.1) for soft dropped e
(α)
2 with e

(α)
2 � zcut � 1 with the factorization

formulae derived for e+e− in section 3.2. To proceed, starting from eq. (4.1), we refactorize

the jet and collinear-soft functions, as appropriate. This also implies that the same process

dependent functions Dk also appear in the expression of the cross section of D2. We can

then write

d2σpp,coll

de
(α)
2 de

(α)
3

=
∑

k=q,q̄,g

Dk

[
H2(e

(α)
2 )Cs(e

(α)
3 )⊗ J1(e

(α)
3 )⊗ J2(e

(α)
3 )⊗ Sc(e(α)

3 , zcut)
]
, (4.3)

in the collinear subjets region of phase space,

d2σpp,c-soft

de
(α)
2 de

(α)
3

=
∑

k=q,q̄,g

Dk

[
Hsj

2 (e
(α)
2 , zcut)Cs(e

(α)
3 )⊗ Jsc(e(α)

3 )⊗ J(e
(α)
3 )
]
, (4.4)

in the soft subjet region of phase space, and

d3σpp,cs haze

de
(α)
2 de

(2α)
2 de

(α)
3

=
∑

k=q,q̄,g

Dk

[
J(e

(α)
2 )⊗ Ssc(e(α)

2 , e
(2α)
2 , e

(α)
3 , zcut)

]
, (4.5)

in the collinear-soft haze region of phase space.

Importantly, since the same Dk factor appears in each of the factorization formulae in

the different regions of phase space, we can then perform the marginalization separately over

the different factorization formulae. We can therefore write, for the normalized distribution

when summed over the factorization formulae:

dσpp,norm

dD
(α)
2

=
∑

k=q,q̄,g

κk
dσpp,norm

k

dD
(α)
2

, (4.6)

where the κk can be interpreted as the fraction of jets in the sample with flavor k.

5 Consequences of factorization formulae

Given the factorization formulae developed in the previous sections, there are several fas-

cinating consequences that immediately follow. Several of these have been noted before

(see ref. [34]), and are consequences of the fact that mMDT or soft drop removes soft,

wide angle radiation in a jet from contributing to the observables of interest. Here, we will

briefly mention these general properties of mMDT and soft drop grooming, and discuss in

some detail features that are new to measuring D2 on these groomed jets.

The absence of soft, wide angle radiation in the jet eliminates event-wide color cor-

relations and NGLs of the groomed jet observables to all orders in αs. With the relative

scaling that we have assumed between the two-point energy correlation function and zcut,

e
(α)
2 � zcut � 1, all radiation that remains in the jet after grooming must be collinear.

Assuming collinear factorization, this then implies that the shape of the mass distribution
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is independent of the process that created that jet, up to the relative fraction of quark and

gluon jets in the sample. The quark and gluon groomed jet fractions are well-defined to

leading power in e
(α)
2 and zcut, and can be determined from fixed-order codes. Because

the measurement of D2 is more differential than just the groomed jet mass, all of these

properties continue to hold in that case.

Additionally, the mMDT groomed D2 distribution enjoys other properties that actually

make its perturbative distribution more well-defined and robust than the jet mass. Because

the cut on the groomed jet mass can be tuned to satisfy e
(2)
2 E2

J = m2
J � zcutE

2
J � E2

J ,

perturbative power corrections to the D2 distribution can formally be made arbitrarily

small. Additionally, because soft, wide angle emissions do not contribute to the groomed

observables, non-perturbative corrections are suppressed by powers of the ratio of ΛQCD

to the groomed jet mass. These make D2 a good candidate for QCD studies at the LHC,

and therefore we will discuss these points in some detail.

5.1 Universality of the shape of the D2 distribution

Typically, resummation is only important in a restricted region of the distribution of a

particular observable. For example, soft and collinear emissions dominate the hadronic

final state of e+e− collisions when an appropriately chosen event shape, such as thrust [75],

is small. In the case of soft drop groomed jet mass, radiation in the jet is constrained to be

collinear if m2
J � zcutE

2
J � E2

J ; however, this is not the whole allowed phase space. There

are regions where m2
J & zcutE

2
J , which are vital to describe correctly to claim a precision

description of the distribution.

The entire mMDT/soft drop groomed D2 distribution, however, enjoys a universality.

First, requiring the groomed jet mass to satisfy m2
J � zcutE

2
J � E2

J , all radiation that

remains in the jet is collinear. At this stage, both zcut and mJ are fixed. Then, with

this configuration, we measure D2 on the remaining constituents of the jet. All remaining

emissions in the jet are necessarily collinear, and so any measured value of D2 of these

groomed jets is well-described just by resummation. Perturbative power corrections beyond

the resummation (non-singular contributions) are small, and can be made arbitrarily small

in perturbation theory by going further into the regime where m2
J � zcutE

2
J � E2

J . Note

that this property requires that we restrict the jet mass appropriately and then measure

D2, an observable which resolves further substructure of the jet.

For applications to the LHC, it is interesting to briefly consider the values of the jet

mass and pT for which our factorization formula, and therefore this universality, holds. Ob-

servables such as D2 are used at the LHC both to identify hadronically decaying W/Z/H

bosons, as well as to search for new light particles with m . mZ which decaying hadron-

ically [76]. For many of these searches, the bulk of the data is for pT > 500 GeV, and

extends up to approximately pT ∼ 1000 GeV. Using the condition e
(2)
2 � zcut � 1, with

zcut = 0.1, we expect that our factorization will begin to break down around pT = 500 GeV

for mJ ∼ mZ , if the value of zcut = 0.1 is fixed. For lower values of pT , one will become

sensitive again to global color correlations from emissions with energy fraction greater than

zcut, which do not fail the soft drop criteria, and can contribute to the observable. Taking

as a concrete example a bin from pT = 600−800 GeV in which the D2 observable has been
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measured by ATLAS [77], for a jet mass of mJ ∼ mZ , this has e
(2)
2 . 0.02. For zcut = 0.1

the assumptions of our factorization formula safely hold. For lighter particles the pT range

can be extended, or alternatively, the expansion parameter is smaller. We therefore find

that our factorization applies for most of the pT range of phenomenological interest, and

therefore so do our conclusions regarding the universality of the distribution. We believe

that this understanding of universality derived from the factorization formula is one of the

most important outcomes of our analysis.

5.2 Hadronization corrections suppressed by perturbative jet mass

The dominant non-perturbative corrections to a factorization formula arise from modes

whose virtualities approach ΛQCD. A simple estimate of the size or importance of these

non-perturbative effects follows from determining the value of the observable at which the

lowest virtuality mode becomes comparable to ΛQCD. The mode with the lowest virtuality

often corresponds to soft, wide angle emissions. So, by grooming them away with mMDT

or soft drop, we can significantly reduce the effect of non-perturbative corrections and

render the perturbative distribution more robust.

To see this for D
(α)
2 on groomed jets, we first review the size of non-perturbative

corrections in the ungroomed case. For concreteness, we will focus on the non-perturbative

corrections to the collinear subjets factorization formula. In the ungroomed case the lowest

virtuality mode is that of soft, wide-angle radiation; see section 3.1.2. Its virtuality was

identified in ref. [15] and is

µS '
e

(α)
3

e
(α)
2

EJ ' (e
(α)
2 )2D

(α)
2 EJ , (5.1)

where we have expressed e
(α)
3 in terms of e

(α)
2 and D

(α)
2 . Setting µS = ΛQCD, we find that

non-perturbative effects dominate when

D
(α)
2

∣∣∣
np
' ΛQCD

(e
(α)
2 )2EJ

. (5.2)

If we take α = 2 for concreteness, this can be rewritten in terms of the jet mass and energy as

D
(2)
2

∣∣∣
np
' ΛQCDE

3
J

m4
J

. (5.3)

Therefore, perhaps surprisingly, as the jet energy increases for a fixed jet mass, non-

perturbative corrections increase significantly. If we assume that EJ = 500 GeV,

mJ = 100 GeV, and take ΛQCD = 1 GeV, then D
(2)
2

∣∣∣
np
' 1. That is, we expect

non-perturbative physics to dominate right at the boundary between where one- and

two-prong jets live in the D
(α)
2 distribution.

Now, let’s do the same analysis but for the mMDT/soft drop D2 cross section. The

lowest virtuality mode that appears in any factorization formula is the collinear-soft radi-

ation of the collinear-soft subjet factorization formula; see section 3.2.3. The virtuality of

– 30 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
4

this mode is

µcs ∼ EJ
z2

cute
(α)
3

(e
(α)
2 )3

(
e

(α)
2

zcut

)1/α

= EJz
2
cutD

(α)
2

(
e

(α)
2

zcut

)1/α

. (5.4)

Setting µcs = ΛQCD, non-perturbative effects dominate this mode when

D
(α)
2

∣∣∣
np,cs

' 1

(e
(α)
2 )1/αz

2−1/α
cut

(
ΛQCD

EJ

)
. (5.5)

As before, taking α = 2 for concreteness, we find that non-perturbative effects dominate

when

D
(2)
2

∣∣∣
np,cs

' ΛQCD

z
3/2
cutmJ

. (5.6)

This result is quite remarkable. Without grooming, non-perturbative effects for D
(2)
2

become larger, for a fixed jet mass cut, as the energy of the jet is increased. However, by

grooming the jet with mMDT or soft drop, non-perturbative corrections are independent

of the jet energy! Physically this arises since after grooming the jet behaves loosely like a

boosted event shape, and it is the jet mass that sets the scale. As long as the mass cut

on the jet is perturbative, hadronization corrections are highly suppressed. Importantly,

the distribution is perturbative well below D
(2)
2 ∼ 1, into the region where two-prong jets

live. Taking the numerical values of zcut = 0.1, ΛQCD = 1 GeV, and mJ = mZ , we find

that dominant non-perturbative correction arises from the soft dropped soft subjet region

of phase space, and we can estimate that non-pertubative effects becomes important at

D
(2)
2 ∼ 0.35. Non-perturbative corrections for the other regions of phase space in the

factorization formulae are further suppressed, and so are ignored. A more detailed study

of non-perturbative effects for the D2 distribution is performed in a companion paper [1].

Combined with the fact that the distribution terminates at (as discussed in section 2.3)

D
(α)
2

∣∣∣
max
∼ 1

2zcut
, (5.7)

this implies that, for a fixed mass cut, the full distribution, including non-perturbative

effects, of the mMDT/soft drop groomed D
(α)
2 is largely independent of the jet energy!

Unlike the ungroomed D
(α)
2 distribution, which had both an upper endpoint and location

of non-perturbative corrections that depended on the jet energy, the groomed D
(α)
2 dis-

tribution has endpoints and non-perturbative corrections that are independent of the jet

energy. We will demonstrate in sections 6 and 7 that both the NLL calculation of the

distribution as well as the Monte Carlo simulation respect this prediction.

5.3 Grooming efficiency for signal jets

While we have focused on the properties of the mMDT/soft drop D2 distribution for

background (QCD) jets, jet grooming can have an effect on the signal distribution as well.

