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JAX‐CanVeg: A Differentiable Land Surface Model
Peishi Jiang1 , Patrick Kidger2, Toshiyuki Bandai3 , Dennis Baldocchi4 , Heping Liu5 ,
Yi Xiao1, Qianyu Zhang5, Carlos Tianxin Wang4 , Carl Steefel3 , and Xingyuan Chen1

1Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 2Cradle
Bio, Zurich, Switzerland, 3Lawrence Berkeley National Laboratory, Earth and Environmental Sciences Area, Berkeley,
CA, USA, 4Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA,
5Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA

Abstract Land surface models consider the exchange of water, energy, and carbon along the soil‐canopy‐
atmosphere continuum, which is challenging to model due to their complex interdependency and associated
challenges in representing and parameterizing them. Differentiable modeling provides a new opportunity to
capture these complex interactions by seamlessly hybridizing process‐based models with deep neural networks
(DNNs), benefiting both worlds, that is, the physical interpretation of process‐based models and the learning
power of DNNs. Here, we developed a differentiable land model, JAX‐CanVeg. The new model builds on the
legacy CanVeg by incorporating advanced functionalities through JAX in the graphic processing unit support,
automatic differentiation, and integration with DNNs. We demonstrated JAX‐CanVeg's hybrid modeling
capability by applying the model at four flux tower sites with varying aridity. To this end, we developed a hybrid
version of the Ball‐Berry equation that emulates the water stress impact on stomatal closure to explore the
capability of the hybrid model in (a) improving the simulations of latent heat fluxes (LE) and net ecosystem
exchange (NEE), (b) improving the optimization trade‐off when learning observations of both LE and NEE, and
(c) benefiting a multi‐layer canopy model setup. Our results show that the proposed hybrid model improved the
simulations of LE and NEE at all sites, with an improved optimization trade‐off over the process‐based model.
Additionally, the multi‐layer canopy set benefited hybrid modeling at some sites. Anchored in differentiable
modeling, our study provides a new avenue for modeling land‐atmosphere interactions by leveraging the
benefits of both data‐driven learning and process‐based modeling.

Plain Language Summary Land‐atmosphere interactions involve flux exchanges of carbon, water,
and energy. They are important terrestrial ecosystem components that are being gradually modified by the
warming climate. Despite the progress in the land surface model development, accurately modeling these
interactions still remains a challenge owing to multiple complicated processes going from the canopy top to the
soil system. In this paper, we developed a new land surface model that uses a novel modeling approach called
differentiable programming to seamlessly integrate process‐based models and deep neural networks. The new
model, JAX‐CanVeg, is consistent with the known ecohydrological processes while flexible to be coupled with
neural networks to improve the simulations of water and carbon fluxes. We demonstrated the hybrid modeling
capability of JAX‐CanVeg by coupling the equation to calculate stomatal conductance with a neural network
that quantifies the water stress impact through soil moisture observations. As a proof of concept, applying the
hybrid JAX‐CanVeg in four different ecosystems improves simulations of latent heat fluxes and net ecosystem
exchanges. The improvement shows promise in using the new model to enhance the simulations of terrestrial
water and carbon cycling and better facilitate answering research questions related to climate change.

1. Introduction
Terrestrial ecosystems are dominant regulators of the Earth's climate (Bonan, 2019). Land surface models (LSMs)
are simulators that predict carbon, water, and energy cycling from the canopy top to belowground in response to
vegetation conditions and meteorology (Bonan, 2019; Fisher & Koven, 2020; Monson & Baldocchi, 2014). Over
the past several decades, LSMs have evolved from representing canopies with a big‐leaf energy balance approach
to multiple‐layer canopies that couples water, carbon, and energy fluxes (Drewry et al., 2010; Lawrence
et al., 2019; Sellers et al., 1996; Wiltshire et al., 2020; Yokohata et al., 2020). These models have been used to
study carbon cycling (Arora et al., 2020; Cox et al., 2000; Fatichi et al., 2019), vegetation's acclimation response
to changing climate (Kumarathunge et al., 2019; Mengoli et al., 2022), and surface energy balance (Y. Chen
et al., 2016; Laguë et al., 2019).
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LSMs are subject to modeling errors due to the uncertainties in both model parameters and model mechanisms
(Medlyn et al., 2015; Tang & Zhuang, 2008). Parameter estimation is usually the first step to constrain the models
prior to model simulations (Kemp et al., 2014; Koven et al., 2020; Mäkelä et al., 2019; Post et al., 2017). Model
structural biases can lead to systematic prediction errors, even after calibration, stemming primarily from as-
sumptions or simplifications to represent the complex land‐atmosphere interactions that are difficult to simulate
explicitly (De Kauwe et al., 2014; Walker et al., 2018; Zaehle et al., 2014). For example, the widely adopted Ball‐
Berry equation (Ball et al., 1987; Collatz et al., 1991) of stomatal conductance calculation assumes that the leaf
intercellular air space is saturated with water vapor, with the saturated vapor pressure directly inferred from leaf
temperature. The assumption greatly deteriorates the performance of LSMs in arid or semi‐arid ecosystems as the
Ball‐Berry equation that takes the saturated vapor pressure of leaf as input does not account for the regulation of
plant water deficit on stomatal conductance (Leuning, 1995). Many methods have been proposed to address the
issue (Bonan et al., 2014; Egea et al., 2011; Katul et al., 2009; Medlyn et al., 2011; Verhoef & Egea, 2014; Y.‐P.
Wang & Leuning, 1998), through either modifying the Ball‐Berry equation or explicitly modeling plant hy-
draulics. Yet, learning the stomatal responses to water stress remains challenging due to the varying ecosystem
conditions and the difficulty of measuring canopy water states for constraining the model (Grossiord et al., 2020).

Furthermore, it is challenging to characterize leaf‐level properties using ecosystem‐level observations. Leaf
physiological properties can be best characterized by photosynthetic gas exchange measurements (Busch
et al., 2024), yet obtaining these leaf‐level observations is labor‐intensive. Meanwhile, numerous flux tower sites
provide continuous eddy covariance measurements of ecohydrological fluxes at the ecosystem level for multiple
years (Baldocchi et al., 2001) and have been widely used to estimate the parameters of LSMs (Chaney et al., 2016;
Raoult et al., 2023; Y. P. Wang et al., 2007). Nevertheless, inversion against these ecosystem‐level observations
oftentimes assumes static parameters that do not capture the potential temporal dynamics in response to the
ambient conditions, such as the variability of the parameters of the Ball‐Berry model due to plant water stress
(Miner & Bauerle, 2017). It, therefore, remains a challenge to use ecosystem‐level eddy‐covariance measure-
ments to derive the temporal‐dependent leaf physiological properties.

Recently, the emergence of differentiable modeling (Innes et al., 2019; Shen et al., 2023) has shown promise in
improving the representation of physical models by seamlessly hybridizing process‐based models with deep
neural network (DNN)–a popular and powerful data‐driven tool (Goodfellow et al., 2016). Differentiable
modeling has the benefits of both worlds, that is, the physical interpretation of process‐based models and the
learning power of DNNs. The essential technique that makes differentiable modeling successful is automatic
differentiation, which calculates a derivative by using a chain rule to interleave the computation into elementary
operations of functions. This makes automatic differentiation efficient and accurate to working precision and
distinguishes it from numerical differentiation and symbolic differentiation. Rooted in automatic differentiation,
differentiable modeling thus allows optimizing a numerical model (either a process‐based model, a DNN, or a
hybrid model) via gradient‐based methods through backpropagation (Baydin et al., 2018). It is, therefore, a
natural choice to hybridize the process‐based model with a learnable DNN that either efficiently emulates a
computationally expensive subprocess or dynamically estimates model parameters subjective to model forcings
or states. Furthermore, the support of graphic processing units (GPU) in many popular deep learning frameworks
makes differentiable modeling even more appealing. So far, differentiable models have recently proven useful in
speeding up simulation and improving modeling simulations across many scientific domains, such as compu-
tational fluid dynamics (Bezgin et al., 2023; Kochkov et al., 2021), molecular modeling (Greener & Jones, 2021),
biological modeling (AlQuraishi & Sorger, 2021), etc.

In earth sciences, differentiable modeling has recently gained significant attention (Gelbrecht et al., 2023; Shen
et al., 2023) and has been applied in various earth system processes. In ocean science, Häfner et al. (2018)
developed a differentiable ocean model, “Veros”, using JAX (Bradbury et al., 2018) to enable fast simulation of
global ocean wave velocities. In biogeoscience, Aboelyazeed et al. (2023) leveraged differentiable modeling to
hybridize a photosynthesis model with neural networks to learn the model parameters. In surface hydrology,
various usages of differentiable modeling have been explored by a research group at the Pennsylvania State
University. For the first time, Tsai et al. (2021) proposed a differentiable parameter learning framework that
accurately and efficiently maps inputs to spatially varying parameters of a process‐based model, using a
differentiable version of the model as a physical constraint in the training of the map. Later, this idea was extended
to other diverse hydrological modeling applications, including graph network‐based river routing (Bindas
et al., 2024) and bucket hydrological modeling (Song et al., 2023). These successes underscore the potential of

Project administration: Carl Steefel,
Xingyuan Chen
Software: Patrick Kidger,
Toshiyuki Bandai, Dennis Baldocchi
Visualization: Dennis Baldocchi, Yi Xiao
Writing – review & editing:
Patrick Kidger, Toshiyuki Bandai,
Dennis Baldocchi, Heping Liu, Yi Xiao,
Qianyu Zhang, Carl Steefel,
Xingyuan Chen

Water Resources Research 10.1029/2024WR038116

JIANG ET AL. 2 of 36

 19447973, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038116, W

iley O
nline L

ibrary on [15/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



leveraging differentiable modeling, through a hybrid fashion, to further improve the water and carbon simulation
of LSM which are subjective to unknown parameters and physical processes.

