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Prediction in Multilevel Models!

David Afshartous
School of Business Administration, University of Miami,
Coral Gables, FL 33124-8237
Jan de Leeuw

Department of Statistics, Unwversity of California,
Los Angeles, CA 90095-155/

ABSTRACT: Multilevel modeling is an increasingly popular technique for
analyzing hierarchical data. We consider the problem of predicting a future
observable y,; in the jth group of a hierarchical dataset. Three prediction rules
are presented and assessed via a Monte Carlo study that extensively covers
both the sample size and parameter space. Specifically, the sample size space
concerns the various combinations of level level-1 and level-2 sample sizes, while
the parameter space concerns different intraclass correlation values. The three
prediction rules employ OLS, Prior, and Multilevel estimators for the level-1
coefficients ;. The multilevel prediction rule performs the best across all design
conditions, and the prior prediction rule degrades as the number of groups J
increases.

KEY WORDS: prediction, Monte Carlo, multilevel model

1 Introduction

Prediction in multilevel models is considered in terms of forecasting unobserved (yet ob-
servable) units at the individual level. Consider the school example. After carrying out a
multilevel model analysis on some data, suppose we want to know the outcome (y) for a
student not in the data set. Formally, let y.; be the unknown outcome measure, say math-
ematics score, for an unsampled student in the jth school, where school j is not necessarily
in our sample or even known. The basic problem is to predict y,;. We present three main
approaches to the prediction of y,; and examine their performance through a simulation
study that extensively covers both the sample size and parameter space. In addition, we
compare these results with the corresponding results for estimation.

Although there exists an extensive literature on estimation issues in multilevel models,
the same cannot be said with respect to prediction. Exceptions include Rubin’s seminal
Law School Validity Studies paper where a multilevel model without group level covariates
is used to predict first year GPA based on LSAT score; he found that predictions were
improved via what he termed Empirical Bayes predictors. Gray et al.(2001) consider the
problem of predicting future ‘value-added’ performance across groups from past trends.
The main result is that such prediction is unreliable.? However, there does not exist a full
treatment of the multilevel prediction problem. The multilevel prediction is an important

! This research was supported by a grant from the National Institute for Statistical Sciences
2They examined A/AS level results obtained by English institutions from year to year. Their approach
is different from our approach as they are considering cohort periods and are not predicting y.;.



problem given the popularity of multilevel models in a variety of fields and the usefulness
of being able to forecast future observations.

In section 1.1 we review the multilevel model and in section 1.2 we discuss estimation
in multilevel models. In section 2 we present three approaches to prediction in multilevel
models, and in section 3 we describe the simulation study design with which we assess these
three methods. Results and discussion are in section 4 and a brief summary is in section 5.

1.1 The Multilevel Model

Multilevel modeling is a statistical technique designed to facilitate inferences from hierar-
chical data. Other names such as hierarchical linear modeling, random coefficient modeling,
or Empirical Bayes estimation, are often employed, usually as a function of one’s research
discipline. Nevertheless, the basic framework is the same in each case: a given data point
Y;; represents the sth observation in the jth group, e.g., the ith student in the jth school
for educational data; we may have J groups, where the jth group contains n; observations.
Although several levels of data may be considered, this discussion is restricted to the simple
case of primary units grouped within secondary units and we will periodically refer to the
applied example of students (level-1) grouped within schools (level-2). Within each group,
we have the following level-1 model equation:

Y; =X;06; + 7, (1)

Each X; has dimensions n; X p, and r; ~ N(0,0°¥;), with ¥; usually taken as I,,. To
be sure, these J regression equations may be estimated separately, thereby ignoring the
structure in the data. A common problem with this approach, however, is that some of the
groups do not contain sufficient data to produce stable estimates. In multilevel modeling,
this problem is remedied by modeling some or all of the level-1 coefficients, 3;, as random
variables.®> They may also be functions of level-2 (school) variables:

Bi = Wiy + u; (2)

Each W; has dimension p x ¢ and is a matrix of background variables on the jth group
and u; ~ N(0,7). Clearly, since 7 is not necessarily diagonal, the elements of the random
vector f3; are not independent. For instance, there might exist a covariance between the
slope and intercept for each regression equation. Equation 2 may be viewed as a prior for
the distribution of the level-1 3;, modeled as varying around a conditional grand mean W~y
with a common variance 7, thereby expressing a judgment of similarity with respect to the
groups.* For instance, in the school example, this expresses the reasonable judgment that
schools, although unique in many ways, have certain common characteristics that may be
accounted for in the modeling process. Furthermore, the separate equations for level-1 and
level-2 data readily models/displays the relationship between variables from different levels
of the data, where the magnitude of the elements of v measure the strength of these cross-
level interactions. Specifically, the group level-2 variables may either increase or decrease the

3Viewing equation 1 as a model which describes a hypothetical sequence of replications which generated
the data, the introduction of random coefficients expresses the idea that the intercepts and slopes are no
longer fixed numbers—which are constant within schools and possibly between schools—and that they may
vary over replications (de Leeuw & Kreft, 1995).

4Thus, given an estimate 4 the prior estimate for 3; would be W;4.



individual level-1 coefficients. For the school example these phenomena would be classified
as “school effects.”
Combining equations yields the single equation model:

Y;' ZXjo’)/+XjUj+Tj, (3)

which may be viewed as a special case of the mixed linear model, with fixed effects v and
random effects u;.° Researchers more interested in the fixed effects y rather than the level-1
coefficients 3; often prefer this formulation. Marginally, y; has expected value X;W;~y and
dispersion V; = X;7X,'+0%I. Observations in the same group have correlated disturbances,
and this correlation will be larger if their predictor profiles are more alike in the metric 7
(De Leeuw & Kreft 1995). Thus, the full log-likelihood for the jth unit is

¥ 1 1 _
Lj(0-277-7 7) = _7] 10g(2’ﬂ') - 5 IOg |VvJ| - id;‘/; ldj’ (4)
where d; = Y; — X;W;~. Since the J units are independent, we write the log-likelihood for

the entire model as a sum of unit log-likelihoods, i.e.,

J

L(O-2’T’7) = ZLJ'(O-Q’T’V)' (5)

Jj=1

By appropriately stacking the data for each of the J level-2 units, we may write the model
for the entire data without subscripts. Thus, we have:

Y=Xp+r (6)
with 7 normally distributed with mean 0 and dispersion ¥ where

Y = (Y,Y;,...,Y)),
/8 = (ﬂi:ﬁ;a"':ﬁf]),a
1 \/

ro= (r,ry,... .1
and
Xl 0 0 \111 0 0
0 Xo 0 0 v, 0
X = \Il =
0 0 X 0 0 v,

We may also write the level-2 equation in no-subscript form through similar stacking ma-
nipulations:

B=Wy+u (7)

5For an excellent review of estimation of fixed and random effects in the general mixed model see
Robinson, 1991.



where u is normally distributed with mean 0 and covariance matrix 7" where

W= (W,W;,....,W;),

u o= (.. ),
0 ... 0
0O 7 ... 0
T =
00 ... 7

Combining equations, the entire model may be written as:
Y=XWy+Xu+r (8)

where we note that E(y) = XW+~ and Var(y) = XTX' + V.