For an unpolarized boosted Z boson that decays to a qq̄ pair, the distribution of the energy

fraction z of the quark, say, is approximately flat:

dσ

dz
' Θ(1− z)Θ(z) . (5.8)
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This implies that when the boosted Z jet is groomed, a fraction 2zcut of the jets will have

one prong removed by grooming. For these jets that lose one prong, they will also typically

fail the mass cut, as well as no longer have a clear two-prong structure. Of course, for

zcut � 1, this is formally a small effect, but practically, if zcut ' 0.1, then about 20% of

the Z jets could have a prong removed. This effect could have a large effect on the signal

D2 distribution.

While at leading-order the distribution of the energy fraction z is approximately flat,

when all-orders effects are included the regions with z → 0 and z → 1 are suppressed by a

Sudakov factor. When z → 0, for example, there is of course no divergence in the leading-

order Z decay matrix element. However, a gluon emitted off of the soft decay product will

itself necessarily be soft, and result in a divergence at fixed-order. When all-orders effects

are included, these soft gluon divergences arrange themselves into a Sudakov factor that

suppresses the probability for a decay product to only carry a small fraction of the energy

of the Z. At double logarithmic accuracy (DLA), this Sudakov factor is

dσDLA

dz
' Θ(1− z)Θ(z) exp

[
−αs

2π
CF
(
log2z + log2(1− z)

)]
, (5.9)

which can be derived from the Z boson decay matrix element at next-to-leading order. This

Sudakov factor pushes decay products of the Z to have more equal energies, and reduces

the fraction of Z jets that have a subjet that is removed by the jet groomer. That is, due

to all-orders effects, hadronic decays of Z bosons can look more two-prong-like than their

fixed-order description would suggest.

In our analytic calculations for the prediction of the D2 distribution on groomed signal

jets, we include this resummation to NLL accuracy. The suppression of the z → 0 and

z → 1 regions will be much larger than that suggested by the simple Sudakov factor that

exists at DLA accuracy. Nevertheless, even at DLA accuracy, this suppression is non-

trivial. With zcut = 0.1 and using the distribution of eq. (5.9), only about 15% of Z jets

fail soft drop, as compared to 20% using eq. (5.8).

6 NLL predictions in e+e− collisions

In this section we use our factorization formulae to provide numerical results for the D2

distribution in e+e− collisions. In section 6.1 we compare our result, expanded to fixed

order, with the fixed order code EVENT2 to ensure that we reproduce the singular behavior

of the D2 distribution. In section 6.2 we compare our resummed results, matched to fixed

order, with parton shower Monte Carlo.

In all of the plots that follow, we set the angular exponent in the definition of D2 to

α = 2. We do this for two reasons. First, when α = 2, the two-point energy correlation

function e
(α)
2 is proportional to the squared mass of the jet. Therefore, it is easy to enforce a

mass cut on jets of fixed energy. Additionally, from the analysis of non-perturbative effects

in section 5.2, with α = 2, for a given mass cut, there is no dependence on jet energy of the

size of non-perturbative corrections. A study of mMDT groomed D2 with exponent α 6= 2

is beyond the scope of this paper, though we expect that many of the features we observe

to apply to groomed two-pronged observables more generally.
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Figure 12. (a) A comparison of the NLL prediction expanded to fixed order with EVENT2. The

singular behavior of the D2 distribution is reproduced by our factorization. (b) Comparison of the

end-point value found by fixed-order codes and Monte Carlo event generators. Note the robustness

of the endpoint set by zcut even in the prescence of multiple emissions.

6.1 Singular results and comparison with EVENT2

To verify that our factorization reproduces the singular behavior of the D2 distribution as

D2 → 0, we can compare the results of our factorization formula, expanded to α2
s, with the

fixed order generator EVENT2 [60]. In figure 12a we show the result of EVENT2 in each of

the color channels, compared with the expansion of our NLL formula. We see that at small

values of D2, our NLL formula captures the singular structure of the EVENT2 distribution,

as is required. Here we consider e+e− → dijets at 1 TeV with zcut = 0.1, but we have found

similar agreement for other values of the zcut parameter, while verifying the independence

on the center-of-mass energy and jet mass bin. This verifies the consistency of our factoriza-

tion to O(α2
s). Due to the complexity of our factorization, this is a highly non-trivial check,

and gives us confidence that have correctly incorporated all modes in the effective theory.

In figure 12b we show a linear plot of the D2 distribution, comparing EVENT2 [60],

Pythia 8.226 [78, 79], and a calculation using the 1 → 3 splitting functions that is

discussed in detail in appendix D. The details of the Pythia 8.226 result will be discussed

in section 6.2. This figure illustrates two important points. First, as described in section 3,

our factorization formula for the D2 observable isolates the collinear physics. If we did not

want to resum the small D2 behavior, then this shows that the fixed order result can be

computed, up to power corrections, using the 1 → 3 splitting function. This is seen by

the excellent agreement between the result of EVENT2 and the result computed using the

1→ 3 splitting functions, shown in figure 12b. Second, our factorization formulae describe

both the small D2 region, where there is a resolved substructure, as well as the large

D2 region, where the substructure is unresolved. A correct description of the unresolved

region of phase space, with the collinear-soft haze factorization of section 3.2.1, is required

to describe the correct endpoint of the distribution, which occurs at 1/(2zcut). In the
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collinear-soft haze factorization, we do not need to resum logarithms of D2, and therefore

we can simply compute to fixed order, which is equivalent to a fixed order calculation

using the 1 → 3 splitting function. In figure 12b, we see first of all that all three curves

reproduce well the expected 1/(2zcut) endpoint, and second, that the calculation based on

the 1→ 3 splitting function describes relatively well the distribution at large values of D2,

and in particular, the approach to the endpoint.10 This is important, since it illustrates that

already at LO one can have a reasonable description of the endpoint of the distribution, and

that the phase space of the observable is already reasonably well filled out. In section 6.2

we will further study this in the matched distributions for different values of zcut.

6.2 Comparison with parton shower Monte Carlo

Having shown that we reproduce the singular structure of the D2 distribution, in this

section we compare our NLL resummed predictions multiplicatively matched to the leading

order (LO) EVENT2 or 1 → 3 splitting functions with parton shower Monte Carlo. For

QCD jets, we consider both e+e− → qq̄, as well as e+e− → gg, generated through an

off shell Higgs, while for signal, we consider e+e− → ZZ events with both Zs decaying

hadronically. The events were generated with MadGraph5 2.5.5 [80], and showered with

Pythia 8.226 [78, 79]. We also verified that similar results are obtained with Vincia [81–

85], although for simplicity we do not show distributions from Vincia. Throughout this

section we use FastJet 3.1.2 [86] and the EnergyCorrelator FastJet contrib [86, 87]

for jet clustering and analysis. All jets are clustered using the e+e− anti-kT metric [86, 88]

using the WTA recombination scheme [89, 90], with an energy metric.

In figure 13 we show comparisons of our analytic predictions (on the left) with parton

shower Monte Carlo results at parton level (on the right). Results are shown for both

quark and gluon jets. We also highlight the region where non-perturbative effects from

hadronization will have a significant impact on the distribution, as will be discussed shortly.

The distributions are shown for three different values of the zcut parameter, namely zcut =

0.05, 0.1, 0.2. Overall, good agreement between the analytic calculation and the parton

shower Monte Carlo is observed, and differences between quarks and gluons, as well as

the behavior as a function of zcut are well reproduced. In particular, due to the inclusion

of the fixed order corrections, the correct endpoint of the distribution is obtained in the

analytic calculation. This is crucial for obtaining agreement of the distributions. We also

note that, as observed for a wide range of groomed jet observables, the mMDT groomed

D2 distributions for quarks and gluons have a relatively small difference, as compared to

its ungroomed counterpart.

It is interesting to consider the behavior as a function of zcut, and in particular the

differences between the parton shower and analytic results as the value of zcut is increased,

corresponding to a more aggressive grooming. In figure 13 we see that for smaller values

10The precise behavior of the 1 → 3 splitting function calculation and EVENT2 at the endpoint becomes

sensitive to the binning used in this region, since the distribution is rapidly vanishing. One must trade

accuracy of reproducing the endpoint for numerical stability of the bins. We have found that using smaller

binning always improves the agreement between EVENT2 and the 1 → 3 splitting functions, at the expense

of having to run longer to achieve adequate accuracy and precision.
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Figure 13. A comparison of the analytic D
(2)
2 distributions for both quark and gluons (left

column) with parton shower Monte Carlo at parton level (right column), for different values of the

zcut parameter. A mass cut of mJ ∈ [80, 100] GeV has been applied. Good agreement in the shape

is observed, particularly for smaller values of zcut.

– 35 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
4

��� ��� ��� ��� ��� ���
���

���

���

���

���

��
(�)

�
��
��
��
�
�
��
��
��
��
��

mMDT D2
e+e- → ZZ, 1 TeV, Analytic

R = 1.0, zcut = 0.1

(a)

��� ��� ��� ��� ��� ���
���

���

���

���

���

��
(�)

�
��
��
��
�
�
��
��
��
��
��

mMDT D2
e+e- → ZZ, 1 TeV, Pythia8

R = 1.0, zcut = 0.1
������

������

(b)

Figure 14. A comparison of the analytic D
(2)
2 distribution for signal (Z) jets (left) and the parton

shower Monte Carlo distribution (right). A mass cut of mJ ∈ [80, 100] GeV has been applied. Good

agreement is observed.

of zcut, where the grooming has a smaller effect, better agreement is observed between

the analytic and parton shower results. We believe that this arises primarily due to two

effects. First, since the endpoint of the distribution scales as 1/zcut, for smaller values

of zcut, there is a less rapid transition between the resummation and fixed order regime,

ensuring that there are well separated resummation and fixed orders regions. Secondly,

we observe that for more aggressive grooming the LO fixed order prediction undershoots

the Monte Carlo distribution at large values of D2. Since we are considering normalized

distributions, this then translates into a large difference in the peak region, as seen most

clearly for zcut = 0.2. We believe that this could be remedied by including higher order

perturbative corrections, which would fill out the phase space better, more similar to the

parton shower. Indeed, the LO predictions are known to undershoot in other grooming

or D2 studies [34, 35, 53, 91, 92]. It would be very interesting to include higher order

corrections, but this is beyond the scope of the current paper. Although our focus in this

paper is primarily on the calculation of groomed D2 for QCD jets, in figure 14 we show

a comparison of our analytic results with parton shower Monte Carlo for a hadronically

decaying boosted Z. Excellent agreement is observed.

Finally, it is important to address the impact of hadronization corrections to the distri-

bution. Although it was shown in section 5.2 that hadronization corrections are suppressed

significantly by the grooming procedure, they still have a non-negligible impact on the D2

distribution. In figure 15 we show the effect of hadronization on the groomed D2 spectrum

in parton shower Monte Carlo for both quark and gluon jets, and for the different values of

zcut considered above. In figure 14b the effect of hadronization is shown for the boosted Z

distribution. We see that in all cases, the effect of hadronization is quite minor, and does not

dominate the shape of the distribution. It can be included in the analytic calculation using

a model shape function [69, 93–96], although we will not pursue this further in this paper.
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Figure 15. The effect of hadronization on the D
(2)
2 distribution for quark (left column) and gluon

(right column) jets. Non-perturbative corrections are suppressed by the grooming procedure. A

mass cut of mJ ∈ [80, 100] GeV has been applied.
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A detailed study of the non-perturbative corrections for the D2 distribution at the LHC,

and their incorporation through shape functions, are presented in a companion paper [1].

