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Abstract

Three studies investigated the role of perceptual and quantita-
tive situational factors on the structure of 5th- and 6th-graders’
mental models. A task involved a carton of orange juice made
from concentrate and water, and two glasses of different sizes
filled from the carton. The children had to predict whether the
two glasses would taste the same. We manipulated whether
students were presented with physical, diagrammatic, photo-
graphic, or textual information. We also manipulated the type of
relationship specified between quantities: qualitative, easy
numerical, or difficult numerical. We found that for the diagram
condition, difficult numerical relationships yielded poor perfor-
mance, whereas the easy numerical and qualitative relationships
yielded excellent performance. In contrast, in the physical
condition, the easy numerical relationships yielded poor perfor-
mance, whereas the difficult numerical and qualitative relation-
ships yielded excellent performance. These and other results are
interpreted by developing a sketch of the mental models pre-
proportional children construct to reason about this quantitative
situation, and describing how situational factors influence the
construction of the models. For example, physical features led
to models that captured the identity relationship between the
juice in the glasses (e.g., the juice came from the same carton)
whereas numerical features led to models that captured the
relationship between the constituents of concentrate and water
in each glass (e.g., within a glass there is more water than
concentrate).

To reason with a model means that the forms of mental
representation and transformations on those representations
capture the structure of the world (e.g., Johnson-Laird, 1983).
Using Palmer’s (1978) terms, the representation of relationsin
a model is intrinsic, that is, the structure of the representation
preserves the structure of the referent. However, given thatany
situation has multiple structures, what determines which struc-
ture is modeled? For example, consider the task illustrated in
Figure 1. The question is whether the two glasses, filled from
the same carton, taste the same. The problem has a causal
structure: the juice in each glass was poured from the same
carton and is therefore the same. The problem also has a
quantitative structure: the ratio of concentrate and water is
preserved under a transformation of total size. In this paper, we
explore whether 5th- and 6th- grade students' pre-proportional
reasoning can be understood in terms of mental models. We
alsodevelop evidence that the structures the students model are
heavily determined by situational factors.

Our interest is in the way situations influence two key
features that define the structure of students' pre-proportional
models. One feature was whether the model supported quanti-
tative inferences or not. For example, if one reasons that the
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juice in the two glasses comes from the same source, one is not
reasoning from a model of quantity. On the other hand, if one
reasons that more orange juice means more orange flavor, one
has included quantitative information in the model. The
second key feature was whether the students’ models parti-
tioned the orange juice into the constituents of water and
concentrate. For example, a non-quantitative and partitioned
model is implicated if one reasons that the carton was not
shaken properly, and therefore one glass received only water.
An example of a quantitative and partitioned model would
occurif one considered the relative amounts of concentrate and
water in each glass. Although the non-quantitative and non-
partitioned model of the problem provides a simple solution, it
is the partitioned and quantitative models that are necessary for
proportional reasoning.

Research by Harel, Behr, Post, and Lesh (in press) used the
problem shown in Figure 1a. Their work demonstrated that
many 6th-graders decide that the juice in the two glasses would
not taste the same, because more juice in one glass means more
flavor. One interpretation of this surprising result is that the
children ignored the contextual information that would lead to
a causal model, in favor of a decontextualized application of
mathematical knowledge. Analternative interpretation is that
the children attempted to model the quantitative structure of
the problem that was made salient by the presence of numerical
information; however, they were not able to construct amodel
that supported reasoning about the complex ratios. If this
interpretation is correct, then simplifying the quantitative
structure of the problem or making the quantitative structure
less salient would improve performance.

We predicted that presentation of physical materials would
support the creation of models based primarily on the physical
and causal structure of the situation. These models are non-
quantitative and do not support inferences involving
comparisions among the constituent quantities of concentrate
and water. We also predicted that situations thatdo not involve
numerical information would support the creation of models in
which quantities are not partitioned into their constituent
quantities. On the other hand, we predicted that the inclusion
of numerical information would support partitioning a quan-
tity space into its constituent quantities. This is because the
numerical information highlights the decomposition of the
quantity of orange juice into quantities of water and concen-
trate. We predicted that for middle-school students complex
numerical relationships support a partitioned quantitative space,
yetdo not support the coordination of the quantitative relation-
ships necessary to make a valid inference. However, simpler
numerical relationships would support reasoning about the
relationship between constituent quantities.
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Figure 1b. Diagram for non-numerical condition.

