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Abstract

Behavioral shaping is an incremental training procedure
commonly used to teach complex behaviors. Using this
procedure, a learner is initially rewarded for produc-
ing coarse approximations of the target behavior. Over
time, only more refined approximations are rewarded
until, finally, the learner receives reward only when the
target behavior is produced. In this paper, we mathe-
matically formalize the notion of behavioral shaping in
the context of search problems. In a search problem,
an agent uses the membership oracle of a target con-
cept to find a positive example of the concept. When
the concepts are intervals on the real line, we show that
the use of a shaping sequence—a sequence of increas-
ingly restrictive concepts leading to the target concept—
exponentially decreases the number of queries required
to solve the search problem. We also show that there
does not exist an algorithm which can solve the search
problem using a smaller number of queries. Lastly, we
conjecture that convexity may be an important require-
ment for a shaping procedure to be helpful.

Keywords: learning; training; shaping; computational
learning theory

Introduction

Behavioral shaping is a training procedure commonly
used to teach complex behaviors. Using this procedure,
a complex task is taught to a learner in an incremental
manner. The learner is initially rewarded for perform-
ing an easy task that coarsely resembles the target task
that the teacher wants the learner to perform. Over
time, the learner is rewarded for performing more dif-
ficult tasks that monotonically provide better approxi-
mations to the target task. At the end of the training
sequence, the learner is rewarded only for performing the
target task. Shaping was first proposed by B. F. Skinner
in the 1930s (Skinner, 1938). In one experiment, Skin-
ner demonstrated that pigeons could be trained to move
in a circle. Initially, any movement to the left was re-
warded. When the pigeon acquired this behavior, only
larger movements were rewarded, and so on. Eventu-
ally, the pigeon learned to move in a full circle. In recent
decades, shaping has been used to train animals (includ-
ing people) to perform tasks that they will not learn
to perform through direct reinforcement (i.e., by only
rewarding the target behavior). Shaping has also been
used in the field of artificial intelligence, especially in the
area of machine learning known as reinforcement learn-
ing (Sutton & Barto, 1998), to train agents to perform
complex tasks (Dorgio & Colombetti, 1994; Ng, Harada,
& Russell, 1999; Randlov, 2000).
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This paper has two goals. The primary goal is to
mathematically formalize the notion of shaping, and to
show that shaping makes certain tasks easier to learn.
We specifically concentrate on tasks requiring search in
which the objective of an agent (either biological or ar-
tificial) is to find states in a search space which are re-
warded. Intuitively, we ask whether searching for a re-
ward state is easier when a teacher is available to guide
the search. The secondary goal is to make a method-
ological contribution to the field of Cognitive Science by
illustrating how concepts and techniques from the field
of Computational Learning Theory (Anthony & Biggs,
1992; Kearns & Vazirani, 1994) can be used to formalize
and study cognitive phenomena. A more detailed de-
scription of this work, and several additional results, can
be found in Chhabra, Jacobs, and Stefankovic (2007).

Consider the following task in which an agent has to
find a reward state in a one-dimensional array of states.
There is an array of size n whose elements are filled with
the values of a reward function; i.e., the elements are
filled with zeros, except at some random, fixed loca-
tion with index T (for target), which has a one. The
agent’s goal is to find this reward location. The agent
can query any element of the array. Clearly, to find the
reward location, O(n) queries are needed in the worst
case. Consider, now, the availability of a teacher to guide
the agent’s search. The learning process proceeds in it-
erations. At iteration 1, the teacher fills a contiguous
region of size n/2 in the array with 1s (with the con-
straint that the actual target reward location 7" is within
this region). All other elements in the array are assigned
a zero. When the agent queries an element containing
a 1, the current iteration ends and the learning process
moves to the next iteration. At iteration 2, the teacher
reduces the region containing 1s to a contiguous subre-
gion of size n/4 (the subregion at iteration 2 is a subset
of the subregion at iteration 1 with the constraint that
it also contains location T'). Eventually, after [log, n]
iterations, the teacher assigns a 1 only to element 7', the
actual target reward location. Assuming that the agent
knows that the teacher will shrink the “reward area”
by 1/2 at each iteration, it is easy to show that the re-
ward location can be found with just O(logy n) queries.
Importantly, this is an exponential improvement in per-
formance relative to the case when there is no teacher
available to guide the agent’s search.