Therefore, this study aims to explore and demonstrate the capability of differentiable hybrid modeling in
improving land surface water, carbon, and energy fluxes. To this end, we developed a differentiable LSM, JAX‐
CanVeg, that builds upon a legacy LSM, CanVeg (Baldocchi, 1992, 1994, 1999; Baldocchi & Harley, 1995). As
our main technical contribution in this effort, the model was written in JAX and thus gained advanced func-
tionalities of GPU support, automatic differentiation, and, notably, integration with deep neural networks.
Through JAX‐CanVeg, we developed a hybrid version of the Ball‐Berry equation (hereafter referred to as the
hybrid model in this paper) that leveraged DNN to emulate the influence of water stress on stomatal closure and
asked the following questions:

• To what extent does the proposed hybrid model improve the carbon and water fluxes at ecosystems with
varying aridity conditions?

• To what extent does the proposed hybrid model improve the trade‐off in a multiobjective optimization task
when learning both observed water and carbon fluxes?

• To what extent does a multi‐layer canopy setup benefit from the proposed hybrid modeling?

To address these questions, we compared the performance of hybrid JAX‐CanVeg with the process‐based JAX‐
CanVeg and a pure DNN model when trained against observations of latent heat fluxes and net ecosystem ex-
changes. The study was performed at four flux tower study sites with varying aridity in the western United States.

2. Methods
We first provided an overview of CanVeg and detailed the specifics of the development of JAX‐CanVeg. Then,
we introduced the hybrid version of the Ball‐Berry equation that leverages DNN to quantify the influence of plant
water deficit on stomatal closure through soil moisture observations. Last, we described the modeling design at
four flux tower sites with diverse environmental conditions to assess the performance of hybrid modeling using
JAX‐CanVeg.

2.1. Developing a Differentiable Land Surface Model (LSM): JAX‐CanVeg

2.1.1. CanVeg: A Legacy LSM

CanVeg is a one‐dimensional, multi‐layer biosphere‐atmosphere gas exchange model to calculate water, carbon
dioxide (CO2), and heat fluxes from vegetated canopies written in Matlab (Baldocchi, 2023). Over the past
2 decades, CanVeg has been extensively developed and successfully applied to many ecosystem studies (Bal-
docchi et al., 2002; Lai et al., 2000; Law et al., 2001; Oikawa et al., 2017; Simon et al., 2005; Yan et al., 2023).

By discretizing both canopy and soil systems into multiple layers, CanVeg couples micrometeorological pro-
cesses with ecophysiological processes, as shown in Figure 1. The micrometeorological modules solve radiative
transfer, boundary layer resistance, leaf energy balance, soil energy balance, and scalar concentration profiles
across the canopy. Integrated with these environmental variables, the ecophysiological modules solve stomatal
conductance, photosynthetic rate, and leaf dark respiration rate. A detailed description of CanVeg is provided in
the Appendix.

At each time step, CanVeg represents the processes through a set of fixed point equations as below:

x = F(x;w), (1)

where x ∈ Rnx is a vector of model states with size of nx;w ∈ Rnw is a vector of model parameters with size of nw;
and F : Rnx × Rnw → Rnx represents the CanVeg model. Here, the vector x includes multiple ambient, canopy,
and soil variables that are solved by CanVeg, including but not limited to, above‐ and below‐ground temperature
profiles, incoming radiations, heat fluxes, photosynthetic rate, stomatal conductance, etc. Note that the model
states of CanVeg are calculated independently in time because the model primarily uses analytical solutions to
obtain model states (e.g., photosynthesis, leaf temperature, leaf latent heat flux, etc.; see the detailed introduction
of CanVeg in the Appendix).
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The corresponding fixed‐point iteration method is used to solve the model equations iteratively until conver-
gence as:

xm+1 = F(xm;w), (2)

where m is the iteration index.

2.1.2. JAX‐CanVeg: A GPU‐Enabled and Differentiable LSM

We have developed JAX‐CanVeg by recasting the functionality of CanVeg into JAX (Bradbury et al., 2018), a
Python‐based scientific machine learning library that has been extensively used in differentiable modeling across
a variety of domains (Bezgin et al., 2023; Häfner et al., 2018; Kidger, 2022). Using the capabilities in JAX, the
new model now supports automatic differentiation, execution on the GPU, and high‐performance computing

Figure 1. JAX‐CanVeg in a nutshell. We developed a differentiable land surface model (LSM) on JAX, named JAX‐CanVeg.
The new model was built on the legacy CanVeg, which uses meteorological forcings to simulate the water, carbon, and
energy fluxes at discretized layers across the canopy and soil layers (see the Appendix for the detailed process representation
of CanVeg). Through JAX, the new model incorporates advanced functionalities in the graphic processing unit (GPU)
support, high‐performance computing through accelerated linear algebra (XLA), automatic differentiation, and, notably,
integration with deep neural networks.
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through accelerated linear algebra (XLA), shown in Figure 1. Most importantly, JAX‐CanVeg is a natural
platform that affords seamless connection with deep neural networks. An overall comparison between JAX‐
CanVeg and the Matlab version of CanVeg is given in Table 1. Below, we disclosed a couple of implementa-
tion details specific to JAX and the usage of differentiation.

Implementation specifics using JAX. Compared with “traditional” Python programming, JAX imposes additional
function design and usage constraints. First, we mostly used pure functions in JAX‐CanVeg to enable JAX
transformation and the just‐in‐time compilation supported by XLA. A function is pure when it always returns the
same output given the same input and does not allow the usage of a global variable inside the function so that the
compiled function is only affected by the input values. Second, we used JAX‐specific APIs (abbreviated for
Application Programming Interface) for control flows, including jax.lax.scan for for‐loop, jax.lax.
switch for switch function, and jax.lax.cond for conditional function. Using these APIs allowed a
function to be traceable through XLA's just‐in‐time compilation.

Implicit differentiation. Given the solution x in Equation 1, the derivative ∂x
∂w is needed in gradient‐based opti-

mization. If we apply automatic differentiation naively to calculate ∂x
∂w, the iterations can introduce a large

computational differentiation graph through the chain rule, thus increasing the memory requirement and
computational time. To alleviate this computational burden, we employed the implicit function theorem (Grie-
wank & Walther, 2008) to calculate ∂x

∂w.

First, take derivatives with respect to w at both sides of Equation 1, yielding:

∂x
∂w

=
dF(x,w)
dw

. (3)

Given that x is dependent on w, using the chain rule for a multivariable function then leads to:

∂x
∂w

=
∂F
∂x

∂x
∂w

+
∂F
∂w

. (4)

Next, rearranging the above equation leads to the solution of ∂x∂w:

∂x
∂w

= [I −
∂F
∂x]

− 1 ∂F
∂w
, (5)

where I ∈ Rnx × nx is an identity matrix.

To facilitate the implementation of automatic differentiation in JAX, we leveraged the Jacobian‐Vector Product
(JVP), which avoids the explicit construction of a Jacobian matrix and reduces the computational complexity
from O(nx × nw) to O(nx). In a nutshell, the JVP rule simplifies the differentiation process by evaluating the
directional derivative that computes the derivative of a function with respect to all inputs by propagating de-
rivatives forward. Here, we calculate ∂x

∂w ∈ Rnx × nw by multiplying both sides of the equation with a vector
v ∈ Rnw × 1. By rearranging Equation 5, we find the following equation:

[I −
∂F
∂x]

∂x
∂w
v =

∂F
∂w
v. (6)

Table 1
Comparison Between JAX‐CanVeg and the Matlab Version of CanVeg (Baldocchi, 2023)

Functionality of CanVeg Automatic differentiation GPU support Neural network support/coupling High performance computing support

JAX‐CanVeg ✓ ✓ ✓ ✓ ✓(through XLA)

CanVeg ✓ × × × ×

Note. (XLA: Accelerated linear algebra).
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The resulting JVP, ∂x∂wv ∈ Rnx × 1, was derived through a customized JAX function using jax.custom_jvp.
This customized function calculated ∂x

∂wv by solving the linear system Equation 6 as A ∂x
∂wv = b with

A = [I − ∂F
∂x] and b =

∂F
∂wv. Given the defined JVP operation, JAX automatically converts the JVP rule to the

corresponding Vector‐Jacobian Product rule to enable reverse‐mode automatic differentiation. JAX automatically
did this neat conversion described in Radul et al. (2023). We verified our implementation by conducting a
benchmark test by comparing the implicit function theorem‐based automatic differentiation against finite
difference‐based differentiation using the directional derivative, whose results are shown in Figures A1 and A2 of
the Appendix.

