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Abstract

Laser Wakefield Acceleration of Multi-GeV Electron Bunches
with Petawatt-Scale Laser Pulses Guided in a Laser-Heated Capillary Discharge

by

Christopher Valentine Pieronek

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Ka-Ngo Leung, Co-chair

Dr. Anthony Gonsalves, Co-chair

Laser wakefield accelerators (LWFAs), which accelerate electrons in the fields of a plasma
wave driven by the ponderomotive force of an intense laser pulse, have attracted intense
research interest in recent years due to the high gradients they can support. These devices
hold promise as a new class of compact accelerators for applications including free-electron
lasers, particle colliders, and Thomson-scattered gamma ray sources. To date, the highest
energy gains for a given laser power in LWFAs have been achieved by guiding the driving
laser pulse in a pre-formed plasma channel. This dissertation covers the development and
demonstration of a novel guiding structure: the laser-heated gas-filled capillary discharge
waveguide. These structures are capable of guiding intense laser pulses over many diffraction
lengths at low plasma densities required to mitigate bunch dephasing and accelerate electrons
to high energies. In the work presented here were used to accelerate electrons to 7.8 GeV in 20
cm using 850 TW of power from the BELLA laser at Lawrence Berkeley National Laboratory
(LBNL). Low power guiding experiments demonstrating the feasibility of the technique are
described. Plasma heating was demonstrated through visible light plasma spectroscopic
measurements, which through coincidence with improved guiding of a sub-ns probe beam
indicated formation of a waveguide by plasma expansion driven by inverse-bremsstrahlung
heating. The density and matched spot size of the plasma channel formed by laser-heating were
diagnosed using measurements of the group velocity and spot-size oscillation of a guided probe
beam. Two spectral interferometers were constructed for the group velocity measurements: a
fiber-based Mach-Zehnder interferometer installed on a target prototyping vacuum chamber,
and a two-color common path interferometer on the main BELLA beam line. The design of
these setups as well as the algorithms used for analyzing the interferograms are described.
These diagnostic measurements revealed strategies for optimizing waveguide performance
through tuning of plasma and laser parameters, and were found to be in excellent agreement
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with magnetohydrodynamic simulations using the MARPLE code. Guiding of petawatt
pulses and acceleration of electrons to multi-GeV energies in laser-heated capillary discharges
is demonstrated, showing good agreement between low power guiding measurements, particle-
in-cell simulations with the INF&RNO code, and the results of high power laser experiments.
Additionally, electron beams were produced using ionization injection in a localized region of
high-Z gas in the capillary entrance with channel and laser parameters tuned to suppress
self-trapping. Finally, a numerical model of third harmonic generation for femtosecond laser
pulses is presented, which is used to simulate a possible design for an ultraviolet beamline
for a future demonstration of laser-triggered bunch injection. The work described in this
dissertation constitutes a foundation for future LWFA experiments aimed at the production
of low energy spread electron beams and staged acceleration at the multi-GeV level through
demonstration of controlled bunch injection with multi-GeV energy gain and development of
a nonlinear optical modeling tool useful for the design of laser sources required for triggered
bunch injection schemes.
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“Remember kids:
the only difference between screwing around and science,

is writing it down.”
–Adam Savage

To my Dad, who taught me to screw around,
and my Mom, who told me to write it down.

(And my older brother who was always there
to keep me from feeling too clever.)
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Chapter 1

Introduction

1.1 Particle accelerators

Particle physics seeks to describe the universe in terms of the interactions of a few types
of fundamental objects, continuing an enterprise that arguably began with Democritus and
reached maturity when Mendeleev organized the then-known chemical elements into the
periodic table. Probing structure beneath the scale of atoms, however, has relied extensively
upon the strategy of colliding energetic particles with the object to be investigated. Indeed,
science owes in large part the modern picture of the atom to the scattering experiments of
Rutherford, in which the deflection of 5 MeV alpha particles from 222Rn impinging on a gold
foil revealed the concentration of positive charge in the nucleus.

Beginning with Cockcroft and Walton’s demonstration of the reaction 7Li(p, α)4He with
a DC accelerator in 1932 and Ernest Lawrence’s experiments with a series of cyclotrons, to
which Lawrence Berkeley National Laboratory owes its existence, particle accelerators have
since probed matter at the nuclear level and beyond. Throughout the twentieth century, the
Standard Model of particle physics was verified by a succession of particle collider experiments,
the most recent result being the discovery of the Higgs boson on 2012 at the Large Hadron
Collider, a synchrotron with beam energy 6.5 tera-electronvolts (TeV) [1]. Concurrent with
the progress of particle physics, accelerators have also emerged as drivers for radiation sources
important in other scientific disciplines: chemistry, biology, materials science. These systems
include synchrotron light sources and more recently, X-Ray free-electron lasers (FELs).

For particle physics, new measurements typically require particle beams of higher energy
for two reasons. The first is that the mass energy of particles created in a collision is converted
from the kinetic energy of the colliding particles, hence the discovery of new massive particles
requires more energetic collisions. The second is that the de Broglie wavelength λ = h/p of a
particle, with h Planck’s constant and p the particle momentum, sets the minimum length
scale of structures to which the particle will be sensitive.

To reach the higher energies required to observe new physics, however, conventional RF
accelerators must increase in size and therefore cost. This is because the maximum practical
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energy gain per unit length or “gradient” for an RF accelerator is limited to ∼ 100 MV m−1

by electrical breakdown [2]. For this reason, progress towards higher energies has slowed in
recent decades [3, 4], and plans for future conventional particle colliders have drawn public
criticism from within the physics community [5].

Accelerator-based particle physics would therefore benefit from technologies that can
increase accelerating gradients, and reduce system size and cost. A promising means of
generating larger accelerating gradients is to use a plasma as an accelerating medium.
Specifically, if electrons are made to “surf” on a plasma wave with phase velocity ∼ c, they
may be accelerated to very high energies in short distances. This is in large part because
plasma waves can support very high electric fields, which are limited only by wave breaking.
In the cold nonrelativistic limit, the maximum field is

E0 (GV m−1) ' 96
√
n0 (1018cm−3) , (1.1)

which for a plasma density of 1018 cm−3 yields a gradient 96 GV m−1, three orders of
magnitude greater than currently achievable in conventional accelerators. Such plasma waves
can be excited by intense relativistic charged particle beams [6] or the ponderomotive force
of intense laser pulses [7].

This dissertation is concerned with “laser-wakefield acceleration” (LWFA), which employs
a resonant, high-intensity laser pulse to excite a plasma wave with relativistic phase velocity.
LWFA requires femtosecond-scale laser pulse durations to achieve resonance with the plasma,
and thus only became practical with the advent of energetic femtosecond laser sources based
on chirped-pulse amplification (CPA) in the 1990s [8, 9]. Quasi-monoenergetic electron beams
from LWFAs were first demonstrated at the 100 MeV level using millimeter-scale plasmas
and terawatt-scale (TW) laser powers in a series of publications in 2004 [10–12]. Energies at
the GeV level were attained by the end of that decade [13, 14], with the first results from
petawatt (PW) lasers in 2013 yielding electron energies in the 2-3 GeV range [15, 16].

LWFA employing a waveguiding structure or “plasma channel” can provide increased
energy gain by increasing the acceleration length. A plasma channel consists of a plasma
with a radial density gradient that refractively confines the energy of the driver near the
axis, suppressing diffraction in the same manner as a graded-index fiber optic. Research
at Lawrence Berkeley National Laboratory (LBNL) has extensively pursued this approach,
beginning with the production of 80 MeV electron beams in a laser-formed channel in a
supersonic gas jet in 2004 [10]. Subsequent experiments at LBNL have relied on gas-filled
capillary discharges, where the plasma gradient is provided by ohmic heating within a wall-
stabilized arc discharge formed in a capillary tube [17]. This approach yielded 1 GeV electron
beams from a 3-cm-long capillary with 50 TW of laser power in 2006 [13], and 4 GeV electron
beams from a 9-cm-long capillary with 300 TW of laser power using the BELLA (“BErkeley
Lab Laser Accelerator”) laser.

This dissertation reports the development and demonstration of a new type of plasma
channel, the laser-heated gas-filled capillary discharge. This device is a further development
of the gas-filled capillary discharge where the radial plasma gradient is further enhanced
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by inverse-bremsstrahlung heating by a collinear, Joule-level, nanosecond-scale laser pulse
[18, 19]. The diagnostic measurements described in this thesis show that the additional
control of the plasma profile via laser heating makes this structure more tunable than a
conventional capillary discharge [20], and allows it to effectively guide high energy laser
pulses without sustaining damage. Furthermore, acceleration of electrons to 7.8 GeV in a
20-cm-long laser-heated capillary discharge is demonstrated [21, 22]. Electron acceleration
experiments relevant to staged acceleration, including demonstration of triggered injection
with suppressed self-trapping are also presented [23].

1.2 Outline

The physics of laser plasma acceleration as it applies to the work in this dissertation is reviewed
in Chapter 2. This includes physical principles that motivate the need for an accelerating
stage providing energy gain at the 10 GeV level, as well as physics relevant to the diagnostics
used in the experiments reported here. Laser guiding in plasma channels is reviewed in
Chapter 3, including the rationale for development of the laser-heated gas-filled capillary
discharge as a guiding structure for LWFA, and the principles governing the formation of
plasma channels by laser heating.

In Chapter 4, a laser-heated capillary discharge waveguide is characterized using a spectral
interferometer setup. The setup design and analysis techniques are described in detail.
Variation of the plasma density and matched spot size of the waveguide with heater laser
and discharge parameters is measured. Text and figures for Chapter 4 are adapted from the
author’s publication

[20] C. V. Pieronek et al., “Laser-heated capillary discharge waveguides as tunable
structures for laser-plasma acceleration”, Physics of Plasmas 27, 093101 (2020)

Chapter 5 describes in-situ diagnostic measurements of laser-heated capillary discharges on
the BELLA main beamline using a two-color common path interferometer. The setup design
is described, as are analysis methods where they depart from Chapter 4.

In Chapters 6 and 7, the results of LWFA experiments on the BELLA laser system
are reported. In Chapter 6, guiding of 850 terawatt (TW) laser pulses in a 20-cm-long
laser-heated capillary discharge is demonstrated, generating broad spectrum electron beams
with quasi-monoenergetic peaks up to 7.8 GeV. This result represents a record for single-stage
energy gain in a laser-wakefield accelerator. Diagnostic measurements of the plasma channel
employing high power laser pulses are presented as well. The BELLA laser system and
diagnostics are outlined as relevant to this chapter and Chapter 7 Figures for Chapter 6 are
adapted from the author’s coauthored publications

[21] A. J. Gonsalves et al., “Petawatt Laser Guiding and Electron Beam Accel-
eration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide”, Physical
Review Letters 122, 084801 (2019)

https://doi.org/10.1063/5.0014961
https://doi.org/10.1103/PhysRevLett.122.084801
https://doi.org/10.1103/PhysRevLett.122.084801
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[22] A. J. Gonsalves et al., “Laser-heated capillary discharge plasma waveguides
for electron acceleration to 8 GeV”, Physics of Plasmas 27, 053102 (2020)

In Chapter 7, trapping of electron bunches through field ionization by the driver pulse is
demonstrated in a laser-heated capillary discharge. Suppression of self-trapping is demon-
strated as well. These experiments were performed at 16 J laser pulse energy, less than half the
maximum pulse energy of the BELLA laser system, and are thus relevant for future two-beam
experiments that include demonstration of staged acceleration in two 5 GeV stages[24] and
tests of strong field quantum electrodynamics [25]. Figures and text are taken from the
author’s working paper

[23] C. V. Pieronek et al., “Ionization injection and dark-current suppression in
a 20-cm-long channel-guided laser-plasma accelerator” (in preparation)

Finally, results are summarized in Chapter 8, with potential directions for future research.

https://doi.org/10.1063/5.0002769
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Chapter 2

Laser wakefield acceleration

2.1 Introduction

The purpose of this chapter is to outline the theoretical considerations that inform the work of
this dissertation. Laser wakefield acceleration is a large and rapidly growing field of research,
and a comprehensive review is neither possible nor desirable here. As such, only those results
most directly relevant to the work described later are considered. Most of this material is
derived from Ref. [2], which reviews laser-driven plasma electron accelerators in detail.

Lasers are an attractive source of high fields for charged particle acceleration. The main
difficulty encountered in developing high fields in accelerators is mitigating interaction of
the fields with the materials of which the accelerating structures are constituted, specifically,
suppressing various forms of electrical breakdown. The short wavelength of optical radiation,
however, allows electromagnetic energy to be focused to high densities far from material
surfaces where breakdown occurs. Imparting a net energy to charged particles with laser
radiation in free space is difficult, due to the rapid oscillation period of optical radiation, as
well as the vacuum phase velocity c. In fact, the Lawson-Woodward theorem [26, 27] states in
certain conditions that phase-slippage of particles interacting with an electromagnetic wave
renders net energy gain impossible. The Lawson-Woodward theorem assumes the following
conditions, one or more of which must be violated in order for particles to gain energy from
an electromagnetic wave:

1. The interaction region is infinite

2. The laser fields are in vacuum with no boundaries

3. Particle velocity is highly relativistic, i.e. v ∼ c

4. No static electric or magnetic fields are present

5. Nonlinear effects, e.g. the ponderomotive force, are negligible
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One means of overcoming the Lawson-Woodward theorem is to violate condition 2, and
introduce a plasma as an interaction medium. The plasma acts to “rectify” the rapidly
oscillating transverse field of the laser into a more slowly oscillating longitudinal field useful
for accelerating particles, as was first recognized by Tajima and Dawson in 1979 [7].

Plasma waves are an appealing means of accelerating particles. First, they are longitudinal
waves, and capable of accelerating appropriately-phased particles continuously along their
direction of propagation. Second, plasma waves can support extremely high electric fields. A
cold, unmagnetized plasma supports a longitudinal electrostatic wave mode with dispersion
relation

ωp =

(
4πn0q

2
e

me

)1/2

, (2.1)

with n0 the unperturbed plasma density, qe the electron charge, and me the electron mass.
This is the well-known plasma or Langmuir oscillation. One physical interpretation of the
plasma oscillation is that if the electrons within a “slab” of plasma are displaced, they will
oscillate about an equilibrium position with a characteristic frequency ωp.

As stated previously, the plasma oscillation dispersion relation [Eqn. 2.1] lacks any
dependence on wavenumber k. This is a peculiar feature for a dispersion relation, and implies
that the wavenumber and phase velocity can take on any value. This is indeed the case, with
the plasma wave phase velocity vp = ωp/k set by the characteristic velocity of the excitation
mechanism. For accelerator applications, this mechanism is either an intense laser pulse or
ultrarelativistic charged particle beam with velocity ∼ c, in which case vp ∼ c. Because of
this, the plasma wavenumber kp is defined kp = ωp/c. The corresponding plasma wavelength
λp = 2π/kp is a convenient quantity for characterizing plasma properties, and is expressed in
terms of practical units

λp(µm) = 33
√

1× 1018/n0(cm−3) . (2.2)

The principle limit on the electric field of a plasma wave is wave breaking, which occurs
when the plasma fluid velocity associated with the wave matches the phase velocity of the
wave. In the cold, nonrelativistic case, wave breaking occurs for a maximum electric field [28]

E0 =
cmeωp
qe

or E0(V m−1) ' 96
√
n0(cm−3) . (2.3)

Relativistic effects suppress wave breaking, with the cold relativistic [29, 30] wave breaking
field given by

EWB =
√

2(γp − 1)1/2E0 , (2.4)

with γp = (1− βp2)−1/2 the relativistic factor associated with the plasma wave phase velocity,
and βp = vp/c.

The laser ponderomotive force is the mechanism by which laser-driven plasma waves are
excited. The ponderomotive force is an ambipolar force exerted by oscillating fields on charges
in the direction opposite the gradient in electromagnetic energy density. The fundamental
mechanism at work is the small, but nonzero distance sampled by a particle during its leading
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order motion, the “quiver” at the field oscillation frequency ω. One half-cycle of the quiver
motion will move a particle against the gradient in field amplitude, and the following half-cycle
will not return the particle to its initial position. Rather it, will be slightly displaced in the
direction opposite the gradient in the field energy density, since on the “return” half-cycle it
experiences a lower average force. For weak fields, the time-averaged force associated with
this process can be derived from the nonrelativistic Lorentz force equation assuming a weak
gradient in the field to obtain [31]

FP =
−q2

mω2
∇(|E|2/2) , (2.5)

with q the charge, m the mass, and ω the frequency of the field. An important feature of
the ponderomotive force is the m−1 scaling. Electrons in a hydrogen plasma experience a
ponderomotive force greater than the ions by a factor of the mass ratio mp/me ∼ 2× 103,
with mp the proton mass and me the electron mass. Thus, ion motion can in many cases
of interest be neglected in a LWFA, and the ions regarded as constituting a stationary
neutralizing background.

Because it is a component of the canonical momentum of a charged particle in an
electromagnetic field, it is convenient to express the ponderomotive force in terms of the vector
potential A, which is related to the electric and magnetic fields according to E = −c−1∂A/∂t
and B = ∇× A. Eqn. 2.5 can then be rewritten

Fp = −mec
2∇(a2/2) , (2.6)

with a = qeA/mec
2 the normalized vector potential or “laser strength parameter,” and qe

the elementary charge.
The linear expression for the ponderomotive force Eqn. 2.6 is only valid for a � 1.

However, a ∼ 1 in typical laser wakefield accelerators, corresponding to a peak intensity
∼ 1018 W/cm2. Such laser intensities are referred to as “relativistically intense,” because the
electron quiver velocity approaches the speed of light. This is evident from the canonical
momentum of a charged particle in an electromagnetic field [32]

P = u− a = 0 , (2.7)

with u = γβ the normalized relativistic mechanical momentum, γ = (1 − β2)−1/2 the
relativistic factor, β = v/c the normalized velocity. P = 0 in all cases of interest, which
in involve the interaction of laser pulse of finite duration interacting with an electron
initially at rest. Eqn. 2.7 is a consequence of assuming a laser field that is uniform in the
transverse directions and follows directly from the Euler-Lagrange equations: ∂L/∂x⊥,i =
0⇒ ∂L/∂ẋ⊥,i = constant, with L the Lagrangian for a charged particle in an electromagnetic
field [32]. This is approximately true for a laser pulse of finite size as long as the quiver
motion samples only small portion of the laser spot. Due to the finite speed of light, the
characteristic size of the electron quiver motion is limited to < λ/2 and hence Eqn. 2.7 holds
for λ/2� r0 with r0 the laser spot size.
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It is clear from Eqn. 2.7 that the motion becomes relativistic for a ∼ 1, and effects
neglected in the derivation of Eqns. 2.5 and 2.6 become important, such as the v × B force
and the relativistic mass. In this situation, the nonlinear or relativistic ponderomotive force
then becomes [2, 33]

FpN = −mec
2∇γ . (2.8)

The most straightforward method of exciting plasma waves for acceleration is through
the use of a single resonant, relativistically intense laser pulse with duration ∼ λp/2c. This is
the so-called “standard” LWFA, and is the approach used in the research presented in this
dissertation. For typical plasma densities 1017-1019 cm3, this requires laser pulse lengths of
order 50-150 fs. Producing energetic laser pulses with this duration is technically demanding
for a number of reasons, including the requirement for large gain bandwidths and mitigation
of deleterious nonlinear optical phenomena arising from the required intensities, and only
became practical with the development of Ti:Sapphire chirped-pulse amplification (CPA)
laser sources in the late 20th century [8, 9, 34, 35]. Indeed, progress on standard LWFA
has closely tracked with the technical development of (CPA) laser systems. At the time of
writing, commercially available Ti:Sapphire CPA systems can produce Joule-level pulses with
< 30 fs duration at repetition rates of 10 Hz.

Other schemes exist for exciting plasma waves for acceleration with intense laser beams.
Plasma-beat-wave acceleration (PBWA) relies on a long laser pulse containing two copropa-
gating frequencies separated by a ωp. This introduces a modulation in the laser pulse envelope
at the beat frequency ωp, which will resonantly excite a plasma wave on a timescale many
times larger than the plasma period. PBWA was primarily pursued before femtosecond laser
sources were widely available, however the concept continues to be implemented in the form of
resonant trains of femtosecond pulses, each with duration ∼ λp/2c and separated by intervals
of λp/c. Self-modulated laser wakefield acceleration (SMLWFA) operates similarly to PBWA,
however the resonant modulation of the laser pulse is supplied by nonlinear interaction with
the plasma itself via forward Raman scattering.

2.2 A simple kinematic picture of laser wakefield

acceleration

It is instructive to consider the operation of a laser-plasma accelerator from a purely kinematic
perspective. Here, it is assumed that the plasma wave is transversely infinite in extent and
non-evolving. Hence, accelerated electrons interacting with the plasma wave are subjected
to a conservative field associated with the electrostatic potential of the plasma wave. The
maximum energy of the accelerated electrons can be estimated using relativistic velocity
addition. In the rest frame of a plasma wave with phase velocity vp, an electron at rest in the
lab frame approaches at velocity −vp. By definition, a trapped electron will be slowed to zero
velocity by the wave potential, and will eventually rebound with final velocity vp according
to the conservation of energy if it is allowed to completely outrun the plasma wave. Thus,
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in the lab frame the final velocity of v of such an electron is given by adding the lab frame
plasma wave velocity vp and wave frame electron velocity vp relativistically:

v =
2vp

1 + v2
p/c

2
. (2.9)

With β ≡ v/c and γ ≡ (1− β2)−1/2, squaring both sides of Eqn. 2.9 yields an equation for
the final electron energy

1− γ−2 =
4(1− γ−2

p )

(2− γ−2
p )2

(2.10)

with solution
γ = 2γ2

p − 1 . (2.11)

From Eqn. 2.11, it is clear that the relativistic energy γ of an electron after interacting with a
plasma wave is much greater than the relativistic factor γp associated with the phase velocity
of the plasma wave itself. For laser-driven plasma waves in the linear limit, the wave phase
velocity is simply the laser group velocity vg = c(1 − ω2

p/ω
2)1/2, for which the associated

relativistic factor γp is

γp =

(
1−

v2
g

c2

)−1/2

=
ω

ωp
. (2.12)

For commonly used laser drivers with λ ' 1 µm and typical plasma densities for LWFA
1017− 1019 cm−3, γp ∼ 10− 100. Hence, one might expect electron energy gains to be limited
to the 50 MeV level based on γp alone. However, accounting for the fact that acceleration
proceeds similarly to a collision with an object having γp as in the derivation of Eqn. 2.11, it
is clear that electrons can be accelerated to ultrarelativistic energies by interacting with a
plasma wave with a “modest” γp.

The preceding discussion, though suggestive, is a considerable oversimplification. Specif-
ically, one will note the absence of any field or potential amplitudes in Eqn. 2.11. This is
because that equation was derived with the assumption that electrons are allowed to fully
outrun the wake after interaction. In practice, LWFAs are designed such that accelerated
electrons are extracted at the maximum of the wake potential. This both maximizes the
kinetic energy of the accelerated electrons and ensures that they are focused by the transverse
fields of the wake for the duration of the interaction. The maximum energy gain in this
situation can be derived through a straightforward use of special relativity, again assuming
non-evolving plasma wave fields as in the derivation of Eqn. 2.11. Adopting the convention
that the plasma wave propagates in the positive x direction (denoted index 1) and using the
Coulomb gauge, the lab-frame four-potential

Aα ≡ (Φ,A) , (2.13)

with A and Φ the vector and scalar potentials respectively, transforms into the rest frame of
the wake according to

A′α = Λα
βA

β (2.14)
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with the Lorentz transformation

Λα
β =


γp −βpγp 0 0
−βpγp γp 0 0

0 0 1 0
0 0 0 1

 . (2.15)

The final lab-frame four-momentum (E/c, p̃) of an electron trapped in the plasma wave
can be calculated in terms of the transformed potential, Φ′ = γpΦ − βpγpA1. Neglecting
the rotational currents associated with the plasma wave and taking A1 = 0 (equivalent to
assuming that the driving laser beam waist is large compared to λp) for the sake of simplicity,
this reduces to Φ′ = γpΦ. In the wake frame, the final energy and momentum of an electron
at the maximum of the wake potential is then given by,

E ′ = qeγpΦmax + γpmc
2 (2.16)

p̃′1 = mc[(E ′/mc2)2 − 1]1/2, (2.17)

with the second term of Eqn. 2.16 accounting for the fact that electrons at rest in the lab
frame approach the wake with velocity −vp at zero potential (Φ′ = 0) in the wake frame.
The lab-frame energy E is found by Lorentz-transforming the wake-frame four-momentum
(E ′/c, p̃′)

E/c = γpE
′/c+ βpγpp̃

′
1

E = γp(γpqeΦmax + γpmc
2) + βpγpmc

2

[(
γpqeΦmax + γpmc

2

mc2

)2

− 1

]1/2

. (2.18)

In the ultrarelativistic limit γp → ∞, βp → 1, Eqn. 2.18 can be rearranged to obtain the
lab-frame relativistic factor for the accelerated electrons

γ = 2γ2
p(φmax + 1), (2.19)

with φ ≡ qeΦ/mc
2 the normalized potential. As will be discussed later in this chapter, the

normalized potential φ is a function of laser power and pulse length and is typically . 10,
and in the experiments considered in this thesis φ ' 1− 3.

This is an interesting result, which illustrates some important features of electron accel-
eration in plasma waves with no analysis of plasma waves themselves. Clearly, the wake
phase velocity is the most sensitive parameter for maximum energy gain, through the γ2

p

dependence of Eqn. 2.19. Wake phase velocity is in turn a function of plasma density, and in
the linear limit obeys γp = ω/ωp, causing the energy gain [Eqn. 2.19] to scale roughly as n−1

0 .
Therefore, achieving high single stage energy gain in a laser wakefield accelerator is in large
part a matter of operating at the lowest plasma density permitted by other constraints of the
accelerator design.
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What has been derived here in Eqn. 2.19 is an expression for the “dephasing-limited”
energy gain, that is, the maximum energy attainable before a particle outruns the accelerating
phase of the plasma wave. In the interest of clarifying the fundamental physics involved
in accelerating electrons in a plasma wave, other important physical processes have been
neglected or simplified. Specifically, it was assumed that the laser pulse is non-evolving
during acceleration, and it was assumed that the laser pulse propagates as in a linear medium.
Moreover, the mechanism by which electrons initially at rest are trapped and accelerated
to the phase velocity of the plasma wave was not discussed. These other processes will be
addressed in the following sections of this chapter.

2.3 Excitation of large-amplitude plasma waves by

intense, ultrashort laser pulses

In this section, the fundamental equations of electrodynamics with which laser-plasma
interactions are analyzed are introduced. The basic theory of 1D, nonlinear plasma waves
derived from these fundamental equations will be presented, following the treatment in
Ref. [2]. Although LWFA is a fully 3D process in all regimes of interest, useful insight into
the relationship between laser and plasma parameters and accelerator performance can be
gained from the analytically tractable model presented here.

The fields of both the laser and plasma wave are governed by Maxwell’s equations. For
the present analysis, these are most usefully expressed in terms of the potentials E =
−∇Φ−c−1∂A/∂t and B = ∇×A as the inhomogeneous wave equation and Poisson equation
in the Coulomb or transverse gauge such that ∇ ·A = 0:

∇2A− 1

c2

∂2A

∂t2
−∇

(
1

c2

∂Φ

∂t

)
= −4π

c
J (2.20)

∇2Φ = −4πρ̃ (2.21)

with J the current density and ρ̃ the charge density. Fluid motion is governed by the cold
plasma fluid equations, since the electron temperature Te ∼ 10 eV typical of the field-ionized
plasmas encountered in LWFA [36, 37] is much less than the quiver energy and fluid pressure
can be neglected:

∂p̃

∂t
+ (v · ∇)p̃ = −qe

(
E +

v

c
× B

)
(2.22)

∂n

∂t
+∇ · (nv) = 0 , (2.23)

with v the electron fluid velocity, n the electron density, and p̃ = γmev the relativistic fluid
momentum. Two useful simplifications can be applied to the wave equation Eqn. 2.20. First,
the potential term ∇(c−2∂Φ/∂t), which contains the fast Φ ∼ eiωt part of the electrostatic
potential, is typically negligible compared to other sources of the fast part of the plasma
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current [2]. Second, the current J is well approximated by the leading-order quiver motion
of the electrons in the typical case λ/2 � r0, such that J = −qenca/γ by momentum
conservation [Eqn. 2.7] and hence the wave equation becomes

∇2A− 1

c2

∂2A

∂t2
= k2

pρA , (2.24)

with n0 the unperturbed plasma density and ρ = γ−1(n/n0) the normalized proper electron
density.

The set of equations Eqns. 2.20-2.24 are difficult to solve analytically, and fully self-
consistent treatment of a relativistic laser pulse propagating in a plasma is typically approached
computationally. However, useful physical insight can be gained through analysis of these
equations if simplifications are applied, the most straightforward of which is to restrict the
problem to one dimension, effectively assuming a transversely infinite plane wave driver pulse.

In 1D, symmetries of the plasma fluid equations in the quasi-static approximation impose
the relations [2]

u⊥ − a⊥ = 0 , (2.25)

γ − βpuz − φ = 1 , (2.26)

n(βp − βz) = βpn0 , (2.27)

with u⊥ = p̃⊥/mec = γβ⊥ the normalized transverse momentum and n0 the initial unper-
turbed plasma density. Using Eqns. 2.25-2.27 and taking the limit γp � 1 which applies to
nearly all situations of interest for LWFA, the wave equation and Poisson equation can be
written [38, 39]

k−2
p

(
2
∂

∂ζ
− ∂

∂τ

)
∂a

∂τ
= ρa (2.28)

k−2
p

∂2φ

∂ξ2 =
(1 + a2)

2(1 + φ)2
− 1

2
, (2.29)

The evolution of the driving laser pulse is described by Eqn. 2.28 and the evolution of
the plasma wave is described by Eqn. 2.29, with the respective algebraic transformations
ζ = z − ct, τ = ct and ξ = z − vpt applied. The differing comoving velocities are required
by the structure of the Coulomb-gauge potential equations, as c is fundamental to the wave
equation and subluminal group velocities enter through the evolution terms ∂/∂τ . These
equations can be regarded as decoupled from each other, as the laser driver evolves on a
much larger timescale than a plasma period: Tev ∼ 2γ|n0/n|(ω/ωp)/ωp � ω−1

p [38]. Hence,
Eqn. 2.29 will be the subject of this chapter. Eqn. 2.28 will be addressed in Section 2.4 in
the context of driver pulse energy depletion and spectral shifting.
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Using Eqns. 2.25-2.27, the plasma fluid quantities below can be obtained

n/n0 =
γ2
⊥ + (1 + φ)2

2(1 + φ)2
, (2.30)

uz =
γ2
⊥ − (1 + φ)2

2(1 + φ)
, (2.31)

γ =
γ2
⊥ + (1 + φ)2

2(1 + φ)
, (2.32)

with γ⊥ ≡ 1 + u2
⊥ = 1 + a2.

As a nonlinear, second-order differential equation, Eqn. 2.29 is difficult to solve analytically
for general forms of a(ξ). It can be solved readily with a numerical integrator, as has been
done in Fig. 2.1. For high laser driver intensities with a ∼ 1, the resulting plasma waves are
visibly nonlinear, departing from the sinusoidal structure assumed in the derivation of the
plasma frequency in Section 2.1 and acquiring the sawtooth profile characteristic of nonlinear
wave steepening.

Electrons can only be accelerated in regions of the wake where not only −qe∂φ/∂ξ < 0, but
also where the transverse forces in the wake are focusing. Focusing forces are inherently 3D,
and arise from the finite transverse extent of the wake potential and the longitudinal current,
which produce a radial electric field and azimuthal magnetic field that can focus appropriately
phased particles. Analysis of plasma waves in the linear limit using the Panofsky-Wentzel
theorem shows that trapping and focusing occurs in a region of length kpξ = π/4 such
that −qe∂φ/∂ξ < 0 and −qeφ < 0 [2]. A simple analytical treatment is not possible for
the nonlinear case, but the focusing region still roughly corresponds to −qe∂φ/∂ξ < 0 and
−qeφ < 0. Conversely, for positrons, the accelerating and focusing region is defined by the
condition qe∂φ/∂ξ < 0 and qeφ < 0. This is problematic for positron acceleration in highly
nonlinear plasma waves, because these focusing regions become increasingly narrow as the
wave amplitude increases due to nonlinear steepening. It is for this reason that weakly
nonlinear plasma waves driven with peak laser fields a ∼ 1-2 are favored for electron-positron
collider applications [40].

A number of useful analytical results have nevertheless been obtained from Eqn. 2.29
for square laser pulse profiles, in which case Eqn. 2.29 can be solved in terms of elliptic
integrals [38, 39, 41, 42]. These are useful for understanding scalings of laser wakefield
accelerator performance with respect to driver laser and plasma parameters, and qualitative
aspects of plasma wave excitation. Of particular concern are the dependence of the wake field
amplitudes φ and E on a, as well as the nonlinear plasma wavelength λNp. For a resonant,
square laser pulse of length L ' λNp, the maximum wake electric field is

Êmax =
a2

0/2

(1 + a2
0/2)1/2

(2.33)

and the minimum and maximum electrical potential in the wake are given by [30]

φm = Ê2
max/2± βp[(1 + Ê2

max/2)2 − 1]1/2 , (2.34)
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Figure 2.1: Solution of Eqn. 2.29 for a laser pulse with a0 = 1.7, plotted with respect to
the comoving wake phase ψ = kpξ. Normalized residual electron density n/n0 − 1 calculated
from Eqns. 2.30-2.32.

with Ê ≡ E/E0. The nonlinear plasma wavelength can be expressed in terms of Elliptic
integrals[38, 39, 41, 42] by solving Eqn. 2.29 in quadrature for a = 0:

λNp = (2/π)λp(1 + φmax)1/2E2(%) , (2.35)

with

E2(%) =

∫ π/2

0

dθ(1− %2 sin2 θ)1/2 (2.36)

the complete elliptic integral of the second kind and %2 = 1− (1 + φmax)−2. Eqn. 2.35 has
the limiting values

λNp = λp

{
1 + 3Ê2

max/16 for Êmax � 1

(2/π)(Êmax + Ê−1
max) for Êmax � 1

. (2.37)

Lengthening of the nonlinear plasma wavelength is an important process in a LWFA.
Through the nonlinear dependence of the plasma wavelength on a, evolution of the driving
laser pulse can shift the phase of a trapped bunch in the wake. This can result in loss of
the bunch if it is moved into the defocusing region of the wake, roughly corresponding to
the density spikes in Fig. 2.1. Alternatively, lengthening of the plasma period can increase
the acceleration length and hence the final bunch energy by increasing the length of the
accelerating region of the wake, in which case a trapped electron bunch will take longer to
outrun the wake.
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Figure 2.2: Density gradient within a relativistically intense laser pulse exciting a plasma
wave. The resulting gradients in local phase velocity and group velocity result in redshifting
of the carrier frequency and self-steepening of the pulse envelope.

2.4 Spectral shifts, self-steepening, and pump

depletion

Excitation of a plasma wave depletes the energy of the driving laser pulse, as energy is
transferred to the plasma wave. However, both the frequency and shape of the pulse are
modified as well, due to the local gradient of the plasma density within the driver pulse. This
process is shown schematically in Fig. 2.2. For most locations within the pulse, ∂n/∂(kpζ) > 0.
This creates a positive gradient in the local phase velocity, and a negative gradient in the
local group velocity. Respectively, this in turn results in “stretching” of the laser cycles,
“redshifting,” and compression of the pulse envelope, “self-steepening.” All of these processes
are correlated with depletion of the pulse energy and the structure of the driven plasma wave,
and hence laser redshifting is an important diagnostic for LWFA [2, 43].

The frequency shift induced by the ponderomotively-driven plasma gradient within an
intense laser pulse can be derived from Eqn. 2.28. The proper density ρ is taken as a
known function, obtained from the solution of Eqn. 2.29 and evolving on a timescale � ω−1

p .
Note that with this approximation, Eqn. 2.28 effectively becomes a linear homogeneous
equation in a. The driver pulse is represented as a slowly varying envelope with phase
factor: a(ζ, τ) = â(ζ) exp[iΨ(ζ, τ)], with a(ζ, τ) slowly varying compared to the laser period.
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Substituting this representation of a(ζ, τ) into Eqn. 2.28 and taking the approximation of a
smooth, slowly evolving envelope such that |∂â/∂τ | � |∂Ψ/∂τ | and |∂â/∂ζ| � |∂Ψ/∂ζ|, the
following equation for the evolution of the local temporal phase Ψ(ζ, τ) within the pulse is
obtained [44]:

−
(
∂Ψ

∂ζ

)(
∂Ψ

∂τ

)
+ i

∂2Ψ

∂ζ∂τ
=

1

2
k2
pρ(ζ) . (2.38)

This equation can be solved analytically assuming a solution of the form

Ψ(ζ, τ) = k(τ)ζ + Θ(τ) , (2.39)

which is equivalent to restricting the problem to the local phase in a neighborhood of few
wavelengths about an arbitrary point ζ in the pulse. Substituting Eqn. 2.39 into Eqn. 2.38
yields

− k(τ)k′(τ)ζ − k(τ)Θ′(τ) + ik′(τ) = (1/2)k2
pρ(ζ) , (2.40)

with primes denoting derivatives with respect to τ . The above can be reduced to an ordinary
differential equation for a single function k(τ) by taking the partial derivative ∂/∂ζ of both
sides. The equation for the evolution of the local wavenumber is then

[k2(τ)]′ = −k2
p

∂ρ

∂ζ
, (2.41)

which has the solution
k(τ)

k(0)
=

(
1−

k2
p

k(0)2

∫ τ

0

dτ
∂ρ

∂ζ

)1/2

. (2.42)

Using the identities Eqns. 2.30-2.32, this can be rewritten in terms of the potential φ

k(τ)

k(0)
=

(
1−

k2
p

k(0)2

∫ τ

0

dτ
∂

∂ζ
[(1 + φ)−1]

)1/2

. (2.43)

From Eqns. 2.42 and 2.43, it is clear that the density gradients of a plasma wave induce
frequency shifts in laser pulses. Depending on the wake phase, this can either result in an
increase in frequency, “blueshift,” or decrease in frequency, “redshift.” Laser pulses driving
plasma waves will be redshifted according to plasma density, wake amplitude, and propagation
distance. Moreover, the local frequency shift within a laser pulse depends on which part of
the wake is sampled, with the most redshifted frequencies corresponding to the laser energy
in the tail of the pulse that sampled the deepest parts of the wake.