7 Monte Carlo results in pp collisions

Analytic predictions of the D2 distribution for pp processes of interest are presented in

a companion paper [1]. In this section we perform a Monte Carlo study demonstrating

the consequences of the power counting and factorization analysis presented earlier. For

convenience, we recall here the major predictions of our analysis. We emphasize that these

are robust predictions of the factorization formula, combined with the power counting

analysis, which hold within the region of validity of the factorization formula, namely

e
(α)
2 � zcut. They should therefore be independent of the details of the hadronization

model or details of the perturbative shower. The non-trivial predictions are:

• The endpoint of the D2 distribution is fixed as 1/(2zcut). This is independent of the

jet mass, jet energy, hadronization, or the angular exponent used to define the energy

correlation functions.

• The scale at which hadronization corrections become important is independent of

the pT of the jet. It depends only on ΛQCD, the jet mass, and the value of the zcut

parameter.

• The distributions depend only the quark vs. gluon fraction of the jets in the event,

but are otherwise process independent. We have previously argued that the soft drop

procedure also reduces the dependence of the distribution on the parton flavor.

We will see that each of these predictions is well reproduced by Monte Carlo parton shower

in pp collisions. The parton-level samples in this section were generated at the 13 TeV

LHC with MadGraph5 2.5.5 [80] and showered with Pythia 8.226 [78, 79] with default

settings. Jets were clustered with the anti-kT algorithm [88] in FastJet 3.1.2 [86] and

the EnergyCorrelator and SoftDrop FastJet contribs [86, 87] for jet analysis.

7.1 Signal distributions

We first show the distributions for signal jets. The signal jets are clustered from pp→ ZZ

events in which one Z boson is forced to decay to neutrinos, and the other to hadrons. In

figure 16, we plot the groomed jet D
(2)
2 distributions of the hadronically-decaying Z boson.

In these plots, the mMDT groomer (soft drop with β = 0) is used, with the parameter

zcut = 0.1. A mass cut of 80 GeV < mJ < 100 GeV is also imposed on the groomed jet.

First, in figure 16a, we plot the D
(2)
2 distribution for various pT cuts on the jets. The signal

distributions are stable with respect to pT , which might be expected as the Z boson is

a color-singlet and has an intrinsic, Lorentz-invariant energy scale, mZ . Importantly, the

grooming appears to successfully remove contamination radiation at wide angles in the jet

that would distort the distribution, and potentially become more important at larger pT .

In figure 16b, we fix the transverse momentum range to pT > 500 GeV, and vary the

clustered jet radius from R = 0.6 to R = 1.0. Essentially no effect on the distribution is
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Figure 16. Distributions of D
(2)
2 measured on mMDT groomed hadronically-decaying Z jets with

zcut = 0.1 from the process pp→ ZZ at the 13 TeV LHC. The groomed jet mass is restricted to lie

in the range 80 GeV < mJ < 100 GeV. (a) Distributions of D
(2)
2 for various pT cuts, with the jet

radius fixed to R = 0.8. (b) Distributions of D
(2)
2 for various jet radii R, with the jet pT cut fixed

to pT > 500 GeV.

observed in changing the jet radius, corroborating the performance of the mMDT groomer

in removing contamination radiation. Note also that with this pT range and these jet

radii, the Z boson decay products are well-contained within the jet. For this pT range, the

angular scale of the Z boson decay products RZ is approximately

RZ '
2mZ

pT
' 0.4 . (7.1)

7.2 Background distributions

It may have been expected that the signal distributions were robust under changes of jet pa-

rameters, both due to grooming as well as the intrinsic mass scale. Here, we will show that

mMDT/soft drop grooming also renders the background distributions extremely robust to

jet parameters. We study jets produced in two processes for our background: pp→ Zj and

pp→ Hj. The production of the Z or H bosons in association with the jet enables a handle

on the quark and gluon jet fractions. Because soft drop grooming formally makes quark and

gluon jet definitions infrared and collinear safe, we could in principle extract the individual

quark and gluon jet distributions of D
(2)
2 from these two samples; however, since separate

quark and gluon distributions were studied in the context of e+e− in section 6, here we will

focus only on the mixed distributions. To easily isolate the hadronic jet in these events,

we force the Z boson to decay to neutrinos and the H boson to decay to photons. As with

the signal events, a mass cut of 80 GeV < mJ < 100 GeV is imposed on the groomed jet.

In figure 17, we plot the mMDT D
(2)
2 distributions for various jet pT cuts, for both

the pp → Zj and pp → Hj samples. As predicted from our factorization formula, the

background distributions are very weakly dependent on the jet pT . This is a consequence

of the facts that the endpoint of the distributions are fixed at Dmax
2 = 1/(2zcut) = 5 and that

non-perturbative effects become important at a scale set by the jet mass, and not the jet pT .
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Figure 17. Distributions of D
(2)
2 measured on mMDT groomed QCD jets with zcut = 0.1 from

the processes pp → Zj (left) and pp → Hj (right) at the 13 TeV LHC. The groomed jet mass is

restricted to lie in the range 80 GeV < mJ < 100 GeV. Various pT cuts are shown, with the jet

radius fixed to R = 0.8.
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Figure 18. Distributions of D
(2)
2 measured on mMDT groomed QCD jets with zcut = 0.1 from

the processes pp → Zj (left) and pp → Hj (right) at the 13 TeV LHC. The groomed jet mass is

restricted to lie in the range 80 GeV < mJ < 100 GeV. Various jet radii R are shown, with the jet

pT cut fixed to pT > 500 GeV.

Additionally, the distributions in the Z and H samples are very similar, demonstrating that

quark vs. gluon flavor effects are small. This is a consequence of both the constraints on

the threshold and endpoint kinematics as well as the mixture of quark and gluon jets in the

two samples. The constraints on the bounds of the distribution were derived independent

of jet flavor, and so the distribution has a relatively weak dependence on jet flavor.

Plots of the groomed D
(2)
2 distributions on the background jet samples with different

jet radii are shown in figure 18. Here, the jet pT cut is fixed to pT > 500 GeV, while the
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jet radius ranges from R = 0.6 to R = 1.0. As observed with the signal distributions,

there is extremely weak dependence on the jet radius, demonstrating that mMDT/soft

drop is efficient at removing wide-angle radiation in the jet that would be sensitive to the

jet radius. After grooming, all radiation in the jet is collinear, and the relevant angular

scales are set by the ratio of the groomed mass to the jet pT . By construction, this angular

scale is always less than the jet radius (see eq. (7.1)), and so the jet radius is never relevant.

8 Conclusions

In this paper we have performed a detailed study of the factorization properties of groomed

multi-prong observables, focusing in particular on the D2 observable with mMDT or soft

drop β = 0 grooming. We derived factorization formulae which describe the observable to

all orders in αs, and allow us to make powerful statements of phenomenological relevance

about the behavior of the groomed D2 observable. Most interesting are the fixed endpoint

of the distribution at 1/(2zcut), and the independence of non-perturbative corrections on

the jet energy scale. Combined, these imply a remarkable robustness of the groomed D2

observable, which is important for jet substructure applications.

We have introduced factorization formulae describing each region of phase space rele-

vant for groomed boosted boson discrimination. Some of these factorization formulae follow

by combining those which previously existed in the literature, however some are new. In

particular, we derived a novel factorization describing the production of a soft subjet with

energy the scale of the soft drop parameter zcut. This factorization has the interesting

property that clustering effects enter into the hard matching coefficient for the production

of the soft subjet. We computed the functions entering the factorization at one-loop, and

showed renormalization group consistency of the factorization formulae. While we have

focused on applying these factorization formulae to the particular case of soft dropped

D2, we believe that they will be more generally applicable for describing groomed jet sub-

structure observables, particularly those based on the energy correlation functions. This

includes, for example, the N2 [43] observable used by CMS [76, 97], or more ambitiously,

energy correlation based observables for boosted top tagging [16, 43, 98].

We performed a numerical study for e+e− → dijets at NLL order, considering both the

case of e+e− → Z → qq̄ and e+e− → H → gg, allowing us to understand the differences

between the D2 distributions for quark and gluon jets. Non-perturbative effects were

found to be small, and good agreement was found between the predictions of the Monte

Carlo parton shower, and the analytic calculation. Since the D2 observable probes multi-

particle splittings, it may prove useful for testing Monte Carlo generators that implement

1→ 3 [99, 100] or 2→ 4 splittings [101].

Perhaps most interestingly, we have shown that due to the grooming procedure, our

calculations extend straightforwardly to proton-proton collisions at the LHC. This allows

for experimentally realistic jet substructure observables currently used at the LHC to be

calculated with theoretical precision. In this paper we performed a Monte Carlo study,

showing that the features predicted by the factorization formulae are reproduced by Monte

Carlo parton shower generators. In particular, we focused on the robustness of the groomed
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D2 distribution as a function of the jet pT , the scaling of non-perturbative hadronization ef-

fects, and the partonic content of the jet. We also showed that the groomed D2 distribution

is process independent up to the quark-gluon fraction of the jet. These are experimentally

desirable features, which can be derived from a first principles theoretical description, and

make groomed D2 a promising observable for QCD studies at the LHC, as well as putting

its theoretical understanding as a jet substructure tagger on firm theoretical footing. An-

alytic results for D2 distributions for relevant processes at the LHC are presented in a

companion publication [1].
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A Ingredients for collinear subjets

In this appendix we present the one-loop calculation of all the functions appearing in the

collinear subjets factorization formula.

A.1 Kinematics and notation

We begin by briefly describe the kinematics and notation. We follow closely [15]. We

let Q be the center of mass energy of the e+e− collisions. The energy deposited in each

hemisphere is therefore Q/2, and the four-momenta of the hemispheres are

phemisphere1 =

(
Q

2
, ~p1

)
, phemisphere2 =

(
Q

2
,−~p1

)
, (A.1)

so that we have s = Q2 . For the kinematics of the subjets, we will use the following

notation

Subjet a,b momenta: pa, pb , (A.2)

Subjet a,b spatial directions: n̂a, n̂b , (A.3)

Thrust axis: n̂ =
n̂a + n̂b
|n̂a + n̂b|

, (A.4)

Light-cone vectors: n = (1, n̂), n̄ = (1,−n̂),

na,b = (1, n̂a,b), n̄a,b = (1,−n̂a,b) . (A.5)
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These satisfy the relations

n · na = n · nb =
na · nb

4
, n̄ · na = n̄ · nb = 2 , (A.6)

n⊥a,b · n̄⊥a,b = −n⊥a,b · n⊥a,b = n̂⊥a,b · n̂⊥a,b =
na · nb

2
. (A.7)

For a particle in the collinear sector a or b, we have

pa ∼
1

2
(n̄ · pa)na, pb ∼

1

2
(n̄ · pb)nb , p0

a ∼
1

2
(n̄ · pa), p0

b ∼
1

2
(n̄ · pb) . (A.8)

We will label the energy fractions carried in each subjet by

za,b =
2p0
a,b

Q
=
n̄ · pa,b
Q

, (A.9)

where the second relation is true to leading power.