Leveraging JAX ecosystem in JAX‐CanVeg development. During model development, we leveraged various third‐
party libraries from the JAX ecosystem. We used Equinox–a package enabling object‐oriented class‐based
syntax in JAX (Kidger & Garcia, 2021)–to develop a class‐based JAX‐CanVeg model. We also used Optax–
a gradient processing and optimization library for JAX (DeepMind et al., 2020)–to train JAX‐CanVeg models
through gradient‐based optimization. Last, we used Lineax–a JAX library for linear solves (Rader et al., 2023)–
to solve the linear system of implicit function theorem in Equation 6.

Training and running JAX‐CanVeg. Executing the model can be a complicated and daunting process involving
many configurations. To alleviate this effort, we suggest training and running the model by reading a JSON‐based
configuration file provided by users. The file mainly contains four types of configurations:

• Model configurations: The basic configurations of the JAX‐CanVeg model, such as the time zone and location
of the study site, the stomata and leaf angle type of the canopy, the canopy height, the flux tower measurement
height, the soil depth, etc;

• Data configurations: The file paths of the observed atmospheric forcings and fluxes for both model training
and test purposes;

• Learning configurations: The model training setup, such as the batch size, the number of training epochs, the
loss function, the tunable parameters, the optimizer, etc;

• Saving configurations: The file paths where the trained model and the loss values are saved.

A detailed explanation and example codes are available in the README file of the open‐sourced model repository
described in Open Research Section A7.

2.1.3. Hybrid Ball‐Berry Equation

Coupled leaf photosynthesis and stomatal conductance module. CanVeg adopts an analytical solution for coupled
leaf photosynthesis and stomatal conductance modules (Baldocchi, 1994) at each canopy layer. The photosyn-
thesis process is simulated by the Farquhar model (Farquhar et al., 1980):

A = Vc − 0.5Vo − Rd = min[Wc, Wj] (1 −
Γ∗

Ci
) − Rd, (7)

where A is the photosynthesis rate (μmol m− 2 s− 1); Vc is the carboxylation rate (μmol m− 2 s− 1); Vo is the
photorespiration rate (μmol m− 2 s− 1); Rd is the dark respiration rate (μmol m− 2 s− 1); Γ∗ is the CO2 compensation
point in the absence of dark respiration (ppm); Ci is the intercellular CO2 concentration (ppm); andWc andWj are
the carboxylation rates restricted by Rubisco under saturation of ribulose biphosphate (RuBP) and electron
transport for RuBP regeneration, respectively (see Equations A22 and A23 in the Appendix).

Simple conductance relations are used to relate Ci with the surface (Cs) and ambient (Ca) CO2 concentrations as:

Cs = Ca −
A

gb,m/1.6
(8)

Ci = Cs −
A

gs,m/1.6
, (9)
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where gb,m and gs,m are the conductances of the leaf laminar boundary layer and the stomata, respectively, in units
of mol m− 2 s− 1. Ca is the external input to the photosynthesis model. gb,m is calculated using the flat plate theory
(Schuepp, 1993), briefly described in Equation A20 of the Appendix. gs,m, that controls the water vapor and CO2
transfer between leaf and ambient environments, is calculated using the Ball‐Berry equation (Ball et al., 1987;
Collatz et al., 1991) as (shown in Figure 2):

gs,m =
mAθl
Cs

+ g0, (10)

where gs,m is the stomatal conductance (mol m− 2 s− 1); Cs is the surface CO2 concentration (ppm); A is the
photosynthesis rate (μmol m− 2 s− 1); θl is the leaf relative humidity; and m and g0 are the dimensionless slope and
zero intercept of the equation. θl is calculated as the fractional humidity at the leaf surface:

θl =
ea

e∗ (Tl)
, (11)

where ea is the ambient vapor pressure (kPa); and e∗ (Tl) is the saturated vapor pressure (kPa) at the leaf tem-
perature Tl (K). Equations 7–11 leads to a cubic equation of A. We used the resulting analytical solution of A
derived in Baldocchi (1994).

Limitation of the vanilla Ball‐Berry equation. Equation 11 assumes that the leaf intercellular air space is saturated
with water vapor. The assumption limits the response of stomatal conductance to plant and soil water deficit stress
(Leuning, 1995). To address this issue, multiple solutions building upon the vanilla Ball‐Berry equation have been
proposed to account for the water deficit impact (Bonan et al., 2014; Egea et al., 2011; Katul et al., 2009; Medlyn
et al., 2011; Verhoef & Egea, 2014; Y.‐P. Wang & Leuning, 1998). Ideally, the model needs an explicit repre-
sentation of the plant hydraulics to simulate its control on stomatal closure, which is currently unavailable in
CanVeg.

Figure 2. The hybrid Ball‐Berry equation in calculating the stomatal conductance gs,m. We hybridized the original Ball‐Berry equation with a deep neural network
(DNN) accounting for the water stress impact on leaf relative humidity θl,DL based on observed soil water content θsl. (Cs: the surface CO2 concentrations (mol mol− 1);
m: the dimensionless slope of the Ball‐Berry equation; A: the photosynthetic rate (μmol m− 2 s− 1); ea: the ambient vapor pressure (kPa); e∗ (Tl) : the saturated vapor pressure
(kPa) at the leaf temperature Tl (K); N : a deep neural network; θsl: the volumetric soil water content (m3 m− 3); and wN: the learnable parameters of N ).
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Hybrid Ball‐Berry equation. In light of parameterizing Equation 10 with soil hydraulic information (Egea
et al., 2011; Verhoef & Egea, 2014; Y.‐P. Wang & Leuning, 1998), we developed a hybrid Ball‐Berry equation
that uses observed soil moisture as an approximation of plant water stress to calculate the corresponding stomatal
conductance, gs,m,DL, as (Figure 2):

gs,m,DL =
mAθl,DL
Cs

+ g0, (12)

where θl,DL is the leaf relative humidity parameterized using a DNN as:

θl,DL =N(θl,θsl;wN), (13)

where N : R2 → R is a deep neural network parameterized by wN and θsl is the volumetric soil water content
(m3 m− 3). For demonstration purposes, we employed a fully connected neural network for N with two hidden
layers and six neurons in each hidden layer. We used the hyperbolic tangent and sigmoid functions as the
nonlinear activations for the hidden and output layers, respectively. Despite the existing methods that incorporate
soil hydraulic information by imposing a restricted relational form (Verhoef & Egea, 2014), our hybrid gs,m,DL that
leverages data‐driven learning through neural networks is more flexible in capturing the response of stomata
closure to water stress.

2.2. Study Sites and Observation Data

Field study sites. We selected four AmerifFlux tower sites in the western United States across various envi-
ronmental conditions, that is, US‐Bi1, US‐Me2, US‐Whs, and US‐Hn1, respectively, shown in Figure 3. US‐Bi1
is located at an agricultural land on Bouldin island of the San Joaquin Sacramento Delta region (Hemes
et al., 2019; Rey‐Sanchez et al., 2022). A perennial alfalfa crop is the major plant at this site. Driven by a
Mediterranean climate, this site has an average annual temperature of 16.0°C and an average annual precipitation
of 338 mm. US‐Me2 is an evergreen needleleaf forest ecosystem situated in Central Oregon (Vickers et al., 2012).
This pine tree ecosystem is sustained by a wetter and colder Mediterranean climate with an average annual

Figure 3. The studied flux tower sites. US‐Me2 (upper left): an evergreen needleaf forest ecosystem in Oregon, USA. US‐Bi (lower left): an agriculture ecosystem in
California, USA. US‐Hn1 (upper right): a semi‐arid ecosystem in Washington, USA. US‐Whs (lower right): a semi‐arid shrubland ecosystem in Arizona, USA. (Flux
tower photo credits: US‐Me2 from the website of Terrestrial Ecosystem Research and Regional Analysis at Oregon State University; US‐Bi1 from the Biometeorology
Lab at University of California, Berkeley; US‐Whs from Russell L Scott at the United States Department of Agriculture; and US‐Hn1 from the Micrometeorology
Research Group at Washington State University).

Water Resources Research 10.1029/2024WR038116

JIANG ET AL. 8 of 36

 19447973, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038116, W

iley O
nline L

ibrary on [15/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



precipitation of 523 mm and an average annual temperature of 6.28°C. Unlike US‐Bi1 and US‐Me2, the other
sites reside in semi‐arid dryland ecosystems. US‐Whs is a desert shrubland within theWalnut Gulch Experimental
Watershed of Arizona (Scott et al., 2015). The site experiences a hotter and drier climate with shrubs as the main
canopy coverage. The annual means of temperature and precipitation are 17.6°C and 320 mm, respectively. US‐
Hn1 is an upland sagebrush‐steppe ecosystem located in the Hanford 300 area of Central Washington (Missik
et al., 2019). The site is classified as a semiarid climate ecosystem with a mean annual temperature of 12.8°C and
receives an average annual precipitation of 197 mm. Table 2 summarizes the key characteristics of the four study
sites.

All the sites provide observations of aboveground carbon, water, and energy fluxes and belowground soil tem-
perature and moisture at a resolution of 30‐min. We used the following observations to drive JAX‐CanVeg: air
temperature (Ta), ambient vapor pressure (ea), air pressure (Pa), ambient CO2 concentration (Ca), wind speed
(WS), friction velocity (u∗), solar radiation (Q), soil temperature at a depth of 15 cm (Tsl), and volumetric soil
water content at a depth of 15 cm (θsl). The model simulations were evaluated against observed fluxes, including
both latent heat flux (LE) and net ecosystem exchange (NEE). The model also takes the leaf area index (LAI) as
the input. The LAI information was obtained from a remote sensing product of the Moderate Resolution Imaging
Spectroradiometer (MODIS), MCD15A3H (R. Myneni et al., 2021). We linearly interpolated the 4‐day remotely
sense LAI to 30‐min, consistent with the temporal resolution of flux tower data.