Although this paper analyzes shaping with respect to
its benefits on search problems, the reader should recog-
nize that shaping is often intimately related to reinforce-
ment learning. The objective in reinforcement learning
is to find a policy (i.e., a mapping from states to ac-
tions) that maximizes the reward obtained. In general,
searching the policy space for an optimal policy (or even
a good policy) is computationally intractable. However,
it is possible that an agent can learn to perform a task
faster if a teacher is available that adaptively modifies
the reward function in the manner suggested by behav-
ioral shaping. For example, consider a sequential deci-
sion problem in which an agent attempts to reach the
reward state by choosing one of two actions at each mo-
ment in time. The agent chooses sequences of actions of
length [log,n], and then is told whether the resulting
state is the reward state. This situation can be charac-
terized by a binary tree in which nodes correspond to
states and edges correspond to actions. The tree has n
leaf nodes, one of which corresponds to the reward state,
and the tree’s depth is [log, n]. Consequently, a policy
is a sequence of [log, n| actions. The optimal policy is
the sequence leading to the leaf corresponding to the re-
ward state. This scenario is analogous to the scenario
described above; instead of searching for a reward ele-
ment in an array, the agent now searches for a sequence
of actions leading to a reward leaf of a tree. Using the ac-
tual target reward function, the agent accumulates O(n)
regret in the worst case where regret is defined as the to-
tal number of action sequences that the agent tries before
discovering the optimal sequence leading to the reward
state. What if a teacher is available that modifies the
reward function in the manner suggested by behavioral
shaping? Assuming that the teacher marks 1/2 of the
leaves with reward at iteration 1 and successively halves
the reward area at each iteration (as described above),
then the agent can learn the optimal policy with only
O(logy n) regret. Again, this is an exponential improve-
ment in performance relative to the case where there is
no teacher available to guide the agent’s search.

Our work is related to the “reward shaping” frame-
work of Ng, Harada, & Russell (1999). These authors
sought to speed-up reinforcement learning by transform-
ing the original reward function to a new reward function
that provides additional training information to guide an
agent’s search. They gave mathematical conditions un-
der which a transformation is policy invariant meaning
that an optimal policy for the original reward function is
also an optimal policy for the new reward function. Our
approach is different from theirs in at least two ways.
First, we use a temporal sequence of reward functions
as compared to their fixed reward transform. Conse-
quently, we believe that our approach is more consistent
with the practice of behavioral shaping as reported in
the psychological literature (Skinner, 1938). Second, our
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Figure 1: The target concept T is a subset of the concept
S = [0,1]. The search agent needs to search S for a point
inT.

reward functions are binary, whereas those of Ng et al.
allow real-valued rewards.

In the next section, we describe a formal model of
behavioral shaping. This model can be used to prove
the benefits of shaping in several cases involving convex
reward regions lying in multi-dimensional spaces. For
pedagogical reasons, the following section focuses on a
simple one-dimensional case where we prove that shap-
ing can be helpful in finding intervals on a straight line.
We show a lower bound on regret when shaping is used,
and a learning algorithm which hits that bound. Lastly,
we show that the convexity of reward regions is an im-
portant requirement of our framework.

Formal Model

Let (X, B) be a measurable space with a measure u (see
Doob, 1994, for an introduction to mathematical mea-
sure theory). Let C C B. The set C is called a concept
class and its members are called concepts. Examples
of concept classes that we study include intervals in R,
axis-parallel rectangles in R?, balls in R?, and convex
bodies in R¢. We will assume that there is a representa-
tion scheme for the concept class C (Kearns & Vazirani,
1994).

Definition 1 (Search problem). LetC be a concept class.
A search problem is a pair of concepts (S,T) such that
TCS, and S,T € C.

A search agent is given a representation of S and has to
find a point in 7" using the membership oracle of T'. This
scenario is illustrated in Figure 1 where the target con-
cept T is a subset of the concept S = [0,1]. The number
of oracle queries until a point is found in 7T is defined as
the regret. Throughout this paper, without loss of gener-
ality, we assume that x(S) =1, and p(T') = 1/R, where
R > 1. Note that for any concept class there is a nat-
ural randomized algorithm to solve the search problem:
query independent uniform random points from S until
you find a point in T'. The expected regret of the algo-
rithm is R. For sufficiently complicated concept classes
(e.g., finite unions of intervals), the use of randomness
might be inevitable because a deterministic algorithm
with bounded regret need not exist.

