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Abstract

When people are unsure of the intended meaning of a word,
they often ask for clarification. One way of doing so—often as-
sumed in models of communication—is to point at a potential
target: “Do you mean [points at the rabbit]?” However, what
if the target is unavailable? Then the only recourse is language
itself, which seems equivalent to pulling oneself up from a
swamp by one’s hair. We created two computational models of
communication, one able to point and one not. The latter incor-
porates inference to resolve the meaning of non-pointing sig-
nals. Simulations show agents in both models reach perceived
understanding equally quickly. While this means agents think
they are successfully communicating, non-pointing agents un-
derstand each other only at chance level. This shows that state-
of-the-art computational explanations have difficulty explain-
ing how people solve the puzzle of underdetermination, and
that doing so will require a fundamental leap forward.
Keywords: communication; pragmatics; Bayesian modeling;
agent-based modeling; computational modeling

Introduction
The puzzle of language use in interaction is elegantly il-
lustrated by Quine’s famous gavagai thought experiment
(Quine, 1960): A rabbit scuttles across and someone shouts,
“gavagai!” How do you understand what the word means?
The difficulty of this puzzle is illustrated by the fact that 60
years later, we are still only scratching the surface. We know
people can understand each other, it is just very hard to ex-
plain how. Now consider the following variant to discover
how deep this rabbit hole goes: The other shouts “gavagai!”
You may wish to point at the rabbit asking “gavagai?”, but
alas it has run away. How can you still make sense of the
word now that you are unable to point at your displaced ref-
erence? Your only recourse is language itself, but now that
you are in a swamp of underdetermination how can you pull
yourself up by your own hair?

Prior solutions to the puzzle have leaned heavily on re-
pair actions. Communicators can shore up understanding
piecemeal by asking and providing clarification (Dingemanse
et al., 2015; Schegleff, Jefferson, & Sacks, 1977; Clark
& Schaefer, 1987). While people seem flexible enough to

deal with a great deal of referential inscrutability (Garfinkel,
1967), computational models of communication tend to as-
sume more immediate forms of feedback: for instance by os-
tension (pointing at an intended or inferred referent) or even
providing direct shared access (Steels, 2015; Hawkins, Frank,
& Goodman, 2017).1 Even under these ideal conditions, it
has proven difficult to computationally explain how two com-
municators can come to understand one another. State-of-the-
art models operate on small contexts and languages, and they
require uncharacteristically many trial-and-error attempts or
fail to reach mutual understanding (Steels, 2015). We do not
take this merely as a negative result, but as an indication of
a truly hard to explain aspect of human communication. It
is challenging to explain how people can pull themselves out
of the swamp with an overhanging branch (direct access), let
alone by their own hair (ostensive signals), let alone when
they pull and realise they are wearing a wig (non-ostensive
signals).

In this paper, we present and compare two computational
models of communication. One to model cases where people
have access to unambiguous ostensive pointing signals, and
one to model cases where people rely on additional inference
to resolve the meaning of non-ostensive signals. Agent-based
simulations show that having access to ostensive signals al-
lows agents to converge on a common lexicon and achieve
relatively successful referential communication. The agents
that rely on inferences over non-ostensive signals enjoy much
less success, despite their ability to leverage additional infer-
ence. This shows that sophisticated inferential abilities are
not enough to overcome the referential inscrutability of non-
ostensive signals.

To understand why, we distinguish between factual and
perceived states of understanding (Fig. 1). In doing so, we
contribute to prior work questioning dogmas of understand-

1The term ostensive has two senses: (a) referential transparency,
i.e., no (or little) reasoning is required to understand the meaning of
the signal, or (b) a signal that communicates its own communicative
value (Wilson & Sperber, 2002). Here, we use it in the first sense.
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Figure 1: Two kinds of understanding. Without direct ac-
cess to other minds, people can only use their own perceived
understanding as a proxy for factual understanding. When
they are in a state of perceived understanding, they assume
there is also factual understanding, which may or may not
be correct (top); and when they are in a state of perceived
non-understanding, i.e., they are uncertain about their under-
standing, they may not commit to any interpretation in which
case factual understanding remains undetermined (bottom).

ing in theories of human interaction (Clark, 1997). The first
refers to the state where both agents have the same referent
in mind (Clark, 1996), e.g., both think that gavagai refers to
the rabbit’s nose. Note that this state is a property defined
over two communicators, and that people cannot know if this
state is true or not. By contrast, perceived understanding is
an individual state. Namely, whether or not a person ‘thinks’
they have correctly understood the communicative signal. In
a follow-up analysis we show that, differently from the osten-
sive agents, non-ostensive agents incorrectly think that they
made correct inferences and decide to end the dialogue in a
state of factual misunderstanding. In our discussion we reflect
on theoretical challenges and opportunities for the field.