Excitation of a plasma wave depletes the energy of the driver pulse. This “pump depletion”
process is one of the two primary limits on acceleration length and thus energy gain in a
LWFA. The rate of energy depletion can be derived from energy conservation, with the energy
extracted from the pulse given by the work done by the fields on the plasma [32]:

dU

dt
=

∫
E · J dζ (2.44)
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In terms of the vector potential and plasma current per Section 2.3

E · J =
k2
p

4π
ρA · ∂A

∂t
=
k2
p

8π
ρ
∂|A|2

∂t
(2.45)

Once again representing the laser pulse as a complex envelope with a phase factor

a =
1

2
â(ζ, τ) exp(ik0ζ)ê⊥ + c.c. , (2.46)

with k0 the initial center wavenumber. As in the discussion of frequency shifts, slow variation
of the laser pulse envelope is assumed such that |∂â/∂τ | � |∂â/∂ζ|. With the preceding
relations, transforming to the comoving variables ζ, τ , and transforming to the envelope
averaged normalized vector potential [Eqn. 2.46], the evolution of the laser pulse energy can
be written

dU

dτ
=

E2
0

16π

∫
ρ
∂|â|2

∂ζ
dζ = − E2

0

16π

∫
|â|2∂ρ

∂ζ
dζ (2.47)

Within the laser pulse, ∂ρ/∂ζ > 0, and the pulse energy depletes. Eqn. 2.29 can be used to
express Eqn. 2.47 in terms of plasma wave amplitude. Eqn. 2.29 can solved for |â|, and it
possesses a first integral for â = 0 (outside the laser pulse). These are written, respectively
[2, 45, 46]:

|â|2∂ρ
∂ζ

= −2
∂

∂ζ

[
1 + φ+ (1 + φ)−1 + k−2

p

(
∂φ

∂ζ

)2
]

(2.48)

k−2
p

(
∂φ

∂ζ

)2

=

(
Emax

E0

)2

+ 1− φ+ (1 + φ)−1 , (2.49)

with Emax the peak electric field of the plasma wave. Using Eqns. 2.48-2.49, the integral over
the laser pulse in Eqn. 2.47 can be evaluated to obtain

dU

dτ
=
−E2

max

8π
. (2.50)

Normalizing the pulse energy to (k2
0/k

3
p)(E

2
0/8π), the above can be expressed [45]

∂E
∂τ

= −
k3
p

k2
0

(
Emax

E0

)2

(2.51)

with Em the peak field of the plasma wave. Defining the characteristic length over which
laser energy is deposited into the driven plasma wave

∂E
∂τ
≡ − E

Lpd
, (2.52)
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the pump depletion length Lpd is given by

Lpd =
k2

0

k3
p

(
Emax

E0

)2

. (2.53)

Depletion of the driver pulse energy limits the distance over which particles can be accelerated.
However, self-evolution of the pulse, which was not addressed by the simple model used
here, causes plasma wave excitation to cease before Lpd. The principle mechanism at work
is lengthening of the depleted laser pulse: as the increased bandwidth from self-steepening
eventually allows dispersion to overwhelm self-steepening, causing the pulse to lengthen
and lose resonance with the plasma. Simulations show that this occurs at ∼ Lpd/2 in the
nonlinear regime a0 & 1 [45].

A general relationship between frequency redshifting and energy depletion of laser pulses
during excitation of plasma waves can be derived through conservation of the “wave action,”
an adiabatic invariant that exists for k0 � kp. Importantly, this relationship holds in 3D, and
so is of great practical importance as a diagnostic tool for experiments. The wave equation
for the laser envelope in 3D is[

∇2
⊥ + 2

(
ik0 +

∂

∂ζ

)
∂

∂τ
− ∂2

∂τ 2

]
â = k2

pρâ . (2.54)

Associated with Eqn. 2.54 is an adiabatic invariant, the wave action [46, 47]

A =

∫
d2x⊥

∫
dζkpâ

∗[1− ik−1
0 (∂ζ − ∂τ )]â , (2.55)

and the normalized energy

E =

∫
d2x⊥

∫
dζkp

∣∣[1− ik−1
0 (∂ζ − ∂τ )]â

∣∣2 . (2.56)

Adopting the slowly varying envelope approximation such that |∂τ â| � |∂ζ â|, these
quantities can be expressed in the frequency domain as

A =

∫
d2x⊥

∫
dkkp

(
k

k0

)
|â(k)|2 (2.57)

E =

∫
d2x⊥

∫
dkkp

(
k

k0

)2

|â(k)|2 . (2.58)

From action conservation follows a useful general relationship between laser energy
depletion and the mean wavenumber of the laser pulse. Motivated by the form of Eqns. 2.57
and 2.58, the mean wavenumber is defined

〈k/k0〉 ≡ E/A =

∫
d2x⊥

∫
dk
(
k
k0

)2

|â(k)|2∫
d2x⊥

∫
dk
(
k
k0

)
|â(k)|2

. (2.59)
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Because the wave action is adiabatically invariant such that ∂τA = 0, the laser energy
depletion is related to the mean wavenumber by the simple expression [48]

A〈k/k0〉 = ∂τE (2.60)

The preceding result is completely general and applies in three dimensions, and states that
as energy from a laser pulse is transferred into a trailing plasma wave, the laser spectrum
becomes redshifted. Furthermore, if the geometry is restricted to the 1-D case (i.e. the plane
wave or large beam waist limit), energy depletion and redshifting can be further related
to peak electric field within the driven plasma wave via the nonlinear wake equations of
Section 2.3 [48]

A〈k/k0〉 = ∂τE = −∂τQ =
k3
p

k2
0E

2
0

E2
m (2.61)

with Em the peak electric field and

Q =

∫
dζkp|a|2 (2.62)

which is a measure of the steepening of the laser pulse.
Because of the simple relationship between spectral redshifting, laser energy depletion,

and self-steepening, spectral redshifting has become an important diagnostic for laser-plasma
accelerators [2, 43]. Strictly speaking, the three-dimensional nature of the laser-plasma
interaction in a real laser-plasma accelerator invalidates the 1-D geometry in which Eqn. 2.61
is derived and thus a simple relationship between driver depletion and the accelerating field
Em does not exist. This is due to the varying partition of energy between the transverse and
longitudinal fields of the wake as the spot size of the driver evolves [43]. Simple calculations
using the 1-D theory predict the accelerating field to within a factor . 3 in the 3-D case,
and greater accuracy requires the use of PIC simulations. However, as it requires little more
than an optical spectrometer, spectral redshifting measurement is a common and readily
implemented diagnostic for plasma wave amplitude.

For this reason, it is useful for the experimentalist to express the quantities of Eqns. 2.57
and 2.58 in terms of the electric field and ordinary energy spectral density of the laser pulse.
This can be done by via the relation â(k) = i(kp/k)(Ê(k)/E0) to obtain

A =
k3
p

k2
0E

2
0

∫
d2x⊥

∫
dk

(
k0

k

) ∣∣∣Ê(k)
∣∣∣2 (2.63)

E =
k3
p

k2
0E

2
0

∫
d2x⊥

∫
dk
∣∣∣Ê(k)

∣∣∣2 . (2.64)

In turn, these definitions can be used to rewrite the mean wavenumber in terms of the laser
energy spectral density

〈k/k0〉 ≡ E/A =

∫
d2x⊥

∫
dk
∣∣∣Ê(k)

∣∣∣2∫
d2x⊥

∫
dk
(
k0
k

) ∣∣∣Ê(k)
∣∣∣2 . (2.65)
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2.5 Focusing and propagation of intense lasers in

plasmas

The discussion so far has focused on the longitudinal aspects of LWFA. However, transverse
evolution of the driver pulse is just as important to accelerator performance. To begin with,
all LWFA systems rely on focusing optics to concentrate laser energy to a small spot to
reach the intensities required for plasma wave excitation. In a vacuum, a laser pulse with a
Gaussian transverse profile at focus such that a = a0 exp(−r2/r2

0) propagates according to

rs = r0(1 + z2/Z2
R)1/2 (2.66)

I = I0(r2
0/r

2
s) exp

(
−2r2/r2

s

)
, (2.67)

with the Rayleigh length defined
ZR = kr2

0/2 . (2.68)

ZR roughly corresponds to the distance over which a laser pulse will remain focused to high
intensity, and hence the distance over which plasma waves can be excited and particles
accelerated. However, this neglects important plasma processes that can modify the evolution
of the driver spot size. These include effects that cause laser pulses to focus and defocus,
some of which can be used to extend the acceleration length beyond ZR. It might be
expected that a pre-formed radial plasma gradient could suppress diffraction of the driver
and extend the acceleration length. This is indeed the case, and in fact a chief concern of
this dissertation. However, discussion of pre-formed plasma waveguides or “plasma channels”
is left for Chapter 3. This section, rather, is focused on nonlinear processes that affect laser
propagation in homogeneous media.

Intense laser pulses can ionize gas non-resonantly through a number of nonlinear processes
[36, 49]. This allows the use of neutral gas as an accelerating medium for LWFA, as the very
leading edge of relativistically intense driver pulse will ionize the gas into a plasma. However,
ionization can also result in the defocusing of intense laser beams. Ionization will create a
defocusing “plasma lens” that is strongest on-axis, which causes the beam to diverge. This
“ionization defocusing” can prevent a laser pulse from focusing to the maximum intensity
permitted by diffraction.

Ionization defocusing can be suppressed if the half-space upstream of the laser focus can
be kept at vacuum. Thus, nearly all LWFA systems employ target configurations that allow
for the gas or plasma to be localized. These include pulsed supersonic gas jets that create a
gas density profile with a sharp boundary onto which the driving laser pulse can be focused,
or gas cells with pinholes for laser coupling that restrict flow into the target chamber [37].

Intense laser pulses propagating in plasmas undergo nonlinear self-focusing effects arising
from modification of the electron mass by relativistic quiver motion and modification of the
plasma density within the laser pulse by the laser ponderomotive force. These effects can be
useful, serving to suppress the diffraction of LPA drive pulses, increasing peak intensities in
the plasma and the propagation distances over which those intensities are maintained.
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Relativistic self-focusing occurs due to a third-order nonlinearity in the laser field arising
from the relativistic mass associated with the electron quiver motion. From the nonlinear
current of Eqn. 2.24 J = kp(n/n0)a/γ in the weakly relativistic limit, the effective refractive
index within an intense laser beam can be derived [50, 51]

ηr ' 1−
ω2
p

2ω2

(
1− a2

0

2

)
. (2.69)

The normalized spot size R = rs/r0 of a Gaussian laser pulse |â|2 = (a0r0/rs)
2 exp(−2r2/r2

s),
with r0 the minimum spot size in vacuum, evolves according to [50, 51]

d2R

dz2
=

1

ZRR3

(
1− P

Pc

)
, (2.70)

with ZR = k0r
2
0/2 the vacuum Rayleigh length, and P/Pc = k2

pa
2
0r

2
0/32 the normalized power

for linear polarization (for circular polarization a2
0 → 2a2

0). The critical power, Pc, is an
important parameter in high-intensity laser plasma interactions, and worth expressing in
practical units:

Pc(GW) ' 17.4(ω/ωp)
2 . (2.71)

If the laser power P exceeds Pc, the modified refractive index [Eqn. 2.69] will cause the laser
to self-focus, as is evident from the second factor on the RHS of Eqn. 2.70. However, as the
intensity of the self-focusing laser beam grows, other processes prevent it from collapsing to
zero size [51, 52]. One such process is the ponderomotive force: as the laser intensity grows
and the spot size shrinks, the ponderomotive force becomes sufficient to expel plasma electrons
from the beam, suppressing the nonlinear current responsible for relativistic self-focusing.

Though illustrative, the preceding discussion of relativistic self-focusing does not strictly
apply to short pulses L < λp. Modification of the plasma density by the laser ponderomotive
force, i.e. plasma wave excitation, will in fact suppress the relativistic self-focusing process
just described [33, 38, 39].

Accounting for the plasma density response to the laser ponderomotive force using
a perturbative calculation with the Poisson equation of Section 2.3, the refractive index
becomes[39]

ηr ' 1− ωp0
2ω2

(
1− a2ζ2

4

)
, (2.72)

with ζ = kp(z − ct). The intensity required for self-focusing at the head of a short laser
pulse is seen to then be infinite. The mechanism responsible for cancelling of the relativistic
self-focusing for short pulses is the ponderomotively-driven density rise at the head of the
pulse, which can be seen in the solution to the Poisson equation in Fig. 2.1. This creates a
defocusing plasma lens on axis that cancels the effect of the gradient in the relativistic quiver
motion.

Self-focusing of short L ∼ λp laser pulses arises from a combination of relativistic and
ponderomotive effects. The ponderomotive force can support density gradients that suppress
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laser diffraction [2]. There exists a very important regime for LWFA wherein electrons are
completely expelled from the driving laser pulse, forming a roughly spherical ion cavity with
dimensions ∼ λp. This is the so-called “bubble”, “blow-out”, or “cavitation” regime, and
allows for the suppression of laser diffraction over many ZR [2, 53, 54].

The bubble regime is highly nonlinear, and a complete analytic theory does not exist.
However, the condition for bubble formation can be estimated by balancing the ponderomotive
force with the space charge of the ion cavity such that FpN ∼ −qeEr. Taking the limit
a2

0 � 1 and with the bubble radius R ' r0 the characteristic length scale of the interaction,
−mec

2a0/R ∼ −(4π/3)q2
en0R⇒ kpR ' kpr0 ∼ (3a0)1/2. Simulations of bubble propagation

yielded a slightly different semi-empirical formula for “matched” bubble propagation, where
evolution of the laser spot size is minimized [54]:

kpR ' kpr0 = 2a
1/2
0 . (2.73)

Formation of a spherical ion cavity (the eponymous “bubble”) is subject to the additional
condition a0 & 4 [55, 56]. The bubble regime has some useful properties. Because the charge
density inside the ion cavity is uniform, the focusing forces on the electron bunch are linear,
which preserves the transverse RMS emittance [2, 40]. However, bubble propagation can
only be used to accelerate electrons, as nonlinear wave steepening restricts the region with
negative potential in which positively charged particles can be focused to very small regions
between bubbles [40].

Extension of the acceleration length beyond ZR through nonlinear self-focusing processes,
particularly bubble regime propagation, is the subject of active research [16, 54, 57]. However,
the approach has a number of limitations. The head of a laser pulse, which by necessity has
a much lower intensity than the body of the pulse, is subject to weaker focusing forces and
will diffract. This causes the pulse pulse to “etch” away from the front as it propagates [2,
54, 58]. Moreover, the high laser intensities required for a0 ' 4 [54–56] at focus raise the cost
and technical requirements of the laser driver.

As a nonlinear process, self-focusing is difficult to control with precision and the high laser
intensities and plasma wave amplitudes involved constrain other aspects of the acceleration,
particularly the trapping of electrons in the wake which is discussed in the next section.
Finally, the small accelerating and focusing regions for positively charged particles in nonlinear
plasma waves is a severe limitation for collider applications, most of which are aimed at
producing electron-positron collisions [24, 40]. For these reasons, this dissertation is concerned
with the investigation of pre-formed plasma guiding structures in which weakly nonlinear
plasma waves can be driven over many Rayleigh lengths with laser intensities a0 ∼ 1-2.

2.6 Bunch injection

The discussion so far has focused on the excitation of large-amplitude plasma waves by a
relativistically-intense driving laser pulse, with no consideration of the process by which
electrons initially at rest become trapped and accelerated by the wave. Injection of an electron
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bunch into a wave is not straightforward: for particles to “catch” a plasma wave and become
trapped, they must have a velocity comparable to the phase velocity of the plasma wave.
This requires particles be accelerated to relativistic velocities on a timescale ∼ ω−1

p . Moreover,
injection must be precisely controlled to minimize the energy spread of an accelerated bunch.
If the final energy of an accelerated electron is W = qeE(Linj + Lacc), minimizing the spread
in final electron energies requires minimizing the length Linj over which particles are injected
relative to the total length of the accelerator.

Many mechanisms have been implemented for injecting electron bunches into laser-driven
plasma waves [2], including ponderomotive injection by colliding laser pulses and plasma
density transitions[59]. However, this section will focus on the two mechanisms at play in the
experiments of this dissertation, namely, self-injection and ionization injection.

Self-Injection

Sufficiently high plasma wave amplitudes, typically a0 & 3, can cause background electrons
to become spontaneously trapped and accelerated in the wake. Criteria have been derived
[60] for this “self-trapping” or “self-injection” process for 1D plasma waves, however in
most situations of interest for LWFA self-trapping occurs due to combination of transverse
focusing and longitudinal acceleration. As such, self-trapping is effectively a form of 3D wave
breaking, with the electron fluid velocity becoming multiply-valued where particle orbits
cross. Various criteria have been derived analytically for self-trapping in bubble wakes [53,
54, 61, 62], however, these treatments all rely on approximations to cope with the complex
field structure at the rear of a bubble where n/n0 � 1. As such, numerical calculations
with particle-in-cell (PIC) codes are essential tools for studying self-trapping [57, 63, 64] A
comprehensive numerical investigation of self-trapping in the bubble regime performed with
the INF&RNO particle-in-cell (PIC) code produced the trapping criterion [64]

a0 & 2.75[1 + (γp/22)2]1/2 , (2.74)

for matched bubble propagation.
Self-trapping is a convenient means of injecting an electron bunch into a plasma wave,

requiring no special arrangements beyond sufficiently high laser intensity and plasma density.
However, because self-trapping is a complex and highly nonlinear process, precise control
of the resulting electron bunch properties is difficult. Moreover, self-trapping can occur
continuously throughout an accelerating structure, leading to large energy spreads. Therefore,
self-trapping is frequently regarded as a process to be suppressed in acceleration schemes
designed for high quality bunch production [23], and thus for many prospective laser wakefield
accelerator designs Eqn. 2.74 suggests the constraint a0 . 3.
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Figure 2.3: Survival probability calculated from Eqn. 2.75 of some high-Z ions of nitrogen.
Laser pulse is the same as that used for Figs. 2.1 and 2.4.

Ionization Injection

Intense laser pulses will ionize atoms via quantum tunneling. The rate of ionization in the
tunneling regime is given by [49]

D = 4ωaC
(UI/UH)(6n∗−3|m|−1)/2

|E/Ea|2n
∗−|m|−1

exp

[
−2(UI/UH)3/2

3|E/Ea|

]
, (2.75)

with ωa = α3c/re, UI the ionization potential, UH = 13.6eV the ionization potential of
hydrogen, E the laser electric field, Ea = qe/r

2
B ' 0.5TV m−1, rB the Bohr radius, re =

q2
e/mec

2 the classical electron radius, and α the fine structure constant. m is the magnetic
quantum number associated with the angular momentum quantum number l, and the
effective principal and angular momentum quantum numbers are defined n∗ = Z(UH/UI)

1/2

and l∗ = n∗0− 1, with Z the ion charge after ionization and n∗0 the effective principal quantum
number of the ground state. The constant C is defined

C =
24n∗−4−2|m|

n∗Γ(n∗ + l∗ + 1)Γ(n∗ − l∗)
(2l + 1)(l + |m|)!
|m|!(l − |m|)!

. (2.76)
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Figure 2.4: Locations where electrons ionized at rest will be trapped and focused in the
plasma wave of Fig. 2.1 (green trace, = 1), calculated according to the condition Eqn. 2.80.

The probability P that an ion of a given species will survive can be calculated from Eqn. 2.75

according to P = exp
[
−
∫∞
−∞D(t)dt

]
. This expression has been evaluated numerically in

Fig. 2.3 for three high-charge ions of nitrogen.
Electrons ionized from high-Z background ions at the correct phase in a plasma wave with

sufficiently high amplitude will be trapped and accelerated. This can be exploited to inject
electron bunches for laser wakefield acceleration: electrons ionized from high-Z background
ions by the driving laser pulse will be trapped if the laser and plasma parameters are chosen
correctly [65, 66].

Ionization injection provides for a straightforward means to localize injection of an
electron bunch and reduce energy spread, requiring only that a target be designed in such
a way that a high-Z gas can be localized to a small fraction of the acceleration length [66].
Moreover, because electrons are ionized near the peak of the laser field where |a| � 1,
transverse momentum conservation [Eqn. 2.7] dictates that electron bunches trapped in this
way may possess very small transverse momentum spread. Schemes have been proposed
to take advantage of this fact to produce very low emittance bunches by using a trailing
high frequency injection pulse with a� 1 to inject a bunch into a wake generated by a low
frequency driver pulse [67, 68].

The trapping condition for ionized electrons can be derived from the Hamiltonian of an
electron in a plasma wave [30]:

H(u, ψ) = (γ2
⊥ + u2)1/2 − βpu− φ(ψ) , (2.77)



CHAPTER 2. LASER WAKEFIELD ACCELERATION 26

with ψ = kpξ. Defining φ(ψmin) ≡ φmin, the value of the Hamiltonian on the separatrix is

Hs = γ⊥(ψmin)/γp − φmin , (2.78)

i.e. the Hamiltonian of a particle with kinetic energy γp at the minimum wake potential. With
H(0, ψi) the value for electrons ionized from atoms at rest at wake phase ψi, the trapping
condition follows from H(0, ψi) < Hs

γ⊥/γp − 1 + φi > φmin . (2.79)

Note that for electrons ionized at the peak of the laser electric field, a⊥(ψ) and hence γ⊥ = 1.
However, this trapping condition is not generally applicable to the three-dimensional case, as
φmin < 0 and the wake is defocusing in regions where φ < 0. Such electrons that enter the
defocusing phase of the wake will be lost from the wake and not accelerated.

A more restrictive and generally applicable condition that requires electrons to be trapped
without entering the defocusing region of the wake can be obtained by making the replacement
φmin → 0

γ⊥/γp − 1 + φi > 0 . (2.80)

The “injection window” defined by Eqn. 2.80 for the plasma wake of Fig. 2.1 has been plotted
in Fig. 2.4. Electrons ionized in the green shaded regions will be trapped and accelerated in
the wake.

The plasma wave phase velocity is a crucial parameter for trapping, as is evident from
the γp dependence of Eqns. 2.79 and 2.80. In Section 2.2 the linear laser group velocity was
used, i.e. γp = ω/ωp, however this is only valid in the linear limit. In much the same way
it does transverse evolution of a laser pulse, the nonlinear transverse current induced by a
relativistically intense laser pulse modifies the group velocity. Additionally, evolution of the
laser pulse will modify γp through the nonlinear plasma wavelength [69]. Various analytical
corrections to the group velocity to account for the nonlinear current have been proposed [2].
For the calculation shown in Fig. 2.4, the 1D intensity transport velocity of the driving laser
pulse was used, such that γp = γg ' (ω/ωp)(1 + 3a2/8) [70]. Nonlinear period lengthening
has been neglected, essentially equivalent to assuming a nonevolving driver pulse.

Limits to injected charge: beam loading

Bunch charge is limited by shielding of the plasma wave electric field by the bunch space
charge field. When the bunch charge becomes large enough, injection into the wake becomes
impossible, a phenomenon referred to as “beam loading.” The beam loading limit scales
roughly as the bunch charge required to cancel the charge contained in the ion cavity of a
plasma wave. An order of magnitude estimate of this charge can be obtained assuming an
ion cavity with dimensions λp/2: Q . −qen0λ

3
p/8 ∝ n

−1/2
0 . This is a crude estimate, however

it captures the n
−1/2
0 scaling with density obtained in more quantitative treatments of beam

loading in the bubble regime [2] and illustrates the essential physics involved, including the
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counterintuitive fact that injected charge decreases with plasma density due to the dependence
of the wake size on the plasma density.

However, beam loading is complex process that does not lend itself to a single, simple
analytical model. The point at which the space charge of an electron bunch suppresses
injection is dependent on the field structure and particle trajectories through the wake, and
hence the injection mechanism and evolution of the wake.

2.7 Scaling laws

In the absence of diffraction, energy gain in a LWFA is limited by two primary mechanisms.
The first is bunch dephasing, wherein in the accelerated electron bunch outruns the accelerating
phase of the wake. The second is pump depletion, wherein the driver pulse amplitude decays
as electromagnetic energy is transferred into the driven plasma wave. Scaling laws with
respect to density (through the plasma wavelength λp), a0, and laser wavelength λ have been
derived using the linear group velocity for the driver pulse γp = ω/ωp = λp/λ and the field
amplitudes for a resonant flat-top pulse given in Section 2.3. The dephasing[71] and pump
depletion[45] lengths, respectively, are

Ld '
λ3
p

2λ2

{
1 for a2

0 � 1

(
√

2/π)a0/Np for a2
0 � 1

, (2.81)

Lpd '
λ3
p

λ2

{
2/a2

0 for a2
0 � 1

(
√

2/π)a0 for a2
0 � 1

, (2.82)

where Np is the number of periods behind the laser driver pulse. The ideal energy gain
∆W = qeEzLacc can be obtained from these scalings with the expression for the maximum
accelerating field for an optimal, flat-top, linearly polarized laser pulse [Eqn. 2.33]. If
acceleration is limited by dephasing, Lacc ' Ld, and the energy gain is

γd ' π
λ2
p

2λ2

{
a2

0/2 for a2
0 � 1

a2
0/πNp for a2

0 � 1
. (2.83)

As an aside, the a2
0 � 1 case of Eqn. 2.83 agrees with the expression for dephasing limited

energy gain [Eqn. 2.19] derived in Section 2.2, γ = 2γ2
p(φmax + 1), with γp = λp/λ and

Eqns. 2.33 and 2.34. The a2
0 � 1 case differs by a factor π/2.

Alternatively, if acceleration is limited by pump depletion, Lacc ' Lpd/2 and

γpd ' π
λ2
p

2λ2

{
1 for a2

0 � 1

a2
0/π for a2

0 � 1
. (2.84)
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2.8 Design of LWFAs and the central problem of this

dissertation

Some important conclusions can be drawn from Eqns. 2.81-2.84. In the linear regime,
dephasing is the principal limit on energy gain as can be seen from the fact Ld < Lpd for
a2

0 � 1. However, in the nonlinear regime where a2
0 � 1, Ld = Lpd and dephasing and

pump depletion occur on the same length scale. The latter regime is preferred for accelerator
operation, as laser energy and wake bucket phase space are simultaneously exhausted.

Additionally, energy gain scales as n−1, motivating the use of low density plasmas as
accelerating media. However, the n−3/2 scaling of acceleration length dictates that accelerating
structures must be made longer as density is decreased. The n−1 scaling of the energy gain
suggests that increasing accelerator performance entails the pursuit of ever-lower plasma
densities. After all, a plasma density of n = 4× 1012 cm−3 yields a single stage energy gain
of 30 TeV. However, the accelerating gradient in this case is ∼ 100 MV m−1. This offers no
performance advantage over conventional RF accelerators, which is to say nothing of the
difficulties attendant to the creation of the required 300-km-long plasma structure. Rather,
consideration must also be given not only to energy gain but also to the accelerating gradient
∼ γmec

2/Lacc, which can be deduced to scale as n1/2.
The conflicting dependence of energy gain and accelerating gradient on plasma density

thus necessitates a staged acceleration approach, wherein electron bunches are transported
through a series of discrete plasma accelerating structures [40]. At each stage, fresh driver
pulses can be injected and the electron bunch can be re-phased to the wake, enabling operation
at higher densities where the accelerating gradient is higher but the single-stage energy gain
is lower. The inter-stage “coupling length” required to accommodate the laser and electron
beam optics to transport bunches between stages is thus an important consideration for staged
acceleration schemes. Conventional optics would require several meters between accelerating
stages, however the use of plasma mirrors [72–74] and plasma-based electron beam lenses [74,
75] can reduce the required coupling length to the meter scale.

It is straightforward to derive an optimum plasma density that minimizes the total length
of a multi-stage laser wakefield accelerator system. For an accelerator composed of a series of
identical stages, the total system length is minimized when the average effective accelerating
gradient of a single stage is maximized. The “stage-averaged” gradient can be defined
〈W ′〉stage ≡ Wstage/(Lacc + Lc), with Wstage = γpdmec

2, Lacc = Lpd/2, and Lc = 0.5-2 m
the inter-stage coupling length. Given the need to suppress self-trapping and allow for the
acceleration of positrons, it is assumed that the accelerator is driven in the weakly nonlinear
regime such that a0 ∼1-2. a0 = 1.5 for this analysis, which also implies the use of a guiding
structure to suppress diffraction as this laser intensity is below the threshold for bubble
propagation. Assuming the nonlinear pump depletion length and energy gain of Eqns. 2.82
and 2.84, the stage-averaged gradient is given by

〈W ′〉 = mec
2a2

0

λ2
p

2λ2

(
1

π
√

2
a0

λ3
p

λ2
+ Lc

)−1

. (2.85)
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Figure 2.5: Stage-averaged gradient of a staged LWFA system [Eqn. 2.85] plotted as a
function of plasma density, for three values of the coupling length Lc occupied by laser and
electron beam optics for transfer of bunches between acceleration stages. A broad maximum
exists in the range

Eqn. 2.85 has been plotted as a function of plasma density n for three values of the coupling
length Lc in Fig. 2.5. A broad maximum is present in the range 0.5-1 × 1017 cm−3, with
single stage energy gains of 10-30 GeV in meter-scale accelerating structures.

It should be stated that Eqn. 2.85 constitutes a fairly crude model. The limiting expressions
for nonlinear energy gain and acceleration length are not strictly applicable to the weakly
nonlinear a0 = 1.5 case. However, the results derived here approximately reproduce the
maximum gradient obtained a similar analysis using plasma fluid simulations to compute the
accelerating fields and depletion lengths[40]

This analysis indicates a clear approach to the development of laser wakefield acceleration
for high energy collider applications. Specifically, demonstration of ∼ 10 GeV energy gain
in a meter-scale waveguiding structure with density ∼ 1 × 1017 cm−3 is a requirement for
development of a compact, high-energy staged laser wakefield accelerator [24]. This is a
higher single stage energy gain and lower operating density than achieved in a LWFA prior
to the work of this dissertation, the closest example being the experiments of Refs. [76, 77],
in which electrons were accelerated to 4.2 GeV in a 9-cm-long capillary discharge waveguide
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at density 6-8× 1017 cm−3. Development and demonstration of a guiding structure capable
of 7.8 GeV single-stage energy gain, a laser-heated capillary discharge waveguide, is the
principal outcome of the research in this dissertation. Laser propagation in plasma channels,
as well as the specific considerations that led to the development of a laser-heated capillary
discharge, are the subject of the next chapter.
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Chapter 3

Pre-formed plasma channels

3.1 Introduction

As was introduced in the previous chapter, a structured plasma with a positive radial density
gradient can be used to suppress diffraction of a driving laser pulse in a LWFA. Such
a waveguide or “plasma channel” confines the driver energy near the axis via refraction,
analogously to a graded-index optical fiber [78], allowing plasma waves to be driven at large
amplitude over much larger distances than allowed by laser diffraction [2].

When guiding structures are used to mitigate diffraction, beam energies are limited by
depletion of the driver energy and dephasing of the electron bunch from the plasma wave
accelerating field. In the quasi-linear regime, energy gain scales as ∼ a0n

−1
e , with a0 the

laser strength parameter [2], and so the production of higher energy beams requires both
increasing driver energy and reducing plasma density.

A useful model that is applicable to many plasma guiding structures is that of the parabolic
plasma channel, which has a plasma profile of the form

ne(r) = ne0 + r2/πrerm
4 , (3.1)

with re the classical electron radius, ne0 the on-axis density, and rm the matched spot size.
This represents the lowest-order expansion of a radially symmetric plasma profile around
the axis. The on-axis density ne0 sets the limit on energy gain due to dephasing and pump
depletion, and the matched spot size rm characterizes the strength of the guide. If a low
power Gaussian beam is coupled into a channel at focus with rm equal to its beam waist
r0, the guided beam will maintain a constant size while it propagates in the channel. If the
beam waist and matched spot size are not equal, however, the guided beam will undergo
oscillations in spot size as it propagates, degrading accelerator performance and possibly
destroying the guiding structure. In the quasi-linear regime, self-focusing helps confine laser
energy near the axis and relaxes the condition for matched propagation, but this amounts to
a modest increase in the required matched spot size and does not eliminate the need for a
pre-formed plasma channel to guide over long distances [69].
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Many methods have been implemented for the creation of plasma channels capable of
guiding high-intensity laser pulses. These include discharge ablated capillaries [79, 80],
hydrodynamically expanded field-ionized plasmas in gas jets and gas cells [10, 81–83], and
gas-filled capillary discharge waveguides [17, 84]. Gas-filled capillary discharge waveguides
have been an especially successful implementation of the plasma channel concept, having
been used to set records for single-stage LWFA energy gain on two separate occasions at
LBNL: 1 GeV with 40 TW of laser power in 2006 [13] and 4 GeV with 300 TW in 2014 [76].
However, these structures are not particularly tunable. For a fixed plasma density (which
controls energy gain per Chapter 2), the only way to adjust the matched spot size is to
change the capillary radius. Hence the addition of laser heating for additional control of the
plasma profile.

The chapter is organized as follows. Linear theory of laser propagation in parabolic
channels essential to the diagnostic measurements of Chapters 4 and 5 is reviewed in
Section 3.2. Guiding in general, i.e. non-parabolic, density profiles, as well as guiding
in the nonlinear regime, is addressed in Section 3.3. The operation of capillary discharge
waveguides is reviewed in Section 3.4, and the limitations of these devices that necessitated
the development of laser-heated capillary discharges for acceleration to energies approaching
10 GeV are described in Section 3.5. Finally, the physics of laser plasma heating in the inverse
bremsstrahlung regime as applied to modification of the plasma profile within a capillary
discharge is described in Section 3.6.

3.2 Linear propagation in parabolic channels

In this section, key elements of the linear theory of guiding in parabolic plasma channels are
reviewed. Fundamental aspects of Gaussian laser beam propagation in parabolic channels
useful for diagnosing plasma profiles are described. An analysis of a parabolic channel as
waveguiding structure in terms of normal modes is used to derive the group velocity of
guided laser pulses, which is essential for the plasma density measurements of Chapter 4 and
Chapter 5.

In Ref. [85], the paraxial wave equation in a parabolic plasma channel was solved to
obtain simple analytical equations for the envelope evolution for a guided gaussian laser pulse
(i.e. u00 of Eqn. 3.10), including the pulse centroid trajectory and spot size evolution. As
is described in Ref. [86], these analytical results are useful for diagnosing plasma channel
properties and are used extensively in the work described in this dissertation.

The spot size of a Gaussian beam focused at the entrance of a parabolic channel evolves
as it propagates in the channel according to

r2
s =

r2
i

2

[
1 +

r4
m

r4
i

+

(
1− r4

m

r4
i

)
cos(2kβcz)

]
, (3.2)

with rs the laser spot size at longitudinal position z, r0 the laser spot at the channel entrance,
and kβc = 2/kr2

m. From Eqns. 3.1 and 3.2 follows the condition for matched guiding r0 = rm,
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in which case the laser beam will propagate through the channel with constant size. For
r0 6= rm the spot size will oscillate, which as previously stated will degrade accelerator
performance and possibly damage the guiding structure if it involves a structural component
such as a capillary tube.

Similarly, if a laser pulse is injected into a plasma channel off-axis or at an angle with
respect to the axis, the centroid of the pulse will oscillate in the channel as it propagates.
Within a parabolic channel, the centroid trajectory is given by [86]

xc = xi cos[kβcz − φ̃c], (3.3)

with xc the displacement of the centroid from the channel axis at longitudinal position z,
xi = [x2

ci + θ2
i k
−2
βc ]1/2 the oscillation amplitude, xci the injection displacement, θi the injection

angle, and cos φ̃c = xci/xi. This behavior of guided laser pulses is quite useful, and can be
used to measure the matched spot size [86].

Laguerre-Gaussian eigenmode propagation

Propagation of an arbitrary laser pulse in a parabolic plasma channel can be completely
described using a decomposition into the eigenmodes of the channel. This is equivalent
the standard eigenmode analysis of graded-index optical fibers. The eigenmode dispersion
relation, from which the pulse group velocity can be obtained, will now be derived.

Using the scalar wave approximation and taking the electric field to be of the form
E(r, t) = Ê(r)eiω0t, the electromagnetic wave equation reduces to the Helmholtz equation:

∇2Ê + k2
0η(r, ω)2Ê = 0 , (3.4)

with r = x̂i + ŷj + zk̂, k0 = ω0/c, and η(r, ω) the spatially inhomogeneous refractive index.
Using cylindrical coordinates (r, ϕ, z) and restricting to the refractive index to radial variation
only, separation of variables can be applied to Eqn. 3.4 according to Ê = R(r)F (ϕ)Z(z):

1

r

d

dr

(
r

dR

dr

)
+

[
k2

0η(r, ω)2 − k2 − p2

r2

]
R = 0 (3.5)

d2F

dϕ2
+ p2F = 0 (3.6)

d2Z

dz2
+ k2Z = 0 (3.7)

Eqns. 3.6 and 3.7 admit solutions F ∝ e±ipϕ and Z ∝ e±ikz, respectively. The periodic
boundary condition in azimuth restricts p to integer values. The dispersion equation for the
waveguide is obtained through the solution of Eqn. 3.5. Note that this derivation has thus
far been agnostic to the form of the index η(r, ω), and hence Eqns. 3.5-3.7 are applicable to
arbitrary radial index profiles.
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Assuming a parabolic plasma density profile of the form

ne = ne0 + ∆ne
r2

r2
m

, (3.8)

η(r, ω)2 becomes

η2 = 1−
ω2
p

ω2
−

∆ω2
p

ω2

r2

r2
m

(3.9)

with ∆ωp
2 = 4πq2

e∆ne/me. In this case, Eqn. 3.4 admits the Laguerre-Gaussian functions

ump(r, ϕ, z) =

√
2m!

π(m+ |p|)!

(√
2r

rm

)|p|
L|p|m

(
2r2

r2
m

)
exp

[
− r

2

r2
m

+ i(pϕ+ βz)

]
(3.10)

as solutions, with L
|p|
m the generalized Laguerre polynomials, m ≥ 0 the radial mode number, p

the azimuthal mode number, and m, p both integers. The modes [Eqn. 3.10] are orthonormal
according to the inner product

〈ump|um′p′〉 ≡
∫ 2π

0

∫ ∞
0

rumpum′p′drdz = δmm′δpp′. (3.11)

Substituting the radially varying factors of Eqn. 3.10 into Eqn. 3.5, the condition for matched
guiding

∆ne =
1

πrer2
m

=⇒ ne = ne0 +
1

πrer4
m

r2 (3.12)

is recovered, with re the classical electron radius, and the dispersion relation

k2 =
ω2

c2
−
ω2
p

c2
− 4(2m+ |p|+ 1)

r2
m

(3.13)

is obtained. Given the matched spot size rm and the field at the entrance of the waveguide,
pulse propagation can be modeled entirely using Eqns. 3.10, 3.11, and 3.13.