Figure 1c. Photograph for numerical condition.

Experiments 1a & b

Experiment 1a was designed to demonstrate that if the
physical structure of a problem is made salient, children will
tend to answer the problem correctly. However, if the quanti-
ties in a problem are emphasized without a supporting physical
model students perform more poorly. The experiment was also
used to develop a coding system that would be used to analyze
children’s explanations. The explanations provided evidence
for the use of different types of models in students’ reasoning.

Subjects and Design

98 6th-grade students from four classrooms at a Nashville
inner-city school participated in a between-subjects, 2 x 2
experiment. A presentation factor had the levels of physical
and diagrammatic presentation; a quantitative factor had the
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levels of non-numerical and numerical information. Subjects
were randomly assigned to one of the four cells.

Materials and Procedure

Students in the physical conditions were shown a carton of
orange juice and two glasses, whereas students in the diagram
conditions were shown a diagram of a carton of orange juice
and two glasses on a large poster board (Figure 1a). Cardboard
labels were placed beside the glasses and juice carton in the
physical conditions.

Procedures for the physical and diagram conditions were
identical except that the experimenter poured the orange juice
into each glass in the physical conditions. Different experi-
menters, reading from a script, addressed each of the groups of
students as a whole. In the numerical conditions, an experi-
menter said “Here I have a [drawing of a] carton of orange
juice. The juice was made with 40 ounces of water and 24
ounces of orange concentrate. This glass has 4 ounces of
orange juice from the carton. And this glass has 7 ounces of
orange juice from the carton.” In the non-numerical condi-
tions, an experimenter said “Here I have [a drawing of] a carton
of orange juice. The juice was made with water and orange
concentrate. This small glass has orange juice from the carton.
And this large glass has orange juice from the carton.”

After the presentation, students received worksheets that
asked, “Would the large glass taste the same as the small
glass?” and “If they would not taste the same, which one would
taste more orangy?” Then the worksheet asked students to
explain their answers. Students took approximately 10 min-
utes to complete the worksheets.

Results and Discussion

Student answers were coded correct if they stated that the
two glasses would taste the same, or if they stated that the
glasses would taste different because the carton of juice had not
been shaken. Table 1 shows that the diagram-numerical
students were the most likely to give an incorrect answer; )2
(1df, n=98) = 4.37, p<.05. One interpretation is that the
numbers in the diagram condition led students to construct
inadequate quantitative models, whereas in the physical nu-
merical condition, the students attended to the causal structure
of the situation. Analternative hypothesis is that the numerical
information was simply a distraction to the students. This
hypothesis is addressed in Experiment 2.

Table 1. Percentages of correct answers
and explanation types (Exp. 1a).

Diagram Physical

Number No-Num Number No-Num

m=27) (0=22) {n=23) _(n=26)

Correct 29.6% 68.2% 60.9% 57.7%
Explanations*

NQ& NP 16.7% 38.5% 29.0% 30.3%

Q& NP 56.7% 46.2% 41.9% 48.5%

NQ& P 33% 15.4% 9.7% 9.1%

Q& P 23.3% 0.0% 19.4% 12.1%

* NQ = Non-quantitative, NP = Non-Partitioned,
Q = Quantitative, P = Partitioned.



Student explanations were coded as evidence for the use of
different types of models. These models are delineated in
Figure 2 with a graphical notation, For each model it is
indicated whether it supports quantitative reasoning, and
whether the total quantities of orange juice have been decom-
posed into constituent quantities of concentrate and water.
Each of the models is described briefly below with representa-
tive student explanations.

Non-quantitative & non-partitioned. Non-quantitative and
non-partitioned models capture the physical or causal proper-
ties of asituation (Fig. 2a). For example, one student wrote that
the glasses would taste the same because "the orange juice was
poured out of the same carton." Similarly, one could reason
that both glasses contain the same kind of orange juice,
focusing on an identity relationship (Fig. 2b). As one student
wrote, "they both have the same orange juice and they can't
change by themselves." Using either of these models, one has
notmade a quantitative comparison but instead reasoned about
the invariant physical properties of the situation.