Computational models
We present two computational models based on the Ratio-
nal Speech Act (RSA) framework (Frank & Goodman, 2012).
RSA formalizes Gricean cooperative communication (Grice,
1975) as Bayesian rational communication (Frank, Emilsson,
Peloquin, Goodman, & Potts, 2017). Speakers choose signals
relative to the probability that the chosen signal will be inter-
preted correctly (taking the listener’s perspective), and listen-
ers infer meaning relative to the probability that a speaker
would have produced the observed signal given that mean-
ing (taking the speaker’s perspective). RSA has been suc-
cessfully used to explain language games (Frank & Good-
man, 2012; Frank et al., 2017; Khani, Goodman, & Liang,
2018), implicatures (Goodman & Stuhlmüller, 2013; Bergen,

Levy, & Goodman, 2016), noisy signals (Bergen & Good-
man, 2015), polite speech (Yoon, Frank, Tessler, & Good-
man, 2018), and convention formation (Hawkins et al., 2017;
Cohn-Gordon, Goodman, & Potts, 2018; Hawkins, Frank, &
Goodman, 2020).

We take the convention formation model by Hawkins et
al. (2017) as a starting point to model ostensive and non-
ostensive dialogue. The model explains how a listener can,
on the basis of previous ostensive communicative exchanges,
infer the probability of the possible signal-referent mappings
the speaker is using and uses this to infer the most likely in-
tended meaning. We extend this model in two ways.

First, we extend it to capture ostensive dialogue between
two agents where, differently from existing models, both
agents can contribute to the conversation by speaking and
pointing. Ostensive communicators can request clarification
analagous to asking “gavagai?” and pointing at the rabbit,
making referentially clear what they believe the word “gava-
gai” refers to. Second, we provide a further extension to cap-
ture non-ostensive dialogue where ostensive signals are not
available. The crucial difference here is that the clarification
request ‘gavagai?’ is not accompanied by an ostensive signal.
In this model communicators are endowed with Bayesian in-
ference to infer the meaning of the clarification signal, instead
of having it unambiguously provided.

In these models both agents produce and interpret signals,
so we introduce the terms initiator and responder. The ini-
tiator has the intention to communicate a particular referent
and starts the dialogue. The responder is trying to best under-
stand which referent the initiator means and can request clari-
fication to which the initiator can reply. This process repeats,
moving the dialogue forward. Dialogues in both models can
end in one of three ways (see Fig. 2): either the responder
believes they understood the initiator, or the initiator believes
that the responder understood them, or they give up after sev-
eral turns. We next introduce RSA before we formalize os-
tensive and non-ostensive dialogue.

Rational Speech Act model

RSA provides a characterization of pragmatic speaking and
listening at the computational level (Frank & Goodman,
2012). It assumes that communicators can take each others’
perspective by reasoning recursively, determined by param-
eter n. For example, a pragmatic listener will infer “fruit”
refers to the apple, not the cherry, if the only other word ava-
iable is “red”. RSA abstracts language to a many-to-many
mapping between signals S and referents R. Such a mapping
is called a lexicon L . The speaking and listening capacities
formalized by RSA form the basis for the initiator and re-
sponder models below. Higher order speaking is defined as:

Sn(s|r,L) ∝ exp(α log Ln−1 (r|s,L)− cost(s)) (1)

This probability distribution over signals given a referent and
lexicon depends on the (presumed) inference made by a lis-
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tener of one order lower Ln−1:

Ln(r|s,L) ∝ Pr(r) Sn(s|r,L) (2)

The recursion bottoms out in a literal listener model L0 that
takes the lexicon on face value, apart from incorporating a
prior probability for each referent Pr(r):

L0(r|s,L) ∝ Pr(r) L(s,r) (3)

In this paper we assume uniform priors over referents.

intended
referent X

inferred
referent Y

give up

start

“indeed!”