The quantity of greatest interest is the normalized group velocity in the waveguide
βg ≡ c−1dω/dk, which can be obtained by differentiating both sides of Eqn. 3.13 with respect
to k:

β2
g = c

k2

ω2
= 1−

k2
p

k2
0

− 4(2m+ |p|+ 1)

k2
0r

2
m

(3.14)

βg ' 1−
k2
p

2k2
0

− 2(2m+ |p|+ 1)

k2
0r

2
m

(3.15)
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Laguerre-Gaussian envelope propagation

A nonparaxial treatment of higher-order Laguerre-Gaussian mode propagation in parabolic
channels is presented in Ref. [48], the results of which are used extensively in the analysis
of group-velocity-based plasma density measurements reported here. The simple analytical
formulas obtained in Ref. [48] are often more convenient for modeling the group velocity
of multimode or mismatched beams in parabolic channels than decomposition into normal
modes of the channel as outlined in Section 3.2. The laser pulse normalized vector potential
is expressed in terms of the envelope â and comoving variable ξ = z − βgct as a(r, t) =
â(r⊥, ξ, z) exp(ik0z − iωt), with The global group velocity is defined

βG = βg +
d〈ξ〉
dz

, (3.16)

with βg per Eqn. 3.14 and the pulse centroid

〈ξ〉(z) =

∫∞
0

dr⊥
∫∞
−∞ ξ|â(r⊥, ξ, z)|2dξ∫∞

0
dr⊥

∫∞
−∞ |â(r⊥, ξ, z)|2dξ

. (3.17)

For a transverse beam profile given by a Laguerre-Gaussian mode [Eqn. 3.10] such that
â = a0f(ξ, z)um,p(r⊥), the global group velocity is constant [48]

βG = 1−
k2
p

2k2
0

− (2m+ |p|+ 1)

k2
0r

2
m

(
1 +

r4
i

r4
m

)
. (3.18)

Alternatively, the “centroid group velocity,” defined analogously to Eqn. 3.16 but in terms of
the transverse centroid of the pulse, i.e.

〈ξ〉c(z) =

∫∞
−∞ ξ|â(0, ξ, z)|2dξ∫∞
−∞ |â(0, ξ, z)|2dξ

, (3.19)

is given by [48]

βG,c(z) = 1−
k2
p

2k2
0

− 2(2m+ |p|+ 1)

k2r2
m

{
r2

0r
2
m sec2 (kβcz)

r4
0 + r4

m tan2 (kβcz)

+
2r2

0r
2
m(r4

m − r4
0)(kβcz) tan (kβcz) sec2 (kβcz)

[r4
0 + r4

m tan2 (kβcz)]2

}
. (3.20)

Note that unlike the global group velocity [Eqn. 3.18], the centroid group velocity [Eqn. 4.26]
varies longitudinally. For density measurements, the longitudinally-averaged group velocity
βG,c ≡ L−1

∫ L
0
βG,c(z)dz is the measurable quantity of interest, which can be obtained by

integrating Eqn. 3.20:

βG,c(L) = 1−
k2
p

2k2
0

−2(2m+ |p|+ 1)

k2r2
m

r2
0

r2
m

2 tan−1[ r
2
m

r20
tan(kβcL)]

r2
0r

2
mkβcL

+
2

r4
0 + r4

m + (r4
0 − r4

m) cos(2kβcL)

 . (3.21)
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3.3 Guiding of high-intensity laser pulses in plasma

channels, guiding in general density profiles

Treatment of high power laser propagation in plasma channels must included nonlinear
effects arising from relativistic electron motion and modification of the plasma density by the
laser ponderomotive force, as described in Section 2.5. Self-consistent treatment of the laser
propagation including these effects is described by the nonlinear paraxial wave equation [87](

∇2
⊥ + 2ik

∂

∂z

)
â = k2

pρâ (3.22)

with ρ ≡ ne(ζ, r)/ne0γ(ζ, r) the normalized proper density and kp the on-axis plasma wavenum-
ber.

As a Gaussian pulse will only maintain a fixed spot size in a plasma channel in the linear
regime, a more general definition of the matched spot size in the nonlinear regime is needed.
Additionally, this dissertation is concerned primarily with guiding laser-heated capillary
discharges, which have density profiles that often are often significantly nonparabolic. In this
dissertation, the general matching condition derived in Ref. [87] is used to define a matched
spot size in these circumstances. For a given radial plasma profile, the matched spot size is
defined as the laser spot size w0 such that the laser’s second-order transverse moment

σ2
ζ (z) =

∫∞
0
rdrr2|â(ζ, r, z)|2∫∞

0
rdr|â(ζ, r, z)|2

(3.23)

remains constant. The quasi-matched laser pulse is assumed to have a Gaussian envelope
with flat phase fronts:

âqm = a0
w0

w(ζ)
f(ζ)e−r

2/w2(ζ) , (3.24)

with w(ζ) the slice-dependent spot size, f(ζ) the temporal profile of the laser pulse (0 ≤
f(ζ) ≤ 1). Using Eqn. 3.22 the following quasi-matched guiding condition is obtained [87]:

k2
p

∫ ∞
0

drrρ(ζ, r)

(
2r2

w2(ζ)
− 1

)
exp

(
− 2r2

w2(ζ)

)
=

1

2
=⇒

dσ2
ζ

dz
= 0 . (3.25)

One consequence of the plasma response to the laser ponderomotive force is that, at high
intensity, a quasi-matched laser pulse no longer has a single spot size. Rather, the spot size
w(ζ) tapers, decreasing towards the back of the pulse due to the stronger plasma gradient
present in the driven plasma wave.

In general, Eqn. 3.25 cannot be solved analytically, due to the need to self-consistently
model the proper density ρ(ζ, r) with the plasma fluid equations. However, for the case of
very low intensity laser pulses a0 → 0, Eqn. 3.25 becomes

4πre

∫ ∞
0

drrne(r)

(
2r2

r2
m

− 1

)
exp

(
−2r2

r2
m

)
=

1

2
, (3.26)
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Figure 3.1: Schematic of a gas-filled capillary discharge waveguide. The center channel, the
“capillary” is filled with neutral gas, which breaks down and forms an arc discharge when high
voltage is applied to the electrodes at the ends. The ends of the capillary and the electrodes
are open to allow passage of the laser and electron beam.

with the laser pulse once more characterized by a single matched spot rm in the absence of
a plasma wave. This is the definition of matched spot size used for non-parabolic plasma
profiles in this dissertation, as is discussed in Chapter 4 and Chapter 5.

3.4 Gas-filled capillary discharge waveguides

A capillary discharge waveguide, pictured schematically in Fig. 3.1, consists of a cylindrical
capillary tube filled with neutral gas in which a wall-stabilized arc discharge is driven. A
pulsed high-voltage power supply connected to electrodes on both ends of the capillary drives
the arc discharge, with duration ∼ 1 µs and peak current 100-1000 A, to form the plasma
channel [17, 88]. Characteristic plasma densities and temperatures are 1017-1019 cm−3 and a
few eV, respectively [20, 22, 84, 89–91]. The ends of the structure, including the electrodes,
are open to vacuum to allow for laser and electron beam coupling.

To survive the thermal loading of both repeated discharges and laser shots, discharge
capillaries are typically fabricated from refractory materials [17], The capillaries used in the
work of this dissertation were fabricated from synthetic monocrystalline sapphire (Al2O3),
with transversely symmetrical halves of the capillary tube and gas slots laser-machined into
sapphire plates that were subsequently bonded and clamped together [19, 88]. Such capillaries
have been shown to survive millions of discharges with micron-scale wall erosion [92]. In
the LWFA experiments of this dissertation, typical operational lifetimes of capillaries are
thousands of laser shots.

The plasma formed in a capillary discharge is dominated by thermal pressure and ohmic
heating. After a the arc establishes itself following a ∼ 100ns breakdown and initiation phase,
the plasma reaches the so-called “quasi-static” condition, where the plasma density profile
becomes independent of the discharge current and ceases evolving. However, the plasma
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Figure 3.2: Quasi-static model of Ref. [84] solved for a 800 µm diameter capillary with
ne0 = 5× 1017 cm−3 and discharge current 100 A.

temperature depends on the discharge current according to Te ∝ I2/5. Once the quasi-static
condition is reached, the plasma channel is very stable, with density and matched spot size
repeatable to within < 1% [93].

The density minimum on axis that enables optical guiding is a consequence of heat
conduction from the plasma to the capillary walls combined with nearly uniform pressure
across the capillary: ne ∝ T−1

e with Te decreasing with radius. The semi-analytic “quasi-static
model” for the plasma profile in a capillary discharge is presented in Ref. [84]. The model
is based on an approximation of the classical plasma transport equations [94, 95] assuming
radial symmetry, and requires no special computational techniques beyond the solution of
a single ordinary differential equation. The output of this model has been plotted for an
800 µm diameter capillary in Fig. 3.2. The density profile of a capillary discharge waveguide
is closely approximated by a parabola near the axis, with the quasi-static model giving the
scaling [84]

rm(µm) ' 1.37× 105rc(µm)1/2ne0(cm−3)−1/4 , (3.27)

with rc the capillary radius.
Scalings from other computational and experimental studies have been obtained [19,
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88–90], however the rm ∝ r
1/2
c n

−1/4
e0 scaling remains a common feature. This scaling dictates

that the only means of tuning rm and ne0 in a capillary discharge waveguide are the fill
gas pressure and the capillary radius, with the latter fixed at the time of fabrication. The
matched spot size rm then becomes a strictly decreasing function of ne0, leaving a capillary
discharge waveguide with effectively one degree of freedom.

3.5 On the need for a laser-heated capillary discharge

waveguide

The coupling of rm and ne0 inherent to capillary discharge waveguides is problematic for
efforts to increase the performance of channel-guided LPAs. First, reducing ne0 to increase
energy gain requires reducing the capillary radius to avoid increasing rm and weakening the
channel, which in turn exposes the capillary to laser damage from the wings of the driver
beam. For example, reducing plasma density from 7.8 × 1017 cm−3, which produced 4.2
GeV with 300 TW of power from the BELLA laser, to 2.7× 1017 cm−3, which produced 7.8
GeV with 880 TW of laser power, would have required a 40% decrease in capillary radius in
order to maintain the same matched spot size. However, the previous experiments on the
BELLA laser with 500 µm diameter capillaries operated at ne0 = 7.8× 1017 cm−3 observed
destruction of the capillary by energy in the wings of the focal spot when laser power was
increased above 300 TW [76]. Therefore, capillaries of that size or smaller cannot be used at
petawatt-scale laser power, even with state-of-the-art laser modes.

Additionally, independent control of rm and ne0 is useful for tuning of a laser-plasma
accelerator: rm can be optimized for matched guiding and ne0 can be optimized for acceleration,
e.g. pump depletion and bunch dephasing, or bunch injection. Furthermore, at high laser
power, the channel matched spot size, on-axis plasma density, plasma wave phase velocity,
and laser intensity are all coupled [69]. Independent control of ne0 and rm adds a degree of
freedom that may be useful for optimization under this coupling. For example, an injection
scheme may place constraints on laser intensity and plasma density, requiring an independent
adjustment of matched spot size to preserve guiding.

In order to meet the requirements on rm and ne0 for high energy electron beam production
without exposing the capillary to laser damage, and independently tune rm and ne0 to
optimize accelerator performance, greater control of the plasma profile beyond that afforded
by a conventional gas-filled capillary discharge is needed. To provide this additional control
of the plasma profile independent of the capillary radius, the laser-heated capillary discharge
was developed [18, 21, 22]. In this scheme, a joule-level, nanosecond-scale laser pulse is
coupled into a capillary discharge waveguide, which heats the center of the plasma through
inverse-bremsstrahlung absorption. The expansion of the heated plasma reduces the density
on-axis, creating a channel with a smaller matched spot size than the capillary discharge alone
[18]. This new structure recently enabled the production of electron beams with energies up
to 7.8 GeV [21, 22].
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3.6 Plasma response to inverse-bremsstrahlung heating

In a laser-heated capillary discharge, a channel is formed by the expansion of plasma near
the discharge axis upon heating by an energetic laser pulse propagating collinearly with the
capillary axis. Similarly to other types of laser-formed or laser-enhanced plasma channels,
heating and expansion of the plasma on axis enhances the channel by lowering on-axis density
and the matched spot size [78, 96]. In the regime under consideration, heating occurs through
inverse-bremsstrahlung absorption [97–99], which is described by the imaginary part of the
complex permittivity ε = ε′ + iε′′. For the relatively low laser intensities (∼ 1012 W/cm2)
used in the experiments described here, the inverse-bremsstrahlung power density in the
Kramers approximation is given by [97]

QIB = kε′′I =
25/2π1/2

3

Zq4
eneI

(kbTe)3/2m
1/2
e c

ω2
p

ω2
Λ, (3.28)

with ω, k, and I the laser frequency, wavenumber, and intensity, qe and me the electron
charge and mass, Z the ionization degree, ne the electron density, Te the electron temperature,
kb the Boltzmann constant, and the Coulomb logarithm

Λ = max

{
π√
3
,
1

2
ln

25(kbTe)
3

exp(5Cγ)ω2Z2q4
eme

}
, (3.29)

where Cγ = 0.57721... is the Euler-Mascheroni constant. Eq. 3.28 is valid when Te �
Z2q4

eme/~2 ∼ 27Z2 eV, and ω � ωp.
Inverse-bremsstrahlung absorption is a collisional process. Using Eq. 3.28, the coupled

rate equations describing the evolution of the electron and ion temperatures (neglecting fluid
motion) can be written in terms the electron ponderomotive energy Ep = 2πq2

eI/mcω
2 and

an effective collision frequency νe,IB [84, 100]:

d(kbTe)

dt
= νe,IBEp − 3

me

mi

νeikb(Te − Ti) (3.30)

d(kbTi)

dt
= 3Z

me

mi

νeikb(Te − Ti) (3.31)

with mi the ion mass, Ti the ion temperature,

νe,IB =
27/2π1/2

3

Zq4
ene

m
1/2
e (kbTe)3/2

Λ (3.32)

from rearranging the factors of Eq. 3.28,

νei =
4
√

2πq4
eZ

2niλei
3
√
me(kbTe)3/2

, (3.33)

λei =
1

2
ln

9(kbTe)
3

4πZ2q6
ene(1 + ZTe/Ti)

, (3.34)
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the thermal electron-ion collision frequency and Coulomb logarithm from Braginskii transport
theory [84, 94, 101], and ni the ion density.

The first term on the RHS of Eqn. 3.30 describes the heating of electrons by the extraction
of ponderomotive energy at the effective collision frequency Eqn. 3.32, which is closely
analogous to resistive heating and obeys a very similar scaling law:

[
dTe
dt

]
IB

∝ neI

ω2T
3/2
e

Λ. (3.35)

It is apparent from this relation that the heating rate increases with initial plasma density
and laser intensity, and decreases with temperature. Typical conditions for the experiments
described here involve initial plasma temperatures Te of a few eV, initial densities ne of a few
1017 cm−3, and peak laser intensities up to 4× 1011 W/cm2, yielding a typical heating rate
of a few eV/ns.

The other terms on the RHS of Eqs. 3.30 and 3.31 describe inter-species heating of the
ions and electrons. The structure of Eqs. 3.30 and 3.31 indicates that laser absorption by
the plasma first proceeds through electron heating via inverse-bremsstrahlung, followed by
collisional ion heating by the electrons. Therefore, the absorptivity of the plasma is not
only dependent on the thermodynamic state of the electron fluid, but also its coupling to
the ion fluid. Generally, this implies that Te > Ti during plasma heating if it occurs on a
shorter timescale than the characteristic time for electron-ion heating τT = mi/3meνei. For
the typical plasma parameters previously stated, the electron collision time 1/νei . 1 ps from
Eq. 3.33 yields an electron-ion heating timescale τT of order 100 ps. Hence, for the plasmas
considered here, the approximation Te ≈ Ti can be made for inverse-bremsstrahlung heating
with few-ns laser pulse lengths, in which case the absorbed laser energy can be regarded as
being equally partitioned between electrons and ions instantaneously and the temperature
evolution is given by

d(kbTe)

dt
=

d(kbTi)

dt
=

1

2
νe,IBEp . (3.36)

The effect of plasma motion in response to heating on the propagation of the heater beam
is an important consideration in the formation of a channel by laser heating. The effect
becomes important if the laser pulse length is similar to the time scale for plasma motion,
which can be estimated with the ion acoustic speed cs =

√
(kbTe + kbTi)/mi, with Ti and mi

the ion temperature and mass. For plasma parameters representative of these experiments,
and taking the spatial scale length L equal to the heater laser beam waist r0,h = 82 µm, the
time scale for plasma motion is ∼ 3 ns.

The first simulations of laser-heated capillary discharges considered a 1 ns pulse length,
which was chosen to be shorter than the plasma motion timescale [18]. In this regime, the
heater beam propagation is mostly decoupled from plasma motion because the plasma is nearly
stationary during the pulse, and the pulse propagates as in a linear medium. However, this
also requires that the heater be matched to the initial discharge channel to avoid oscillations
and nonuniform energy deposition. This limits the heater spot size to the matched spot size
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of the initial discharge channel, which for the parameters of interest is quite large, and thus
limits the matched spot size of the heated channel. In Ref [18]., the heater beam reduced
the matched spot size of the channel from 145 µm to 100 µm. This is much larger than
the ∼ 60 µm focal spot of the BELLA laser, and insufficient for good confinement of driver
energy toward the axis, even accounting for self-focusing effects.

It can be advantageous to use heater pulses significantly longer than the few-ns plasma
motion time scale. In this regime, plasma expansion during heating forms a channel during the
rise of the pulse, and therefore much of the energy is guided with a smaller effective matched
spot size than the discharge alone. This “self-channeling” effect relaxes the requirement to
match the heater beam spot to the initial discharge channel, enabling the production of
smaller matched spot sizes than in the short pulse regime [21, 22]. To take advantage of this
effect, an 8 ns heater pulse length was used in the electron beam production experiments in
Refs [21, 22]. and the experiments reported here.

From the preceding discussion, it is clear that formation of a plasma channel in a capillary
discharge by laser heating is dynamic process. From the ion acoustic speed and the laser pulse
length, the characteristic timescales involved are on the order of nanoseconds. Hence, effective
implementation of a laser-heated gas-filled capillary discharge as a guiding structure for
LWFA requires detailed characterization of the plasma evolution. Diagnostic measurements
and simulations of channel formation in laser-heated capillary discharges, including both the
on-axis density and the matched spot size, are the subject of Chapters 4 and 5.
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Chapter 4

Diagnostic measurements of
laser-heated capillary discharges and a
parameter study of channel properties

4.1 Introduction

In this chapter, experiments are described in which key properties of laser-heated capillary
discharges are measured, specifically the on-axis plasma density and matched spot size. These
are critical parameters for accelerator performance, with on-axis plasma density determining
the maximum energy gain as discussed in Chapter 2, and matched spot size determining the
extent to which the driver laser energy is confined to the channel as discussed in Chapter 3.
Magnetohydrodynamic simulations of laser-heated capillary discharges were performed using
the MARPLE code[102], and found to be in excellent agreement with measurements. It was
found that laser-heating produced plasma channels with considerably smaller matched spot
size and lower on-axis plasma density than possible using conventional capillary discharge
waveguides of the same radius, and it was found that channel parameters could be tuned over
a wide range by adjusting laser and plasma parameters. Additionally, the work described here
is the source of the channel parameters reported for the electron acceleration experiments
described in Chapter 6 and Refs. [21, 22]. The text and figures of this chapter have been
adapted from the author’s previously published work, Ref. [20].

The longitudinally-averaged plasma density on the channel axis ne0 was diagnosed by
measuring the average group velocity of the guided probe pulses using spectral interferometry
[91, 103]. The group velocity of a plane electromagnetic wave propagating in a homogeneous
plasma is βg = vg/c ' 1 − βne0 , with βne0 = k2

p/2k
2, and kp and k the plasma and laser

wavenumbers. The small term βne0 is proportional to plasma density and manifests as an
additional delay of the probe pulse compared to propagation through vacuum. Neglecting
transverse variation of the plasma profile, for a 20 cm capillary with an on-axis density of
3 × 1017 cm−3, this yields an additional group delay ∆T ≈ 60 fs relative to vacuum. This
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delay is too small to be resolved electronically (e.g. with a photodiode), but it is readily
resolved with spectral interferometry.

In practice, the average group velocity is obtained by measuring the additional group
delay induced by propagation through the channel as compared to vacuum. The experiment
configuration for performing this measurement is shown schematically in Fig. 4.1. The plasma
channel is placed in one arm of a Mach-Zehnder interferometer, the ”probe line,” on a stage
that allows it to be moved in and out of the beam path. The other arm of the interferometer,
the ”reference line” is static. The relative delay between the probe and reference pulses is
measured after they are recombined at the output of the interferometer. The delay itself
is measured from the spectrum of the combined probe and reference pulses, which produce
a frequency-domain interferogram that encodes the delay between the two pulses. The
additional delay induced by the plasma channel is determined by measuring the relative pulse
delay with the channel out of the probe line Tvac (Fig. 4.1(a)), then with the channel inserted
in the probe line T (Fig. 4.1(b)), and then taking the difference ∆T . Mathematically:

∆T ≡ T − Tvac =
1

c

∫ L

0

(
1

βg
− 1

)
dz, (4.1)

with L the path length traversed in the channel, which is typically the capillary length. The
group velocity βg of a laser pulse propagating in an longitudinally uniform parabolic channel
is given by the following formula [48]

βg =
vg
c
' 1− βg,ne − βg,geo (4.2)

with the component βg,ne = k2
p/2k

2 from the on-axis plasma density ne0, and the geometrical
component βg,geo ∝ r−2

m from the finite matched spot size of the channel. The total contribution
of βg,ne0 and βg,geo is typically . 10−4, and so Eq. (4.1) can be simplified to the following
expression, substituting in Eq. (4.2):

∆T ' 1

c

∫ L

0

(βg,ne0 + βg,geo) dz,

yielding

∆T ' L

c
(βg,ne + βg,geo) . (4.3)

Note that in order to obtain the density from βg,ne0 , the geometrical component of the group

velocity βg,geo, and so rm, must be known to measure ne0. Therefore, measurements of rm are
required to diagnose ne0 accurately. For the experiments described in this chapter, rm was
diagnosed using the properties of laser guiding in plasma channels described in Chapter 3
and Ref. [86].

This chapter is organized as follows. In Section 7.2, the experiment setup is described,
including the heater and probe lasers, and the spectral interferometer. In Section 4.3, the



CHAPTER 4. DIAGNOSTIC MEASUREMENTS OF LASER-HEATED CAPILLARY
DISCHARGES AND A PARAMETER STUDY OF CHANNEL PROPERTIES 45

𝑇𝑣𝑎𝑐

Probe 
Line

R
eferen

ce 
Lin

e

Input 
Pulse

(a) ”Vacuum pulse delay” Tvac measurement, with the plasma channel (i.e. capillary) removed
from the beam path.
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(b) Pulse delay measurement with the plasma channel inserted into the probe beam path.

Figure 4.1: Schematic representation of the group-velocity-based plasma density diagnostic.
The delay induced by the plasma channel relative to vacuum, from which the density is
can be calculated via Eqn. 4.25, is obtained by taking the difference between to the delay
measured for the probe pulse propagating in vacuum (a) and the delay measured for the
probe pulse propagating through the plasma channel (b).
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analysis algorithm used to analyze the spectral interferograms is described. The matched
spot size diagnostic is described in Section 4.4. Systematic errors from geometrical effects,
specifically finite matched spot size and asymmetry of the channel formed by laser-heating,
are described in Section 4.5. The results of experimental measurements and simulations of
the formation of a plasma channel by laser heating are presented in Section 4.6. Tuning of
channel properties via laser and plasma parameters is described in Section 4.7. Conclusions
are summarized in Section 4.8.

4.2 Experiment setup and methods

The experiments described in this chapter were performed on the Plasma 2 test stand, which
is a vacuum chamber independent of the main BELLA laser beam line and is used for LPA
target development. The setup used for the experiments described in this chapter is pictured
schematically in Fig. 4.2. The capillary and heater laser system were selected to match the
parameters of the electron acceleration experiments of Refs [21, 22]. and Chapter 6.

The capillary design is essentially the same as the example shown in Chapter 3. A 800
µm-diameter, 20 cm-long hydrogen-filled capillary was used, driven by a high voltage pulser
generating current pulses of the form shown in Fig. 4.3, which peak at 450 A with a FWHM
of 500 ns. An electronic pressure controller was used to control gas flow into the capillary,
and thus the fill pressure, while a separate set of gas lines and pressure gauges were used to
measure the fill pressure. The capillary was mounted on a motorized hexapod stage inside the
vacuum chamber, allowing it to be positioned in 6-axes with micron position. The hexapod
was used to align the capillary to the laser beams, as well as move it in and out of the beam
path for performing delay measurements as described in Section 4.1.

A frequency-doubled Continuum Powerlite Nd:YAG laser system was used for laser
heating, which supplied 900 mJ, 8 ns FWHM pulses at 532 nm at 10 Hz, with a 12 mm beam
diameter. The repetition rate of the heater laser was cut to 1 Hz to match the repetition
rate of the discharge using a mechanical shutter installed after the laser output (not shown).
The laser energy was tuned using the combination of a half-wave plate and polarizer. After
the polarizer, a 6 mm diameter ceramic iris was installed (not shown), as it was found that
excluding the outer portions of the laser beam improved the quality of the focal spot. The
beam was expanded using a Keplerian telescope, consisting of a 550 mm plano-convex lens
H-TL1 and 1100 mm plano-convex lens HTL-2 165 cm downstream. This particular telescope
configuration was chosen to enable the use of a spatial filter at the beam waist, however
this capability was not used for these experiments. A vacuum extension is installed between
HTL-1,2 to avoid ionization of air at the beam waist. After HTL-2, the beam propagated
185 cm to the final focusing lens FF-1, a 1660 mm plano-convex lens. The slightly divergent
heater beam had a diameter of ∼ 15 mm at FF-1, and propagates a further 170 cm to
focus inside the plasma 2 vacuum chamber, being coupled in through an AR-coated vacuum
window. The resulting laser focal spot had 1/e2 spot size of 82 µm. The heater laser beam
was non-Gaussian and significantly asymmetric in the midfield, which is evident in the beam
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Figure 4.3: Discharge current trace measured with an inductive current monitor on the
high voltage lead and a 500 MHz bandwidth oscilloscope.

profiles shown in Fig. 4.4(b). After accounting for transmission through all the optics of the
setup, the heater laser system delivered a maximum pulse energy of 300 mJ at the target.
The parameters of this heater laser system—namely pulse energy, pulse length, and spot
size—closely match those of the heater laser used for the electron acceleration experiments of
Refs. [21, 22] and Chapter 6, albeit with greater beam asymmetry.

A separate probe laser was used to diagnose channel properties. It consisted of 4 nJ
sub-ns pulses at 780 nm with 30 nm bandwidth carried by a single mode fiber . which were
injected collinearly with the heater laser using a fiber collimator and Galilean telescope. The
probe pulses originate at the BELLA laser frontend, where they are extracted as rejected
light from a polarizer after the regenerative amplifier and then coupled into the single mode
fiber through a microscope objective. The pulses are then transported through 30 m of
single-mode fiber to the Plasma 2 setup. Pulse lengths are ∼ 200 ps at the fiber input. Given
the group velocity dispersion GVD ≡ d(v−1

g )/dω = 36 fs2/mm in fused silica [104], the fiber
guided probe pulses are stretched an estimated additional ∼ 100 ps during their propagation
to the test stand.

The probe beam is launched into the Plasma 2 setup using a f = 12 mm fiber collimator
for an initial beam diameter of 2.5 mm, and expanded with a magnification 5× Galilean
telescope, consisting of a -50 mm plano-concave (P-TL1) lens and 300 mm plano-convex lens
(P-TL2) installed 25 cm apart. The probe beam was injected into the system collinearly with
the heater beam through the dichroic mirror DCM-1, and focused to the target by the final
focus lens FF-1. The probe beam was near Gaussian at focus, as can be seen in Fig. 4.4(a)
and Fig. 4.5, with a 73 µm waist. However, the multimode content of the probe beam is
evident away from focus in Fig. 4.4(a), and the probe was found to have a beam quality factor
M2 = πθ0r0/2λ . 1.3, with θ0 the divergence angle, and λ the laser wavelength (M2 = 1 for
a pure Gaussian TEM00 beam) [105, 106].
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(a) Probe beam. Note the asymmetry about z = 0 mm, and the fluence minimum at z = −31.2 mm,
indicating multimode content.

(b) Heater beam.

Figure 4.4: Fluence profiles of the laser beams, plotted for various distances from focus
(z = 0 mm), defined as the location of maximum peak fluence. Colorscale is normalized for
each image.

Separate CCD cameras for each laser wavelength were used for beam tuning and imaging
the transmitted laser beam at the capillary exit. For accurate measurements, it is essential
to align the probe precisely to the laser-heated channel. This was done by first aligning the
probe and heater beams to each other in vacuum, and then aligning the capillary to the
heater beam. To facilitate this, the probe imaging line consisted of a 400-700 nm achromatic
doublet in the chamber (DL-1) after the capillary and a second 400-700 nm doublet (DL-2)
before the stage mounted microscope lens and camera, and was capable of imaging the heater
beam with an appropriate change of filtration. This system was used to overlap the probe
and heater beam to within ≤ 20 µm in position and ≤ 100 µrad in angle.

The relative delay of the probe and heater pulses, as well as the heater pulse shape, were
recorded for every shot with a pair of photodiodes upstream of the target. Leakage light
from the dichroic mirror DCM-1 was separated into both wavelengths with a dichroic optic,
which were then sent to the photodiodes. The RMS timing jitter between the two pulses was
∼ 0.3 ns

A fiber-based spectral interferometer was built for performing the group velocity mea-
surements. A 50-50 fiber splitter upstream of the fiber collimator split the probe pulses,
sending one copy through the target and another to the reference arm of the interferometer.
A movable dichroic optic was positioned inside the target chamber after the collimating
doublet that can be moved into the beam line to send probe pulses to the interferometer for
group velocity measurements. Although the spectrometer does not image the capillary exit,
the collimating doublet DL-1 and the lens SL-1 before the slit render the delay measurement
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Figure 4.5: Lineouts of the laser modes at focus of Fig. 4.4.

insensitive to displacement and angular deflection of the probe beam in the capillary exit
plane. Ray tracing simulations[107] showed that these effects contribute an uncertainty . 1
fs, or . 5× 1015 cm−3 in these experiments.

4.3 Group velocity measurements and spectral fringe

pattern analysis

The most important source of random error in the density measurement is jitter in the
relative delay of the probe and reference pulses from the vibration of optics in the setup.
Prior experiments using group velocity measurement as a density diagnostic for conventional
capillary discharges implemented a standard Mach-Zehnder interferometer configuration, with
all optical paths in free space [91, 103]. This was acceptable because optical path lengths in
the setup needed only be two or three times the length of the capillary, which was 9 cm at
the longest, yielding a total path length around the interferometer ∼ 2 m.

To perform the same diagnostic measurement for laser heated capillary discharges requires
coupling in the probe pulse collinearly with the heater pulse so as to inject it into the channel
formed by plasma heating and expansion, which in turn requires long optical path lengths
(1-2 m standoff from the target) to keep the heater fluence at safe levels (. 0.5 J/cm2) on
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the required beam combining optics. Since the additional length of a beam deflected from
a straight path between two optics a distance L from one another by angle δθ is ∼ δθ2L/2,
the longer path lengths involved in a setup implementing a laser-heater will introduce a
proportionately larger delay jitter. The experiments of Refs. [91, 103] observed a 1-2 fs delay
jitter, corresponding to a density measurement error of . 0.2× 1017 cm−3 for a 9 cm capillary,
which was acceptable for the plasma densities of interest in the range 5 − 10 × 1017 cm−3.
Given the ∼ 3 m distance between the final focusing lens and the collimating doublet in
the setup of Fig. 4.2, at least 6 m of total path length is required in the interferometer, and
therefore at least 3 times this delay jitter is to be expected: 3-6 fs, or 0.6× 1017 cm−3 for the
same capillary length. For the densities of interest for laser-heater experiments, 2×1017 cm−3,
this constitutes a > 25% error and so a means to reduce it was sought.

Optical fibers were used in the interferometer to reduce this delay jitter by eliminating
free space path length between optics. However, this in turn introduced a relative spectral
chirp between the probe and reference pulses and a slow drift in the vacuum propagation
(i.e. with no capillary in the beam path) group delay. These issues necessitated different
analysis techniques from the earlier group velocity measurements described in Refs. [91, 103].
Specifically, fast-Fourier-transform (FFT)-based phase mapping [108] and a data acquisition
procedure that tracked the group delay drift during measurements. These techniques will
now be discussed in detail.

Interferogram analysis

In general, a spectral interferogram formed by the interference of two laser pulses a1 and a2

as recorded by the setup of Fig. 4.2 has the mathematical form

g(ω, y) = |a1(ω, y) + a2(ω, y)|2 (4.4)

g(ω, y) = |a1(ω, y)|2 + |a2(ω, y)|2 + 2|a1(ω, y)||a2(ω, y)| cos[φ(ω, y)] (4.5)

with ω frequency, y the coordinate along the spectrometer slit, and φ(ω, y) the relative
spectral phase. Measurement of the relative pulse group delay is a matter of extracting the
relative phase φ(ω, y).

Extracting the relative group delay is straightforward for the simple case of two identical
laser pulses separated from each other by a delay τ0, which corresponds to a spectral phase
ωτ and the spectral interferogram

glin(ω, y) = 2|a0(ω, y)|2[1 + cos(ωτ0)] (4.6)

The FFT of Eqn. 4.6 into the τ domain has two narrow sidebands centered at ±τ0:

FFT{glin(ω, y)} ≡ Glin(τ, y) = 2A0(τ, y) + 2A0(τ − τ0, y) + 2A0(τ + τ0, y) , (4.7)

with A0 ≡ FFT{|a0(ω, y)|2}. For such sidebands, the group delay τ0 is obtained simply by
computing the centroid of the sideband 2A0(τ − τ0, y) as in Refs. [91, 103, 108]. Note that by
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the convention adopted for this discussion, the FFT transforms the interferogram into the
“frequency” domain denoted by the variable τ which has units of s because the interferogram
is initially recorded in the “time” domain denoted by ω with units of s−1.

The interferograms generated by the fiber-based spectral interferometer of Fig. 4.2, shown
in Fig. 4.6(a), have a more complex structure than Eqn. 4.6. In the ω dimension, there is
chirping of the fringes due to the quadratic spectral phase induced by the optical fiber, as
well as a prominent phase null. There is a small variation of the phase in the y dimension
from the mismatched divergences of the probe and reference beams. The structure in the ω
dimension requires a more robust analysis technique than calculation of sideband centroids
to extract the relative group delay. The algorithm described in Ref. [108] was adapted for
this purpose, which will now be described. For simplicity, the interference pattern Eqn. 4.5 is
rewritten

g(ω, y) = a(ω, y) + b(ω, y) cosφ , (4.8)

with a and b real. If the relative phase has a rapidly varying component or large central
frequency (i.e. a large group delay in this context), then the relative phase can be decomposed
as φ(ω, y) = ωτ0 + φslow(ω, y) and the interference pattern can be expressed in terms of
complex exponentials as

g(ω, y) = a(ω, y) + c(ω, y) exp(iωτ0) + c∗(ω, y) exp(−iωτ0) (4.9)

with
c(ω, y) = (1/2)b(ω, y) exp[iφslow(ω, y)] (4.10)

The FFT of Eqn. 4.9 is then

G(τ, y) = A(τ, y) + C(τ − τ0, y) + C∗(τ + τ0, y) (4.11)

with τ0 the central frequency of the interference pattern.
If the central frequency τ0 is sufficiently large in comparison to the width of the sidebands

C in Eqn. 4.11, these sidebands will be well separated from one another as well as the
zero-frequency peak A. This separation of the sidebands is crucial to the function of the
algorithm because it allows geometric isolation of the complex quantities c(ω, y)exp(iωτ0)
in τ -space that contain the relative spectral phase. To produce such isolated sidebands for
analysis of the spectral interferogram, a Gaussian windowing function was applied the fringe
pattern as shown in Fig. 4.6 (b) to suppress the phase null visible in Fig. 4.6 (a). The absolute
value of the FFT of the windowed fringe pattern of Fig. 4.6 (b) is shown in Fig. 4.6 (c), with
the sidebands of Eqn. 4.11 clearly visible. Note that these sidebands are quite wide–on the
order of 500 fs. The uncertainty in the true value of the center frequency τ0 this creates
precludes the use of the simple peak fitting method used in the experiments of Refs. [91, 103],
where the FFT sidebands had smaller widths ∼ 50 fs.

To retrieve φ(ω, y) from the interferogram, one of the complex components c(ω, y) exp(iωτ0)
must be isolated from Eqn. 4.9. This is accomplished by selecting a region of the fringe
pattern FFT containing the corresponding sideband C(τ − τ0, y) as shown by the dotted lines
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with a Gaussian window applied to suppress
the phase null.
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(c) Absolute value of the FFT of (b). Near-
zero frequencies have been suppressed to em-
phasize the sidebands. Dotted lines denote
the region used to extract the interferogram
phase.
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Figure 4.6: Phase mapping algorithm adapted from Ref. [108]. The underlying phase of
the interferogram (a) is extracted from the sideband of the FFT (c) of the interferogram
after windowing to suppress the phase null (c). The extracted phase φ̃(ω, y) is wrapped over
(−π, π], requiring the use of a phase unwrapping algorithm.
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Figure 4.7: Fringe pattern phase surface constructed by unwrapping the phase plotted in
4.6(d).

in Fig. 4.6 (c), setting all data outside this region to zero, and performing an inverse FFT.
The resulting complex-valued function

FFT−1{C(τ − τ0, y)} = c(ω, y) exp(iωτ0) = (1/2)b(ω, y) exp(iφ(ω, y)) (4.12)

contains the relative spectral phase in the complex angle.
The complex angle φ(ω, y) can be readily computed trigonometrically from Eqn. 4.12.

