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Professor Vineet Bafna, Co-Chair 

 
 
 

 With the advent of high-throughput technologies, large-scale multi-omics data integration 

approaches have revolutionized our understanding of cancer and its progression. In this 

dissertation, we focus on deciphering the molecular mechanisms of various targeted cancer 

treatments and growth factors on chromatin remodeling through integrative analyses of multi-



 xviii 

omics data. Chromatin remodeling is involved in the stability of genome structure, gene 

expression, and DNA repair, as well as, cell growth and progression; therefore, it plays an essential 

role in tumor suppression. The regulation of chromatin remodeling is carried out by the precise 

coordination of covalent histone modifications and remodeler proteins through catalytic activities. 

Disruption of these regulated activities confers a unique ability for healthy cells to reprogram their 

genome for the maintenance of oncogenic phenotypes. Hence, these histone modifications and 

remodeler proteins are potential targets for cancer treatments. While many drugs have the potential 

to target histone modifications and remodeler proteins, their precise mechanisms of action, i.e., 

alterations in cellular reprogramming, are not well studied. To address this gap, we utilized latent 

space models to integrate multi-omics data such as proteomic/phosphoproteomic, transcriptomic, 

and epigenomic data to understand the effects of various drugs and growth factors on specific 

genes, proteins, and phosphoproteins that are involved in the regulation of a wide range of cellular 

processes (growth, proliferation, and cell division) and gene activity states in cancer and healthy 

cell lines. In addition to providing mechanistically-driven targets that can impact chromatin 

remodeling, the chromatin fingerprints generated from our study can serve as a signature for 

assessing the efficacy of a given drug in treating cancer. Further, increasing evidence, supported 

by our study of breast cancer, indicates that this paradigm applies to various cancers, and further 

analysis can provide insights into more detailed chromatin-based mechanisms. Our study implies 

that the cancer state is one where chromatin gets remodeled, and effective drugs attempt to restore 

the chromatin state to that of a healthy cell. Overall, the integrative frameworks we developed 

reveal the mechanisms of action of specific drugs on chromatin remodeling machinery in breast 

cancer cells and of growth factors on cellular phenotypes in normal breast cells, which lay the 

foundation for improved development of chromatin-based cancer therapy. 



 
 

1 

CHAPTER 1: Introduction  

 The human epigenome is made up of chemical compounds and proteins that can attach to 

DNA and orchestrate cellular activities by controlling gene expression. They enable the diversity 

of cells in multicellular organisms. Epigenetic plays an essential role in mediating environment-

induced phenotypic plasticity.  

 Two well-studied epigenetic phenomena are DNA methylation and histone modifications. 

DNA methylation is a stable and reversible epigenetic mark that occurs on the fifth carbon of 

cytosines and chemically named “5-methylcytosine” (5mC). Histones are structural proteins that 

form the basic units of nucleosomes. These nucleosomes are utilized for DNA packaging within 

the nucleus to form chromatin. The post-translational modifications of histones such as 

methylation, acetylation, etc., can influence the structure of the chromatin and modulate genes 

expression patterns. Deregulation of chromatin leads to altered gene activation and gene silencing. 

Recent studies suggest that by altering chromatin structures, gene-translocations results to 

oncogenesis (Croce and Di Croce 2005;Donehower et al. 1992;Martens and Stunnenberg 

2010;Mitelman, Johansson, and Mertens 2007;Uribesalgo and Di Croce 2011;Cairns 2007). 

 In this work, we will focus on post-translational modification (PTM) of histones and other 

signaling proteins in human cancer, specifically for profiling chromatin alterations due to various 

treatments and growth factors, and new approaches to integrate multi-omics data towards 

chromatin-based cancer therapy. 
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1.1 Organizational structure of chromatin in human epigenome 

 Histones are a group of relatively small proteins (~15-20 kDa) whose high arginine and 

lysin amino acids make them positively charged. Thus, binding of the negatively charged DNA to 

histones is stabilized by ionic bonds. In the human cells, genetic information is organized in a 

highly conserved structure polymer called chromatin (Fig 1.1A). This structure is attained by 

wrapping approximately 3 m of DNA around the histone proteins. Chromatin assembly undergoes 

dynamic changes actively mediating gene function and expression (Felsenfeld and Groudine 

2003). It is believed that one approach by which gene regulatory mechanisms are modulated is 

through the interaction of the genomic DNA with these histone proteins (Arents and Moudrianakis 

1995). Nucleosomes, the building blocks of chromatin, are comprised of 146 base pairs of DNA 

wrapped around an octamer of core histones (two of each 2HA, 2HB, H3, and H4) (Fig 1.1A). 

Linker histones of the H1 class associate between single chromosomes resulting in “beads on a 

string” structure, which folds into loop establishing higher organization. The nucleosome is the 

key player in regulation of gene expression serving as a “memory bank” by transmitting epigenetic 

information from one cell generation to next. Epigenetics refer to inheritable changes in gene 

function and expression without any changes in DNA sequences. The gene regulatory functions of 

nucleosomes are primarily controlled by the N-terminal tails of the four core histones. The N-

terminal tails are subjected to enzymatic catalytic PTMs including phosphorylation, methylation, 

acetylation, and ubiquitination. The enzymes responsible for creating histone PTMs are termed as 

histone modifying enzymes and are broadly categorized into “Reader(s)”, “Writer(s)” and 

“Eraser(s)”, based on the ability to catalyze either by reading, addition or removal of specific 

PTMs, respectively (Fig 1.1B). These modifications act in various transcriptional 
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activation/inactivation, chromosome packaging, and DNA damage/repair,  and can be highly 

reversible making them potential for effective drug targets. 
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1.2 General arithmetic of histone modifications 

 In this thesis we will work with H3 histones which primarily are acetylated at lysines 9, 

14, 18, 23, and 56, methylated at arginine 2 and lysines 4, 9, 27, 36, and 79, and phosphorylated 

at ser10, ser28, Thr3, and Thr11 (Fig 1.2). Thus, mapping these modifications to various signaling 

pathways would allow us to better understand epigenetic regulation of cellular processes and the 

development of histone modifying enzyme-targeted drugs. A list of canonical H3 histones and 

their epigenetic functions are illustrated in Table 1.1. Kinases and phosphatases are two type of 

enzymes that catalyze transfer or removal of phosphate to and from a molecule from adinosen tri 

phosphate (ATP). Recently serine/threonine kinases have emerged as strong candidates for drug 

therapy and around one-third of all kinase inhibitors are currently in development target 

serine/threonine kinases.  
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1.3 Scope of the dissertation  

 The purpose of this work is to create integrative approaches to quantify the effects of 

specific drugs and growth factors on cellular phenotypes, and systematically assess the impact of 

these phenotypes on chromatin-based therapy outcome and cancer formation.  

         In chapter 2, we develop an integrative latent space model to generate a 3D 

phosphoprotein-histone-drug network (iPhDnet) using multi-omics cancer data obtained from 

LINCS. We identified four histones signatures in response to drugs as chromatin fingerprints and 

deciphered the unique phosphoprotein networks and signaling pathways that describe these 

fingerprints.  

         In chapter 3, we describe the mechanisms of action of specific drugs on chromatin 

remodeling machinery in breast cancer. We applied the iPhDnet from the previous chapter to 

implicate CDK inhibitors flavopiridol and dinaciclib as potential therapeutics mediated by BRD4, 

NSD3, EZH2 and MYC targeting H3K27me3K36me3 status change in breast cancer.  

In chapter 4, We provide a comprehensive characterization of how normal breast cells 

acquire inflammation, proliferation, migration, and differentiation statuses when treated with six 

growth factors, namely, epidermal growth fact (EGF), hepatocyte growth factor (HGF), oncostatin 

M (OSM), bone morphogenetic protein 2 (BMP2), transforming growth factor beta (TGFB), and 

interferon-gamma (IFNG). We showed that STAT3 induction promotes BRD4 to regulate cell 

proliferation when treated with OSM.  

Lastly, in Chapter 5, we present the conclusions of the dissertation.  
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1.4 Figures 

A 

 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1. Higher organizational structure of chromatin complex. 
(A) DNA wrapped around the core histone proteins (two of histone H2A, histone H2B, histone 
H3 and histone H4) forming an octamer nucleosome subunit. Together with H1 linker histone 
these nucleosomes represent beads on string like structure forming the chromatin complex. (B) 
Depicting interplay among the chromatin remodeler proteins: reader, writer, and eraser. Their 
precise coordination allows genes to switch from euchromatin (open and transcriptionally active) 
state to heterochromatin (compact and transcriptionally repressed) state and vice versa. Images are 
adapted from (http://www.whatisepigenetics.com/histone-modifications/). 
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Figure 1.2. General arithmetic of histone modifications.  
Schematic showing some common histone modifications at C and N terminal of the histone tails. Unique 
combinations of these modifications at various amino acid loci give rise to unique histone codes 
influencing unique regulatory roles in gene expressions machinery. 
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1.5 Tables 

Table 1.1. Summary of canonical histone codes and their gene expression statuses.  
Showing known gene expression statuses for the canonical histone codes.  
 

Type of modification Histone 
 H3K4 H3K9 H3K27 H3K36 H3K79 H3K14 
mono-methylation activation Activation activation activation activation  

di-methylation activation Repression repression activation activation  
tri-methylation activation Repression repression activation activation 

repression 
 

acetylation  Activation activation   activation 
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CHAPTER 2: iPhDnet: A 3D Latent Space Model for Cancer Therapy 

 

 
2.1 Abstract 

 As the molecular complexity of cancer etiology exists at multiple levels, there is a need for 

multi-omics data integration approaches to uncover the underlying molecular mechanisms of 

cancer biology. Understanding the molecular mechanisms of cancer biology is critical for 

designing effective anti-cancer therapies. In the past, single-level omics have contributed to our 

current understanding of cancer-specific drug targets; however, they lacked to establish the link 

between pathology and therapeutic mechanisms. In contrast, integrative multi-omics approaches 

offer a global view covering interconnectivity of the signaling proteins and their functional 

contributions to cancer phenotypes. In this study, we developed a 3D network using latent space 

models to infer cell-specific pohospho-histone-drug signaling network. We combined an 

unsupervised clustering technique with a supervised multivariate regression technique to identify 

signaling  modules and predicted their associations with phosphoproteins. We applied our model 

on the P100 and GCP phosphoproteome datasets from LINCS to establish relationships among 

drugs, phosphoproteins, and histone modifications in MCF7 human breast cancer cell line.  
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2.2 Introduction 

In recent years, molecular biology has  improved our understanding of cancer, however, 

the use of therapeutic drugs faces major challenges (Sorger and Schoeberl 2012). This is partly 

due to the inadequate understanding of the causal connections between the pathology and the 

therapeutic mechanisms at the cellular function level. The understanding of cellular function at the 

molecular level involves the study of intracellular signaling, metabolic pathways and gene 

regulatory networks, through “omics” measurements on biological systems. Protein 

phosphorylation is one of the most important post-translational modifications (PTMs) in 

intracellular signaling (Li et al. 2013), (Sacco et al. 2012) that regulates cell cycle, cell growth, 

cell differentiation, and metabolism (Delom and Chevet 2006). Phosphorylation is a key reversible 

modification that activates and deactivates proteins via phosphorylation/dephosphorylation events 

due to specific kinases and phosphatases (Hunter 1995). Protein phosphorylation events occurs on 

serine (S), threonine (T), and tyrosine residues (Y) (O-phosphorylation) that can regulate 

enzymatic activity, subcellular localization, complex formation and protein 

degradation   (Roskoski 2012). Thus, reconstructing phosphoprotein networks from “omics” 

measurements can help us understand and model cellular signaling pathways as well as uncovering 

the mechanisms of actions of drugs. While single-level “omics” approaches have contributed 

towards understanding of cancer mutations, subtypes, and epigenetic alterations based on 

gene/protein expressions, they lack the resolving power to establish causal relationship between 

molecular signatures and cellular phenotypes. In contrast, multi-omics approaches involving 

interrogation of proteins/drugs in multiple dimensions have the potential to  uncover the intricate 

molecular mechanisms underlying various cellular phenotypes.  
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In a recent large-scale initiative, Library of Integrated Network-Based Cellular Signatures 

(LINCS) (http://www.lincsproject.org), has carried out multi-omics characterization of response 

of five cancer cells to 31 drugs, through measurement of phosphoproteins (P100) (Abelin et al. 

2016) and global chromatin profiles (GCP) (Creech et al. 2015). Some of these measurements were 

carried out at multiple time points post-treatment of cells.  The P100 and GCP are Mass 

Spectrometry (MS) based targeted proteomics assays that include a representative set of 

phosphopeptides, and different combinations of histone modifications treated by multiple drugs 

respectively. Identifying the treatment effects of a compound on certain cell line is of great 

significance of discovering new potential drugs and improving the response to therapies in clinic. 

This consortium has created unprecedented opportunities to reveal underlying oncogenic 

molecular signatures beneath phenotypes. 

In the past, a number of mathematical and statistical approaches to high-throughput 

biological data has been used extensively to understand the relationship between different cellular 

components to partially reconstruct intracellular networks. With the availability of large-scale 

omics data, computational systems biology has made substantial progress towards modeling and 

reconstruction of data-driven networks using (1) iCluster (Shen et al. 2012), (2) Principal 

Component Regression (Pradervand, Maurya, and Subramaniam 2006), (3) probabilistic graphical 

models  such as Bayesian network-based models (Dojer et al. 2006; Faryabi et al. 2009; Altay 

2012), and (4) information theory-based methods such as integrated correlation and transfer 

entropy based approach and C3NET ((Dojer et al. 2006; Faryabi et al. 2009; Altay 2012)). Other 

approaches includes differential equations (Mestl, Plahte, and Omholt 1995)  and structural 

equation methods (Xiong, n.d.). 
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However, cancer  is complex and is regulated at multiple layers which can be manifested 

by these assays. While theses assays offer a glimpse of the complex system, these events are 

interdependent (or interactive). Thus, when integrating several different omics data to discover the 

coherent biological signatures, it is challenging to incorporate different biological layers of 

information to predict accurate phenotypes. Our objective in this study is to develop a generalized 

3D latent space model that can generate an integrated phosphoprotein-histone-drug network 

(iPhDnet) to uncover the number of distinct ways in which drugs relate to global chromatin profile 

and decipher the unique phosphoproteins networks and pathways that describe histone response to 

31 drug treatments. In the present work, we have applied a robust version of Non-negative Matrix 

Factorization (NMF) to generate histone signatures for MCF7 breast cancer cell line, and Partial 

Least Square Regression (PLSR) to predict which of these enriched phosphoproteins were 

associated with specific histone signatures (Fig 2.1).  

Due to the fact that, there were only 24-hour matching data for GCP and P100 available 

for MCF7 breast cancer cell line, we used these two datasets to build our model.  
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2.3 Methods and Materials 

 
 Data Acquisition. The experimental data were generated by the NIH LINCS Proteomic 

Characterization Center for Signaling and Epigenetics (PCCSE) repository. Level 3 (log 2 

normalized) targeted phosphoproteomics assay (P100) against 96 phosphopeptides data, and level 

3 (log 2 normalized) global chromatin profiling assay (GCP) against 60 probes that monitor 

combinations of post-translational modification on histones data using in MCF7 breast cancer cell 

line. These assays were treated with 31 serine/threonine kinase inhibitors (drugs) at various 

concentrations, DMSO as a negative control and consisted of three biological replicates. We used 

the 24-hour GCP and  P100 datasets to test our model.  

 
 Data Preprocessing. Replicates were used to impute missing data by taking their weighted 

average values during the pre-processing step. Differential histone modifications and 

phosphorylation changes were computed by taking fold changes of each perturbed phosphopeptide 

and histone code with respect to DMSO.  These resulted in two data matrices, i) phosphoprotein 

profiles consisting [96 peptides x 31 drugs], and ii) global chromatin profiles consisting [60 histone 

modifications x 31 drugs]. Prior to modeling, data were normalized with respect to the mean and 

standard deviation of the respective variables. 

 

 Functional module extraction using NMF. An unsupervised clustering technique, non-

negative matrix factorization (NMF), was used to stratify histone signatures. Similar to vector 

quantization methods such as principal components analysis (PCA) and singular value 

decomposition (SVD), the objective of NMF is to explain the observed data using a compact 

number of latent features, i.e., basis components, which when combined approximate the original 
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data as accurately as possible.  In NMF both the matrix representing the basis components (histone 

signatures) as well as the matrix of mixture coefficients (drug prototypes) are constrained to have 

non-negative values, and unlike PCA and SVD, no independence or orthogonally constraints are 

imposed on the basis components. Because NMF assumes an additive model, non-log transformed 

values were used in our analysis.  