We can now compute the leading power expressions for the observables in these kine-

matics. The value of e
(α)
2 is given by

e
(α)
2 =

1

E2
J

EaEb

(
2pa · pb
EaEb

)α/2

= 2α/2zazb (na · nb)α/2 . (A.10)

For three emissions, with momenta k1, k2, k3, the expression for the three point energy

correlation function is

e
(α)
3 =

1

E3
J

k0
1k

0
2k

0
3

(
2k1 · k2

k0
1k

0
2

)α/2(2k1 · k3

k0
1k

0
3

)α/2(2k2 · k3

k0
2k

0
3

)α/2
. (A.11)

For an emission collinear with one of the subjets, where we have the splitting pa,b → k1+k2,

we have

e
(α)
3

∣∣∣
k1,k2‖na

= 25α/2zb(na · nb)α
(
k1 · k2

Q2

)α
2
(
n̄a · k1

Q

)1−α
2
(
n̄a · k2

Q

)1−α
2

, (A.12)

e
(α)
3

∣∣∣
k1,k2‖nb

= 25α/2za(na · nb)α
(
k1 · k2

Q2

)α
2
(
n̄b · k1

Q

)1−α
2
(
n̄b · k2

Q

)1−α
2

. (A.13)

For a third collinear-soft emission k off of the pa,b partons, we have

e
(α)
3

∣∣∣
k→c-soft

= 23α/2+1zazb (na · nb)α/2
(
n̄ · k
2Q

)1−α(na · k
Q

)α/2(nb · k
Q

)α/2
. (A.14)

The factorization formula in this region of phase space, which we repeat here for

convenience, is:

d3σ

dzde
(α)
2 de

(α)
3

= H(Q2)S(zcut)Sc(zcut, θ > θab)H2(z, e
(α)
2 ) (A.15)

· J1(e
(α)
3 )⊗ J2(e

(α)
3 )⊗ Cs(e(α)

3 , θ < θab)⊗ CNG
s (e

(α)
3 , zcut) .
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The convolutions over e
(α)
3 can be turned into products by Laplace transforming with

respect to the variable e
(α)
3 . We denote the Laplace transformed variables and functions

with a tilde. When Laplace transformed, the cross section can be written as

d2σ

dzde
(α)
2 dẽ

(α)
3

= H(Q2)S(zcut)Sc(zcut, θ > θab)H2(z, e
(α)
2 ) (A.16)

· J̃1(ẽ
(α)
3 )J̃2(ẽ

(α)
3 )C̃s(ẽ

(α)
3 , θ < θab)C

NG
s (ẽ

(α)
3 , zcut) .

In this appendix, we will present the expressions for these Laplace transformed functions.

A.2 Matrix element definitions

We give the matrix element definitions of all functions in the factorization formula in

eqs. (A.15) and (3.13), and eq. (3.28). The factorization formulae presented in this paper

are formulated in the language of SCET [38–41]. We refer readers unfamiliar with SCET

to the reviews [102, 103]. The jet functions are identical to [15], so we only give the soft

matrix elements. They are defined in terms of soft Wilson lines

Sq = P exp


ig

∞∫

0

ds q ·A(x+ sq)


 . (A.17)

Explicitly, we have

Cs(ẽ
(α)
3 ,θ<θab) =

1

Nf
tr
[
Tf 〈0|T{SaSbSn̄}exp

(
−ẽ(α)

3 E3
(α)
∣∣
SDa,b

)
T̄{SaSbSn̄}|0〉T†f

]
, (A.18)

Sc(zcut,θ>θab) =
1

Nf
tr
[
Tf 〈0|T{SaSbSn̄}ΘSD(a,b,zcut)T̄{SaSbSn̄}|0〉T†f

]
, (A.19)

CNG
s (ẽ

(α)
3 ,zcut) =

1

Nf

×
tr
[
Tf 〈0|T{SaSbSn̄}ΘSD(a,b,zcut)exp

(
−ẽ(α)

3 E3
(α)
∣∣
SDa,b

)
T̄{SaSbSn̄}|0〉T†f

]

Cs(ẽ
(α)
3 ,θ<θab)Sc(zcut,θ>θab)

. (A.20)

Here a, b are the light-cone directions of the subjets, the operator ΘSD(a, b, zcut) imposes

an energy cut of Qzcut/2 on any emission that is not clustered into legs a, b before they

themselves are clustered, and E3
(α)
∣∣
SDa,b

returns only the energy-correlation function com-

puted on all momenta that are clustered into a or b before a and b are clustered. This

works out to be a purely geometrical constraint, for both the soft-collinear and collinear-

soft functions, since all emissions are at a scale where they cannot pass soft drop on their

own. Tf are color matrices contracted into the Wilson lines, and in general depend upon

the flavor structure of the splitting, as does the representation of the Wilson lines, that is,

whether the 1→ 2 subjet splitting was g → gg, q → qg, or g → qq̄.

Throughout these appendices we will refer to the perturbative order of the calculation

with a superscript (L), where L denotes the loop order of the calculations. For example,

for a function F , we have

F = F (T ) + F (1) + F (2) + . . . , (A.21)
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where F (L) denotes the L-th loop correction to the function F . The superscript (T ) stands

for “tree”.

A.3 Hard function

The hard function for e+e− → dijets can be found in [54, 104–106]. To O(αs) it is given by

H(Q2) = 1 +
αsCF

2π

(
−log2 µ

2

Q2
− 3log

µ2

Q2
− 8 +

7

6
π2

)
, (A.22)

and its anomalous dimension is given by

γH =
αsCF
π

(
−2 log

µ2

Q2
− 3

)
. (A.23)

For notational simplicity, throughout these appendices we do not explicitly write the

arguments of the anomalous dimensions.

A.4 Hard splitting function

The hard splitting function describing the q → qg splitting into two collinear subjets was

first derived in the SCET+ context in [54] using results from [107, 108], while the g → gg

splitting and g → qq̄ was derived in [15], where all the coefficients were given in terms

of the variables most useful for the current study. Taking as an example initial quarks

splitting to O(αs), the hard splitting function is given by

Hq→qg
2 (e

(2)
2 , zq, µ) =

αsCF
2π

1

e
(2)
2

1 + z2
q

1− zq
(A.24)

×
{

1 +
αs
2π

[(
CA
2
− CF

)(
2 log

(
Q2

µ2

e
(2)
2

4

)
log zq + log2zq + 2Li2(1− zq)

)

− CA
2

(
log2

(
Q2

µ2

e
(2)
2

4

)
− 7π2

6
+2 log

(
Q2

µ2

e
(α)
2

4

)
log(1− zq) + log2(1− zq) + 2Li2(zq)

)

+(CA − CF )
1− zq
1 + z2

q

]}
,

and its anomalous dimension is

γq→qgH2
=−2

αs
π

(
CA
2
−CF

)
logzq−

αs
π
CAlog

4µ2

e
(2)
2 Q2

+
αs
π
CAlog(1−zq)−

αs
2π

(
11

3
CA−

2

3
nf

)
.

(A.25)

A.5 Jet functions

The jet functions in the collinear subjets region of phase space are identical to the case that

no grooming is applied, and therefore are given in [15]. To O(αs), the quark jet function

in the direction na is given by

J̃ (1)
q,na(QJ , ẽ

(2)
3 ) =

αs
2π
CF

[
2

ε2
+

3

2ε
+

2

ε
log

(
16(na · nb)2(1− zq)ẽ(2)

3

µ2

Q2

)
(A.26)

+log2

(
16(na · nb)2(1− zq)ẽ(2)

3

µ2

Q2

)
+

3

2
log

(
16(na · nb)2(1− zq)ẽ(2)

3

µ2

Q2

)
− π2

3
+

7

2

]
,
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and its anomalous dimension is

γJq =
αs
2π
CF


4 log


4

(
e

(2)
2

)2

z2
q (1− zq)

ẽ
(2)
3

µ2

Q2


+ 3


 . (A.27)

The gluon jet function is given by

J̃ (1)
g,na(QJ ,ẽ

(2)
3 )=

αs
2π
CA

[
2

ε2
+

2

ε
log

(
16(na ·nb)2zq ẽ

(2)
3

µ2

Q2

)
+

1

ε

11CA−2nf
6CA

+log2

(
16(na ·nb)2zq ẽ

(2)
3

µ2

Q2

)
+

(
11

6
− nf

3CA

)
log

(
16(na ·nb)2zq ẽ

(2)
3

µ2

Q2

)

+
67

18
−π

2

3
− 5nf

9CA

]
, (A.28)

and its anomalous dimension is

γJg =
αs
2π
CA


4 log


4

(
e

(2)
2

)2

zq(1− zq)2
ẽ

(2)
3

µ2

Q2


+

11CA − 2nf
3CA


 . (A.29)

A.6 Wide-angle soft function

The wide angle soft function in the collinear subjets region of phase space does not resolve

the collinear splitting, and is therefore identical to that for the soft dropped mass in e+e−,

which was derived in [34]. At O(αs) it can be written as a sum over dipoles, and is given by

S(zcut) = 1 +
αsCF

2π

(
log2 µ2

z2
cutQ

2
− π2

6

)
. (A.30)

Its anomalous dimension is

γS = 2
αsCF
π

log
µ2

z2
cutQ

2
. (A.31)

A.7 Collinear-soft function

The collinear-soft function, Cs(e
(α)
3 , θ < θab) is new, and we therefore calculate it to O(αs)

in this appendix. At O(αs), it can be written as a sum over dipoles

C(1)
s (e

(α)
3 ,θ<θab)=

1

Nf
tr
[
T†f

(
Cs,ab(e

(α)
3 ,θ<θab)+Cs,an̄(e

(α)
3 ,θ<θab)+Cs,bn̄(e

(α)
3 ,θ<θab)

)
Tf

]
,

(A.32)

where the contribution from a given dipole is given by

Cs,ij(e
(α)
3 , θ < θab) = −2g2µ2εTi ·Tj

∫
ddk

(2π)d−1

ni · nj
(ni · k)(nj · k)

δ(k2)ΘSDδe(2)3
. (A.33)

The soft drop constraint in this region of phase space is given by

ΘSD = Θ

(
na · nb −

nb · k
n̄ · k

)
Θ

(
na · k
n̄ · k −

nb · k
n̄ · k

)
+ Θ

(
na · nb −

na · k
n̄ · k

)
Θ

(
nb · k
n̄ · k −

na · k
n̄ · k

)
.