However, the angle φ̃(ω, y) obtained by simple trigonometric operations on the real and
complex components of Eqn. 4.12 is “wrapped” onto the domain (−π, π], as shown in
Fig. 4.6(d) over the ROI marked in Fig. 4.6(b). Obtaining the continuous phase φ(ω, y)
requires the use of a phase unwrapping algorithm [109], which for the wrapped phase of
Fig. 4.6(d) yields the phase φ(ω, y) plotted in Fig. 4.7. It should be noted that the phase
unwrapping only permits modulus 2π knowledge of the phase, however this is of no detriment
to the analysis. This is because the uncertainty in the absolute phase effectively constitutes
an unknown constant offset of the phase and thus has no effect on the group delay dφ/dω,
which is the quantity of interest.

The preceding discussion has described how the relative spectral phase between the probe
and reference pulses is obtained from a spectral interferogram of the type shown in Fig. 4.6.
However, further analysis of the retrieved spectral phase is required to obtain a measurement
of the plasma density. The spectral phase plotted in Fig. 4.6 consists of the components

φ(ω, y) = φ0 + [φ
′

target(y) + φ
′

sys(y)]ω +
1

2
φ
′′

fiberω
2 , (4.13)
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with φ0 a uniform phase offset, φ
′
target(y) the relative group delay associated with the target

region with or without the target present (e.g. the 20-cm-long region occupied by a 20-cm-
long capillary), φ

′
sys(y) the relative group delay associated with all other parts of the system

excluding the target region, and φ
′′

fiber the relative group delay dispersion arising from the
different fiber lengths in the probe and reference arms of the interferometer.

The group delay induced by the channel, from which the plasma density is determined, is
obtained by a “background subtraction” of the spectral phase measured for propagation in
vacuum from the spectral phase measured for propagation through the plasma channel:

∆φ(ω, y) = φp(ω, y)− φv(ω, y) (4.14)

with φp(ω, y) the measured phase with the plasma channel in the beam path, and φv(ω, y)
the phase for propagation in vacuum. Because the insertion of the plasma channel does not
affect any of the other terms in Eqn. 4.13, this yields the linear spectral phase contributed by
the plasma in the target region alone,

∆φ(ω, y) = ∆φ0 + [φ
′

p,target(y)− φ′v,target(y)]ω = ∆φ0 + ∆φ‘
p(ω, y)ω (4.15)

with ∆φ0 a uniform phase offset arising from the previously discussed difficulties in determining
absolute phase, and ∆φ‘

p(y) the group delay induced by the plasma channel, which is the
quantity required for the plasma density measurement itself. The channel induced group
delay itself ∆φ‘

p(y) is obtained from the “background subtracted” spectral phase through a
linear fit of ∆φ(ω, y) with respect to ω, with the first-order coefficient giving the value of
∆φ‘

p(y).
The implementation of this background subtraction and fitting procedure is shown in

Fig. 4.8. In Fig. 4.8(a) and Fig. 4.8(b) are shown the retrieved spectral phase surfaces φp(ω, y)
and φv(ω, y), for propagation through a 20-cm-long capillary at 20 torr fill pressure at the
peak of discharge current (∼ 450 A) and vacuum, respectively. Both of these surfaces possess
a noticeable curvature in the ω axis, due to the quadratic spectral phase term in Eqn. 4.13
from the optical fibers. The surface ∆φ(ω, y) = φp(ω, y)− φv(ω, y) is shown in Fig. 4.8(c).
The common quadratic component has been removed by the background subtraction to
yield a purely linear dependence with respect to ω. Moreover, this linear component of the
background-subtracted spectral phase is the exclusive contribution of the plasma channel,
per Eqn. 4.15. As noted before, the curvature visible in ∆φ(ω, y) in the y direction arises
from the differing divergences of the probe and reference beams at the spectrometer slit.

∆φ‘
p(y) is obtained by linear fitting of ∆φ(ω, y) with respect to ω at each y index. As an

example, the center row of pixels in Fig. 4.8(c) is highlighted in red, and has been plotted in
Fig. 4.8(d) with its least-squares fit. The “RMS error” of the fit is defined as the norm of the

fit residuals divided by the number of samples RMS ≡
√∑N

i (yfit − yi)2/N . This is used as

a rough diagnostic for the quality of the phase fitting, with reliable measurements empirically
having RMS < 10−2. First order coefficient of the fit shown in Fig. 4.8(d), corresponds to a
channel-induced delay of ∆φ‘

p = 80.2 fs at the centroid of the laser beam.
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(a) Spectral phase φp, capillary in beam path.
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(b) Spectral phase φv, capillary out of beam
path.
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Figure 4.8: Spectral phase background subtraction procedure for determining channel
induced group delay. Subtraction of the vacuum spectral phase (b) from the spectral phase
for propagation through the plasma channel (a) yields the linear spectral phase contributed by
propagation through the plasma channel (c), eliminating the higher order terms of Eqn. 4.13.
The channel-induced group delay ∆φ‘

p is obtained by linear fitting of the background subtracted
phase ∆φ of (c) as shown in (d).
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In general, the retrieved channel-induced delay ∆φ‘
p(y) will generally vary across the

spectrometer slit. This is suggested by the curvature visible in ∆φ(ω, y) as plotted in
Fig. 4.8(c), and is shown explicitly in Fig. 4.9, where the fitted channel-induced group delay
∆φp(y) is plotted across the entire y-domain of Fig. 4.8(c). For the experiments on this setup,
the group delay of the probe pulse centroid (corresponding to Eqn. 3.21 from Chapter 3) was
used for the plasma density measurement. This was done because this group delay can be
reliably measured in the situation where the spectrometer slit is not precisely imaging the
capillary exit, as was the case for this experimental setup. The centroid group delay itself
was obtained by averaging the fitted group delay ∆φ‘

p(y) the center 20 y samples, which are
plotted in bold in Fig. 4.9.

One might expect to be able to extract information about transverse variation of the
plasma profile based on the transverse variation of the channel-induced group delay at the
spectrometer slit, however in practice this is extremely difficult. This transverse variation of
the group delay results from the divergence of the probe pulse at the slit, which in turn is a
function of the imaging optics and the probe’s spot size and divergence at the exit of the
channel. The latter is due to evolution of the probe pulse during propagation in the channel,
where, unless perfectly matched, it will experience oscillations in spot size and beating of
channel normal modes [48, 86]. Therefore, the probe laser field at the exit of the channel is
best characterized as the interaction of the probe as a whole with the channel as a whole,
and so a reductive mapping the properties of the laser field at one axial position on the
spectrometer slit to plasma density at a specific radial position in the channel is not practical.

Correction of delay drifts

The fiber based interferometer and associated analysis methods were successful in producing
a delay measurement with sufficiently low jitter for useful measurements of plasma density,
as will be shown in Section 4.6. However, the long optical fibers introduced a slow, minute-
scale drift in the delay between the reference and probe pulses. To obtain accurate density
measurements, this drift must be measured and corrected for. The data acquisition procedure
used to calibrate the delay drift during measurements is described in this section.

Fig. 4.11(a) shows the measured probe-reference delays for vacuum propagation (i.e.
capillary out of the beam path), taken at 1 s intervals over ∼ 2 minutes. The fast component
of the delay variation is due to vibrations in the setup, which though mitigated through the
use of fibers, still contribute random error to the measurement. The slow component, however,
is attributed to propagation through through the fibers. As can be seen in Fig. 4.10, this
slow drift produces a 12 fs change in pulse delay over the time interval shown, or equivalent
to an apparent plasma density change of 0.6× 1017 cm−3.

The precise mechanism of the slow drift was not determined with certainty. One possible
mechanism is frequency drift in the laser frontend: it can be readily shown that shifts in the
probe beam center frequency far below the sensitivity of either the spectral interferometer or
the spectral diagnostics at the BELLA frontend can produce shifts in the pulse group delay
of magnitude similar to the observed drift. Estimating the group velocity dispersion of the
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Figure 4.9: Fits of ∆φ‘
p for the ∆φ surface of Fig. 4.8(c), with RMS deviation from the

linear fits. Solid lines connect data points used for calculating the probe centroid group delay.

fiber as the literature value for fused quartz d(v−1
g )/dω ≡ GVD = 36 fs2/mm, the change in

group delay induced by a frequency shift ∆ω is

Lf
d

dω

(
1

vg

)
∆ω = ∆t , (4.16)

with Lf the length of the medium. This can be written in terms of wavelength as

∆λ =
−λ2

2πc

∆t

GVD× Lf
, (4.17)

with λ the ”mean” or ”initial” wavelength of the laser pulse. Taking λ = 0.8 µm, Lf =
3 meters (the difference in the fiber lengths in the setup), and ∆T = 10 fs, Eqn. 4.17 yields
∆λ = −0.03 nm. No tests were performed that showed with certainty that frequency drift in
the laser frontend caused this effect, and 0.03 nm is below the spectral sensitivity of the laser
diagnostics. Nevertheless, this mechanism can produce an effect of the correct magnitude
under normal operating conditions for the laser system [110].

In these experiments, density measurements are performed while a parameter is varied
or ”scanned.” The delay drift must be measured during these scans in order to correct for
it. Parameter scans are performed in a series of bins as the scanned parameter is varied in
stepwise fashion, wherein multiple laser shots are taken for a given parameter value, with
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Figure 4.10: Vacuum delay (capillary out of beam path) measurements over ∼ 2 minutes.
The fast, shot-to-shot fluctuations are due to vibrations. The slow drift of the average delay
may be due to small changes in the probe pulse frequency due to alignment drift in the
BELLA laser frontend where the probe pulses originate.

typically 50-100 shots per bin. The delay drift is measured by interleaving ”reference bins,”
where delay is measured at a specific set of plasma parameters, with ”data bins” taken at the
parameter values of interest for the measurement. The discharge density is stable to within
1% between shots [91, 93, 103], and therefore drifts in the delay due to other parts of the
setup can be accurately measured with the capillary discharge in the beam path. Measuring
the delay drift with the capillary in the beam path is also advantageous because it eliminates
the need to move the capillary in and out of the beam path with the hexapod between bins.

This procedure is illustrated in Fig. 4.11, which shows a pressure scan taken in a 800 µm×
90 mm capillary at td = 300 ns after the peak of discharge current, without laser heating.
The capillary fill pressure for each laser shot during the scan is plotted in Fig. 4.11(a),
where reference bins at 15.5 torr fill pressure between successive pressure bins can be seen.
The absolute delays ∆T ∗(ts) as a function of scan time ts measured for the pressures of
Fig. 4.11(a) are plotted in Fig. 4.11(b), as well as the reference delay ∆Tref (ts) constructed
by interpolating the mean delay of each reference bin. The corrected delay ∆T (ts) for the
scan is then calculated according to

∆T (t) = ∆T ∗(t)−∆Tref (t) + ∆Tref (tend) . (4.18)

The final term of Eqn. 4.18 ∆Tref (tend) exists because the delay associated with the reference
bins is calculated from the final reference bin, using a vacuum delay measurement taken
immediately after the scan. The density for the data bins is then calculated from the corrected
delays, and the uncertainty is calculated as the RMS deviation within each drift-corrected
bin, as plotted in Fig. 4.11(d). For scans of probe pulse arrival time t relative to peak heater
power, a similar procedure is used, except the reference measurements are taken by setting
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(a) Capillary fill pressure trace. Reference
bins taken at 15.5 torr.
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Figure 4.11: Correction of delay drifts for density measurement. Measurements taken for a
800 µm× 90 mm capillary, delay td = 300 ns from the peak of discharge current.

the probe pulse arrival time before the heater, effectively tying delay measurements in the
heated plasma channel to the capillary discharge in the absence of heating.

Error in the density measurement using this technique consists of both random and
systematic components. The random error arises from the previously discussed delay jitter,
which is denoted by the error bars of Fig. 4.11(d) and defined as the RMS deviation within
each data bin. The ∼ 0.2× 1017 cm−3 error in this case is comparable to prior measurements
using the spectral interferometry technique [91], and less than the ∼ 1× 1017 cm−3 error of
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measurements using transverse spatial interferometry [90]. The uncertainty in the density
measurement decreases with capillary length, per Eqn. 4.25. Hence, the error bars for
measurements in a 20-cm-long capillary of Fig. 4.12 are less than half those for a 9-cm-long
capillary of Fig. 4.11(d).

The drift correction procedure introduces a systematic error into the density measurement.
The hexapod moves slowly, taking roughly 20 seconds to move the capillary out of the
beam path for the vacuum delay measurement required to obtain ∆Tref(tend). This time,
during which the delay drift is not being monitored, introduces error into the delay drift
calibration in the form of a small but unknown density offset. For this reason, this setup
is best suited to measuring density changes from a known parameter value, or measuring
the rate at which density varies with respect to a parameter. The pressure scans plotted
in Fig. 4.12, which were performed at three different delays from the peak of discharge
current td = 20 ns, 320 ns, 440 ns, illustrate this point. Notice that the density measured
at td = 440 ns is greater than at td = 320 ns, the opposite relationship to be expected
from either recombination in the cooling discharge plasma on the falling edge of the current
pulse[84] or from plasma ejection from the ends of the capillary [100]. This discrepancy is
attributed to the error introduced by the drift correction procedure, which is estimated to
be ∼ 0.5 × 1017 cm−3. In concrete terms, the gradient of plasma density in the capillary
discharge with respect to initial molecular density, represented by the first order terms of the
fits in Fig. 4.12, is accurately measured, but the offset or zero-order terms have a systematic
error from the drift correction procedure. This issue is one factor that motivated the creation
of the two-color common path density diagnostic described in Chapter 5, which did not
exhibit the delay drift observed in the fiber based setup used for the experiments of this
chapter.

4.4 Laser spot size oscillation diagnostic for channel

matched spot size

The matched spot size was diagnosed using well-known techniques based on laser propagation
in plasma channels as discussed in Chapter 3. In this section, methods employed for
these diagnostic measurements are described in detail. In this section, the model used for
propagation of the probe beam in the plasma channel is described, as well as its practical
implementation in the experiment.

The spot size of a Gaussian laser beam injected into a mismatched parabolic channel will
oscillate with wavenumber 4/kr2

m [85, 86]:

r2
s =

r2
i

2

[
1 +

r4
m

r4
i

+

(
1− r4

m

r4
i

)
cos (2kβcz)

]
. (4.19)

with kβc = 2/kr2
m. This oscillation in laser spot size is a diagnostic for rm, and particularly

well suited for laser-heated capillary discharges. If rm is known for some set of plasma
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Figure 4.12: On-axis plasma density vs. initial fill gas molecular density for three arrival
times td of the probe beam relative to the peak of discharge current. The higher measured
density at td = 440 ns than at td = 320 ns is attributed to a systematic error introduced by
delay drifts.

parameter values, oscillations in exit beam size that occur as plasma parameters are slowly
varied away from those values can be counted to determine rm for a different set of parameter
values. It should be noted that, for laser heated channels, MARPLE calculations show
significant longitudinal variation in the plasma profile. Therefore, in these experiments, spot
size oscillation tracking yields the longitudinally averaged matched spot size rm.

Similarly to spot-size oscillation, the centroid of a laser beam injected into a plasma
channel off-axis will oscillate within the channel with a wavenumber kβc = 2/kr2

m [85, 86].
Laser centroid oscillation is an accurate and easily implemented diagnostic for capillary
discharges [86], but it is more difficult to implement for laser-heated capillary discharges
because the measurements require precisely displacing the channel from the probe beam.
The difficulty arises from pointing jitter of the heater beam, which introduces an uncertainty
in the position of the channel and increases the measurement error. Spot size oscillations,
however, are relatively insensitive to alignment of the probe beam to the channel. Therefore,
rm in laser-heated channels was measured by using centroid oscillations to determine rm for
the capillary discharge in the absence of heating (in which case rm = rm), and then using
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spot size oscillations to track the change in rm as heating was gradually increased to the
value of interest for measurement.

The probe beam had a nearly Gaussian profile at focus, as can be seen in Fig. 4.5. However,
images of the probe beam midfield in Figs. 4.4(a) and 4.13(a) show that the probe beam is in
fact non-Gaussian, and contains higher order mode content. Because of this, Eqn. 4.19 does
not accurately describe the propagation of the real probe beam in a parabolic plasma channel.
Instead, a more detailed model of the probe beam field was constructed using physical optics
calculations, and then propagated through idealized parabolic plasma channels for a series of
rm values using the INF&RNO code [111, 112]. Wavefront measurements of the probe beam
showed a nearly flat phase, i.e. free of aberrations. Therefore, the phase of the probe beam
midfield in Fig. 4.13(a) was modeled as that from an ideal paraxial lens

φf (x, y) = −k0
x2 + y2

2f
(4.20)

and propagated using the Fresnel integral

E(x, y, z) =
k0

2πiz

∫ ∫
|E(x′, y′, 0)|eiφf (x′,y′) exp

[
ik0

(x− x′)2 + (y − y′)2

2z

]
dx′dy′ , (4.21)

with E the complex electric field of the beam x and y the coordinates in the transverse plane
of the beam, z the coordinate along the optical axis defined with respect to the plane at which
the initial field E(x,y,0) is specified, and f the focal length of the ideal paraxial lens. This
model has a single free parameter, f , which needs to be determined by external measurements.
Using both the physical optics capabilities of the LightPipes Python package[113] and ZEMAX
optical design software [107], the simulated probe beam was propagated through vacuum along
z according to Eqn. 4.21 and the simulated peak fluence was compared with measurements
of vacuum propagation of the probe beam from the experiment. f was chosen to achieve the
best agreement between the simulated and measured peak fluences, as plotted in Fig. 4.14.
This procedure yielded a value f = 65 mm. Using this model of the laser field, an azimuthally
symmetrized laser field was constructed for use with the INF&RNO code and the midfield
and focus simulated in INF&RNO using this model of the field plotted in Fig. 4.13(c) and
(d) agree well with the measured beam profiles.

This model of the probe beam was used as input to the INF&RNO code [112], where it
was propagated through a set of 20 cm-long parabolic channels with rm ranging from 40 to
120 µm. The INF&RNO simulations were used to calculate the peak fluence at the channel
exit as a function of rm. These simulated peak fluence values at the capillary exit are plotted
in Fig. 4.15(a).

The practical implementation of spot size oscillation measurements in the experiment will
now be described for one specific case, using Fig. 4.15 which shows the analysis performed
for a heater laser energy of 300 mJ, and the heater pulse timed to arrive 320 ns after the
peak of the discharge current pulse. This method of analysis was applied to each set of laser
energies and delays from the peak of discharge current investigated.
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Figure 4.13: (a), (b): Measured fluence profiles at z = −34 mm and focus, respectively. (c)
Symmetrized model of the field at (a). (d) Symmetrized field of (c) propagated to focus with
INF&RNO. Peak fluence for the INF&RNO simulated beam is plotted vs. z in Fig. 4.14.

In the experiment, rm was measured by imaging the beam at the capillary exit as rm is
varied. As previously described, the peak fluence of the probe beam at the capillary exit
oscillates as rm is varied, and so an oscillating peak fluence “trace” is obtained. A set of such
traces for different delays t from the peak of the heater pulse are plotted in Fig. 4.15(b). In
the experiments discussed here, rm was varied by adjusting the fill pressure of the capillary,
while the probe delay relative to the heater pulse was held constant. Note that there is less
contrast between maxima and minima in the experiment data plotted in Fig. 4.15(b) than in
the simulated peak fluence of Fig. 4.15(a). This may be due to the fact that the INF&RNO
simulations used an idealized parabolic density profile, whereas MARPLE simulations show
that the density profile of the laser-heated plasma deviates substantially from a parabolic
shape, as will be discussed in Section 4.6. Specifically, early in the heater pulse, the ”density
well” formed on-axis by heating has a small radial extent, because the hot plasma has not had
time to expand. This allows the guided probe beam to overfill the channel and causes energy
to leak into the surrounding plasma. The ideal parabolic profile assumed in the simulation
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Figure 4.14: Measurements and simulations of the probe beam vs. distance from focus z.
Fluctuations in the probe beam fluence were negligible. ZEMAX and LightPipes simulations
were used to to select focal length parameter f = 65 mm of the initial phase by comparing
the simulated peak fluence vs. z to measurements. The symmetrized model of the laser
field constructed using this value was then propagated in INF&RNO and compared to
measurements, in order to validate the model of the laser beam before simulating propagation
in parabolic channels.

suffers from none of these issues.
To identify the rm values for extrema in the peak intensity trace, the peak intensity

must include a pressure with known value of rm. This was accomplished by beginning each
peak intensity trace at very low fill pressure, where the heater has a negligible effect of
on the plasma profile and the matched spot size is unchanged from that of the discharge
without heating. Therefore, measurements of rm for the discharge alone using probe centroid
oscillations were used to determine rm at the low pressure end of the peak intensity trace, and
the fact that rm decreases with pressure was used to identify the rm values of the extrema in
the trace as pressure was increased. As is shown in Fig. 4.15(b), the three traces all start
at a known value of rm = 110 µm, measured for the discharge (without heating) using the
centroid oscillation method. With this initial value known, the three maxima that occur in
the peak fluence trace for t = 0 ns, labeled (i)-(iii), can be identified in simulated fluence
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plotted in Fig. 4.15(a). The minima in the measured peak fluence trace are identified in an
analogous way.

This diagnostic yields discrete sets of parameter values, in the case of Fig. 4.15, delay
from peak heating power t and capillary fill pressure p, known to correspond to values of rm
at extrema in the simulated peak intensity of Fig. 4.15(a). These sampled parameter values
(ti, pi) are plotted in the plane of (t, p) in Fig. 4.15(c). Values of rm for values of (t, p) apart
from (ti, pi) must be computed by interpolation. Measured values of the matched spot size
rm,i are treated as discrete values of continuous function R(t, p) such that

rm,i = R(ti, pi) , (4.22)

with R(t, p) computed via biharmonic spline interpolation of the points (ti, pi) [109]. This
particular interpolation method was chosen because it produces an interpolating function
that intersects all of sample points exactly, i.e. Eqn. 4.22 holds exactly at all points (ti, pi).
This property matters because the value of rm,i is known precisely for each (ti, pi), being
the location of a maximum or minimum of the peak fluence trace plotted in Fig. 4.15(a).
Labeled contours of rm for values of these extrema of the simulated peak fluence are plotted
in Fig. 4.15(c), and intersect every sample point (ti, pi) except those on the left and bottom
edges of the plotted region. The sample points on the left and bottom boundaries of the
plot were obtained from centroid oscillation measurements without heating, as these points
correspond to times and pressures either before the heater pulse or where heating otherwise
has little effect, and thus do not correspond to extrema of the simulated peak fluence.

Uncertainty measurements of rm arises from uncertainty in the locations of exit fluence
extrema due to the assumptions made about propagation (i.e. a longitudinally uniform
parabolic plasma profile), and the the uncertainty in the values of (ti, pi) obtained from
the measured peak fluence traces. The former is difficult to quantify, most likely requiring
a computational study of propagation in longitudinally nonuniform, nonparabolic plasma
channels that lies outside the scope of this dissertation. The latter however is straightforward
to estimate, and is the uncertainty used for these measurements. Furthermore, the rm values
from MARPLE simulations were found to lie within this uncertainty, as will be shown later.

There is a 0.3 ns uncertainty ∆ti in ti due to timing jitter in the heater pulse, and a
conservatively estimated 2 torr uncertainty ∆pi in pi from the width of the maxima and
minima of the measured peak fluence traces. The upper and lower uncertainties ∆rm,+ and
∆rm,− on interpolated values of rm are thus defined

∆rm,± = R±(t, p)−R(t, p) (4.23)

with the ”error functions” R±(t, p)

R±(ti, pi) ≡ R(ti, pi)±∇R(ti, pi) · 〈∆ti,∆pi〉 . (4.24)

Note that according to the definition Eqn. 4.24, the error functions R± are only precisely
computed at the sample points (ti, pi). Values of R± elsewhere are computed with the same
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biharmonic spline algorithm used to obtain R. Contours of R± are plotted in Fig. 4.15(c) for
the same vales of rm as plotted for R(t, p), i.e. R± = rm,i, in the corresponding colors. Thus,
the extrema of the simulated peak fluence can be regarded as lying in bands in (t, p) space
determined by the precision to which the location of peaks in the measured fluence can be
determined.

4.5 Density measurement uncertainty from

geometrical effects

In this section, geometrical contributions to the plasma density measurement from matched
spot size and asymmetry of the plasma channel are discussed, including sources of systematic
error.

Accurate density measurements using the channel group velocity require knowledge of
rm and the true propagation distance within the channel L. Group velocity in a parabolic
channel is lower than in a homogeneous medium, possessing a term βg,geo ∝ r−2

m as described
in Ref. [48]. In these experiments, this reduction in group velocity increases the apparent
on-axis density by a maximum of 4× 1016 cm−3 at rm = 60 µm.

Additionally, it was found that transverse asymmetry of the heater laser mode resulted
in the creation of curved plasma channels. As is discussed later, this is evidenced by an
intensity dependent deflection of the heater beam as it exits the capillary. It is thus inferred
that the center of the heated channel does not remain in the center of the capillary, and in
fact follows a curved path through the capillary. This occurs because the tail of the heater
pulse is “steered” by the channel created by the head of the pulse in a similar manner to
“self-channeling,” where the tail of the heater pulse is guided in the channel created by the head
as described in Refs [21, 22].. This “channel curvature” causes the probe beam to become
misaligned as it propagates and undergo centroid oscillation, introducing additional path
length δL ∝ r−2

m and increasing apparent plasma density. The degree of channel curvature
is dependent on the properties of the heater beam and the effect was not observed in the
experiments of Refs [21, 22]., which used a heater beam with a more symmetric mode. For
the experiments in this chapter it is estimated that this effect contributes a maximum of
4× 1016 cm−3 to the apparent on-axis density at rm = 60 µm.

Precisely modeling the group velocity reduction from finite matched spot size and the
increased path length from channel curvature is difficult, and lies beyond the scope of this
dissertation. Therefore, these propagation effects are estimated here using a model of a
misaligned probe beam propagating in an longitudinally uniform parabolic channel (per
Section 4.5). Because of the limitations of this simplified model, these effects are treated as a
systematic error defining the lower uncertainty bound on the plasma density. This systematic
error is denoted by wide-cap error bars in the density measurements of Figs. 4.16, 4.19, 4.20,
and 4.21. In this section, this model is described in detail.

As discussed previously in Section 4.1, the measured channel-induced delay ∆T consists
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(a) INF&RNO simulation of peak probe ir-
radiance at the exit of a 20-cm-long, ideal
parabolic plasma channel for a range of
matched spot sizes rm.

(b) Measured probe beam peak fluence, plot-
ted against capillary fill pressure for probe
pulse 3 arrival times t relative to the peak of
the heater pulse. Maxima in the peak fluence
with respect to fill pressure are labeled in
according to their identification in (a). Error
contours according to Eqn. 4.23.
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(c) Contours of rm in pressure and timing
space, constructed by identifying extrema in
the peak fluence as shown in (a) and (b). Mea-
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Figure 4.15: Demonstration of the spot-size oscillation diagnostic for channel matched spot
size for a 20-cm-long, 800 µm diameter capillary, with the heater pulse timed to arrive at
td = 320 ns after the peak of discharge current.
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of two components, a density component from plasma density on axis, and a geometrical
component from the matched spot size:

∆T ' L

c
(βg,ne0 + βg,geo) (4.25)

The quantity of interest for ne0 is βg,ne0 , and so βg,geo must be determined and its contribution
to the group velocity subtracted from Eq. (4.25). This requires an accurate measurement of
rm, and can be readily accomplished for capillary discharges using the methods previously
discussed from Ref. [86]. For the experiment configuration here, where the group velocity
of the laser centroid is measured (both longitudinally and transversely), the geometrical
contribution to the group velocity is given by Eqn. 3.21 [48]

βg,geo = βG,c(L) = 1−
k2
p

2k2
0

−2(2m+ |p|+ 1)

k2r2
m

r2
0

r2
m

2 tan−1[ r
2
m

r20
tan(kβcL)]

r2
0r

2
mkβcL

+
2

r4
0 + r4

m + (r4
0 − r4

m) cos(2kβcL)

 . (4.26)

However, because the channels formed by laser heating can be significantly longitudinally
nonuniform, Eq. (4.26) is approximate at best. Because of the lack of diagnostics for the
longitudinal variation of rm, the effects of finite channel matched spot size were treated as a
systematic error in the density measurement, estimated with Eq. (4.26) using rm values from
spot size oscillations.

As is discussed in section 4.6, asymmetry in the heater beam leads to the creation of curved
plasma channels misaligned to the probe beam and the capillary axis. This misalignment
increases the path length traveled by the probe beam and thus the apparent plasma density.
The channels curvature itself contributes little to the path length of the probe beam through
the plasma, but ultimately leads to misalignment of the probe from the channel center,
resulting in centroid oscillation of the probe beam. This oscillation contributes significant
path length for the probe beam and increases the apparent plasma density by roughly the
same amount as finite spot size effects.

The path length contributed by this misalignment was estimated by modeling the channel
produced by laser heating as a straight parabolic waveguide, with the probe beam injected
at the channel center in the entrance plane but at a nonzero angle θi relative to the axis.
This geometry does not reflect the curved shape of the channel, which is difficult to diagnose
directly and nevertheless contributes negligible path length. However, this model is a useful
approximation with which the probe beam path length contributed by centroid oscillations
can be estimated analytically while preserving some physical features of the probe beam’s
coupling into the channel, namely the initial overlap of the probe and heater beams at the
capillary entrance plane. In the model, the total path length traveled by the probe beam is
then

L = L0 + δL =

∫ L0

0

√
1 +

(
dx

dz

)2

dz, (4.27)



CHAPTER 4. DIAGNOSTIC MEASUREMENTS OF LASER-HEATED CAPILLARY
DISCHARGES AND A PARAMETER STUDY OF CHANNEL PROPERTIES 70

with L0 the capillary length. The trajectory of the probe centroid according to Ref. [85, 86] is

x = xi sin (kβcz) , (4.28)

with xi = θi/kβc and kβc = 2/krm
2. Because the additional path length from the centroid

oscillation is small compared to the capillary length (at most 10 µm), δL is well approximated
by

δL '
∫ L0

0

1

2

(
dxi
dz

)2

dz. (4.29)

Using Eq. (4.28) in Eq. (4.29) and integrating,

δL ' 1

2
L0k

2
βcx

2
i

[
1

2
− cos (2kβcL0)

4kβcL0

]
. (4.30)

The model has two free parameters, rm and xi, which must be determined by external
measurements. The matched spot size rm is set to rm as measured with the diagnostic
techniques described elsewhere. The oscillation amplitude xi is estimated as half the greatest
distance between two probe centroid positions over the course of the plasma evolution. For
the case of Fig. 4.16, this distance is 175 µm/2 = 87.5 µm.

The additional path length δL can be incorporated into the model for channel induced
delay Eq. (4.25) by expanding around L0 in Eq. (4.1):∫ L0+δL

0

1

βg
dz '

∫ L0

0

1

βg
dz +

δL

βg
(4.31)

Taking βg ' 1 in the second term on the RHS of Eq. (4.31), substituting through Eq. (4.1)
and Eq. (4.25), the following equation for βg,ne0 is obtained:

βg,ne0 =
c∆T

L0

− βg,geo −
δL

L0

(4.32)

This equation includes both the effects finite matched spot size and channel curvature
in the terms −βg,geo and −δL/L0, respectively. These two terms are always negative and
therefore define the lower bound on the plasma density for the measured channel induced
delay ∆T , and are treated as a systematic error. As discussed in section 4.6, rm measurements
are omitted where MARPLE simulations show the channel radius to be less than the probe
input spot size. However, these omitted values were used to calculate the wide-cap error bars
from the finite matched spot size and channel curvature effects.

4.6 Channel formation and evolution in a laser-heated

capillary discharge

Experiments and MARPLE simulations show significant modification of the plasma density
by laser heating, with reductions of both ne0 and rm. Fig. 4.16 shows a case for heater pulse
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energy 300 mJ, arriving at the capillary entrance at a delay td of 440 ns after the peak of
discharge current, with initial on-axis plasma density ne0,i = 3.9× 1017 cm−3. Images of the
guided probe beam are shown in Fig. 4.16(a) for a range of delays t relative to the centroid of
the heater pulse. In Fig. 4.16(b), ne0 and rm from measurements and a MARPLE simulation,
and the heater power are shown as a function of delay t. The heater power trace shown was
obtained by averaging 1000 photodiode traces and smoothing with a lowess fit, and was used
to model the heater pulse in the MARPLE simulations.

An average on-axis density of 2.4×1017 cm−3 and matched spot size of 65 µm is measured
at t = 4.6 ns, parameters suitable for acceleration to energies approaching 10 GeV [22, 114].

Because of the scaling rm ∝ r
1/2
c n

−1/4
e0 , realizing these parameters in a capillary discharge

would require a 60% reduction in capillary diameter from the initial 800 µm to ∼ 300 µm.
Capillaries of this size are vulnerable to damage from the BELLA laser and are unsuitable
for PW-scale experiments, based on the destruction of 500 µm-diameter capillaries observed
above 300 TW of laser power in the experiments of Ref [76]..

Modification of the guided probe beam can be seen in Fig 4.16(a) as early as t = −6.4 ns,
indicating signicant evolution of the plasma profile ∼ 1 ns after the foot of the heater pulse
at t = −7.4 ns. This is consistent with the 3 ns timescale for plasma motion calculated in
section 3.6. The modification of the guided probe beam beginning at t = −6.4 ns in Fig.
4.16(a) is also evidence of self-channeling of the heater beam. The evolution of the guided
probe beam early in the heater pulse shows that the majority of the pulse energy propagates
through a plasma channel with different guiding properties than the discharge before heating
at t = −8.8 ns. It must be noted that an increase in probe intensity in the exit plane does
not necessarily correspond to a reduction in matched spot size. Rather, this indicates that a
minimum in the probe spot size oscillation has moved near the exit plane, which can occur
during either an increase or decrease in rm depending on the oscillation phase.

The data of Fig. 4.16 show the channel evolves on a nanosecond time scale, and that
properly timing the driver pulse relative to the heater pulse is critical for achieving maximum
accelerator performance. In typical operation, the driver pulse is timed to arrive during the
time interval extending roughly from t = 0 ns to 15 ns after the peak of the heater pulse,
as density and matched spot size are significantly reduced from the discharge values during
this time. This interval is marked in Fig. 4.16, with times lying outside it shaded. For the
experiments of Refs [21, 22]., the driver was timed at t ∼ 1 ns. However, the data of Fig. 4.16
show that ∼ 5 ns after the peak of the heater pulse, the plasma density reaches a minimum
with rm . 65 µm, still sufficiently well matched to the ∼ 60 µm BELLA beam waist. Hence,
it is expected that accelerator performance can be improved over previous experiments by
taking full advantage of the plasma evolution to achieve optimal channel properties.

MARPLE simulation

For the simulations in this dissertation, the MARPLE code was augmented with modules
from INF&RNO and implemented the inverse-bremsstrahlung power density [Eq. (3.28)].
The heater beam intensity at the capillary entrance was modeled as a function of the form
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(a)

Accelerator 
Operation

Figure 4.16: Guided laser beam and channel properties for a 20 cm-long, 800 µm-diameter
capillary filled with 17.6 torr of H2, heated with 300 mJ of laser energy. (a) Images of the
guided probe beam at the capillary exit vs. delay from the peak of the heater pulse. Jitter in
probe beam position at the capillary exit was < 10 µm. (b) Longitudinally averaged on-axis
density ne0 and longitudinally averaged matched spot size rm vs. delay t from the heater pulse
centroid from measurements and a MARPLE simulation. The representative heater power
trace used in the MARPLE calculations (obtained from averaged photodiode traces) is shown
in green. Narrow-cap error bars denote uncertainty from group delay jitter between the probe
and reference pulses. Wide-cap error bars denote uncertainty in the density measurement
from misalignment of the probe to the channel due to channel curvature. ne0 and rm values
are omitted when the MARPLE simulation shows the channel size is below the input laser
spot size of 73 µm. Driver arrival times typical for accelerator operation are marked, with
shading applied for times outside this interval.
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J1
2(r)/r2 with a 1/e2 radius of 82 µm, where J1(r) is a Bessel function of the first kind, and

the laser power was modeled using the trace in Fig. 4.16. The simulations were performed
on an 800 µm-diameter, 20 cm-long, axisymmetric, uniform (r, z) grid with 50 cells in the
radial direction and 200 cells in the longitudinal direction, with a time step of 0.1 ns. Plasma
evolution was simulated from the the initiation of the discharge 420 ns before the peak of
current, through the arrival of the heater laser pulse, to 1000 ns after the peak of current. The
initial neutral hydrogen density was chosen to match the measured density at the arrival time
of the heater pulse. The discharge plasma was modeled as initially longitudinally uniform,
ignoring the 6 mm density ramp at each end of the capillary arising from gas flow out the
ends into the surrounding vacuum. These “end effects” are expected to have little effect
on guiding since the 6 mm length of the density ramp is smaller than the 20 and 40 mm
Rayleigh lengths of the probe and heater beams, respectively.

The longitudinally-averaged matched spot size rm was calculated from the MARPLE
output by computing the quasi-matched Gaussian spot size derived in Ref [87]. for each
longitudinal grid point of the calculated electron density ne(r, z) and then averaging in z.
This definition of the matched spot size was used because it is well defined for non-parabolic
plasma profiles. MARPLE simulations show that early in the heater pulse, the density well
formed by laser heating is small in radial extent because the heated plasma has had little
time to expand under its own pressure. In this situation the channel may be smaller than the
guided beam, and a large fraction of the beam will not be coupled into the channel formed by
heating. Instead, the beam will effectively sample two guiding structures: both the density
well on axis from heating and the density well formed by the background plasma profile of
the discharge. Another condition that may arise is the formation of a local maximum of the
plasma density on the channel axis, due to plasma motion driven by uneven heating in the
transverse plane by the mismatched, multimode heater beam.

Both of these conditions constitute a qualitative departure from the model on which the
spot size oscillation diagnostic is based, which assumes propagation in a single, parabolic
density well, and thus renders the measurement difficult to interpret. Therefore, rm mea-
surements were only retained at times where the MARPLE output shows the average radial
extent of the channel as defined by the location of the first radial inflection point of the
plasma density (i.e., ∂2ne/∂r

2 = 0) to be greater than the probe input spot size, and the
density to be locally minimized in the transverse plane (∂2ne/∂r

2|r=0 > 0) at all points on
the channel axis. Overall agreement between experimental measurements of plasma density
and MARPLE simulations is excellent.