In a shaped search problem the agent’s search task will
be aided by a shaping sequence which is a sequence of
nested sets between S and 7. The sets in the shaping
sequence will be gradually shrinking concepts from the
underlying concept class C. The rate of shrinking will
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Figure 2: This figure illustrates the use of a sequence of
nested concepts. Intuitively, the agent initially searches
concept S for a point that lies in concept S;. Next,
the agent searches in the neighborhood of the discovered
point in .S; for a point that lies in So, and then searches
in the neighborhood of the discovered point in S, for a
point that lies in S35 which is the target concept T'.

be a parameter denoted ~y. This scenario is illustrated
in Figure 2 which shows a sequence of nested concepts.
Intuitively, the agent initially searches concept S for a
point that lies in concept S;. Next, the agent searches in
the neighborhood of the discovered point in .Sy for a point
that lies in S, and then searches in the neighborhood
of the discovered point in Sy for a point that lies in S3
which is the target concept T'.

Definition 2 (Shaped search problem). Let C be a con-
cept class. A shaped search problem is defined by the
tuple (S,T,~,51,...,Sk) such that S,T,S1,...,S; € C,
£ <y <1, T=25,C8-1C...5 CS, us) =
vu(S), p(Siv1) = yu(S;) for alli = 1,...;k —2. k
is such that p(Sx—1) > 1/R > ~yu(Sg—1); i.e., k
ﬂog% R]. The sequence (Si,...,Sk—1) is called a~y shap-

ing sequence.

An agent in a shaped search problem setting is given
a representation of S and has access to the membership
oracles O1,...,0y of S1,..., Sk, respectively. However,
if the agent makes a query to O;, it can no longer make
a query to any O; such that j < ¢. In other words, the
oracles O; are presented to the agent in k iterations, with
the agent making (zero or more) queries only to oracle
O; at iteration i. The agent has to find a point in T'
by making queries to the oracles. In this context, the
regret is defined as the total number of queries made to
all oracles until a point in T is found.

Note that an agent solving the shaped search problem
cannot have a regret larger than what its regret would
be on the original search problem; the agent can always
choose to ignore the shaping sequence and only use the
last membership oracle Oy, for Sy = T. Because a shap-
ing sequence provides extra information about the loca-
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tion of T' (through the membership oracles O, ..., Ok_1),
an agent with access to a shaping sequence can poten-
tially achieve a smaller regret than would otherwise be
the case. For certain classes of search problems, for
example, it might be possible to approximately deter-
mine S; using oracle O;. If S; is approximately located,
then S;y1 could be approximately located (via queries
to Oj;4+1) by searching only inside the approximation of
S; rather than inside S. As S; has a smaller measure
than S, this search may require a relatively small num-
ber of queries. This process can be used iteratively from
i1 =1toi=k—1to find a point inside S = T. In the
next section we show that it is indeed possible to reduce
an agent’s regret using this method when S and T are
intervals on a straight line.

The regret accumulated by the agent during the search
also depends on the value of . Very small (close to 0)
~ values are detrimental because the agent will need to
search a relatively large region for a point lying in a
much smaller region [e.g., u(S1) will be a small fraction
of 1(S)], meaning that the agent will need to search for
a “needle in a haystack”. Large values of v (close to 1)
may seem detrimental (because the teacher will take a
long time to converge to T'), but are actually not as we
discuss below.

Note that our approach is related to a technique from
the mathematical optimization literature known as quasi-
convex optimization (Boyd & Vandenberghe, 2004). A
weaker version of the shaped search problem in which the
concepts are convex and all the oracles are available to
the agent simultaneously can be viewed as an instance of
a quasi-convex optimization problem. However, in our
approach, the oracles are not available simultaneously
but, rather, are available as a temporal sequence. This
is because behavioral shaping almost always proceeds in
a temporal fashion (typically, rewards are initially pro-
vided to coarse approximations to the target behavior,
and then only finer approximations are rewarded at later
stages of training).

Finding a Point in an Interval

To keep our discussion relatively simple, this section fo-
cuses on the case where concepts are intervals on the real
line. Before analyzing the effectiveness of using a shap-
ing sequence in this circumstance, we consider learning
in the absence of such a sequence.

Consider a search problem (S, T') such that S = [0,1] C
R is a closed interval of length 1, and 7" C S is an inter-
val of size 1/R. The search agent has access to O, which
is the membership oracle of T'. Consider the following
simple deterministic algorithm to find a point inside T
The algorithm starts with the leftmost point in S, and
query points 0,1/R,2/R,3/R,...,1 (as a matter of ter-
minology, we say that the algorithm “makes jumps of
size 1/R in §”). As T is a contiguous, closed interval of



size 1/R, the algorithm is guaranteed to hit one point
inside T. As T has size 1/R, there will be at most O(R)
queries. Therefore the regret will be at most O(R).