(A.34)
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The soft drop constraint is easily understood: the emission is to be clustered into direction a

or direction b of the splitting before the two legs are themselves clustered. The measurement

function is

δ
e
(2)
3

= δ

(
e

(2)
3 − 16e

(2)
2

(na · k)(nb · k)

Qn̄ · k

)
. (A.35)

We may take the light-cone direction of the parent jet to be n = 1
2(na + nb), conjugate to

n̄. Decomposing k into the light-cone basis formed by n-n̄, we have

na · k =
na · nb

4
n̄ · k + n · k + na · k⊥ , (A.36)

nb · k =
na · nb

4
n̄ · k + n · k − na · k⊥ . (A.37)

Here we have used na · n̄ = nb · n̄ ≈ 2. We can write the dot product in the transverse

plane as

na · k⊥ = −√na · nb k⊥cosφ . (A.38)

Here we choose a fixed but arbitrary direction in the transverse plane for the projection of

the direction na, defining the angle φ. Solving the on-shell condition and rescaling, we have

n̄ · k → Qz , k⊥ → Qz
√
na · nb k⊥, (A.39)

and the Lorentz invariants become

na · k =
Q

4
na · nb z

(
1 + 4k2

⊥ − 4k⊥cosφ
)

=
Q

4
na · nb z(1 + 4~k 2 − 4~k · n̂) , (A.40)

nb · k =
Q

4
na · nb z

(
1 + 4k2

⊥ + 4k⊥cosφ
)

=
Q

4
na · nb z(1 + 4~k 2 + 4~k · n̂) . (A.41)

We can now see that the integration can be efficiently represented by an integral in the

transverse plane. The integration measure, having solved the on-shell conditions with

these rescalings, is then given by

∫
ddk

(2π)d−1
δ(k2) =

1

2π

(
Q2na · nb

)1−ε
∫ ∞

0
dzz1−2ε

∫
d2−2ε~k

(2π)2−2ε
. (A.42)

We can now perform a shift ~k → ~k + 1
2 n̂, to get the compact form

na · k = Qna · nb z~k 2 , (A.43)

nb · k = Qna · nb z(~k + n̂)2 . (A.44)

The measurement function then becomes

δ
e
(2)
3

= δ

(
e

(2)
3 −

e
(2)
2 (na · nb)2

16
z~k 2(~k + n̂)2

)
, (A.45)

and the soft drop condition becomes

ΘSD = Θ
(

1− ~k 2
)

Θ
(

(~k + n̂)2 − ~k 2
)

+ Θ
(

1− (~k + n̂)2
)

Θ
(
~k 2 − (~k + n̂)2

)
. (A.46)

We note that the reduction of the collinear-soft function to integrals over a transverse

plane is not entirely unexpected, given the duality between time-like and space-like soft

processes, see refs. [109–111].
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A.7.1 Soft integrals in the transverse plane

We solve the measurement constraint using the z integral, and go to Laplace space. We

note that the roles of a and b are interchangeable (this amounts to mapping ~k → −~k− n̂),

so that we have

Cs,ab(ẽ
(2)
3 , θ < θab) = −C in

ε Ta ·Tb

∫
d2−2εk

(2π)2−2ε

Θ
(

1− ~k 2
)

Θ
(

(~k + n̂)2 − ~k 2
)

(~k 2(~k + n̂)2)1−2ε
, (A.47)

Cs,an̄(ẽ
(2)
3 , θ < θab) = −C in

ε Ta ·Tn̄

∫
d2−2εk

(2π)2−2ε

Θ
(

1− ~k 2
)

Θ
(

(~k + n̂)2 − ~k 2
)

(~k 2(~k + n̂)2)1−2ε

(
(~k 2) + (~k + n̂)2)

)
,

Cs,bn̄(ẽ
(2)
3 , θ < θab) = −C in

ε Tb ·Tn̄

∫
d2−2εk

(2π)2−2ε

Θ
(

1− ~k 2
)

Θ
(

(~k + n̂)2 − ~k 2
)

(~k 2(~k + n̂)2)1−2ε

(
(~k 2) + (~k + n̂)2)

)
.

Here we have introduced the prefactor

C in
ε = 8αs

(
µ

Q
e

(2)
2 ẽ

(2)
3 (na · nb)3/2

)2ε

Γ(−2ε) . (A.48)

A.7.2 Isolating divergent contributions

We note that all integrals in eq. (A.47) only have a divergence at ~k2 = 0, so that we may

add and subtract to each color structure the integral

− C in
ε

∫
d2−2εk

(2π)2−2ε

Θ
(

1− ~k 2
)

(~k 2)1−2ε
= − C in

ε

(4π)1−εεΓ(1− ε) . (A.49)

The resulting subtracted integrals are all finite, and can be evaluated numerically as a Tay-

lor series in ε in terms of two-dimensional integrals. We have found an analytic expression

for all the divergent contributions. For instance, in the a-b dipole, we first perform the

integral over the magnitude of the vector in the transverse plane, which after some algebra,

gives the angular integral

∫
d2−2εk

(2π)2−2ε

Θ
(

1− ~k 2
)

Θ
(

(~k + n̂)2 − ~k 2
)

(~k 2(~k + n̂)2)1−2ε
−
∫

d2−2ε~k

(2π)2−2ε

Θ
(

1− ~k 2
)

(~k 2)1−2ε

=
1

2π2

(∫ π
3

0
dφφcotφ+

1

2

∫ π

π
3

dφ
{

(π − φ)cotφ− log(1− cosφ)− log 2
})

+O(ε)

= −Cl2(π3 )

4π2
+O(ε) . (A.50)

Here Cl2(x) is the Clausen function, which has a value of approximately 1.01494 at its

maximum x = π
3 . The other dipoles are handled similarly. Putting in the appropriate

factors for MS scheme, we find

Cs,ab(ẽ
(2)
3 ,θ<θab)=

αs
π

Ta ·Tb

(
1

ε2
+

2

ε

(
Lθ<θab

−2
Cl2(π3 )

π

)
+2L2

θ<θab
−8

Cl2(π3 )

π
Lθ<θab

)
+O(ε0),
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Cs,an̄(ẽ
(2)
3 ,θ<θab)=

αs
π

Ta ·Tn̄

(
1

ε2
+

2

ε

(
Lθ<θab

+2
Cl2(π3 )

π

)
+2L2

θ<θab
+8

Cl2(π3 )

π
Lθ<θab

)
+O(ε0),

Cs,bn̄(ẽ
(2)
3 ,θ<θab)=

αs
π

Tb ·Tn̄

(
1

ε2
+

2

ε

(
Lθ<θab

+2
Cl2(π3 )

π

)
+2L2

θ<θab
+8

Cl2(π3 )

π
Lθ<θab

)
+O(ε0),

(A.51)

where the logarithm is defined as

Lθ<θab = log

(
16µ(e

(2)
2 )5/2 ẽ

(2)
3 eγE

(z(1− z))3/2Q

)
. (A.52)

From these expressions it is straightforward to extract the anomalous dimension and per-

form the renormalization group evolution using standard techniques.

A.8 Soft-collinear function

Now we compute how radiation that is not clustered into the two hard prongs gets groomed.

Such radiation is described by the function Sc(zcut, θ > θab). At one-loop order, the

contribution from the generic dipole i, j is given by

S(1)
c (zcut,θ>θab)=

1

Nf

×tr
[
T†f

(
Sc,ab(zcut,θ>θab)+Sc,an̄(zcut,θ>θab)+Sc,bn̄(zcut,θ>θab)

)
T†f

]
, (A.53)

Sc,ij(zcut,θ>θab)=−2g2µ2εTi ·Tj

∫
ddk

(2π)d−1

ni ·nj
(ni ·k)(nj ·k)

δ(k2)(1−ΘSD)Θzcut , (A.54)

where ΘSD was defined in eq. (A.34), and the constraint on the energy fraction of the

groomed radiation is given by

Θzcut = Θ

(
zcut −

n̄ · k
Q

)
. (A.55)

We use the same coordinate system as above, and arrive at the following representation

for each dipole

Sc,ab(zcut, θ > θab) = −Cout
ε Ta ·Tb

∫
d2−2εk

(2π)2−2ε

(
1−Θ

(
1− ~k 2

)
Θ
(

(~k + n̂)2 − ~k 2
)) 1

~k 2(~k + n̂)2
,

Sc,an̄(zcut, θ > θab) = Cout
ε Ta ·Tn̄

∫
d2−2εk

(2π)2−2ε

Θ
(

1− ~k 2
)

Θ
(

(~k + n̂)2 − ~k 2
)

~k 2(~k + n̂)2

(
(~k 2) + (~k + n̂)2)

)
,

Sc,bn̄(zcut, θ > θab) = Cout
ε Tb ·Tn̄

∫
d2−2εk

(2π)2−2ε

Θ
(

1− ~k 2
)

Θ
(

(~k + n̂)2 − ~k 2
)

~k 2(~k + n̂)2

(
(~k 2) + (~k + n̂)2)

)
,

(A.56)

where we have defined the constant

Cout
ε = −4αs

ε

(
µ

zcutQ(na · nb)1/2

)2ε

. (A.57)

– 49 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
4

To isolate the ~k = 0 divergence, we now add and subtract the integral

Cout
ε

∫
d2−2εk

(2π)2−2ε

Θ
(

1− ~k 2
)

~k 2
=

2Cout
ε

(4π)1−εεΓ(1− ε) . (A.58)

We then find that the divergences and µ-dependent logs have the structure

Sc,ab(zcut,θ>θab)=−2
αs
π

Ta ·Tb

(
4

ε

Cl2(π3 )

π
+8

Cl2(π3 )

π
Lθ>θab

)
+O(ε0), (A.59)

Sc,an̄(zcut,θ>θab)=−2
αs
π

Ta ·Tn̄

(
1

ε2
+

2

ε

(
Lθ>θab

−2
Cl2(π3 )

π

)
−2L2

θ>θab
+8

Cl2(π3 )

π
Lθ>θab

)
+O(ε0),

Sc,bn̄(zcut,θ>θab)=−2
αs
π

Tb ·Tn̄

(
1

ε2
+

2

ε

(
Lθ>θab

−2
Cl2(π3 )

π

)
−2L2

θ>θab
+8

Cl2(π3 )

π
Lθ>θab

)
+O(ε0),

where the logarithm is defined as

Lθ>θab = log


 µ(z(1− z))1/2

zcut

(
e

(2)
2

)1/2
Q


 . (A.60)

It is again straightforward to extract the anomalous dimensions from the above results,

and perform the renormalization group evolution.