Mathematically, NMF consists of finding an approximation 

 

   A » WH,        (Equation 1) 

  𝑊,𝐻 ≥ 0 

 

where W, H are n  ´ k and k  ´ m non-negative matrices respectively where n are rows – samples 

and m are columns –the measured features in A (Fig 2.3). Since the objective is to reduce the 

dimension of the original data A, the factorization rank k is often chosen such that k << (n, m). W 

contains basis vectors and H contains encoding vectors that estimate the extent to which each basis 

vector is used to reconstruct each input vector. We used a version of NMF to minimize the 

divergence function (KL divergence) given by (Brunet et al. 2004). The function is related to the 

Poisson likelihood of generating A from W and H, more specifically, based on randomly initialized 

matrices W and H, NMF finds the solution of  

min D(A||WH) =åi=1n ∑ (𝐴*+𝑙𝑜𝑔
/01

(23)01
5
+67 −	𝐴*+	 + (𝑊𝐻)*+)  

where, D is a loss function, via an iterative process (Lee et al., 1999). At each step, W and H are 

updated by using the following coupled divergence equations: 

𝐻;<	 ← 𝐻;<	
∑ 20>/0?/(23)0?0

∑ 2A>A
        (Equation 2) 
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𝑊*; ← 𝐻𝑊*;	
∑ 23>?/0?/(23)0??

∑ 3>BB
       (Equation 3) 

          

where Ai,j = [A]i,j indicates (i,j)-th element of the matrix A.  

Because (1) is non-convex optimization with respects to W and H, there is no guarantee of 

obtaining a local minimum. Moreover, the above iterative update rules are notorious for slow 

convergence (i.e., require more iterations) and have a complexity of O(mnk2NiNo) where Ni is the 

number of inner iterations to solve the non-negative linear model and No is the number of outer 

iterations to alternate W and H steps. As a result, the initialization of the pair of factors (W, H) is 

considered an important component in the design of successful NMF methods (Lee and Seung 

1999). We used a robust initialization strategy using the seeding algorithm (Boutsidis and 

Gallopoulos 2008), that is based on a non-negative double singular value decomposition 

(nndSVD). The whole process then becomes deterministic and needs to run once and the 

complexity is reduced to O (mnk2Ni + No). Our NMF framework works as follows: 

 1. Initialize W, H ∈ Rm×k, Rk×n respectively with non-negative elements using nndSVD. 

 2. Repeat until a convergence criterion is satisfied:  

𝐻;<	 ← 𝐻;<	
∑ 20>/0?/(23)0?0

∑ 2A>A
          

  𝐻 ≥ 0 

 where W is fixed, and 

 𝑊*; ← 𝐻𝑊*;	
∑ 23>?/0?/(23)0??

∑ 3>BB
         

  𝑊 ≥ 0 

 where H is fixed 
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 3. The columns of W are normalized and the rows of H are scaled accordingly. 

 Cluster Validation. To identify the optimal rank k, we used the cophenetic correlation 

coefficient (Sokal and Rohlf 1962) to determine the most robust clustering as: 

    (Equation 4) 

C measures how reliably the same histone codes are assigned to the same cluster across many 

iterations of the clustering algorithm with random initializations. The cophenetic correlation 

coefficient lies between 0 and 1 and reflects the probability that samples i and j cluster together. 

Higher values indicate more stable cluster assignments. We selected optimal k= 4 based on the 

largest observed cophenetic coefficient and where the magnitude of the cophenetic correlation 

begins to decrease by varying values of k from 2 to 10 (Fig 2.5). We used the NMF package in R 

to implement and compute these calculations. 

In eq 3, x(i, j) = | xi − xj |, the ordinary Euclidean distance between the ith and jth observations. t 

(i, j) = the dendrogrammatic distance between the model points ti and tj (height of the node at 

which these two points are first joined), x bar is the average of the x(i, j), and t bar is the average 

of the t(i, j). After factorizing A into the basis matrix W and the encoding matrix H, we used the 

basis matrix W for histone stratification. Specifically, we grouped histone codes into four groups 

(k=4). We assigned histone code xi to cluster k* which has the highest value based on the basis 

vector, as: 

    k∗ = argmaxLWN,L       (Equation 5) 

Similarly, we assigned targeted pathways for each drug dj to cluster k* which has the highest value 

based on the encoding vector, as: 

    k∗ = argmaxLHP,L     (Equation 6) 
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 Histone Prediction Model using PLSR. Histone-peptide interaction network was 

generated using partial least square regression (PLSR) method based on Kraemer et al. formulation 

(Krämer and Sugiyama 2011). PLSR is a multivariate regression method for constructing 

predictive model when the number of factors/predictor variables (in our case phosphopeptides) 

exceeds the number of responses / dependent variables (histone marks), and collinearity exists 

(phosphopeptides are correlated with one another). A past study (Gupta et.al, 2010) had shown the 

effectiveness of partial least square (PLS) application in understanding crosstalk between 

phosphoprotein signaling in macrophage cells, thus, prompting us to consider a PLS-based 

regression model. The general idea behind PLSR is to try to extract latent factors, accounting for 

as much of the observed variation as possible while modeling the responses well. For each sample 

n, the value ynj is defined as: 

𝑦R* = ∑ 𝑏*T
*6U 𝑥R* + 𝜀R*         (Equation 7) 

 

Where yni is a response, 𝑏*is the coefficient, 𝑥R*is an explanatory variable and 𝜀R* is an error term. 

This model is similar to linear regression; however, the way these bi are found is different. To see 

this, a matrix format of equation (7) can be expressed as Y=XB+E where Y is an n cases 

by m variables response matrix (in our case it is drugs x histone data), X is an n cases 

by p variables predictor matrix (in our case it is drugs x phosphopeptides data), B is 

a p by m regression coefficient matrix, and E is a noise term for the model which has the same 

dimensions as Y. For our X predictor matrix, we first normalized all the phosphosignal values to 

their corresponding z-scores and centered Y response matrix (histone values). Intuitively, partial 

least squares regression produces a p by c weight matrix W for X such that T=XW, i.e., the 
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columns of W are weight vectors for the X columns producing the corresponding n by c factor 

score matrix T. These weights are computed so that each of them maximizes the covariance 

between responses and the corresponding factor scores. Ordinary least squares procedures for the 

regression of Y on T are then performed to produce Q, the loadings for Y (or weights for Y) such 

that Y=TQ+E. Once Q is computed where B=WQ, we have Y=XB+E, and the prediction model is 

complete. To provide a complete description of PLSR, we also need a p by c factor loading 

matrix P which gives a factor model X=TP+F, where F is the unexplained part of the X scores. 

On the training data, we calculated the optimal model parameter using 10-fold cross-validation. 

We assessed the predictive performance by computing the residual sum of square (RSS) error of 

prediction on the test set. 

 We identified the optimal number of components (principal component, PC) that could be 

used to predict the model accurately using residual square sum (RSS) value < 0.05. Once the 

coefficients (bi) are generated, we retained only the significant peptides (p_value < 0.001) using 

the statistical significant t-test where the degree of freedom DOF was computed as: 

DOF = min (column of X, row of X) – PC – 1. 
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2.4 Results and Discussions 

 Four Pathway-based Histone Signatures Identified by Clustering Method Constitute 

“Global Chromatin Fingerprint Profiles.” In order to identify fingerprint histone profiles, we 

investigated the relationships between the 31 drugs targeting serine-threonine kinases in various 

cell lines including the breast cancer line (MCF7), and the resulting GCP response at 24 hours. We 

calculated the histone code fold changes by accounting for their differential modifications i.e., 

changes in histone levels from pre-treatment (MCF7 treated with DMSO) to post-treatment (MCF7 

treated with a specific drug) state. Using a non-negative matrix factorization (NMF) clustering 

method on these histone code fold changes, we identified four pathway-based functional histone 

modules c1, c2, c3 and c4 (Fig 2.2, Table 2.1) and refer to them as “histone signatures” that 

characterize the response to drugs. Briefly, the objective of NMF is to explain the observed data 

using a compact number of latent features, i.e., basis components, which abstract the original data 

as accurately as possible. No independence or orthogonality constraints are imposed on the basis 

components leading to a simple and intuitive interpretation of the factors that allows the basis 

components to overlap. This unique feature is particularly interesting in histone modules, where 

overlapping basis components identify combinatorial histone codes resulting from multiple 

signaling pathways and indicating a specific signature (method section).  

 To provide a comprehensive mapping of these histone signatures to drugs with respect to 

their shared signaling pathways, we then generated a molecular network consisting of 91 nodes 

(comprising histone codes and drugs) and 554 edges (node interactions). Coefficients generated 

from the assignments of each histone signature profile to the drug prototypes (see method section) 

are used to represent the strength of the interactions between a histone code and a drug (Fig 2.2). 
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Edge thickness represents the strength of the contributions of drugs to histone codes belonging to 

the same histone signature. In c1 histone signature, we found 46 histone codes are strongly 

associated with ten drugs  showing mostly inhibitory effects shared by nine common pathways 

(Fig 2.2). We observed all cyclin-dependent kinase (CDK) inhibitors (flavopiridol, dinaciclib, and 

PD-0332991) and replication stress inhibitors (VX-970 and SCH 90076) were grouped with the 

same histone signature. We observed similar groupings for the c2 signature associating 3 histone 

codes with ten drugs where all AkT/PI3K variants of Ras inhibitors (IPI145, afuresertib, BYL719, 

dactolisib) grouped together (Table 2.1). Similarly, in c3, 2 repressive histone marks, H3K56me1 

and H3K56me2, are associated with 5 drugs targeting Jak3, Mek1/2, Jnk, Hippo and multikinase 

pathways. In addition, H3K56me2 is activated by all drugs while H3K56me1 had inhibitory effects 

on Jnk, Mek1/2 and multikinase pathways, and activation effects on Jak3 and Hippo pathways. 

The involvement of these pathways regulating these two histones is less clearly established in 

breast cancer and merits further experimental investigation. In the c4 signature module, we 

observed nine histone codes associated with IKkKB, Mek1/2, Notch/Wnt/Hedgehog, Gamma 

secretase, mTOR, and p38 MAPK pathways. We observed a reduction of monomethylation at 

lysine 9 and phosphorylation at serine 10 (H3K9me1S10ph1K14ac0), a repressive histone code, 

in all the pathways in this module suggesting its potential as a therapeutic marker mediated by 

these shared pathways in breast cancer. In addition, we observed overlaps in c2, c3 and c4 for 

drugs targeting IkKB, Notch, Mek1/2 and Jnk pathways suggesting crosstalk among histone 

signatures. Collectively, our results suggest strong selective preferences of histone codes towards 

specific pathway-based therapeutic effects as well as possible crosstalk among the pathways which 

may lead to off-target effects. 
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 Histone Prediction Model Provides Quantitative Contributions of Enriched 

Phosphoproteins Toward Histone Codes. Next, we sought to identify the phosphoprotein 

networks representing various interactions among the enriched phosphoproteins and histone codes. 

Using the P100 phosphoproteins and GCP responses at 24 hours after treatment with the 31 drugs, 

we developed a quantitative-qualitative estimate of significant phosphoproteins contributing to the 

alterations of histone codes using a partial least square regression (PLSR) method. PLSR is a 

multivariate method for constructing a predictive model when the number of factors (covariates, 

e.g., 96 phosphoproteins) exceeds the number of responses (e.g., 60 histones) and the factors are 

highly correlated. PLSR attempts to extract latent factors across data, accounting for as much of 

the observed variation as possible while modeling the output/responses accurately. A past study 

(Gupta et.al, 2010) had shown the effectiveness of partial least square (PLS) application in 

understanding crosstalk between phosphoprotein signaling in macrophage cells, thus, prompting 

us to consider a PLS-based regression model. Using PLSR we generated a system model where 

each histone code is considered as an outcome/response to combined influences (i.e., coefficients) 

of all phosphoproteins. Each coefficient represents the contribution of individual phosphoprotein 

towards the level of a histone code (see method section). We evaluated our PLSR model using 10-

fold cross-validation. Using a p-value <1.0e-4 (see method section), our model generated a 

histone-phosphoprotein network comprised of 113 nodes, representing histone codes and 

phosphoproteins and 230 edges (interactions between them) (Fig 2.3). Our results showed 

H3K27me3K36me3, H3K9ac1S10ph1K14ac0, H3K56me2, and H3K18ac0K23ub1 as highly 

connected histone codes (hubs with the highest degree), influenced by the statistically significant 

phosphoproteins: BRD4 (Bromodomain Containing 4), ATAD2 (ATPase Family, AAA Domain 
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Containing 2), NOLC1 (Nucleolar and Coiled-Body Phosphoprotein 1), SRRM2 (Serine/Arginine 

Repetitive Matrix 2), and CASC3 (Cancer Susceptibility Candidate 3).  

 Briefly, BRD4 and ATAD2 are bromodomain proteins. BRD4 is an epigenetic “reader” 

and belongs to BET family protein that maintains epigenetic memory and regulates cell cycle 

progression; BRD4 has been shown to have an intrinsic binding specificity for transcription factors 

such as c-MYC and p53 which are known to promote cancer (Delmore et al. 2011), making it a 

promising drug target. Similarly, ATAD2 is a novel cofactor for MYC, overexpressed and 

amplified in aggressive tumors. It has been shown that downregulation of ATAD2 via siRNA 

results in increased apoptotic activity, suggesting a role for inhibitors of ATAD2 in cancer cell 

death and tumor regression (Caron et al. 2010). NOLC1 is a nucleolar protein that regulates RNA 

polymerase I by connecting RNA polymerase I to ribosomal processing and remodeling enzymes, 

resulting in translational remodeling. It has a high binding affinity to c-MYC and Max transcription 

factors which play an important role in cancer. Although NOLC1 has not been studied extensively, 

a previous study (Hwang et al. 2009) found NOLC1 to have transcription factor-like activity in 

nasopharyngeal cancer progression suggesting its possible role in other cancers. SRRM2 protein 

is known to be involved in pre-mRNA splicing and has binding specificity for p53.  SRRM2 has 

been detected as a 5'-3' Exoribonuclease 2 (Xrn2)-interacting protein that is involved in premature 

termination of RNA polymerase II transcription (Sansó et al. 2016; Brannan et al. 2012) thus 

affecting cell cycle progression. CASC3, also known as MLN51 is a component of the exon 

junction complex (EJC) whose expression has been shown to be elevated in some breast cancer 

cell lines (Tomasetto et al. 1995). The EJC is known to be involved in a surveillance mechanism 

that degrades mRNAs with premature translation termination codons through a nonsense-mediated 

mRNA decay (NMD) function, thereby, promoting cell cycle arrest. Currently, the implications of 
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ATAD2, NOLC1, SRRM2 and CASC3 proteins in cancer regulation is poorly understood, and our 

results suggest that these regulators serve as potential novel oncogenic drivers mediating histone 

modifications in breast cancer. 

 Taken together, the histone-peptide network reveals candidate phosphoproteins that serve 

as potential therapeutic targets; these candidate phosphoproteins alter histone codes resulting in 

alterations in cell cycle progression in breast cancer.  

 Integrated Approach Provides a Three-dimensional View of Molecular Interactions 

among Drugs-Phosphoproteins-Histones. To further elucidate the influence of specific drugs on 

phosphoproteins and downstream histone codes, we then developed a 3D view of the molecular 

interactions (phosphoproteins-drugs-histones) by integrating histone signatures with the drug-

phosphoprotein interaction network resulting in an integrated phosphoproteins-histones-drugs 

network (iPhDnet). The network consisted of 144 nodes, 742 interactions (Fig 2.4) and 2157 

unique maps (interaction profiles) which are stored into a relational database. Using this database, 

we developed a web-based tool called chromatin reader eraser writer database (CREWdb) to 

further characterize these enriched phosphoprotein (Fig 2.7).   The iPhDnet serves as a quantitative 

atlas of global chromatin profile fingerprints that can be used to generate hypotheses linking drugs, 

pathways, phosphoproteins, and histones, to understand drug response pathways in cancer.  

 Our chromatin profile fingerprints revealed an overall reduction in histone levels in active 

marks such as methylation of H3K36, H3K4, and acetylation of H3K9 when treated with drugs, 

which are consistent with previous studies (Lewis et al. 2013; Leroy et al. 2013; Zhu et al. 2015). 