Due to mismatched guiding and self-channeling of the heater beam, ne0 and rm are not
longitudinally uniform in general. This is clear in the MARPLE output shown in Fig. 4.17,
which is for select time points of the case in Fig. 4.16. MARPLE simulations show that
self-channeling and mismatching of the heater beam produce a channel with complex structure
problematic for guiding at early times. Fig. 4.17 shows that during the rise of the heater
pulse at t = −3.0 ns, the transverse extent of the channel is small, and in some longitudinal
positions a local density maximum exists on axis. This can be seen in the transverse density
profiles plotted in Fig. 4.17(a). The longitudinal variation of rm is plotted in Fig. 4.17(e),



CHAPTER 4. DIAGNOSTIC MEASUREMENTS OF LASER-HEATED CAPILLARY
DISCHARGES AND A PARAMETER STUDY OF CHANNEL PROPERTIES 74

with values suppressed at locations with channel extents less than the probe beam waist size
or density maxima on-axis. At t = −3.0 ns, roughly 25% of the length of the channel meets
these criteria, hence the spot size oscillation diagnostic for rm cannot be applied. Near the
peak of the heater pulse at t = 1.6 ns, a density well has formed at all points on the channel
axis, but the channel remains relatively small in transverse extent and highly nonuniform in
the longitudinal direction. However, several ns later at t = 5.6 ns the channel has expanded
radially and become more uniform, with longitudinal variation of ne and rm < 10%.

Density measurement uncertainty due to channel curvature

As stated previously in Section 4.5, asymmetry of the heater beam introduces curvature
in the heated plasma channel. Evidence of this can be seen in Fig. 4.16(a), which shows
considerable deflection of the probe beam as the channel evolves. Moreover, this deflection is
very repeatable between shots, with jitter in the probe beam centroid < 10 µm. Overlap of
the probe and heater was accurate to within 20 µm and 100 µrad at the capillary entrance,
which for the measured values of rm should yield a maximum deflection < 25 µm, and a
maximum density error < 5× 1015 cm−3 from probe centroid oscillation [86]. Instead, the
maximum deflection observed was 175 µm. This is attributed to “steering” of the heater
beam within the discharge channel due to the combined effects of the beam asymmetry visible
in Fig. 4.4(b) and self-channeling, which creates a slightly curved plasma channel.

Consistent with the evolution of the guided probe beam during the rise of heater pulse
shown in Fig. 4.16(a), the effect of self-channeling on the heater beam itself can be seen
directly in Fig. 4.18, which shows the time-integrated downstream nearfield of the heater
beam after propagation through a 9 cm-long, 800 µm-diameter capillary operated at a similar
initial plasma density to the case plotted in Fig. 4.16 as a function of laser arrival time
td relative to the discharge peak. The capillary discharge channel axis was aligned to the
heater beam such that the paths of the guided and vacuum beam centroids overlapped within
20 µm and 200 µrad using the methods of Ref [86]., with a pulse energy of 30 mJ at delay
td = 56.8 ns from the discharge peak.

Fig. 4.18 shows the heater propagation is strongly dependent on pulse energy and arrival
time in the discharge pulse. At 30 mJ the nearfield is nearly unchanged as discharge timing
is varied. This is consistent with a capillary discharge in the quasi-static regime, a condition
reached near the peak of current where the plasma density profile ceases evolving and the
electron temperature becomes a function of current alone, varying as Te ∝ I1/2 [84]. However,
at 420 mJ, reductions of ∼ 3 mrad in divergence angle and deflections of ∼ 3 mrad are
observed when the heater pulse arrives later in the discharge. Similarly to the deflection of the
probe beam shown in Fig. 4.16(a), the changes in heater beam divergence and propagation
direction are stable between shots, with jitter < 1 mrad. Increased delay relative to the
discharge current peak on the falling edge of the current pulse corresponds to lower plasma
temperature because of the Te ∝ I1/2 scaling in the quasi-static regime.

That the influence of pulse energy on the propagation of the heater beam is greatest at
low plasma temperatures, where inverse-bremsstrahlung heating is stronger according to Eq.
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Figure 4.17: MARPLE output for the case of Fig. 4.16. (a),(b) Radial plasma density profile
at 6 longitudinal positions z, for two delays from the peak of heating power: t = −3.0 ns,
t = 1.6 ns, and t = 5.6 ns. (c),(d) Channel parameters vs. longitudinal position for
t = −7.4, −3.0, 1.6, 5.6 ns, with t = −7.4 ns corresponding to the unmodified discharge
plasma density. rm values are omitted at locations where the channel extent is less than the
probe beam spot size or a density maximum exists on axis as described in Section 4.6.
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Figure 4.18: Images of the heater beam downstream nearfield (imaging infinity) after
interacting with a 9 cm-long, 800 µm-diameter capillary filled with 17.2 torr H2, vs. delay td
of the heater pulse relative to the peak of discharge current. Images are shown for 30 mJ and
420 mJ pulse energies. Shot-to-shot variation of propagation direction and divergence angle
are both < 1 mrad.

(3.35), is consistent with guiding of the heater beam within a channel created by plasma
motion driven by the heater beam itself. Furthermore, deflection of the heater beam from
the vacuum beam path and capillary axis at the later discharge times at 420 mJ in Fig. 4.18
implies that this channel is curved under these conditions.

This “self-steering” of the beam is attributed to asymmetric plasma heating, which is
in turn due to the asymmetry in the heater beam shown in Fig. 4.4(b). This effect will
complicate the alignment of an electron beam to the axis of an accelerator system. Thus, it is
beneficial to suppress self-steering to the greatest extent possible, which requires maximizing
symmetry of the heater beam. The experiments of Refs [21, 22]. used a different laser system
for heating, which produced a more symmetric beam, and self-steering was not observed.

Diagnosing the path of the curved channels formed by self-steering is quite difficult, as
discussed in Section 4.5. However, assuming that guided probe beam oscillates about center of
the channel as it evolves, the maximum deflection of the probe beam in the exit plane can be
used to roughly estimate a characteristic displacement of the channel from the capillary axis.
For the case of Fig. 4.16, taking the maximum probe deflection of ∆xf = 175 µm as the peak-
to-peak oscillation amplitude about the channel center yields the estimate ∆xf/2 ≈ 90 µm
for the displacement of the channel center from the capillary axis at the exit plane. This value
is merely representative, however. The position of the channel center varies with longitudinal
position along the capillary, and in fact coincides with the capillary axis at the entrance plane
to within the alignment precision of 20 µm previously quoted.

The main difficulty introduced in this experiment by self-steering of the heater beam is a
systematic error in the density measurement, caused by the increased path length traversed
by the probe pulse in a curved channel. The wide-cap error bars of Fig. 4.16(b) denote the
uncertainty in plasma density due to channel curvature and finite matched spot size effects.
Uncertainty from jitter in relative group delay of the probe and reference pulses is denoted by
the narrow-cap error bars. The wide-cap error bars were calculated using measurements of
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rm in combination with the observed maximum deflection of the probe beam, ∆xf = 175 µm
(see Section 4.5). Because these propagation effects scale roughly as r−2

m , they are most
pronounced close to the peak of the heater pulse, where rm is smallest.

The peak in ne0 visible in the experimental data plotted in Fig. 4.16(b) at t ∼ −4 ns is
a diagnostic artifact rather than a physical increase in the plasma density. Measurements
on the BELLA main beamline [21, 22] using a different diagnostic technique which will be
described in Chapter 5, common-path two-color spectral interferometry [115, 116], agreed
well with the simulations and measurements reported in this chapter but did not observe this
feature. Moreover, ionization by the heater laser cannot account for the observed effect, as
MARPLE shows the fraction of neutral hydrogen on axis to be < 2% [22], leaving insufficient
neutral hydrogen to produce the observed ∼ 25% increase in apparent electron density (see
Chapter 6).

In Fig. 4.16(b), the simulated density lies within the systematic uncertainty from propa-
gation effects, with the exceptions of the points at t = −6 ns and -4 ns. The discrepancy
at these times may arise from the assumption of an ideal, longitudinally uniform parabolic
channel in the model of the decreased group velocity and increased path length due to finite
matched spot size and channel curvature (see Appendix B). As previously discussed, the
MARPLE simulations show that early in the heater pulse, the channel is both longitudinally
nonuniform and has a complex, non-parabolic transverse profile. In addition to having these
properties, the physical channel is non-axisymmetric. The group velocity of the probe pulse
in such a structure will be less than in the idealized parabolic density profile used in the
model, in which case the apparent density contribution from propagation effects will be
underestimated.

Nevertheless, the group delay plasma density measurements agree well with simulation
in the interval most useful for laser-plasma acceleration 0 < t < 15 ns, when the channel
is fully formed and on-axis density and matched spot size are low. Fig. 4.17 shows that
plasma expansion produces a transverse density profile with a wide, on-axis minimum by
t ≈ 2 ns, which further evolves into a longitudinally uniform, nearly parabolic shape on-axis
by t ≈ 6 ns. Additionally, the effects of matched spot size and channel curvature are greatly
reduced at later times due to increasing rm after t ≈ 0 ns and the r−2

m scaling of these effects.
Therefore, the diagnostic artifacts and nonidealities of the plasma profile previously discussed
pose little difficulty for measurements in the interval relevant to accelerator operation.

The measurements and simulation output of Figs. 4.16 and 4.17 show that, for a given
capillary radius, laser heating of a capillary discharge can create a channel with lower matched
spot size for a given density than the discharge alone. Equivalently, channels can be created
with matched spot size and density that would otherwise require a significantly smaller
capillary radius without laser heating: 60% smaller in the case of Figs. 4.16 and 4.17. The
properties of the channel, including ne0, rm, and the longitudinal variation of the plasma
profile, evolve on a nanosecond timescale due to plasma motion. This requires precise timing
of the driver pulse to achieve optimal channel properties, with a minimum in on-axis density
occurring ∼ 5 ns after the peak of the heater pulse. Furthermore, MARPLE simulations
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showing ∼ 10% longitudinal variation in rm and ne0 ∼ 6 ns after the peak demonstrate that,
despite mismatch of the heater spot size to the channel and the complex coupling between
plasma motion and heater beam propagation, channels with a high degree of longitudinal
uniformity can be created.

4.7 Tuning channel properties via plasma and laser

parameters

The primary difficulty addressed by laser-heated capillary discharges is the lack of independent
control of rm and ne0 in a conventional capillary discharge. For a capillary discharge, the
scaling rm ∝ r

1/2
c n

−1/4
e0 restricts a capillary of fixed radius to a one-dimensional curve in

(ne0, rm) space. Independent control of ne0 and rm enables matched guiding of petawatt-scale
laser pulses at low plasma densities required for ∼ 10 GeV energy gain without reducing
capillary diameter to a size at which the structure is subject to laser damage. This additional
freedom is also useful for optimization of a channel-guided laser-plasma accelerator, where
matched spot size, plasma density, laser intensity, and plasma wave phase velocity are all
coupled to one another.

It was demonstrated in Ref [21]. that a laser-heated capillary discharge can be tuned
over a two-dimensional region of (ne0, rm) by varying the initial discharge plasma density and
temperature. In the experiments of Ref [21]., the driver arrived at the peak of the heater
pulse, and channel parameters were reported for that delay relative to the heater pulse. Here,
the full time evolution of the plasma upon heating is presented for the parameter space
discussed in Ref [21]., as well as additional measurements demonstrating the effect of the
total heater pulse energy. In agreement with the data of Fig. 4.16, the data presented here
show that a minimum in the on-axis density consistently occurs 4-7 ns after the peak of the
heater pulse, indicating that for a wide range of parameters, channel properties are optimal
for high energy gain at that time. Tunability of channel properties over a wide range via
heater laser energy, driver timing, and initial plasma parameters is shown, and strategies for
channel optimization are identified.

Initial plasma density

Experiments and MARPLE simulations show that the reduction of ne0 and rm increases with
initial plasma density. Fig. 4.19 shows ne0 and rm plotted for a heater laser arrival time
td = 320 ns after the discharge peak for four initial plasma densities ne0,i. Reduction of ne0
and rm from their initial values is found to increase with ne0,i. This relationship is to be
expected from the ne scaling of the heating rate [Eq. (3.35)]. Low densities and matched
spot sizes cannot be achieved by simply lowering the initial plasma density, because the
modification of rm decreases rapidly with density. Instead, there exists an optimal initial
density for guiding and acceleration that produces the required reduction in both rm and ne0.
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Figure 4.19: (a) ne0 for 4 initial densities, with arrival time of the heater pulse relative to
peak discharge current td = 320 ns. Error bars as in Fig. 4.16. Values from MARPLE as
dotted lines. (b) Measured rm and MARPLE calculated values for the cases of (a).
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Initial plasma temperature

Initial plasma temperature Te,i has a strong effect on plasma profile modification. Fig. 4.20
shows ne0 and rm for three different arrival times of the heater pulse relative to the discharge
peak, which correspond to different initial plasma temperatures Te,i. As previously discussed,
plasma temperature decreases with delay from the peak of discharge current because of
the Te ∝ I1/2 scaling in the quasi-static regime [84]. Lower Te,i at later times yields larger

reductions in both ne0 and rm, due to the T
−3/2
e scaling of the heating rate [Eq. (3.35)].

Initial plasma temperature is the most readily exploited parameter for optimization of
the heated channel because it can be easily tuned while minimally altering other discharge
channel properties. Once the quasi-static regime is reached near the peak of the current
pulse, the shape of the plasma profile does not evolve significantly. Centroid oscillation
measurements show the matched spot size rm of the capillary discharge channel (without
heating) varied < 2 µm between the three delays shown in Fig. 4.20, which cover an interval
of 420 ns.

However, the requirement of near-total ionization on-axis for acceleration imposes a
minimum allowable initial temperature, and therefore maximum allowable laser delay from
the peak of discharge current. If the neutral fraction becomes too great, ionization defocusing
of the driver can overwhelm the effect of the channel. Laser heating can ionize a partially
recombined plasma at late times in the discharge current pulse, and therefore the plasma
is not necessarily required to be initially fully ionized. The maximum allowable delay from
the peak of current is therefore dependent on the parameters of the capillary discharge and
the heater laser. For these experiments, ionization blueshifting measurements and MARPLE
simulations indicate that up to 420 ns after the peak of discharge current, the plasma on the
channel axis is fully ionized ∼ 5 ns after the peak of a 300 mJ heater pulse [22].

Heater pulse energy

It might be expected that increasing the energy of the heater pulse would be a straightforward
means of decreasing on-axis density and matched spot size. However, the plasma response was
observed to saturate with increasing pulse energy. Fig. 4.21 shows ne0 and rm measurements
at four heater pulse energies for ne0,i = 3.8× 1017 cm−3 and laser timing td = 440 ns after
the peak of discharge current. Measurable modification of the plasma occurs with as few as
30 mJ of laser energy, 10% of the pulse energy that was used in the LPA experiments of Refs
[21, 22].. The plasma modification observed at 30 mJ is strong evidence for the influence
of self-channeling on the propagation of the heater pulse at higher energies: based on the
effect observed at 30 mJ, the rising edge of a joule-level pulse contains sufficient energy to
significantly modify the plasma profile before the majority of the pulse energy has been
deposited.

The effect of laser-heating begins to saturate above energies of 100 mJ. Measurements
of ne0 and rm cannot distinguish between channel properties for the cases of 200 mJ and
300 mJ of laser energy, although the MARPLE simulations show a slightly lower density for
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Figure 4.20: (a) ne0 for 3 arrival times of the heater pulse relative to the discharge current
pulse. Heater pulse arrival times td are marked on the discharge current trace in the inset.
Later times and lower currents correspond to lower initial plasma temperature. Error bars
as in Fig. 4.16. Values from MARPLE as dotted lines. (b) Measured rm and MARPLE
calculated values for the cases of (a).
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300 mJ. This saturation with heater pulse energy is a consequence of the T
−3/2
e scaling of

the heating rate [Eq. (3.35)]. As the plasma absorbs energy from the heater pulse and Te
increases, it becomes more transparent.

Saturation of the plasma response with respect to pulse energy is predicted by a simplified
model of heating as function of the fluence Φ ≡

∫ t
−∞ I dt′ derived from Eq. (3.36). Taking the

factors Λ and ne constant in Eq. (3.36) and ignoring heat conduction, solving the resulting
differential equation yields

Te = (KneΦΛ/ω2 + T
5/2
e,i )2/5, (4.33)

with Te,i the initial plasma temperature and

K =
27/2π3/2

3

Zq6
e

k
5/2
b m

3/2
e c

(4.34)

a proportionality constant composed of dimensionless factors and physical constants from
Eqs. (3.36) and (3.32). Note that as a consequence of neglecting plasma motion and heat
conduction, the expression for Te is independent of the temporal structure of the laser intensity
I, depending only on the fluence Φ. This follows from the linearity of the heating rate in
the intensity. The saturation behavior is evident from the fact d2Te/dΦ2 < 0. In reality,
this simplified model overestimates heating for the experiments reported in this dissertation,
as plasma motion will reduce ne during heating and heat conduction will allow energy to
migrate out of the heated region of the plasma. Therefore, plasma temperature will saturate
more rapidly than the ∼ Φ2/5 scaling of Eq. (4.33).

It is also evident from Eq. (4.33) and its derivation from Eq. (3.36) that sensitivity of
the plasma response to the temporal structure of the heater pulse arises through plasma
motion and heat conduction, provided the laser intensity remains low enough that the inverse-
bremsstrahlung heating rate remains linear in the intensity. Although not directly applicable
to the experiments in this dissertation, this may be an important consideration in situations
where the heater pulse length is shorter than the characteristic timescales of these processes.

However, the heating rate [Eq. (3.36)] will become nonlinear in the intensity if the electron
ponderomotive energy becomes comparable to the plasma temperature, because the collision
frequency νe,IB will begin to decrease with laser intensity [98, 99]. In this regime, Eq. (4.33)
will no longer hold and Te will become dependent on the heater pulse shape. For the laser and
plasma parameters considered in this dissertation, this occurs at a laser intensity and pulse
energy of order 1014 W/cm2 and 100 J, respectively. Moreover, Eq. (4.33) does not hold for
heater pulse lengths shorter than the electron-ion energy exchange timescale regardless of
intensity, as the approximation Te ≈ Ti from which Eqn. (3.36) is derived is no longer valid.
Therefore, per the discussion in section 3.6, Eq. (4.33) is not valid for heater pulse lengths of
order 100 ps and shorter for the plasmas considered here.

Measurements and simulations show that for laser-heated capillary discharges, channel
properties are sensitive to initial plasma density and temperature, delay from the heater
pulse, and heater pulse energy. This enables independent tuning of ne0 and rm, and enables
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Figure 4.21: (a) ne0 for 4 heater pulse energies, with identical initial plasma temperature
and density. Initial plasma density is 3.8× 1017 cm−3, arrival time of the heater relative to
peak discharge current td = 440 ns. Error bars as in Fig. 4.16. Values from MARPLE as
dotted lines. (b) Measured rm and MARPLE calculated values for the cases of (a).
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optimization of guiding with a fixed capillary radius. For example, MARPLE simulations
show matched spot sizes of 75 µm and 65 µm at a density of 2.4 × 1017 cm−3: 75 µm at
discharge timing and initial density td = 320 ns and ne0,i = 3.3× 1017 cm−3 (Fig. 4.19), and
65 µm at td = 440 ns and ne0,i = 3.8 × 1017 cm−3 (Fig. 4.19). To vary matched spot size
over the same interval with a capillary discharge, the scaling rm ∝ rc

1/2ne
−1/4 would require

a 50% increase in density for fixed capillary radius, or a 25% decrease in capillary diameter
for fixed density.

Density can be tuned while matched spot is kept fixed as well. The MARPLE simulations
of Fig. 4.21 show that density can be tuned between 3.4× 1017 cm−3 and 2.5× 1017 cm−3 at
a constant matched spot size of 69 µm by varying laser energy between 30 mJ and 300 mJ
and delay from the heater pulse peak between 5 and 8 ns. Simulations show that single-stage
acceleration to energies approaching 10 GeV is possible within this space of accessible spot
sizes and densities [114], and tunability of these parameters independent of the capillary
radius adds useful flexibility over a conventional capillary discharge, especially when capillary
radius is restricted by other factors such as laser damage.

4.8 Conclusion

Laser-heated capillary discharge waveguides have been characterized as novel, tunable guiding
structures for LPAs. The independent control of matched spot size and plasma density afforded
by these structures has enabled guiding of petawatt-scale pulses focused to a beam waist of
∼ 60 µm at low plasma densities required for the production of multi-GeV electron beams
within capillaries of large enough diameter to avoid laser damage [21, 22]. This independent
tunability of matched spot and density is also useful for the optimization of channel-guided
LPAs, where one of these parameters may be constrained by such considerations as required
beam energy or control of bunch injection. In this chapter, important trends in the properties
of laser-heated capillary discharge waveguides have been identified. Guiding and acceleration
can be tuned via initial plasma density and temperature, heater laser pulse energy, and
arrival time of the driver relative to the heater pulse. Trends observed in these experiments
are consistent with the theoretical models of low power inverse-bremsstrahlung described in
Chapter 3, and specific experimental measurements are well reproduced by the MARPLE
MHD code. Importantly, the measurements of the time evolution of the plasma channel
reported here indicate a path toward improved accelerator performance over prior experiments
[21, 22] through optimizing the arrival time of the driver relative to the heater pulse.

Future experiments and simulations with MARPLE will investigate additional strategies
for optimizing channel performance through tuning of the heater beam focal spot size, pulse
length, and wavelength, which are known to be important parameters for laser-heated capillary
discharge waveguides.

Though successful in characterizing laser-heated capillary discharges as just described, the
diagnostic techniques for measuring plasma density in laser-heated capillary discharges could
be improved upon. Specific issues warranting further development of diagnostics include
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the anomalous density peak described in Section 4.6, as well as the complicated spectral
fringe patterns and delay drift arising from the use of fiber optics in the interferometer.
Motivated by these considerations, as well as the desire to implement a density diagnostic
on the main BELLA beamline for in-situ diagnostic measurements of the plasma channels
used in electron acceleration experiments, a two-color common-path interferometer[115, 116]
density diagnostic was commissioned on the BELLA beamline, which will be the subject of
Chapter 5.
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Chapter 5

In-situ plasma channel diagnostics on
the BELLA laser using two-color
common-path interferometry

5.1 Introduction

In this chapter, an interferometric density diagnostic for laser-heated capillary discharge
waveguides installed on the BELLA beamline is described, and the results of measurements
with this diagnostic are presented. The approach used on the Plasma 2 test stand described
in Chapter 4 was not practical for use on the BELLA laser system. For the sake of simplicity,
it is desirable to use the BELLA laser itself, in a low power mode of operation, as a probe
beam. However, the existing focusing optics are ∼ 10 m from the target to reduce the fluence
to safe levels at PW-scale laser power, which will introduce unacceptable delay jitter into the
measurement as discussed in Section 4.3.

To overcome these difficulties, a two-color common path interferometer was built, which
is pictured schematically in Fig. 5.1. Instead of measuring the time delay between two pulses
of the same frequency propagating on different optical paths, this scheme relies on measuring
the time delay between two pulses of different frequencies propagating on the same optical
path. Because the pulses propagate along a common optical path, with a temporal separation
< 1 ps, the influence of vibrations on the inter-pulse delay is effectively eliminated.

The diagnostic functions as follows. An 800 nm–”red”–probe pulse is propagated through
a nonlinear crystal to produce its second harmonic at 400 nm–”blue”. These two pulses,
the second harmonic and the residual fundamental, then propagate collinearly through the
plasma channel, and acquire a relative delay due to the frequency dependence of the group
velocity. Downstream of the plasma channel, a second nonlinear crystal converts the residual
fundamental to the second harmonic, resulting in two pulses at the second harmonic with a
temporal separation proportional to the plasma density. The delay between these pulses is
then measured via spectral interferometry.
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(a) ”Vacuum pulse delay” Trb,vac measurement, with the plasma channel (i.e. capillary) removed
from the beam path.
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(b) Pulse delay Trb measurement with the plasma channel inserted into the probe beam path.

Figure 5.1: Schematic representation of the two-color common-path interferometer plasma
density diagnostic. The delay induced by the plasma channel relative to vacuum, from which
the density is can be calculated via Eqn. 4.25, is obtained by taking the difference between to
the delay measured for the probe pulse propagating in vacuum (a) and the delay measured
for the probe pulse propagating through the plasma channel (b).
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The red and blue pulses are initially overlapped after the first nonlinear crystal as shown
in Fig. 5.1, being separated by < 100 fs. This is too small a group delay to resolve within the
20 nm bandwidth of the second harmonic pulses, i.e. there are too few spectral fringes for
the phase mapping algorithm. Therefore, a delay plate between the two nonlinear crystals
(also shown in Fig. 5.1) is used to increase delay between the pulses sufficiently for an
interferometric delay measurement. Therefore, a density measurement requires two delay
measurements, a vacuum delay Trb,vac measurement with the capillary out of the beam
path (Fig. 5.1(a)) and channel delay Trb measurement with the capillary in the beam path
(Fig. 5.1(b)), to isolate the effect of the plasma channel on the delay. Note that the delay
between the two pulses decreases with the cap in (i.e. Trb < Trb,vac), because the red pulse
leads the blue pulse after the delay plate, but the blue pulse has a higher group velocity in
the plasma.

The plasma density is obtained from the delay measurements in a similar manner to that
described in Chapter 4. The channel-induced delay is given by:

∆Trb = Trb − Trb,vac =
1

c

∫ L

0

(
1

βg,r
− 1

βg,b

)
dz . (5.1)

The contribution from the delay plate is canceled out in the difference between the channel
and vacuum delay measurements Trb − Trb,vac. The group velocity for each wavelength βg,λ
has the familiar form

βg,λ =
vg,λ
c

= 1− βg,ne,λ − βg,geo,λ . (5.2)

Once again, βg,ne,λ and βg,geo,λ are . 10−4, and so Eqn. 5.1 can be simplified to

∆Trb =
L

c
(∆βg,ne0 + ∆βg,geo) (5.3)

with ∆βg,ne0 = βg,ne0,r − βg,ne0,b and ∆βg,geo = βg,geo,r − βg,geo,b. Note that the the group
velocities are expressed as longitudinal averages as in Chapter 4, since the considerations of
longitudinal nonuniformity in laser-heated capillary discharges discussed there still apply.

The density contribution ∆βg,ne0 is given by

∆βg,ne0 = −3

8

k2
p

k2
0

, (5.4)

which results in a relative blue-red delay of 14.5 fs for a plasma density of 1 × 1017 cm−3

in a 20-cm-long capillary. Similarly to Chapter 4, these delays are measured using spectral
interferometry, which can easily resolve them. The calculation of the geometrical contribution
to the group velocity ∆βg,geo which goes as r−4

m , will be addressed in detail in Section 5.4.
This chapter is organized as follows. The experiment setup is described in Section 5.2.

The fringe pattern analysis algorithm, which is very similar to that used in Chapter 5, is
outlined in Section 5.3. Calculation of the geometrical contribution to the group velocity
density measurement is described in detail in Section 5.4. Density measurements in capillary
discharges without laser heating are presented in Section 5.5, and measurements in laser-heated
capillary discharges are presented in Section 5.6. Findings are summarized in Section 5.8
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5.2 Experiment setup

The two-color common-path interferometer described in this chapter is shown schematically in
Fig. 5.2. For clarity, only those parts of the laser system directly relevant to the experiments
of this chapter are shown. The interferometer setup was installed in the ”Plasma 1” target
chamber used for electron acceleration experiments on the main BELLA beam line, to obtain
in-situ density measurements of laser-heated capillary discharges. However, as the diagnostic
involves propagation of laser pulses through solid materials, these measurements can only
be performed when the BELLA laser is operated at low power. For high power operation
of the laser (above the millijoule level), the nonlinear crystals and delay plate assembly
must be removed from the beam path. Nevertheless, the advantage of measuring the same
plasma channels used for LWFA experiments, generated by the same discharge capillary and
heater system, remain. Details of the BELLA laser system are largely beyond the scope of
this dissertation. Key features of note to the operator and experimenter are summarized in
Chapter 6.

The capillary and discharge system are identical to those used for the experiments of
Chapter 4. Specifically, an 800 µm diameter, 20-cm-long hydrogen-filled capillary with
discharge current pulse as in Fig. 4.3 was investigated.

The heater laser used an identical 532 nm q-switched, frequency-doubled, Nd:YAG laser
system to that used for the experiments of Chapter 4. The 12 mm diameter beam was
expanded using a Galilean telescope consisting of a −200 mm plano-concave lens L1 and a
2123 mm plano-convex lens L2, separated by 1930 mm. A 75 mm diameter iris was placed
28.5 cm upstream of L2 to spatially filter the heater beam in a similar manner to that
described in Chapter 4. The position of the iris in the telescope was selected to maximize the
peak fluence of the heater beam at focus. The resulting 87 mm diameter collimated beam is
focused to the target by a 12.96 meter plano-convex lens L3, for a system F/# of 150. The
beam enters the evacuated beamline through an anti-reflective-coated window, and is coupled
in collinearly with the 800 nm BELLA laser through a dichroic mirror, as is shown in Fig. 5.2.
At the target, the system delivers up to 300 mJ of laser energy in an 8 ns pulse, with a focal
spot of 81 µm. Beam profiles for the heater laser near focus are shown in Fig. 5.3.

The ”probe beam” used for these experiments was the 800 nm BELLA Ti:Sapphire laser
itself, albeit operated in a low power configuration that only generated 9 mJ pulses. The
grating compressor was set to its ”zero point,” where pulse length is minimized, to produce
∼ 40 fs pulses. As designed, the BELLA laser produces a ∼ 200 mm diameter nearfield,
which is focused to a ∼ 60 µm focal spot with a 13.5 m focal length off-axis paraboloid
(OAP). However, to spatially filter the probe beam and improve the precision of the density
measurements (see Section 5.5), for these experiments a 70 mm iris was inserted upstream of
the grating compressor to increase the focal spot to 134 µm, which also reduced the total
pulse energy to 2 mJ on target. In this configuration, the probe system had an F/# of 193.
Profiles for the ”red” (800 nm) probe beam near focus are shown in Fig. 5.4(a).

Even with the laser operating in this low power configuration, the peak intensity at
focus is ∼ 2× 1014 W/cm2, above the 1.4× 1014 W/cm2 threshold for barrier-suppression
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Figure 5.3: Image size 886 µm. Fluence profiles of the heater beam as a function of distance
z from focus, in mm.

(a) Image size 886 µm. 800 nm “red” probe beam fluence.

(b) Image size 886 µm. 400 nm “blue” probe beam fluence.

Figure 5.4: Fluence profiles of the red and blue beams as a function of distance z from
focus, in mm. 70 mm iris installed upstream of the compressor.

ionization of neutral hydrogen [37]. However, MARPLE simulations and spectral blueshifting
measurements in Chapter 6 show that the neutral fraction on-axis in the channel is at most
∼ 1%, and then only for discharge delays & 420 ns. A 1% increase in plasma density from
ionization is well below the sensitivity of the diagnostic, and hence can be neglected.

however no ionization blueshifting was observed and no dependence of plasma density
on the probe pulse length was observed, and hence it was concluded that ionization by the
probe laser did not impact the density measurements.

The common-path interferometer setup in the target chamber consisted of two β-Barium
Borate (BBO) crystals for second harmonic generation, each 100 µm thick and cut for type-I
phase matching, and a pair of delay plates constructed from two 1-mm-thick microscope slides.
All three optical elements were installed on motorized stages, allowing them to be moved in
and out of the beam path as experiments require. In the setup as constructed, in contrast
to the schematic of Fig. 5.1, the delay plates were installed after the capillary, as shown in
Fig. 5.2 (in the figure, the two delay plates were merged together for the sake of clarity).
This was strictly a matter of mechanical convenience, as long as the delay plate is installed
between the two nonlinear crystals, it will produce the temporal separation between the two
wavelengths required for the delay measurement. The frequency doubled ”blue” (400 nm)
beam was focused to an 84 µm spot, and the conversion efficiency at each BBO crystal was
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estimated to be ∼ 10%. Fluence profiles of the blue beam are plotted in Fig. 5.4(b), showing
the the blue beam also appears to have more high order mode content compared to the red
beam. This is to be expected from the second harmonic generation process. The production
of the second harmonic is a second-order nonlinear process, and so any intensity fluctuations
in the fundamental are exaggerated in the second harmonic, and the phase associated with
any wavefront error in the fundamental is doubled.

The BBO crystals were installed 980 mm upstream and downstream of the target, with
the delay plate assembly roughly 30 mm upstream of the downstream BBO crystal. The
large standoff distances of the nonlinear crystals from the target is a departure from the
setup described in Ref. [115], however this change was necessary to keep the fluence of the
heater beam—which copropagates with the probe—on the optics within safe limits to avoid
laser damage. With a heater F/# of 150 and pulse energy 300 mJ, this results in a fluence of
0.8 J/cm2 in a ∼ 7 mm diameter laser spot on the crystals and delay plates from the heater
laser. For the probe, with F/# of 192 and pulse energy 2 mJ, the beam diameter on the
crystal was 5 mm with fluence 0.01 J/cm2. No damage was observed for these fluences.

The lasers were imaged using a reflective achromatic telescope. Through multiple reflec-
tions off uncoated fused silica wedges, the telescope attenuates the laser energy delivered to
the laser high power diagnostics table by a factor 5× 10−5. The capillary entrance plane is
imaged onto the the high power diagnostics table with magnification 1. As shown in Fig. 5.2,
two CCD cameras were used to image the ”probe” (i.e. the BELLA driver beam) and heater
beams, these were installed on a motorized stage to facilitate imaging of the laser beams
along the direction of propagation. A 700 nm longpass filter was installed on the probe
camera to reject light from the heater laser. The filtration on the heater beam camera, which
consisted of a 600 nm shortpass filter, allowed it to also image the 400 nm second harmonic
of the probe beam. Hence, the heater mode imager was used to acquire the beam profiles of
Fig. 5.4(b).

The same imaging spectrometer used for the experiments on Plasma 1 of Chapter 5 was
repurposed for these experiments. The only change made was the exchange of the 1200/mm
diffraction grating with a 2400/mm grating to accommodate the halving of the operating
wavelength. The spectrometer was positioned on the high power laser diagnostics table such
that it images the exit plane of a 20-cm-long capillary. In this configuration, all rays incident
on the spectrometer slit are guaranteed to travel the same path length from the capillary
exit by Fermat’s Principle of Least Time [117]. This minimizes the contribution of pointing
jitter (in both position and angle) at the capillary exit to the delay measurement. This was
arranged by installing a dichroic mirror in the optical line to the heater and probe mode
imagers to separate the second harmonic light and send it to the spectrometer slit.

5.3 Fringe pattern analysis

The spectral interferograms produced by this diagnostic are analyzed using the algorithm
described in Section 4.3, however the analysis for the two-color common path diagnostic
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differs in some key ways. As there was no quadratic spectral phase introduced between the
red and blue pulses (due to the absence of long fibers), the no phase background subtraction
was required to calculate the relative pulse delay. Also, the global group delay of the laser
pulses was used to define the measured delay between the red and blue pulses, rather than the
centroid group delay. The global group delay was used because the shot-to-shot jitter in the
positions of the red and blue beams at the capillary exit, as well as the multimode structure
of the guided beams, made it difficult to assign a ”centroid” to the beams imaged on the
spectrometer slit. However, calculating the global group delay requires taking a weighted
average of the group delay measured at each row of pixels on the spectrometer.

The analysis procedure used will now be described, with the aid of Fig. 5.5, to the extent
that it differs from Section 4.3. The delay between the red and blue pulses is calculated from
the interferogram Fig. 5.5(a) according to

Trb =

∫ yCCD

0

φ′rb(y)C(y)dy (5.5)

with yCCD the height of the spectrometer camera sensor, φ′rb(y) the linear group delay between
the red and blue pulses across the slit, and the weighting function C

C(y) =

∫∞
−∞C(τ − τ0, y)dτ∫ yCCD

0

∫∞
−∞C(τ − τ0, y)dτdy

, (5.6)

defined according to Eqn. 4.11. The sideband C is marked in Fig. 5.5(b), with the integration
in τ performed over the marked interval. The fitted group delay φb,r and weighting function
C are plotted in Fig. 5.5(c). As can be seen in Fig. 5.5(c), the weighting function was
thresholded at 5% of its peak value, to suppress noise.

Eqn. 5.5 is an intuitive definition of the the delay, as there is not one single group
delay measured across the interferogram, but rather a group delay measurement for every
row of pixels and thus an average of some kind is required. That said, there is a physical
meaning to associated with the choice of weighting function. C is proportional to the spectral
energy density associated with the interference term in Eqn. 4.5, i.e. C ∝ |ab(ω, y)||ar(ω, y)|.
Therefore, C is essentially the distribution in y of the ”spatially overlapping laser energy”
that produces the interferogram.

5.4 Correction for finite matched spot size in density

measurements

It was necessary to accurately model the contribution of the channel finite matched spot
size to the density measurement, as spatial filtering with the iris described in Section 5.2
increased the beam size such that the geometrical contribution to the density measurement
cannot be ignored or simply treated as a systematic error. This requires accurately treating
the multimode nature of the blue and red beams. The electric field of each laser beam was



CHAPTER 5. IN-SITU PLASMA CHANNEL DIAGNOSTICS ON THE BELLA LASER
USING TWO-COLOR COMMON-PATH INTERFEROMETRY 94

4.55 4.6 4.65 4.7 4.75 4.8

 (1015 s-1) 1015

500

1000

1500

2000

2500

3000

y
 (

m
)

(a) Fringes on the Plasma 1 setup.

-1000 -500 0 500 1000

 (fs)

500

1000

1500

2000

2500

3000

y
 (

m
)

(b) FFT of (a). Weighting function C(y)
calculated by integrating over the marked
area.

1000 1100 1200 1300 1400 1500

300

350

400

450

500

550

0

0.01

0.02

0.03

0.04
T=403 fs

(c) Group delay and weighting function C(y)

Figure 5.5: Fringe pattern analysis. For the case of a 800 µm, 20-cm-long capillary operated
with 17 torr fill pressure, td = 420 ns after the peak of discharge current.
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decomposed into the normal modes of a parabolic channel as described in Section 3.2, from
which the global group velocity of the laser pulse in the channel was calculated. A standard
phase retrieval procedure [118, 119] was performed to obtain the electric field for each beam.

It must be noted that this technique is approximate: First, as was shown in Chapter 4,
the plasma profile is, in general, not parabolic in a laser-heated capillary discharge. Second,
the matched spot size and density are not longitudinally uniform. Nevertheless, this simple
model effectively captures the influence of the channel radius on the density measurement, as
will be shown later.