The previous algorithm assumed that R is known.
Next, we show that even without this information, it
is possible to solve the problem with O(R) regret. To
do this, the agent first sets i(T), its estimate of the
length of T, to 1 and makes queries at points 0 and 1.
If it hits a point in 7', it stops; otherwise it halves the
value of i(T) to 1/2, and queries points 0, 1/2; and 1.
The algorithm keeps halving [(T"), and keeps making
jumps of size 4(T) in S, until it hits a point inside T.
In general, if the agent estimates fi(T) = 5, it queries
less than 2F*! points. Importantly, there is a nonneg-
ative integer ko such that 2,60% <1/R < 2%0 When
the agent guesses i(T) = 2,60%, it is guaranteed to hit
a point in T. The total number of queries to O will
be 2 + -+ 4 2ko+2 = 2ko+3 _ 2 which is less than SR.
Therefore, there is an algorithm to solve the search prob-
lem with regret O(R) even if the agent does not know
the value of R and, thus, does not know the size of T'.
Throughout the rest of the paper, we assume that the
agent knows the value of R and knows that the size of T
is 1/R.

We now show that no deterministic algorithm can find
a point in T with less than |R — 1| regret. Suppose a
deterministic algorithm has a regret r < |R —1]. With-
out loss of generality, assume that all the r queries to
the oracle are distinct. These r distinct points will in-
duce r+1 intervals in S. The average size of the interval
will be ?11 Therefore, at least one interval will be of
size at least i As r < |R — 1], at least one interval
will be of size at least 1/R which means that there is at
least one way in which T can be placed such that the
agent will not be able to query any point inside 7" if it
makes less than |R — 1| queries. Using a similar argu-
ment, it can be shown that any randomized algorithm
will accumulate Q(R) regret. This gives us the following
proposition:
Proposition 1. If the concept class C is the set of closed
intervals then there is an algorithm that can solve the
search problem (S,T) with O(R) regret where |S| = 1
and |T| = 1/R. Further, any (randomized) algorithm
that solves the search problem will have Q(R) regret.

We now turn our attention to the case where a shaping
sequence is available. In summary, we show that when
any ~ shaping sequence Si,...,S;_1 is available such
that the S; are closed intervals, it is possible to find a
point in 7" with a regret which is logarithmic in R. Sup-
pose a shaping sequence S, ..., Sy_1 of nested intervals
is available. We present two algorithms which make use
of this sequence to find a point in 7. Algorithm 1 solves
the problem with O(%log% R) regret for % < v <1
Although this regret is logarithmic in R for a fixed ~,
it goes beyond the O(R) regret when ~ approaches 1.
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Algorithm 2 fixes this problem and achieves a regret of
O(logy R) for v > 1/2.

We start with Algorithm 1. At the first iteration, the
algorithm’s goal is to find a point inside S;. The algo-
rithm does not know where S; lies, but it knows that
S1 is of size v, so it makes jumps of size v in S and is
guaranteed to hit a point inside S;. At the first itera-
tion, the algorithm makes at most f%] queries to oracle

O;. At the i iteration (where i > 1), the algorithm’s
goal is to find a point in S;. The algorithm has a point
p which lies in S;_; (from the previous iteration). The
interval S; of size 4% can contain points lying on either
side of p but, because S; C S;_1, its left (right) edge can
lie at most 4*~1 to the left (right) of p. The algorithm
makes (%1 jumps of size ¥* to the left and right of p,
and hits a point in S;. Therefore, at each iteration, at
most 2[%1 queries are made. As there are [log% R] iter-
ations, the total regret is 2[%1 flog% R] O(% 1og% R).
For a fixed value of v, this is an exponential improvement
over the case when a shaping sequence is not available.
However, when - is close to 1, this regret exceeds O(R)
(as discussed below, Algorithm 2 solves the problem for
large v by skipping oracles). This gives us the following
theorem:

Theorem 1. If the concept class C is the set of closed

intervals then there is an algorithm that can solve the

shaped search problem (S, T,~, S1,...,Sk) for any~y shap-

ing sequence Si,...,Sk with O(%log; R) regret where
v

S| =1 and |T| =1/R.