1.2 Estimation

Given that the multilevel model may be viewed from a variety of perspectives (e.g., sepa-
rate equation model versus combined equation model), so can the approaches to estimation.
Raudenbush & Bryk (2002) discuss estimation in multilevel models by casting the multilevel
model as a particular case of the general Bayes linear model and hence present estimates of
B; as posterior means of their corresponding posterior distribution. Other approaches focus
on the James-Stein “borrowing-of-strength” aspect of multilevel modeling when present-
ing estimates of the level-1 coefficients.® Another alternative is to focus on the likelihood
established by equation 5, where maximum likelihood estimates for the three parameters
o?, 7, and  are obtained. Regardless, the main result is that the estimates of 3; may be
expressed as a linear combinations of the OLS estimate ﬁAj = (X';X;) "' X,y; and—given an
estimate of y—the prior estimate W;% of ;, the weights being proportional to the estima-
tion variance in the OLS estimate and the prior variance of the distribution of ;. Thus,
this may be viewed as a compromise between the within-group estimator which ignores the
data structure and the between-group estimator which models he within-group coefficients
as varying around a conditional grand mean. More formally, assuming for now that the vari-
ance components and 7 are known, the multilevel model estimate of 3; may be expressed
as follows:

B =08+ (I-0,)Wyy 9)
where
@j = T(T + OQ(XjIXj)il)il (10)

is the ratio of the parameter variance for §; (7) relative to the variance o*(X;'X;)~" for
the OLS estimator for $; plus this parameter variance matrix. Thus, if the OLS estimate is

6Recall that since the level-1 coefficient 3; is a random variable, the term “estimation” is being employed
somewhat pejoratively here.



unreliable, Bj* will pull Bj towards W9, the prior estimate.” Indeed, a little bit of algebra

demonstrates that the shrinkage estimator in equation 9 is the expected value of 3; given

Z/jis

E(Bily;) = E(B;) + Cov(B;,y;)(Var(y;)) ™ (y; — E(y;))
= Wy +7X,'V; Hy; — X; W) (11)
=Wy + 71X,V y; — 7X'V T X Wy

Swamy (1971, p.101) presents the following formula for the inverse of V},
Vit = o [XG(XGXG) X + XG(XGXG) T AT (XGXG) T (12)

where A; = 7 + 0?(X;'X;)~'. This implies that X;'V;7'X; = A;7" and that X;'V; 'y, =
Ajfl B; (de Leeuw & Kreft 1986). Substituting these two results into the previous equation
quickly leads to the desired result:

EBjly) = Wyy+7A; ' —1A; "Wy
TAjilﬂj + (I — TAjil)Wj
0;8; + (I — ©;)Wjy

The conditional expectation representation of the shrinkage estimator is well known as the
minimum mean square linear estimator (MMSLE) of 3; (Chipman 1964, Rao 1965b).°

One may also write the multilevel estimate as 8; = Wjvy + 4;, where we recall that
u; may be interpreted in the mixed model sense as the random effect of the jth group.
From the literature on the estimation of random effects in mixed linear models, we have the
commonly employed estimator of random effects:

i; = C; 7 X, (y; — X, W) (13)
where
Cj = Xj,Xj -+ 0'27' (14)

To be sure, the fixed effects v are usually unknown and must be estimated. The estimation
of the fixed effects is most easily discussed by ignoring the level-1 3;’s altogether. In doing
so, one focuses instead on the combined equation 3, where the problem then becomes one of

"The shrinkage estimator in equation 9 is often referred to as a Bayes or posterior estimator.

8Recall that we have y; and §; distributed multivariate normal with E(y;) = X;W;v, E(3;) = W;y
and Cov(B;,y;) = Cov(Bj, X;B; +rj) = Cov(B;, X;B;) = 7X;'. And, employing the well known result that
the conditional expectation in the normal case is equivalent to the linear regression of 8; on y; leads to the
result in equation 11.

9Note: since we are “estimating” a random variable, care must be taken with respect to notation. Given
an observed random variable y and an unobservable random variable w, let t(y) be an estimator of the
realized value of the random variable w. The MSE of t(y) is defined as E(t(y) — w)?, where all expectations
are taken with respect to the joint distribution of y and w. We say that ¢(y) is unbiased if E(t(y)) = E(w).
Given that the prediction error of t(y) equals ¢(y) — w, we have that ¢(y) unbiased implies that the MSE of
t(y) equals the variance of its prediction error.



estimating the fixed effects v in a mixed linear model, the result of which is the well-known
formula:

J J
§ =0 WiX/ Vi X W) Y WXy (15)

j=1 7=1
where
V; = Var(y;) = X;7X; + 0’1

One may interpret the above estimator of v as a generalized linear model (GLM) estimator.
In the case of unknown +, the shrinkage estimator of equation 9 employing this estimator
of 7 yields the minimum mean square linear unbiased estimator (MMSLUE) of 3; (Harville
1976).1° de Leeuw & Kreft (1995) discuss alternative estimates of the fixed effects via a
two-step procedure, where one first obtains the OLS estimates of the 3; and then regresses
these values on the W; values. Regardless, this approach of focusing on the estimation of vy
instead of 3; is preferred by some since we are actually estimating a parameter and do not
may blur the distinction that §; is a random variable. Furthermore, casting the multilevel
model in the mixed model framework links multilevel model prediction to the more natural
prediction problems that occur in such areas as repeated measures studies (See Rao 1987).

The prior discussion assumes that the variance components are known. Although there
is considerable agreement with respect to the estimation of fixed effects, there is signifi-
cantly less agreement with respect to the variance components. The maximum likelihood
estimates of the variance components must be computed iteratively, via procedures such as
Fisher Scoring (Longford, 1987), iteratively reweighted generalized least squares (Goldstein,
1986), or the EM algorithm (Dempster, Laird, & Rubin, 1977). These and other procedures
manifest themselves in several software packages: HLM (Raudenbush et al., 2000), MIXOR
(Hedeker & Gibbons, 1996), MLWIN (Rabash et al., 2000), SAS Proc Mixed (Littell et al.,
1996), and VARCL (Longford, 1988). In addition, the software package BUGS (Spriegel-
halter et al., 1994) incorporates fully Bayesian methods that have been introduced (Gelfant
et al., 1990; Seltzer, 1993). Note, although Lindley & Smith (1972) provided a general
framework for hierarchical data with complex error structures, the inability to estimate the
covariance components for unbalanced data precluded using such models in practice. The
introduction of the EM algorithm provided a numeric solution to this problem and paved
the way to various other approaches mentioned above.

Although estimation in multilevel models is an important topic, it is not the focus of this
paper. The focus here lies in the prediction of a future observable y,; and will be elaborated
in the next section.

2 Prediction in Multilevel Models

Prediction in multilevel models is considered in terms of forecasting unobserved (yet observ-
able) units, either at level-1 or level-2. A concise definition is important, for the potential
for confusion arises from the close link of the multilevel model with the mixed linear model

100ne must restrict oneself to the class of unbiased estimators since a MMSLE does not exist for the
unknown v case (Pfefferman 1984).



where one finds the term “prediction” reserved for estimating/predicting random effects.!!
Consider the school example. After carrying out a multilevel model analysis on some data,
suppose we want to know the outcome (y) for a student not in the data set. Formally, let
Yx; be the unknown outcome measure, say mathematics score, for an unsampled student in
the jth school, where school j is not necessarily in our sample or even known. Furthermore,
let us assume that the multilevel model structure given above is true, although we know
that the model is never true. The basic problem is to predict y,;. We present three main
approaches to the prediction of y,; and examine their performance through a simulation
study that extensively covers both the sample size and parameter space.