Modeling the group velocity of a multimode pulse in a parabolic channel is a straightforward
application of the material of Section 3.2. The group velocity for a beam with arbitrary mode
content is given by a weighted average of Eqn. 3.15:

βg = 1−
k2
p

2k2
0

− 2〈Nrm〉
k2

0r
2
m

, (5.7)

with the mean Laguerre-Gaussian mode number 〈Nrm〉 for parabolic channel of matched
radius rm

〈N〉 ≡
∞∑
m=0

∞∑
p=−∞

(2m+ |p|+ 1)|Cm,p|2 , (5.8)

and the amplitudes Cm,p such that

∞∑
m=0

∞∑
p=−∞

|Cm,p|2 = 1 . (5.9)

The geometrical component of the group velocity βgeo,λ is given by the third term of Eqn. 5.7:

βgeo,λ =
2〈Nrm〉
k2

0r
2
m

(5.10)

Taking the difference ∆βg = βg,r − βg,b, with kr = k0 and kb = 2k0,

∆βg = ∆βg,ne0 + ∆βg,geo = −3

8

k2
p

k2
0

− 1

k2
0r

2
m

(
〈Nrm,b〉 −

1

4
〈Nrm,b〉

)
, (5.11)

and hence

∆βg,geo = − 1

k2
0r

2
m

(
〈Nrm,b〉 −

1

4
〈Nrm,b〉

)
. (5.12)

Note that the influence of the mode content 〈Nrm,b〉 of the blue beam in Eqn. 5.11 is
diminished by the k−2

0 scaling of Eqn. 5.10. Hence, the geometrical correction to the plasma
density will be dominated by the mismatch and mode content of the red beam.

To calculate 〈N〉, the electric field of the laser beam must be determined, which requires
the use of a phase retrieval algorithm. For this purpose, the standard Gerchberg-Saxton



CHAPTER 5. IN-SITU PLASMA CHANNEL DIAGNOSTICS ON THE BELLA LASER
USING TWO-COLOR COMMON-PATH INTERFEROMETRY 96

0

500

1000

1500

z
=

13
0 

m
m

(
m

)

(a)

Measured
Fluence

(c)

Reconstructed
Fluence

(e)

Retrieved
Phase

0 1000
( m)

0

500

1000

1500

z
=

0 
m

m
(

m
)

(b)

0 1000
( m)

(d)

0 1000
( m)

(f)

Figure 5.6: Phase retrieval for the blue (400 nm) beam. (a),(b): Measured beam profiles
at the ”nearfield” z = −130 mm and focus z = 0 mm, respectively. (c),(d): Reconstructed
fluence from the phase retrieval at z positions of (a) and (b). (e),(f): Retrieved phase for (a)
and (b). Discontinuities in the phase, i.e. the large “patches,” are a numerical artifact of the
[−π, π] branch cut in the complex plane that can occur where the image signal is low.

algorithm was used [118, 119]. Phase retrieval was performed on both the red and blue beams,
and the results of this phase retrieval for the blue beam are shown in Fig. 5.6.

From the electric field |E|eiφ(x,y) at focus, with |E| from the laser fluence and φ(x, y) from
Fig. 5.6(f), the laser field can be decomposed into the Laguerre-Gaussian modes of Eqn. 3.10
according to Eqn. 3.11. Note that this decomposition must be performed for each value
of the matched spot size rm. The energy in each mode |Cm,p| is plotted for both beams in
Fig. 5.7, for the ”best fit” value of rm for each, where rm is approximately equal to the beam
waist defined by the second moment of the fluence σ2

r,0. The range of mode numbers for the
decomposition was chosen to encompass > 95% of the total laser energy. Unsurprisingly,
the blue beam, which is generated by nonlinear frequency conversion in the upstream BBO
crystal, contains significantly more higher-order mode content than the red beam.

To verify the accuracy of the modal decomposition, the beams were reconstructed according
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Figure 5.7: Distribution of beam energy in the Laguerre-Gaussian basis for each beam,
calculated from the reconstructed electric field (as shown in Fig. 5.6). The matched radius
rm for each beam was chosen for the ”best fit,” i.e. lowest effective mode number 〈Nrm〉
according to Fig. 5.9. Scale is logarithmic, total energy normalized to 1.

to the mode amplitudes of Fig. 5.7. This reconstruction is shown for the blue beam in Fig. 5.8,
and it is clear that the model decomposition and faithfully reproduces the measured laser
field. Note that for both the phase retrieval and the modal decomposition, the laser profile
images were thresholded (i.e. pixels below noise level of the sensor value were set to zero) to
suppress noise, as can be seen in Fig. 5.8(b).

The effective mode number 〈Nrm〉 and geometrical contribution to the group velocity
βg,geo,λ as a function of matched spot size rm for each wavelength is plotted in Fig. 5.9.
Despite having a larger effective mode number, the blue beam has a smaller geometrical
correction to the group velocity due to the k−2

0 scaling of Eqn. 5.7, as can be seen in Fig. 5.9.
The geometrical correction to the group velocity can then be used to calculate a correction

to the measured density according to Eqn. 5.3.

ne0 = −8

3

k2
0

4πre

(
c∆Trb
L
−∆βg,geo

)
(5.13)

This can be rewritten
ne0 = ne,raw −∆ne,geo , (5.14)

with ne,raw the density from treating propagation in terms of plane waves, and ∆ne,geo the
geometrical correction for the finite matched spot size. The calibration curve for ∆ne0,geo
obtained from the eigenmode model is plotted in Fig. 5.10, as well as an analytical fit

∆ne0,geo[1017 cm−3] = 0.032[1 + (128/rm[µm])4] , (5.15)
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Figure 5.9: Effective mode numbers and group velocity correction as function of matched
radius rm for the red and blue beams.

which was used to correct the measurements presented in the following sections of this chapter.
This yields a correction of 0.7 × 1017 cm−3 at rm = 60 µm, ∼ 25% of the 2-3 × 1017 cm−3

plasma densities relevant for LWFA.

An alternative method for calculating the geometrical group
velocity contribution for multimode beams

It is possible to measure the mode content of a laser beam using only beam profile measure-
ments in a series of axial slices along the propagation direction, without performing a phase
retrieval. This potentially enables a more convenient method to correct for the geometrical
contribution to the laser group velocity for the plasma density measurements described in
this section, provided sufficiently accurate beam profile measurements can be performed.
Though it was not implemented for the work described here, it may be useful technique for
future experiments. The proposed method relies on measurements of the beam quality factor
M2 [105, 106]:

Wr(z) = Wr0

√
1 +M4

(
z

Z̃R

)2

, (5.16)

with W 2
r0 = 2(σ2

x0 + σ2
y0) the vacuum beam waist, σx0 and σy0 the transverse second moments

of the laser fluence at focus, and the effective Rayleigh length Z̃R = kW 2
r0/2. For a Gaussian

laser beam Wr0 = r0, with r0 the Gaussian spot radius. The mean mode number defined for
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Figure 5.10: Correction for the geometrical contribution to the density measurement vs. rm
for the red and blue beams of Figs. 5.4(a) and 5.4(b), using the eigenmode model of Eqn. 5.12
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the Laguerre-Gaussian basis with vacuum waist Wr0 is given by

〈Nr0〉 = M2 . (5.17)

The quantity M2 can be combined with Eqn. 3.18 [48] to obtain the global group velocity
for a multimode Laguerre-Gaussian beam:

〈βG〉 = 1−
k2
p

2k2
0

− M2

k2
0r

2
m

(
1 +

W 4
r0

r4
m

)
(5.18)

It should be noted that the average over the modes in Eqn. 5.18 relies on the orthogonality
of the constituent eigenmodes of the beam. In a parabolic channel, this condition holds
throughout the propagation even for mismatched beams, as the spot size evolution for the
individual Laguerre-Gaussian modes [48]

∂2rs

∂z2 =
4

k2r2
s

(
1 +

r4
s

r4
m

)
, (5.19)

is independent of the mode number. Therefore, the spot sizes rs of all the constituent modes
oscillate together as the beam propagates in the channel, and the orthogonality condition
[Eqn. 3.11] (with rm → rs) holds.
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The geometrical correction using Eqns. 5.17 and 5.18 is then written

∆βM2,geo = − 1

k2
0r

2
m

[
M2

r

(
1 +

W 2
r0,r

r4
m

)
− M2

b

4

(
1 +

W 2
r0,b

r4
m

)]
, (5.20)

with the r and b subscripts denoting the quantities for the red and blue beams, respectively.
This can be written as a correction to the density using Eqn. 5.13

∆ne0 =
8

3

1

4πrer2
m

[
M2

r

(
1 +

W 2
r0,r

r4
m

)
− M2

b

4

(
1 +

W 2
r0,b

r4
m

)]
. (5.21)

As stated previously noted, this technique was not implemented for the experiments described
here. However, correction of the geometric group velocity contribution using beam profile
measurements with Eqn. 5.21 would be a useful further development of the diagnostic.

5.5 Density measurements in capillary discharges,

without laser-heating

Density vs. pressure

In Fig. 5.11, plasma density is plotted as a function of fill pressure for delays td = 300 ns, 360 ns,
and 420 ns relative to the peak of discharge current. The interferometer is very stable
due to the common-path configuration, with random error in the density measurement
< 0.2 × 1017 cm−3. The absence of long optical fibers also eliminated the slow delay drift
described in Chapter 4, and the absolute plasma density can therefore be accurately measured.
The measured density gradients (slope of the fits) agree well with the slopes measured on
plasma 2, and because of the lack of delay drift, the zero-pressure offset can be accurately
determined. This zero pressure offset exists because of the contribution to the plasma density
from hydrogen adsorbed to the capillary walls [89, 120] that vaporizes when the discharge is
fired.

Some interesting comparisons of the data plotted in Fig. 5.11 with prior studies of capillary
discharge waveguides can be made [17, 84, 88–91, 120–122]. The Quasi-Static Model developed
by Bobrova et al [84]. referred to in Chapter 3 gives the scaling

ne0,QSM [cm−3] = 1.473× nH2 [cm−3] (5.22)

Measurements in square capillaries with side lengths 125, 210, and 465 µm by Gonsalves et
al [90]. yielded the empirical scaling law

ne0,Gonsalves[cm−3] = 0.87× nH2 [cm−3] + 0.11× 1018 , (5.23)

which agreed well with a scaling deduced by Broks et al [89]. for 250 µm side-length square
capillaries using a non-local thermal equilibrium (”non-LTE”) magnetohydrodynamics code

ne0,Broks[cm−3] = 0.74× nH2 [cm−3] + 0.28× 1018 . (5.24)



CHAPTER 5. IN-SITU PLASMA CHANNEL DIAGNOSTICS ON THE BELLA LASER
USING TWO-COLOR COMMON-PATH INTERFEROMETRY 102

0 2 4 6

n
H

2

 (1017 cm-3)

0

1

2

3

4

5

6

n
e
0
 (

1
0

1
7
 c

m
-3

)
t
d

=300 ns, n
e0

=0.84n
H

2

+0.63, R 2=0.99

t
d

=360 ns, n
e0

=0.54n
H

2

+0.63, R 2=0.99

t
d

=420 ns, n
e0

=0.50n
H

2

+0.63, R 2=0.99

Figure 5.11: Plasma density vs. initial neutral H2 density for three delays td relative to the
peak of discharge current in a 800 µm diameter, 20-cm-long laser-heated capillary discharge.
Least-squares fits to the density measurements are shown in corresponding colors.

Later density measurements by Daniels et al. in 500 µm diameter capillaries obtained the
scaling

ne0,Daniels[cm−3] = 0.57× nH2 [cm−3] + 0.17× 1018 . (5.25)

Finally, taking the td = 300 ns case from Fig. 5.11 because it most closely matches the
experiments of [91], these measurements yield the scaling

ne0[cm−3] = 0.63× nH2 [cm−3] + 0.084× 1018 . (5.26)

R2 = 0.99 for all the fits in Fig. 5.11. However, a perfectly linear fit of plasma density to
neutral gas density at a given delay from the peak of discharge current is not necessarily
expected, due to evolution of the plasma during the discharge current pulse. However, this
was not investigated in detail.

First, it should be stated that it is not straightforward to compare the foregoing results
with one another. The discharge current and timing of the density measurement relative
to peak discharge currents varies widely between the models and data sets from which
Eqns. 5.22-5.26 were deduced. Therefore, only very broad conclusions can be drawn. However,
there does appear to be a trend towards lower values of the gradient (the slope with respect
to initial H2 molecular density) as the capillary radius is increased. This difference may be
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Figure 5.12: Plasma density vs. delay from peak discharge current td in a 800 µm diameter,
20-cm-long laser-heated capillary discharge, for three different initial fill pressures of H2.

due to less complete ionization of the fill gas because the overall current density is lower
in a larger diameter capillary. Nonetheless, laser blueshifting measurements described in
Chapter 6 show complete ionization on axis. This reduced volume averaged ionization degree
may be due to a layer of neutral or weakly ionized gas near the capillary wall, where the
temperature is lowest and density is highest. A detailed investigation of this issue may be a
fruitful avenue for future research, however, it lies beyond the scope of this dissertation.

Density vs. discharge timing

Discharge plasma densities as a function of delay relative to the peak of discharge current for
three fill pressures are plotted Fig. 5.12. Density peaks near the peak of discharge current, as
would be intuitively expected and is consistent with prior measurements of plasma density
evolution in capillary discharges [91]. The density decrease on the falling edge of the current
pulse is attributable to recombination as the plasma cools, rather than ejection of plasma
from the capillary ends, as this latter process is too slow to have a significant effect on the
plasma density in the capillary for td < 1 µs [84, 100].
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5.6 Density measurements in laser-heated capillary

discharges

Measurements of the longitudinally averaged on-axis plasma density ne0 and matched spot
size rm for laser-heated capillary discharges are plotted in Fig. 5.13, for two sets of initial
discharge parameters. The matched spot size was measured the laser spot size oscillation
method described in Section 4.4. However, because matched spot size measurements for the
experiments on Plasma 1 were taken over a restricted space of fill pressures and laser delays,
a simple analytical fit was used to compute the plotted rm values, instead of a biharmonic
spline fit. The error bars for the matched spot size were calculated as the mean residual of
the fit, which was 5 µm.

Because the input spot size for these measurements is so large, correcting for the finite
matched spot size of the channel is essential to obtain an accurate density measurement, as
to be expected from the (r0/rm)4 scaling of Eqn. 3.18. The corrected density values were
computed using Eqn. 5.15, with rm taken from the MARPLE simulation. As can be seen
in Fig. 5.13, the uncorrected density measurement (i.e. the value of ne0 calculated without
accounting for the matched spot-size term in Eqn. 5.7) differs by up to 0.7× 1017 cm−3 from
the corrected value. However, agreement with MARPLE is quite good for the corrected
density measurements.

Finally, no anomalous density peak is observed near the peak of heating power, in contrast
to the measurements shown in Chapter 4. This fact is further evidence that the density peak
feature was an artifact of that particular diagnostic setup, rather than a physical feature of
the plasma evolution.

5.7 Effect of input spot size on density measurements

Small input spot sizes were found to result in large errors in the density measurement, hence
the use of a large input spot size requiring correction for the geometrical component of the
group velocity. This was determined during an experiment where the size of the iris before
the compressor was varied to determine the optimal spot size for measurement accuracy,
defined as the variance of the density measurement for fixed discharge parameters. The laser
beam profiles at focus for the red beam are compared in Fig. 5.14 for a 125 mm iris and the
70 mm iris in the experiments described in this chapter, which yielded spot sizes of 70 µm and
134 µm, respectively. It is preferable to match the laser spot size to the channel, considering
the (r0/rm)4 scaling of the geometrical component of the group velocity, and as such the 70
µm spot would be expected to yield more accurate measurements. However, as is shown in
Fig. 5.15, a much larger variance in the measured density was observed for the smaller focal
spot of Fig. 5.14(a). For this reason, the 70 mm iris producing the larger spot of Fig. 5.14(b)
was used for the experiments of this chapter. Density in capillary discharges is known to be
stable to within a few percent [116], so this effect must be an artifact of the diagnostic.
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(a) 15.2 torr fill H2, delay from peak discharge current td = 460 ns,
heater pulse energy 240 mJ.

(b) 19.1 torr fill H2, delay from peak discharge current td = 420 ns,
heater pulse energy 240 mJ.

Figure 5.13: Density and matched spot size in 800 µm diameter, 20-cm-long laser-heated
capillary discharges, from measurements with the two-color common-path interferometer and
simulations with the MARPLE MHD code. Simulation setup and analysis as in Chapter 4.
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(a) Image size 886 µm. 125 mm iris. (b) Image size 886 µm. 70 mm iris.

Figure 5.14: Red beam focal spots for (a) 125 mm and (a) 70 mm irises. Color scale chosen
to emphasize regions of low fluence.
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Figure 5.15: Plasma density vs. neutral H2 density td = 360 ns in a 800 µm diameter,
20-cm-long capillary, for the 125 mm and 70 mm irises of Figs. 5.14(a) and 5.14(b). Density
measurements for individual laser shots have been plotted (squares), instead of mean and
standard deviation for each neutral pressure bin.
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(a) Image size 1019 µm. Red beam at capillary exit, 125 mm iris. Fluences are for values of nH2 in
units of 1× 1017 cm−3. Saturation in some images is due to color scale bounds set to emphasize
low signal regions.

(b) Image size 1019 µm. Red beam at capillary exit, 70 mm iris. Fluences are for values of nH2 in
units of 1× 1017 cm−3.

Figure 5.16: Sample red beam fluence profiles at the capillary exit plane for the two data
sets of Fig. 5.15. Color scale chosen to emphasize regions of low fluence.

The cause of this increased variance in the measured density is not clear, and a detailed
investigation of this behavior lies beyond the scope of this dissertation. However, some possible
causes will be discussed here which may inform further development of the diagnostic.

Although the higher intensity in the smaller focal spot produced with a larger iris will in
principle result in more ionization, this is cannot account for the observed effect. As was
stated in Section 5.2, the experiments and MARPLE simulations of Chapter 6 show the
neutral fraction on axis to be < 1%, far smaller than the variance in Fig. 5.15.

The spatial asymmetry of the beam with the 125 mm iris visible in Fig. 5.14 may lead to
excitation of high-order modes of the plasma channel. Some evidence of high-order mode
content can be seen in the asymmetry of the diffraction rings in Fig. 5.14(a). Furthermore,
the images of the red beam at the capillary exit plane shown in Fig. 5.16 for the pressure
scans plotted in Fig. 5.15 indicate that high mode numbers of the waveguide are excited to a
much greater extent with the 125 mm iris. The differences in propagation with fill pressure
are due to variation of the capillary discharge matched radius with plasma density according
to rm ∝ n

−1/4
e0 , as discussed in Chapter 3, which in the case of Fig. 5.16 approximately spans

the range 120 - 90 µm (decreasing with pressure).
In Fig. 5.16(a), mode numbers m ∼ 2 and |p| ∼ 2 are clearly visible in the range 2.2 -

4.7 × 1017 cm−3, in contrast to Fig. 5.16(b) where relatively little high order structure is
visible above 3 torr. Images of the blue beam were not available for that data set of Figs. 5.15
and 5.16, however, given that the frequency doubling process effectively doubles the size of
wavefront aberrations for the blue beam, the higher order mode content of the blue beam
can be reasonably expected to be even higher than the red beam.

High order mode content may increase the variance in the density measurement by two
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mechanisms. First, if the mode content is not stable, but varies from shot-to-shot, random
fluctuations in the group velocity will will result through the effective mode number 〈N〉 in
Eqn. 5.7. Second, overlap of the blue and red beams at the slit will become less reliable if
the two beams have a complex mode structure, more so if that mode structure is different for
each frequency.

Determining the cause of the increased error in the density measurement observed with
a larger laser nearfield and smaller spot size warrants a dedicated experimental effort well
beyond the scope of this dissertation. However, such further development of the two-color
common-path interferometer is worthwhile. Specifically, if the diagnostic can be operated
with smaller focal spot sizes, this will reduce the geometrical correction to the density per
Section 5.4 and Chapter 3. This in turn reduces the diagnostic’s reliance on assumptions
about the longitudinal channel structure, which for laser-heated capillary discharges was
shown to be quite complicated in Chapter 4, and the propagation of the probe pulses within
this structure.

5.8 Conclusion

In this chapter, a two-color common-path interferometer plasma density diagnostic on
the BELLA laser system has been described. The diagnostic setup has been successfully
commissioned and has produced measurements of plasma density in capillary discharge
targets with and without laser-heating. Agreement between density measurements in laser-
heated capillary discharges and simulations with the MARPLE MHD code is excellent.
Additionally, this diagnostic eliminates two important technical challenges present in the
Mach-Zehnder fiber interferometer of Chapter 4, namely the slow delay drift attributed to the
combined effects of temperature drifts in the laser oscillator center frequency and group delay
dispersion in the fibers, and the anomalous “density peak” measured early in the heater pulse.
Future development of the diagnostic may perhaps focus on improving the measurement
precision with smaller laser spots so as to reduce the size of the geometrical density correction.
Nevertheless, this setup represents the addition of a powerful new diagnostic capability to
the BELLA laser system, and the objective of performing in-situ density measurements on
plasma channel LWFA targets has been unambiguously achieved. Moreover, this diagnostic
setup enabled precise characterization of the laser-heated capillary discharge targets used in
the controlled injection experiments of Chapter 7.
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Chapter 6

Petawatt guiding experiments

6.1 Introduction

In this chapter, acceleration of electrons to 7.8 GeV with petawatt laser pulses from the BELLA
laser system in a laser-heated capillary discharge waveguide is demonstrated. Moreover,
during the experiments in question, thousands of petawatt-scale pulses were guided through
a 20-cm-long capillary without damage. As of writing, this represents the highest energy gain
from a laser-plasma accelerator.

These results were enabled by the use of a laser-heated capillary discharge waveguide
as a guiding structure. The combination of low on-axis density and low matched spot size
mitigated bunch dephasing and kept the driver pulse confined such that high amplitude
plasma waves were excited, per Chapter 2 and Chapter 3. Additionally, the decoupling of
channel matched spot size from capillary diameter discussed in Chapter 4 enabled the use of
large diameter capillaries less vulnerable to damage from the driver.

This chapter is organized as follows. Section 6.2 gives an overview of the BELLA laser
system and beamline. In Section 6.3, diagnostic measurements of laser-heated capillary dis-
charges using femtosecond pulses are presented which further validate the results of Chapter 4
and Chapter 5. Section 6.4 presents the results of petawatt guiding experiments, including the
production of 7.8 GeV electron beams in the self-trapping regime and computational studies
of laser and channel parameters for electron acceleration to ∼ 10 GeV. Conclusions and
directions for further experiments with these guiding structures are presented in Section 6.5.

6.2 BELLA laser system parameters and diagnostics

The BELLA laser system is a Ti:Sapphire chirped-pulse-amplified (CPA) laser [8]. As discussed
in Chapter 2, resonant excitation of plasma waves requires both high peak intensities and
short pulse lengths ∆t0 ∼ ω−1

p , hence the need for a high power broadband laser source.
Ti:Sapphire CPA lasers are a mature a technology capable of supplying pulses with the
required properties for LWFA, and are commonly used as drivers for not only LWFA but a
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wide variety of other relativistically-intense laser-plasma processes: commercially available
systems can supply femtosecond-scale scale pulses at the & 100 TW level. Ultrafast laser
engineering is a complex discipline and an exhaustive treatment of the BELLA laser and its
various subsystems lies well beyond the scope of this dissertation. In this section, an overview
is given of aspects of the laser system and diagnostics of immediate relevance to experiment
design, with key parameters of the BELLA laser summarized in Table 6.1.

The BELLA beam transport system, target chamber, and laser and electron beam
diagnostics are pictured schematically in Fig. 6.1. The BELLA laser employs 6 amplifier
stages and a reflective grating compressor (not pictured) to amplify µJ femtosecond pulses
from a mode-locked oscillator to 40 J and petawatt peak power. Because the peak intensity
developed after compression is sufficient to ionize air, the grating compressor is held under
high vacuum with the rest of the beam transport line and target chamber, with stretched
laser pulses coupled in through a coated vacuum window after the final amplifier stage. The
heater laser system, pictured schematically in relation to the BELLA beamline in Fig. 6.1 is
as described in Chapter 5.

Stretched pulses are compressed to the femtosecond scale with a reflective 4-grating
compressor. The laser pulse shape can be modeled (very approximately) as a Gaussian such

that the electric field takes the form E(t) ∼ (E0/2)e−2 ln 2( tτ )
2

. To lowest order, dispersive
optical elements, including grating compressors, contribute a quadratic spectral phase or
group delay dispersion (GDD) that modifies the pulse length ∆t (defined as the intensity
FWHM) according to[123]

∆t = ∆t0

√
1 +

(
4 ln 2

GDD

∆t20

)2

. (6.1)

The quantity t0 is the minimum pulse length, which is set by the laser bandwidth through
the time bandwidth product, which in turn has the form cλ−2∆λ∆t0 ≥ 2 ln 2/π for Gaussian
pulses. In the case of the grating compressor, GDD is controlled by the translating the
gratings relative to each other with a motorized stage. The BELLA laser compressor has an
effective GVDeff = −4812 fs2/mm such that GDD = GVDeffLc, with Lc the translation of
the gratings from the ”zero-point” where ∆t = ∆t0.

The laser pulse shape was measured via frequency resolved optical gating (FROG), a
standard technique for the measurement of femtosecond laser pulses [124], which are too short
to measure with electro-optical methods. A number of important departures from the simple
Gaussian model of the pulse shape exist in a real laser system. High order spectral phase
(i.e. beyond quadratic) will increase pulse length for a given bandwidth, in close analogy
with the effect of wavefront errors on the laser focal spot. Femtosecond pulses frequently
feature a nanosecond-scale ”pre-pulse” or ”pedestal” that leads the main pulse that arises
from amplified spontaneous emission within the laser system. This pre-pulse can contain
sufficient energy to ionize and heat the target, modifying the plasma profile encountered by
the main pulse, and so reduction of pre-pulse energy is an important aspect of optimizing
pulse shape. Spatiotemporal coupling, where the intensity profile varies within the laser
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pulse beyond a simple time-dependent scale factor, can occur because of alignment errors
in dispersive elements of the laser system as well as gain depletion effects in the amplifiers
[125–127].

Generally speaking, characterizing and optimizing the laser pulse shape requires a wide
array of techniques and diagnostics [110, 128–133]. Moreover, the simple Gaussian pulse
model fails to accurately capture many important features of real ultrashort laser pulses as
has just been discussed. Hence, the values pertaining to the temporal structure, including
the peak intensity, listed in Table 6.1 were obtained experimentally as is described in detail
in Ref. [110], rather than calculated from first principles.

The 200 mm nearfield of the laser is focused to a ∼ 53 µm beam waist (according to
a Gaussian fit of the focused laser fluence profile) in the target chamber with a 13.5 m
off-axis-paraboloid (OAP). After the final amplifier and upstream of the grating compressor,
a mechanically actuated deformable mirror (DM) is used to correct wavefront errors and
optimize the laser focus [134]. Wavefront correction is further assisted by the use of Shack-
Hartmann wavefront sensors[134] that directly measure the optical wavefront at multiple
locations in the laser system, which include the DM plane and the high power diagnostics are
after the target. The DM and wavefront sensors can be used for either manual (”open-loop”)
or feedback controlled (”closed-loop”) wavefront correction. The Strehl ratio, defined as
the ratio of peak intensity at focus of an aberrated beam to that of a beam with flat phase
S ≡ I0/I0,F ≤ 1, is a widely used measure of laser focus quality [123, 135, 136]. The Strehl
ratio can be related to the RMS wavefront error σw by S ' exp(−σ2

w) [137]. Wavefront
correction with the DM and wavefront-sensor on the BELLA laser system can reduce wavefront
error to σw ∼ 0.3, and hence produce a Strehl ratio S ∼ 0.9.

The capillary setup used in these experiments, including the capillary design (800 µm
diameter, 20-cm-long), gas fill and pressure measurement system, and multi-axis hexapod
stage, was identical to that used for the diagnostic experiments of Chapter 5. The high
voltage pulser used was identical as well, producing the same current waveform pictured in
Fig. 4.3.

The Plasma 1 target chamber that housed the capillary included additional transverse
diagnostics. Visible light cameras viewing the target area through vacuum windows monitored
the state of the capillary during experiments, primarily for the purposes of quickly identifying
laser damage. Additionally, a simple transverse optical spectrometer, imaging the full length
of the capillary, was used to diagnose the capillary plasma. The acquired spectra were time-
integrated, and so of limited use for measuring plasma density and temperature using atomic
emission lines. However, the time-integrated spectrally dispersed images of the capillary
were used to diagnose the location of various ion species in the plasma, which is of greater
relevance to the ionization injection experiments of Chapter 7.

As discussed in Chapter 5, CCD cameras on motorized translation stages were used to
measure fluence profiles of the driver and heater beams. In addition to laser mode images, two
spectrometers were used to measure the laser spectrum after interaction with the target, a
UV-NIR spectrometer covering the range 300 nm - 1050 nm, and a NIR spectrometer covering
the range ≥ 1000 nm. The NIR spectrometer is required to capture the low frequency end



CHAPTER 6. PETAWATT GUIDING EXPERIMENTS 113

Parameter Symbol Scaling Value

Wavelength λ 815 nm
Bandwidth ∆λ 40 nm
Pulse Length (Intensity FWHM) ∆t0 λ−2∆λ 35 fsa

Energy U 46 J
Repetition Rate 1 Hz

Nearfield Diameter D 200 mm
OAP Focal Length f 13.5 m
1st wedge, from focus 10.4 m
Beam Waist (Focus) r0 λfD−1 53 µmb

Peak intensity I0 ∆t−1
0 r−2

0 U 2× 1019 W/cm2

Normalized vector potential a0 λI
1/2
0 3c

Electric Field E0 I
1/2
0 1× 1013 V/md

a Minimum measured value. Subject to spectral phase error.
b Minimum measured value. Subject to wavefront error.
c a2

0 = 7.3× 10−19[λ(µm)]2I0(W/cm2)
d E0(TV/m) = 3.21a0/λ(µm)

Table 6.1: Key parameters of the BELLA laser system.

of highly depleted laser spectra. The UV-NIR spectrometer (not shown) samples the beam
on the high power diagnostics table from the location where the mode imagers are installed.
The NIR spectrometer collects light though a fiber collimator from the backside of the second
wedge after the target, as shown in Fig. 6.1.

Electron bunch diagnostics, for charge, transverse bunch profile, and energy spectrum,
are shown downstream of the first wedge in Fig. 6.1, which is located 10.4 m downstream
of the laser focus. This wedge has a 25.4 mm diameter hole to allow electron beams to
enter the electron spectrometer, and is mounted on a motorized stage that allows the hole
to be translated out of the beam path to improve imaging of the laser mode for the beam
profile cameras previously discussed. Transverse electron beam profiles were measured with
a fluorescent LANEX screen imaged by a CCD camera. Bunch charge is measured with
an integrating current transformer (ICT)[138] as pictured in Fig. 6.1, which had a charge
resolution < 1 pC. Fig. 6.1 shows the magnetic spectrometer, which consists of a ≤ 1.2T
magnet and 2.5-m-long LANEX screen imaged by an array of CCD cameras. The magnetic
spectrometer has an acceptance of 0.5-1 mrad about the beam axis, depending on electron
energy and field strength. The acceptance of the spectrometer is large enough for the electron
bunch energy spectrum to vary measurably with pointing into the spectrometer. The bunch
profiles measured with the phosphor screen are used to correct the energy spectrum for this
effect on each shot. Resolution and energy range of the magetic spectrometer both depend
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Figure 6.2: Longitudinally averaged on-axis density and matched spot size for the laser-
heated capillary discharge used for the experiments of this chapter. Capillary is 20 cm long,
800 µm diameter. Values are taken from the measurements of Chapter 4 at the peak of heater
power t = 0 ns, when the driver arrived at the target for these experiments.

on the field, the former increasing with field and the latter decreasing. For a field of 1.2 T
and maximum resolvable energy of 10 GeV, energy resolution of the magnetic spectrometer
was ∼ 0.2 GeV.

6.3 High power diagnostic measurements of

laser-heated capillary discharges

Diagnostic measurements of channel parameters for the experiments of this chapter were
taken from the experiments on the Plasma 2 test stand described in Chapter 4. These
parameters are summarized in Fig. 6.2, for the case where the driver pulse arrives t < 1 ns
from the peak of heater power, as was the case for the experiments of this chapter. However,
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the high power laser pulses supplied by the BELLA laser offer opportunities for additional
diagnostic measurements of the channel. Specifically, spectral redshifting from the excitation
of plasma waves can be used as a diagnostic for on-axis plasma density and to a lesser extent
matched spot size. Spectral blueshifting from field ionization of neutral atoms by the driver
can be used to diagnose ionization degree.

After driving a plasma wave, a laser pulse will be spectrally redshifted as described in
Section 2.4. Redshifting in general increases with laser pulse energy and plasma density, and
some examples of redshifted laser spectra measured with a near-infrared (NIR) spectrometer
for pulses of various energies guided in a laser-heated capillary discharge are shown in
Fig. 6.3(a).

The density and matched spot size measurements described in Chapter 4 and summarized
in Fig. 6.2 were verified by comparing measurements of redshifted spectra with PIC simulations
using INF&RNO for a range of on-axis densities and matched spot sizes. The results of this
procedure are shown in Fig. 6.3(b) for the case of ne0 = 3.2× 1017 cm−3 and rm = 68 µm,
with these values obtained from the measurements of Chapter 4. In Fig. 6.3(b), the spectral
redshift, defined as the wavelength above which 1/e2 of the pulse energy resides, is plotted as
a function of pulse energy for measurements at the aforementioned channel parameters and a
series of INF&RNO simulations at multiple values of ne0 and rm. Best agreement between
the measured and simulated redshift is obtained for the quoted parameters obtained with the
methods of Chapter 4. This provides further evidence of the reliability of the diagnostics
described in Chapter 4 and Chapter 5, and suggests the plasma density can be reliably
measured to within 10%.

Spectral blueshifting measurements were performed to diagnose ionization degree in the
capillary discharge channel [2, 122, 125], with and without laser heating. Ionization degree is
a particularly salient in situations where the heater pulse arrives late in the discharge current
pulse, where the low plasma temperature enhances the inverse-bremsstrahlung heating but
also allows recombination. A large concentration of neutrals in the plasma channel is best
avoided as this will cause ionization defocusing [37] and degrade the guiding. Pulses with
sufficient peak intensity for spectral blueshifting (33 mJ energy and 35 fs duration) were
guided through plasma channels to diagnose the ionization degree of the plasma. The results
of the spectral blueshifting measurements are shown in Fig. 6.4. The spectral blueshift
is defined as the wavelength below which 1/e2 of the laser pulse energy resides. Spectral
blueshift as a function of driver arrival time td relative to the peak of discharge current
(without laser heating) is plotted in Fig. 6.4(a). There is a long plateau from td ∼ 0 ns to
td ∼ 300 ns where the spectral blueshift is constant and does not differ significantly from
the vacuum spectrum (dashed line). However, outside this interval, on the rising edge of
the current pulse and late on the falling edge, the blueshift wavelength shifts low, indicating
ionization of neutrals by the laser pulse. Notably, blueshifting is observed for td & 400 ns,
where the strongest channels were formed with the heater laser.

Blueshifting at late times in the discharge relevant for high-performance operation of
laser-heated capillary discharges (according to the parameter studies of Chapter 4) indicates
the presence of neutral hydrogen in the discharge plasma for these conditions. However,
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Figure 6.3: (a) Redshifted NIR spectra for 3 driver energies, pulse length ∼ 40 fs. ne0 =
3.2 × 1017 cm−3 and rm = 68 µm. (b) Driver redshift vs. energy from experiment and
simulation. Agreement is best for ne0 = 3.2× 1017 cm−3, rm = 68 µm, corresponding to the
parameters measured in the diagnostic experiments of Chapter 4.
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(a) (b)

(c) (d)

Figure 6.4: Spectral blueshifting measurements for a 33 mJ, 35 fs pulse guided in a 20-cm-
long capillary with initial density ne0 = 3.8×1017 cm−3 at full ionization without laser-heating.
(a) 1/e2 blueshift wavelength vs. discharge delay. (b) Example spectra for 3 time points of
(a). (c) Blueshift wavelength vs. delay from peak heater power. 300 mJ heater pulse, arriving
420 ns afte the peak of discharge current. (d) Ionization degree at 3 radial locations from a
MARPLE simulation for the conditions of (c). The drop in ionization degree at td ∼ 300 ns
is consistent with the onset of decreasing blueshift wavelength observed in (a). The rapid
increase in ionization degree corresponds with the arrival of the heater pulse, and is consistent
with the increased blueshift wavelength in (c).
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Figure 6.5: Guiding of 850 TW laser pulses in laser-heated capillary discharge with
ne0 = 3.4× 1017 cm−3 and rm = 69 µm. (a) Vacuum driver focus. Beam waist is ∼ 53 µm.
(b) Guided driver mode at the capillary exit. (c) Guided driver mode at the capillary exit
from an INF&RNO simulation for the conditions of (b). (d) Beam profile 5.4 cm downstream
of the laser focus, in vacuum. The importance of plasma guiding is illustrated by the fact
that the laser fluence overfills a 400 µm radius about the beam axis, corresponding to the
capillary wall location.

Fig. 6.4(c) shows that for a heater arrival time td = 420 ns, the blueshift wavelength returns
to the vacuum value ∼ 5 ns after the peak of heater power.

Ionization degree from a MARPLE simulation for the conditions of Fig. 6.4(a) and
Fig. 6.4(c) is plotted in Fig. 6.4(d). The trends observed in the experiment are reproduced in
the simulation, with ionization fraction plateauing for roughly 500 ns before falling as the
current decreases on the falling edge of the discharge pulse. Upon arrival of the heater pulse
at 440 ns, the plasma becomes once more fully ionized on axis. Note that off-axis, the plasma
ionization fraction rises upon laser heating but remains < 1, as the influence of laser heating
is reduced far from the laser axis. However, a well matched driver pulse, being confined near
the axis of the channel, will not interact with this region of the plasma, and thus the reduced
ionization fraction off-axis is not expected to degrade the guiding.