Quantitative & non-partitioned. Some students made ex-
plicit judgements that quantity is irrelevant in determining a
quality such as taste. For example, "No matter how much you
have in the glasses they will taste the same." This type of model
(Fig. 2¢) does not support reasoning about the the constituent
quantities of water and concentrate that underlie proportional
reasoning, yet takes into account the different quantities of
orange juice in the two glasses. Some students reasoned thatan
increase in the measure of a quantity always results in an
increase of the measure of a quality associated with that
quantity (Fig. 2d). For example, one student wrote that "the 7
oz. glass has more so it will taste stronger.” Again, this model
captures only the total quantity of orange juice, not the con-
stituent quantities of water and concentrate.

Non-quantitative & partitioned. Some students combined
aspects of reasoning about the physical properties of the orange
juice and one of the constituent quantities. For example, one
student stated that the large glass would taste stronger because
"it was poured last and the pulp is at the bottom." In this model
(Fig. 2e), pouring plays a causal role in determining the quality
of "oranginess", at the same lime conslituent quantities are
distinguished in the carton. In a second model of this type
(Figure 2f), students identify that the two glasses have "the
same ingredients"; however, no quantitative statements are
made,

Quantitative & partitioned, In another type of model, or
constitutent quantity was identified and a comparison w:
made involving that quantity only. For example, one studei
wrolte that the larger glass will taste stronger because "the larg
glass has more orange concentrate.” This type of model (Fij
2g) does not support comparisons that involve both constituer
quantities. In a related model (Fig. 2h), students considere
both ingredients butmade an incorrectinference. Forexampl
one student wrote, “The 7 oz. would taste more orangy than
oz. because it would have more orange concentrate than the
oz. and the 4 oz. would have more water than the 7 oz."

All student explanations were captured by the models i
Figures 2a - 2f except for one uninterpretable explanatior
Table 1 shows that the most common type of model wa
quantitative, but not partitioned into constituent quantities
These are models that take into account the sizes of the glasse
but not amounts of concentrate or water. Students in th
diagram-numerical condition primarily used models that wer
quantitative, while the other students used both quantitativ
models and those that rely on causal properties of the situation

Experiment 1b

Experiment 1b was designed to replicate and extend Experi
ment 1a with a different procedure and set of materials. 23
students received packets that had either a photograph, dia
gram or textual description of the orange juice task. Half of th
students in each condition received the numerical version am
half received the non-numerical version. Based on the result
of Experiment la, we predicted that students in the twi
photograph conditions and the diagram non-numerical condi
tion would outperform the students in the other three condi
tions. We believed that the lack of a visual structure in the twi
text conditions would diminish the chances that student
would model the physical structure of the problem. As show
in Table 2, these expectations were generally borne out witl
70.6% of the former group making correctresponses compare(
to 57.4% correct responses in the latter group; x2 (1df, n=234
=443, p<.05. Also as predicted, the photograph and diagran
non-numerical groups were more likely to use the non-quanti
fied and non-partitioned models; 33.6% vs. 20.9%, y2=4.78
p < .05. For this age group, these models almost invariably lec
to correct solutions (96.9%) compared to the quantitativi
models (51.8%); x2=41.1, p < .001.

Experiment 2
Experiment 2 was designed to develop evidence on the
interaction between numerical situations and quantitative mod
els. Greeno (1991) claims that models involving specifi
multiplicative factors or divisors are easier to construct tha

Table 2. Percentages of correct answers and NP & NQ explanations (Exp. 1b).

Text

55.3%
323%

65.6%
15.6%

Correct
NQ & NP*

51.3%
27.6%

Diagram Photo
75.6% 65.0% 71.1%
42.4% 34.2% 50.0%

* Percentages of explanations within a condition. NQQ = Non-quantitative, NP = Non-Partitioned.
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Models it Exusts I

Non-quantitative & non-partitioned Quantitative & non-partitioned
2a. Common source 2b. Identity 2c¢. Quantity irrelevant 2d. Quantity determines quality
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Models from Experiment 2.
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Figure 2. Students models.
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those that do not involve specific values, and that models
involving doubling and halving are probably available tomany
people. In line with this argument, Spinillo and Bryant (1991)
have shown that judgements about proportionality involving
the “half”’ boundary are easier for children. Therefore, in the
diagram condition we expected that simpler numbers would
enable students to recognize a relationship between constitu-
ent quantities, such as 1/2 and 1/2. This would allow them to
map the relationship onto the glasses and construct "correct”
quantitative and partitioned models.

