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Abstract

This paper proposes a straightforward, easy to implement approximate F-
test which is useful for testing restrictions in multivariate regression models.
We derive the asymptotics for our test statistic and investigate its finite sample
properties through a series of Monte Carlo experiments. Both theory suggests
and simulations confirm that our approach will result in strictly better inference
than the leading alternative
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Abstract

This paper proposes a straightforward, easy to implement approx-
imate F-test which is useful for testing restrictions in multivariate
regression models. We derive the asymptotics for our test statistic
and investigate its finite sample properties through a series of Monte
Carlo experiments. Both theory suggests and simulations confirm that
our approach will result in strictly better inference than the leading
alternative.

1 Introduction

The tendency of the three commonly used asymptotic tests, the Wald (W),
likelihood ratio (LR) and Lagrange multiplier (LM) tests, to over-reject in
multivariate regression models is well established; see Bera, Byron, and Jar-
que (1981), Italianer (1985), Theil, Shonkwiler, and Taylor (1985), and Tay-
lor, Shonkwiler, and Theil (1986). This is particularly troublesome in the
context of estimating demand systems where it increases the likelihood of

*Timothy Beatty would like to thank the Canada Research Chair Program and Social
Sciences and Humanities Research Council of Canada.



errors in inference concerning the basic predictions of utility theory, namely
homogeneity (Laitinen, 1978) and symmetry (Meisner, 1979).

In this paper, we construct an easy to implement approximate LM F-
test to improve the finite sample empirical size of testing for multivariate
regression models. This proposed test guarantees an F-statistic strictly larger
than the degrees of freedom adjusted LM test with probability one. We
focus on the LM test because a simple degree-adjustment is known to be
insufficient to correct W and LR tests, and the modified test procedure
developed in this paper will not improve the finite sample properties of either
of these alternatives. This proposed F-test simplifies computation compared
to previous efforts, and offers a good approximation to an exact test even in
highly nonlinear multivariate regressions.

This is far from the first attempt to address these problems. Bartlett and
Bartlett-type corrections have been widely investigated as possible means to
address the size problem of the LR, LM and W tests. Typically these in-
volve re-scaling the test statistic, such that the adjusted statistic is closer to
the asymptotic distribution than the unmodified one. The most frequently
encountered correction is a simple degrees of freedom re-scaling of the form
(NT — K) /(G- NT), where N refers to the number of regression equations;
T denotes the number of periods per equation; K is the number of parame-
ters, and G represents the number of restrictions. We will refer to this as
the Laitinen-Meisner correction. However, the Monte Carlo results of Bera,
Byron and Jarque (1981) show that this approach, when combined with crit-
ical values taken from the F' (G, NT — K) tables, under-corrects W and LR,
but over-corrects LM. While a number of other Bartlett-type corrections
have been proposed, see Cribari-Neto and Cordeiro (1996) for a complete
discussion, they typically involve functions of cummulants of derivatives of
the log-likelihood function. This complexity, in addition to doubts about
their effectiveness (see Rocke, 1989), seems to have impeded their widespread
adoption.

Hashimoto and Ohtani (1990) propose an exact test for linear restrictions
in seemingly unrelated regressions (SUR). However, the applicability of their
approach may be somewhat limited due to the fact that it is only valid in
the context of linear regressions where the same regressors are used in each
equation. Additionally, under certain circumstances the power of this test
may be quite low.

One promising area of research involves simulation tests. Dufour and
Khalaf (2002) employ simulation methods to test hypothesis in multivari-
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ate and in SUR models. Their approach results in important gains over
the Bartlett and Bartlett-type corrections. However, for a sufficiently com-
plex model (such as the nonlinear demand models estimated in this paper),
the relatively large computational cost could make this method somewhat
impractical.

We now turn our attention to the proposed approximate F-test. We be-
gin with an informal overview of the construction and properties of this test
statistic. We then formally prove its characteristics and that, with proba-
bility one, it must improve upon the Laitinen-Meisner corrected LM test.
We expect this implement to increase very quickly with T, as a result of the
argument below. To illustrate the usefulness of our approach, we apply the
proposed F-test to a series of progressively more non-linear demand systems.
For each model, we compute the empirical cumulative distribution function
(CDF) of a test for symmetry of the price coefficient matrix using our pro-
posed test statistic and the Laitinen-Meisner corrected LM statistic. The
results are compared to a true F' distribution. We focus on the implications
of nonlinearity in the estimation procedure, estimation of the error variance-
covariance matrix, and convergence in nonlinear models for the finite sample
behavior of our approach.