S’ Y

S’

S

inferred
referent Y

inferred
referent ZX=Z

“aha!”

X=Z

ostensive agents
non-ostensive agents

conversation history

high/low certainty

Figure 2: Structure for ostensive (orange) and non-ostensive
(blue) dialogue for one intended referent X . Black, orange
and blue arrows denote input-output of information. Gray ar-
rows denote agents’ decisions for continuing or ending the di-
alogue. Agents remember all turns and take this into account
for future inferences. The key difference is that ostensive
agents base future inferences on the ostensively declared ref-
erent Y (orange rectangle) whereas the non-ostensive agents
base future inferences on a verbal signal S′ (blue rectangle).
The initiator infers referent Z from S′ to determine whether
they think that the responder understands them.

Formalizing ostensive communication
In ostensive communication, the responder can request clar-
ification by producing a pointing gesture. Both agents re-
member all signals spoken by the intiator sinitial and the cor-
responding clarification gesture which is formalized as the in-
ferred referent rinferred (S and Y in the orange boxes in Fig. 2).
Agents use conversation history h and their lexical bias Pr(L)
to infer the likelihood over all possible lexicons (Fig. 3):

PrLn(L | h) ∝ Pr(L) ∏
(s,r)∈h

Ln (r|s,L) (4)

The distribution over referents given a signal and history can
now be formalized as:

PrLn(r | s,h) ∝ ∑
L

Ln (r|s,L)PrLn (L |h) (5)

0 0 0
0 0 0
0 0 0

1 0 0
0 0 1
0 1 0

1 1 1
1 1 1
1 1 1

lexical bias

lexical likelihood

ostensive
conversation history

⟨(s,r),(s,r),...⟩

non-ostensive
conversation history speaker’s

perspective

listener’s
perspective

⟨(s,  s’), (s,  s’),...⟩

all possible
lexicons

⟨(s,      ),(s,      ),...⟩r1r2r3 r1r2r3

Figure 3: The distribution over all lexicons (lexicon likeli-
hood) is computed from the lexical bias and conversation his-
tory. Non-ostensive agents (blue) require additional inference
to infer the meaning of clarification requests s′, whereas os-
tensive agents (orange) get unambiguous feedback r.

This distribution is used by both ostensive agents. The re-
sponder infers a referent given an observed signal by sam-
pling rinferred from PrLn

(r | sobserved,h). The initiator does the
same but given the observed clarification request srequest, to
try and understand the responder. Both agents use the entropy
H(.) of this distribution to decide if they are certain enough
of their inference, formalizing perceived understanding. The
responder makes a clarification request when uncertain, by
sampling a signal srequest given their inferred referent rinferred
from:

PrSn(s | r,h) ∝ e(α ln(∑L PrLn (L |h) Ln−1(r|s,L))−cost(s)) (6)

Here, the distribution over signals takes into account his-
tory, all possible lexicons and pragmatic reasoning. The cost
function could represent for example utterance length, and
α is the rationality parameter (higher values make sampling
the most probable signal more likely). The ostensive re-
sponder can both express srequest and point unambiguously to
their inferred referent rinferred, where srequest is sampled from
PrSn

(s | rinferred,h). The agents signal a special change-of-
state token (cf. Koivisto, 2015; Selting, 1987) to indicate
when they perceive understanding: The responder can use
aha! to confirm they think they correctly inferred the in-
tended referent rintended. Similarly, the initiator can use an
acknowledgement token like indeed! when they think the
responder has correctly inferred the intended referent (Clark,
1996). Table 1 illustrates an example conversation between
agents. For completeness we provide the formalization of the
ostensive responder and initiator below.

OSTENSIVE RESPONDER
Input: A set of signals S, a set of referents R, and
the conversation history h = ((sinitial,rinferred), . . .). An
observed signal sobserved ∈ S and an order of reasoning n. A
linguistic bias representing the agent’s preferred lexicons
Pr(L). A rationality parameter α, a certainty threshold η

and a cost function cost : S→ N.
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Output: A clarification request
(
srequest,rinferred

)
if

H(PrLn
(r | sobserved,h)) > η; or otherwise the inferred

referent rinferred and a special confirmation signal aha!
Here, srequest is sampled from PrSn

(s | rinferred,h) (Eq. 6)
and rinferred is sampled from PrLn

(r | sobserved,h) (Eq. 5).