The three methods that will be examined are multilevel prediction, prior prediction,
and OLS prediction. These three predictive methods correspond to the three possible ways
of estimating 3; for multilevel data discussed previously. The relative properties of these
estimators is not of central interest, for the focus is on the prediction of a future observable—
estimation is a means to an end.'? However, whether or not the results herein agree with
multilevel studies on estimation is of interest. Guidelines exist for appropriately choosing
the level-1 and level-2 sample sizes exist with respect to the estimation of fixed effects and
variance components. (Busing 1993, Bassiri 1988, Kim 1990, Mok 1995)

2.1 OLS Prediction Method

In this approach we emphasize that there is no level-2 model, i.e., the level-1 3; coefficients
are not modeled as random variables regressed on level-2 variables. Instead, there are simply
J separate regression equations:

Y}:Xjﬂj—i—rj, (16)
and, as before, the goal is to predict a future observation in the jth group, v.;:
Yuj = XajBj + T (17)

If y.; were observed X,; would merely represent a row of the X; design matrix and that
T ~ N(0,0%). For the prediction of y,; one simply takes the OLS estimate estimate £3;
obtained solely from the jth group and employs the following prediction rule:

Ysj = XssBj (18)
where
Bj = (X' X;) 7" Xy,
Thus, in spite of the nested nature of the data and the fact that the assumption of a diagonal
dispersion matrix is violated (recall that V; = X;7X;+02I), the conventional OLS procedure
is utilized. There exists the risk of unstable prediction in the cases where the number of
units within the groups is small and over-fitting is a common problem for OLS. Nevertheless,

there is the positive benefit of using a well-known and more easily communicable statistical
procedure.

1 GSome authors rebel strong against the term prediction since the random effects under investigation may
have occurred thousands of years ago.

1276 be sure, in the school example neither the student nor the school official is concerned about coeffi-
cients estimates; rather, the focus is on the outcome and the more accurate we can predict the outcome the
better.



2.2 Prior Prediction Method

In this case, the structure of the data is not ignored; instead, the setup of the multilevel
model is adopted. However, we stop short of an actual multilevel analysis, treating the level-
2 model equation as a prior for 8; and employing the estimate of that prior as our estimate
for B;. The technique for estimating v shall be that which was presented in equation 15.
Recalling that the multilevel estimate can be viewed as a weighted combination of the OLS
estimate and the prior estimate, this approach corresponds to putting all of the weight on
the prior. Hence, the prediction rule now becomes:

Uej = XujWj7 (19)

where

J J
§=0O_ WX/ VIIXW) Y WXV Ny, (20)
j=1

j=1
and
V; = Var(y)) = X;7X;' +6%1

where 7 and 62 must be estimated iteratively via maximum likelihood. Consider the case
when we do not have any level-2 W; information. In such a case one may view all of the £,
as randomly varying around some mean level 7. Then in the prediction above the estimate
of this mean level would be substituted for the estimate of each 3;. By introducing the
level-2 W; information the concept of conditional exchangeability is being modeled, i.e.,
given two schools with the same W; information one expects their 8; to vary around the
same mean level. To be sure, basing predictions on a conditional grand mean will produce
a much different prediction than that produced from the OLS method. However, it does
utilize the entire data and will thus not be vulnerable to small sample instability problems.

The prior prediction method may be viewed as a diagnostic check of the multilevel
under consideration. Recall, the multilevel model is often used in an attempt to “borrow
strength” in the James-Stein sense. Groups are modeled as conditionally exchangeable
and estimates are formed as weighted combinations of an ensemble estimate and a solo
estimate, the ensemble being the prior and the solo being the OLS. If the multilevel model
under consideration is poor or incorrect, the “borrowing” of strength will not be a good idea,
i.e., the estimate should not be pulled toward the ensemble estimate, and neither should
any prediction. Hilden-Minton (1995) discusses this with respect to diagnostics and further
developed Geisser’s (1979) model criticism for the multilevel model.

2.3 Multilevel Prediction Method

In this case the prediction rule is formed using the multilevel model estimate of 3;. Recall
that this estimate may be written as follows:

B =06+ (I - 0)W (21)
where

0, =7(r+o*(X;'X;) )} (22)



is the ratio of the parameter variance for 3; () relative to the variance for the OLS estimator
for B; plus this parameter variance matrix. Thus, if the OLS estimate is unreliable, Bj* will

pull ﬁj towards W%, the prior estimate. With regard to the prediction rule, the multilevel
estimate (3; is used to form the multilevel predictor:

G = XosB; (23)

Given that the multilevel model estimate of the level-1 coefficient is a shrinkage estimator,
much of the multilevel literature revolves around the advantage of shrinkage estimators,
how they borrow strength and solve the instability of estimation problem along along with
many other issues encountered when dealing with nested data. With respect to prediction,
Goldstein et al.(2001) consider the problem of predicting future ‘value-added’ performance
across groups from past trends. The main result is that such prediction is unreliable.'?
Rubin (1980) examined the performance of what he termed empirical Bayes predictors in
his Law School Validity Studies paper. His approach is similar to our approach of focusing
on the predicting the future observable y,;. However, his empirical Bayes predictor can be
viewed as the basic multilevel model without any level-2 variables. For his particular data
set he showed small gains using empirical Bayes predictors. However, he did not employ any
level-2 variables to extend his model to a full multilevel model. His searches for useful level-
2 variables to improve prediction failed to produce any viable candidates.!* In addition
to the advantage of shrinkage estimators, there is also a small literature on the dangers
of shrinkage estimators, giving rise to limited translation rules. (Efron & Morris 1971,
1972) These represent safeguards for shrinking the estimators too far toward the ensemble
estimate. The same concern exists for prediction, where predictions may be translated or
shrunk too far, resulting in various practical worries.'®

The relative performance of the three prediction rules is assessed via an extensive sim-
ulation study which is described in the next section.

3 Simulation Study Design

Multilevel data is simulated under a variety of design conditions, closely following the simu-
lation study of Busing (1993) where the distribution of level-2 variance component estimates
was examined. As in Busing (1993), a simple 2-level multilevel model with one explanatory
variable at each level and equal numbers of units per group is considered. A two-stage sim-
ulation scheme is employed. At the first stage the level-1 random coefficients are generated
according to the following equations:

Boj = Yoo+ v01W; + uo;
Bij = vio+yuWj+uy

13They examined A/AS level results obtained by English institutions from year to year. Their approach
is different from our approach as they are considering cohort periods and are not predicting y.;.

Personal communication with D. Rubin, 7/97.

15In Rubin’s Law School research the law school officials would be concerned about predictions that are
translated too far in the positive direction, while the applicants would be worried about their individual
predictions being translated too far in the negative direction.
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The ~’s are the fixed effects and are set to a predetermined value; they are set all equal
to one as in Busing (1993). W; is a standard normal random variable, while the error
components, uy; and u,;, have a bivariate normal distribution with mean (0,0) and a 2 x 2
covariance matrix 7. The two diagonal elements of 7, 799 and 71, are equal in each design
condition. The off-diagonal covariance term 7y; will then determine the correlation between
the intercept and slope:

701
Tugjur; = (o)1 (24)
Another parameter of interest in the simulation design is the intraclass correlation p. The
intraclass correlation is defined as follows:
700
p= Too + O 2 (25)
and thus measures the degree to which units within the same unit are related. Intraclass
correlations of 0.2 and above are common in educational research; a range of intraclass
values of 0.2, 0.4, 0.6, and 0.8 is examined in order to provide information for both high
and low intraclass correlation conditions.
The second stage of the simulation concerns the first level of the multilevel model, where
observations are generated according to the following equation:

Yij = Boj + 51 Xij + €ij (26)

The level-2 outcome variables, the 3’s, were determined at the first stage of the simulation.
The level-1 explanatory variable, X;;, is simulated as a standard normal random variable,
while the level-1 error €;; is a normal random variable with mean 0 and variance o specified
as .5. Since only the balanced data case is considered, where there are n units grouped
within J groups, a total of Jn outcomes are simulated. In order to study prediction, an
extra (n + 1)st observation is simulated for each of the J groups; this observation is set
aside and is not used for estimative purposes; this is the future observable y,; for which
the prediction rules are applied. Table 1 and Table 2 summarize the various parameter
specifications in the simulation design.