2 An Approximate LM F-test

We begin by writing down a nonlinear system of N equations with 7" periods
each:

Yjt = fj(xjta/BOj) + €t (J =1 ,Nit=1,--- 7T) (2'1)
Assume the following disturbance structure:
€t|Xt ~ N (OaENxN) (22)

where €; is an N-vector, x; is an N X K matrix, and By; is a Kj;-vector.
A common statistical hypothesis of G restrictions imposed on K para-
meters (with K = Zjvzl K;, G < K <« NT) can be written in the general
form:

Ho: g (Bk) =0c (2.3)
To test these restrictions, we propose the following approximate LM F-

statistic: o o
po BE) - 5X))/G (2.4)

S(X)/(NT — K)
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where the error variance-covariance matrix for the first-round estimates
of the unrestricted structural model is denoted X, and the second-round of
unrestricted weighted residual sum of squares is given by S (f])l; where the
error variance-covariance matrix for the first-round estimates of the restricted
structural model is denoted 3, and the second-round restricted weighted
residual sum of squares is given by S(X); finally, where the unrestricted
weighted residual sum of squares, based on the restricted error variance-
covariance matrix from the first-round, is denoted S(X).

The numerator, (S(X) — 5(3))/G, converges in distribution to a y%/G
random variable. We use the first-round error variance-covariance matrix
from the restricted model to remain consistent with the Lagrange multiplier
principle. The LM test is well-known to have the smallest empirical size
amongst the three classical tests for multivariate linear regression model.

The denominator, S(X)/(NT — K), calculated using the unrestricted
model for both the first and second rounds, converges in distribution to a
X{nr_ry/(NT — K) random variable under joint normality of the true residu-
als. However, note that even if this distributional assumption does not hold,

the denominator will asymptotically converge to one, while F(G, NT — K) <,
X%/G as T — oo. This implies that even if the residuals are not normally
distributed the test proposed here will outperform the alternatives. In either
case, with probability one, the empirical size of this F-test will be closer to
the nominal size than a Laitinen-Meisner LM test that uses the F' tables.
The numerator in our F-statistic is simply one form of the Lagrange mul-
tiplier test statistic, divided by its degrees of freedom, while the denominator
is simply the unrestricted weighted residual sum of squares also divided by
its degrees of freedom. The latter, and a single iteration on the estimated
error variance-covariance matrix in the denominator, can be motivated as
follows. First, the second-round unrestricted generalized least squares (GLS)
criterion has an asymptotic X%NTf K) distribution. Second, at the beginning
of the second-round generalized nonlinear least squares (GNLS) estimation
step, we begin with the first-round nonlinear least squares (NLS) estimates
for the structural parameters. This implies a starting value of the GNLS
criterion of N7'. Minimization implies that the denominator’s GNLS crite-
rion is strictly less than NT' (i.e., S(X) < NT), with equality if and only
if the first-round estimated error variance-covariance matrix just happens to
coincide with the convergent iterative solution when one follows the standard

1 Also denoted SSRy in the figures.



Malinvaud (1980, Chapter 9) iteration on X. Note that this is a probability
zero event. The approximate F-statistic, therefore, with probability one, is
strictly larger than the Laitinen-Meisner adjusted LM.

LM NT-K

58 ¢

LM NT-K

W : T - L]\4Laitincn—Mcisncr a.s.. (25)

Since a chi-squared random variable divided by its degrees of freedom
converges almost surely to one, however, the approximate F-statistic con-
verges (in probability and distribution) to the LM statistic, and therefore is
an optimal test in large samples.

We formalize this argument as follows.

Proposition 1 Let a """ denote restricted estimates, and a """ denote un-
restricted estimates. Let ¥ and X be the first-round nonlinear least squares
estimates for ¥, under unrestricted and restricted models respectively. The
generalized nonlinear least squares criteria for these estimates are:

T
S(3) = S ev e

=1

T ~ ~ ~ ~ ~
= E(yt - f(Xta B(E))Tzil(yt - f(xt7 IB(E>)

=1

~+

35) = YT
- z (1 — £, BE)TS (y, — (%, BE))
S5(2) = E'gfi*la

(ye — £(x¢, B(2)"S (y: — £(x:, B(T))

I
=

~
Il
—

The approximate LM F'-statistic is:

F:(E@)_g(i))/G&F(G,NT—K). (2.6)
S(2)/(NT - K)

Proof. See appendix. m



3 A Simulation Study

In order to characterize the finite sample properties of this test statistic, we
conduct a series of Monte Carlo experiments. We investigate the performance
of our proposed test statistic by applying it to three different models drawn
from the demand literature: a simple linear model, a linear-quadratic model
(AIDS like) and finally a quadratic utility demand system. The hypothe-
sis of interest is Slutsky symmetry, following Meisner and Bera, Byron and
Jarque. These models differ in a number of respects that make comparing re-
sults across models informative. In particular the models considered become
progressively more nonlinear, which makes them progressively harder to es-
timate. This results in an increased probability that the estimation routine
will not successfully converge.