A.9 Anomalous dimensions

Here we show that the anomalous dimensions sum to zero, showing the consistency of the

factorization formula at the one-loop level. We label the anomalous dimension’s flavor

structure to distinguish different channels. For q → qg splitting, the anomalous dimensions

calculated above are given by

γqH =
αsCF
π

(
−2 log

µ2

Q2
− 3

)
, (A.61)

γq→qgH2
= −2

αs
π

(
CA
2
− CF

)
log zq −

αs
π
CAlog

4µ2

e
(2)
2 Q2

+
αs
π
CAlog(1− zq)−

αs
2π

(
11

3
CA −

2

3
nf

)
, (A.62)

γJq =
αs
2π
CF


4 log


4

(
e

(2)
2

)2

z2
q (1− zq)

ẽ
(2)
3

µ2

Q2


+ 3


 , (A.63)

γJg =
αs
2π
CA


4 log


4

(
e

(2)
2

)2

zq(1− zq)2
ẽ

(2)
3

µ2

Q2


+

11CA − 2nf
3CA


 , (A.64)

γqS = 2
αsCF
π

log
µ2

z2
cutQ

2
, (A.65)
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γq→qgCs
= −αs

π
CA

[
log

(
4(e

(2)
2 )5(ẽ

(2)
3 )2µ2

z3
q (1− zq)3Q2

)
− Cl2(π3 )

π

]

− αs
π
CF

[
log

(
4(e

(2)
2 )5(ẽ

(2)
3 )2µ2

z3
q (1− zq)3Q2

)
+

Cl2(π3 )

π

]
, (A.66)

γq→qgSc
= −αs

π
CA

(
Cl2(π3 )

π

)
− αs

π
CF

[
log

(
4zq(1− zq)µ2

z2
cute

(2)
2 Q2

)
− Cl2(π3 )

π

]
. (A.67)

For g → gg splitting, we have

γqH =
αsCA
π

(
−2 log

µ2

Q2
− β0

)
, (A.68)

γg→ggH2
= −αs

π

[
−CAlog

(
4µ2

e
(2)
2 z(1− z)Q2

)
+

11

6
CA −

2

6
nf

]
, (A.69)

γgS = γqS

∣∣∣
CF→CA

, (A.70)

γg→ggCs
= γq→qgCs

∣∣∣
CF→CA

, (A.71)

γg→ggSc
= γq→qgSc

∣∣∣
CF→CA

. (A.72)

One can deduce the anomalous dimension structure for g → qq̄ using the appropriate color

generators in the collinear-soft matrix elements, and the matching for the splitting given

in [15]. To achieve NLL accuracy, one must include the contribution from the two-loop

cusp anomalous dimension to the coefficient multiplying logarithmic terms in each of the

anomalous dimensions. For e+e− → hadrons events in which we divide the event into

hemispheres, groom each hemisphere, and then measure e
(2)
2 and e

(2)
3 on each hemisphere,

the anomalous dimensions must satisfy

0 =
γH + γS

2
+ γH2 + γJq + γJg + γCs + γSc . (A.73)

One can verify that indeed this is satisfied, demonstrating consistency of the factorization

at one-loop, or NLL accuracy. Due to the highly non-trivial combinations of scales ap-

pearing in the different functions, this provides a strong cross-check of our calculation and

factorization formula.

A.10 Description of resummation, scale choices and profiles

Since we are resumming to NLL, the contribution to the cross section from each factorized

function is given by the formula

F (µ) = F (µf ) exp

(∫ µ

µf

dµ′

µ′
γF (αs(µ

′), µ′)

)
, (A.74)

where γF is the appropriate anomalous dimension for the considered function, and µf is

the scale where we run the function to. For canonical scale setting, µf is where all large

– 51 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
4

logarithms are minimized. To perform the resummation, we substitute in eq. (A.15) the

resummed expression for each function. In general, so that we may make use of profiles to

control the precise value of the resummation scale where needed, and so that we can match

to the fixed order result, we keep all terms in the renormalized functions that explicitly con-

tribute to the anomalous dimensions. Thus, when we turn off resummation, we will recover

explicitly the differential cross section. When we resum we always scale set in the cumu-

lative distribution. That is, we exponentiate all anomalous dimensions in Laplace space,

perform the inverse Laplace transform with generic endpoints to the RG evolution, and

integrate to get the cumulative distribution. Then we set all scales to their canonical values

(which are given below), and take the derivative to get the differential distribution. For a

detailed discussion of how to implement the resummation procedure in SCET, see [112].

The canonical scales, given as functions of D2, are

µH = Q , (A.75)

µH2 =
1

2
Q

√
e

(2)
2 z(1− z) , (A.76)

µCs = D2

√
e

(2)
2 (z(1− z))3

Q

2
, (A.77)

µSc = zcut
Q

2

√
e

(2)
2

z(1− z)
, (A.78)

µJa =

√
D2 e

(2)
2 z(1− z)2

Q

2
, (A.79)

µJb =

√
D2 e

(2)
2 z2(1− z)

Q

2
, (A.80)

µS = zcutQ , (A.81)

µ =

√
e

(2)
2

Q

2
. (A.82)

When performing the resummation, we take the wide-angle soft scale as the common

scale where we factorize. When assessing resummation uncertainties, we vary all scales

up and down by a factor of two. To handle the Landau pole in the running coupling, we

smoothly “freeze out” the running coupling as a function of its scale at 1 GeV, so that it

is simply a constant function below this value, and vary this freeze out scale up and down

by 0.5 GeV. In general we have very little sensitivity to the freezing scale of the running

coupling. To achieve NLL accuracy, we also promote the coefficient of the logarithmic

terms in the anomalous dimensions in appendix A.9 to two-loop accuracy, as given by the

perturbative expansion of the cusp anomalous dimension, and the running of the coupling

(including when integrating the anomalous dimensions).

To turn off the resummation, we use the simple profile

p(x; t, s) = Θ(x− t)
[
1− exp

(
−s(x− t)2

)]
. (A.83)

This function is zero below t, and asymptotes to one as x − t � 1
s . Using this function,

the scale choice for a function F in the factorization formula can be profiled as

µprofile
F (D2) = µF (1− p(D2; t, s)) + µ · p(D2; t, s) , (A.84)
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Figure 19. Distributions of D
(2)
2 measured on mMDT groomed quark jets from the process

e+e− → h at the 1 TeV, for various matching schemes, compared against parton-level Pythia, the

fixed distribution from Event2, and the singular part of the distribution. The groomed jet mass is

fixed at 90 GeV. (a) Distributions of D
(2)
2 at zcut = 0.1. (b) Distributions of D

(2)
2 at zcut = 0.05.

where µ is the common factorization scale in eq. (A.82), and µF is the canonical choice.

We chose as default value for the profile transition points

s = 4zcut, t = zcut . (A.85)

This choice ensures that canonical resummation effectively dominates at D2 ∼ 1, and that

the resummation is turned off at the endpoint D2 = 1/(2zcut). As part of the uncertainty

estimate (in addition to scale variations of the canonical resummation scales), these choices

were varied by 50%. We found that these profiles were sufficient to numerically cancel any

zero that developed by dividing by the singular result in eq. (3.20), when the singular

result developed a zero in the physical range. A more sophisticated profile would ensure

that such a cancellation would happen exactly, but we found negligible differences between

the matched result and the fixed-orded cross section even in a small neighborhood about

the zero, given our numerical accuracy and sampling of the matched spectra.

The differences between the canonical scales setting and the profile scale setting is

illustrated in figure 19a. The profile scale setting shifts the peak of the distribution to larger

values of D
(2)
2 , and the canonical scheme is more consistent with the MC distribution found

from Pythia. In figure 19b we give an example where the profile scale setting must be

used when performing multiplicative matching, due to the singularity that would otherwise

be induced by not turning off the resummation. Again, the profiled distribution has its

peak shifted to larger values of the distribution when compared against Pythia. For the

background distributions considered in this paper, only the quark jet with zcut = 0.05

needed a profile scheme.
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B Ingredients for collinear-soft subjets

In this appendix, we present the calculations of the functions in the collinear-soft subjets

factorization formula. The notation and formulation of the calculations will be identical to

that presented in appendix A. The factorization formula is

d3σ

dzde
(α)
2 de

(α)
3

= H(Q2)S(zcut)H
sj
2 (z, e

(α)
2 , zcut)Cs(e

(α)
3 , θ < θ12)⊗Jsc(e(α)

3 )⊗J(e
(α)
3 ) . (B.1)

The convolutions can be removed by Laplace transforming in e
(2)
3 , after which we find

d3σ

dzdẽ
(α)
2 dẽ

(α)
3

= H(Q2)S(zcut)H
sj
2 (z, e

(α)
2 , zcut)C̃s(ẽ

(α)
3 , θ < θ12)J̃sc(ẽ

(α)
3 )J̃(ẽ

(α)
3 ) . (B.2)

We again denote the Laplace transformed variables and functions with a tilde. The cal-

culation of the low scale functions has been presented in the previous section, so we will

focus on the hard function calculation.

B.1 Hard function calculation

The hard function for the collinear-soft subjet region of phase space has two parts at one-

loop: there is the pure virtual term, which is familiar, and also the term with two emissions,

where one emission is removed by the soft drop groomer. We focus on the case where α = 2.

The tree level integrand is given by integrating over the square of the tree-level soft current

for the n and n̄ dipole

H(T )
cs (z, e

(2)
2 , zcut) =

∫
ddk1

(2π)d
2πδ(k2

1)δ

(
z − n̄ · k1

Q

)
δ

(
e

(2)
2 −

n · k1

Q

)
|MR

nn̄(k1)|2 ,

= H
(T )
2 (z, e

(2)
2 , zcut)

∣∣∣
z→0

, (B.3)

and we can see that it exactly matches the soft limit of the splitting function. The one-loop

contribution to the hard function can be calculated from

H(1)
cs (z, e

(2)
2 , zcut) =

∫
ddk1

(2π)d
2πδ(k2

1)δ

(
z − n̄ · k1

Q

)
δ

(
e

(2)
2 −

n · k1

Q

){
|MRV

nn̄ (k1)|2

+ 2

∫
ddk2

(2π)d
2πδ(k2

2)|MRR
nn̄ (k1, k2)|2(1−ΘSD)Θzcut

}
. (B.4)

The matrix elements are given by squaring the one soft emission plus virtual current, and

two soft emission currents, where the hard directions are given by the n and n̄ directions.

The double real emission is obtained from [113]. The soft drop geometrical constraints are

again given by eq. (A.34), with the substitutions na → n, nb → k1
n̄·k1 , and k → k2. The

constraint on the momentum fraction of k2 is given by eq. (A.55), with k → k2. Critically,

we note that the soft drop conditions are purely geometrical : we can rephrase the soft drop

constraint of eq. (A.34) in terms of angles, as is done in eq. (E.3). Thus regardless of how

one power counts the relative momentum fractions of emissions k1 and k2, the exact same
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soft drop condition applies to an emission which is not clustered. Then all that can change

is the expansion of the matrix element |MRR
nn̄ (k1, k2)|2, whether we take it to be strongly-

ordered in the energy of the emissions, or not. If we strongly order, then we reproduce

the calculation of appendix A.8, once we factor out the tree-level result for the k1 emission

that forms a leg of the hard 1 → 2 splitting and take the limit that z → 0. With this

observation we may write eq. (B.4) as

H(1)
cs (z, e

(2)
2 , zcut) =

∫
ddk1

(2π)d
2πδ(k2

1)δ

(
z − n̄ · k1

Q

)
δ

(
e

(2)
2 −

n · k1

Q

){
|MRV

nn̄ (k1)|2

+ 2

∫
ddk2

(2π)d
2πδ(k2

2)

(
|MRR

nn̄ (k1, k2)|2
∣∣∣
s.o.: k01�k02

)
(1−ΘSD)Θzcut

+ 2

∫
ddk2

(2π)d
2πδ(k2

2)

(
|MRR

nn̄ (k1, k2)|2 − |MRR
nn̄ (k1, k2)|2

∣∣∣
s.o.: k01�k02

)
(1−ΘSD)Θzcut

}

= H(T )
cs (z, e

(2)
2 , zcut)

(
S(1)
c (zcut,Θ > Θab) +H

(1)
2 (z, e

(2)
2 )
∣∣∣
zg→0

+ const

)
, (B.5)

where the subscript “s.o.” denotes strongly ordered. Here S
(1)
c (zcut, θ > θab) is given by

eq. (A.53), and corresponds to the strongly ordered contribution, and the virtual correction

is fully captureed by taking the energy fraction of the gluon to zero (zg → 0) in the collinear-

splitting function calculation. The residual constant is formally given as

const =
2

H
(T )
cs (z, e

(2)
2 , zcut)

∫
ddk1

(2π)d
πδ(k2

1)δ

(
z − n̄ · k1

Q

)
δ

(
e

(2)
2 −

n · k1

Q

)
(B.6)

×
∫

ddk2

(2π)d
2πδ(k2

2)

(
|MRR

nn̄ (k1, k2)|2 − |MRR
nn̄ (k1, k2)|2

∣∣∣
s.o.: k01�k02

)
(1−ΘSD)Θzcut .