Intra-class correlation p  0.200 0.400 0.600 0.800
Variance 7y, 711 0.125 0.333 0.750 2.00

Table 1: Ps Toos T11

Correlation intercepts-slopes
Variance | 0.25000 | 0.5000 | 0.75000
0.125 0.03125 | 0.0625 | 0.09375
0.333 0.08330 | 0.1667 | 0.25000

0.75 0.18750 | 0.3750 | 0.56250
2.0 0.50000 | 1.0000 | 1.50000
Table 2: To1

10



Simulations are conducted under various sample size combinations for the number of
groups (J) and the number of observations per group (n). Information concerning the
effects of J and n with respect to the performance of prediction rules is of practical interest
at the design or data gathering phase. To be sure, given one’s research interests, one would
want to know the appropriate values for the number of groups and number of elements per
group to sample, especially given the increased cost of including an additional group in one’s
study. Thus, an extensive sample size space is explored in this simulation study. The layout
of the design is given in Table 3:

n;

J 5 10 25 50 100
10 50 100 250 500 1000
25 | 125 250 625 1250 2500
50 | 250 500 1250 2500 5000
100 | 500 1000 2500 5000 10000
300 | 1000 3000 7500 15000 30000

Table 3: Sample sizes

Each design specification depends on the level of the parameters and the J x n sample
sizes. There are twenty-five possible J X n combinations and twelve possible parameter
specifications, yielding a total of 300 design conditions. As mentioned above, one additional
observation per group is simulated which is used to assess the prediction rules. Thus, when
J = 10 there will be 10 predictions for a given dataset. In addition, for each design condition
100 replications are performed, i.e., 100 multilevel data sets are simulated for each design
condition and prediction is assessed within each of these replications. Thus, since there are
300 design conditions, a total of 30,000 multilevel data sets will be generated in this initial
part of the study.

This next phase of this simulation study represents a comparison of the three predictors
presented earlier: multilevel, prior, and OLS. Recall that the goal is to predict a future
observable y,; in each of our J groups and replicate this process 100 times to account
for variability. The adequacy of prediction is measured via predictive mean square error
(PMSE), where the popular technique of taking the average of the sum the squared errors
(SSE) of the observed and predicted values is employed.'® Thus, for each of the 300 design
conditions there are 100 replications of the predictive mean square error for each prediction
rule. Note that this PMSE is constructed from a different number of items in the different
sample size combinations. For instance, when J = 10 each replication consists of predicting
10 future observables and thus the PMSE is the average of 10 squared difference, while for
J = 300 each replication consists of predicting 300 future observables and thus the PMSE
is the average of 300 squared differences. To be sure, since 100 replications are taken, the
average of PMSE over the replications should be fairly reliable and enable the comparison
across design conditions for variability in PMSE.

16The formation of predictive intervals was also employed where we examined the percent of correct
coverage over the replications. However, due to the discrete nature of coverage—in the interval or outside
the interval—this proved to be less insightful than the continuous measure of predictive mean square error.

11



In order to facilitate the analysis of the results in the twelve different parametric design
conditions, references will periodically be made to the chart given in table 4. These may
be naturally partitioned into three groups: Group One consists of design numbers 1-4 and
has the correlation between intercepts and slopes constant at the low value of 0.25; Group
Two consists of design numbers 5-8 and has the correlation between intercepts and slopes
constant at the medium value of 0.5; and Group Three consists of design numbers 9-12
and has the correlation between intercepts and slopes constant at the high value of 0.75.
Within the groups, the level-2 variance varies from 0.25 to 2.0, the intraclass correlation
varies between 0.2 and 0.8, and the level-2 covariance increases within the groups as the
level-2 variance increases. Table 4 shows that the magnitude of the level-2 covariance is on
average higher for the groups with higher correlation between intercepts and slopes.

Results will be tabulated separately for each of the twelve design conditions. Although
this creates a plethora of tables, it facilitates the detection of variation across the twelve
design conditions. Furthermore, researchers often work with data that is very close to one of
these particular design numbers in some aspect, e.g., high intraclass correlation in repeated
measures data, and presenting the individual tables will allow such researches to refer to
the tables more applicable to their particular interests.

Design number | Too, 711 | To1 Tugjur; | P

1 0.125 0.03125 | 0.25000 | 0.200
2 0.333 | 0.08330 | 0.25000 | 0.400
3 0.75 0.1875 | 0.25000 | 0.600
4 2.0 0.50000 | 0.25000 | 0.800
5 0.125 0.0625 | 0.5000 | 0.200
6 0.333 | 0.1667 | 0.5000 | 0.400
7 0.75 0.3750 | 0.5000 | 0.600
8 2.0 1.0000 | 0.5000 | 0.800
9 0.125 0.09375 | 0.75000 | 0.200
10 0.333 | 0.25000 | 0.75000 | 0.400
11 0.75 0.56250 | 0.75000 | 0.600
12 2.0 1.50000 | 0.75000 | 0.800

Table 4: Design numbers

3.1 Terrace-Two

The computer code for generating the data was written in XLISP-STAT'” and the multi-
level modeling was done with several altered versions of Terrace-Two.'® Although many

"XLISP-STAT was developed by Luke Tierney and is written in the Xlisp dialect of Lisp, which was
developed by David Betz

18 An XLISP-STAT program written by James Hilden-Minton which incorporates both the EM algorithm
and Fisher scoring. As noted by Hilden-Minton, while the latter approach is faster, the EM algorithm
exhibits greater stability. Initial estimates are obtained from the first iteration of the EM algorithm, after
which point the procedure is switched to Fisher scoring and remains with Fisher scoring until convergence
unless Fisher scoring produces estimates outside of the parameter space. See “Terrace-Two User’s Guide: An
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of the more popular multilevel software packages are faster, the object oriented nature of
XLISP-STAT facilitated the amendment and alteration of Terrace-Two in order extend its
capability. Defaults such as the maximum number of iterations were changed to allow the
number of replications to proceed in the background. Regarding computing time, some of
the higher level J X n sample size combinations were very computer intensive, requiring
several hours of computing time on Sun Sparc 10 machines. The limiting factor in the
simulations was the actual estimation of the multilevel model, which is a function of J,
the number of groups, and not N = Jn the total sample sizes. The data simulations and
formation of prediction rules after estimation required very little computing time.

4 Results

Tables 5 - 7 below illustrate initial results in comparing the three prediction rules, where
the results have been averaged over the twelve parametric design conditions to facilitate this
initial discussion. Later the results will be discussed with respect to variation across each
of these twelve parametric design conditions. Note that the cells of the tables represent the
average PMSE over 1200 replications for the corresponding prediction rule. '°

J n=>5 n=10 | n=25 | n=50 | n=100
10 | 0.4112 | 0.3146 | 0.2752 | 0.2651 | 0.2561
25 | 0.3807 | 0.3073 | 0.2736 | 0.2626 | 0.2561
50 | 0.3793 | 0.3053 | 0.2702 | 0.2588 | 0.2554
100 | 0.3782 | 0.3036 | 0.2725 | 0.2597 | 0.2548
300 | 0.3775 | 0.3061 | 0.2714 | 0.2602 | 0.2551

Table 5: Mean MSE for Multilevel Prediction

J n=» n=10 | n=25 | n=50 | n=100
10 | 1.5995 | 1.5285 | 1.5469 | 1.5362 | 1.5027
25 | 1.7384 | 1.7231 | 1.7350 | 1.7355 | 1.6875
50 | 1.7984 | 1.7794 | 1.8106 | 1.8268 | 1.7925
100 | 1.7973 | 1.8395 | 1.7906 | 1.8141 | 1.7955
300 | 1.8484 | 1.8468 | 1.7906 | 1.8436 | 1.8403

Table 6: Mean MSE for Prior Prediction

The information in Tables 5 - 7 clearly indicates that the multilevel method consistently
produces the lowest PMSE across each of the J x n sample size combinations. Specifically,
the multilevel prediction rule produced the lowest average PMSE in 24 of the 25 possible