In all cases, iterating to convergence of the GNLS criterion is essential
to ensure comparisons between optima, especially in models that are highly
nonlinear in the structural parameters. In addition, to help ensure that

-~

the GNLS criterion in the unrestricted model (S(X)), conditional on the re-
stricted error variance-covariance matrix estimates (f]), is a global minimum
and strictly less than the restricted GNLS criterion (S(X)), it is useful to be-
gin the unrestricted estimation step for the numerator at the second-round
parameter estimates for the restricted model.

Given the central role played by ¥ in our test statistic, we investigate
the effects of estimating ¥ on each model by running two Monte Carlo ex-
periments, one in which ¥ is assumed known and the other in which ¥ is
estimated. In each case we compare our results to a Laitinen-Meisner LM
correction.

(1) Linear model:

vi = P (As; + Bp; +vymy) + €. (3.1)

(2) Linear-quadratic model:

[ 1
y: = P, |As; + Bpy + v(m; — ptTAst - EptTBpt) + €. (3.2)

(3) Quadratic model:

_ . . -
my —a''s; — p; Ast) Bp;

=P |A B (

yi t | ASt + Dpy + pTBpy 1 1

+ €. (3.3)




where our data consist of: y; is an n-vector of food expenditures, p; is
an n-vector of food prices, m; is income and s; is an s-vector of demographic
characteristics. We estimate, B an n X n matrix of parameters on prices, A
an n x s matrix coefficients on demographic variables, and « an n-vector of
parameters on income, supernumerary income, or demographics, respectively.
We assume that €, is i.i.d N(0, X).

The symmetry of the Slutsky matrix is accommodated by a set of linear
parameter restrictions on B,?

Hy:B=B". (3.4)

3.1 U.S. Food Demand Model and Data

In order to implement the demand systems described above, we combine three
different time-series data sets. The first is data on per capita consumption of
dairy products over the period 1919-2000. The second is a corresponding set
of average retail prices for those products. The consumer price index for non-
food items is used as the price of nonfood expenditures. The third data series
are demographic factors that help to predict demand. These demographic
factors include the first three central moments (the mean, variance and skew-
ness) of the age distribution and the proportion of the U.S. population that
is Black and the proportion that is neither Black or White.

3.2 Simulation Algorithm

We now turn to the algorithm by which the finite sample behavior of our test
statistics will be investigated.

(1) For each of the three models (linear, linear-quadratic, quadratic util-
ity) we estimate the model under the null (in this case B = BT) hypothesis.
We use the fitted values of y; and 5 under the null hypothesis as the truth
for the purpose of the Monte Carlo experiment.

(2) For each round (s) we draw an N-dimensional multivariate standard
normal random variable z\” | where zgs) ~ N(0,Iy). These are rescaled by L,
which is the upper triangular matrix resulting from a Cholesky decomposition
of $. This yields random variables €\” = Lz*) where €!”) ~ N(0, ). These

20f course, Slutsky symmetry is feasible in (3.1) if and only if v = 0, but we include
this model with 4 # 0 as a linear base point.



are added back, y\* =3 + €', to generate a vector of random dependent

variables for each good.

(3) The relevant model is then estimated. Given the importance of start-
ing values in nonlinear estimation, the models are started at their true values.
We then estimate the restricted and unrestricted models, and compute S(%),
5(2) and 5(2).

(4) For each model and at each iteration we calculate the LM F-statistic,
and Laitinen-Meisner corrected LM statistic.

(5) Empirical CDFs (ECDFs) are produced by plotting the results of 5,000
iterations. In each case the ECDFs of the F-test and the Laitinen-Meisner
LM statistics are plotted against the CDF of the exact F' distribution.

We discard estimates from iterations which fail to converge at any stage
of the process and continue the simulation until 5,000 valid iterations are
obtained.

3.3 Simulation Results

Figures 1-6 illustrate the results of the simulation exercise described above.
Where informative, arrows make clear the horizontal distance between each
statistic and the true value for the .90th , .95th and .99th percentiles re-
spectively. In every instance, the proposed F-test first-order stochastically
dominates the Laitinen-Meisner LM statistic. When ¥ is known and the
model is not very nonlinear, the proposed F-test is virtually indistinguish-
able from the CDF of an F' distribution with the appropriate degrees of
freedom. When X is estimated, the proposed F-test continues to do better
than the Laitinen-Meisner LM statistic. In addition, for the most nonlinear
of the models considered, the test becomes slightly conservative.