We observed that reduction of phosphoprotein level in SRRM2 was positively correlated (p-Val < 

2.7e-04) with H3K4me1 and H3K4me3 when treated with drugs that belonged to c1 signature 

histone module. While trimethylation of H3K27 is a repressive histone mark associated with 
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transcriptionally silenced chromatin in most cancers (Lewis et al. 2013; Leroy et al. 2013; Zhu et 

al. 2015), our analysis revealed inhibitory effects of differential modification levels of 

trimethylation of H3K27. These findings are consistent with the results of prior studies in breast 

cancer (Holm et al. 2012; Ren et al. 2012).  Likewise, Abelson interactor protein-1 (ABI1), an 

adaptor protein involved in cell migration, along with its downstream effector phospho-Akt (p-

Akt) has been implicated in the spread of breast cancer (Wang et al. 2011); ABl1 is positively 

correlated with reduced H3K27me3K36me3 histone mark (p-Val < 7.02e-05) when inhibited by 

CDK inhibitor flavopiridol.  Additionally, we observed significant associations (p-val < 7.5e-05) 

of BRD4, NOLC1, ATAD2 and SRRM2 with H3K27me3K36me3 when treated with CDK 

inhibitors flavopiridol, dinaciclib, and palbociclib (PD-033291) (Table 2.1). Taken together, 

iPhDnet shows that inhibiting ABI1, BRD4, NOLC1, ATAD2, and SRRM2 with the help of CDK 

inhibitors may be sufficient to induce the heterochromatin state where the repressive mark 

H3K27me3 colocalizes with the active mark H3K36me3. This finding suggests that for a stable 

reversion of epigenetic silencing state in breast cancer, a reversal from the malignant euchromatin 

to normal heterochromatin may be dictated by H3K36me3. In addition, we observed a decrease of 

H3K27me3 when treated with all CDK inhibitors supporting the observation made by a prior study 

where induction of a CDK inhibitor was associated with a lower level of H3K27me3 in breast 

cancer (Yang et al. 2009). Most likely the reduced level of H3K27me3 is associated with CDK 

inhibitors in breast cancer. Therefore, we postulate that ABI1, BRD4, NOLC1, ATAD2, and 

SRRM2 can mediate H3K27me3K36me3 for reversion of epigenetic silencing in breast cancer 

using CDK inhibitors.  We also postulate that the reduction of H3K27me3 may be a compensatory 

effect of other cofactors of these phosphoproteins working together to induce cell growth arrest, 

suggesting the potential for a combinatorial treatment strategy in breast cancer. 
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2.5 Evaluation  

 Benchmarking and performance analysis. We evaluated the performance of NMF 

clustering using a cophenetic coefficient score and known canonical signaling pathways associated 

with drug treatment. Cophenetic coefficient measures how reliably the same histone codes are 

assigned to the same cluster across many iterations of the clustering algorithm with random 

initializations. We found that 100 iterations were enough to attain cluster stability for our data. The 

cophenetic correlation coefficient lies between 0 and 1 and reflects the probability that samples i 

and j cluster together. Higher values indicate more stable cluster assignments. We selected optimal 

k= 4 based on the largest observed cophenetic coefficient and where the magnitude of the 

cophenetic correlation begins to decrease by varying values of k from 2 - 10 (Fig. 2.5). See Online 

Methods for details. In addition, the optimal k = 4 is reflected by the groupings of the of the drugs 

to their respective canonical signaling pathways. 

           We evaluated PLSR model using cross validation. On the training data, we calculated the 

optimal model parameter using a 10-fold cross-validation. We assessed the predictive performance 

by computing the residual sum of square (RSS) error of prediction on the test sets. We identified 

the optimal number of components (principal component, PC) that could be used to predict the 

model accurately using residual square sum (RSS) value < 0.05 (Fig. 2.6). Once the coefficients 

are generated, we retained only the significant peptides (p_value < 0.0001) using a t-test and degree 

of freedom (DOF). See Methods for details. 
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2.6 Conclusions and Future Work 

 The iPhDnet serves as a quantitative atlas of global chromatin profiles thereby, providing 

a detailed view of histone modifications by various drugs and phophoproteins in breast cancer. 

Our study reveals strong correlation between flavopiridol and dinaciclib with strongest selective 

inhibitory potential against BRD4 that impacts H3K27me3K36me3 histone mark. Thus, 

implicating these drugs as potential BRD4 mediated therapeutics targeting H3K27me3K36me3 in 

breast cancer. All of these findings warrant experimental validation.  

 In conclusion, iPhDnet can serve as a valuable method for integrative analysis of multi-

omics datasets. The framework can also be extended to accommodate other types of omics data, 

for instance scRNASeq, ATAC-seq and Hi-C data. In the future, we want to incorporate nonlinear 

models in the framework to capture the dynamics of cellular mechanisms. Finally, the observations 

made by applying iPhDnet to analyze GCP and phosphoprotein data have implications for 

discovery of cancer therapeutics suggesting mechanistically-associated targets. 
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2.7 Figures 

 

  
 
Figure 2.1. Schematic view of the 3D latent space model to generate global chromatin 
fingerprints in breast cancer.  
(a) Flowchart of the model steps. (b) GCP data is clustered using consensus-based non-negative 
factorization (NMF). (c) Pathway-based “histone signatures” are recovered by NMF clustering and 
linking drugs to the specific histones. (d) A quantitative estimate of significant phosphoproteins 
contributing to histone modifications is assessed by generating a histone-protein interaction 
network using partial least square regression (PLSR) method. (e) A 3-dimensional view of 
molecular interactions of drugs-phosphoproteins-histones is generated by integrating the histone 
signatures with the histone-protein interaction network. (f) Showing the utility of the iPhDnet.  
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Figure 2.2. Histone-drug interaction map using NMF model.  
Four “histone signatures” are obtained by NMF clustering of GCP at 24-hour post-treatment. 
Drugs and histones are depicted by orange and magenta nodes respectively, the color of edges 
signifies whether the interaction between a drug and a histone resulted in elevated (red) or reduced 
(green) histone level. 
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Figure 2.3. Histone-phosphopeptide interaction map using PLSR model. 
Histone-phosphoprotein interaction network using a PLSR prediction model. Histones and 
phosphoproteins are depicted by magenta and blue nodes respectively, the color of edges depicts 
whether the interaction between a phosphoprotein and a histone is positively (red) or negatively 
(green) correlated.  
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Figure 2.4. Integrated phosphoprotein-drug-histone network (iPhDnet).  
iPhDnet shows enrichment of modification levels on H3K9ac1S10ph1K14ac0, H3K56me2, 
H3K27me3K36me3, H3K18ac0K23ub1 histone codes, acting as highly connected nodes (hubs) 
and positively induced by various drugs affecting enriched phosphoproteins including BRD4, 
ATAD2, and NOLC1. The strength of an interaction is captured by the width of an edge 
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Figure 2.5. Benchmarking and Performance analysis.  
Estimation of the factorization rank of NMF and its cluster component. Cophenetic score is 
computed from 100 runs for each value of rank k, by varying k= 2, 3...10 on 24-hour GCP data. 
Rank k represents the number of clusters or basis components. The solid line represents the original 
data and the dotted line represents simulated data using 100 runs. The cophenetic scores identify 
optimal k to be 4. Heatmap of the basis components (histones and their cluster membership). The 
heatmap of the basis components shows likelihood of each histone mark belonging to each 
signature module. Mixture (loading) coefficients (quantitative contribution of drugs to histone 
cluster membership) are shown for k=4. 
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Figure 2.6. Performance of PLSR model.  
Showing two examples of histone codes (H3K27me3K36me3, H3K9ac1S10ph1K14ac0 and 
H3K18ub1K23ac0). (A) Showing model performance using optimal number of components. The 
optimal number of components (principal component, PC) is used to predict the model accurately 
using residual sum square (RSS) value < 0.05. (B) Depicting model performance using sub optimal 
number of components. 
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Figure 2.7. Communication between CREWdb database and GUI.  
Schematic view of MySQL database construction and integration with Apache webserver via 
PhP scripting.  
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2.8 Table 

Table 2.1. Characteristics of the NMF based four histone signatures in MCF7. 
Membership of histone codes and drugs in their respective histone signatures. These signatures 
influence specific canonical signaling pathways shown in the right most column (represented 
visually in Figure 3.1). 

  

Histone signature # of Histone codes Histone codes # of Drugs Drugs Canonical pathways
c1 46 H3K4me0,

H3K4me1,
H3K4me2,
H3K4me3,
H3K4ac1,

H3K9me0K14ac0,
H3K9me1K14ac0,
H3K9me2K14ac0,
H3K9me3K14ac0,
H3K9ac1K14ac0,
H3K9me0K14ac1,
H3K9me1K14ac1,
H3K9me2K14ac1,
H3K9me3K14ac1,
H3K9ac1K14ac1,

H3K9me0S10ph1K14ac1,
H3K9me1S10ph1K14ac1,

H3K18ac0K23ac0,
H3K18ac1K23ac0,
H3K18ac0K23ac1,
H3K18ac1K23ac1,

H3K27me1K36me0,
H3K27me1K36me1,
H3K27me1K36me2,
H3K27me1K36me3,
H3K27me2K36me0,

10 AR-A014418,
Dinaciclib,

Flavopiridol,
Lenalidomide,

Pazopanib,
PD-0332991,
SCH900776,
TG101348,

Vemurafenib,
VX970

GSK3 inhibitor,
CDK/1,2,4,5,6,9 

inhibitor,
immunomodulator,

PDGFR and VEGFR; 
Also c-KIT, FGFR, 

inhibitor,
Rep. stress/CHK1 

inhibitor,
Jak2 inhibitor,
Raf inhibitor,

Rep. stress/ATR 
inhibitor

c2 3 H3K9ac1S10ph1K14ac0,
H3K9ac1S10ph1K14ac1,

H3K18ub1K23ac0

10 afuresertib,
BMS906024,

BYL719,
dactolisib,

IPI145,
Pravastatin,

PS-1145,
SP600125,

staurosporine,
vorinostat

Ras/AKT inhibitor,
Notch/other inhibitor,

Ras/PI3K-P110a 
inhibitor,

Ras/PI3K inhibitor,
Ras/PI3K-P110g,d 

inhibitor,
Stat1 inhibitor,
IkKB inhibitor,
Jnk inhibitor,

Kinase inhibitor; 
general,

HDAC inhibitor; 
general

c3 2 H3K56me1,
H3K56me2

5 CC-401,
Nilotinib,

Selumetinib,
Tofacitinib,
Verteporfin

Jnk inhibitor,
Multikinase inhibitor,

Mek1/2 inhibitor,
Jak3 inhibitor,
Hippo inhibitor

c4 9 H3K9me0S10ph1K14ac0,
H3K9me1S10ph1K14ac0,
H3K9me2S10ph1K14ac0,
H3K9me3S10ph1K14ac0,
H3K9me2S10ph1K14ac1,
H3K9me3S10ph1K14ac1,

H3K18ac0K23ub1,
H3K27me0K36me0,
H3K27ac1K36me0

6 BMS-345541,
Everolimus,
losmapimod,
PD0325901,

PRI-724,
RO4929097

IkKB inhibitor,
mTOR inhibitor,

p38 MAPK inhibitor,
Mek1/2 inhibitor,

Notch/Wnt/Hedgehog 
inhibitor,

Notch/gamma 
secretase inhibitor

Supplementary Table 3. Characteristics of the NMF based four histone signatures in MCF7
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CHAPTER 3: Network-based Global Chromatin Profiling Fingerprints 

Reveal Therapeutic Efficacy in Breast Cancer 

 

 
3.1 Abstract 

Regulatory abnormalities caused by epigenetic changes due to chromatin modifications are 

being increasingly recognized as contributors to cancer. While many molecularly targeted drugs 

have the potential to revert these modifications, their precise mechanism of action in cellular 

reprogramming is yet to be deciphered. We generated “network-based global chromatin profiling 

fingerprints” by integrating proteomic/phosphoproteomic, transcriptomic and regulatory genomic 

data to understand how unique chromatin alterations by post-translational histone modifications 

regulate cell state changes when treated with drugs in breast cancer. We find H3K27me3K36me3 

as a key fingerprint, mediated by chromatin remodelers BRD4, NSD3, EZH2, and a proto-

oncogene MYC.  We show CDK inhibitors flavopiridol and dinaciclib display selective inhibitory 

potential toward BRD4/MYC, implicating them as potential therapeutic targets to restitute 

H3K27me3K36me3 status in breast cancer.  
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3.2 Introduction 

 Breast cancer is one of the few tumor types in which effective therapies have led to 

significant improvements in patient survival (Perez 2011).  However, the molecular and clinical 

heterogeneity of breast cancer makes the identification of the most specific and effective therapies 

challenging (Rugo et al. 2016). To address this problem, recent studies (Mertins et al. 2016; Ellis 

et al. 2012; Yamamoto et al. 2014; Cancer Genome Atlas Network 2012; Curtis et al. 2012) have 

employed high-throughput genomic and proteomic technologies to discover the molecular events 

and critical pathways involved in breast cancer, leading to contextually targeted therapies as well 

as the development of novel therapeutic targets. Furthermore, analysis and identification of the 

most appropriate targets have the ability to provide insights into tumor progression and drug 

resistance mechanisms caused by cellular reprogramming in disease (Dravis et al. 2018; Wahl and 

Spike 2017).     

 Cancer arises due to aberrant genetic (Hanahan and Weinberg 2011) and epigenetic 

dysregulation (Baylin and Jones 2011; Sandoval and Esteller 2012), causing normal cells to 

proliferate. There is increasing evidence that these regulatory abnormalities are caused by 

epigenetic alterations through post-translational modification (PTM) of histones (Leroy et al. 

2013) resulting from a variety of covalent modifications including, phosphorylation, methylation, 

acetylation, and ubiquitination at the N-terminal tails of histones. A single or combinatorial set of 

these modifications on one or more histone tail comprises a ‘histone code’  (Strahl and Allis 2000) 

which greatly influences the control of the chromatin structure, function, and interactions and leads 

to altered downstream cellular processes. The chromatin-associating proteins also known as 

chromatin remodelers (readers, writers, erasers) recognize, add and remove specific histone 

modifications through their specialized protein-binding domains (Strahl and Allis 2000; Jenuwein 
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and Allis 2001; Schreiber and Bernstein 2002; Fischle et al. 2003). The histone codes play key 

roles in the regulation of gene expressions activities, acting as cellular regulators switching genes 

on and off by making the DNA accessible/inaccessible to transcriptional machinery through 

remodeling euchromatin (active) and heterochromatin (silenced) states respectively. In contrast to 

the irreversible genomic mutations that activate oncogenes or inactivate tumor suppressor genes 

in cancer, histone modifications are reversible and can be used as potential biomarkers for normal 

or cancer state of cells, and as markers of drug response. Furthermore, chromatin remodelers 

themselves can be targets of therapy if their specific roles in histone modifications are understood. 

Epigenetic therapeutics such as vorinostat (SAHA) and romidepsin, inhibitors of histone 

deacetylases (HDAC), are approved for the treatment of refractory cutaneous T-cell lymphoma 

(Foss et al. 2011; Khan and La Thangue 2012). Although these drugs have been successful in 

treatment, their precise mechanism of action, i.e., their action in cellular reprogramming is poorly 

understood due to the lack of reliable biomarkers for the prediction of their clinical activity.  

 In a recent large-scale initiative, Library of Integrated Network-Based Cellular Signatures 

(LINCS) (http://www.lincsproject.org), has carried out multi-omics characterization of response 

of five cancer cells to 31 drugs, through measurement of phosphoproteins (P100) (Abelin et al. 

2016), transcripts (L1000) (Subramanian et al. 2017), and global chromatin profiles (GCP) (Creech 

et al. 2015). Some of these measurements were carried out at multiple time points post-treatment 

of cells.  The P100 and GCP are Mass Spectrometry (MS) based targeted proteomics assays that 

include a representative set of phosphopeptides, and different combinations of histone 

modifications treated by multiple drugs respectively. L1000 data was generated using a microarray 

platform containing landmark transcript probes obtained from a Connectivity Map (Subramanian 

et al. 2017) of genes which were invariant across cell states. We report here the relationship 
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between the treatments and cellular response to the treatments. Our primary objective was to 

explore and identify epigenetic fingerprints uniquely characterizing effective drug response. The 

combinatorial histone marks measured in response to each treatment represent the epigenetic 

changes associated with the remodeled chromatin topology and serve as fingerprints of the cellular 

state.    

For initial characterization of the epigenetic fingerprint responses, we used the MCF7 cell 

line from LINCS study that profiled 96 phosphopeptides at three time points and 60 histone marks 

profiled 24 hours after treatment with 31 established drugs. This type of high-dimensional data 

represents significant challenges in analyzing the pattern of drug responses affecting GCP, and 

deciphering pathways that are causally involved in responses leading to specific GCP. We 

approached this from the perspective of data and dimension reduction in order to develop 

mechanistic models of drug response through GCP fingerprints. In the following sections, we 

describe the integrated network we developed for analyzing the LINCS breast cancer data to 1) 

uncover the number of distinct ways in which drugs relate to GCP; 2) decipher the unique 

phosphoproteins networks and pathways that describe histone response to 31 drug treatments; and 

3) identify mechanisms involving phosphoproteins regulating a wide range of cellular processes 

(growth, proliferation and cell division) and gene activity states. Our results demonstrate 

fingerprints of GCP that comprehensively describe the drug response in cancer cells and further 

help elucidate the detailed causal mechanisms that lead to these epigenetic profiles. 
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3.3 Results 

 Four Pathway-based Histone Signatures Identified by Clustering Method Constitute 

“Global Chromatin Fingerprint Profiles.” In order to identify fingerprint histone profiles, we 

investigated the relationships between the 31 drugs targeting serine-threonine kinases in various 

cell lines including the breast cancer line (MCF7), and the resulting GCP response at 24 hours. We 

calculated the histone code fold changes by accounting for their differential modifications i.e., 

changes in histone levels from pre-treatment (MCF7 treated with DMSO) to post-treatment (MCF7 

treated with a specific drug) state. Using a non-negative matrix factorization (NMF) clustering 

method on these histone code fold changes (supplement figure S1), we identified four pathway-

based functional histone modules c1, c2, c3 and c4 (Fig 3.1A, 3.S1D) and refer to them as “histone 

signatures” that characterize the response to drugs. Briefly, the objective of NMF is to explain the 

observed data using a compact number of latent features, i.e., basis components, which abstract 

the original data as accurately as possible. No independence or orthogonality constraints are 

imposed on the basis components leading to a simple and intuitive interpretation of the factors that 

allows the basis components to overlap. This unique feature is particularly interesting in histone 

modules, where overlapping basis components identify combinatorial histone codes resulting from 

multiple signaling pathways and indicating a specific signature (Fig 3.S1, method section).  