XLISP-STAT Package for Estimating Multi-Level Models” by Afshartous & Hilden-Minton for a full descrip-
tion of Terrace-Two. Software and manuals accessible via World Wide Web site http://www.stat.ucla.edu.
19Twelve parameter design conditions and one hundred replications per design condition, yielding 1200.
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J n=> n=10 | n=25 | n=50 | n=100
10 | 0.4581 | 0.3170 | 0.2750 | 0.2649 | 0.2562
25 10.4378 | 0.3137 | 0.2744 | 0.2628 | 0.2562
50 | 0.4496 | 0.3140 | 0.2712 | 0.2590 | 0.2555
100 | 0.4512 | 0.3124 | 0.2739 | 0.2600 | 0.2549
300 | 0.4500 | 0.3153 | 0.2739 | 0.2604 | 0.2552

Table 7: Mean MSE for OLS Prediction

J X n combinations, the only exception being the J = 10, n = 50 case where the OLS
prediction rule produced a nearly identical PMSE to that of the multilevel prediction rule
(0.2640 versus 0.2651 respectively). As expected, the differential in PMSE between the
multilevel and OLS prediction rules becomes less as the group size n increases, a result of
the increased reliability of the OLS prediction in such cases. Note that an increase in the
number of groups should have little if any effect on the OLS prediction rule, for this method
produces prediction independently in each group. As the group size n increases, however,
the OLS prediction rule produces PMSEs very similar to that of the multilevel rule, albeit
consistently higher.

The prior prediction rule consistently performs the worst of the three methods, and very
much so in absolute terms, more than a full unit higher in PMSE in all J X n combinations.
Although increasing the group size n has little effect on the prior prediction rule, there
is a considerable rise in PMSE for the prior prediction rule as the number of groups J
rises. Recall that the prior prediction method utilizes the rule y,; = W;4. Bassiri (1988)
demonstrated that an increase in J is beneficial with respect to estimation of vy, while here
it seems that the prior prediction rule—the performance of which solely depends on our
estimation of y—performs worse when J is increased. Although this may seem contradictory,
it is a manifestation of the dangers of using a grand mean to predict at the individual level.
For instance, our estimate of 4 is formed via equation 15 which is a sum over .J groups.
For small J values, this would be fairly representative of the space of groups, whereas for
large J this would be less so since the sum would involve many more terms, each sum with
its own values for group specific information such as V;. Thus, as J increases, the chances
of mis-predicting within a particular group increases, leading to the exhibited behavior of
the prior prediction rule. These results are further illustrated via several graphical displays
employing side-by-side boxplots.

Figures 1 - 5 show the relative performance of the multilevel and OLS prediction rules
for particular combinations of group size and observations per group. Figures were plotted
on separate scales such that each particular case could be isolated. The advantage of the
multilevel prediction rule over the OLS prediction rule is clearly best for low values of n,
e.g., n =5 and n = 10. In order to highlight the effect of increased group size n on the
prediction rules for given levels of the number of groups J, the same figures have been
plotted retaining the same scale as n varies from 5 to 100.

Figures 6 - 10 illustrate the improved PMSE as group size n increases for both the
multilevel and OLS prediction rules, for all levels of J. In addition, the narrowing of the
differential between the multilevel and OLS prediction rules as n increases is also clear for
each level of J. The results of the prior prediction rule have intentionally been omitted from
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these plots, for the large PMSE values for the prior prediction rules would severely distort
the scale and make comparison of the multilevel and prediction rules difficult. Nevertheless,
the prior prediction is still of interest. Recall that Table 6 indicated an adverse effect of an
increase in J with respect to the PMSE for the prior prediction rule. On the other hand,
with respect to the multilevel prediction rule, there is a slight reduction in the overall level
of PMSE as J increases. Figures 11 - 15 illustrate this differential effect of increased J
for the multilevel and prior prediction methods.?® Although the reduction in PMSE for the
multilevel prediction rule as J increases is slight, the boxplots clearly demonstrate that there
is a reduction in the variability of PMSE as J increases for the multilevel prediction rule.
For the prior prediction rule, however, not only does the average level of PMSE increase as
J increases, the variability in PMSE increases as well.

The use of three-dimensional displays provides additional insight into this disparity
between the prediction rules with respect to the effect of J and n. In the three-dimensional
plots of Figure 16, both the multilevel and OLS prediction rules produce a PMSE surface
that is cleanly sloped downward in the increased n direction. Moreover, there is a slight dip
in the J direction as well. The corresponding PMSE surface for the prior prediction rule
displays a clearly different relationship, where there is a rather steep slope in the direction
of increased J.

These results indicate that a predictive perspective often leads to decisions that differ
from those arising from an estimative perspective. Specifically, the results indicate that an
increase in group size n is often more beneficial with respect to prediction than an increase
in the number of groups J. With respect to the estimation of multilevel model parameters,
previous simulation studies (Bassiri 1988, Busing 1994, Mok 1995) indicate that estimation
is more improved by increasing the number of groups J instead of the group size n. For
example, the sampling distribution of 7 is skewed to the right with the true value to the
right of the mean of this skewed distribution. Thus, 7 will thus be negatively biased in
estimating 7. Busing (1994) demonstrated that an increase in the number of groups J was
beneficial in reducing this bias, whereas an increase in group size (n) had no affect. With
respect to 62, Busing obtained relative bias close to zero for all sample design conditions
except the smallest sample sizes. This is due to the fact that these level-1 variance estimates
are based on the total sample size /N, thus this estimate will show little bias as N is large.
Finally, focusing on the fixed effects instead of the variance components, Bassiri (1988)
demonstrated the improved estimation of v as the number of groups J increases.

4.1 Parametric variation

The results discussed thus far were obtained by averaging over the twelve parametric design
conditions of the simulation design, thereby facilitating this initial comparison of the three
prediction rules and the relative effects of J and n on PMSE for the respective prediction
rules. Variation over these twelve parametric design conditions is now considered. The indi-
vidual tables that were averaged to yield Tables 5 - 7 above are presented in Appendices A
- C. Figure 17 is a scatterplot matrix of predictive MSE for one particular combination
of J xn: J = 25and n = 5. Each point represents the average PMSE taken over 100
replications for a given parametric design condition.

20The OLS prediction rule is omitted in these figures since, as stated earlier, an increase in J should not
effect the OLS prediction rule since prediction for that rule is independent across groups.
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Figure 16: PMSE for Three Prediction Rules

While the multilevel and OLS prediction rules exhibit a relatively even and narrow dis-
tribution across the twelve parameter conditions, such is not the case for the prior prediction
rule, where the points clearly separate into two distinct groups. Specifically, for three of
the twelve parametric design conditions the prior prediction rule performs extremely poorly,
with average PMSE over the 100 replications approaching 4.14 whereas the PMSEs for other
prediction rules are consistently below 0.5. These three cases are clearly biasing the results
that were obtained by averaging over the twelve design conditions, for without them the
discrepancy between the prior prediction rule and the other two methods would not be as
large. The tables in Appendices A - C indicate that the three parametric conditions in
which the prior prediction rule is performing very poorly are conditions numbers 4, 8, and
12 of Table 4. These are the three conditions with a high intraclass correlation coefficient p
equal to 0.8. In the other nine parametric design conditions, where the intraclass correlation
coefficient ranges from 0.2 to 0.6, the prior method is not as far off the multilevel and OLS
prediction rules, although its ranking is still a consistent third across all combinations of J
and n. Figures 18 -19 illustrate this result for the particular case when J = 25 for two par-
ticular design conditions. Design #4 represents one of the high intraclass correlation (0.8)
situations, while design #1 represents one of the lower intraclass correlation (0.2) situations
(See Table 4). With respect to the former, Figure 18 illustrates the very poor performance
for the prior prediction rule relative to the other prediction rules, while with respect to
the latter Figure 19 illustrates the narrowed differential between the three prediction rules.
Similar results hold for other levels of J and other high versus low intraclass correlation
design comparisons.
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5 Summary

In summary, we have advocated a predictive approach to multilevel modeling in which the
focus lies on the prediction of future observables instead of the characteristics of estima-
tors. Of course, since the prediction rules (OLS, Prior, and Multilevel) are in one-to-one
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correspondence to the estimation methods of 3;, these two areas are related. However,
one of our main results is that a predictive perspective often leads to decisions that differ
from those arising from an estimative perspective. Specifically, the results indicate that an
increase in group size n is often more beneficial with respect to prediction than an increase
in the number of groups J. With respect to the estimation of multilevel model parameters,
previous simulation studies (Bassiri 1988, Busing 1994, Mok 1995) indicate that estimation
is more improved by increasing the number of groups instead of the group size.