6.4 Electron acceleration to 7.8 GeV in a laser-heated

capillary discharge

Driver pulses with 850 TW peak power were successfully guided over distances of ∼ 15ZR in
800 µm diameter, 20-cm-long laser heated capillary discharges, resulting in the acceleration
of electrons to a maximum energy of 7.8 GeV [21, 22]. Driver energy was sufficiently well
confined that thousands of shots at this power level were guided through the capillary without
damage. As of writing, this represents the highest energy gain ever demonstrated in a
laser-wakefield accelerator, and was enabled by a combination of the long channel and the
low on-axis density and matched spot size created by laser-heating.
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Shot n0 (×1017 cm−3) rm (µm) Charge (pC)

Total 1.5 GeV Window

(a) 3.4 68 190 24
(b) 320 21
(c) 270 40
(d) 210 62
(e) 2.7 61 420 5

Table 6.2: Channel parameters and captured bunch charges for the measured electron
spectra of Fig. 6.6.

High-quality laser guiding of 850 TW (pulse energy 31 J and intensity FWHM ∼ 35 fs)
laser pulses is shown in Fig. 6.5. The heater arrived 300 ns after the peak of discharge current
for channel parameters n0 = 3.4× 1017 cm−3 and rm = 69 µm at the peak of heater power.
The vacuum fluence profile at focus is shown in Fig. 6.5(a), and the fluence profile at the
exit of the 20 cm capillary is shown in Fig. 6.5(b). The guided driver beam has roughly the
same transverse size as the vacuum beam waist, which is consistent with the exit fluence
profile calculated from an INF&RNO simulation for the conditions of the experiment shown
in Fig. 6.5(c).

The importance of plasma guiding for confinement of laser energy near the axis is evident
in Fig. 6.5(d), which shows a vacuum fluence profile taken 5.4 cm downstream of the vacuum
focus where ∼ 10% of the laser energy falls outside the 400 µm capillary radius. The vacuum
beam size at the capillary exit plane was found to be 2.4 mm. Hence the requirement for a
plasma guiding structure to sustain laser intensities required for acceleration over the length
of the plasma.

Electron beam spectra measured with the magnetic spectrometer for the conditions of
Fig. 6.5 are shown in Fig. 6.6. The spectrum over the full energy range of the diagnostic is
plotted, as well as a 1.5 GeV window denoted by the white dotted lines in the full range plots.
The beams shown constitute a subset well aligned to the spectrometer, which comprises
10-20% of all laser shots due to fluctuations in alignment and the 1 milliradian angular
acceptance of the magnetic spectrometer.

For Fig. 6.6(a-d), the heater pulse arrived 300 ns after the peak of discharge current to
produce channel parameters n0 = 3.4 × 1017 cm−3 and rm = 68 µm. For Fig. 6.6(e), the
heater pulse arrived 300 ns after the peak of discharge current to produce channel parameters
n0 = 2.8× 1017 cm−3 and rm = 61 µm. Bunch charge for the laser shots of Fig. 6.6 is listed
in Table 6.2.

A maximum electron energy was observed for the 420 ns heater pulse arrival time of
Fig. 6.6. This increased performance over the 300 ns case is to be expected from simple
physical considerations. First, the initial plasma temperature is lower, enhancing inverse-
bremsstrahlung heating as discussed in Chapter 3 and Chapter 4. This increased heating
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Figure 6.6: Measured and simulated electron bunch spectra for laser power 850 TW and
two sets of channel parameters. The full energy range of the spectrum is shown in the left
column, and a 1.5-GeV-wide high-energy window on the right. The location of the high
energy window is denoted with white dotted lines in the full range spectra. Measured bunch
charges are listed in Table 6.2. (a-d)ne0 = 3.4× 1017 cm−3 and rm = 69 µm, with a 300 mJ
heater pulse arriving 300 ns after the peak of discharge current. (e) ne0 = 2.7× 1017 cm−3

and rm = 61 µm, with a 300 mJ heater pulse arriving 420 ns after the peak of discharge
current. (f) INF&RNO simulations for the conditions of (a-d). Plasma profile was taken
from a MARPLE simulation of a laser-heated capillary discharge matching the discharge
and laser parameters in the experiment. (g) INF&RNO simulations for the conditions of (e).
Plasma profile was modeled as longitudinally uniform and transversely parabolic.
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results in lower on-axis density, which increases the energy gain in accordance with the n−1
e0

scaling derived in Chapter 2.
Simulations were performed with INF&RNO for both sets of parameters in Fig. 6.6 and

Table 6.2. For these simulations, the complex laser envelope was modeled as jinc function in
the transverse plane, with temporal evolution from measurements of the laser pulse discussed
in Section 6.2 as was done in Ref. [76, 77]. Mathematically,

â(ζ, r, t = 0) = a0jinc

(
r

Rjinc

)
f‖(ζ) , (6.2)

with jinc(u) ≡ 2J1(u)/u, J1 the first-order Bessel function of the first kind, Rjinc ' 0.364r0,
and f‖(ζ) a complex-valued function describing the measured temporal profile of the laser
envelope. The resulting simulated electron spectra at the capillary exit, windowed in solid
angle to account for the acceptance of the magnetic spectrometer, are plotted in Fig. 6.6(f)
and (g) for heater arrival times 300 ns and 420 ns, respectively. For the case of Fig. 6.6(a-d),
the plasma density distribution from a MARPLE simulation matching the conditions of the
experiment was used. The heater was modeled with a 84 µm Gaussian beam waist and 8 ns
FWHM pulse length, in agreement with the parameters of the BELLA laser heater system
for these experiments. As in Chapter 4, the channel was longitudinally nonuniform in both
density and matched radius. On-axis density varied between 3.35 and 3.41 × 1017 cm−3, and
matched radius varied between 68 µm and 72 µm. For Fig. 6.6(e), the plasma density was
modeled as transversely parabolic and longitudinally uniform, with density and matched spot
size from the measurements of Fig. 6.2.

INF&RNO simulations show the production of electron beams with multiple quasi-
energetic peaks, as observed in the experiment. In the simulation of Fig. 6.6(f), self-injection
of electrons begins after ∼ 5 cm into the capillary, after self-focusing and self-steepening
has increased the laser strength parameter a0 above its initial value. Evolution of the driver
pulse is complex, with self-steepening and spot-size oscillation within the channel causing
injection to start and stop multiple times along the length of the capillary. This delocalized
injection process traps multiple populations of electrons with different energies within the
first plasma wave period (or wake ”bucket”), resulting in broad energy spread electron beams.
The beam divergence (energy integrated) measured on the transverse phosphor screen was
0.2 ± 0.05 mrad FWHM and 0.6 ± 0.15 mrad RMS, larger than the simulated results of
0.19 mrad FWHM and 0.35 mrad RMS. This discrepancy may be due to the axisymmetry of
the simulation, which does not capture the effect of nonsymmetric features in the laser mode.

For the case of Fig. 6.6(e) and (g), the peak at 7.8 GeV is reproduced. However, there is
less low energy charge in the simulated beam for the conditions of Fig. 6.6(e), perhaps due to
the axisymmetry of the INF&RNO simulation failing to capture the effects of nonsymmetrical
features in the laser mode, or differences in the real transverse plasma profile from the
assumed parabolic shape. Note that although self-trapping in this nonlinear regime tends to
produce broad energy spreads, the process is very sensitive to laser and plasma parameters,
and so departures from the conditions of the experiment in the simulation setup will produce
discrepancies in the resultant electron energy spectrum.
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Figure 6.7: INF&RNO simulations of LWFA in an optimized laser-heated capillary discharge,
for a longitudinally uniform, parabolic channel with ne0 = 2.2× 1017 cm−3 and rm = 65 µm.
Parameters of the driver pulse are U = 39 J, r0 = 64 µm, and ∆t0 = 30 fs. (a) Longitudinal
evolution of the peak normalized vector potential a0 (red) in the channel. The unguided
case for the same plasma density (i.e. a plasma slab with no pre-formed transverse density
gradient to confine the driver) is plotted as well (blue). On-axis density profile, including
gradients to account for capillary end effects, is plotted in black. (b) Electron bunch spectrum
and charge Q at the capillary exit for the guided case of (a), as well as for a case with the
same on-axis density but rm = 70 µm.
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Options for optimizing acceleration in laser-heated capillary discharges and reaching 10
GeV were investigated using INF&RNO. Channel parameters were chosen to be just above
the threshold for self-injection. The channel was additionally constrained by the requirement
that the driver pulse remain well guided, which in practice requires a matched radius ∼ 60 µm
and in turn sets a minimum on-axis density as the matched radius decreases with density
according to the results of Chapter 4. Finally, the on-axis density was constrained such that
the dephasing and depletion lengths were roughly equal, which ensures efficient conversion of
laser energy to electron bunch energy.

Fig. 6.7 shows a simulation in which a bunch with quasi-monoenergetic peaks & 10 GeV
was produced for laser energy U = 39 J on target with pulse length T0 = 30 fs FWHM and
beam waist r0 = 64 µm, for a peak laser power of 1.3 petawatts (PW) and a0 = 2.86. The
channel was uniform and parabolic, with ne0 = 2.2 × 1017 cm−3 and rm = 65 µm, which
is similar to the channel parameters demonstrated in the experiments of Chapter 4 and
Chapter 5.

In Fig. 6.7(a), evolution of the maximum normalized vector potential a0(z) is plotted
for the guided driver pulse. The laser intensity is increased above the initial value at focus
by the combined effects of self-focusing and self-steepening (per Chapter 2). Effective laser
guiding is provided by the plasma channel, maintaining the laser intensity at or above the
vacuum focus value for over the length of the channel.

Although a0 > 1 and hence the accelerator operates in the nonlinear regime, it does
not operate in the bubble regime [53, 54], i.e. resonant ponderomotive self-guiding of the
laser pulse does not occur. For the same laser parameters and on-axis plasma density, but
with no channel (i.e. a transversely infinite plasma slab), an INF&RNO simulation showed
self-focusing was insufficient to confine the pulse and hence a pre-formed guiding structure
was required. The result of this simulation is plotted alongside the guided case in Fig. 6.7(a),
and after an initial increase from self-focusing, the normalized vector potential decreases
monotonically as the pulse diffracts.

The electron bunch spectrum for the channel guided case of Fig. 6.7(a) is plotted in
Fig. 6.7(b) (red). Total bunch charge is 132 pC, with 80 pC in a quasi-monoenergetic peak at
9.9 GeV with 5% RMS energy spread and 0.26 mrad RMS divergence. Most of the charge is
injected via self trapping while z . 10 cm. Electron bunch properties were found to sensitive
to channel parameters. For the same on-axis density but with a 5 µm increase in matched
spot size to 70 µm, an electron bunch with maximum energy . 9 GeV and 56 pC charge, as
plotted in Fig. 6.7(b) (green). Simulations at 75 and 80 µm showed rapid decrease in charge
and maximum energy with matched spot size, with no bunch produced for a matched spot
size of 80 µm.

These simulations show that with an increase in laser power to 1.3 PW and channel
parameters ne0 = 2.2 × 1017 cm−3 and rm = 65 µm, 10 GeV single-stage energy gain is
attainable, motivating further work to optimize the laser-heated capillary discharge scheme.
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6.5 Conclusion and directions for future research

In this chapter, guiding of petawatt scale pulses in a laser-heated capillary discharge resulting
in electron bunch acceleration to a maximum energy of 7.8 GeV was demonstrated. Moreover,
good agreement was observed between electron bunch spectra, particle-in-cell simulations with
the INF&RNO code, MARPLE simulations, and the diagnostic measurements of Chapter 4.
Further simulations with the INF&RNO code show that acceleration to 10 GeV is possible
for parameters that may be accessible with further optimization of the laser-heated capillary
discharge channel. With the experiments described here, laser-heated capillary discharge
waveguides have been characterized and demonstrated to be suitable high-performance guiding
structures according to the physical criteria laid out in Chapter 2 and Chapter 3.

The results reported in this chapter represent a substantial increase in the realized
capabilities of laser-wakefield accelerators. Nevertheless, important work remains to be done.
The accelerator described here was operated in the nonlinear self-trapping regime, which
lead to the production of electron bunches with ∼ 100% energy spread. Improved electron
bunch quality, including reduction of energy spread and transverse emittance, is necessary
for practical applications, including particle colliders and free-electron-lasers.

The most straightforward means to reduce energy spread is to operate in a regime where
self-trapping is suppressed, and inject an electron bunch in a controlled manner through
a different mechanism, such as ionization injection. To access this regime for 40 J pulses
requires lowering the on-axis density to ∼ 1× 1017 cm−3 according to Ref. [64], assuming a0

self-evolves in a similar manner to that shown in Fig. 6.7. Based on the measurements and
simulations of Chapter 4, producing the required 60 µm matched spot size at his density is
well outside the capabilities of the current laser-heater setup.

For this reason, experiments were undertaken at 16 J driver energy to demonstrate both
suppression of self-trapping and ionization injection in laser heated capillary discharges,
for channel parameters demonstrated in Chapter 4 and Chapter 5. Such pulse energies
are insufficient for acceleration to 10 GeV, but are relevant for staging at the multi-GeV
level, which requires narrow energy spreads [74, 139].. These experiments are the subject of
Chapter 7 and the author’s working paper, Ref. [23].
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Chapter 7

Ionization injection in a 20-cm-long
laser-heated capillary discharge

7.1 Introduction

Laser wakefield accelerators (LWFAs) have been the focus of intense research activity as
a potential new class of compact sources of ultrashort relativistic electron bunches for
applications including high energy physics and free electron lasers [2].

For a given laser pulse energy, the highest electron beam energies from LWFAs have
been attained through the use of pre-formed plasma channels [10, 13, 21]. The laser-heated
capillary discharges, a novel class of plasma channel, offer greater tunability of density and
matched spot size [18, 20, 140] over conventional gas-filled capillary discharges [17, 141]. As a
specific example of the capabilities afforded by such a guiding structure, electron acceleration
to 7.8 GeV was achieved using a laser-heated capillary discharge with matched spot size
61 µm and on-axis density 2.7× 1017 cm−3 [21, 22].

In Ref. [21] the accelerator was operated in a highly nonlinear regime. Electrons were
injected at multiple locations along the plasma channel via self-trapping, resulting in ∼ 100%
energy spread. In general, practical applications for LWFAs require much lower energy
spreads, of order . 1% [2]. Moreover, multi-stage acceleration, essential to achieving high
energy gain without sacrificing acceleration gradient or efficiency [40], also requires narrow
energy spread for efficient bunch transfer between stages [74, 139]. Various schemes have
been proposed that may enable the production of very high quality electron bunches via
laser-wakefield acceleration [67, 68]. However, these techniques require that self-trapping be
suppressed.

In this chapter, ionization injection in laser-heated capillary discharges with 16 J laser
pulses is studied via experiment and simulation. This is less than half the pulse energy available
to each beamline of the BELLA laser system when operated in the two-beamline configuration.
Prospective experiments in the two-beamline configuration include demonstration of staged
acceleration in using two 5 GeV stages [24], and strong-field quantum electrodynamics
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experiments [25].
In experiments, ionization injection in the absence of self-trapping was demonstrated in

20-cm-long structures with resonant laser pulses (∼ 80 fs FWHM) at a plasma density of
2.5× 1017 cm−3. Additionally, ionization injection in laser-heated capillary discharges with
shorter pulse lengths (∼ 40 fs FWHM) produced electron bunches with quasi-monoenergetic
peaks at 3.9 GeV with tails > 5 GeV.

Finally, strategies for high quality bunch production were investigated with simulations.
Due to limitations of the channel, the matched spot size rm was greater than the input laser
spot size r0 for the experiments reported here. Contributions from self-guiding were expected
to be sufficient to achieve quasi-matched guiding despite rm > r0, however simulations
with INF&RNO show that rm < r0 is optimal at laser intensities where self-trapping was
suppressed. These simulation results indicate an approach for future staging experiments.
As a specific example, one simulation with INF&RNO shows that with on-axis density
2.5 × 1017 cm−3 and matched spot size 45 µm, 4.8 GeV bunches with 70.5 pC charge and
6 % energy spread can be produced.

The chapter is organized as follows. The experiment setup is described in Section 7.2.
Ionization injection with suppressed self-trapping is demonstrated in Section 7.4. High
charge, high energy bunch production with short driver pulses is described in Section 7.3.
Channel parameter optimization for bunch quality using the INF&RNO code is presented in
Section 7.5. Conclusions are summarized in Section 7.6.

7.2 Experiment setup

These experiments were performed using BELLA, a 815 nm, 40 nm bandwidth Ti:Sapphire
laser system capable of delivering 40 J pulses on target with minimum pulse length 35 fs
FWHM [76, 110]. The pulse energy was reduced to 16 J for these experiments. The spot size
of the driver r0 = 53 µm, which is defined as the waist of a Gaussian beam with the same
FWHM.

The heater laser system was as described in Ref. [21]. This consisted of a 532 nm
frequency-doubled q-switched Nd:YAG laser system delivering 300 mJ, 8 ns FWHM pulses
to the target in a focal spot with e−2 radius 81 µm.

A 800 µm diameter, 20-cm-long sapphire capillary and high voltage pulser system similar
to that of Ref. [21] were used for these experiments. To facilitate ionization injection using
a high-Z “donor” gas, a gas slot was added to the front of the capillary, as pictured in
Fig. 7.1(a). This allows a short region of donor gas to be created for ionization injection at
the front of the capillary by flowing donor gas into the front slot, while a uniform region of
hydrogen plasma can be created by flowing hydrogen into the fill gas slots.

In a capillary discharge, ionization injection can be implemented by localizing a high-Z
“donor” gas at the front of the capillary, while a while a uniform region of hydrogen plasma is
created by flowing hydrogen into one or both of the fill gas slots [22]. Localization of the
donor gas in the front of the structure requires that a higher pressure be created between
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Figure 7.1: (a) Schematic of the 3-slot 800 µm× 20 cm capillary. (b) Spectrally dispersed
image of the capillary discharge, showing the emission lines. Localization of the mixed gas
at the entrance of the capillary can be seen through the presence of the 588 nm He I line
exclusively at the entrance of the capillary.

the main body of the capillary between the fill gas slots. This can be done with a two-slot
capillary by flowing low pressure donor gas into the front slot, and H2 at higher pressure into
the second slot. This arrangement results in a pressure gradient between the two slots. For
short capillaries, this pressure gradient is negligible and two slots are sufficient to localize the
donor gas at the front of the structure, as was the case for the 3-cm-long capillaries used in
the ionization injection experiments of Ref. [22]. However, for long structures this pressure
gradient becomes significant. Thus, additional control is required to maintain longitudinally
uniform pressure (or a specific profile) throughout the structure while localizing a donor gas
for ionization injection.

The addition of a third gas slot, as pictured in Fig. 7.1(a), provides this additional control
over the pressure profile of the structure [142]. Specifically, with three slots, flow pressures
can be adjusted such that the donor gas is localized at the front of the capillary without
a pressure gradient between the two fill gas slots. A mixture of 5% N2 with balance He
(He-5%N2) was used as a donor gas and flowed into the front slot, and pure H2 flowed into
both downstream fill gas slots. The use of (He-5%N2) enables the location of the donor gas
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to be diagnosed with a simple imaging spectrometer using He emission lines. A dispersed
image of the capillary discharge plasma is shown in Fig. 7.1(b), with localization of the donor
gas at the front of the capillary visible via the 588 nm He I line.

The laser and electron beam diagnostics are as described in [21, 22, 76, 77, 110]. Electron
bunch spectra were measured using a magnetic spectrometer, which consisted of a 2.5-m-long
LANEX phosphor screen imaged by a CCD array, with field ≤ 1.2 T. Electron bunches
enter the magnetic spectrometer through a 25.4 mm diameter hole in the first optic after
the target, an uncoated fused silica wedge. Depending on energy and applied magnetic field,
the magnetic spectrometer has an angular acceptance of 0.5-1 mrad. Bunch charge was
measured using an integrating current transformer (ICT) with aperture 10 cm installed 11 m
downstream of the capillary, with angular acceptance ∼ 5 mrad [138]..

Laser spectra were measured by a pair of spectrometers, a UV-NIR spectrometer covering
the range 250-1050 nm, and a NIR spectrometer covering the range 1000-2200 nm. The
wide spectral range is required to capture spectra of highly depleted laser spectra, and in
general electro-optical devices sensitive to light over this entire frequency range are not readily
available. Complete laser spectra are constructed by scaling and merging the spectra acquired
on both spectrometers to match the energy spectral density in the region of overlapping
spectral sensitivity 1000-1050 nm.

7.3 High-energy bunch production via ionization

injection in the nonlinear regime

In Ref. [21], electron bunches with maximum energy 7.8 GeV were produced in a 20-cm-long,
800 µm diameter laser-heated capillary discharge with 31 J, 35 fs FWHM driver pulses focused
to a 53 µm. The capillary discharge was operated with initial fill pressure 17.6 torr H2, with
a peak current of 450 A and 400 ns rise time. The laser heater pulse had energy 300 mJ,
FWHM 8 ns, and arrived 420 ns after the peak of discharge current. The driver pulse arrived
within 1 ns of the peak of the heater pulse, when the channel was measured to have on-axis
density ne0 = 2.7± 0.4× 1017 cm−3 and matched spot size rm = 61± 3 µm. The resulting
acceleration was highly nonlinear, with self-trapping occurring at multiple locations along
the guiding structure.

For the experiments here, the driver energy was lowered to 16 J, corresponding to the energy
available to a single beamline with the BELLA laser system operated in the two-beamline
configuration, with FWHM 40 fs. The parameters of the laser-heated capillary discharge
were similar, with a 300 mJ heater pulse arriving 360 ns after the peak of discharge current,
and capillary fill pressure 17.6 torr. The driver pulse arrived t = 2.2± 0.5 ns after the peak of
heating power. Spot size oscillation measurements[20] and group velocity measurements with
a two-color common path interferometer[115] determined that ne0 = 3.1± 0.2× 1017 cm−3

and rm = 63± 5µm respectively. A He-5%N2 donor gas mixture was localized in the front of
the capillary using the front gas slot, to facilitate ionization injection. Electron bunches with



CHAPTER 7. IONIZATION INJECTION IN A 20-CM-LONG LASER-HEATED
CAPILLARY DISCHARGE 129

(a)
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Figure 7.2: Measured electron bunch spectra for 16 J pulse energy, 40 fs intensity
FWHM arriving at t = 2.2± 0.5ns after the peak of heating power, and channel parameters
ne0 = 3.1 ± 0.2 × 1017 cm−3 and rm = 63 ± 5µm. Total charge registered on the magnetic
spectrometer and (charge in the tail & 4.5 GeV) is listed for each shot. (a) 214 pC (2 pC)
(b) 247 pC (2 pC) (c) 194 pC (5 pC)
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Figure 7.3: Measured longitudinally-averaged on-axis density ne0 and matched spot size rm
in the heated channel as a function of delay from peak heater power, for capillary fill pressure
15.5 torr H2 and heater pulse energy 240 mJ arriving 460 ns after the peak of discharge
current. Plotted as solid traces is are longitudinally averaged on-axis density and matched
spot size from a MARPLE simulation for the conditions of the experiment.

peaks at 3.9 GeV and tails > 5 GeV were produced. Electron spectra for three bunches that
were well aligned to the spectrometer are plotted in Fig. 7.2.

In contrast to the bunch spectra shown in Fig. 7.2, efficient transfer of electron bunches
between acceleration stages requires narrow energy spread. One approach to achieving this is
to tune the driver and plasma parameters to suppress self-trapping, and then trigger injection
through another mechanism. This is the subject of the next section.

7.4 Guiding of stretched pulses without self-trapping

in a laser-heated capillary discharge waveguide

The threshold for self-trapping is dependent on both the laser normalized vector potential a0

and plasma wave phase velocity [64]. In this section, ionization injection without self-trapping
in a laser heated capillary discharge with 16 J pulses is shown. Reduction of a0 was achieved
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Figure 7.4: Input and output laser modes for the plasma channel of Fig. 7.3 at t = 2.6 ns.
(a),(b): Input modes from INF&RNO simulation and experiment, respectively. (c),(d) Output
modes from INF&RNO simulation and experiment, respectively. The fluence from INF&RNO
simulations has been scaled according to the known spectral response of the CCD sensor.

by increasing the pulse length to 80 fs FWHM. The density and matched spot size evolution
of the channel are plotted in Fig. 7.3. Capillary fill pressure was 15.5 torr, and the heater
pulse energy was 240 mJ with the pulse arriving 460 ns after the peak of discharge current.

The longitudinally averaged on-axis plasma density ne0 and matched spot size rm, from
both measurements and simulations with the MARPLE MHD code [102, 140], are plotted
in Fig. 7.3. The longitudinally averaged on-axis plasma density ne0 of the channel was
measured via two-color common-path spectral interferometry [115]. The longitudinally-
averaged matched spot size rm was measured by tracking oscillation of the probe beam
spot-size at the capillary exit as plasma and laser parameters were varied as described in
Ref. [20]. Matched spot size from the simulations is calculated according to the quasi-matched
spot size derived in Ref. [87]. The geometrical contribution to the group velocity[48] for the
density measurements was compensated using the matched spot size from the MARPLE
simulations.

With pure H2 flowing into the front gas slot (i.e. no donor gas for ionization injection),
no electron beams were observed for channel parameters ne0 = 2.5 ± 0.2 × 1017 cm−3 and
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Figure 7.5: Post-interaction driver spectra for the conditions of Fig. 7.4, labeled with the
corresponding shots of Fig. 7.7, simulated spectrum from INF&RNO (using the density profile
from the MARPLE simulation of Fig. 7.3 at t = 2.6 ns), and vacuum driver spectrum.

rm = 60± 5 µm, corresponding to t = 2.6 ns in Fig. 7.3. The driver pulse had energy 16 J
and intensity FWHM pulse length 80 fs.

Measurements and simulations indicate that driver pulse is well confined in the channel,
while the plasma wave amplitude is maintained below the threshold for self-trapping. Fig. 7.4
shows the driver vacuum focus and guided fluence profile at the exit of the channel, from
both the experiment and an INF&RNO simulation. The driver was modeled in INF&RNO
as in Refs. [21, 22, 76], with the transverse fluence given by a jinc(r) function and the
temporal profile from the diagnostic measurements described in Ref. [110]. Specifically, the
spatiotemporal driver pulse structure is defined

â(ζ, r, t = 0) = a0jinc

(
r

Rjinc

)
f‖(ζ) , (7.1)

with ζ = z − ct the longitudinal co-moving coordinate, r the radial coordinate, the function
jinc(u) ≡ 2J1(u)/u with J1(u) the Bessel function of the first kind, Rjinc ' 0.364r0, and the
complex function f‖(ζ) describing the temporal structure of the laser pulse.
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The INF&RNO simulation was performed using the plasma density profile at t = 2.5 ns
from the MARPLE simulation of Fig. 7.3, the on-axis density and matched spot size of which
are plotted in Fig. 7.6. The spot size at the channel exit is roughly the same size as the
vacuum focus, consistent with effective guiding of the driver by the channel. However, the
laser spot can oscillate in the channel such that the spot size at the exit is equal to the
vacuum focal spot size. The guided laser spectrum after propagation through the channel,
combined with INF&RNO simulations, can be used to gain insight into the laser guiding.

Measured and simulated post-interaction laser spectra corresponding to Fig. 7.4 are
plotted in Fig. 7.5. The plotted energy spectral densities have all been normalized to the
same (arbitrary) value of the wave action, which is an adiabatic invariant of the laser-plasma
interaction [46–48]. The measured and simulated spectra agree well with each other, and
simulations for range of on-axis densities in Fig. 7.8 show that the tail and fringe features
of the spectrum are sensitive to fluctuations of scale 0.1 × 1017 cm−3. Agreement in the
long-wavelength tail, which corresponds laser energy redshifted deep in the plasma wave[44,
45, 143, 144], suggests the simulation is faithfully modeling the plasma wave structure.
Additionally, reproduction of the spectral “fringes” in the simulation indicates that granular
features of the evolution of the guided laser pulse are being captured.

However, measured spectra show excess energy at short wavelengths λ . 825 nm compared
to the simulation. This is may be due to imperfections in the driver focus in the experiment,
which featured more energy in the halo than the perfect jinc function used in the simulation,
which can be seen by comparing Fig. 7.4(a) and (b). The additional energy in the focus halo
will experience less self-focusing and may not be guided as effectively in the channel, and
hence may experience less redshifting. Quantitatively, for the laser fluence profile measured in
the experiment, ∼ 40% of the total energy lies outside the first airy minimum at r ∼ 75 µm,
versus ∼ 20% for the ideal jinc profile used in the simulation. This is comparable to the
discrepancy in energy spectral density in the short wavelength region. Nevertheless, as
previously stated, simulation results agree well in the long wavelength region of the spectrum
associated with laser energy propagating deep in the plasma wave, which is in turn most
closely associated with wake amplitude and structure relevant to particle trapping.

The simulated driver evolution inside the channel is plotted in Fig. 7.6(a), with the
MARPLE simulated on-axis density ne0(z) and rm(z) plotted in Fig. 7.6(b) and (c), respec-
tively. Density and matched spot size in the channel are nonuniform due to hydrodynamic
self-evolution of heater beam in the capillary plasma [20, 21, 140]. The matched spot size
rm(z) for each longitudinal slice was calculated using the quasi-matched guiding condition
for a Gaussian pulse derived in Ref. [87].

The INF&RNO simulation shows significant evolution of the guided driver pulse, in both
a0 and the e−2 radius of the fluence r−2. Due to a combination of mismatch to the channel,
high order mode content of the jinc(r) focal spot [114], and self-focusing, 20 µm excursion in
beam size occur during propagation [58].

For the conditions of Figs. 7.4-7.6 with pure H2 in the front gas slot, no electron bunches
were observed on the electron bunch diagnostics [76, 110], specifically the integrating current
transformer (ICT) or electron spectrometer. However, flowing a He-5%N2 mixture into the
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Figure 7.6: (a) Peak driver normalized vector potential a0 and e−2 fluence radius re−2 as a
function of longitudinal position from the INF&RNO simulation of Figs. 7.4 and 7.5, using
the density profile from the MARPLE simulation at t = 2.6 ns. (b) On-axis density as a
function of longitudinal position for the density profile from the MARPLE simulation, for
both the initial discharge plasma (without heating), and t = 2.6 ns after the peak of heater
power. (c) Matched spot size as a function of longitudinal position for the density profile
from the MARPLE simulation.

front gas slot resulted in the production of electron bunches. Together with the foregoing
discussion, this indicates the trapping of electron bunches via ionization injection in an
acceleration regime where self-trapping is suppressed.

Electron spectra of four electron bunches are plotted in Fig. 7.7, with (a)-(d) corresponding
to the laser spectra (a)-(d) plotted in Fig. 7.5. Depending on electron energy and magnetic
field, the acceptance of the magnetic spectrometer is ±0.5− 1 mrad [21, 76, 77]. The ICT
has an angular acceptance, of ∼ 4 mrad, and can measure bunch charge for electron bunches
not captured by the electron spectrometer. The shots plotted in Fig. 7.7 were chosen as those
best aligned to the magnetic spectrometer, with > 50% of the charge measured by the ICT
observed on the spectrometer for all of them.

There is a large difference in bunch charge between the shots of Fig. 7.7(a),(b) and
(c),(d). Formation of the heated channel is a dynamic process, and sensitive to a number
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(a)

(b)

(c)

(d)

Figure 7.7: Measured electron bunch spectra for the conditions of Fig. 7.4, selected for best
alignment to the magnetic spectrometer. 16 J pulse energy, 80 fs intensity FWHM arriving
at t = 2.6 ns per Fig. 7.3. Total charge registered on the magnetic spectrometer is listed for
each shot. (a) 3 pC (b) 2 pC (c) 29 pC (d) 26 pC
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of variables that vary from shot to shot, heater alignment to the discharge plasma channel,
delay of the heater pulse relative to the driver, and the shape of the heater pulse itself [20].
Therefore, channel parameters ne0 and rm will fluctuate from shot to shot. Measurements
have shown capillary discharges to be stable to within < 1% [93, 116]. RMS deviation in
density measurements of capillaries without laser heating with the two-color common-path
interferometer is ∼ 0.1× 1017 cm−3, whereas uncertainty in measurements of heated channels
are as ∼ 0.3 × 1017 cm−3 RMS with this diagnostic. This increased variance in density
measurements in laser-heated capillary discharges is attributed to these previously mentioned
effects.

Shot-to-shot density fluctuations were modeled by applying a uniform offset to the density
profile of Figs. 7.4-7.6. The simulated post-interaction driver spectra and electron bunch
spectra are plotted in Fig. 7.8, with the laser redshift ∆R = 1− 〈k/k0〉[43] evaluated for each
case. The 0.25× 1017 cm−3 density interval over which the accelerated charge increases from
0.3 to 36.5 pC in the simulations is comparable to the uncertainty in the density measurements
of Fig. 7.3. Moreover, the variance in driver redshifting over this range of simulated densities
is comparable to the variance in driver redshifting observed in the laser spectra corresponding
to Fig. 7.7 plotted in Fig. 7.5.

Oscillation of the driver intensity during the first few centimeters of propagation in the
channel is the primary process responsible for the retention or loss of injected bunches, and
hence the primary cause of charge fluctuations. Specifically, INF&RNO simulations show
that bunches are lost at the first minimum of the laser spot size oscillation at z ≈ 25 mm. At
this point, reduction of the nonlinear plasma wavelength moves bunches into the defocusing
phase of the wakefield, causing them to be lost.

This can be seen in Fig. 7.8(e), where the bunch charge, defined as accelerated particles
within 15 µm of the axis, is plotted as a function of z. The traces all show loss of charge after
the first minimum in a0, with the relative amount of charge loss decreasing with density due to
the correspondingly higher values of a0 and a longer nonlinear plasma wavelength at the first
minimum in the oscillation. Note that because it takes time for unfocused particles to exit the
defined bunch volume, bunch charge loss as plotted in Fig. 7.7(e) does not precisely coincide
with the a0 minimum. The evolution of the driver responsible for charge loss is naturally a
function of the matched spot size rm, but also a function of ne through self-focusing, which is
responsible for the first maximum in the laser intensity upon coupling into the channel.

In the experiment described in this section, no clear correlation between redshifting and
bunch charge was found. This can be attributed to the fact that redshifting yields information
about laser propagation averaged over the whole channel, whereas the simulations of retention
of bunch charge is extremely sensitive to the laser evolution at the first minimum in the
driver a0 at z ≈ 25 mm. Redshifting is only correlated with charge in the simulations of
Fig. 7.8 because a single parameter is being varied, namely the average on-axis density, to
study the effect of small perturbations of channel parameters. In the experiment, however,
multiple parameters fluctuate simultaneously shot-to-shot. As stated previously, this includes
both density and matched spot size. Furthermore, pointing jitter of the heater and driver
with respect to the capillary is of order 20 µm, which in turn perturbs the alignment of the
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Figure 7.8: Output from INF&RNO simulations using the MARPLE profile of Fig. 7.6
with density offsets to simulate the effect of channel fluctuations. Longitudinally averaged
density ne0 and the laser spectrum redshift ∆R are listed for each simulation case, with the
zero-offset case ne0 = 2.5× 1017 cm−3 corresponding to the original profile. Laser redshift
∆R and bunch charge are plotted with the optical and electron bunch spectra, respectively.
(a) Post-interaction driver spectra. (b) Electron bunch energy spectra, windowed for the
pm0.5 mrad acceptance of the magnetic spectrometer. (c) Peak normalized vector potential
evolution a0(z). (d) e−2 fluence radius r−2 vs. z. (e) Total bunch charge vs. z. Bunch charge
Q defined as accelerated particles within 15 µm of the axis.



CHAPTER 7. IONIZATION INJECTION IN A 20-CM-LONG LASER-HEATED
CAPILLARY DISCHARGE 138

600 800 1000 1200 1400 1600 1800 2000 2200

 (nm)

0

1

2

3

4

5

6

7

8
E

n
e

rg
y
 S

p
e

c
tr

a
l 
D

e
n

s
it
y
 (

A
U

)
10

-5

80 fs, R  = 0.11

40 fs, R  = 0.30

Figure 7.9: Measured post-interaction driver spectra for Fig. 7.7 (blue) and Fig. 7.2 (red).
Spectra have been normalized to the same value of the wave action. Average redshift for each
group of spectral traces 〈∆R〉 is listed in the plot legend.

driver to the plasma channel. Hence, for this experiment, a longitudinally averaged laser
redshifting measurement is not sufficiently sensitive to the laser evolution in the small region
where bunch loss occurs to correlate with accelerated charge.

Post-interaction driver spectra are plotted in Fig. 7.9 for the beams of Figs. 7.7 and
7.2. Driver redshift for 40 fs pulses is a factor 3 greater than for 80 fs pulses of Section 7.4,
although redshift for the 40 fs case may be underestimated, as the spectral range of the NIR
spectrometer appears to be exceeded at the long wavelength limit in Fig. 7.9. In the nonlinear
regime, redshift scales approximately according to ∆R ∼ a2

0n
3/2
e0 [43], and so a factor ∼ 31/2

increase in the normalized laser vector potential in the channel between the 80 fs and 40 fs
cases can be deduced. Comparing with the peak value a0 = 2.5 for the case of Fig. 7.6, this
implies a peak value a0 ∼ 4 and strongly nonlinear laser propagation in the 40 fs case.

In Ref. [64], the empirical threshold for self-trapping a0 & 2.75[1 + (γp/22)2]1/2, with γp
the plasma wave phase velocity Lorentz factor, was obtained via INF&RNO simulations.
The empirical scaling for the minimum value of γp accounting for self-evolution of the driver
γp,min ' 2.4(ω/ωp)

1/2 was also obtained in Ref. [64]. For the conditions of the experiments of
this chapter γp & 20 with corresponding injection threshold a0 & 3.5. Hence, the redshifting
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measurements showing a0 ∼ 4 within the channel for the 40 fs (Fig. 7.2), as well as the broad
energy spectra, are consistent with self-trapping.

By contrast, for the 80 fs case (Fig. 7.7), the INF&RNO simulation output plotted in
Fig. 7.8(c) shows that the driver a0 remains below the threshold for self-trapping over the
length of the plasma channel. The maximum value of the normalized vector potential a0

in the highest density case is 2.7, below the threshold of a0 & 3.5. This is consistent with
high-resolution simulations with INF&RNO (i.e. sufficient spatiotemporal resolution to model
self-trapping) that showed no self trapping for the simulation cases of Fig. 7.7.

In this section, guiding of a LWFA driver pulse without self-trapping in a 20-cm-long
structure has been demonstrated. This conclusion is supported by diagnostic measurements
of the channel properties, experimentally obtained laser spectra, demonstration of ionization
injection of electron bunches, and INF&RNO simulations. However, staging experiments
require improved guiding and narrower electron bunch energy spread. Hence, refinements to
the plasma channel and driver laser were investigated with simulations, the results of which
are presented in the following section.