 To provide a comprehensive mapping of these histone signatures to drugs with respect to 

their shared signaling pathways, we then generated a molecular network consisting of 91 nodes 

(comprising histone codes and drugs) and 554 edges (node interactions). Coefficients generated 

from the assignments of each histone signature profile to the drug prototypes (see method section) 

are used to represent the strength of the interactions between a histone code and a drug (Fig 3.S1). 

Edge thickness represents the strength of the contributions of drugs to histone codes belonging to 
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the same histone signature. In c1 histone signature, we found 46 histone codes are strongly 

associated with ten drugs (Fig 3.S1) showing mostly inhibitory effects shared by nine common 

pathways (Fig 3.1A). We observed all cyclin-dependent kinase (CDK) inhibitors (flavopiridol, 

dinaciclib, and PD-0332991) and replication stress inhibitors (VX-970 and SCH 90076) were 

grouped with the same histone signature. We observed similar groupings for the c2 signature 

associating 3 histone codes with ten drugs where all AkT/PI3K variants of Ras inhibitors (IPI145, 

afuresertib, BYL719, dactolisib) grouped together (Fig S1). Similarly, in c3, 2 repressive histone 

marks, H3K56me1 and H3K56me2, are associated with 5 drugs targeting Jak3, Mek1/2, Jnk, 

Hippo and multikinase pathways. In addition, H3K56me2 is activated by all drugs while 

H3K56me1 had inhibitory effects on Jnk, Mek1/2 and multikinase pathways, and activation effects 

on Jak3 and Hippo pathways. The involvement of these pathways regulating these two histones is 

less clearly established in breast cancer and merits further experimental investigation. In the c4 

signature module, we observed nine histone codes associated with IKkKB, Mek1/2, 

Notch/Wnt/Hedgehog, Gamma secretase, mTOR, and p38 MAPK pathways. We observed a 

reduction of monomethylation at lysine 9 and phosphorylation at serine 10 

(H3K9me1S10ph1K14ac0), a repressive histone code, in all the pathways in this module 

suggesting its potential as a therapeutic marker mediated by these shared pathways in breast 

cancer. In addition, we observed overlaps in c2, c3 and c4 for drugs targeting IkKB, Notch, Mek1/2 

and Jnk pathways (Fig S1) suggesting crosstalk among histone signatures. Collectively, our results 

suggest strong selective preferences of histone codes towards specific pathway-based therapeutic 

effects as well as possible crosstalk among the pathways which may lead to off-target effects. 
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 Histone Prediction Model Provides Quantitative Contributions of Enriched 

Phosphoproteins Toward Histone Codes. Next, we sought to identify the phosphoprotein 

networks representing various interactions among the enriched phosphoproteins and histone codes. 

Using the P100 phosphoproteins and GCP responses at 24 hours after treatment with the 31 drugs, 

we developed a combined quantitative and qualitative estimate of significant phosphoproteins 

contributing to the alterations of histone codes using a partial least square regression (PLSR) 

method. PLSR is a multivariate method for constructing a predictive model when the number of 

factors (covariates, e.g., 96 phosphoproteins) exceeds the number of responses (e.g., 60 histones) 

and the factors are highly correlated. PLSR attempts to extract latent factors across data, 

accounting for as much of the observed variation as possible while modeling the output/responses 

accurately. A past study (Gupta et.al, 2010) had shown the effectiveness of partial least square 

(PLS) application in understanding crosstalk between phosphoprotein signaling in macrophage 

cells, thus, prompting us to consider a PLS-based regression model. Using PLSR we generated a 

system model where each histone code is considered as an outcome/response to combined 

influences (i.e., coefficients) of all phosphoproteins. Each coefficient represents the contribution 

of individual phosphoprotein towards the level of a histone code (see method section). We 

evaluated our PLSR model using 10-fold cross-validation. Using a p-value <1.0e-4 (see method 

section, Fig 3.S2), our model generated a histone-phosphoprotein network comprised of 113 

nodes, representing histone codes and phosphoproteins and 230 edges (interactions between them) 

(Fig 3.1B). Our results showed H3K27me3K36me3, H3K9ac1S10ph1K14ac0, H3K56me2, and 

H3K18ac0K23ub1 as highly connected histone codes (hubs with the highest degree), influenced 

by the statistically significant phosphoproteins: BRD4 (Bromodomain Containing 4), ATAD2 

(ATPase Family, AAA Domain Containing 2), NOLC1 (Nucleolar and Coiled-Body 
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Phosphoprotein 1), SRRM2 (Serine/Arginine Repetitive Matrix 2), and CASC3 (Cancer 

Susceptibility Candidate 3).  

 Briefly, BRD4 and ATAD2 are bromodomain proteins. BRD4 is an epigenetic “reader” 

and belongs to BET family protein that maintains epigenetic memory and regulates cell cycle 

progression; BRD4 has been shown to have an intrinsic binding specificity for transcription factors 

such as c-MYC and p53 which are known to promote cancer (Delmore et al. 2011), making it a 

promising drug target. Similarly, ATAD2 is a novel cofactor for MYC, overexpressed and 

amplified in aggressive tumors. It has been shown that downregulation of ATAD2 via siRNA 

results in increased apoptotic activity, suggesting a role for inhibitors of ATAD2 in cancer cell 

death and tumor regression (Caron et al. 2010). NOLC1 is a nucleolar protein that regulates RNA 

polymerase I by connecting RNA polymerase I to ribosomal processing and remodeling enzymes, 

resulting in translational remodeling. It has a high binding affinity to c-MYC and Max transcription 

factors which play an important role in cancer. Although NOLC1 has not been studied extensively, 

a previous study (Hwang et al. 2009) found NOLC1 to have transcription factor-like activity in 

nasopharyngeal cancer progression suggesting its possible role in other cancers. SRRM2 protein 

is known to be involved in pre-mRNA splicing and has binding specificity for p53.  SRRM2 has 

been detected as a 5'-3' Exoribonuclease 2 (Xrn2)-interacting protein that is involved in premature 

termination of RNA polymerase II transcription (Sansó et al. 2016; Brannan et al. 2012) thus 

affecting cell cycle progression. CASC3, also known as MLN51 is a component of the exon 

junction complex (EJC) whose expression has been shown to be elevated in some breast cancer 

cell lines (Tomasetto et al. 1995). The EJC is known to be involved in a surveillance mechanism 

that degrades mRNAs with premature translation termination codons through a nonsense-mediated 

mRNA decay (NMD) function, thereby, promoting cell cycle arrest. Currently, the implications of 
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ATAD2, NOLC1, SRRM2 and CASC3 proteins in cancer regulation is poorly understood, and our 

results suggest that these regulators serve as potential novel oncogenic drivers mediating histone 

modifications in breast cancer. 

 Taken together, the histone-peptide network reveals candidate phosphoproteins that serve 

as potential therapeutic targets; these candidate phosphoproteins alter histone codes resulting in 

alterations in cell cycle progression in breast cancer.  

 Integrated Approach Provides a Three-dimensional View of Molecular Interactions 

among Drugs-Phosphoproteins-Histones. To further elucidate the influence of specific drugs on 

phosphoproteins and downstream histone codes, we then developed a 3D view of the molecular 

interactions (phosphoproteins-drugs-histones) by integrating histone signatures with the drug-

phosphoprotein interaction network resulting in an integrated phosphoproteins-histones-drugs 

network (iPhDnet). The network consisted of 144 nodes, 742 interactions (Fig 3.1C) and 2157 

unique maps (interaction profiles) which are stored into a relational database.  The iPhDnet serves 

as a quantitative atlas of global chromatin profile fingerprints that can be used to generate 

hypotheses linking drugs, pathways, phosphoproteins, and histones, to understand drug response 

pathways in cancer. 

 Our chromatin profile fingerprints revealed an overall reduction in histone levels in active 

marks such as methylation of H3K36, H3K4, and acetylation of H3K9 when treated with drugs, 

which are consistent with previous studies (Lewis et al. 2013; Leroy et al. 2013; Zhu et al. 2015). 

We observed that reduction of phosphoprotein level in SRRM2 was positively correlated (p-val < 

2.7e-04) with H3K4me1 and H3K4me3 when treated with drugs that belonged to c1 signature 

histone module. While trimethylation of H3K27 is a repressive histone mark associated with 

transcriptionally silenced chromatin in most cancers (Lewis et al. 2013; Leroy et al. 2013; Zhu et 
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al. 2015), our analysis revealed inhibitory effects of differential modification levels of 

trimethylation of H3K27. These findings are consistent with the results of prior studies in breast 

cancer (Holm et al. 2012; Ren et al. 2012).  Likewise, Abelson interactor protein-1 (ABI1), an 

adaptor protein involved in cell migration, along with its downstream effector phospho-Akt (p-

Akt) has been implicated in the spread of breast cancer (Wang et al. 2011); ABl1 is positively 

correlated with reduced H3K27me3K36me3 histone mark (p-val < 7.02e-05) when inhibited by 

CDK inhibitor flavopiridol.  Additionally, we observed significant associations (p-val < 7.5e-05) 

of BRD4, NOLC1, ATAD2 and SRRM2 with H3K27me3K36me3 when treated with CDK 

inhibitors flavopiridol, dinaciclib, and palbociclib (PD-033291) (Fig 3.1C, table 3.S1). Taken 

together, iPhDnet shows that inhibiting ABI1, BRD4, NOLC1, ATAD2, and SRRM2 with the help 

of CDK inhibitors may be sufficient to induce the heterochromatin state where the repressive mark 

H3K27me3 colocalizes with the active mark H3K36me3. This finding suggests that for a stable 

reversion of epigenetic silencing state in breast cancer, a reversal from the malignant euchromatin 

to normal heterochromatin may be dictated by H3K36me3. In addition, we observed a decrease of 

H3K27me3 when treated with all CDK inhibitors supporting the observation made by a prior study 

where induction of a CDK inhibitor was associated with a lower level of H3K27me3 in breast 

cancer (Yang et al. 2009). Most likely the reduced level of H3K27me3 is associated with CDK 

inhibitors in breast cancer. Therefore, we postulate that ABI1, BRD4, NOLC1, ATAD2, and 

SRRM2 can mediate H3K27me3K36me3 for reversion of epigenetic silencing in breast cancer 

using CDK inhibitors.  We also postulate that the reduction of H3K27me3 may be a compensatory 

effect of other cofactors of these phosphoproteins working together to induce cell growth arrest, 

suggesting the potential for a combinatorial treatment strategy in breast cancer. 



 
 

50 

 Flavopiridol and Dinaciclib Emerge as Potential CDK mediated Therapeutics 

Modulating H3K27me3K36me3 in Breast Cancer. To examine the validity of the identified 

enriched phosphoproteins mediated by specific drugs, we first compared our findings with prior 

experiments on identification of various histone codes in breast cancer.  Our findings are consistent 

with other reports that interrogated specific PTMs in breast cancers. We observed the reduction in 

H3K4me1, H3K4me3, H3K9ac, H3K27me3K36me0, and elevation in H3K18ac0K23ub1 histone 

codes. We are unaware of any studies that examined modifications of H3K56 methylation or other 

combinatorial histone codes in breast cancer. A summary of our PTM findings is provided in a 

table (Fig 3.2A). While the aforementioned studies have investigated the modification of 

H3K27me3 and H3K36me3, combinatorial assembly of repressive H3K27me3 and active 

H3K36me3 marks (H3K27me3K36me3), have not been previously studied in breast cancer. 

Hence, we further analyzed the molecular mechanisms associated with H3K27me3K36me3 

modulation to identify potential targets for therapeutic interventions in breast cancer.  

 Since H3K27me3K36me3 was assigned to the C1 histone signature, we considered 

evaluating the effect of various CDK inhibitors and the kinase inhibitors that belonged to C1 

histone signature on the enriched phosphoproteins. Together with the phosphorylation profiles 

(phosphorylation status at 3, 6 and 24 hours) of these enriched phosphoproteins and their molecular 

interactions, we observed anti-tumorigenic effects of flavopiridol on ABI1, BRD4, NOLC1 and 

SRRM2; anti-tumorigenic effects of dinaciclib on BRD4, NOLC1, and SRRM2; and anti-

tumorigenic effects of PD-0332991 on NOLC1 modulating H3K27me3K36me3 (Fig 3.2B). 

Similarly, we observed an anti-tumorigenic effect of drugs in c1 histone signature modulating 

H3K4me1 and H3K4me3 (Fig 3.2C) through CASC3 and SRRM2. From these findings, we 
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observe that flavopiridol and dinaciclib induce similar regulatory pathways suggesting similar 

therapeutic responses. 

 Flavopiridol is a CDK inhibitor with high selectivity for CDK9 (Bosken et al., 2014). It 

has been used in a phase II clinical trial for the treatment of relapsed/refractory lymphoma or 

multiple myeloma (Dispenzieri et al., 2006). Similarly, dinaciclib is a highly potent CDK inhibitor 

with selectivity for CDK1, CDK2, CDK5, and CDK9 (Paruch et al., 2010). It is in phase III clinical 

trials for the treatment of refractory chronic lymphocytic leukemia. To further evaluate the 

concordance of these two inhibitors at a global level, we performed NMF clustering analysis on 

LINCS data from four other cancer cell lines namely, pancreas (YAPC), skin (A375), lung (A549), 

prostate (PC3) and as a control a neural progenitor cell line (NPC). This resulted in histone 

signature modules for each of these cell lines (Fig 3.2D). Using these signature modules, we then 

computed the Rand Index (RI) between each paired cell lines to measure the similarity between 

two data groupings (see method for details). The RI value range from 0 (completely dissimilar 

group assignment) to 1 (exactly same group assignment). We observed a high concordance 

(RI=0.65) between MCF7 breast cancer and YAPC pancreas cancer cell lines (Fig 3.2D). 

Similarly, we computed RI on drug assignments to see how many drugs were grouped in the same 

histone signatures across all six cell lines. Interestingly, the analysis assigned flavopiridol and 

dinaciclib in the same histone modules across all six cell lines with an RI score of 1 (Fig 3.2E). 

To further corroborate these findings, we performed a Pearson correlation analysis on the 

phosphoprotein data. The results provide further support for the concordance between flavopiridol 

and dinaciclib showing a strong correlation between the two drug responses at 3 to 6 hour (r = 

0.59) and 6 to 24 hour (r = 0.69) (Fig 3.S3A and 3.S3B). Furthermore, a linear regression analysis 

of histone expressions at 24 hours showed similar treatment effects between flavopiridol and 



 
 

52 

dinaciclib (positive slope, p-value = 1.85e-11, adjusted r-squared =0.536 ) (Fig 3.S3D). Additional 

support is provided by a comparative structural analysis study (Ember et al., 2014) that indicates 

a similar affinity of flavopiridol and dinaciclib for acetylated lysine (KAc) binding site of 

bromodomain (BRD). Collectively, our findings show the similarity and the efficacy of 

flavopiridol and dinaciclib as potential candidates for BRD mediated CDK therapeutics in breast 

cancer. 

 Mechanistic Causal Network (MCN) Reconstruction Supports BRD4 Mediated Cell 

Cycle Arrest caused by Impaired Transcriptional Elongation when Treated with 

Flavopiridol and Dinaciclib in Breast Cancer. To gain mechanistic insights into 

H3K27me3K36me3 mediated regulation by flavopiridol and dinaciclib, we reconstructed 

mechanistic causal networks (MCN) that demonstrated the dynamics of the regulatory machinery 

involving the enriched phosphoproteins measured at varying time points. To construct a dynamic 

signaling network we first generated protein-protein interactions (PPI) for the enriched 

phosphoproteins, at 3, 6 and 24 hours, using the STRING database (http://string-db.org/). We only 

considered experimentally validated proteins that had a moderate to a high confidence score (see 

methods section). Using one-way analysis of variance (ANOVA) with astringent statistical 

criterion (p-value < 1.0e-4), we then generated significant phosphoproteins that were enriched at 

3 and 6 hours when treated with flavopiridol. Next, we extracted a list of inferred proteins by 

carrying out PPI on the enriched phosphoproteins that were previously generated from iPhDnet at 

24-hour time post-treatment. Using these inferred proteins, we then performed back propagation 

PPI by linking them to earlier time points, 6 and 3 hour enriched phosphoproteins. We repeated 

this process for dinaciclib. The resulting networks were then visualized using the Cytoscape 

software (Shannon et al. 2003) 
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 (Fig 3.3A, 3.3C).  