Three prediction rules were presented and assessed via a Monte Carlo study that ex-
tensively covered both the sample size and parameter space. The multilevel prediction rule
performed the best across the various design specifications. In addition to the effect of
group size mentioned in the previous paragraph, the simulations studies also suggest that
the predictive ability of the prior prediction rule is not only poor, but also weakens as the
number of groups J increases. These results are further summarized below:

1. The multilevel prediction rule is clearly the best across the J x n combinations.

2. PMSE is reduced as group size n increases for both the multilevel and OLS prediction
rules, for all levels of J

3. The differential in PMSE between the multilevel and OLS prediction rules becomes
less as the group size n increases.

4. The prior prediction rule consistently performs the worst of the three prediction rules
in absolute terms—more than a full unit higher in PMSE in all J x n combinations.

5. There is an adverse effect of an increase in J with respect to the PMSE of the prior
prediction rule. Not only does the average level of PMSE increase as J increases, the
variability in PMSE also increases as well.

6. With respect to the multilevel prediction rule, there is only a slight reduction in the
overall level of PMSE as J increases. However, there is a reduction in the variability
of PMSE for the multilevel prediction rule as .J increases.

7. While the multilevel and OLS prediction rules exhibit a relatively even and narrow
distribution across the twelve parameter conditions, such is not the case for the prior
prediction rule, where the points clearly separate into two distinct groups. Specifically,
for high intraclass correlation (0.8) the prior prediction rule performs extremely poorly.
While for lower intraclass correlations, the performance of the prior prediction rule is
much closer to that of the multilevel and OLS prediction rules.
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A Multilevel Prediction

J n=>5 n=10 n=25 n=50 n=100
10 | 0.3804 | 0.3210 | 0.2853 | 0.2687 | 0.2396
25 | 0.3608 | 0.2958 | 0.2591 | 0.2758 | 0.2693 J n=5 | n=10 | n=25 | n=50 | n=100
50 0.3447 | 0.2963 | 0.2644 | 0.2558 | 0.2519 10 0.3515 | 0.3057 | 0.2871 | 0.2646 | 0.2319
100 | 0.3379 | 0.3004 | 0.2765 | 0.2677 | 0.2544 25 | 0.3449 | 0.2923 | 0.2796 | 0.2487 | 0.2585

300 | 0.3376 | 0.2968 | 0.2662 | 0.2587 | 0.2558 50 | 0.3354 | 0.2972 | 0.2799 | 0.2554 | 0.2632
100 | 0.3334 | 0.2909 | 0.2745 | 0.2537 | 0.2538

300 | 0.3319 | 0.2989 | 0.2695 | 0.2623 | 0.2535

Table 8: Design #1: Mean MSE for Multi-

level Prediction Table 12: Design #5: Mean MSE for Multi-

level Prediction

7 |n=b |n=10 | n=25 | n=50 | n=100
10 | 0.4503 | 0.3304 | 0.2814 | 0.2921 | 02643 | (5 Tos Tooio Ticos Toss0 o100
25 | 0.3734 1 0.3051 | 0.2696 | 0.2649 | 0.2547 |\ 55704137 | 0.3077 | 0.2702 | 0.2639 | 0.2625
50 | 0.3682 ) 0.3196 | 0.2694 | 0.2577 | 0.2565 | | 95 | (3687 | 0.3192 | 0.2567 | 0.2762 | 0.2612
100 | 0.3789 | 0.3051 | 0.2660 | 0.2599 | 0.2549 | | =0 | 03509 | 0.3016 | 0.2730 | 0.2682 | 02534
300 | 0.3737 | 0.3089 | 0.2741 | 0.2587 | 025714 | | 100 | 03707 | 03096 | 0.9756 | 02616 | 0.2637

300 | 0.3683 | 0.3025 | 0.2744 | 0.2614 | 0.2535

Table 9: Design #2: Mean MSE for Multi-
level Prediction Table 13: Design #6: Mean MSE for Multi-
level Prediction

J n=»> n=10 n=25 n=>50 n=100
10 | 0.4141 | 0.3062 | 0.2766 | 0.2553 | 0.2519 | | J n=>s n=10 | n=25 | n=50 | n=100
25 | 0.3813 | 0.3157 | 0.2786 | 0.2559 | 0.2507 | | 10 | 0.3940 | 0.3085 | 0.2683 | 0.2791 | 0.2665
50 | 0.4071 | 0.3112 | 0.2638 | 0.2508 | 0.2534 | | 25 | 0.3769 | 0.3077 | 0.2858 | 0.2649 | 0.2692
100 | 0.3968 | 0.3010 | 0.2694 | 0.2669 | 0.2611 50 | 0.3833 | 0.3127 | 0.2740 | 0.2579 | 0.2424
300 | 0.3990 | 0.3094 | 0.2710 | 0.26365 | 0.2568 | | 100 | 0.4026 | 0.3030 | 0.2779 | 0.2560 | 0.2521
300 | 0.3915 | 0.3096 | 0.2704 | 0.2596 | 0.2544

Table 10: Design #3: Mean MSE for Multi-

level Prediction Table 14: Design #7: Mean MSE for Multi-

level Prediction

J n=>5 n=10 | n=25 | n=50 | n=100
10 | 0.4434 | 0.3145 | 0.2692 | 0.2454 | 0.2418
25 | 0.4023 | 0.3166 | 0.2614 | 0.2641 | 0.2588
50 | 0.4267 | 0.3126 | 0.2760 | 0.2594 | 0.2525
100 | 0.4171 | 0.3149 | 0.2741 | 0.2586 | 0.2482
300 | 0.4317 | 0.3161 | 0.2770 | 0.2627 | 0.2554

J n=»5 n=10 n=25 n=50 | n=100
10 | 0.4695 | 0.2963 | 0.2743 | 0.2578 | 0.2395
25 0.4331 | 0.3201 | 0.2790 | 0.2518 | 0.2578
50 | 0.4198 | 0.3005 | 0.2706 | 0.2540 | 0.2622
100 | 0.4148 | 0.3074 | 0.2729 | 0.2609 | 0.2557
300 | 0.4233 | 0.3131 | 0.2734 | 0.2604 | 0.2524

Table 11: Design #4: Mean MSE for Multi- Table 15: Design #8: Mean MSE for Multi-

level Prediction level Prediction
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J n=>5 n=10 | n=25 | n=50 n=100
10 | 0.3732 | 0.3176 | 0.2637 | 0.2557 | 0.2567
25 0.3231 | 0.3018 | 0.2622 | 0.2636 | 0.2499
50 | 0.3232 | 0.2868 | 0.2669 | 0.2715 | 0.2511
100 | 0.3295 | 0.2929 | 0.2694 | 0.2550 | 0.2523
300 | 0.3226 | 0.2984 | 0.2666 | 0.2568 | 0.2541