We adopted the observation periods of 01‐07‐2018 to 30‐12‐2021 (US‐Bi1), 01‐07‐2016 to 30‐06‐2020 (US‐
Me2), 01‐02‐2012 to 30‐06‐2015 (US‐Whs), and 01‐06‐2016 to 30‐12‐2017 (US‐Hn1) for this work. At each site,
we separated the time into training and test periods shown in Table 3. Figures A3 and A4 plot the time series
observations at the four sites.

2.3. Experimental Design

To assess the performance of the hybrid modeling for stomatal conductance calculation in Equation 13, we
compared the hybrid JAX‐CanVeg using Equation 12 with the process‐based JAX‐CanVeg using Equation 10
and a pure DNN model at the selected four sites. The observations from the flux towers were used to set up the
model. We trained and evaluated the performance of the three models against the observations of both latent heat
flux (LE) and net ecosystem exchange (NEE) across a variety of case scenarios by varying canopy layers and the
optimization weight assigned to LE and NEE. We designed different model setup and training scenarios to assess
the capabilities of the proposed hybrid model in (a) improving the carbon and water fluxes, (b) addressing a muti‐

optimization task given both carbon and water flux observations, and (c)
benefiting a multi‐layer canopy model configuration, as described below.

2.3.1. Basic Setup of JAX‐CanVeg

At each site, we discretized the vertical columns into 50 atmospheric layers
from the flux tower to the top of the canopy and 10 soil layers below the
ground. We consider both cases of a single big leaf layer (1L) and 50 leaf
layers (ML) extending from the canopy top to the ground surface. Based on
field measurements, the canopy heights were approximately 0.8, 18, 1, and
1.2 m for US‐Bi1, US‐Me2, US‐Whs, and US‐Hn1, respectively. We used the
soil depth of 15 cm where the soil temperature observations were taken.
Physiological processes simulated by the Farquhar and the Ball‐Berry model

Table 2
Characteristics of the Two Flux Tower Sites (MAT, Mean Annual Temperature; MAP, Mean Annual Precipitation; BSk, Cold Semi‐Arid Climate; Csa, Hot‐Summer
Mediterranean Climate; Csb, Warm‐Summer Mediterranean Climate)

Site Location Climate system MAT (°C) MAP (mm) Flux tower height (m) Major vegetation Vegetation height (m)

US‐Bi1 CA Csa 16.0 338 5 Alfalfa 0.8

US‐Me2 OR Csb 6.3 523 34 Ponderosa pine tree 18

US‐Whs AZ BSk 17.6 320 6.5 Shrub 1

US‐Hn1 WA BSk 12.8 197 5 Sagebrush 1.2

Table 3
Training and Test Periods of Observations at the Four Study Sites

Site Training time period Test time period

US‐Bi1 07‐01‐2018 to 30‐06‐2020 07‐01‐2020 to 30‐12‐2021

US‐Me2 07‐01‐2016 to 30‐06‐2019 07‐01‐2019 to 30‐06‐2020

US‐Whs 01‐02‐2012 to 30‐06‐2014 07‐01‐2014 to 30‐06‐2015

US‐Hn1 01‐06‐2016 to 30‐06‐2017 07‐01‐2017 to 30‐12‐2017
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(Appendix A3) are parameterized by using the model setup in Baldocchi and Harley (1995); Harley and
Baldocchi (1995).

2.3.2. Parameter Learning Design

Table 4 lists the three types of models performed at both sites: the process‐based JAX‐CanVeg model using the
vanilla Ball‐Berry equation (Equation 10), the hybrid JAX‐CanVeg using its hybrid version (Equation 12), and
the pure DNN that takes the same inputs of JAX‐CanVeg to predict LE. We optimized each model against the
observed LE and NEE. For the process‐based model, we estimated the 16 parameters affecting stomatal
conductance calculation and sensitive to LE andNEE, including the slope (m) and intercept (g0) of the Ball‐Berry
equation, the leaf's length scale controlling the boundary layer conductance (ls; see Equation A20), the leaf
emissivity coefficient (ϵ; see Equations A13 and A35), the leaf quantum yield affecting the potential rate of
electron transport (α; see Equation A23), the leaf clumping factor (Ω; see Equation A4), the maximum
carboxylation rate by Rubisco (Vc,max,25) and the maximum rate of electron transport (Jmax,25) at 25°C (used to
calculate Vc,max in Equation A22 and Jmax in Equation A24 through the Arrhenius equation), the soil surface
emissivity (ϵsurf ; see Equation A57), the leaf reflectance and transmittance coefficients of photosynthetic active
radiation (PAR) and near‐infrared radiation (NIR) (rPAR, rNIR, τPAR, and τNIR; see Equations A8 and A9), and the
three coefficients of the Q10 power equation for calculating soil respiration (ar, br, and cr; see Equation A77). The
default values of the parameters are listed in Table A1 in the Appendix. For the hybrid model, we estimated the
same 16 parameters as the process‐based models and additional parameters of the neural network wN in Equa-
tion 13. The pure DNN model adopted a fully connected neural network that had two hidden layers with six
hidden neurons in each layer. Hyperbolic tangent and sigmoid functions were used as the nonlinear activations for
the hidden and output layers, respectively. The pure DNN model design is consistent with the neural networkN
used in the hybrid JAX‐CanVeg (Equation 12) so that the total numbers of tunable parameters of DNN are similar
to that of the hybrid model.

We trained each model against both the observed LE and NEE. We converted this multiobjective optimization
problem into minimizing the following weighted loss function:

Loss ≔ ω ⋅ ‖L̂Eo − L̂Em‖2
2 + (1 − ω) ⋅ ‖N̂EEo − N̂EEm‖2

2, (14)

where ω is the weighting factor ranging from 0 to 1; ‖ ⋅ ‖2 is the l2 norm; ⋅̂ is the standardization operation that
first subtracts the variable by its mean and then divides it by the standard deviation; LEo and NEEo are the
observed LE and NEE, respectively; and LEm and NEEm is the corresponding model simulations summed across
both the canopy and soil systems (see Equations A73 and A75 in the Appendix). Clearly, when ω = 1, the model
is trained against the LEo only. When ω = 0, only NEEo is used to constrain the model. Each model was
optimized over 300 epochs using the Adam algorithm with the default parameter setting in Optax (DeepMind
et al., 2020). We employed a piecewise constant decay learning scheduler with an initial learning rate of 0.01 and
a scaling factor of 0.1 operated at the 50, 100, and 200 epochs. We standardized the inputs of all the deep learning
models, including the standalone neural network and the one used by the hybrid model.

Table 4
Description of the Three Types of Models Used to Predict the Latent Heat Flux (LE) and the Net Ecosystem Exchange (NEE)
(DNN, Deep Neural Network)

Model Description

Process‐based model JAX‐CanVeg using the vanilla Ball‐Berry equation in
Equation 10

Hybrid model JAX‐CanVeg using the hybrid Ball‐Berry equation in
Equation 12

Pure DNN A fully connected neural network taking the same inputs of
JAX‐CanVeg to predict LE and NEE
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2.3.3. Modeling Scenarios

At each site, JAX‐CanVeg modeling is subjective to the following three factors:

• whether it is a hybrid model (Hybrid) or a process‐based model (PB);
• whether the model adopts a single layer (1L) or 50 layers (ML) in the canopy;
• and the value of w used in the loss function Equation 14 (here, we vary ω from 0 to 1 with a discretization
interval of 0.1).

This ends up with 44 modeling scenarios of JAX‐CanVeg. We denote each scenario with the following format
(Hybrid or PB)‐(ML or 1L)‐[ω]. For example, a hybrid JAX‐CanVeg using multiple canopy layers with
ω = 0.5 is denoted as Hybrid‐ML‐0.5. We also train the pure deep learning model with different ω values.
These add up to 55 modeling scenarios at each site. Thus, we trained an overall of 220 models for all four sites.
The training was performed at four A100 GPUs parallelly, with each accounting for one model.

2.3.4. Evaluation Metrics

All models were trained in the training time periods and evaluated in the test time periods listed in Table 3. We
used three metrics to assess the performances of the trained models in simulating LE and NEE: the Mean Squared
Error (MSE), the Nash–Sutcliffe model Efficiency coefficient (NSE), and the Correlation Coefficient (CC),
which are given as:

MSEx =
∑Nt
i=1(xo,i − xm,i)

2

Nt
, (15)

NSEx = 1 −
∑Nt
i=1(xo,i − xm,i)

2

∑Nt
i=1(xo,i − E[xo])

2 , (16)

CCx =
∑Nt
i=1 (xo,i − E[xo]) (xm,i − E[xm])̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Nt
i=1(xo,i − E[xo])

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Nt
i=1(xm,i − E[xm])

2
√ , (17)

where x is the model output to be evaluated, including both LE andNEE,Nt is the total number of time steps in the
test period of a site, and E[⋅] is the expectation operator. Each metric considers various facets of simulation
performance.MSE measures the average squared difference between observations and simulations. NSE focuses
on the modeling capability in capturing the variability of the observations. CC assesses the linear relation between
the observations and simulations. NSE and CC are unitless metrics, ranging from -inf to 1 and from − 1 to 1,
respectively.