There are a series of models that did not appear in Experi-
ments 1a &b that we thought would be facilitated by the use of
simpler numbers. These are shown in the lower right corner of
Figure 2. Using the model in Figure 2i, one reasons that there
would be the same amount of ingredients in both glasses. This
model contains quantities that have been partitioned, but the
constituent quantities themselves are equated rather than the
relationship between the quantities. Using the model in Figure
2j, one reasons that the two glasses have the same relative
amount of ingredients. This model contains quantities that
have been partitioned, as well as the relationship between those
partitions. Using the model in Figure 2k, one attempts to
reason numerically about the relative amounts of ingredients,
stating that the two glasses have the same numerical amounts
of ingredients as in the carton. There is recognition that
numerically something remains the same about the constituent
quantities in the three containers; however, one directly im-
ports the quantities themselves, rather than the relationship
between the quantities. In the model 21, one makes a correct
numerical statement about the relative amounts of water and
concentrate in the two glasses. One has formed a numerical
relationship between the constituent quantities in the carton
and mapped this onto both glasses.

In this study, we used simple numerical relationships rather
than qualitative relationships. Our expectation was that nu-
merical simplicity would yield different models in the physical
condition than those proposed above for the diagram condi-
tion. In the physical condition, we expected the easy numbers
and the physical format to elicit conflicting models. The prior
experiments show that students who view more realistic for-
mats tend not to construct a model of the relationship between
the concentrate and water in the carton. This can become a
problem if students model the quantitative structure relating
the sizes of the glasses. We invited this model by making one
glass double the size of the other, a relationship we thought
would be easier to model than 7 to 4. If students model this
quantitative relationship, they will have a quantitative differ-
ence between the sizes of the two glasses and a homogeneous
quantity in the carton. As aresult of the non-partitioned model
of the juice, their models would not include a means for
equating the glasses because they do not include a relationship
between concentrate and water. As a result, when they reason
with their models they will be more likely to conclude that a
difference in quantity of juice leads to a difference in flavor.
This model is represented as Figure 2m.

Unlike the prior studies, we asked students to mathemati-
cally prove their answers, with the idea that the form of their
proofs would further illuminate their models. We also asked
the students to re-evaluate their answers after doing the math-
ematical work. If the students had arobust quantitative model,

then their confidence in their original answer should not
decrease. However, if the students had weak or non-existent
quantitative models, then the mathematics should draw them
toward the inequality of the two glasses,

Subjects and Design

75 6th-grade students from four classrooms at a Nashville
suburban school participated in a between-subjects, 2 x 2
experiment. A presentation factor had the levels of physical
and diagrammatic presentation. A numerical difficulty factor
had the levels of easy and hard. Student assignment to
condition was counter-balanced by class.

Materials and Procedure

The hard-numerical conditions involved the same numbers
as in the first two experiments. The easy-numerical conditions
involved 20 ounces of water and 20 ounces of concentrate, with
2 and 4 ounce glasses. An experimenter presented the physical
and diagram malterials as in Experiment 1a. A worksheet was
then given to each student. Students chose whether the glasses
would taste the same or different. Additionally, they were
asked to rate how sure they were of their answer from 1 (very
unsure) to 5 (very sure). Students were then asked to “Show
why your answer is correct using arithmetic”. They were then
asked to chose again whether glasses would taste the same or
different, and to rate how confident they were in their answers.
Students took 20 minutes to complete the questionnaire.

Results and Discussion

Table 3 shows the percentage of correct answers for each
condition before and after students attempted a mathematical
solution. The results were analyzed in a multivariate analysis
of variance. Confidence ratings were given a negative value
fordifferent responses and a positive value for same responses.
Students’ confidence scores on the first and second answer
served as dependent measures with format and numerical
difficulty as crossed independent variables. Over both re-
sponses, there is a format by number interaction in which the
diagram-easy and the physical-hard problems yielded the most
correct responses; F(1,71)=8.76, p<.01. There was also a
presentation format by trial interaction whereby the physical
conditions dropped in accuracy more than the diagram condi-
tions; F(1,71)=7.97, p <.01.

Table 3. Percentages of correct answers
and NP & NQ explanations (Exp. 2).

Diagram Physical
Hard Easy H Easy
(=19 (=19 =19 _(=18)
Correct 1st 68.4% 89.5% 947%  66.7%
Correct 2nd 47.4% 89.5% 52.6% 38.9%
NQ & NP* 21.1% 21.1% 47 4% 16.7%

* Coding does not consider students' mathematical work.
NQ = Non-quantitative, NP = Non-Partitioned.