 Our results showed four phosphoproteins in flavopiridol (BRD4, TMPO, FAM76B, and 

RBM14) and three phosphoproteins (TMPO, FAM76B, and TPX2) in dinaciclib remained 

enriched across 3, 6, and 24-hour time points. Moreover, the network showed binding of 

BRD4/NSD3 which is consistent with a previous study (Rahman et al., 2011) where they found 

that reduced H3K36 methylation was a result of depletion of BRD4 or NSD3. It has been reported 

that Nuclear receptor SET domain-containing 3 (NSD3), also known as WHSCL1, is a 

methyltransferase that binds to BRD4 complexes at the promoter region to regulate levels of 

H3K36me3, affecting DNA repair, transcription initiation and elongation/termination process 

(Wen et al., 2014; Li et al., 2013). To further investigate the mechanisms by which this 

BRD4/NSD3 complex contributes to mediating cell cycle progression through the recruitment of 

H3K36me3 and binding to upstream regulators/cofactors, we performed enrichment analyses on 

the genes representing these phosphoproteins using the Enrichr tool (Chen et al., 2013; Kuleshov 

et al., 2016). The enrichment analysis identified MYC, POU5F1 (OCT4), ESR2, UPF1, 

SMARCA4 and BRCA1 as commonly enriched upstream/core regulators of phosphoproteins for 

flavopiridol and dinaciclib. These core regulatory factors have been shown to interact with super-

enhancers which are master transcription factors that control cell identity by exhibiting higher 

sensitivity to transcription activities (Whyte et al., 2013). Additionally, POU5F1 (OCT4) is a 

pioneer transcription factor whose expression has been shown to have an association with a high 

level of H3K36me3 active mark (Musselman et al., 2012). Moreover, Loven et al. postulated that 

the heightened sensitivity of super-enhancer genes to reduced levels of BRD4 may lead genes 

associated with super-enhancers to a greater transcriptional reduction than genes with average 
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enhancers when BRD4 is inhibited. This further implicates the efficacy of flavopiridol and 

dinaciclib targeting BRD4 in breast cancer.      

 Furthermore, our enrichment analysis showed interactions between spliceosome mediated 

activities through the core regulators: E2F4, UPF1, ILF3, and SMARCA4, and the components of 

exon junction complex (EJC) comprised of enriched phosphoproteins namely, NOLC1, SRRM2, 

CASC3, EIF4A3 and RBM8A (Le et al., 2016). Interestingly, EJC has been shown to have an 

association with Wnt/Notch signaling activity in the cancer signaling pathway (Liu, et al., 2016) 

suggesting crosstalk among pathways with possible off-target effects. The enrichment analysis 

showed interactions among the mitotic regulators (TPX2, AURKA) with TP53 activity and 

ATAD2 that formed a cluster, regulating cell cycle through alternative splicing. These regulators: 

TPX2, AURKA and EJC complex are known substrates of positive transcription elongation 

factor’s (P-TEFb), which bind indirectly with BRD4.  From these findings, we postulate that these 

regulators may serve as potential novel targets towards breast cancer therapy. Further experimental 

validation is warranted. 

 We further observed enrichment of estrogen receptors ESR1 and ESR2 as upstream 

regulators for SRRM2 and NOLC1 supporting possible MYC mediated endocrine activities. A 

recent study showed high MYC transcription mediated by CDK9 as a critical determinant of 

endocrine-therapy resistance breast cancers (Sengupta et.al, 2014). Therefore, it is reasonable to 

postulate that inhibition of SRRM2 and NOLC1 which interact with BET proteins may prove to 

be efficacious for endocrine therapy refractory breast cancers in a clinical setting. 

 Next, we investigated how flavopiridol and dinaciclib lead to preferential loss of 

BRD4/NSD3 impacting the super-enhancer-associated oncogene MYC, thereby, promoting cell 

cycle arrest in breast cancer. Based on our results and the evidence from previous studies  
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(Horiuchi et al., 2012; Kwak et al., 2013; Li, et al., 2013; Lu, et al., 2015), we postulate that cell 

cycle arrest  associated with the reduced H3K27me3K36me3 phenotype occurs through the 

following mechanism: 1) flavopiridol and dinaciclib inhibit BRD4, 2) as a result, H3K36me3 level 

is reduced through BRD4’s interacting partner NSD3, 3) reduction of BRD4 then impairs the 

catalytic activity of CDK9’s ability to bind to positive transcription elongation factor b (P-TEFb), 

which is sequestered by 7SK snRNP to acetylated chromatin at the MYC locus, 4) this suppresses 

P-TEFb's phosphorylation at serine 2 of the Pol II carboxyl-terminal domain (CTD) and the DRB 

Sensitivity Inducing Factor (DSIF) subunit SPT5, causes widespread RNA polymerase II to pause 

at gene promoters, thereby promoting cell cycle arrest. As a functional consequence of the loss of 

CDK9 activity, MYC expression is elevated as a compensatory effect, which activates EZH2, a 

subunit of the PRC2 complex, resulting in methyltransferase activity leading to H3K27me3 

reduction. This is a plausible rationale for the global reduction of H3K27me3K36me3 in breast 

cancer when treated with flavopiridol and dinaciclib. However, the reduction of H3K27me3 and 

H3K36me3 levels alone were markedly pronounced than the reduction level of the ‘bivalent 

domains’ H3K27me3K36me3, further suggesting that targeting H3K36me3 or 

H3K27me3K36me3 by these drugs is more efficacious than targeting H3K27me3 alone in breast 

cancer. 

 In conjunction with the proteomic analyses, we performed transcriptomic analyses using 

L1000 data on genes representing the enriched phosphoproteins to capture in vitro gene activity 

levels. We examined the efficacy of flavopiridol and dinaciclib in breast cancer at transcriptomic 

level, by looking at the CDK inhibitor genes, down-regulated genes that represented cell cycle 

genes and parent proteins of enriched phosphoproteins associated with H3K27me3K36me3 mark 

in the MCF7 cell line. We isolated 31 functionally significant genes with p < 0.05:  example 
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includes, CDKNA2, BRCA1, AURKA, MELK, EZH2, CCNA2, BRD4, NOLC1, SRRM2, MYC, 

CASC3 (Fig 3.3B, 3.3D). From the results, we observed an increase in CDK inhibitor gene 

CDKNA2 expression and decrease in expressions for all cell cycle genes across 3, 6, and 24-hour 

time points in flavopiridol and 6 and 24-hour time points in dinaciclib. Together, the results from 

these transcriptomic analyses further validate our proteomics analyses. 

 Functional analysis of transcriptomic data associate gene regulators response to cell 

cycle. To perform functional analyses on the differential expressions (DE) of these 31 genes after 

treated with flavopiridol and dinaciclib, we then performed DAVID annotation analysis (D. W. 

Huang, Sherman, and Lempicki 2009) and KEGG pathway analysis.  KEGG pathway analysis of 

these genes showed their involvement in the cell cycle, p53 signaling pathway, ErbB signaling, 

and pathways in cancer across 3, 6, and 24 hours for flavopiridol and 6 and 24 hours for dinaciclib 

(Fig 4A, 4B). Furthermore, these genes are associated with the following GO categories: nuclear 

lumen, regulation of cell death, cell cycle, programmed cell death, and protein kinase activities 

(Fig 3.4C). We then identified marker genes (MYC, CCNA2, EZH2, MELK, and AURKA) whose 

DE were statistically significant across normal, pre-treated and post-treated breast cancer tissues 

at 3, 24 hours. The DE results showed downregulation of MYC, CCNA2, EZH2, MELK, and 

AURKA marker genes when normal breast tissue (MCF10A) treated with DMSO is compared 

against breast cancer tissue (MCF7) treated with flavopiridol or dinaciclib at 24 hour. We observed 

similar effects when MCF7 treated with DMSO (pre-treatment) is compared against MCF7 treated 

with flavopiridol or dinaciclib (post-treatment) at 24 hour (Fig 4SA). The comparisons between 

normal vs cancer: MCF10A(DMSO) vs MCF7(DMSO), showed upregulation of EZH2 and 

AURKA and downregulation of MYC, CCNA2, and MELK (Fig 4SA). In addition to the vitro 

analyses, we performed a systematic analysis on in vivo gene activities of these marker genes using 
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the molecular taxonomy of breast cancer international consortium (METABRIC) study (Curtis C, 

et al. 2012) dataset from TCGA data repository. These samples consisted of 113 normal patients 

breast tissue and 303 ER+/HR+/HER2- cancer patients breast tissue. Consistent with literature and 

our pre-treatment vs post-treatment, these marker genes are downregulated in normal patients. 

Corresponding survival z-scores for these marker genes were obtained from the prediction of 

clinical outcomes from genomic profiles (PRECOG) datasets where higher z-scores of these genes 

have shown to be prognostics for longer patient survival in breast cancer making them potential 

biomarker candidates (Fig 3.4SB). Taken together, the transcriptomic profile shows strong 

associations of MYC, AURKA, MELK, EZH2, CCNA2, BRD4, NOLC1, SRRM2, CASC3 with 

the regulation of cell cycle and programmed cell death activities in breast cancer when treated with 

flavopiridol and dinaciclib. 

 Fingerprint global chromatin profiling reveals crosstalk among “regulators” in 

breast cancer signaling pathways. Finally, to highlight potential BRD4 mediated off-target 

effects of flavopiridol and dinaciclib using our global chromatin profiling fingerprints, we 

constructed a detailed view of the crosstalk among the various regulators (phosphoproteins, protein 

complexes, transcription factors) (Fig 5). We accomplished this by further generating PPI using 

STRINGdb to incorporate inferred proteins/protein complexes for other signaling pathways that 

may interact with the CDK pathway. The detailed view of the of the breast cancer signaling 

landscape revealed various regulators associated with specific signaling pathways mediating 

cellular activities such as cell cycle regulation, apoptosis and transcriptional regulation for cell 

cycle progression and cell proliferation.  As part of the cell cycle, inhibition of CDK by flavopiridol 

and dinaciclib showed molecular cascades of interactions among BRD4, NSD3, SRRM2, NOLC1, 

MYC with the P-TEFb complex and its recruitment to the proximal promoter region of MYC to 



 
 

58 

block transcriptional elongation of RNA Pol II.  In addition, our results showed the presence of 

crosstalk among CDK, IkK, AKT, PI3K, and Map3K7 pathways when P-TEFb binds to AURKA, 

TPX2, and other proteins.  For example, IkB, an enzyme complex that is part of the NF-κB 

signaling pathway, interacts with P-TEFb via AURKA to activate the CDK pathway. P-TEFb 

targets the intrinsic kinase activity directed towards RNA Pol II essential for transcriptional 

initiation, elongation, and inhibition. Furthermore, BRD4 has been implicated in activating NF-

κB pathway by recruiting P-TEFb to acetylated RELA (Huang et al. 2009). As a consequence of 

the CDK and BRD4 inhibition, we observed a reduction of Map3K7 phosphorylation, which 

inhibited JNK expression resulting in an increase of H3K56me2 level. Hyperactive RAS then acts 

as a signaling switch that converts JNK's role from pro- to anti-tumor signaling through the 

regulation of Hippo signaling activity by inhibiting the PDPK1 phosphoprotein. A recent study 

has shown that the combined effect of PI3K and BET inhibition in a wide range of cancer cell lines 

resulted in apoptosis, tumor regression, and clamped inhibition of PI3K signaling (Stratikopoulos 

et al., 2015). While EJC regulators indirectly bind to P-TEFb recruited by BRD4 via RBM8A and 

ZC3H18, they have a secondary binding effect with Wnt/Notch signaling pathway components. 

From our analysis, we observed NOLC1 interacted with the EJC  regulators: SRRM2, CASC3, 

EIF4A3 and RBM8A proteins; Thus, we postulate that NOLC1 mediates Wnt/Notch signaling 

activity through Notch intracellular domain (NICD) and monoubiquitylation of H3K23 

(H3K18ac0K23ub1) by translocating to RNA Pol I. Collectively, these results indicate that BRD4 

is an atypical kinase that could interact with a diverse group of kinases resulting in pleiotropic 

effects when treated with flavopiridol and dinaciclib. However, a number of small molecules such 

as JQ1, i-CDK9 have shown high selectivity and potent inhibitory activity against CDK9, thereby, 
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demonstrating the efficacy of BET bromodomain inhibitors for treating cancers (Filippakopoulos 

et al., 2010).  
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3.4 Discussion 

 Global chromatin profiling fingerprints represent a new way to identify response of tumor 

cells to drug treatments. Further, the GCP also serve as endpoints of mechanisms responding to 

drugs and has the potential to provide insights into the detailed networks and their perturbations. 

Through our integrative network analysis, we were able to identify four distinct histone signatures 

and enriched phosphoproteins that contributed to specific histone codes. While our network shows 

multiple drugs and phosphoproteins regulating H3K27me3K36me3, flavopiridol, and dinaciclib 

convincingly demonstrated selective inhibitory effects on chromatin reader BRD4 modulating 

H3K27me3K36me3. In particular, our study shows that BRD4 mediates cell cycle regulation that 

impacts H3K27me3K36me3 histone mark. This implicates H3K27me3K36me3 as a potential 

biomarker that can be targeted by flavopiridol and dinaciclib to induce cell cycle alterations by 

BRD4.  

  An important objective of our study is to understand the dynamics of the regulatory 

machinery of H3K27me3K36me3 modulation by flavopiridol and dinaciclib. Our MCN 

reconstructions identify NSD3, AURKA, CCNA2, EZH2, MYC as interacting partners of BRD4. 

Our transcriptomic results show overexpression of a CDK inhibitor gene, CDKN2A, which acts 

as a tumor suppressor gene by inducing cell cycle arrest in G1 and G2-M phase. The results also 

show reduced expression of several cell cycle genes, AURKA, BRCA1, CCNA2, MELK, TP53, 

EZH2, suggesting their roles in the response to these drug treatments. We show that these drugs 

inhibit BRD4 and reduce H3K36me3 level through BRD4’s interaction partner NSD3. They 

displace the P-TEFb complex from acetylated chromatin to MYC locus to inhibit transcription.  

These cascading effects in turn induce growth arrest of breast cancer cells. We observed a global 

loss in H3K27me3, an initial decrease of MYC at 3 and 6 hours, and subsequent induction of 
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BRD4, NSD3 and MYC expressions at 24 hour by flavopiridol and dinaciclib. We postulate that 

the global loss of H3K27me3 due to the compensatory effect of CDK9 loss is a general 

phenomenon likely caused by a common mechanism, independent of BRD4, NSD3 and MYC 

expression levels (figure 3B, 3D). Because of this compensatory mechanism, our results show that 

the inhibition of both CDK9 catalytic activity and MYC expression, mediated by BRD4, cause 

synergistic induction of growth arrest of cancer cells. This suggests possible dual roles of BRD4 

on H3K27me3K36me3 simultaneously inhibiting CDK9 and inducing MYC to effectively induce 

cell cycle arrest. Therefore, it is tempting to speculate a possible feedback loop present between 

BRD4, NSD3, CDK9, and MYC regulation. Although we provided a plausible mechanistic view 

of the molecular machinery of BRD4 mediated H3K27me3K36me3 modulation, the mechanisms 

underlying the loss of H3K27me3 in tumors remains somewhat unclear. A number of previous 

studies reported that overexpression of EZH2 results in a different PRC complex, namely, PRC4 

showing histone substrate specificities (Kuzmichev et al., 2005); therefore, loss of H3K27me3 

may relate to a new PRC complex formation (Cao et al., 2004), or protein modification in 

components of PRC complexes (Cha et al., 2005). Experimental verification is needed to gain 

further insights into the underlying loss of H3K27me3.  

 From the MCN analyses, we infer that BRD4 enrichment is maintained across 3, 6, 24-

hour time points in flavopiridol, which lead us to conclude that the cell cycle arrest is induced via 

direct BRD4 mediation during G1/S phase as well as during late mitosis, G2/M transition. In 

dinaciclib, however, we observed enrichment of the EJC regulators involved in spliceosome 

related activities at 3 and 6-hour time points, which indicates cell cycle arrest most likely occurred 

due to nonsense-mediated mRNA decay during G1/S phase, and indirect BRD4 mediation during 

G2/M phase (figure 3E).  From these analyses, we can link cell cycle control to cell cycle arrest 
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through the presence of an alternative splicing network. When treated with dinaciclib, we observed 

EJC members SRRM2, CASC3 and EIF4A3 interacted with both upstream transcription factors 

UPF1, a known regulator of nonsense-mediated mRNA decay (NMD), and Interleukin Enhancer 

Binding Factor 3 (ILF3). These transcription factors are known to modulate the Wnt/Notch 

signaling pathway through NMD and are highly active in pluripotent cells (Lou, et al., 2016), 

suggesting possible influences in cellular state remodeling. We also observed enrichment of 

AURKA and TPX2 regulators which are known to modulate cell program death via Bcl-x, a BCL2 

family apoptosis regulator (Moore et al., 2010). All of these findings warrant further experimental 

investigation. 

 From our MCN analysis, we further observe the presence of a super-enhancer binding gene 

POU5F1 (OCT4) upstream of BRD4 suggesting the possible role of BRD4 in regulating 

pluripotency gene expression by exhibiting a “stemness” behavior. Previous studies have shown 

positive correlation between BRD4 and the level of H3K36me3 with OCT4 (Liu et al., 2014; 

Barrand et al.,2010). Depletion of BRD4 has been shown to decrease the pluripotency of OCT4 

by changing the cellular fate through disruption of signaling pathways controlling differentiation 

(Wu et al., 2015). Our analysis shows that, BRD4 interacts with the transcription factor 

SMARCA4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, 

subfamily a, member 4), a key regulator of ESC self-renewal and pluripotency, known to regulate 

NANOG homeobox (NANOG) expression in the NANOG regulatory regions (Liu et al., 2014). 