Figure 4. Model simulation time at the four study sites. This barplot shows the simulation time of running process‐based
CanVeg using the multi‐layer canopy setup, that is, the original CanVeg written in Matlab and executed on a central
processing unit (CPU), JAX‐CanVeg executed on a CPU, and JAX‐CanVeg executed on a graphic processing unit (GPU).
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3. Results
3.1. Computational Speedup of JAX‐CanVeg Over CanVeg

We compared the computational time of JAX‐CanVeg with the original Matlab implementation of CanVeg, using
the process‐based versionwith amulti‐layer setup (PB‐ML). The simulationswere performed at oneA100GPUand
one AMD EPYC 7763 Central Processing Unit (CPU) with JAX version 0.4.19 and Matlab version R2023b.
Figure 4 plots the simulation time of running the CanVeg on the CPU, JAX‐CanVeg on the CPU, and JAX‐CanVeg
on the GPU at the four sites. Thanks to the high‐performance computing support through XLA, JAX‐CanVeg was
nearly 20 times faster thanCanVeg on the CPU, using around 0.5 to 1‐min to complete the simulations compared to
approximately 12 to 47‐min simulation of CanVeg for both sites. Moreover, running JAX‐CanVeg on the GPU
achieved even greater computational speedup, taking around 2 s at all sites.Using JAX, the switch between theCPU
and the GPU does not modify the existing model and only requires one line of code at the top to configure the
computing platform: import jax; jax.config.update(‘jax_platform_name’, ‘gpu’) (or
‘cpu’ for the CPU configuration).Meanwhile, running theMatlab function on theGPU is intrusive, necessitating
codemodifications to specify the data array stored on the computing platform; hence, executing theMatlab version
of CanVeg on the GPU is not explored for comparison.

3.2. Capability of Hybrid Modeling in Improving LE/NEE Simulation

Figure 5 shows the barplots of the performance metrics (Equations 15–17) of the process‐based JAX‐CanVeg
(yellow), its hybrid version (violet), and the pure DNN model (cyan) on the test data sets for all the four study
sites. The bar height is the averaged metrics across cases using the ML canopy setup and all ω values, with the
black errorbar representing the standard deviation of the metrics.

For LE, the Hybridmodels outperformed the PBmodels at most sites with varying degrees. Particularly for US‐
Me2 and US‐Whs, the improvement was the greatest, with a significant reduction ofMSELE from around 3,000 to
less than 2,000 and from around 2,000 to about 1,000, respectively. The corresponding NSELE at the two sites also
shows significant improvement, increasing up to higher than 0.5, suggesting the enhanced capability of the hybrid
modeling in capturing the high values of LE. The correlations also saw descent increases. On the other hand, the
improvements at the other two sites were limited. For US‐Hn1, we observed the decrease of MSELE and the

Figure 5. Water and carbon flux simulation performances of the hybrid and process‐based JAX‐CanVeg and the pure DNN. The barplots show the performance metrics,
that is, MSE, NSE, and CC of the process‐based JAX‐CanVeg (yellow), its hybrid version (violet), and the pure DNN model (cyan) in simulating the latent heat flux
(LE) and the net ecosystem exchange (NEE) for all the four study sites on the test data sets shown in Table 3. (The bar height is the averaged performance across cases using
the ML setups and all ω values in Equation 14, with the black errorbar representing its standard deviation.
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increase of NSELE while CCLE remained almost unchanged. For US‐Bi1, the Hybrid models is almost no
different from the PB models, which already demonstrated robust modeling performance with NSELE and CCLE
the highest and closest to 1 among the four sites. The well‐calibrated process‐based model partially explains the
little improvements using the Hybrid models.

For NEE, we observed the improvements from the Hybrid models across all sites. The upgrades were the
greatest at US‐Me2 and US‐Whs, consistent with the results of LE. Notably, the Hybridmodels of US‐Me2 not
only outperformed the corresponding PBmodels but also induced the highest NSENEE and CCNEE across all sites.
Meanwhile, the improvement of NEE at US‐Hn1 was still marginal, partially due to the smallest training and test
periods of all sites (Table 3) that likely limited the training performance of the model. Compared with the result of
LE, the major difference was the larger improvement gained at US‐Bi1, with enhanced increase and decrease of
MSENEE and NSENEE.

Comparing JAX‐CanVeg modeling (either Hybrid and PB models) with pure DNN, we found that the pure
DNN generally beat the JAX‐CanVeg with the mean of its three metrics mostly better than that of JAX‐CanVeg at
all sites. While it suggests that pure DNNmight serve as a benchmark to hybrid modeling, pure DNN had the most
tremendous uncertainty, as shown by the largest error bars for metrics of both LE and NEE at all four sites. These
uncertainties resulted from using different weighting factors ω in Equation 14. Compared to the pure DNN, the
reduced uncertainties of the JAX‐CanVeg trained on various ω illustrates the importance of the physical rep-
resentation in constraining the modeling.

3.3. Capability of Hybrid Modeling in Improving the Trade‐Off in Multiobjective Optimization

A natural follow‐up question is whether hybrid modeling can improve the trade‐off of training JAX‐CanVeg
against observations of both LE and NEE whose interplay is determined by ω in Equation 14. To this end, we
plot the change of both NSELE andNSENEE overω in Figure 6. For illustration, we focus on theML setup andNSE
(see the corresponding plots of MSE and CC in Figures A5 and A6 of the Appendix). Each subplot of Figure 6
shows the result at each site, with NSELE and NSENEE displayed in the up and bottom parts of the plot panel.
Results of Hybrid‐ML and PB‐ML are plotted in violet and yellow, respectively.

In general, we observed the increase and decrease of NSELE and NSENEE, respectively, over ω. There were a few
exceptions that did not strictly follow the trends, including NSELE of PB‐ML‐0.3 at US‐Me2 and NSELE of
Hybrid‐ML‐0.8 at US‐Whs both of which showed sharp decrease of NSELE. They were likely due to the
complexity of the model with a ML setup that increased the loss during the training (not shown here). Despite these
cases, the overall increase and decrease of NSELE and NSENEE were consistent with the weighting factor ω
change.

Comparing PB‐ML with Hybrid‐ML showed that the hybrid modeling improved the trade‐off of learning two
observables by pushing the “frontiers” of the convergence curves. For US‐Bi1, though the PB and Hybrid
models yielded similar NSELE change over ω, NSENEE were consistently improved by Hybrid across all ω.
Moreover, for US‐Me2 and US‐Whs, both NSELE and NSENEE got increased for most ω, partially evidenced by

Figure 6. Learning trade‐off between LE and NEE. These plots show the change of NSE in Equation 16 over ω used in a multiobjective optimization setting in
Equation 14 at the four sites. In each subplot, NSELE and NSENEE are plotted in the upper and bottom parts of the frame with yellow and violet lines representing the
results of PB‐ML and Hybrid‐ML models, respectively. The gray vertical arrow indicates the trend of an improved performance of NSE.
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their best performance gain in Figure 5. US‐Hn1 exhibited the least increase of NSELE and NSENEE using
Hybrid‐ML, corresponding to its worst modeling performance among all sites (Figure 5).

3.4. Comparing Modeling Performances Using Multi‐Layer and Single‐Layer Setups

To address our last question on the performance of the proposed hybrid modeling in ML modeling, we compared
the training results of Hybrid‐MLwith that of Hybrid‐1L. Figure 7 shows the barplots of the three performance
metrics of Hybrid‐1L (light blue) and Hybrid‐ML (violet) at the four sites, evaluated against the test data set.

Overall, we found that ML improved the modeling of LE and NEE at some sites but not all. At US‐Bi1, ML
significantly improved the simulation of both observables, with all three metrics better than that of 1L. At US‐
Whs, the improvements using ML were mostly limited, except for a drastic increase of NSENEE over that of 1L.
Nevertheless, for US‐Me2 and US‐Hn1, using MLmade the performances even worse than 1L. In sum, ML did not
necessarily improve the performances of the hybrid modeling.

4. Discussion
4.1. Improved Water and Carbon Responses Captured by the Hybrid Ball‐Berry Equation

To illustrate what was learned by the hybrid modeling, we plot in Figure 8 the averaged diurnal signals of LE,
NEE, gs,can, Acan, and Tl,can computed by PB‐ML‐0.5 and Hybrid‐ML‐0.5 (refer Section 2.3.3 for the definition),
averaged across the test time period. gs,can, Acan, and Tl,can are the overall stomatal conductance, photosynthesis,
and leaf temperature across the canopy for both shaded and sunlit leaves calculated by Equations A49, A50, and
A53 in the Appendix, respectively. We chose ω = 0.5 for illustration because the performances of most Hybrid
models converged (Figure 6). The estimated parameters of PB‐ML‐0.5 and Hybrid‐ML‐0.5 were given in
Table A1 of the Appendix.