We label this as a constant, since this contribution is easily found to be ultraviolet and

infrared finite. We may therefore set ε = 0 in its calculation, and it will give no contribution

to the anomalous dimension. We emphasize that the ability to simplify the matching in

the collinear-soft subjet region is purely because the soft drop constraint is geometrical,

and thus is not sensitive to the exact relative power counting of the two emissions.

B.2 Hard function anomalous dimension

We give the collinear-soft subjet anomalous dimensions for both quark and gluon initiated

jets. We have

γq→gqHcs
=− αs

π
CAlog

4µ2

e
(2)
2 (1− zq)Q2

− αs
2π

(
11

3
CA −

2

3
nf

)

− αs
π
CA

(
Cl2(π3 )

π

)
− αs

π
CF

[
log

(
4(1− zq)µ2

z2
cute

(2)
2 Q2

)
− Cl2(π3 )

π

]
, (B.7)

γg→ggHcs
=− αs

π
CAlog

4µ2

e
(2)
2 zQ2

− αs
2π

(
11

3
CA −

2

3
nf

)
− αs

π
CAlog

4zµ2

z2
cute

(2)
2 Q2

. (B.8)

We note that we do not have large logs of z or 1− zq over zcut, since in this region of phase

space these scales are parametrically the same.
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C Ingredients for signal factorization

In this appendix, we present the results for the signal factorization formula. The factor-

ization formula is

d2σ

dzde
(α)
2 de

(α)
3

= H(Q2)HZ→qq̄
2 (z, e

(α)
2 ,m2

Z)J1(e
(α)
3 )⊗ J2(e

(α)
3 )⊗ S(e

(α)
3 , zcut) . (C.1)

Laplace transforming in e
(α)
3 removes the convolutions, and factoring out the global con-

tributions, we have

d2σ

dzde
(α)
2 dẽ

(α)
3

= H(Q2)HZ→qq̄
2 (z, e

(α)
2 ,m2

Z)J̃1(ẽ
(α)
3 )J̃2(ẽ

(α)
3 )S̃(ẽ

(α)
3 , zcut) (C.2)

= H(Q2)HZ→qq̄
2 (z, e

(α)
2 ,m2

Z)J̃1(ẽ
(α)
3 )J̃2(ẽ

(α)
3 )Cs(ẽ

(α)
3 , θ < θab)Sc(zcut, θ > θab)C

NG
s (ẽ

(α)
3 , zcut) .

Results in this appendix will be expressed in Laplace space. Note that the anomalous

dimension of the hard function H(Q2) is zero in QCD because the production of the Z

boson occurs in the QCD vacuum.

C.1 Soft matrix elements

The soft matrix elements are simplified relative to the earlier case of QCD splittings, since

we have no Wilson line in the direction of the recoil. We therefore have

Cs(ẽ
(α)
3 , θ < θab) =

1

N
tr
[
〈0|T{SaSb} exp

(
− ẽ(α)

3 E3
(α)
∣∣
SDa,b

)
T̄{SaSb}|0〉

]
, (C.3)

Sc(zcut, θ > θab) =
1

N
tr
[
〈0|T{SaSb}ΘSD(a, b, zcut)T̄{SaSb}|0〉

]
, (C.4)

CNG
s (ẽ

(α)
3 , zcut) =

1

N

tr
[
〈0|T{SaSb}ΘSD(a, b, zcut) exp

(
− ẽ(α)

3 E3
(α)
∣∣
SDa,b

)
T̄{SaSb}|0〉

]

Cs(ẽ
(α)
3 , θ < θab)Sc(zcut, θ > θab)

.

(C.5)

As before, Sq are soft Wilson lines, as defined in eq. (A.17).

C.2 Hard decay function

The anomalous dimension of the hard decay function, HZ→qq̄
2 (e

(α)
2 ,m2

Z), is identical to the

anomalous dimension for the hard function of e+e− → qq̄, at Q2 = m2
Z . We therefore have

γH2 =
αsCF
π

(
−2 log

µ2

m2
Z

− 3

)
. (C.6)

Identifying the mass of the jet with the two-point energy correlation function as

m2
Z = e

(2)
2 E2

J =
e

(2)
2 Q2

4
, (C.7)

this anomalous dimension can also be expressed as

γH2 =
αsCF
π

(
−2 log

4µ2

e
(2)
2 Q2

− 3

)
. (C.8)

The tree-level matrix element for Z boson decay to quarks is well-known and was first

calculated in ref. [114].
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C.3 Jet functions

The subjets of the decay of a Z boson are quarks. The jet functions have the corresponding

anomalous dimensions

γJ1 =
αsCF

2π


4 log


4

(
e

(2)
2

)2

z2
azb

ẽ
(2)
3

µ2

Q2


+ 3


 , (C.9)

γJ2 =
αsCF

2π


4 log


4

(
e

(2)
2

)2

zaz2
b

ẽ
(2)
3

µ2

Q2


+ 3


 . (C.10)

Here za and zb are the energy fractions of the two subjets, with za + zb = 1.

C.4 Collinear-soft function

The soft radiation from the dipole of the subjets is constrained by the same restrictions as

for background jets. In this case, however, there is only one non-trivial dipole formed from

the subjets with color factor Ta ·Tb = −CF . Therefore, the anomalous dimension of this

function is just

γCs = −2
αsCF
π

[
log

(
4(e

(2)
2 )5(ẽ

(2)
3 )2µ2

z3
az

3
bQ

2

)
− Cl2(π3 )

π

]
. (C.11)

C.5 Soft-collinear function

As with the collinear-soft function, there is only one contribution to the soft-collinear

function, namely from emissions that are emitted at a wide angle. We find that the

anomalous dimension of the soft-collinear function is

γSc = −2
αsCF
π

(
Cl2(π3 )

π

)
. (C.12)

C.6 Consistency

The anomalous dimensions of the functions in the factorization formula are

γH2 =
αsCF
π

(
−2 log

4µ2

e
(2)
2 Q2

− 3

)
, (C.13)

γJ1 =
αsCF

2π


4 log


4

(
e

(2)
2

)2

z2
azb

ẽ
(2)
3

µ2

Q2


+ 3


 , (C.14)

γJ2 =
αsCF

2π


4 log


4

(
e

(2)
2

)2

zaz2
b

ẽ
(2)
3

µ2

Q2


+ 3


 , (C.15)

γCs = −2
αsCF
π

[
log

(
4(e

(2)
2 )5(ẽ

(2)
3 )2µ2

z3
az

3
bQ

2

)
− Cl2(π3 )

π

]
, (C.16)

γSc = −2
αsCF
π

(
Cl2(π3 )

π

)
. (C.17)
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It is straightforward to verify that the sum of anomalous dimensions is 0, namely

0 = γH2 + γJ1 + γJ2 + γCs + γSc . (C.18)

This demonstrates that the factorization formula is consistent at one-loop or NLL accuracy.

D 1 → 3 splitting function integration

In this appendix we describe the calculation of the D2 distribution using the 1→ 3 splitting

functions. The splitting function calculation on the soft dropped jet is given by

dσ

de2dD2
∝(2π)(3−2ε)

∫
[ddka]+[ddkb]+[ddkc]+δ(2EJ−n̄·ka−n̄·kb−n̄·kc)δ(d−2)

(
ka⊥+kb⊥+kc⊥

)

×δ
(
e2−

1

E2
J

((2ka ·kb)+(2ka ·kc)+(2kb ·kc))
)
δ

(
D2−

8(2ka ·kb)(2ka ·kc)(2kb ·kc)
E3
J(e

(2)
2 )3n̄·kan̄·kbn̄·kc

)

×SD
(
zcut,ka,kb,kc

)
ΘJ

(
R;,ka,kb,kc

)
Split

(
ka,kb,kc;n̄

)
. (D.1)

The soft drop and jet region constraints are defined as

ΘJ

(
R;,ka,kb,kc

)
=Θ

(
tan2R

2
− n·ka
n̄·ka

)
Θ

(
tan2R

2
− n·kb
n̄·kb

)
Θ

(
tan2R

2
− n·kc
n̄·kc

)
, (D.2)

SD
(
zcut,ka,kb,kc

)
= (D.3)

×
[
Θ

(
1

2EJ
min

(
n̄·(kb+kc),n̄·ka

)
−zcut

)
Θ

(
ka ·kb

n̄·kan̄·kb
− kb ·kc
n̄·kbn̄·kc

)
Θ

(
ka ·kc

n̄·kan̄·kc
− kb ·kc
n̄·kbn̄·kc

)
+Θ

(
1

2EJ
min

(
n̄·(ka+kb),n̄·kc

)
−zcut

)(
ka ·kc

n̄·kan̄·kc
− ka ·kb
n̄·kan̄·kb

)(
kb ·kc

n̄·kbn̄·kc
− ka ·kb
n̄·kan̄·kb

)
+Θ

(
1

2EJ
min

(
n̄·(ka+kc),n̄·kb

)
−zcut

)
Θ

(
ka ·kb

n̄·kan̄·kb
− ka ·kc
n̄·kan̄·kc

)
Θ

(
kb ·kc

n̄·kbn̄·kc
− ka ·kc
n̄·kan̄·kc

)]
.

We note that the jet region constraint is that of a simple cone algorithm, where we have

drawn a cone of radius R about the direction n. Further, we have demanded that the total

transverse momentum of all emissions inside this cone is zero. Because of the soft drop

constraint, we could actually take the effective cone radius to be infinite, that is, the jet

be the whole sphere. However, in our numerical integration of the splitting functions, we

keep the jet region constraint so that we can explicitly test the R and e
(2)
2 independence of

the fixed order result.