OSTENSIVE INITIATOR
Input: A set of signals S, a set of referents R, and
the conversation history h = ((s,r), . . .). A referential
intention rintended ∈ R and an order of reasoning n. A
linguistic bias representing the agent’s preferred lexicons
Pr(L). A rationality parameter α, a certainty threshold η

and a cost function cost : S→ N. Optionally, an observed
clarification request srequest ∈ S.
Output: The initial signal sinitial sampled from
PrSn

(s | rintended,h) (Eq. 6) if no clarification request
was made, a clarification response sresponse sampled from
the same distribution if H(PrLn

(r | srequest,h)) is above
η (Eq. 5), or a special confirmation signal indeed! if
entropy is below η and rintended matches rinferred sampled
from PrLn

(r | srequest,h) (Eq. 5).

Formalizing non-ostensive communication
In non-ostensive communication, communicators cannot use
ostensive signalling and build up a conversation history con-
sisting only of initiator signals sinitial and corresponding clar-
ification requests srequest (S and S′ in the blue boxes in Fig. 2).
Agents use this conversation history h and their lexical bias
Pr(L) to infer the likelihood over all possible lexicons. Dif-
ferently from the ostensive model, non-ostensive agents make
an additional inference interpreting the clarification request
(Ln

(
r|srequest,L

)
below; Fig. 3):

PrLn(L | h) ∝

Pr(L) ∏
(sinitial,srequest)∈h

∑
r

Sn (sinitial|r,L)Ln
(
r|srequest,L

)
(7)

The distribution over referents given a signal and history
PrLn

(r | s,h) is formalized as Eq. 5 replacing PrLn
(L | h)

with Eq. 7. Similarly to the ostensive agents, non-ostensive
initiator and responder infer referential meaning of signals
rinferred and their perceived certrainty thereof from this dis-
tribution. The responder makes a clarification request when
uncertain by sampling a signal srequest given their inferred
referent rinferred from PrSn

(s | r,h) (Eq. 6), again replacing
PrLn

(L | h) with Eq. 7.

NON-OSTENSIVE RESPONDER
Input: Same as OSTENSIVE RESPONDER, except the
conversation history h =

(
(sinitial,srequest), . . .

)
consists

of pairs of initiator signals sinitial and the responder’s
clarification requests srequest.
Output: A clarification request srequest if

H(PrLn
(r | sobserved,h)) > η (Eq. 5, Eq. 7); or oth-

erwise a the inferred referent rinferred and a special
confirmation signal aha! Here, srequest is sampled from
PrSn

(s | rinferred,h) (Eq. 6, Eq. 7) and rinferred is sampled
from PrLn

(r | sobserved,h) (Eq. 5, Eq. 7).

NON-OSTENSIVE INITIATOR
Input: Same as OSTENSIVE INITIATOR, except that the
conversation history h =

(
(sinitial,srequest), . . .

)
consists

of pairs of initiator signals sinitial and the responder’s
clarification requests srequest.
Output: The initial signal sinitial sampled from
PrSn

(s | rintended,h) (Eq. 6, Eq. 7) if no clarification request
was made, or else a clarification response sresponse sampled
from the same distribution if H(PrLn

(r | srequest,h)) is
above η (Eq. 5, Eq. 7), or a special confirmation signal
indeed! if entropy is below η and rintended matches
rinferred sampled from PrLn

(r | srequest,h) (Eq. 5, Eq. 7).

Table 1: Example conversations between ostensive (a) and
non-ostensive (b) agents for toy 2-by-2 lexicons (six possi-
ble in total). Lexical likelihoods PrLn

(L | h) at ti are based
on lexical bias and history (indicated in bold) from t1 . . . ti−1.
Ostensive agents have access to explicit feedback (i.e., ref-
erents pointed out by the responder), whereas non-ostensive
agents need to make do with ambiguous linguistic feedback.
The ostensive agents reach perceived understanding after two
turns, where the non-ostensive agents give up after six turns.

(a) Conversation between ostensive agents.