Table 16: Design #9:

level Prediction

Mean MSE for Multi-

J n=>5 n=10 | n=25 | n=50 | n=100
10 | 0.4137 | 0.3103 | 0.2829 | 0.2548 | 0.2942
25 | 0.3719 | 0.2981 | 0.2795 | 0.2629 | 0.2427
50 | 0.3579 | 0.3061 | 0.2640 | 0.2601 | 0.2587
100 | 0.3670 | 0.2987 | 0.2745 | 0.2621 | 0.2514
300 | 0.3561 | 0.3032 | 0.2709 | 0.2600 | 0.2580

Table 17: Design #10: Mean MSE for Mul-
tilevel Prediction

J n=»5 n=10 n=25 | n=50 | n=100
10 | 0.4136 | 0.3259 | 0.2698 | 0.2855 | 0.2751
25 | 0.3911 | 0.3130, | 0.2880 | 0.2691 | 0.2505
50 | 0.3978 | 0.3074 | 0.2715 | 0.2567 | 0.2615
100 | 0.3889 | 0.3060 | 0.2669 | 0.2581 | 0.2539
300 | 0.3833 | 0.3083 | 0.2710 | 0.2557 | 0.2547

Table 18: Design #11: Mean MSE for Mul-
tilevel Prediction

J n=>5 n=10 | n=25 | n=50 n=100
10 | 0.4166 | 0.3315 | 0.2740 | 0.2580 | 0.2488
25 0.4409 | 0.3025 | 0.2832 | 0.2534 | 0.2500
50 | 0.4281 | 0.3114 | 0.2692 | 0.2580 | 0.2580
100 | 0.4013 | 0.3132 | 0.2728 | 0.2561 | 0.2561
300 | 0.4107 | 0.3075 | 0.2719 | 0.2626 | 0.2560

Table 19: Design #12: Mean MSE for Mul-
tilevel Prediction
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B Prior Prediction

J n=>5 n=10 n=25 n=50 n=100
10 | 0.4806 | 0.4715 | 0.4487 | 0.4734 | 0.4348
25 | 0.5232 | 0.4914 | 0.4691 | 0.4895 | 0.4858 J n=5 | n=10 | n=25 | n=50 | n=100
50 0.4933 | 0.4817 | 0.4785 | 0.4839 | 0.4809 10 0.4629 | 0.4737 | 0.4770 | 0.4636 | 0.4316
100 | 0.4978 | 0.5048 | 0.5073 | 0.5056 | 0.4787 25 | 0.4899 | 0.4856 | 0.5019 | 0.4471 | 0.4773

300 | 0.5005 | 0.5005 | 0.5025 | 0.4961 | 0.4972 50 | 0.4911 | 0.4988 | 0.5047 | 0.5092 | 0.5134
100 | 0.4971 | 0.4917 | 0.4965 | 0.4920 | 0.4966

300 | 0.4975 | 0.5011 | 0.5002 | 0.5057 | 0.4931

Table 20: Design #1: Mean MSE for Prior

Prediction Table 24: Design #5: Mean MSE for Prior

Prediction

J n=5 n=10 | n=25 | n=50 n=100
10 | 0.8710 | 0.8114 | 0.7442 | 0.8394 | 0.8012 3
25 0.8623 | 0.8366 | 0.8710 | 0.8983 | 0.8719 10
50 | 0.8828 | 0.9121 | 0.9043 | 0.8799 | 0.8797 25
100 | 0.8989 | 0.9057 | 0.8944 | 0.8749 | 0.8936 50 | 0.8908 | 0.8778 | 0.9202 | 0.9373 | 0.9111

300 | 0.9221 | 0.9252 | 0.9113 | 0.9086 | 0.9114 100 | 0.8882 | 0.9067 | 0.8872 | 0.9210 | 0.8960
300 | 0.9198 | 0.9207 | 0.9118 | 0.9063 | 0.9247

n=»>5 n=10 n=25 n=>50 n=100
0.9439 | 0.7897 | 0.8429 | 0.7624 | 0.6993
0.8629 | 0.9232 | 0.8533 | 0.9375 | 0.8418

Table 21: Design #2: Mean MSE for Prior

Prediction Table 25: Design #6: Mean MSE for Prior
Prediction

J n=»5 n=10 | n=25 | n=50 n=100
10 1.4870 | 1.4911 | 1.4736 | 1.4119 | 1.3574 J n=>5 n=10 | n=25 | n=50 | n=100
25 1.5859 | 1.5630 | 1.5545 | 1.5693 | 1.5867 10 1.4833 | 1.4497 | 1.2822 | 1.4694 | 1.3994
50 1.7201 | 1.6886 | 1.7247 | 1.7406 | 1.6561 25 1.6436 | 1.6584 | 1.7077 | 1.6836 | 1.7083
100 | 1.7642 | 1.6943 | 1.6815 | 1.7316 | 1.6928 50 1.7531 | 1.7077 | 1.7473 | 1.7507 | 1.7448
300 | 1.7357 | 1.6984 | 1.7463 | 1.7414 | 1.7576 100 | 1.7301 | 1.7171 | 1.6959 | 1.7402 | 1.7052
300 | 1.7236 | 1.7106 | 1.7468 | 1.7306 | 1.7529

Table 22: Design #3: Mean MSE for Prior
Prediction Table 26: Design #7: Mean MSE for Prior

Prediction

J n=»5 n=10 n=25 n=>50 n=100

10 | 3.1634 | 3.6134 | 3.2633 | 3.3281 | 3.2444 | |0 |0n=5 |n=10 |n=25 | n=50 | n=100

25 | 3.8050 | 3.9693 | 3.9611 | 3.9801 | 3.6414 | | 10 | 41243 | 3.1577 | 3.6729 | 3.4331 | 3.4315

50 | 4.0761 | 3.8674 | 4.3487 | 4.1581 | 4.1333 25 i-lgg 2-513843 ;1-(137;1 3.11301 3.8220
100 | 4.1428 | 4.2827 | 4.1555 | 4.0683 | 4.0672 | | °0 | 40 1084 | 4.1728 | 4.18561 | 3.9340

300 | 4.2913 | 4.2120 | 4.2306 | 4.1935 | 4.1962 100 | 3.9333 | 4.2321 | 4.1465 | 4.1989 | 4.1038
300 | 4.1810 | 4.2972 | 4.2700 | 4.2345 | 4.1889

Table 23: Design #4: Mean MSE for Prior

Prediction Table 27: Design #8: Mean MSE for Prior

Prediction

24



J n=>5 n=10 | n=25 | n=50 n=100
10 | 0.5202 | 0.4955 | 0.4281 | 0.4850 | 0.4793
25 0.4846 | 0.4878 | 0.4540 | 0.4722 | 0.4925
50 | 0.4926 | 0.4780 | 0.4900 | 0.5228 | 0.4868
100 | 0.4925 | 0.4955 | 0.4916 | 0.4789 | 0.4968
300 | 0.4965 | 0.5044 | 0.5008 | 0.5006 | 0.4983

Table 28: Design #9: Mean

MSE for Prior

Prediction
J n=>5 n=10 | n=25 | n=50 | n=100
10 0.8436 | 0.7217 | 0.7159 | 0.7494 | 0.8251
25 0.8829 | 0.8133 | 0.8164 | 0.8789 | 0.8210
50 0.8864 | 0.8813 | 0.8707 | 0.9109 | 0.9213
100 | 0.9086 | 0.9192 | 0.9156 | 0.8981 | 0.8870
300 | 0.9124 | 0.9145 | 0.9097 | 0.9109 | 0.9341

Table 29: Design #10: Mean MSE for Prior

Prediction
J n=>5 n=10 | n=25 | n=50 n=100
10 1.5218 | 1.4944 | 1.5176 | 1.6028 | 1.3165
25 1.6007 | 1.6672 | 1.6476 | 1.7074 | 1.5725
50 1.7818 | 1.7084 | 1.5967 | 1.7319 | 1.7387
100 | 1.7361 | 1.7597 | 1.7018 | 1.7362 | 1.705
300 | 1.7515 | 1.7468 | 1.7201 | 1.7265 | 1.733