In every instance the ECDF of the Laitinen-Meisner LM statistic lies en-
tirely above the true CDF. This confirms the earlier Bera, Byron and Jarque
(1981) results, which appear to generalize to quite a high degree of nonlin-
earity. Using the Laitinen-Meisner LM statistic with the F' tables results in
an increased likelihood of committing a type I error. As the theory suggests
and the simulations confirm, using the approach developed in this paper
dominates the alternative Laitinen-Meisner LM statistic in every instance
considered.

Figures 1 and 3 demonstrate that for linear and linear-quadratic models
with ¥ known, the proposed LM F-test is indistinguishable from a CDF of
an F-statistic. Figures 2 and 4 make clear that, for these models, estimating
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> results in a statistic undersized, although considerably less so than the
Laitinen-Meisner LM statistic.

When applied to the most nonlinear model considered, the quadratic
utility model in Figures 5 and 6, we see that the ECDF for our proposed LM
corrected F-test lies everywhere somewhat below the true CDF. The result
is a slightly conservative test where the empirical size is slightly too large.
This results in a slight tendency to over-reject a true null. For the most
nonlinear model, estimating > does not seem to have as large an impact as
in the linear and linear-quadratic case. The reason for this result is likely
to be the negative bias and low mean square error of the estimated X in
nonlinear models (see LaFrance, 1993).

Under the three models (linear, linear-quadratic and quadratic utility
models) with ¥ estimated, comparisons between the Laitinen-Meisner LM
(L-M) statistic, and the proposed LM F-statistic (L-B-W), in terms of
critical values and sizes, are given in Table I and Table II.

Table I: Comparison of Critical Values with 3 estimated

Size  Critical values Linear Linear-quadratic Quadratic utility
« F(10, 320) L-M L-BW L-M L-BW LM L-BW
0.10 1.619 1.159 1.398 1.135 1.368  1.529 1.670
0.05 1.860 1.310 1.591 1.278 1.544  1.727 1.860
0.01 2.346 1.697 2.034 1.606 1.954 2.167 2.376

Table II: Comparison of Sizes with X estimated

Size  Critical values Linear Linear-quadratic ~Quadratic utility
« F(10, 320) L-M L-BW L-M L-BW L-M L-B-W
0.10 1.619 0.014 0.046 0.009 0.037 0.078 0.113
0.05 1.860 0.004 0.020 0.002 0.015 0.035 0.055
0.01 2.346 0.0003 0.003 0.0000 0.002 0.006 0.010

4 Conclusion

This paper proposes a straightforward and easy to implement approximate
F-test for a system of regression equations. In theory and practice, this



approximate F-test partially overcomes the tendency of the Laitinen-Meisner
degrees of freedom correction to over-reject. In every instance this simple
alternative is more likely to lead to better inferences.

5 Appendix: Proof for Proposition 1
Consider a nonlinear system of N equations with T" periods each?:
Yjt = fj(xjt’ﬂoj)+6jt (] = 13 7N7 t= 1 7T) (]‘)

Assume: €x, ~ N (0,Xnxn) (2)

A common statistical hypothesis of G restrictions imposed on K parameters (with
G < K < NT) can be written in the general form:

Hy: g(Bk) = 0c 3)
Define:

_ -1 _ [T .T T

= = ~ N(0,1
W= e =Rl ) NI

of 9
F, o= HoeB) po_propro pr” _ %(6y)
NxK op NTxK GxK oB
T

o= [FTE—l FIs—% ... FTz—ﬂ — [T T, T
NTxK 1 2, b9 2 » BT 2 [ 1 452 > ’ T}

Construct the following two symmetric and idempotent matrices:

— _ *T xy—1 T
NTIXHNT B INT F (F F) F
A = F*(F*TF*)—1RT[R(F*TF*)—IRT]—IR(F*TF*)—lF*T
NTXNT

satisfying the mutual orthogonality condition MIA =0.
We take three steps to show :

r_ 50 -5E)/G

o X F(G,NT - K)
S(2)/ (NT - K)

(1) Denominator: S(£) % u’Mu ~ x(NT — K)
Consider the F.O.C. of the unrestricted model 8 = argminS(¥), given 3 RN B, and
B

I 3, where S is the first round estimated error covariance matrix from nonlinear least
squares (NLS) on the unrestricted model:

8f(xt7 ﬁ)

S Yy, — £(x:,8)) =0 (4)

M=

1[ 28T

t

3 - - ; is . =N K.
where €; is an N-vector, x; is an N x K matrix, 8; is an K;-vector, and K = ijl K;.
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Standard conditions and asymptotic results imply the following:
F*(B ~Bo) = (I - M)u (5)
5(2) = u"Mu (6)
u~ N(0,I), M is idempotent, rank(M) = tr(M) = NT — K
= 3(£) & u"Mu ~ y3(NT - K) (7)
(2) Numerator: S(X) — 5(2) 2 u”Au ~ x2(G)
Consider the F.O.C. of the restricted model, B = argmﬁin {§(§)|st g(B) = 0},

given [Ni 2 By and P 3, where ¥ is the first round estimated error covariance ma-
trix from NLS on the restricted model:

I af(xt,B) T$—1 20 39(3) T
QW} Sy — £(x, 8)) = ( aﬁT) A (8)
B— B = (FTF) 7 (F*Tu—RTA) (9)

Since £ % ¥ and £ & ¥ when H)j is true, standard asymptotic arguments imply:

BE)-B, = (FTF) " FTu=B(S) - B, (10)
5) = u"Mu (11)
0 = g(B)=R(B-By) (12)

Substituting (12) into (9), we obtain:
A= [R(F*TF*)_lRT}_1(F*TF*)_1F*TU (13)
Substituting (13) into (9), we obtain:
B _ ﬂO . (F*TF*)—l [F*Tu _ RT[R(F*TF*)—IRT]—1R(F*TF*)—1F*Tu]

F*(B—By) = (I-M-A)u (14)

(vt — £(xe, B2) S (ye — £(x1, B(D))

2l
M
Il
M=

o~
Il
—

(ue — F; (B — By)" (ue — F (B - By))

= vu—-20"(I-M-Au+u’(I-M~-A)(I-M-A)u
= u"(M+A)u (15)

Il
M=

o~
Il
—

u~ N(0,I), M and A are idempotent matrices
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rank(M) = tr(M)=NT-K
rank(A) = tr(A)=G

= S(2) B u’(M+ A)u~*(NT - K +G) (16)

Combining (11) and (16), it follows that:

S(E) - 5(X) & u” (A)u ~ x*(G) (17)

(3) The symmetry, idempotency and orthogonality of the matrices, A and M, imply

that the quadratic form in (17), which is the numerator of our approximate LM F-statistic,
and the quadratic form in (7), which is in the denominator, are asymptotically statistically
independent, so we have:

(5 -83®)/G o

Sl F(G,NT - K) (18)
5(%)/(NT — K)
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Figure 1.
Empirical and True F(10,320) CDF

Linear Model, Known X

—— True CDF for F(10,320)

—— Empirical CDF for (NT-K) X LM /(G x SSRy;)
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Figure 2.
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Figure 3.

Empirical and True F(10,320) CDF
LinQuad Model, Known X

—— True CDF for F(10,320)
—— Empirical CDF for (NT-K) x LM /(G X SSRy))
—— Empirical CDF for (NT-K)x LM /(G xNT)
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Figure 4.

Empirical and True F(10,320) CDF
LinQuad Model, Estimated X

—— True CDF for F(10,320)
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Figure 5.
Empirical and True F(10,320) CDF

Quadratic Utility, Known X

—— True CDF for F(10,320)

—— Empirical CDF for (NT-K) X LM /(G X SSRy))
—— Empirical CDF for (NT-K) X LM /(G xNT)

. r

[ [

L \'..Wu -

[ o = £ e L

A [ a A z r

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv L x x |

w t C o 0o | L

[ A = = / k [

\ [ S = | S| N [

[ QI = = [

““““““ r o 2 93

L) I Pif s = x X L) 3

A - SE|_g< N I i

F .~ % |8 & & 3

[ o g |82z 5

N i g 22 |2&¢ i

[ =] S = ﬁ _m M L

I o0 = m S O O i

[ = o= o= = |

[ = 2 |B 5 8 [

[ o s B O £ & B

[ — —_— g g g L

L < © = I

[ O & |FRA r

r o— = I

i =& i

L = i

[ < i

b o r

,,,,, AT E——————— T ————————————————ewee

S @ ® Y vt A= O S @ ® mo% A =9

— (=) [=) (=) (=) (=) f=] f=] (=) [=] f=] — (=) (=) (=) (=) (=) (=) (=) (=) (=)
[E9%4 (A

1.0

0.5

16




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