These results can be explicated by considering the models
students constructed in each condition. The strong initial
performance in the physical-hard condition replicates the first



two studies in which we also found that a large percentage of
the students employed non-partitioned and non-quantitative
models. However, students” mathematical work undermined
their judgment of the equivalence of the juice in the two
glasses. The mathematics required inferences involving the
constituent quantities of concentrate and water which are not
supported by a physical model. As further evidence for this
conjecture, itmay be noted that the diagram-hard and physical-
hard conditions had nearly equivalent percentages on their
second answers. This is because, in both cases, the directive to
solve the problem arithmetically led students to construct
similar models of the complex quantities of the problem.

The diagram-easy condition presents the first indication of
quantitative proportional reasoning. A typical move was to
point out that 20 and 20 make a balance of 1/2 and 1/2. The
symmetry of the relationship made it easy to map the relation-
ship onto the 4 and 2 ounce glasses. The fact that the
percentages of correct answers did not change on the second
trial shows that students had initially constructed quantitative
models that could support explicit quantitative manipulation.

Here we see that students can construct models of propor-
tional relations if the ratios are of simple, specific quantities.
The role of specific numbers and numerical relationships
supports the claim that students usc quantified models in their
reasoning. Had they simply been applying a set of rules with
general application, specific values should not have led to
superior performance when students considered constituent
quantities. However, in Experiments 1a & b we found that
solutions that included constituent quantities were generally
incorrect, even when there were no difficult quantitative rela-
tionships specified in the problem (e.g., diagram-qualitative
condition of Experiment 1b). These results implicate specific
models of specific situations rather than generally applicable
rules.

Of the models we observed, the only type that supports a
judgment about proportionality were the quantitative and
partitioned models. Using these models, students can compare
the relationship between the relative amounts of concentrate
and water in the glasses and carton, thus creating a second order
relationship, or a “relations between relations” (Inhelder and
Piaget, 1958). In the models we found, students were making
part-part comparisons between concentrate and water, rather
than calculating the proportion of either concentrate or water
to the total amount of orange juice. Previous work has shown
that children are able to use part-part relations to make propor-
tional judgements earlier than part-whole relations (Noelting,
1980a; Noelting, 1980b; Spinillo & Bryant, 1991). A useful
next step in our research would be to determine what situations
could lead children to compare a part to the whole,

An intriguing result from Experiment 2 is the poor perfor-
mance of the students in the physical-easy condition. Our
hypothesis was that the physical presentation of the problem
would yield a non-partitioned representation of the problem.
However, we also thought that the simple 4 ounce to 2 cunce
relationship between the glasses would support the construc-
tion of a quantitative model of the two glasses. This presents
a problem in that the students would have a specific quantita-
tive difference between the sizes of the glasses, but without the
ratio of the constituents they would have no way to maintain
their equivalence. As a result, the students would be more
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likely to assert that more juice means more flavor. If we
consider errors, we find that 58.3% of the errors of the physi-
cal-easy students were based on the claim that more juice
yiclds more flavor. In contrast, combining errors in the other
conditions (the n's are too small to treat separately), we find
that only 25% of the errors were based on this misconception.
This difference is significant; Z=2.6, n=32, p<.01.

Conclusion

In the current studies there were several results that point
toward the deployment of mental models tied to specific
simations. The regularity of inferences in response to situ-
ational factors indicates that subjects were not simply missing
a set of rules necessary for proportional reasoning. The strong
results from the diagram-casy number condition of Experi-
ment 2 also show that these situational factors (viz. numerical
information) were not merely distracting students or leading
them down mindless paths of symbol pushing. The support of
specific values in the diagram-easy condition also implicates
models in that the specific values allow students to construct
determinate structures that support specific transformations.
The effect of combining easy numbers with the physical
situation also implicates mental models under our interpreta-
tion. In this condition, student performance was poor, as we
predicted. Under a rule-based interpretation, this would be a
unlikely prediction because the student would presumably
have two rules supporting a “same taste" answer: acausal rule
that worked when there were no numbers, and a quantitative
rule that worked when there were simple numbers. Given these
findings, we believe there is a place for a mental model
approach in understanding the development of proportional
reasoning.
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