Table 30: Design #11: Mean MSE for Prior

Prediction
J n=>5 n=10 n=25 n=50 n=100
10 | 3.2924 | 3.3717 | 3.6959 | 3.4160 | 3.6119
25 | 3.9824 | 3.8971 | 3.9128 | 4.0404 | 3.9247
50 4.0887 | 4.1428 | 3.9687 | 4.1102 | 4.1102
100 | 4.0784 | 4.1649 | 3.9137 | 4.1238 | 4.1238
300 | 4.2488 | 4.2298 | 4.1651 | 4.2681 | 4.1954

Table 31: Design #12: Mean MSE for Prior
Prediction
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C OLS Prediction

J n=>5 n=10 n=25 n=50 n=100
10 | 0.5507 | 0.3282 | 0.2845 | 0.2673 | 0.2398
25 | 0.4162 | 0.3056 | 0.2610 | 0.2766 | 0.2696 J n=5 | n=10 | n=25 | n=50 | n=100
50 0.4782 | 0.3128 | 0.2674 | 0.2567 | 0.2521 10 0.4489 | 0.3127 | 0.2867 | 0.2643 | 0.2317
100 | 0.4452 | 0.3188 | 0.2786 | 0.2682 | 0.2547 25 | 0.4495 | 0.3022 | 0.2790 | 0.2496 | 0.2583
300 | 0.4423 | 0.3129 | 0.2674 | 0.2591 | 0.2560 50 | 0.4330 | 0.3168 | 0.2817 | 0.2556 | 0.2632
100 | 0.4507 | 0.3058 | 0.2776 | 0.2544 | 0.2540
300 | 0.4659 | 0.3168 | 0.2719 | 0.2626 | 0.2537

Table 32: Design #1: Mean MSE for OLS

Prediction Table 36: Design #5: Mean MSE for OLS

Prediction

J n=>5 n=10 | n=25 | n=50 | n=100
10 | 0.5367 | 0.3249 | 0.2817 | 0.2926 | 0.2645 3
25 | 0.4430 | 0.3156 | 0.2700 | 0.2646 | 0.2548
50 | 0.4307 | 0.3269 | 0.2697 | 0.2581 | 0.2566
100 | 0.4512 | 0.3124 | 0.2662 | 0.2601 | 0.2551
300 | 0.4479 | 0.3168 | 0.2749 | 0.2589 | 0.2571

n=»5 n=10 n=25 n=50 | n=100
10 | 0.4727 | 0.3103 | 0.2708 | 0.2635 | 0.2628
25 0.4423 | 0.3282 | 0.2584 | 0.2758 | 0.2613
50 | 0.4342 | 0.3093 | 0.2740 | 0.2683 | 0.2534
100 | 0.4529 | 0.3189 | 0.2765 | 0.2617 | 0.2637
300 | 0.4405 | 0.3117 | 0.2756 | 0.2614 | 0.2535

Table 33: Design #2: Mean MSE for OLS

Prediction Table 37: Design #6: Mean MSE for OLS
Prediction

J n=»5 n=10 | n=25 | n=50 n=100
10 | 0.4121 | 0.3057 | 0.2754 | 0.2559 | 0.2517 J n=>5 n=10 | n=25 | n=50 | n=100
25 0.4333 | 0.3210 | 0.2792 | 0.2560 | 0.2509 10 | 0.3939 | 0.3150 | 0.2700 | 0.2783 | 0.2666
50 | 0.4533 | 0.3151 | 0.2641 | 0.2509 | 0.2534 25 0.4184 | 0.3108 | 0.2853 | 0.2649 | 0.2692
100 | 0.4464 | 0.3043 | 0.2697 | 0.2669 | 0.2611 50 | 0.4398 | 0.3160 | 0.2741 | 0.2577 | 0.2423
300 | 0.4523 | 0.3129 | 0.2711 0.2568 100 | 0.4629 | 0.3073 | 0.2784 | 0.2561 | 0.2520
300 | 0.4484 | 0.3145 | 0.2707 | 0.2597 | 0.2544

Table 34: Design #3: Mean MSE for OLS
Prediction Table 38: Design #7: Mean MSE for OLS

Prediction

J n=>5 n=10 n=25 n=>50 n=100
10 | 0.4447 | 0.3123 | 0.2680 | 0.2455 | 0.2420 | |9 | »=5 |n=10 | n=35 |n=50 | n=100
25 | 0.4316 | 0.3163 | 0.2614 | 0.2643 | 0.2589 | | 10 | 0-4623 ) 0.2075 ) 0.2735 ) 0.2578 | 0.2394
50 | 0ai1s | 03138 | 02762 | 02503 | 09505 | | 25 | 04546 | 0.3207 | 0.2792 | 0.2517 | 0.2579
100 | 0.4467 | 0.3156 | 0.2741 | 0.2586 | 0.2482 | | °V | 0-4507 | 0.3018 | 0.2705 | 0.2541 | 0.2623

300 | 0.4685 | 0.3178 | 0.2772 | 0.2628 | 0.2554 100 | 0.4465 | 0.3091 | 0.2731 | 0.2609 | 0.2557
300 | 0.4540 | 0.3143 | 0.2736 | 0.2604 | 0.2524

Table 35: Design #4: Mean MSE for OLS

Prediction Table 39: Design #8: Mean MSE for OLS

Prediction
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J n=>5 n=10 | n=25 | n=50 n=100
10 | 0.4418 | 0.3264 | 0.2648 | 0.2543 | 0.2573
25 0.4229 | 0.3162 | 0.2659 | 0.2644 | 0.2495
50 | 0.4526 | 0.3138 | 0.2699 | 0.2719 | 0.2516
100 | 0.4504 | 0.3175 | 0.2720 | 0.2565 | 0.2525
300 | 0.4410 | 0.3221 | 0.2696 | 0.2574 | 0.2542

Table 40: Design #9: Mean MSE for OLS

Prediction
J n=>5 n=10 | n=25 | n=50 | n=100
10 0.4582 | 0.3233 | 0.2800 | 0.2553 | 0.2943
25 0.4294 | 0.3058 | 0.2818 | 0.2632 | 0.2430
50 0.4650 | 0.3148 | 0.2654 | 0.2604 | 0.2589
100 | 0.4652 | 0.3110 | 0.2757 | 0.2623 | 0.2515
300 | 0.4439 | 0.3173 | 0.2725 | 0.2601 | 0.2581

Table 41: Design #10: Mean MSE for OLS

Prediction
J n=>5 n=10 | n=25 | n=50 n=100
10 | 0.4333 | 0.3161 | 0.2702 | 0.2854 | 0.2754
25 | 0.4385 | 0.3187 | 0.2884 | 0.2691 | 0.2506
50 | 0.4539 | 0.3124 | 0.2720 | 0.2571 | 0.2614
100 | 0.4659 | 0.3124 | 0.2676 | 0.2582 | 0.2539
300 | 0.4477 | 0.3162 | 0.2716 | 0.2559 | 0.2547

Table 42: Design #11: Mean MSE for OLS

Predictio
J n=>5 n=10 n=25 n=50 n=100
10 | 0.4418 | 0.3319 | 0.2735 | 0.2580 | 0.2485
25 | 0.4743 | 0.3028 | 0.2830 | 0.2533 | 0.2499
50 | 0.4619 | 0.3145 | 0.2696 | 0.2582 | 0.2582
100 | 0.4303 | 0.3152 | 0.2732 | 0.2562 | 0.2562
300 | 0.4479 | 0.3102 | 0.2722 | 0.2628 | 0.2560

Table 43: Design #12: Mean MSE for OLS
Prediction
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