Figure 8 shows that NEE simulations got the largest improvement using Hybrid‐ML‐0.5 at US‐Whs, followed
by US‐Me2, US‐Bi1, and US‐Hn1. The NEE improvements mostly occurred during the day, where the solar
radiations were the largest, and greatly benefited from the corresponding increased Acan solved by an analytical
solution derived from a coupled the Farquhar model and the Ball‐Berry module (Baldocchi, 1994). This was
evidenced by the largest increase of Acan at US‐Whs, followed by US‐Me2, US‐Bi1, and US‐Hn1, corresponding

Figure 7. Multi‐layer (ML) canopy modeling versus single‐layer (1L) canopy modeling. The barplots show the performance metrics, that is,MSE, NSE, and CC of the
Hybrid‐1L (light blue) and Hybrid‐ML (violet) in simulating the latent heat flux (LE) and the net ecosystem exchange (NEE) for all the four study sites on the test
data sets shown in Table 3. (The bar height is the averaged performance across cases using different ω values in Equation 14, with the black errorbar representing its
standard deviation.)
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to the improvement degree of NEE simulation. At the same time, only US‐Whs exhibited decent LE improvement
by using Hybrid‐ML‐0.5 such that the Hybrid model better captured the peak of LE during the day. This was
supported by the larger gs,can over that of PB‐ML‐0.5, suggesting that the Hybrid model increased the stomata
openness during the day. The other three sites showed different responses of stomata closure when using the
hybrid equation. The gs,can of Hybrid‐ML‐0.5 at US‐Bi1 and US‐Me2 had larger temporal variations from day to
night than PB‐ML‐0.5 while the corresponding leaf temperature Tl,can showed reduced variations. The enlarged
and lowered variations of gs,can and Tl,can balanced out each other through Fick's law (Equation A33 of the Ap-
pendix), leading to similar simulations of LE Overall, such interplay among gs,can, Acan, and Tl,can, affected by the
introduction of the hybrid Ball‐Berry equation, improved the overall simulations of both NEE and LE (mostly
NEE) though additional observations of canopy states (e.g., gs,can and Tl,can) would be helpful to verify the change
and further constrain the model.

Figure 8. Averaged diurnal signal of JAX‐CanVeg simulations. The simulations of Hybrid‐ML‐0.5 (violet) and PB‐ML‐0.5 (yellow) were averaged to 24‐hr on the test
period at the four sites. Five model outputs are plotted: the net ecosystem exchange (NEE), the latent heat fluxes (LE), the overall canopy photosynthesis (Acan), the
overall canopy stomatal conductance (gs,can), and the overall canopy leaf temperature (Tl,can).
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4.2. Impact of the Hybrid Model on Parameter Sensitivity

We compared the parameter sensitivity between PB‐ML‐0.5 and Hybrid‐ML‐0.5. The barplots in Figure 9 are the
averaged absolute values of the partial derivative of LE and NEE, across the test periods, over each parameter
listed in Table A1.

For LE, the most sensitive parameter was the slope of the Ball‐Berry equation m, followed by other conductance
parameters (i.e., g0 and ls) and the leaf and ground surface reflectance/emissitivity/transmittance that control the
canopy radiation profile (i.e., ϵ, ϵsurf , rPAR, τPAR, rNIR, and τNIR). US‐Whs saw drastic increases of sensitivities of
many parameters across both conductance parameters and canopy reflectance, emissivity, and transmittance (e.g.,
g0, ls, ϵ, rPAR, τPAR, rNIR, and τNIR). These changes reflected the improved LE simulation of Hybrid‐ML‐0.5 at
this site (Figures 5 and 6). At the other three sites, where the hybrid modeling slightly improved LE, PB‐ML‐0.5
and Hybrid‐ML‐0.5 provided similar sensitivity result with a modest difference, for example, the increase of the
averaged sensitivity for the leaf reflectance, emissitivity, and transmittance at US‐Bi1.

Figure 9. Parameter sensitivity of JAX‐CanVeg. The temporally averaged absolute values of the parameter sensitivity with
regard to LE (top) and NEE (bottom), denoted as E[

⃒
⃒∂LE
∂w |] and E[

⃒
⃒∂NEE
∂w |] , respectively (where E[ ⋅ ] is the expectation

operation and w ∈ w). The partial derivative was calculated on the test periods of all four sites, using the process‐based
(yellow) and hybrid (violet) models with a multi‐layer (ML) canopy setup and ω = 0.5 of the loss in Equation 14.
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For NEE, the most sensitive parameters switched between m and ls among the four sites, suggesting the sig-
nificance of both stomatal conductance and leaf boundary layer conductance in determining NEE. We also
observed the importance of soil respiration (Rsl) , as a major component of NEE in Equation A75, by the large
sensitivities of ar, br, and cr which are the parameters of the Q10‐power model calculating Rsl in Equation A77.
Among the sites, US‐Whs exhibited reduced ls and big increases of m, br, and cr. The change illustrates that the
improved NEE at US‐Whs was jointly contributed by the regulations of Acan and Rsl. At US‐Me2, the major
difference was the increase of m, suggesting that Acan was the major contributor to the NEE improvement shown
in Figure 8. We observed slight differences in parameter sensitivity at US‐Bi1, corresponding to its limited NEE
improvement. For US‐Hn1, despite the large sensitivity increases of m, g0, and ls, the resulting changes in the
simulated NEE did not greatly bring it closer to the observed NEE.

4.3. The Trade‐Off in Model Optimization Between Water and Carbon Fluxes

Although the proposed Hybrid model facilitated reducing the trade‐off when trained on both LE and NEE, the
trade‐off was not alleviated (Figure 6). This was evidenced by the best performance of either LE or NEE with
ω = 1.0 and ω = 0.0, respectively. The trade‐off could be attributed to unknown physical processes poorly
represented in the model. To further investigate the potential cause of trade‐off, we looked into the modeling
performance of US‐Whs and US‐Hn1, both of which are dryland ecosystems, but one with the greatest
improvement using the hybrid setup (US‐Whs) and the other with the least improvement (US‐Hn1).

Figure 10 plots the daily averaged simulations of LE and NEE at US‐Whs of both Hybrid‐ and PBmodels using
the ML canopy setup, with the results ofω = 0.5 andω = 1.0 shown in Figures 10a and 10b, respectively. On one
hand, Hybrid‐ML‐0.5 yielded the best balance between LE and NEE with the corresponding NSE greatly larger

Figure 10. JAX‐CanVeg simulation using the multi‐layer canopy setup at US‐Whs. (a, b) plot the daily averaged simulations of LE andNEEwith both the hybrid (violet)
and process‐based (yellow) models, using ω = 0.5 and ω = 1.0 in the loss function (Equation 14), respectively.
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than that of PB‐ML‐0.5 (Figure 10a). However, the model overestimated the low LE during spring each year (i.e.,
March to July). On the other hand, when only trained on LE, Hybrid‐ML‐1.0 generated better LE than
Hybrid‐ML‐0.5 withNSELE increasing from 0.64 to 0.70 on the test period (Figure 10b). Particularly, the low LE
in springtime was better captured by Hybrid‐ML‐1.0. However, the improved LE came with the cost of the poor
performance of NEE simulation with NSENEE = − 1.0. The large negative values of NEE in the summer cor-
responded to the large LE, suggesting large photosynthesis Acan was produced during summer. Clearly, when only
LE observations were available, NEE was hard to simulate well due to the unknown contribution of soil respi-
ration (Rsl; see Equation A75), which was calculated by a simple Q10‐power equation in Equation A77. The
simplified representation of Rsl in turn affected the interplay between LE and NEE, leading to the trade‐off of the
simulations of the two, especially in dryland ecosystems where canopy coverage is limited compared to wetter or
forest regions (e.g., US‐Bi1 and US‐Me2).

The role of soil carbon cycling representation in governing the interplay between LE and NEE is probably more
important at US‐Hn1. Figure 11 shows the corresponding plot at US‐Hn1 with the top and bottom representing the
simulations using ω = 0.5 and ω = 1.0, respectively. When the observations LE and NEE played equal roles in
the training (i.e., ω = 0.5 in Figure 11a), the corresponding simulations barely captured any observed variations
using either the Hybrid or the PBmodel, with all NSE lower than 0.25. Nevertheless, when the model was only
constrained by the observed LE (Figure 11b), the simulation of LE was greatly improved using the Hybrid
model. Hybrid‐ML‐1.0 was able to capture the large LE trend from March of 2017 to September of 2018. Yet,
similar to US‐Whs, it came with the cost of large negative NEE due to the increased stomata and Acan, which were
not well balanced by the simulated Rsl. The reduced improvement using the hybrid modeling suggests a greater

Figure 11. JAX‐CanVeg simulation using the multi‐layer canopy setup at US‐Hn1. (a, b) plot the daily averaged simulations of LE andNEE with both the hybrid (violet)
and process‐based (yellow) models, using ω = 0.5 and ω = 1.0 in the loss function (Equation 14), respectively.
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role of the soil carbon cycling that is not well captured by JAX‐CanVeg in NEE simulation at US‐Hn1 than
US‐Whs.

However, the performances of hybrid modeling were less affected by the soil carbon cycling dynamics at the other
two wetter sites, US‐Bi1 and US‐Me2. The corresponding simulations plots in Figures A7 and A8 of the Ap-
pendix show that the LE simulation performances of the two hybrid models with ω = 0.5 and ω = 1.0 were
similar at both sites while Hybrid‐ML‐0.5 yielded better NEE simulations than Hybrid‐ML‐1.0. The result
indirectly suggests the oversimplified representation of soil carbon dynamics has limited impacts on NEE, which
were mostly attributed to the photosynthesis Acan at the two sites.