NANOG interacts directly with OCT4, and SRY-Box 2 (SOX2) genes, which function as 

pluripotent transcription factors contributing to the reprogramming of somatic cells into an ESC-

like pluripotent state (Liu et al., 2013). As a result, they have a profound impact in cancer biology 

as they provide great promise for clinical applications where reducing their expression or blocking 
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their pathways, may inhibit tumor growth and turn-off the cancer “switch” (Liu et al., 2013). This 

makes H3K36me3 a potential biomarker, regulated by the super enhancer-mediated BRD4 to study 

tumor transformation, tumorigenesis, and metastasis in breast cancers as well as in other cancers. 

From our in vitro transcriptomic analysis, we found OCT4 expression was slightly upregulated 

(not shown), and SOX2 and NANOG were downregulated (not shown). These findings raise the 

possibility that targeting NANOG, OCT4, and SOX2 in determining chromatin marks mediated 

by enhancer-binding proteins, and their precise regulatory mechanisms will identify new 

components of the transcriptional regulatory networks that may be relevant to tumor progression. 

Finally, the global chromatin profiling fingerprints of breast cancer landscape reveal 

crosstalk among various signaling pathways belonging to specific histone signatures, suggesting 

possible combinatorial targeted therapies to address off-target effects. In particular, these 

fingerprints show crosstalk between CDK and IkB signaling pathways involving interactions 

between P-TEFb and AURKA. Overexpression of AURKA is linked to many cancers. Our 

transcriptomic results show down-regulation of AURKA when treated with flavopiridol and 

dinaciclib, further suggesting the efficacy and ability of these drugs to minimize off-target effects 

in breast cancer. These observations have implications for the discovery of cancer therapeutics 

directed at global chromatin fingerprinting in diverse cancer types. 
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3.5 Materials and Methods 

 Data Acquisition. The experimental data were generated by the NIH LINCS Proteomic 

Characterization Center for Signaling and Epigenetics (PCCSE) repository. Level 3 (log 2 

normalized) targeted phosphoproteomics assay (P100) against 96 phosphopeptides data, and level 

3 (log 2 normalized) global chromatin profiling assay (GCP) against 60 probes that monitor 

combinations of post-translational modification on histones data using various cancer cell lines 

including MCF7 (breast), YAPC (pancreas), A375 (melanoma), PC3 (prostate), A549 (lung) and 

NPC (Neural Progenitor) were downloaded. These assays were treated with 31 serine/threonine 

kinase inhibitors (drugs) at various concentrations, DMSO as a negative control and consisted of 

three biological replicates. Three time points (3, 6, 24 hour) were available for P100 data while a 

single time point (24 hour) was available for GCP data in MCF7 cells. Single time point (3 hour) 

was available for P100 data and a single time point (24 hour) was available for GCP data in YAPC, 

A375, PC3, A549, and NPC cell lines. 

 The experimental transcriptomic data was generated by the NIH LINCS Connectivity Map 

(CMap) using a microarray-based platform. This assay, which is known as L1000, contained 978 

landmark transcripts whose expressions were invariant across cell states. In addition, 11350 

inferred genes were also obtained using the L1000 inference algorithm (Subramanian et al. 2017). 

Level 3 (log 2 normalized) L1000 data for two breast cell lines: MCF10A (normal tissue) and 

MCF7 (cancer tissue) were obtained. For MCF10A, 3 and 24-hour pre-treatment (DMSO, 150, 

116 respectively biological replicates) and post-treatment (flavopiridol, 4 biological replicates) 

were available. For MCF7 pre-treatment (DMSO) 100 replicates at 3, 24 hour, 3 replicates at 6 

hour and post-treatment (flavopiridol) 4 replicates at 3, 24 hour and 3 replicates at 6 hour were 
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available. Additionally, pre-treatment (DMSO) 11 replicates, and post-treatment (dinaciclib) 3 

replicates at 24 hour were available. 

 Patient-level data were obtained from The Cancer Genome Atlas (TCGA) where breast 

tissue samples were obtained from 113 normal patients and breast cancer tissue samples were 

obtained from 303 ER+/HR+/HER2- cancer patients from molecular taxonomy of breast cancer 

international consortium (METABRIC) study (Curtis C, et al. 2012). Integrated cancer gene 

expression and clinical outcome data were obtained from the prediction of clinical outcomes from 

gene profiles (PRECOG), encompassing 166  cancer expression datasets from ~18000 patients 

diagnosed with 39 malignancies with their overall survival data (Gentles et al., 2015). 

Data Pre-processing. Replicates were used to impute missing data by taking their 

weighted average values during the pre-processing step. Differential histone modifications and 

phosphorylation changes were computed by taking fold changes of each perturbed phosphopeptide 

and histone code with respect to DMSO.  These resulted in two data matrices, i) phosphoprotein 

profiles consisting of [96 peptides x 31 drugs], and ii) global chromatin profiles consisting of [60 

histone modifications x 31 drugs]. Prior to modeling, data were normalized with respect to the 

mean and standard deviation of the respective variables. A log2 transformation was performed on 

TCGA data.  

Experimental Validation. L1000 genes expressions were used to validate differential 

gene expressions of the 31 functionally significant genes (cell cycle genes, CDK inhibitor gene 

CDKN2A, transcription factor MYC and genes representing the enriched phosphoproteins) to 

capture in vitro gene activity levels in normal (MCF10A) vs cancer (MCF7) cell lines. In addition, 

TCGA and METABRIC datasets were used to validate in vivo gene activities of the marker genes. 

Corresponding survival z-scores for these marker genes were obtained from the PRECOG datasets 
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where lower expressions of these genes were used as prognostics for longer patient survival in 

breast cancer. 

 Histone Signature Identification. An unsupervised clustering technique, non-negative 

matrix factorization (NMF) outlined in chapter 2, was used to stratify histone signatures. R 

Statistics package was used for the calculation and Cytoscape was used to generate network 

graphs. 

 Histone Prediction Model. Histone-peptide interaction network was generated using 

partial least square regression (PLSR) method based on Kraemer et al. formulation (Krämer and 

Sugiyama 2011) (outlined in chapter 2).  

Integrated Phosphoprotein-Histone-Drug Network (iPhDnet). Using the coefficients 

from the histone signatures (c1, c2, c3, and c4) and the drug prototypes using NMF and model 

coefficients of phosphoproteins towards histone model prediction using PLSR, an integrated 3D 

network file is constructed connecting drugs to phosphoproteins and phosphoproteins to histones 

(iPhDnet). This is described in chapter 2.   

 Mechanistic Causal Network (MCN) Reconstruction. A time-varying mechanistic 

causal network was constructed by back propagating iPhDnet, previously generated for 24 hour 

from P100 data. We first used a one-way ANOVA with a p-value of 1.0e-4 to populate enriched 

(statistically significant) phosphoproteins at 6 and 3-hour time points. We then inferred protein-

protein interactions for the phosphoproteins enriched in 24 hour by mapping them to the STRING 

database. An interaction score of 0.8 and above, experimentally validated PPIs, and gene fusions 

criteria were used to obtain these inferred proteins. Our final MCN was constructed by back 

propagating our mapping of the inferred proteins from 24 hour to enriched phosphoproteins in 6 

and to 3 hour. Additional protein-coding genes were generated and added to the final MCN using 
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the EnrichR tool (http://amp.pharm.mssm.edu/Enrichr/enrich). We then validated our MCN by 

matching them against significant differentially expressed (DE) genes in L1000. Cytoscape was 

used to view the final reconstructed MCN. 

 Differential Expression and Functional Analyses of L1000 and TCGA Data. 

Differential Expression and Functional Analyses of L1000 and TCGA Data Differential expression 

analyses for 978 landmark genes from L1000 assay treated with flavopiridol and dinaciclib were 

performed using the unpaired t-test implemented in CyberT.  Cyber-T is based on a regularized 

Bayesian framework that addresses technology biases and low replication levels in high 

throughput data (Baldi and Long 2001). These analyses were performed on 3, 6 and 24-hour 

datasets. Multiple corrections were applied to p-values using Benjamini Hochberg. Similarly, 

differential expression analyses of TCGA matched normal vs cancer patients were performed 

using unpaired t-tests. Cyber-T web server (Kayala and Baldi 2012) was used to generate these 

analyses. 

 To examine the in vitro effectiveness of flavopiridol and dinaciclib, we compared 

differential gene expressions between i) DMSO treated normal breast tissue (MCF10A) and 

DMSO treated breast cancer tissue (MCF7), ii) DMSO treated MCF10A and 

flavopiridol/dinaciclib treated MCF7, and finally iii) DMSO treated MCF7 and 

flavopiridol/dinaciclib treated MCF7. To account for between-group differences for specific 

genes, a one-way ANOVA with Tukey’s post hoc test was performed. P-values for overall 

difference between groups were corrected using the Benjamini Hochberg multiple corrections. We 

considered genes to be potential drug targets only if they satisfied the following criteria: 1) 

statistically different in normal vs cancerous tissue, i.e., p-val <0.05 in DMSO treated MCF10A 
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vs DMSO treated MCF7 and 2) statistically different in pre-treatment and post-treatment, i.e., p-

val <0.05 in DMSO treated MCF7 vs flavopiridol/dinaciclib treated MCF7. 

 To examine the functional enrichment of significant DE genes in L1000 data treated with 

flavopiridol and dinaciclib, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 

and Gene Ontology (GO) enrichment were performed using the DAVID Functional Annotation 

Tool (D. W. Huang, Sherman, and Lempicki 2009) for each treatment.   

 Cluster Similarity Evaluation. We used the Rand Index (RI) to evaluate the similarity 

of cluster assignments between every paired treatment in breast cancer and between paired cell 

lines. RI computes the percentage of pairs of objects for which both classification methods, the 

computed and the ideal one, agree. It is computed using False Positives (FP), False Negatives 

(FN), True Positives (TP) and True Negatives (TN) as follows: 

   𝑅𝐼 = (Z[\Z])
(Z[\Z]\^[\^])

      (Equation 8) 

The RI value ranges from 0 (completely dissimilar group assignment) to 1 (exactly same 

group assignment). 

 Data and Software availability. Genomic, transcriptomic, epigenetic, and proteomic data 

files are available from the public online portal 

(https://panoramaweb.org/project/LINCS/GCP/begin.view?). Source codes are implemented in R 

3.3.1 and are freely available for download at (https://github.com/smollah/iPhDnet). 
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3.6 Figures 

 
 
 
 

 
 
 
Figure 3.1. A 3-dimensional view of molecular interactions of phosphoproteins-histones-
drugs generated by integrating the histone signatures with the histone-protein interaction 
network.  
(A) Four “histone signatures” are obtained by NMF clustering of GCP at 24-hour post-treatment. 
Drugs and histones are depicted by orange and magenta nodes respectively, the color of edges 
signifies whether the interaction between a drug and a histone resulted in elevated (red) or reduced 
(green) histone level. (B) Histone-phosphoprotein interaction network using a PLSR prediction 
model. Histones and phosphoproteins are depicted by magenta and blue nodes respectively, the 
color of edges depicts whether the interaction between a phosphoprotein and a histone is positively 
(red) or negatively (green) correlated. (C) Integrated phosphoproteins-histones-drug network 
(iPhDnet). iPhDnet shows enrichment of modification levels on H3K9ac1S10ph1K14ac0, 
H3K56me2, H3K27me3K36me3, H3K18ac0K23ub1 histone codes, acting as highly connected 
nodes (hubs) and positively induced by various drugs affecting enriched phosphoproteins 
including BRD4, ATAD2, and NOLC1. The strength of an interaction is captured by the width of 
an edge. See also Figures S1 and S2. 
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Figure 3.2. Flavopiridol and dinaciclib emerge as potential CDK mediated therapeutics in 
breast cancer.  
(A) Summary of PTM results showing consistency of our findings with other reports that 
interrogated specific PTMs in breast cancers. (B) CDK mediated regulation in flavopiridol, 
dinaciclib, and PD-0332991. (C) Showing multiple phosphosignaling pathways regulated by the 
specific drugs in C1 “histone signature”. (D) Comparison of histone signatures in six cell lines. 
(E) Group assignments of drugs. See also Figure S3.  

Histone modification Regulators Pathways Observation in our study Observation in other 
studies

H3K27me3K36me3 ABI1, BRD4, NOLC1,SRRM2 CDK (Flavopiridol, Dinaciclib, 
PD-0332991)

reduced

H3K9ac1S10ph1K14ac1 ABI1, NOC2L c2 reduced

H3K56me2 BRAF c3 elevated

H3K18ac0K23ub1 GPATCH8, NANS, PLEC1, MAP4, NOLC1 c4 elevated

H3K27ac1K36me2 CASC3, GPATCH8 c1 elevated

H3K27me3K36me0 DHX16, GPATCH8 c1 reduced reduced ( Yang et al)

H3K9me3K14ac0, H3K9me3K14ac1 BRD4, CASC3, CCNYL1 c1 reduced reduced(Leszenski et al)

H3K9ac NOLC1, CASC3,DHX16, GPATCH8 c1 reduced reduced (Choe et al)

H3K4Me1 CASC3, SRRM2, NOLC1,NANS c1 reduced reduced (Choe et al)

H3K4Me3 CASC3, SRRM2 c1 reduced reduced (Choe et al)
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Figure 3.3. Mechanistic causal network (MCN) reconstruction supports BRD4 mediated 
cell cycle arrest when treated with flavopiridol and dinaciclib in breast cancer.  
(A) MCN reconstruction for enriched phosphoproteins (p-val < 1.0e-4) upon flavopiridol 
treatment. (B) Phosphorylation changes of proteins and transcription changes of 31 functionally 
significant genes in response to flavopiridol. (C) A similar mechanistic causal network 
reconstruction for enriched phosphoproteins after dinaciclib treatment is obtained using the 
protocol described in A. (D) Similarly, phosphorylation and transcription changes of the same 
phosphoproteins and genes in B, in response to dinaciclib. (E) Demonstrating possible cell cycle 
arrest mechanisms caused by transcriptional elongation of the participating regulators over various 
time points corresponds to cell cycle stages.  

A Phosphosignaling at 3, 6, 24 hour associated with histone marks at 24 
hour  when treated with Flavopiridol (p-val < 1.0e-4) 

E Cell cycle arrest caused by impaired transcriptional elongation

C Phosphosignaling at 3, 6, 24 hour associated with histone marks at 24 
hour when treated with Dinaciclib (p-val < 1.0e-4) 
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Figure 3.4 Functional analyses on differentially expressed L1000 genes with drug 
treatments.  
(A) KEGG pathway analysis showing the involvement of L1000 differentially expressed (DE) 
genes significantly related to cell cycle, p53 signaling pathway, ErbB signaling, and pathways in 
cancer across 3, 6, and 24-hour time points after treatment with flavopiridol. (B) The same 
pathways are significantly related when considering the differentially expressed genes at 6, and 
24-hour time points post dinaciclib treatment. (C) Shown here are statistically significant DE genes 
associated with gene ontology (GO) categories: nuclear lumen, regulation of cell death, cell cycle, 
programmed cell death and protein kinase activities. 
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Figure 3.5. Fingerprint global chromatin profiling in breast cancer signaling.  
The crosstalk among histone signature pathways is depicted by linking inferred proteins/protein 
complexes generated from STRINGDB PPI for signaling pathways that may interact with the CDK 
pathway in cancer signaling. As part of cell cycle regulation, inhibition of CDK by flavopiridol 
and dinaciclib is highlighted showing molecular cascades of interactions among BRD4, NSD3, 
SRRM2, NOLC1, MYC with the P-TEFb complex and its recruitment to promoter region to block 
transcriptional elongation of RNA Pol II (the first blue dashed oval). As a consequence, reduced 
levels of H3K27me3K36me3, H3K4me1, and H3K4me2 are observed. Examples of crosstalk 
includes: Ikkb inhibiting TPX2 which binds to AURKA to activate CDK targeting the intrinsic 
kinase activity directed towards RNA Pol II (pink dashed oval); reduction of Map3K7 brings JNK 
level down resulting in an increase of H3K56me2 level; hyperactive RAS acts as a signaling switch 
to convert JNK's role from pro- to anti-tumor signaling through the regulation of Hippo signaling 
activity by inhibiting PDPK1 protein (the second blue dashed oval). NOLC1 interacts with the 
EJC junction formed by SRRM2, CASC3, EIF4A3, and RBM8A proteins. It mediates Wnt/Notch 
signaling activity through the Notch intracellular domain (NICD) and monoubiquitylation of 
H3K23 (H3K18ac0K23ub1) by translocating to RNA Pol I (the third blue dashed oval).The color 
of molecules represents tumor suppressors (green), oncoproteins (red), inferred proteins (teal) and 
phosphoproteins (black ring).  The color of protein molecule indicates whether the protein was 
induced (orange) or inhibited (blue). Each histone signature (C1, C2, C3, and C4) is highlighted 
using a distinct outer ring color. Phosphorylation, activation, and repression are indicated by Ⓟ, 
arrowheads (→), and cross-bars (⊣), respectively. 
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3.7 Tables 

Table S3.1. LINCS proteomics dataset used in the study. 
Listed here are the global chromatin profiles (GCP) and phosphoprotein (P100) data in six cancer 
cell lines from LINCS  at various time points. 