Algorithm 1 An algorithm to solve the shaped search
problem (S,T,~,S1,...,S;) such that T, S, S1,...,S; C
R using the sequence of oracles Oy, ..., Ok.

Require: 1/R <~ < 1, S = [0,1], membership oracles

O1,...,0; of the sets Sq,...,Sk.

1. p<=0

2. for i =1 to k do

3 if i=1 then

4 query O with points 0, v, 2y...

5. p <« first point at which O; outputs 1.

6 else

7 Query oracle O; with points p — =1, ... ,p —

2p =L pp P+ 20 p T

8. p « first point at which O; outputs 1.

9. end if
10. end for

11. return p

An interesting aspect of our analysis is that it reveals
a number of issues regarding the shrinking rate param-
eter . First, the above algorithm assumes that ~ is
known. Importantly, it can be shown that even if v is
unknown, it is still possible to solve the shaped search



problem with O(% log1 R) regret. The method to do so

is very similar to the one described above which solved
the search problem (S,T) when R was unknown (and,
thus, will not be described here).

Second, there exists an optimal value for v that min-

imizes %1og; R. This value is 1/e. This result is
Yy

obtained by differentiating %log 1 R with respect to v,
Y

setting the derivative to zero, and solving for ~.

Lastly, there is a trade-off involving the value of ~. If
v = %, then & = 1 and the shaping sequence is non-
existent (i.e., S; = T) meaning that the regret becomes
O(R). If ~ is close to one, then k is large and the shaping
sequence is very long. In this case, the regret increases
rapidly to infinity as - approaches 1. Consequently,
Algorithm 1 is not optimal because, when ~ is large,
the agent could simply ignore the shaping sequence and
make queries only to the final oracle Oy, which will lead
to O(R) regret. Fortunately, it is possible to do better
than this. When ~ is large, the agent can choose to make
queries only to oracles O, Oag, . . ., O where s is the first
integer such that v° < 1/2 (for simplicity, we assume
that k is a multiple of s). In other words, the strategy of
a new algorithm, denoted Algorithm 2, is to use sets of
the shaping sequence that are successively shrinking by
a factor of about 1/2, and ignore other elements of the
shaping sequence. In this way, 7 is effectively reduced
to 1/2 for the agent, and the regret reduces to O(log, R).
We next prove a lower bound on regret, and show that
Algorithm 2 achieves this lower bound. That is, we show
that no algorithm can do better than Algorithm 2 (up
to a constant factor).

Theorem 2. If the concept class C is the set of closed
intervals then there is a deterministic algorithm that can
solve the shaped search problem (S, T,~,S1,...,Sk) with
O(%log% R) regret for v < 1/2 and with O(logy R) re-
gret for v > 1/2 for any shaping sequence Si,...,Sk
where |S| = 1 and |T| = 1/R. Further, there is no al-
gorithm, deterministic or otherwise, that can solve the
shaped search problem (with S; being closed intervals)
with smaller regret (up to a constant factor).

Proof. First we show an information-theoretic lower bound

on regret which is independent of «. For a given R, we
can place R intervals of size 1/ R next to each other inside
an interval of size 1. To encode the identity of a partic-
ular interval, we need log, R bits. As the oracles are
providing one bit of information at each query, any al-
gorithm that successfully solves the problem must make
Q(log, R) total queries to the oracles.

We now show that Algorithm 2 hits this bound when
v > %, meaning that the bound is tight for v >

5

When v > 3, the algorithm sets s flogl | (with-
2 5

out loss of generality, assume that v* = 1/2) and calls

Algorithm 1 with the oracles Oy, Osg,...,Or. There-

fore the algorithm is solving the shaped search prob-
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lem (S,T,1/2, S5, Sas, ..., Sk) using Algorithm 1, which
solves the search problem with O(log, R) regret.

When % << %, the bound on regret depends on ~.
Note that Algorithm 2 calls Algorithm 1 when v < 1,
meaning that the total regret is O(% log% R). We show

that this is also a lower bound when vy < % In Algo-
rithm 1, suppose that at each iteration ¢, the location of
the interval S; is fully revealed if the algorithm makes
more than L% — 1| queries. We show that even with this
extra information, the total regret to find a point in the
interval T is still O(% log% R).