D.1 Solving observable constraints

To integrate the above phase space, we express the kinematic variables as

n̄ · ka = 2EJza, n · ka =
k2
a⊥

2EJza
, n̄ · kb = 2EJzb, n · kb =

k2
b⊥

2EJzb
,

n̄ · kc = 2EJ(1− za − zb), n · kc =
k2
c⊥

2EJ(1− za − zb)
, kc⊥ = −ka⊥ − kb⊥ . (D.4)

We can then shift ka⊥ as

ka⊥ → ka⊥ −
zb

1− za
kb⊥ . (D.5)
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This allows us to solve the e
(2)
2 delta function constraint as

k2
a⊥ =

za(1− za − zb)
zb(1− zb)

(
e

(2)
2 E2

Jzb(1− zb)− k2
b⊥

)
, k2

b⊥ < e
(2)
2 E2

Jzb(1− zb) . (D.6)

We again rescale k2
b⊥ as

k2
b⊥ = e

(2)
2 E2

Jzb(1− zb)k2 . (D.7)

Our left over variables are za, zb, k
2 and φ, where φ is a relative angle in the transverse

plane. The Lorentz invariants have the functional form

ka ·kb=E2
Je

(2)
2

(
k2(za−(1−za)zb+z2

b )+zb(1−za−zb)−2
√
k2(1−k2)zazb(1−za−zb)cosφ

2(1−zb)

)
,

kb ·kc=E2
Je

(2)
2

(
k2(1−zb−za(1+zb))+zazb+2

√
k2(1−k2)zazb(1−za−zb)cosφ

2(1−zb)

)
,

ka ·kc=E2
Je

(2)
2

(
(1−k2)(1−zb)

2

)
. (D.8)

It is convenient to introduce the variables

sij =
ki · kj
E2
Je

(2)
2

, a ≤ i < j ≤ c . (D.9)

Further we use the fact that if we rescale the invariants ki · kj in the splitting function by

a factor λ, this simply induces an overall factor of λ−2

Split
(
ka, kb, kc; n̄

)
→ 1

λ2
Split

(
ka, kb, kc; n̄

)
. (D.10)

The final phase space then has the form

dσ

de
(2)
2 dD2

∝ g4

e
(2)
2

(2π)−6+4ε

(
2π1−ε

Γ(1− ε)

)(
µ2

e
(2)
2 E2

J

)ε(
µ2

e
(2)
2 E2

J

)ε

·
∫ 1

0
dza

∫ 1

0
dzb

∫ 1

0
dk2

∫ π

0
dφ sin−2εφΘ(1− za − zb)

·
(
zazb(1− za − zb)k2(1− k2)

)−ε
δ

(
D2 −

8sabsbcsac
zazb(1− za − zb)

)

· SD
(
zcut, za, zb, k

2, φ
)

ΘJ

(
R; e

(2)
2 , za, zb, k

2, φ
)

Split
(
za, zb, k

2, φ
)
. (D.11)

Note that the only dependence on e
(2)
2 enters through the jet constraints. Had we expanded

the jet region constraints, we would have formally found the cross section to depend on e
(2)
2

only via an overall scaling. That is, the shape of the differential spectrum is independent

of e
(2)
2 . Retaining the jet region constraints we can explicitly test the independence on the

jet radius at all values of D2 by varying either e
(2)
2 or R. At finite D2, the cross section is

finite, and so we can set the dimensional regularization parameter to zero, and numerically

compute the result.
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D.2 Numerical integration

To perform the numerical integration, we first rescale zb as

zb → (1− za)zb . (D.12)

This gives the integral

dσ

de
(2)
2 dD2

∝ 2g4

e
(2)
2

(2π)−6+4ε

(
2π1−ε

Γ(1−ε)

)(
µ2

e
(2)
2 E2

J

)ε(
µ2

e
(2)
2 E2

J

)ε∫ 1

0

dza

∫ 1

0

dzb

∫ 1

0

dk2

∫ π

0

dφsin−2εφ

·
(
za(1−za)2zb(1−zb)k2(1−k2)

)−ε
δ

(
D2−

8sabsbcsac
za(1−za)2zb(1−zb)

)

·SD
(
zcut,za,(1−za)zb,k

2,φ
)

ΘJ

(
R;e

(2)
2 ,za,(1−za)zb,k

2,φ
)

(1−za)

·Split
(
za,(1−za)zb,k

2,φ
)
. (D.13)

We can then transform to the rapidity-like variables

za =
1

2

[
1 + tanh

(ya
δ

)]
, zb =

1

2

[
1 + tanh

(yb
δ

)]
, k2 =

1

2

[
1 + tanh

(yk2
δ

)]
. (D.14)

This transformation has the Jacobian

∫ 1

0
dza

∫ 1

0
dzb

∫ 1

0
dk2 =

∫ ∞

−∞
dya

∫ ∞

−∞
dyb

∫ ∞

−∞
dyk2J(ya, yb, yk2) , (D.15)

with

J(ya, yb, yk2) =
1

16δ3
sech2

(ya
δ

)
sech2

(yb
δ

)
sech2

(yk2
δ

)
. (D.16)

The numerical integral is then performed at ε = 0. To perform the integral, we randomly

sample ya, yb, and yk2 uniformly on an interval [−ymax, ymax], while φ is uniformly sampled

on [0, 2π]. The variable δ simply controls how often one samples the region where D2 ∼ 1.

The value of ymax sets the minimal D2 that we can integrate down to. For each generated

phase space point we compute the value of corresponding value of D2 and the weight

w(ya, yb, yk2 , φ) = SD
(
zcut, za, (1− za)zb, k2, φ

)
ΘJ

(
R; e

(2)
2 , za, (1− za)zb, k2, φ

)

· (1− za)Split
(
za, (1− za)zb, k2, φ

)
. (D.17)

Then a histogram HD2 , indexed by D2, is updated according to

HD2 → HD2 + J(ya, yb, yk2)
w(ya, yb, yk2 , φ)

∆D2
, (D.18)

where ∆D2 is the width of bin at position D2. We then divide all bins in the histogram

by the total number of phase space points sampled. In the limit of infinitely narrow bins,

infinite statistics, and ymax →∞, the final histogram HD2 is proportional to the differential

spectrum
dσ

de
(2)
2 dD2

∝ HD2 . (D.19)
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Aside from the transformation to the rapidity like variables ya, yb and yk2 , which serve

to smooth out the soft and collinear singularities, no further importance sampling is per-

formed. To actually fix the normalization of the histogram, the simplest procedure is to

compare to the analytic predictions in the singular region. For a fixed bin size, we can

fit for the singular behavior of the histogram at a specific soft drop parameter zcut. Then

we take the ratio to the analytic result in the limit D2 → 0. This selects for the ratio of

the double-logarithmic terms, and gives the relative normalization of the histogram to the

singular result. This normalization is the same for all other values of zcut when using the

same bin spacing, so that for all other zcut we can then test that the fixed order result is

reproducing the analytic double and single logarithmic structure at small D2.

D.3 Singular cross section

To find the singular cross section for gluon splitting, g → gg, we sum the collinear-soft and

jet function contributions. This gives

dσ

de
(2)
2 dD2

=
αs
π

∫ 1

0
dzaΘ

(
min

(
za, 1− za

)
− zcut

)Pg→gg(za)
e

(2)
2

(D.20)

·
(
αsCA
πD2

)(
−logD2 −

β0

CA
− 3

2
log (za(1− za))

)
.

Performing a similar calculation for q → qg gives

dσ

de
(2)
2 dD2

∣∣∣∣∣
CA

=
αs
π

∫ 1

0
dzaΘ

(
min

(
za, 1− za

)
− zcut

)Pq→qg(za)
e

(2)
2

(D.21)

·
(
αsCA
πD2

)(
− 1

2
logD2 −

β0

2CA
− log (1− za)−

1

2
log za +

Cl2(π3 )

π

)
,

dσ

de
(2)
2 dD2

∣∣∣∣∣
CF

=
αs
π

∫ 1

0
dzaΘ

(
min

(
za, 1− za

)
− zcut

)Pq→qg(za)
e

(2)
2

(D.22)

·
(
αsCF
πD2

)(
− 1

2
logD2 −

3

8
− 1

2
log (1− za)− log za −

Cl2(π3 )

π

)
.

E Collinear non-global logarithms

In this appendix we give the appropriate modification of the Dasgupta-Salam Monte Carlo

algorithm [46] for computing NGLs in the large-Nc limit, changed to account for the phase

space constraints of the soft drop procedure. The origin of these NGLs was discussed

in section 3.2.2, and the lowest order diagram that contributes was shown in figure 8.

Throughout this section, we define the eikonal factor as

Wxy(j) =
x · y

(x · j) (j · y)
. (E.1)

Here the round bracket is defined as (i · j) ≡ 1− cos θij .
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We start the algorithm with a list of initial dipoles, Dinit, that depends on the flavor

structure of the 1→ 2 splitting, and we generate a list of active radiating dipoles D and a list

of emissions E that fail soft drop. That is, they are not clustered into the legs a and b of the

hard 1→ 2 splitting. We introduce the phase space constraint given this list of emissions

Cab

(
j, E
)

= Θ
(
θab−θaj

)
Θ
(
θbj−θaj

)∏

i∈E
Θ
(
θij−θaj

)
+Θ
(
θab−θbj

)
Θ
(
θaj−θbj

)∏

i∈E
Θ
(
θij−θbj

)
.

(E.2)

Here θxy is the angle between x and y. In other words, we test emission j to see if it is

closer in angle to either direction a or b than any other emission in the list E. If it is, it will

pass soft drop by virtue of being clustered into the hard splitting. Finally, we introduce the

one emission phase space that sets the resummation of the Sudakov or global logarithms

Cab(j) = Θ
(
θab − θaj

)
Θ
(
θbj − θaj

)
+ Θ

(
θab − θbj

)
Θ
(
θaj − θbj

)
. (E.3)

Though written explicitly in terms of angles, this is the same phase space as eq. (A.34),

since the Lorentz products can be simplified to an angular constraint once we factor out

and cancel the energy scales.

The idea of the algorithm is that in the leading logarithmic approximation for the

NGLs, every emission not clustered into the a-b dipole is formally at an energy scale below

Qzcut, and the emissions are ordered in energy. We therefore generate the emissions at

each step according to a distribution

F̃D(j) =
∑

i∈D
Wxiyi(j)−

∑

i∈Dinit

Cab(j)Wai bi(j) . (E.4)

Here D is the set of decaying dipoles, and Dinit the set of initial dipoles. After generating the

emission, we update the list of real emissions E and the dipole list D, so long as the emission

qualifies as a real emission, rather than a virtual process. The virtual subtraction is imple-

mented via a veto algorithm following the original Dasgupta-Salam algorithm. We allow the

initial dipoles to decay until we have an emission that is clustered into the a-b dipole, before

it is clustered into any other emission, that is, Cab(j, E) = 1. This replaces the hemisphere

condition to start a new event. Once this condition is met, we end the event and book the

histogram. Thus, for each event we must track all the real emissions that have been created

so far, and check for each new emission whether it clusters into the a-b dipole rather than

any other emission generated so far.11 The virtual subtraction condition, that is whether

or not we treat the emission as a virtual correction and so reweight the event, is triggered

when Cab(j) > 0 and j was emitted from a dipole containing an initial leg. We take the high

scale for the NGL evolution to be µSc , and evolve down to the scale µCs , see appendix A.10.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

11The clustering constraint produced by the soft drop procedure introduces a non-Markovian evolution.

Whether or not we terminate the dipole evolution depends on the complete emission history up to that

point. However, the generation of emissions still proceeds in a Markovian fashion, as the decay of each

dipole is independent and universal.
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