 

 

Cell line GCP data GCP time point P100 data P100 time 
pointMCF7 (Breast cancer) LINCS_GCP_Plate29_annotated_minimi

zed_2016-01-08_09-27-
26_unprocessed.gct

24 hour LINCS_P100_PRM_Plate29_03H_annotated_minimized
_2016-01-28_11-00-43.gct

LINCS_P100_PRM_Plate29_06H_annotated_minimized
_2016-01-28_17-11-17.gct

LINCS_P100_PRM_Plate29_24H_annotated_minimized
_2016-01-28_17-11-22.gct

3, 6, 24 hour

YAPC (Pancreas cancer) LINCS_P100_PRM_Plate32_annotated_
minimized_2016-07-22_11-29-42.gct

24 hour LINCS_GCP_Plate32_annotated_minimized_2016-07-
22_11-29-04.gct

3 hour

A375 (Melanoma) LINCS_GCP_Plate28_annotated_minimi
zed_2016-04-14_14-24-24.gct

24 hour LINCS_P100_PRM_Plate28_annotated_minimized_201
6-04-08_15-41-04.gct

3 hour

PC3 (Prostate cancer) LINCS_GCP_Plate34_annotated_minimi
zed_2016-07-07_14-16-01.gct

24 hour LINCS_P100_DIA_Plate34_annotated_minimized_2016-
08-15_10-38-52.gct

3 hour

A549 (Lung cancer) LINCS_GCP_Plate33_annotated_minimi
zed_2016-06-03_14-58-02.gct

24 hour LINCS_P100_DIA_Plate33_annotated_minimized_2016-
06-29_12-24-03.gct

3 hour

NPC (Neural Progenitor Cells) LINCS_GCP_Plate27_annotated_minimi
zed_2016-04-14_14-24-09.gct

24 hour LINCS_P100_DIA_Plate27_annotated_minimized_2016-
02-01_15-53-14.gct

3 hour

Supplementary Table 1. Library of Integrated Network-Based Cellular Signatures (LINCS) proteomics dataset used in our study



 
 

75 

Table S3.2. Transcriptomic datasets used in the study.  
Listed here are the L1000 data for two cell lines (normal like breast tissue MCF10A, and breast 
cancer tissue MCF7) from LINCS and case-control patient level normal and breast cancer data 
from TCGA, METABRIC and PRECOG. 
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3.8 Supplemental Figures 

 

 
 

Figure 3.S1. Estimation of the factorization rank of NMF and its cluster components.  
(A) Heatmap of the basis components (histones and their cluster memberships). Showing 
likelihood of each histone code belonging to a specific signature module. (B) Showing 
membership contributions of each drug toward 4 signature modules (k=4). (C) Cophenetic score 
is computed from 100 runs for each value of rank k by varying k= 2, 3...10 on 24-hour GCP data. 
Rank k represents the number of clusters or basis components. The solid line represents the original 
data and the dotted line represents random data. (D) Showing these 4 basis components 
corresponds to 4 pathway-based functional modules (c1, c2, c3 and c4). These functional modules 
constitute histone signatures.  
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Figure 3.S2. Performance of PLRS model.  
Showing three examples of histone codes (H3K27me3K36me3, H3K9ac1S10ph1K14ac0 and 
H3K18ub1K23ac0). (A) Showing model performance using optimal number of components. The 
optimal number of components (principal component, PC) is used to predict the model accurately 
using residual sum square (RSS) value < 0.05. (B) Depicting model performance using sub optimal 
number of components. 
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Figure 3.S3. Phosphoprotein and global chromatin correlation profiles between drug 
pairs.   
Pearson correlation between paired drugs at 3 and 6 hours. Showing a strong positive correlation 
(r=0.59) between flavopiridol and dinaciclib (circled) at 3 and 6 hours. (B) Strong positive 
correlation (r=0.69) is sustained between flavopiridol and dinaciclib (circled) at 6 and 24 hours. 
(C) Pairwise correlation between flavopiridol and dinaciclib based on 24 hour GCP data. Showing 
positive correlations between flavopiridol and dinaciclib (positive slope), using a linear regression 
line on 24 hour normalized global chromatin data (p-value = 1.85e-11, adjusted r-squared =0.536). 
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Figure 3.S4. In vitro and in vivo transcriptomic analysis  of marker genes across normal, 
pre-treated and post-treated breast cancer tissues.   
(A) Gene expressions of L1000 genes in normal, pre-treated and post-treated cancer tissues treated 
with flavopiridol at 3, 24 hour and dinaciclib at 24 hour. Shown here are in vitro comparisons  of 
the marker genes in these two treatments across these time points. These comparisons include i) 
normal vs cancer: MCF10A (treated with DMSO) vs MCF7 (treated with DMSO), showing 
upregulation (red) of EZH2 and AURKA and downregulation (blue) of MYC, CCNA2 and 
MELK; ii) normal vs cancer post-treatment: MCF10A (treated with DMSO) vs MCF7 (treated 
with flavopiridol/dinaciclib), showing downregulation for all of these genes; and iii) cancer pre-
treatment vs post-treatment: MCF7 (treated with DMSO) vs MCF7 (treated with 
flavopiridol/dinaciclib) showing downregulation of all these genes. The heatmaps highlight 
enhanced potency of flavopiridol and dinaciclib against normal and cancer tissues. (B) In vivo 
comparisons between cancer vs normal patients for the same marker genes in (A); differential 
expression analysis was performed on TCGA matched normal breast datasets (n=113 normals) 
and METABRIC (n=303 cases) . Consistent with literature and our pre-treatment vs post-treatment 
results, these markers were downregulated in normal patients. Showing corresponding survival z-
scores for these marker genes obtained from the prediction of PRECOG dataset. 
 
 
 
 
 
 
 
 
 
 

B In vivo transcriptomic comparisonsA In vitro transcriptomic comparisons
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CHAPTER 4: Functional ATLAS of the Epithelial Breast Cells 
 

4.1 Abstract 

 
 An in-depth molecular characterization of epithelial breast cell responses to the growth-

promoting ligands is required to elucidate how the microenvironment (ME) signals affect cell-

intrinsic regulatory networks and the cellular phenotypes they control, such as cell growth, 

progression, and differentiation. This is particularly important towards understanding the 

mechanisms of breast cancer initiation and progression. However, the current mechanisms by 

which the ME signals influence these cellular phenotypes are not well established.  Using multi-

omics data, we developed a functional ATLAS of the epithelial breast cell response to distinct 

microenvironmental perturbations in MCF10 cell line. Using responses from six growth ligands at 

various time points, we were able to decipher their specific effects on cellular phenotypes. Our 

results suggest that Oncostatin M (OSM), a growth factor, exerts its regulatory influence on 

STAT3 induction to promote BRD4, a chromatin reader, to regulate cell proliferation in breast 

epithelial cells.  
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4.2 Introduction 

Our current understanding of biological actions of growth factors come from examining a 

growth factor in isolation. However, growth factors are known to interact with the extracellular 

matrix (ECM), and these associations influence cell behavior. ECM plays a vital role in the healthy 

mammary tissue and tumor formation. Details about these interactions within the complex and 

continuously changing microenvironment are not well understood and are likely to be very 

important during the tumor formation.   

The goal of this project is to contribute to further development of the NIH Library of 

Integrated Network-based cellular signatures (LINCS) program by developing a dataset and 

computational strategy to elucidate how microenvironment (ME) signals affect cell intrinsic 

intracellular transcriptional- and protein-defined molecular networks to generate experimentally 

observable cellular phenotypes (Fig 4.1). We will infer these regulatory relationships by 

combining measurements of ME perturbagen-induced changes in multiple cellular phenotypes, 

RNA expression and regulatory protein expression in a core set of cell lines with measurements of 

responses of the same lines to chemical and genomic perturbagens generated by LINCS sites. 

Integrative analysis of these data will enable us to address three key questions: 

How are ME peturbagen-induced cellular phenotypes regulated by specific molecular networks? 

Do subsets of ME-induced perturbations elicit common molecular network changes and 

phenotypic responses? 

Do specific molecular network signatures influence multiple cellular phenotypes?  

A project workflow is depicted in Fig 4.2. 

 

 
 



 
 

93 

4.3 Results 

Deep profiling of signaling data shows canonical footprints of each ligand. In order to 

determine the signaling effects of each growth ligand on breast epithelial phenotypes, we needed 

to generate a comprehensive signaling profile for each individual ligand EGF, HGF, OSM, BMP2, 

TGFB, and IFNG. We constructed a global heatmap for all the significant signaling 

proteins/phosphoproteins by analyzing their protein expressions obtained from the RPPA dataset. 

First, we compared the signaling effects of each ligand measured across all time points (1, 4, 8, 

24, 48 hours) against PBS 0  hour. Using a t-test, we generated 201 differentially expressed (DE) 

proteins where at least one protein was shown to be statistically significant (p_value < 0.05) in at 

least one ligand across all time points. Out of 201 DE proteins, we found 117 were functionally 

enriched in the canonical pathways (cellular phenotypes of interest) that were associated with cell 

growth, migration, apoptosis, cell adhesion, focal adhesion, differentiation, etc. (Fig 4.6, Fig 4.7). 

The heatmap of these proteins showed similar signaling profiles for all six ligands across all time 

points. This is further corroborated by the high correlation values (R2 >0.8) we observed in the 

pairwise regression plots between each paired of ligands across all time points (Fig 4.5). We 

particularly observed increased protein concentrations for cell cycle genes CCNB1, CDK1, PLK1, 

RB1, ribosomal genes RPS6 and its phosphorylation and decreased values for CDKN1A, ERBB3, 

BCL2L11, CASP7, histone HIST3H3, and PAR in all ligands. Their concentrations were more 

pronounced at 24 and 48 hours, suggesting a possible mechanistic involvement at 24 hours (Fig 

4.6). We further observed elevated protein concentrations of GJA1, NDRG1, HIF1A and STAT3 

phosphorylation unique to OSM at all time points; CD274, IRF1, TRIM25, and phosphorylated 

PTK2 unique to IFNG, TGM1; ITGA2 unique to TGFB; SERPINE1 unique to BMP2 and TGFB 
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across all time points (Fig 4.7). We observed that nearly half of the canonical genes in cell cycle 

pathways,  were up and half were down  ( Fig 4.9A). 

         Similarly, to tease out the individual effects of BMP2, TGFB, and IFNG on the various 

cellular phenotypes, we performed differential analysis of these ligands with respect to EGF. We 

applied the same t-test (with p-value < 0.05) to generate a list of 113 DE proteins of which 81 

belonged to our canonical pathways of interest (Fig 4.8). From the heatmap we found that 

canonical cell cycle genes were mostly down ( Fig 4.9B), indicating, the additive effect of EGF 

on these ligands in promoting cell cycle induction.   

 
Mapping of signaling proteins to their transcriptional profiles identified distinct 

cellular functions and chromatin accessibility.  To find out how the signaling proteins affect the 

transcriptional machinery, we first identified 35 TFs from the 201 DE proteins, ( Fig 4.10) and 

performed a functional enrichment analyses on these 35 TFs using the DAVID annotation tool 

(Huang, Sherman, and Lempicki 2009). We found 3 distinct functional modules associated with 

the responses, namely, cell cycle, proteoglycans in cancer pathways, and signaling pathways 

regulating pluripotency of stem cells ( Fig 4.11). We  repeated this analysis for transcriptomic data 

and identified 158 TFs from 4879 DE gene list (Fig 4.12). We then generated  unique TFs for each 

ligand using a Venn program ( Fig 4.13) and mapped these unique TFs to their target genes. We 

then performed functional enrichment analyses, on these target genes. The results showed many 

non-specific functional associations with various pathway activities including p53 signaling, 

regulation of metabolism, and cancer pathways. Thus, we focused our investigation on integrating 

the signaling profiles with the transcriptomic data. We generated a PPI network using 201 DE 

proteins (see method) and mapped them to 158 DE TFs and their target genes. We then performed 

a functional analyses on the subnetwork containing only DE TFs and their targets (top 25 out 
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degrees) (Fig. 4.14). Our results showed functional enrichment of specific phenotypes to each 

ligand, such as ABC transporters for OSM,  NOD-like receptor signaling pathways, serotonergic 

synapse,  argenine and proline metabolism for BMP2, cell cycle and breast cancer for TGFB, and 

pathways in cancer, breast cancers, PI3K-AKT signaling for IFNG. However, our results did not 

show any unique functional phenotypes associated with EGF or HGF which is consistent with the 

prior observations from the signaling data (Fig 4.14 ).  

   

Signaling network profiles identified BRD4 as a mediator of OSM induced cell 

proliferation. To find out how each ligand’s distinct signaling profile influences gene expression 

at the transcriptomic level,  we projected each ligand’s DE protein list on to the 201 DE proteins’ 

PPI profiles using Cytoscape Software (Shannon et al. 2003) (see PPI generation in method 

section). This allowed us to identify the signaling proteins that were unique to a ligand or 

combination of ligands at 24- and 48-hour time points (Fig. 4.15). We observed BRD4 was 

common to EGF, HGF, and OSM, however, its gene expression was only elevated in OSM at both 

24 and 48 hours. BRD4 is a chromatin reader that plays an essential role as a structural scaffold 

with kinase activity that influences transcription by recruiting the positive transcription elongation 

factor complex-b (P-TEFb) to the transcription pre-initiation complex of inducible genes.  In our 

previous chapter, we have shown that BRD4 is an atypical signaling protein that could interact 

with a diverse group of proteins resulting in various cellular changes. Therefore, we postulated 

that BRD4 may play an important role in mediating OSM’s growth activities. We then ask the 

question what other genes were significantly upregulated in OSM and not in others that also 

interacted with BRD4’s ? Our result showed that STAT3 and its targets were all significantly 

upregulated in OSM compared to the other ligands, confirming its enhanced signaling and 
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transcriptional activities for OSM (Fig 4.16).  STAT3 is a transcription factor that regulates 

cellular processes involving cell-cycle progression and the anti-apoptotic program (Bromberg 

2001). STAT3 is activated by tyrosine and serine phosphorylation in response to various growth 

factors including cytokines such as IL-6, leading to the formation of dimers that rapidly translocate 

into the nucleus and activate the promoters of target genes (Darnell, Kerr, and Stark 1994), (Jr. 

and Darnell 1997). Previous work has shown that IL-6 promotes a nuclear complex of STAT3 and 

CDK9 (a cell cycle gene), a major component of active P-TEFb complex in activation and 

deactivation of RNA Pol II (Hou, Ray, and Brasier 2007; Ray et al. 2014; Hou, Ray, and Brasier 

2007). These studies, as well as our previous chapter, have shown that within the P-TEFb complex, 

BRD4 uniquely interacted with P-TEFb complex through CDK9. Hence, the focus of our section 

was to understand how STAT3 may recruit BRD4 to promote a proliferative and anti-apoptotic 

cellular state. 

 
STAT3 induction promotes BRD4 to regulate cell proliferation when treated with 

OSM. To determine the mechanism of enhanced transcriptional activity of STAT3 and BRD4, we 

sought to identify their interacting genes. So, we looked at the expressions of all the targets genes 

of STAT3 that may directly interacted with BRD4, and led to increased expressions of proliferation 

and decreased expressions of anti-apoptotic events. We observed known genes who’s over 

expressions lead to proliferation/ angiogenesis, such as HIF1A, CDK9, IRF1, SOD2, SOCS3, and 

MUC1, were upregulated and had open chromatin conformations from ATACSeq, indicating their 

active transcribed states (Fig 4.16).  Interestingly, we also observed,  HMOX1,  a liver microsomal 

protein with activity to degrade heme to bilirubin (Jr. and Darnell 1997; Maines 1988)  to be 

downregulated when treated with OSM. We found that HMOX1 was a target gene of BRD4 and 

was differentially downregulated at 24 hour. While overexpression of HMOX1 in cancer cell 
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promotes cancer proliferation and survival, its deficiency in normal cells enhances DNA damages 

and carcinogenesis (Gueron et al. 2014; Hill et al. 2005). Furthermore, a previous study has shown 

Src/STAT3-dependent HMOX1 induction to mediate chemo resistance of breast cancer cells to 

doxorubicin by promoting autophagy (Tan et al. 2015). These are all consistent with our 

observations of decreased expressions of HMOX1 in normal MCF10A breast cell. However, the 

mechanisms by which HMOX1 regulates BRD4 is not very clear and will require experimental 

validations. Because in the previous chapter we have provided a detailed mechanism that induced 

cell cycle arrest involving CDK9, BRD4, and P-TEFb, we postulate that, STAT3 

induction  promotes BRD4 to regulate cell proliferation when treated with OSM. We can 

hypothesize that BRD4 uses the same transcriptional machinery to promote cell proliferation 

through PTEF-b when induced by STAT3 during OSM treatment. 
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4.4 Discussion 

In this study, we have generated a comprehensive functional ATLAS of breast  cells to 

study the effects of six growth factors, namely EGF, HGF, OSM, BMP2, TGFB, and IFNG on 

ECM of normal breast tissue. Using an integrative multi-omics approach, we are able to reveal 

unique footprints for these growth factors. It appears from our analysis that ECM and HGF exert 

common cellular phenotypes, this is evident by the their signaling and transcriptomic profiles of 

canonical cell cycle genes. We observed reduced cell cycle effects for BMP2, IFNG and TGFB 

when compared to EGF.  OSM demonstrated more proliferative effects by inducing STAT3 

protein. Using the combined profiles, we were able to reveal  a potential mechanism for promoting 

cell proliferation via BRD4.   