7.5 Optimizing a 20-cm-long plasma channel for bunch

quality

Staged acceleration requires a bunch with few-percent energy spread for efficient capture
into successive accelerating stages due to the chromatic focusing of electron beam optics [74].
Simulations were performed with INF&RNO to identify parameters relevant to producing
∼ 10 pC bunches with low energy spread at the 5 GeV level. The accelerator parameters
used in the experiment where suppression of self-trapping was observed, i.e. the INF&RNO
simulation of Figs. 7.4-7.6, were taken as a baseline. Parameters were then evolved away
from this baseline to obtain three cases with increased bunch charge. Electron bunch spectra
and normalized vector potential evolution for these three modified cases (i-iii), as well as
the baseline case (iv), are plotted in Fig. 7.10. For all cases, driver pulse width and peak
normalized vector potential a0 at the channel entrance were fixed at the values of Fig. 7.6,
80 fs and 1.37 respectively. For all cases, the plasma profile from MARPLE of Fig. 7.6 was
used, with the exception of case (iii), which considers a longitudinally uniform channel with
optimized matched spot size.

Accelerator performance can be improved by matching the driver focal spot to the channel.
For case (i) of Fig. 7.10, a jinc(r) profile was assumed for the focus as in Section 7.4, and
the spot radius r0 was tuned to maximize the bunch charge spectral density while the peak
fluence (i.e. a0) at the entrance was held constant (necessitating commensurate variation of
the laser pulse energy). Optimal matching of a jinc(r) focus to a parabolic channel requires
r0 > rm due to the presence of higher order modes [114].

Plotted in Fig. 7.10 is the result of this procedure, a case (i) with r0 = 59 µm and pulse
energy 20.6 J. This case has the simplest practical implementation of those investigated,
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Figure 7.10: Electron bunch spectra windowed for the±0.5 mrad acceptance of the magnetic
spectrometer (a), peak normalized vector potential evolution (b), and e−2 laser fluence radius
(c) for three accelerator configurations (i-iv) simulated with INF&RNO. (i) Plasma profile of
Fig. 7.6, with a jinc(r) fluence profile at focus, with r0 = 59 µm (as defined in Section 7.2),
chosen for optimal matching to the channel according to Refs. [87, 114]. Bunch charge
21.4 pC. (ii) Plasma profile of Fig. 7.6, Gaussian fluence profile at focus with r0 = 53 µm.
Bunch charge 30.3 pC. (iii) Longitudinally uniform channel with ne0 = 2.5× 1017 cm−3 and
rm = 45 µm, matched to the jinc(r) fluence profile of Section 7.4. Bunch charge 70.5 pC.
Self-injection in the density downramp at the channel exit contributed 25 pC of charge
. 200 MeV, shown as the dotted line. (iv) Simulation of Fig. 7.6, corresponding to the
conditions of the experiment of Section 7.4. Bunch charge spectral density multiplied ×10
for visibility on the plot scale. Bunch charge 0.2 pC.



CHAPTER 7. IONIZATION INJECTION IN A 20-CM-LONG LASER-HEATED
CAPILLARY DISCHARGE 141

requiring only an decrease in the driver laser nearfield size.
The jinc function used to model the laser focus in the simulation (i) and (iv), as well as

the real laser focus in the experiment, contains high-order Laguerre-Gaussian modes. Hence,
a0 and re−2 oscillate as the driver propagates in the channel due to not only self focusing,
but also beating of these higher mode orders. Suppressing this oscillation further requires
better matching of the laser focus and the transverse shape of the plasma channel to one
another, not merely a reduction of the channel matched spot size. This can be accomplished
through use of a purely Gaussian focus. A case (ii) with r0 = 54 µm and driver pulse energy
16 J, yielding the same peak normalized vector potential at the capillary entrance as case
(iv), is plotted in Fig. 7.10.

In both cases (i) and (ii), improved matching of the driver yielded higher bunch charge
than the case corresponding to the experiment parameters, case (iv). The first minimum
in a0 is increased for both the matched jinc and the Gaussian profile which reduces the
wake-phase-shift associated with the nonlinear plasma wavelength sufficiently to retain the
bunch in the focusing region of the wake. Furthermore, in the case of a Gaussian focus,
oscillations in a0 are significantly decreased in amplitude as compared to a jinc(r) focus, due
to the elimination of high-order modes.

Finally, because modifying the laser nearfield without significant energy loss is technically
challenging, a 20-cm longitudinally uniform channel optimized for the existing jinc(r) laser
focus was investigated. INF&RNO simulations for rm and ne0 varied over the intervals
35-60 µm and 2.0-2.5× 1017 cm−3 respectively. Of these simulations, case (iii) in Fig. 7.10
yielded the highest charge spectral density, with rm = 45 µm and ne0 = 2.5 × 1017 cm−3.
70.5 pC of charge was trapped via ionization and accelerated to 4.5-5.1 GeV, and 25 pC of
charge was injected by self-trapping in the density downramp at the exit of the channel and
accelerated to low energies . 200 MeV. These components of the accelerated charge are
denoted by the solid and dotted lines in Fig. 7.10(a) respectively. As in case (i), oscillations
are present due to high order mode content. Additionally, a0 grows significantly over the
length of the channel due to redshift and self-steepening. The small matched radius obtained
from the optimization procedure warrants discussion. Indeed, for a Gaussian laser focus,
self-focusing increases the required channel matched spot size [87]. However, the high-order
mode content of a jinc profile also reduces the effective channel matched spot size for the
laser focus. Specifically, in the linear limit the fraction of energy in the fundamental Laguerre-
Gaussian mode is maximized for rm = r−2/1.22 [114]. Confinement of driver energy near the
axis of the channel requires these effects be balanced against each other, in this particular
case requiring rm < r−2.

Finally, case (iv) yielded the highest bunch charge and spectral density of all those
summarized in Fig. 7.10. However, the parameters of this channel are not accessible with the
current heater laser system, motivating the use of alternative guiding structures and methods,
e.g. hydrodynamically-formed optical field-ionized channels [82, 83, 145].

The results of this section show that multiple paths exist for optimizing ionization-injected
bunches. All approaches investigated require improvement of the laser guiding, however this
can be accomplished via modification of either the driver focal spot or the plasma channel.
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Moreover, all approaches considered yielded substantially higher bunch charge.

7.6 Conclusion

In this chapter, ionization injection of electron bunches in 20-cm-long laser-heated capillary
discharge waveguides was studied. Ionization injection with suppressed self-trapping was
demonstrated with 80 fs driver pulses, a prerequisite for high quality bunch production.
Additionally, high charge, high energy bunches were produced with 40 fs pulses at 16 J.
Finally, simulations identified driver and channel parameters that can be optimized to produce
high charge, narrow energy spread bunches via ionization injection. The results presented
here motivate further development of channel-guided LWFAs as compact sources of multi-GeV
electron bunches for applications requiring narrow energy spreads.
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Chapter 8

Conclusion

In this dissertation, laser-heated gas-filled capillary discharges have been characterized and
demonstrated as novel guiding structures for laser-wakefield acceleration. Density and
matched spot size were measured and found to be tunable over a wide parameter space, far in
excess of that accessible with a conventional capillary discharge. Moreover, good agreement
was observed between measurements and MHD simulations with the MARPLE code.

Acceleration of electrons to 7.8 GeV with 16 J, 850 TW peak power laser pulses from the
BELLA laser in a laser-heated capillary discharge was demonstrated, a record for single-stage
energy gain in a LWFA as of the time of writing. Additionally, acceleration of electrons to
3.9 GeV with 16 J pulses was demonstrated. Moreover, bunches were successfully injected
at 16 J pulse energy using ionization injection with suppressed self-trapping. The results
with 16 J demonstrate a capability for production of multi-GeV electron beams with half the
BELLA laser’s maximum pulse energy, a key technical capability for future staged acceleration
experiments. Finally, good agreement was observed between measured post-interaction driver
laser spectra and electron spectra, and particle-in-cell simulations with the INF&RNO code
based on channel diagnostic measurements and MHD simulations with the MARPLE code.

Future experiments on the BELLA laser are planned for production of 10 GeV electron
beams, as well as demonstration of staged acceleration with two 5 GeV stages [24]. As was
discussed in Chapter 7, this may require new types of guiding structures capable of supporting
lower matched spot sizes, such as optical field-ionized channels [82, 83, 145]. In addition
to improved guiding, staged acceleration requires the production of narrow energy-spread
electron bunches for efficient charge capture between stages. One means to achieve this is
to inject a bunch by ionization injection with a laser pulse at a higher frequency that trails
behind the driver pulse [67, 68]. Development of this scheme is the subject of future work
at BELLA center. To that end, appendix A presents a numerical model of third harmonic
generation for femtosecond laser pulses. As a demonstration of its capabilities, the model
is used to simulate a possible configuration for an injector beamline producing a 267 nm
injector pulse intrinsically synchronized to a 800 nm driver pulse from a standard Ti:Sapphire
CPA laser system.
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Appendix A

A numerical model of third harmonic
generation for femtosecond laser pulses

A.1 Two-color ionization injection

Two-color ionization injection is a proposed method for the production of low emittance
electron beams in a LWFA that relies on ionization injection by a high frequency laser pulse
that trails the driver. The high frequency of the injector pulse minimizes distortion of the
wake through reduction of the ponderomotive force which scales as ω−2, and minimizes the
initial transverse momentum of the ionized electrons through the a0 ∼ ω−1 scaling of the
normalized vector potential [68]. Simulations have shown that beams with nanometer scale
emittances can be produced with this method [67, 68].

The electrons of the trapped bunch are tunnel-ionized from background ions in the plasma,
which requires very high laser intensities, especially for the highly charged ions remaining after
the passage of a LWFA driver. The “single cycle” ionization intensity It defined according
to ω−1D = 1, with D the tunneling ionization rate of Eqn. 2.75, can be regarded as the
threshold for ionization of a given species. Tunnel ionization is a nonlinear process, and hence
the total charge ionized does not scale with the pulse energy, but rather the total volume
over which the threshold intensity It is reached.

The scaling of bunch charge with peak power in the injector pulse can be estimated
assuming a Gaussian beam profile for the injector laser. Assuming the threshold intensity is
reached at the beam waist r0, the volume over which ionization occurs is roughly Vfoc ∼ 2πr2

0zR,
with zR = πr2

0/λi the Rayleigh range and λi the wavelength of the injector pulse. The total
charge is then

Q ∼ qeniVfoc ∼ qeni
2π2r4

0

λ
, (A.1)

with ni the donor ion density in the plasma. The r4
0 factor implies that the bunch charge

scales as P 2
i , with Pi = πr2

0It the peak power in the injector.
A technologically mature approach to producing high intensity, high frequency injector
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pulses synchronized to a LWFA driver is to divert a portion of the driver energy through a
system of nonlinear crystals to generate pulses at a harmonic of the laser frequency [146].
However, frequency conversion of femtosecond pulses involves both spatial and temporal
evolution of the pulse envelope, and the resulting partial differential equations in time and
space cannot be solved analytically. In this appendix, a numerical model based on the split-
step algorithm [147] is presented for simulating nonlinear frequency conversion of femtosecond
laser pulses in one spatial dimension, i.e. for plane waves. Moreover, the model is used to
simulate a potential scheme for generating pulses at the third harmonic of a Ti:Sapphire laser
via cascaded second-harmonic generation and sum-frequency generation.

As a note to the reader, symbol definitions used in this appendix are independent of the
rest of this dissertation. Additionally, SI units are used here instead of the Gaussian-cgs units
used elsewhere.

A.2 Sum Frequency Generation and Second Harmonic

Generation of Ultrashort Laser Pulses

It is most efficient to generate the third harmonic by cascading two second-order processes
rather than relying on a single stage third order process. This is practically implemented by
generating the second harmonic in a nonlinear crystal, and then using the second harmonic
and residual fundamental to generate the third harmonic in a second crystal via sum-frequency
generation. Both of these processes are well understood and extensively documented in the
existing literature, the textbook Ref. [146] being just one introductory example.

However, for femtosecond pulses relevant for LWFA, group velocity mismatch in the
crystal limits the efficiency of frequency conversion. Such pulses are sufficiently short for
the interaction length to be limited by the distance over which the pulses separate from one
another due to their differing group velocities, which in turn limits the conversion efficiency.
Additionally, mismatch of pulse group velocities can lead to “smearing” or stretching of the
harmonic pulses, which reduces the peak power. The latter issue is of particular concern
for tunneling ionization, which is a highly nonlinear process and requires very high laser
intensities to be efficient.

Because of this group velocity mismatch, and to a lesser extent second-order dispersion,
design of a frequency conversion system for femtosecond laser pulses requires modeling of
the spatiotemporal pulse envelope evolution. Moreover, in most cases of interest, analytical
solution of the governing partial differential equations is not practical and numerical methods
must be used. Second harmonic generation of femtosecond pulses was studied numerically in
Ref. [148] using the split-step algorithm [147]. In this section, the formalism developed in
that work is extended to the closely related process of sum-frequency generation.

Propagation of electromagnetic waves in a nonlinear medium can be described with the
macroscopic electromagnetic wave equation, with the nonlinear polarization PNL separated
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from the linear dielectric displacement DL and acting as a source term:

∇2E− µ0
∂2DL

∂t2
= µ0

∂2PNL

∂t2
, (A.2)

with µ0 the vacuum magnetic permeability.
Some important simplifications are made when treating the problem of second harmonic

generation and sum-frequency generation in a nonlinear crystal. First, the problem is explicitly
formulated such that the field is separated into discrete frequency components ω3 = ω1 + ω2.
Moreover, of principle concern is the laser pulse envelope, rather than the wavelength-scale
structure of the field. Hence, the electric fields of the interacting frequencies ωj are expressed
in terms of slowly varying envelopes with a carrier frequency according to

Ej(z, t) =
1

2
Aj(z, t)e

i(ωjt−kjz) + c.c. . (A.3)

In reality, the nonlinear susceptibility of a crystal is a tensor, and the mixing frequencies
typically possess different polarizations due to the requirement for phase matching [146].
However, calculation of the nonlinear polarization response using this tensor is tedious and
complex, which motivates the second simplification. Specifically, the vectorial nature of the
electromagnetic field, as well as the tensorial nature of the nonlinear susceptibility can be
accounted for implicitly by appropriate choice of the nonlinear coupling coefficients. For the
most common case of propagation in a uniaxial crystal, the only information needed is the
polarization state, ordinary (O) or extraordinary (E), of the interacting frequencies, and the
direction of the wave vectors relative to the crystal axes. Formulas for the coupling coefficients
of commonly used nonlinear crystals can be found in Ref. [149] and other reference works. For
the work in this dissertation, coefficients for the nonlinearity as well as linear propagation of
the interacting frequencies were calculated with the software package SNLO [150]. Therefore,
vector and tensor notation can be dropped and the problem of the laser pulse evolution
formally treated in terms of interacting scalar fields. Moreover, parallel wavevectors for the
interacting frequencies will be assumed.

Adopting the foregoing simplifications, expanding the material dispersion to second order
(up to group velocity dispersion or GVD), and restricting the problem to one spatial dimension
as stated previously, the LHS of Eqn. A.2 can be rewritten for the linear propagation of the
laser envelope at each frequency ωj as

∂2Ej

∂z2 − µ0
∂2DL,j

∂t2

=
1

2

[
∂2Aj

∂z2 − 2ikj
∂Aj
∂z
− 2ikj k̇j

∂Aj
∂t
− (k̇j

2
+ kj k̈j)

∂2Aj

∂t2

]
ei(ωjt−kjz) + c.c. , (A.4)

with wavenumber kj = ωnj/c, refractive index nj, k̇j = dk/dω|ωj the inverse group velocity,

and k̈j = d2k/dω2|ωj the inverse group velocity dispersion GVD−1. Note that in general each
polarization state involved in the interaction will have its own dispersion relation.
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Following the standard treatment of second-order nonlinear frequency conversion [146],
the nonlinear polarization source term for ωj with j = 1, 2

µ0
∂2PNL,1,2

∂t2
= −

ω2
1,2

2c2
deffA

∗
2,1A3e

i[ω1,2t+(k2,1−k3)z] + c.c. , (A.5)

with deff the nonlinear coupling coefficient. The polarization source term for the sum-frequency
ω3 is

µ0
∂2PNL,3

∂t2
= − ω

2
3

2c2
deffA1A2e

i[ω3t−(k1+k2)z] − 1

4
n3cε0β|A3|2A3e

i(ω3t−k3z) + c.c. , (A.6)

with β the two-photon absorption coefficient and ε0 the vacuum permittivity.
The first term of Eqn. A.6 is the standard nonlinear source term for sum-frequency

generation. The second term accounts for two-photon absorption (TPA), which is a nonlinear
absorption process that occurs when two photons interact nonlinearly to excite an electron
across the crystal bandgap. This requires that the individual photons possess a minimum of
half the gap energy. For crystals commonly used for nonlinear frequency conversion of laser
light, TPA becomes important for wavelengths < 300 nm. The TPA coefficient β is defined
such that the laser intensity is attenuated according to [151][

∂I

∂z

]
TPA

= −βI2 . (A.7)

Combining Eqns. A.4-A.6 according to Eqn. A.2 yields a system of coupled partial
differential equations for the evolution of the laser pulse envelopes. The frequencies ω1 and
ω2, denoted by indices j = 1, 2 evolve according to

∂2A1,2

∂z2 − 2ik1,2
∂A1,2

∂z
− 2ik1,2k̇1,2

∂A1,2

∂t
− (k̇2

1,2 + k1,2k̈1,2)
∂2A1,2

∂t2

= −
ω2

1,2

c2
deffA

∗
2,1A3e

−i∆kz , (A.8)

with ∆k = k1 + k2 − k3 the phase matching parameter. The envelope evolution equation for
the sum frequency ω3 is written

∂2A3

∂z2 − 2ik3
∂A3

∂z
− 2ik3k̇3

∂A3

∂t
− (k̇3

2
+ k3k̈3)

∂2A3

∂t2

= −ω
2
3

c2
deffA1A2e

i∆kz − 1

2
n3cε0β|A3|A3 . (A.9)

As in the long-pulse regime, efficient frequency conversion requires phase matching, i.e.
∆k = 0 [146]. Phase matching is commonly achieved by exploiting crystal birefringence, and
is often the primary constraint on the frequency range over which a given nonlinear crystal
can be used efficiently [146, 149].
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Eqns. A.8 and A.9 have the same fundamental structure as the equations for sum-frequency
generation with long pulses [146]. The LHS of both equations treats the evolution of the pulse
envelope, the only difference in this case being the inclusion of terms beyond −2ik∂A/∂z
which arise from first and second order dispersion. The RHS contains the nonlinear source
terms with the familiar phase matching parameter. The only process added to the model is
the two-photon absorption term on the RHS of Eqn. A.9, which becomes important for the
high peak intensities of ultrashort pulses [152].

It is convenient to express the pulse envelopes in terms of the comoving coordinates (z, τ),
with τ = t−γz and γ−1 the comoving frame velocity. γ is defined as the average of the inverse
group velocities of the interacting laser pulses so as to keep them centered on the defined
temporal grid. With the transformation to comoving variables such that A(z, t)→ A(z, τ),
the derivatives in Eqns. A.8 and A.9 become(

∂A

∂z

)
t

=

(
∂A

∂z

)
τ

− γ ∂A
∂τ

(A.10)(
∂A

∂t

)
z

=
∂A

∂τ
(A.11)(

∂2A

∂t2

)
z

=
∂2A

∂τ 2 (A.12)(
∂2A

∂z2

)
t

=

(
∂2A

∂z2

)
τ

− 2γ
∂2A

∂z∂τ
+ γ2∂

2A

∂τ 2 ' γ2∂
2A

∂τ 2 (A.13)

Eqn. A.13 is a statement of the slowly-varying envelope approximation. That is, the char-
acteristic length for evolution of the pulse envelope is much longer than the pulse envelope
itself. Finally, applying the transformation

A3 → A3e
i∆kz (A.14)

allows phase matching to be treated with an additional linear term in the equation for ω3.
This transformation only alters the envelope of the sum frequency ω3 by a phase factor, which
in many cases can be neglected. However, should the phase of the envelope be required, the
“physical” envelope can be recovered by adding the phase factor according to

Ã3 = A3e
i∆kz . (A.15)

The set of partial differential equations for modeling sum-frequency generation obtained
through the application of Eqns. A.10-A.15 are summarized in Table A.1. The corresponding
equations for second harmonic generation, derived in Ref. [148], are summarized in Table A.2.



APPENDIX A. A NUMERICAL MODEL OF THIRD HARMONIC GENERATION FOR
FEMTOSECOND LASER PULSES 162

Low Frequency 1
∂A1

∂z
=
η1

3

∂A1

∂τ
+ iξ1

∂2A1

∂τ 2 − iρ1A
∗
2A3 (A.16a)

Low Frequency 2
∂A2

∂z
=
η2

3

∂A2

∂τ
+ iξ2

∂2A2

∂τ 2 − iρ2A
∗
1A3 (A.16b)

Sum Frequency
∂A3

∂z
=
η3

3

∂A3

∂τ
+ iξ3

∂2A3

∂τ 2 − i∆kA3 − iρ3A1A2 − σ|A3|2A3 (A.16c)

ω3 physical field Ã3 = A3e
i∆kz (A.16d)

Comoving Coordinates z, τ ≡ t− γz (A.17a)

Comoving Group Delay γ ≡ 1

3

3∑
i=1

k̇i (A.17b)

Interpulse Group Delay ηi ≡
∑
j 6=i

k̇j − 2k̇i (A.18a)

Group Delay Dispersion ξi ≡ (k̇i
2 − γ2 + kik̈i)/2ki (A.18b)

Nonlinear Coupling Coefficient ρi ≡ ωideff/2nic (A.18c)

Two-Photon Absorption Coefficient σ ≡ n3cε0β/2 (A.18d)

Characteristic Time Intensity full-width half-max TFWHM (A.19a)

Characteristic Length LSFG ≡
TFWHM

(k̇1 + k̇2)/2− k̇3

(A.19b)

Table A.1: Sum-frequency generation equations in SI units

A.3 The split-step algorithm for numerical modeling

of nonlinear wave propagation

Equations of the type collected in Tables A.1 and A.2 can be solved numerically using
the “split-step” method [147, 153]. This algorithm was first used for modeling self-phase
modulation of pulses in optical fibers, but it can also be used to model second harmonic
generation, as was done in Ref. [148], as well as sum-frequency generation. The essence of
the method is to separate the evolution of the laser envelope in z into a linear operation and
a nonlinear operation, and apply these operations separately over each spatial step ∆z. This
allows the pulse group velocity and dispersion to be treated in the frequency domain, and
the nonlinear frequency conversion to be treated with an ordinary differential equation. A
split-step code was written in MATLAB [109] to solve the equations of Tables A.1 and A.2.
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Fundamental
∂A

∂z
=
η

2

∂A

∂τ
+ iξ1

∂2A

∂τ 2 − iρ1A
∗B (A.20a)

Second Harmonic
∂B

∂z
= −η

2

∂B

∂τ
+ iξ2

∂2A

∂τ 2 − i∆kB − iρ2A
2 (A.20b)

ω2 physical field B̃ = Bei∆kz (A.20c)

Comoving Coordinates z, τ ≡ t− γz (A.21a)

Comoving Group Delay γ ≡ (k̇1 + k̇2)/2 (A.21b)

Interpulse Group Delay η ≡ (k̇2 − k̇1) (A.22a)

Group Delay Dispersion ξi ≡ (k̇i
2 − γ2 + kik̈i)/2ki (A.22b)

Nonlinear Coupling Coefficient ρi ≡ ω0deff/2nic (A.22c)

Characteristic Time Intensity full-width half-max TFWHM (A.23a)

Characteristic Length LSHG =
TFWHM

k̇2 − k̇1

(A.23b)

Table A.2: Second harmonic generation equations in SI units

Linear (𝑘-domain)

Nonlinear (𝑧-domain)

dz

2 N

dz/2

1

dz

…

Pulses 

in
Pulses 

out

Figure A.1: Schematic representation of the split-step algorithm. The propagation medium
is divided into interleaved domains where the laser envelope is alternately evolved according
to the linear and nonlinear terms of the envelope equation. The linear component of the
evolution equation is solved in the k-domain using a fast Fourier transform. The nonlinear
component is solved in the z domain using a fourth-order Runge-Kutta integration.
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Linear Component Fourier Transforms

Low Frequency 1 k̂ = −η1

3
ω̂ + ξ1ω̂

2 (A.24a)

Low Frequency 2 k̂ = −η2

3
ω̂ + ξ2ω̂

2 (A.24b)

Sum Frequency k̂ = −η3

3
ω̂ + ξ3ω̂

2 + ∆k (A.24c)

Nonlinear Component ODEs

Low Frequency 1
∂A1

∂z
= −iρ1A

∗
2A3 (A.25a)

Low Frequency 2
∂A2

∂z
= −iρ2A

∗
1A3 (A.25b)

Sum Frequency
∂A3

∂z
= −iρ3A1A2 − σ|A3|2A3 (A.25c)

Table A.3: Split-step operations for sum-frequency generation, according to definitions of
Table A.1.

In this section, a brief overview of the design of the code will be given.
The operation of the split-step algorithm is shown schematically in Fig. A.1. The

interaction medium is discretized into 2N − 1 overlapping steps of thickness ∆z = L/N , with
the exception of two steps of ∆z/2 on the ends of the medium, with L the thickness of the
medium. The temporal evolution of each pulse at z = 0 is specified, i.e. Aj(0, τ), as a 1-D
numerical array of time samples. After being evolved through a linear propagation interval,
the resulting pulses are evolved through a nonlinear propagation interval, and the laser pulses
are propagated through the entire medium according to alternating application of the linear
and nonlinear components of the envelope evolution equations.

The linear component of the equations is solved in the frequency domain via a fast Fourier
transform according to

A(z + ∆z, τ) = FFT−1
τ {FFTτ{A(z, τ)}e−ik̂(ω̂)∆z} , (A.28)

with ω̂ = ω − ω0 the frequency associated with the Fourier transform of the laser envelope
(i.e. with the carrier frequency shifted to zero) and k̂(ω) the wavenumber from the dispersion
relation for the laser envelope. These dispersion relations are collected for sum-frequency
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Linear Component Fourier Transforms

Fundamental k̂ = −η
2
ω̂ + ξ1ω̂

2 (A.26a)

Second Harmonic k̂ =
η

2
ω̂ + ξ2ω̂

2 + ∆k (A.26b)

Nonlinear Component ODEs

Fundamental
∂A

∂z
= −iρ1A

∗B (A.27a)

Second Harmonic
∂B

∂z
= −iρ2A

2 (A.27b)

Table A.4: Split-step operations for second-harmonic generation, according to definitions of
Table A.2.

generation and second-harmonic generation as Eqns. A.24 and A.26 of Tables A.3 and A.4,
respectively.

The nonlinear component of the equations is integrated using the fourth-order Runge-
Kutta method, using the coupled ordinary differential equations of Eqns. A.25 and A.27 in
Tables A.3 and A.4. The integration is performed independently on each time sample of
the pulses, hence the partial derivatives. As implemented, the discretized intervals ∆z form
the mesh over which the Runge-Kutta integration is performed. Hence, the solver operates
essentially as a Runge-Kutta integrator of N steps, with the dispersion operation of Eqn. A.28
performed between each step.

Generally, the step size should be chosen such that ∆z � LSHG,SFG, and the temporal
grid for the pulses should be sampled such that ∆t � TFWHM. For the simulations here,
∆z/LSHG,SFG ∼ 102 and ∆t/TFWHM ∼ 103. Propagation through ∼ 1 mm of material with
several hundred integration steps can be simulated in a few seconds on a personal computer.

A.4 Numerical investigation of third-harmonic

generation for two-color ionization injection

To demonstrate the capabilities of the code, a potential scheme for generating femtosecond
deep ultraviolet laser pulses by third harmonic generation from 800 nm Ti:Sapphire laser
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pulses was simulated. As previously described, generation of the third harmonic is performed
in two stages in two separate crystals, beginning with second harmonic generation followed
by sum-frequency generation with the second harmonic and residual fundamental. Potassium
dihydrogen phosphate (KH2PO4) or “KDP” was chosen as the nonlinear material. KDP is a
commonly used crystal for laser frequency conversion: it is phase-matchable to . 250 nm [149]
and commercially available as large single crystals required to accommodate high energy laser
pulses without damage [154]. Other candidate crystals include β-barium borate (β-Ba(BO2)2

or “BBO”) and Lithium Triborate (LiB3O5 or “LBO”). However, BBO is not available in
large crystal sizes (as of writing), and LBO possesses a lower nonlinear coupling coefficient
for sum-frequency generation at the wavelengths of interest [149, 150].

Between the two nonlinear crystals, two other optical components are required. The
first optic is a group velocity compensator to delay the fundamental relative to the second
harmonic before the sum-frequency stage. This is to maximize the distance over which the
pulses overlap, as the fundamental pulse will “overtake” the second harmonic due to its
higher group velocity. The second optic is a half-wave plate, to rotate the polarization of the
residual fundamental from the first crystal into the same plane as the second harmonic to
achieve type-I phase matching in the second crystal. Neither of these were directly modeled
in this case, with their function being being accounted for by the addition of delay between
the pulses and selection of type-I coefficients for both processes. However, explicit modeling
and design of these components is a requirement for future development of a third harmonic
generation system.

For the simulation presented here, the fundamental pulse had a 30 fs intensity FWHM,
with 51 mJ cm−2 fluence. This fluence value was chosen to be less than the single-shot
damage threshold for KDP at 267 nm [155]. Optical parameters for both the second harmonic
generation and sum-frequency generation stages are collected in Table A.5, generated with
SNLO [150], from which the coefficients of Tables A.1 and A.2 were calculated.

These simulations are directed towards maximizing the peak intensity in the third harmonic,
which is the key parameter for efficient tunnel ionization as discussed in Section A.1. The
strategy adopted to achieve this is to maximize the source term for the third harmonic in
Eqn. A.16. A simple argument shows that 50% conversion efficiency in the second harmonic
generation stage is optimal for this purpose. The third harmonic source term scales as (I1I2)1/2,
with I1 and I2 the intensities at the summing frequencies ω1 and ω2. These intensities sum
approximately to the initial fundamental input intensity I0 such that I0 ≈ I1 + I2, in which
case the source term scales roughly as ∼ [(I0 − I2)I2]1/2. Thus, the source term is maximized
for I2/I0 = 1/2.

A simulation of second harmonic generation is shown in Fig. A.2. Pulses are modeled
with 8000 time samples over a 300 fs window, and the nonlinear medium is discretized into
N = 200 steps. Evolution of the peak intensities of the fundamental and second harmonic
pulses is plotted in Fig. A.2(b), showing continuous depletion of the peak intensity of the
fundamental and saturation of the peak intensity of the second harmonic. This arises from
the group velocity mismatch between the two frequencies. Essentially, the peak intensity of
the second harmonic pulse can only grow while it overlaps with the fundamental pulse. The
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Figure A.2: Split-step simulation of second harmonic generation, using the parameters of
Table A.5.
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λ0 Pol. deff β n ∆k ck̇ k̈
(nm) (pm V−1) (cm GW−1) (µm−1) (fs2 mm−1)

Second Harmonic Generation, Type I, θ = 44.9°

800 O 0.302 0 1.502 0 1.526 27.3
400 E 1.550 106.8

Sum-Frequency Generation, Type I, θ = 67.5°

800 O 0.442 0 1.502 0 1.526 27.3
400 O 0 1.524 1.577 114.5
267 E 0.27 1.517 1.638 213.2

Table A.5: Optical parameters for phase-matched third harmonic generation in KDP from
SNLO [150]. Parameters are listed for each crystal, with the phase matching type and
wavevector angle relative to the optical axis.

effective interaction length where this condition holds is estimated as the distance required
for the second harmonic to accumulate a delay of one FWHM relative to the fundamental, i.e.

LSHG =
TFWHM

k̇2 − k̇1

, (A.29)

with TFWHM the intensity FWHM of the fundamental, and other quantities as defined in
Table A.2. For the case of Fig. A.2, LSHG ∼ 0.5 mm, and Fig. A.2(b) shows the second
harmonic peak intensity saturates after a propagation distance very near this value.

A crystal thickness ∼ LSHG is optimal for sum-frequency generation as it maximizes
the peak power in the residual fundamental and thus the source term for sum-frequency
generation. This is evident in Figs. A.2(c) and A.2(d), which show the fundamental and
second harmonic pulses at the saturation point (z = 0.5 mm ∼ LSHG) and the end of the
simulation (z = 2.0 mm ∼ 4LSHG), respectively. The peak intensity of the second harmonic
is nearly equal in both cases, whereas the the peak intensity in the fundamental has been
reduced by more than half between z = 0.5 mm and z = 2.0 mm. Fig. A.2(d) shows that
the energy lost from the fundamental has been deposited into a long tail on the second
harmonic pulse by the group velocity mismatch. In the sum-frequency generation stage,
the energy in this tail does not contribute to the peak intensity in the third harmonic, and
is effectively wasted. Moreover, depletion of the fundamental intensity reduces the source
term for sum-frequency generation. Hence, for purposes of generating high peak intensity in
the third harmonic, a crystal with thickness ∼ LSHG is preferable for the second harmonic
generation stage.

A simulation of the sum-frequency generation stage, which actually produces the third
harmonic, is shown in Fig. A.3. The input pulses at the fundamental and second harmonic are
shown in Fig. A.3(a), which are taken from Fig. A.2(c) with a delay applied to compensate
for the group velocity mismatch. As for second harmonic generation, this group velocity
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mismatch limits the interaction length, which is defined in terms of the difference between the
source frequencies (fundamental and second harmonic) and the sum-frequency according to

LSFG =
TFWHM

k̇3 − (k̇1 + k̇2)/2
, (A.30)

with TFWHM the intensity FWHM of the fundamental as before, and the other quantities
as defined in Table A.1. Note that sum-frequency generation does not occur until the
fundamental and second harmonic overlap, and the location in the crystal at which this
overlap occurs is dependent on the initial delay between these two pulses. Hence, LSFG

does not specify the total propagation distance at which the maximum intensity in the
third harmonic is reached, but rather the distance after overlap at which this maximum is
reached. Peak intensity evolution for all three frequencies is plotted in Fig. A.3(c). For this
case LSFG = 0.15 mm, similar to the 0.2 mm distance over which the third harmonic grows
from zero intensity to its maximum in the simulation. The maximum intensity of the third
harmonic is roughly 10% the peak intensity of the initial unconverted fundamental pulse,
consistent with the literature [152].

Sum-frequency generation consumes more energy from the higher of the two summing
frequencies, which can be seen in Fig. A.3(c). This is a consequence of the Manley-Rowe
relations, which dictate that every sum-frequency photon produced requires the consumption
of one photon from each of the summing frequencies [146]. This enters the field equations
used here through the ωj scaling of the nonlinear coupling coefficients of Table A.1. Since
the photon energy ~ω is proportional to frequency, photons lost from the second harmonic
consume twice as much energy as those from the fundamental.

Photon balance in sum-frequency generation can be thought of in terms of the “reaction”
γω1 + γω2 → γω3 , which is mediated by the nonlinear medium. This constitutes a “stoi-
chiometric” limit on the total efficiency of the frequency conversion process. That is, the
maximum number of ω3 photons that can be produced is limited to the number of photons in
whichever of the summing frequencies ω1 and ω2 has the fewest. This suggests that optimal
conversion efficiency into the third harmonic is achieved with the second harmonic and
fundamental intensities in a 2:1 ratio. This is indeed the case for longer laser pulses where
group velocity mismatch is not a concern. However, because the primary mechanisms limiting
conversion efficiency in this regime are group velocity mismatch and two-photon absorption
(“TPA”), maximizing the source term for the third harmonic over the interaction length LSFG

is more important. Hence, equipartition of the initial fundamental intensity into the summing
frequencies was chosen, as discussed in the beginning of this section. Only at intensities high
enough to deplete one or more of the summing frequencies over an interaction length will
photon balance become important for conversion efficiency.

Conversion efficiency into the third harmonic is severely limited by two-photon absorption
in the case of Fig. A.3. This can be seen by comparing the peak intensity evolution for a
simulation with TPA suppressed, i.e. β = 0, plotted in Fig. A.3(c). For suppressed TPA,
the third harmonic retains its maximum peak intensity through the remainder of the crystal
after it is generated, apart from a small decrease due to group delay dispersion. With the
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literature value of the TPA constant in KDP β = 0.27 cm GW−1 [151] however, the third
harmonic is attenuated by a factor ∼ 3 after 0.5 mm. Hence, the third harmonic must be
extracted from the crystal immediately upon reaching maximum intensity to suppress TPA
losses. This can be done by reducing the crystal thickness for the sum-frequency generation
stage, but this generally presents a manufacturing challenge. Alternatively, the delay of the
fundamental relative to second harmonic can be tuned such that overlap and sum-frequency
generation occur within ∼ LSFG of the downstream end of the crystal, such that the third
harmonic pulse is extracted once it reaches maximum intensity. This avoids the attenuation
from TPA shown in Fig. A.3(c), at the cost of a few-percent intensity loss in the fundamental
and second-harmonic due to dispersion.

A.5 Further work and possible extensions of the model

In this section, a numerical model of frequency conversion of ultrashort pulses in nonlinear
crystals based on the split-step algorithm was presented. Using this model, a possible scheme
for producing high intensity femtosecond pulses at the third harmonic of 800 nm Ti:Sapphire
laser light was simulated. However, more work remains to be done to obtain a practical
design for a frequency conversion system. Realistic pulse shapes and spectral phase should
be investigated. Transform-limited Gaussian pulses were used as a matter of convenience to
model the fundamental pulse here, but pulses from a real laser system will depart from this
idealized model. It is straightforward to model arbitrary pulse shapes and spectral phases,
only requiring appropriate specification of the complex envelope A(z, τ).

Moreover, third-order nonlinearities have been neglected, specifically self-phase modulation
[146] and cross-phase modulation [156]. These processes will detune phase matching or lead to
pulse distortion, which will in turn reduce the conversion efficiency. The effect of third-order
nonlinearities on second harmonic generation of high power laser pulses has been investigated
numerically in Ref. [157, 158]. Extending that work to the model presented here requires
adding nonlinear terms of the form ∼ i|A|2A to Eqns. A.20 and A.16. The split-step algorithm
can accommodate these interaction terms with no substantial modifications, requiring only
that they be added to the ODEs for the nonlinear integration step Eqns. A.27 and A.25.
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