PrLn
(L | h) Initiator Responder PrLn

(L | h)

t1
r2→ s1 → r1
r1← (s2,r1)? ← r1

t2
r2→ s2 → r2

aha! ← r2

(b) Conversation between non-ostensive agents.

PrLn
(L | h) Initiator Responder PrLn

(L | h)

t1
r1→ s2 → r2
r2← s1? ← r2

t2
r1→ s1 → r2
r2← s2? ← r2

t3
r1→ s2 → r2
r2← s2? ← r2

t4
r1→ s1 → r2
r2← s2? ← r2

t5
r1→ s1 → r2
r2← s2? ← r2

t6
r1→ s1 → r2
r2← s1? ← r2
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Simulation
Method
We simulated 500 agent pairs for both models, for which
code, data, and analyses can be found at: https://osf.io/
caeb9/. The lexicon size was 4 (signals) × 3 (referents).
Asymmetrical lexical bias was generated using a binomial
distribution with X = .45 for agent 1 and X = .55 for agent 2.
We set the rationality parameter α to 5 and, since irrelevant to
our research focus, cost was set to 0. Each dialogue consisted
of an initiating agent trying to communicate an intended ref-
erent to a responder agent. A dialogue took at most 6 turns,
after which the pair gives up (given the limited lexicon, allow-
ing for many or infinite turns will not provide further insight
into the development of perceived and factual understanding).
Furthermore, the agents performed six dialogues, with ran-
domly determined intended referents.

Analysis 1: Clarification sequence length
We investigated the number of back-and-forth turns it takes
for ostentively and non-ostentively communicating agents to
come to the belief that they understand each other (called
clarification sequence length). Fig. 4 shows a decrease in
clarification sequence length after the first dialogue for both
the ostensive and non-ostensive agents. This effect is con-
sistent with other simulations and empirical observations that
show an important role for interactive repair early in refer-
ential communication tasks (Hawkins et al., 2017; Degen,
Trotzke, Scontras, Wittenberg, & Goodman, 2019; Mills,
2014). To get a better view of agents’ factual understanding
and of the distribution of clarification sequence lengths within
dialogues, we perform more fine-grained analyses next.

Analysis 2: Dialogue
For each of the six dialogues that agent pairs engage in, we
count the number of agent pairs that reach factual under-
standing (or not) and the number of turns they take, provid-
ing a distribution of repair sequence lengths (Fig. 5). Note
that some agent pairs do not reach a state of perceived un-
derstanding and so give up after six turns (shaded areas in
Fig. 5). While both models show a similar reduction in repair
sequence length, this analysis reveals important differences
in states of understanding for the two models.

First, ostensive agents achieve higher factual understand-
ing overall. Here, factual understanding is formalized as the
responder’s inferred referent r being the same as the initia-
tors intention i. Second, most ostensive agents reach a state
of perceived understanding in the first half of the conversation
(dialogues 1–3) and with short repair sequences (< 3). In con-
trast, many of the non-ostensive agents do not reach a state of
perceived understanding with short repair sequences until the
second half of the conversation (dialogues 4–6). Third, there
is a substantial population of ostensive agents that in the fi-
nal dialogue do not reach a state of perceived understanding
and hence ‘give up’. This seems to correspond accurately to
the ratio of factual (mis)understandings they would have had,

Dialogue

Figure 4: Clarification sequence length decreases as the con-
versation progresses for both ostensive (orange) and non-
ostensive agents (blue). (Bars show the 95% CI and ribbon
the SD).

if they had to guess at this point. The non-ostensive agents
show a different pattern: by the fifth or sixth intention almost
all reach a state of perceived understanding but when they do,
their average factual understanding is poor.

This analysis shows that non-ostensive agents have a much
harder time achieving factual understanding than ostensive
agents. The ostensive agents can rely on the signal spoken
by the initiator sinit and the ostensive response (e.g. pointing
gesture) r by the responder. This provides them with a stable
ground to infer the same referential meanings, which is only
possible when their lexicon likelihoods align on a few com-
patible lexicons. The non-ostensive agents only have access
to the signals sinit and sreq without the benefit of identification
by pointing. They use pragmatic inference over all possible
lexicons to infer not only the original intention underlying
sinit but also the inferred intention of the responder’s clarifi-
cation request sreq (Eq. 7 and 8). While this additional infer-
ence leads to high certainty in a reasonable number of turns,
it does not lead to factual understanding. This must mean that
the non-ostensive agents fail to infer compatible lexicon like-
lihoods. In the next analysis we investigate the relationship
between factual and perceived understanding.