Deciphering the relationship between growth factors and ECM is essential, and can be used 

to growth factor-based therapies or lead to the development of novel treatment strategies for 

cancer. A better understanding of the relationship between these classes of molecules and how it 

can be exploited to treat cancer is needed. 
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4.5 Materials and Method 

  

 Data acquisition. All data were obtained from LINCS sponsored Microenvironment 

Perturbagen (MEP) project. We developed a pipeline that integrates protein measurements from 

RPPA data, gene expressions from data Ranse data, and chromatin conformation from ATACSeq 

data that provides a unified view of their profiles. 

 
 RPPA data processing. For proteomics data, Level1, log2 PBS normalized protein 

measurement data were downloaded from  ( https://www.synapse.org/#!Synapse:syn12555331) 

on June 6, 2019. The data consisted of highly sensitive and selective  295 antibody-based protein 

and phosphoprotein measurements of six growth ligands, namely, EGF, HGF, OSM, BMP2, 

TGFB, IFNG. The data contained three replicates for each of these ligands and a control (PBS). 

These samples were measured at five time points (1, 4, 8, 24, and 48 hours). The quality of data 

was assessed using the tsn-e (Dale, Cain, and Zell 2009)  plot (Fig 4.3A).    

 

RNASeq data processing. For transcriptomic data, ~200 GB raw fastq files were 

downloaded from (https://www.synapse.org/#!Synapse:syn18518040) on April 23, 2019. The data 

contained three replicates for each ligand  (EGF, HGF, OSM, BMP2, TGFB, IFNG)  and  4 

replicates for control (PBS) measured at two time points (24 and 48 hours). The quality of data 

was assessed using the tsn-e plot (Fig 4.3B).  

 Differential expression analysis. We used Omicsoft sequence aligner (OSA) (Hu et al. 2012) to 

process raw fastq files to generate Fragments Per Kilobase of transcript per Million (FPKM) 

mapped read counts. We retained only those genes with ten or more counts in at least one replicate 

sample to be considered for the subsequent differential expression analysis.   We then performed 



 
 

100 

differential expression (DE) analysis using  EdgeR (Hu et al. 2012; “edgeR” n.d.) package from R 

library to generate the DE gene list. We normalized data using the trimmed mean of M-values 

(TMM) (Hu et al. 2012; “edgeR” n.d.; Robinson and Oshlack 2010) between each pair of samples 

(control vs condition)  with a p-value <0.01. (Table 4.1B). 

 
         ATACSeq data processing. For epigenomic data (ATACseq), 87.4 MB of 

level1,  log2(TMM+1) normalized peaks files (bed) were  downloaded from 

(https://www.synapse.org/#!Synapse:syn18352471) on February 27, 2019. The data contained 

three replicates for each ligand  (EGF, HGF, OSM, BMP2, TGFB, IFNG) and three replicates for 

control (PBS) for two time points (24 and 48 hours). 

 
Library preparation and sequencing. Data ATAC-seq libraries were prepared from 0-, 24-, and 

48-hour Collection 1 MCF10A samples following the Omni-ATAC protocol (Corces, 2017). 

100bp PE reads were sequenced on an Illumina HiSeq 2500 Sequencer by the OHSU MPSSR. 

Technical replicates of samples TGFB_48_B and PBS_0_C were added by OHSU MPSSR. 

Sequence alignment, preprocessing, and peak calling. ATAC-seq files were processed and aligned 

using the "ATACseq (1 -> 3)" workflow on the AnswerALS Galaxy server (answer.csbi.mit.edu). 

100-bp PE reads were trimmed of adapter sequences and low-quality bases using Trimmomatic 

(Galaxy version 0.36.5). Reads were trimmed of low-quality bases (Phred score < 15) at the read 

start or end, and Nextera adapter sequences (CTGTCTCTTATA) were trimmed from read ends 

(minimum of a 2-bp overlap required for trimming). Reads were aligned to the human genome 

(hg38) using Bowtie2 (Galaxy version 2.3.4.1) in paired-end mode with otherwise default settings. 

BAM files were filtered to remove secondary alignments, unmapped reads, and mitochondiral 
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DNA alignments using ngsutils bam filter (Galaxy version 0.5.9). PCR duplicates were detected 

and removed using Picard MarkDuplicates (Galaxy version 2.7.1.2). 

The de-duplicated, filtered BAM file was used for peak calling and quantification. 

Peaks were called using MACS2 (Galaxy Version 2.1.1.20160309.5) using the following 

parameters: -format BAMPE -nomodel -extsize 200 -shift -100 -qvalue 0.01. 

Sample quality assessment. The fraction of reads in peaks (FRiP) was calculated to assess 

successful chromatin enrichment in each sample. FRiP was initially calculated from each sample's 

de-duplicated, filtered BAM file and MACS2 narrowPeaks output using R (3.5.1) and R package 

ChIPQC (1.18.1). Samples with a FRiP < 0.175 were excluded from further analysis. 26/50 

samples had a FRiP score > 0.175; these samples were flagged as "PASS" in the frip_filter 

metadata field. 24/50 samples had a FRiP score < 0.175; these low-quality samples were marked 

as "FAIL" in the frip_filter field in the metadata. 

 Differential peak analysis. We performed differential peak calling R libraries DiffBind 

(“DiffBind” n.d.), on each paired samples (PBS vs ligand)  bed files. We then ran EdgeR using the 

default threshold of FDR <= 0.05 to identify significantly differentially bound sites (peaks). We 

annotated the sites that were 1kb away from transcription start site (TSS) using human 

TxDb.Hsapiens.UCSC.hg38.knownGene annotation database 

(“TxDb.Hsapiens.UCSC.hg38.knownGene” n.d.).  (Fig 4.4). These DE peaks denote relative open 

or close regions compare to the controls (PBS at 0 hour). 

 
Correlation analysis. We computed pairwise linear correlations and their corresponding 

R2 scores between each pair of ligands using linear regression for all five time points for RPPA 

data (Fig 4.5). 
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Signaling footprint generation. We used PBS as control and an unpaired (t-test) with p-

value < 0.05 on the 295 signaling proteins expression measurements to generate a list of 

differential  (DE) proteins for all ligands. We further filtered the list by taking a 1.2 fold change 

(FC) value on these DE proteins to generate a signaling profile for these 201 proteins.   

 
PPI generation. We generated a protein-protein interaction (PPI) network by mapping 201 

DE proteins and their first neighbors to Stringdb database with a 0.7 confidence score. We 

generated a network of 6113 nodes (proteins) and 23255 edges (interactions between nodes). We 

then generated individual DE protein list for each ligand (Table 4.1A) and projected them onto 

the network (Fig 4.6).  

 
TF target mapping and functional enrichment analysis. We performed TF target 

analysis by mapping DE gene / protein lists for individual ligand with our local Transfac database. 

We then used a custom R script to perform enrichment analysis by mapping these target gene lists 

to KEGG annotation database.  We identified 35 and 158 transcription factors (TF) in 201 DE 

protein list and DE gene list respectively. 

 
Motif analysis for ATACSeq. We used HOMER’s motif finding tool (“Homer Software 

and Data Download” n.d.) to identify putative TFs and their  motifs from our differential peaks. 

We used these TFs and annotMotif.pl script to further identify their target genes and corresponding 

binding regions (promoter or exonic regions). Peaks detected at the promoter regions of a specific 

gene typically signals for transcription initiation process, whereas peaks bound at the exonic 

regions signals for transcribed expressions.  
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4.6 Figures 

 
 

 
 
 
Figure 4.1. Overview of the ECM MCF10A project.  
Showing various assays used in the study for characterization of ECM in normal breast  MCF10A 
cell line. The objective is to characterize effects of various growth ligands on ECM structure that 
influences specific cellular phenotypes. These relationships are depicted as system input and 
output. The figure is adapted from LINCS ECM MCF10A project. 
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Figure 4.2. Design workflow of the integrative framework. 
(A) Showing processing and analyses steps for RPPA data, (B) RNASeq, and (C) ATACSeq 
data. 
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Figure 4.3. Data quality of RPPA and RNASeq data 
(A) tSNE plots representing log2 normalized RPPA data with of six ligands, a control (PBS) and 
their replicates. (B) tSNE plot representing log2 normalized RNASeq data with six ligands, a 
control (PBS) and their replicates.   
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Figure 4.4. Differential peak distributions of ATACSeq in genomic annotation at 24 and 28 
hours. 
(A-D) Pie charts denoting the differential peak distribution (p-val < 0.01) of genomic regions at 
24 hour for (A) EGF, HGF, OSM and (B) BMP2, TGFB, and IFNG. (C) Differential peak 
distribution of genomic regions at 48 hour for EGF, HGF, OSM, and for  (B) BMP2, TGFB, and 
IFNG. 
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Figure 4.4. Differential peak distributions of ATACSeq in genomic annotation at 24 and 28 
hours. 
(A-D) Pie charts denoting the differential peak distribution (p-val < 0.01) of genomic regions at 
24 hour for (A) EGF, HGF, OSM and (B) BMP2, TGFB, and IFNG. (C) Differential peak 
distribution of genomic regions at 48 hour for EGF, HGF, OSM, and for  (B) BMP2, TGFB, and 
IFNG (continued). 
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Figure 4.5. Correlations between pairwise ligands across time points. 
(A-D)  Depicting the pairwise correlations and R2 between two growth factors across all time 
points with respects to PBS (1, 4, 8, 24, and 48 hours) for (A) EGF vs HGF, (B) EGF vs OSM, (C) 
HGF vs OSM, (D) BMP2 VS TGFB, (E) BMP2 VS IFNG, and (F) TGFB VS IFNG using RPPA 
data. 
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B: EGF vs OSM

C: HGF vs OSM

RPPA: Pairwise correlation (PBS control) 
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Figure 4.6. Canonical  genes in their respective cellular pathways. 
Showing genes in their respective pathways with PBS as a control in all 6 ligands.  
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Figure 4.7. Canonical  genes in their respective cellular pathways. 
Showing genes in their respective pathways with PBS as a control in all 6 ligands 
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Figure 4.8. Canonical  genes in their respective cellular pathways. 
Showing genes in their respective pathways with EGF as a control in BMP2, TGFB, and IFNG. 
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Figure 4.9. Canonical cell cycle genes. 
(A) Showing canonical cell cycle genes with PBS as a control in all 6 ligands. (B) Showing 
canonical cell cycle genes with EGF as a control in BMP2, TGFB, and IFNG. 
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Figure 4.10. 35 RPPA TFs. 
Showing signaling profile of 35 TFs with respect to PBS control. 
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Figure 4.11. 35 Differential TF signaling proteins and their functional enrichments. 
Depicting  three modules in 35 differential TF signaling proteins. The table shows their 
functional enrichments. 
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Figure 4.12. 158 TFs in RNASeq. 
Showing gene expression profile of 158 TFs with respect to PBS control. 
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Figure 4.13. Distribution of  TFs in transcriptomic profiles. 
(A)Showing distribution of TFs in gene expression data for each ligand with respect to PBS at 24 
hour. (B) at 48 hour. 
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Figure 4.14. Functional enrichments of each ligand using RPPA, RNAseq, ATACSeq data. 
 (A) Showing TF distribution of unique ligands with respect to PBS control. (B) Showing 
functional enrichments of each unique ligand by mapping TFs from RPPA, RNASeq, and 
ATACSeq data.  
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Figure 4.14. Functional enrichments of each ligand using RPPA, RNAseq, ATACSeq data. 
 (A) Showing TF distribution of unique ligands with respect to PBS control. (B) Showing 
functional enrichments of each unique ligand by mapping TFs from RPPA, RNASeq, and 
ATACSeq data (continued).  
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Figure 4.15. PPI network cluster of signaling DE proteins. 
(A - F) Venn diagram showing distribution of unique and overlapped DE proteins in all ligands at 
24 hour with respect to PBS control. (B) Showing a subset of a network topology associated with 
unique functional modules denoted by dashed ovals at 24 hour. Some nodes are shown due to the 
low node degree. (C) Thumbnail showing distribution of DE proteins for each ligand in the 
network at 24 hour with respect to PBS control. (D) showing distribution of unique and overlapped 
DE proteins in all ligands at 48 hour.  (E) Subset of a functional modules at 48 hour with respect 
to PBS control. (F) Thumbnail showing distribution of DE proteins for each ligand in the network 
at 48 hour with respect to PBS control. 
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Figure 4.16. Increased gene expressions of STAT3 target DE genes on OSM. 
Depicting  upregulations of STAT3 target DE genes in OSM (red). BRD4 is upregulated in OSM 
and its target HMOX1 is downregulated in OSM (blue). 
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4.7 Tables 

 
Table 4.1: Number of differential proteins and genes with respect to PBS for each time 

point. 
(A) Number of DE proteins in proteomic data and (B) number of DE genes in transcriptomic data. 
 
 
(A) 

RPPA (P-value <0.05, FC>=1.2) 
Condition 1 hr 4 hr 8 hr 24 hr 48 hr 

EGF 61 88 94 128 148 
HGF 51 54 38 212 95 
OSM 78 80 80 76 121 
BMP2 60 87 95 112 149 
TGFB 71 76 98 143 175 
IFNG 62 89 89 137 140 

 
 
(B) 

 
 
 
 
  

RNASeq (P-value <0.01, FC >=log2 of 1.5) 
Condition 24 hr 48 hr 

EGF 505 834 
HGF 341 1596 
OSM 1628 2344 
BMP2 1017 1520 
TGFB 2076 1821 
IFNG 2378 2842 
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Conclusions 

 In this dissertation, we have looked into the effects of various drugs and growth factors on 

chromatin alterations that influence cellular phenotypes of cancer and healthy cells. We explored 

two major biological questions that guided our specific projects:  1) What are the mechanisms of 

action of drugs on chromatin alterations that can be exploited to develop chromatin-based targeted 

cancer therapy, 2) How do various growth factors exert their regulatory influences on healthy cells 

to change their cellular phenotypes.   

 First and second projects address the first question, in the first project, we applied latent 

space models to develop an integrative framework for reconstructing a 3D phosphoprotein-

histone-drug network (iPhDnet) from large-scale multi-experiment multivariate high-throughput 

data sets.  We used an unsupervised clustering technique to generate histone signatures. We then 

used a  multivariate linear-model and statistical hypothesis testing (t-test) of the coefficients of the 

model to find significant or potentially causal connections between the histone signatures and 

phosphoprotein signaling networks. The iPhDnet represents our global chromatin fingerprints that 

can serve as a signature for assessing the efficacy of a given drug in treating cancer. 

 In the second project, we used protein-protein interaction database and statistical 

hypothesis testing (one-way ANOVA) of the iPhDnet to further reconstruct a mechanistic causal 

network connection among the histone signatures and the phosphoprotein signaling networks at 

various time points. Our mechanistic causal network implicates, CDK inhibitors flavopiridol and 

dinaciclib as potential therapeutics mediated by BRD4, NSD3, EZH2 and MYC targeting 

H3K27me3K36me3 status change in breast cancer. 

 To address the second biological question, in the third project, we characterized the effects 

of six growth factors on normal breast cells to various cellular phenotypes. We used an integrative 
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framework and statistical hypothesis testing (t-test) of measure genes, proteins, and chromatin 

accessibility readouts from large-scale multi-experiment multivariate high-throughput data sets to 

find canonical footprints of each ligand. Our results show possible STAT3 induction promoting 

BRD4 to regulate cell proliferation when treated with OSM. 

 

Limitations and Future Directions 

 This dissertation systematically assesses and generates plausible hypotheses for 

mechanisms of actions of specific therapeutic and growth agents on chromatin remodeling 

influencing various cellular phenotypes. While this effort represents a significant step towards the 

understanding of chromatin remodeling of breast cancer therapy, the approaches described in this 

dissertation also have significant limitations and require experimental validations. In the future, 

we can introduce a machine learning approach to generate scores for characterizing growth factors 

responses to specific phenotypes. We believe iPhDnet can serve as a valuable method for 

integrative analysis of multi-omics datasets. The framework can also be extended to accommodate 

other types of omics data, for instance, metabolomic, cycIF, scRNAseq, and Hi-C, data. In the 

future, iPhDnet can be extended to incorporate nonlinear models in the framework to capture the 

dynamics of cellular mechanisms more accurately. The observations made by applying iPhDnet to 

analyze omics data have implications for the discovery of cancer therapeutics, suggesting 

mechanistically-associated targets.  

 