4.4. Need of the Multi‐Layer Canopy Setup in Differentiable Hybrid Modeling

Although the ML canopy setup did not increase the performance of our Hybrid models at all sites (Figure 7),
using ML canopy setup could potentially improve Hybrid models for the following reasons. First, we observed
decent improvements using ML canopy at US‐Bi1 and US‐Whs, particularly for the simulation of NEE. Second,
the slightly reduced performances at US‐Me2 and US‐Hn1 could be attributed to the same default model
parameters at both sites. These parameters, adopted from Harley and Baldocchi (1995) and Baldocchi and
Harley (1995), were likely less ideal initials that made the training hard for the ML model whose numerical
representation is more complicated than the 1L model. Third, the proposed hybrid Ball‐Berry equation in
Equation 12 did not explicitly capture the vertical gradient of leaf water potential, which potentially limited the
benefits of a MLmodel during model training. Last, running JAX‐CanVeg on GPU was fast, with only around 2 s
for all sites on multiple years (Figure 4). The GPU speedup significantly alleviates the computational burden of
using a ML setup. As Bonan et al. (2021) demonstrated the potential of using MLmodel setup to move beyond the
widely adopted current big‐leaf models, future research is needed to further explore the possibility of using hybrid
modeling to enhance water and carbon fluxes in a ML canopy setup through better parameter initializations and
carefully designed hybrid components capturing the vertical variation across the canopy.

5. Conclusion
We developed a differentiable land surface model, JAX‐CanVeg, by recasting a legacy model, CanVeg, into a
scientific machine learning programming platform, JAX. We demonstrated the hybrid modeling capability of
JAX‐CanVeg by proposing a hybrid Ball‐Berry equation that integrates the original equation with a DNN
encoding the impact of water stress on stomatal closure through observed soil moisture. Through applications at
four flux tower sites, we found that the hybrid model consistently improved the simulations of LE and NEE over
the process‐based model with varying degrees. When trained against both observed LE and NEE using different
weighting factors ω in the loss function (Equation 14), the hybrid models generally reduced the optimization
trade‐off with the simulation performance better than the process‐based models. Further, we found that not all
sites benefited from hybrid modeling in a multi‐layer canopy setup–only two sites showed improvement over a
single‐layer configuration–likely due to the training challenges. A combination of suboptimal initial parameters
and the complexity of the multi‐layer setup may have made the training process difficult. Potential future research
may focus on (a) improving the soil carbon representation, potentially through a hybrid way, to reduce the
optimization trade‐off further and (b) explore an improved way to train a hybrid multi‐layer canopy model. We
anticipate that the new differentiable modeling framework provides a new avenue for modeling land‐atmospheric
interactions by leveraging the benefits of both data‐driven learning and process‐based modeling (M. Chen
et al., 2023).

Appendix A: An Overview of CanVeg
CanVeg is a one‐dimensional, multi‐layer biosphere‐atmosphere gas exchange model to calculate water, carbon
dioxide (CO2), and heat fluxes from vegetated canopies. The model couples micrometeorological processes with
ecophysiological processes. The micrometeorological modules solve the radiative transfer across the canopy, leaf
and soil energy balances, and scalar concentration profiles. Integrated with these ambient states, the ecophysi-
ological modules solve leaf photosynthesis, stomatal conductance, transpiration, and respiration processes. Below
we delve into the equations for radiative transfer, photosynthesis and stomatal conductance, leaf energy balance,
and soil energy balance. More details of the model are reported in (Baldocchi, 1992, 1994, 1999; Baldocchi &
Harley, 1995).
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The overall objective of the model is to calculate the passive scalars (i.e., water, CO2, and heat) across both the
canopy and its ambient surroundings. The diffusion process across leaf surfaces between the internal and ambient
scalar concentrations or heat content can be described using Fick's law:

S(Cona(z)) = − a(z)
Cona(z) − Conl(z)
1/gb,m(z) + 1/gs,m(z)

, (A1)

where z is the vertical depth; a is the leaf area density (m2 m− 3); Cona and Conl are the ambient and leaf internal
scalar concentrations or heat content, for example, water vapor pressure e, CO2 concentration, and temperature T;
S is the flux serving a source and sink term; gb,m is the boundary layer conductance to molecular diffusion
(mol m− 2 s− 1); and gs,m is the stomatal conductance in mole (mol m− 2 s− 1).

A1. Canopy Radiative Transfer

The model divided the above‐ground canopy intoM layers to better capture the energy, carbon, and water fluxes
across the canopy. Delineating the radiation profiles of the canopy is critical to calculate photosynthesis, leaf
energy balance, and soil energy balance. Generally, the model takes in the observed global shortwave radiation
(QTOT; W m− 2) and separates it into photosynthetic active radiation (PAR, denoted as QPAR) and near‐infrared
radiation (NIR, denoted as QNIR), both of which are furthered decomposed into the direct beam and diffusive
components:

QTOT = QPAR + QNIR (A2)

= QPAR,bm + QPAR,df + QNIR,bm + QNIR,df , (A3)

Figure A1. Comparison between implicit function theorem‐based automatic differentiation (IFT‐AD) and finite difference‐
based differentiation (FD) using the directional derivative of LE using the process‐based JAX‐CanVeg on the default
parameters w listed in Table A1. (The directional derivative of IFT‐AD is calculated as ∂LE∂w ⋅ u where u = [1,… ,1]nw is a unit
vector with size nw; and the directional derivative of FD is calculated as FLE (x,w+ hu) − FLE(x,w)h , where h = 0.01 and
FLE : Rnx × Rnw → R is the function of JAX‐CanVeg to calculate LE.
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where bm and df refer to the beam and diffusive components. Each component in Equation A3 is calculated using
the method described in Weiss and Norman (1985). The canopy radiative transfer uses different components of
the incoming radiation to further calculate the radiation profiles of both sunlit and shaded leaves in each canopy
layer.

Probability of light penetration.Given the incoming short radiation on the top of the canopy, the probability of the
light radiation penetration is calculated using a Markov model to account for the leaf clumping effect (Myneni
et al., 1989):

Pi = exp(−
LiGΩ
sin β

), (A4)

where i ∈ [1,… , M] is the index of the canopy layer with i = 1 standing for the lowest layer; Li is the cu-
mulative leaf area index from the top of the canopy to the ith layer; Ω is the leaf clumping factor and is within
(0, 1); β is the solar elevation angle; and G is the foliage orientation function depending on the given leaf angle
distribution. Here, we uniformly divide a total leaf area index, L, into each canopy layer such that:

ΔLi =
L
M

(A5)

Li = L − ∑
i

j=1
ΔLj, (A6)

where ΔLi is the leaf area index at the ithe layer.

Table A1
The Default and Estimated Parameters of JAX‐CanVeg for a Multi‐Layer (ML) Setup With the Weighting Factor ω = 0.5

Default US‐Bi1 PB US‐Bi1 Hybrid US‐Me2 PB US‐Me2 Hybrid US‐Whs PB US‐Whs Hybrid US‐Hn1 PB US‐Hn1 Hybrid

ϵ 9.8e− 01 6.1e− 01 4.1e− 01 8.2e− 02 3.4e− 02 8.9e− 01 6.7e− 01 8.6e− 01 9.9e− 01

rPAR 5.0e− 02 3.3e− 03 5.0e− 05 1.7e− 01 1.6e− 01 2.5e− 01 1.8e− 01 2.4e− 01 2.4e− 01

τPAR 5.0e− 02 3.9e− 01 2.5e− 01 2.0e− 01 5.0e− 05 2.8e− 01 1.9e− 01 1.4e− 03 4.4e− 03

rNIR 6.0e− 01 3.3e− 03 3.2e− 01 2.1e− 01 6.0e− 01 5.2e− 01 5.8e− 01 6.6e− 01 7.5e− 01

τNIR 2.0e− 01 5.0e− 05 5.0e− 05 1.5e− 01 2.2e− 01 1.5e− 01 1.6e− 01 2.4e− 01 3.5e− 01

m 5.0e− 02 6.2e− 02 2.4e− 02 1.5e− 02 5.0e− 05 5.0e− 05 5.0e− 05 6.9e− 03 1.0e− 02

g0 4.0e− 02 8.4e− 02 1.0e− 01 1.0e− 01 1.0e− 01 1.0e− 01 1.0e− 01 1.0e− 01 9.3e− 02

ls 2.2e− 01 1.8e− 01 1.7e− 01 1.1e− 01 1.2e− 01 7.7e− 03 1.1e− 01 3.3e− 02 1.7e− 02

α 8.2e+00 8.5e+00 8.4e+00 8.2e+00 8.1e+00 8.2e+00 8.0e+00 8.0e+00 7.9e+00

Ω 9.5e− 01 1.0e+00 1.0e+00 7.9e− 01 8.7e− 01 7.4e− 01 7.6e− 01 7.1e− 01 7.5e− 01

Vc,max,25 1.7e+02 1.7e+02 1.7e+02 1.7e+02 1.7e+02 1.7e+02 1.7e+02 1.7e+02 1.7e+02