At iteration 4, the interval S; of size v* must lie within
the interval S;_; of size ¥*~'. For each i, we are sup-
posing that the algorithm knows S;_; exactly, as it was
revealed at the end of the previous iteration. Without
loss of generality, we assume the agent queries only inside
S;—1 at iteration i. If the algorithm queries ¢ points, it
induces t+ 1 intervals on S;_;. The average interval size
of these intervals will be ZT_; This means that there
will be at least one interval which will be at least the
average size. If ¢ < L% -1] < % — 1, then 3 >1". In
other words, there is at least one interval which will be
of size at least 4*. As S; might lie anywhere in S;_;, the
alleged algorithm is not guaranteed to be able to find S;
if S; lies in this interval of size at least v*. Consequently,
any correct search algorithm will have to make at least
L% —-1] = O(%) queries at each iteration and, thus, the
total regret is bounded from below by Q(% log 1 R). A

similar argument holds for randomized algorithms. [

Algorithm 2 An optimal algorithm to solve the
shaped search problem (S,T,7,S1,...,S;) such that
T,5,51,...,5; C R using the sequence of oracles
O4,...,04.

Require: 1/R <~ < 1, S = [0, 1], membership oracles

O1,...,0y of the sets S1,...,Sk.
1. if v < é, call Algorithm 1 and return p, otherwise
continue.
_r_1

3. call Algorithm 1 with v = 1/2 and membership ora-
cles Oy, Oas, ..., O and return p.

Convexity is Important

In Theorem 2 we showed that if the concept class is the
set of closed intervals, it is possible to solve the shaped
search problem with smaller regret than required to solve
the original search problem. In this section, we show
that if the members of the concept class are a union of
two closed intervals, then there are shaped search prob-
lems such that, for a fixed =, it is not possible to find a



point in T" with less than O(R) regret for certain shaping
sequences.

Consider the following example with v = 1/2. Sup-
pose each set S; in the shaping sequence consists of two
segments. The first segment is the target interval T, and
it remains fixed throughout all sets in the shaping se-
quence. The second segment shrinks at a rate such that
successive sets in the sequence maintain a size ratio of
1/2. In the last iteration, this second segment vanishes.

More formally, let S = [0,1] and ~ 1/2. The
shaping sequence Sip,...,Sk—1 is the sequence of sets
S;i=TUQ;,i=1,....,k—1, where Q; = [0,1/2" —1/R],
T =][,l+1/R],and 1/2 <1 < 1-1/R. In this case,
even if the teacher fully reveals the location of the seg-
ment (Q; to the agent at each iteration, the agent still
needs to locate the set 7', which can lie anywhere in a
region of size 1/2. Hence, to find a point in T, O(R)
queries are needed.

We have just shown that there are shaping sequences
which do not exponentially reduce an agent’s regret if the
concept class is the set of unions of two closed intervals.
Although this example assumes a fixed value of 7, similar
results can be shown for arbitrary values of v when the
concept class consists of more complicated non-convex
concepts. For example, if the concept class is the set of
unions of three closed intervals, an exponential reduction
in regret is not possible for any value of ~.

We conjecture that convexity is an important require-
ment for shaped search. That is, we conjecture that
when an agent seeks to discover a concept through a
shaped search procedure, it will only be able to achieve
a small regret when the concept is convex. In fact, all
our additional results regarding shaped search in multi-
dimensions are for concept classes consisting of convex

bodies (Chhabra, Jacobs, & Stefankovic, 2007).

Summary

Shaping is a commonly used procedure for teaching com-
plicated tasks to people, animals, and robots. Both
behavioral experiments and computer simulations have
demonstrated that learners trained via shaping achieve
significant improvements in learning speeds.

In this paper, we mathematically formalized a model
of shaping, and studied it in the context of search prob-
lems. To keep our discussion simple, we focused on the
one—dimensional case where concepts are intervals on
the real line. When a shaping sequence is available, the
search problem can be solved with exponentially less re-
gret than would otherwise be possible. We also showed
that there do not exist algorithms which can solve the
search problem using a smaller number of queries. Our
analysis revealed a number of interesting issues regarding
the shrinking rate parameter v. Lastly, we conjectured
that it is important that concepts are convex for shaping
sequences to be useful. We showed that when the con-
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cept class is the set of unions of two intervals, there are
shaping sequences which do not reduce regret.

The results presented here form the foundation for ad-
ditional results reported in a longer article (Chhabra,
Jacobs, and Stefankovic, 2007). In this article, we study
the cases where concepts are rectangles, ellipsoids, or
general convex bodies in high dimensions. In multi-
dimensions, new methods are required to create efficient
search algorithms.
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