Analysis 3: Factual and perceived understanding
We determined how many dialogues ended in factual under-
standing (see Table 2). Note that in the current simulation
only 3 referents are available, making the chance level for

Table 2: Percentage of dialogues that end in factual under-
standing split by whether the agents perceived understanding
or gave up. Chance level for factual understanding is 33.3%.

perceived understanding give up

ostensive 79.5 % 42.0 %
non-ostensive 34.4 % 33.4 %
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Figure 5: Structure of dialogue progression for ostensive (above) and non-ostensive agents (below). Conversation progresses
from left to right. Each graph shows for the ith dialogue the distribution of agent pairs over the repair sequence length. The
rightmost bars in each graph shows how many agent pairs gave up in that dialogue and the colors indicate factual understanding.

factual understanding 33.3%. We observe again that when the
ostensive agents reach a state of perceived understanding then
they are above chance for achieving factual understanding,
and when they give up they would have been below chance.
The non-ostensive agents’ factual understanding is always at
chance level, suggesting that there is disconnect between their
perceived and factual states of understanding.

Discussion
We formalized two models of communication: An ostensive
model in which communicators can directly point to inferred
referents to ask for clarification, and a non-ostensive model in
which communicators can only rely on signals without direct
access to referential identity. The agents in both models take
conversation history into account—though each of a differ-
ent nature—to try and infer a common lexicon to overcome
differences in referential intention ascription between them.

Using agent-based simulations we showed that both mod-
els behave similar in one sense, namely, all agents become
increasingly confident in their inferences leading to reduction
in the number of turns taken per communicated intention.
However, the models behave differently in other important
ways. While ostensive agents have a high factual understand-
ing when they perceive understanding, this is not the case for
the non-ostensive agents. The non-ostensive agents’ factual
understanding is at chance level while at the same time also
requiring more observations to gain enough certainty to stop
asking for clarification. Though some degree of misalignment
between factual and perceived understanding is fairly com-
mon in natural languages (Garfinkel, 1967; Enfield, 2007),
these agents have no alignment at all.

The poor performance of the non-ostensive agents may
seem surprising. While these agents lack physical co-
presence (Clark & Marshall, 1981), they can rely on sophis-
ticated inference and linguistic co-presence to reverse engi-
neer possible meanings of (clarification) signals by consider-
ing all possible signal-referent mappings and their conversa-

tion history. This computationally far exceeds the inferential
capacities of human communicators (van Rooij et al., 2011).
Even so, these sophisticated inferences are not sufficient for
the agents to achieve mutual (factual) understanding.

We started the paper by posing the challenge of explain-
ing how people can make sense of a word when unable to
point at a displaced referent. State-of-the-art models fail to
address this challenge head-on by providing what we might
call a Gavagai Shortcut: immediate access to the intended
referent (Steels, 2015; Hawkins et al., 2017). This greatly
simplifies the problem of converging on a common lexicon.
However, the shortcut obscures the fact that this is interac-
tionally and computationally far from trivial. The simulation
results confirm that ostensive agents can achieve factual un-
derstanding, and they underscore the difficulty of computa-
tionally explaining non-ostensive communication. Without
referentially clear signals, non-ostensive agents have no way
of knowing when their inferences are factually correct. The
challenge is clear: Without direct feedback, what computa-
tional infrastructure allows communicators to attain sufficient
meta-understanding about their state of factual understand-
ing? Given that the model presented here is not lacking in
inferential capacity, it seems that more reasoning of the same
kind is not the right answer. One might be tempted to in-
troduce other shortcuts to ‘make the current model work’, but
shortcuts forgo explanation. In future, computational theories
of communication need to be expanded with a different kind
of reasoning, one that explains how people can use context,
background knowledge and other semiotic resources (Clark,
1997; Clark, 2006) to attain sufficient meta-understanding.
Without this awareness, computational agents are not just try-
ing to pull themselves from a swamp of underdetermination
by their hair, but they don’t realise they are drowning.
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