Jmax,25 2.6e+02 2.6e+02 2.6e+02 2.6e+02 2.6e+02 2.6e+02 2.6e+02 2.6e+02 2.6e+02

ϵsurf 9.8e− 01 5.6e− 01 5.4e− 01 2.3e− 01 7.4e− 01 1.0e+00 8.6e− 01 1.0e+00 1.0e+00

ar 5.0e+00 5.7e+00 5.7e+00 5.2e+00 5.4e+00 4.5e+00 4.9e+00 4.9e+00 5.0e+00

br 1.7e+00 1.0e+00 1.5e+00 8.5e− 01 1.3e+00 1.2e+00 1.6e+00 1.6e+00 1.7e+00

cr 8.0e− 01 1.1e− 01 1.8e− 01 4.1e− 01 3.3e− 01 1.1e+00 8.2e− 01 8.5e− 01 8.4e− 01

Note. (m: The slope of the Ball‐Berry equation; g0: The intercept of the Ball‐Berry equation; ls: The leaf's length scale controlling the boundary layer conductance used in
Equation A20, ϵ: The leaf emissivity coefficient used in Equations A13 and A35; α: The leaf quantum yield affecting the potential rate of electron transport used in
Equation A23); Ω: The leaf clumping factor used in Equation A4; Vc,max,25 and Jmax,25: The maximum carboxylation rate by Rubisco and the maximum rate of
electron transport at 25 °C used to calculate Vc,max in Equation A22 and Jmax in Equation A24 through the Arrhenius equation, respectively; ϵsurf : The soil surface
emissivity used in Equation A57; rPAR, rNIR, τPAR, and τNIR: The leaf reflectance and transmittance coefficients of photosynthetic active radiation (PAR) and
near‐infrared radiation (NIR) used in Equations A8 and A9; and ar, br, and cr: The three coefficients of the Q10 power equation for calculating soil respiration used in
Equation A77.
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Shortwave direct beam radiation. The direct beam radiation of a given waveband that reaches the ith canopy layer
can be calculated as the product of the incoming beam radiation of the waveband and the probability of beam
penetration at that layer:

Qi,∗,bm = Pi ⋅Q∗,bm, (A7)

where ∗ is a general notation of the two wavebands (i.e., PAR and NIR).

Shortwave diffuse radiation. The scattering of light within the canopy is calculated using the Norman model
(Norman & Campbell, 1989) as:

Q↓
i,∗,df = Q

↓
i+1,∗,df [ldf,i+1 + (1 − ldf,i+1)τ∗] + Q

↑
i,∗,df (1 − ldf,i+1) r∗ + Qi+1,∗,bm (1 − lbm,i+1)τ∗ (A8)

Q↑
i+1,∗,df = Q

↑
i,∗,df [ldf,i+1 + (1 − ldf,i+1)τ∗] + Q

↓
i+1,∗,df (1 − ldf,i+1) r∗ + Qi+1,∗,bm (1 − lbm,i+1) r∗, (A9)

where the superscripts ↓ and ↑ represent the downward and upward direction of the diffuse radiation; τ∗ and r∗ are
the leaf transmittance and reflectance coefficients, respectively, of either PAR or NIR; lbm,i is the direct beam
transmittance through ΔLi obtained by lbm,i = exp(− ΔLiGΩ/ sin β) ; and ldf,i is the diffuse transmittance
through layer i with leaf area index ΔLi obtained by summing exp(− ΔLiGΩ/ sin β) over all sky angles β. Here,
the downward shortwave diffuse radiation at the canopy top Q↓

M, ∗ ,df is given by Q∗,df .

Longwave radiation. The longwave radiation profile across the canopy is also calculated by using the Norman
algorithm based on the incoming longwave radiation from the sky, Lsky, which is calculated using the following
function Crawford and Duchon (1999):

Lsky = Lsky,clear(1 −
QTOT

QTOT,clear
) +

QTOT
QTOT,clear

σT4a , (A10)

where QTOT,clear is the theoretical clear sky downward solar radiation (W m− 2) calculated by Allen (1998); Ta is
the air temperature (K); Lsky,clear is the clear sky downwelling longwave radiation determined by the method
introduced in Brunt (1932):

Lsky,clear = (0.605 + 0.048e1/2a )σT4a . (A11)

Given Lsky, we used the Norman algorithm to further delineate the canopy radiation profile as:

L↓i = L
↓
i+1 [ldf,i+1 + (1 − ldf,i+1) s] + L

↑
i (1 − ldf,i+1) s + ϵσT

4
l,i+1 (1 − ldf,i+1) (A12)

L↑i+1 = L
↑
i [ldf,i+1 + (1 − ldf,i+1) s] + L

↓
i+1 (1 − ldf,i+1) s + ϵσT

4
l,i+1 (1 − ldf,i+1), (A13)

where ϵ is the leaf emissivity coefficient and s is the scattering coefficient of L, given as (1 − ϵ)/2. Note that the
above equation replaces the direct beam scattering with emitted radiation based on leaf temperature. Lsky is set as
the downward radiation at the canopy top, L↓M.

Radiations absorbed by sunlit and shaded leaves. For both PAR and NIR, the maximum potential radiations that
reaches sunlit and shaded leaves are then calculated. For shaded leaves, the radiation is the sum of the upward and
downward diffusive radiations absorbed by the leaf and can be calculated as:

Qi,∗,shade = (Q
↓
i,∗,df + Q

↑
i,∗,df) (1 − τ∗ − r∗). (A14)

Sunlit leaves additionally absorb the unscattered direct beam radiation, which is the direct beam radiation that
reaches the layer adjusted by the leaf/sun angles and absorbed by the leaf. This is given as:
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Qi,∗,sun = Qi,∗,bm
G
sin β

(1 − τ∗ − r∗) + Qi,∗,shade. (A15)

The canopy longwave radiation contributes equally to the radiation budget of the two types of leaves as:

Li,shade = L
↓
i + L

↑
i (A16)

Li,sun = L
↓
i + L

↑
i . (A17)

Total radiation at each canopy layer. The total radiations of sunlit and shaded leaves at each layer is the sum of
the longwave and shortwave radiation components such that:

Qin,i,shade = Qi,PAR,shade + Qi,NIR,shade + ϵLi,shade (A18)

Qin,i,sun = Qi,PAR,sun + Qi,NIR,sun + ϵLi,sun. (A19)

A2. Leaf Boundary Layer Conductance

The model used the flat plate theory (Schuepp, 1993) to compute the leaf boundary layer conductance gb,m in
Equation A1 as

gb,m =
dSh
ls
, (A20)

where ls is a leaf's length scale; Sh is the Sherwood number; and d is the molecular diffusivity using the
calculation in Massman (1998).

Figure A2. Comparison between implicit function theorem‐based automatic differentiation (IFT‐AD) and finite difference‐
based differentiation (FD) using the directional derivative of NEE using the process‐based JAX‐CanVeg on the default
parameters w listed in Table A1. (The directional derivative of IFT‐AD is calculated as ∂NEE∂w ⋅ u where u = [1,… ,1]nw is a unit
vector with size nw; and the directional derivative of FD is calculated as FNEE(x,w+ hu) − FNEE(x,w)h , where h = 0.01 and
FNEE : Rnx × Rnw → R is the function of JAX‐CanVeg to calculate NEE.

Water Resources Research 10.1029/2024WR038116

JIANG ET AL. 23 of 36

 19447973, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038116, W

iley O
nline L

ibrary on [15/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A3. Photosynthesis and Stomatal Conductance

The photosynthesis process is simulated by the Farquhar model (Farquhar et al., 1980) given by:

A = Vc − 0.5Vo − Rd = min[Wc,Wj] (1 −
Γ∗

Ci
) − Rd, (A21)

where A is the photosynthesis rate (μmol m− 2 s− 1); Vc is the carboxylation rate (μmol m− 2 s− 1); Vo is the photo-
respiration rate (μmolm− 2 s− 1); Rd is the dark respiration rate (μmolm− 2 s− 1); Γ∗ is the CO2 compensation point in
the absence of dark respiration (ppm); Ci is the intercellular CO2 concentration (ppm); and Wc and Wj are the
carboxylation rates restricted by the Rubisco under saturation of ribulose biphosphate (RuBP) and electron
transport for RuBP regeneration, respectively. The formulations ofWc andWj follow the Michaelis‐Menton type
model as:

Wc =
VcmaxCi

Ci + Kc(1 + [O2]
Ko
)

(A22)

Figure A3. Time series of flux tower observations and MODIS leaf area index at both flux tower sites US‐Bi1 (left) and US‐Me2 (right), including air temperature (Ta,
°C), ambient vapor pressure (ea, kPa), air pressure (Pa, hPa), ambient CO2 concentration (Ca, ppm), wind speed (WS, m s− 1), friction velocity (u∗, m s− 1), solar radiation
(Q, W m− 2), soil temperature (Ts, °C), volumetric soil water content (θs, m3 m− 3), latent heat flux (LE, W m− 2), net ecosystem exchange (NEE, μmol m− 2 s− 1), net
radiation (Rn, W m− 2), sensible heat flux (H, W m− 2), and ground heat flux (G, W m− 2).
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Wj =
JCi

4Ci + 8Γ∗ , (A23)

where Ko and Kc are the Michaelis‐Menton coefficients for O2 and CO2, respectively; [O2] is the oxygen
concentration; Vcmax is the maximum carboxylation rate by Rubisco (μmol m− 2 s− 1); and J is the potential rate of
electron transport and is given as:

J =
αI
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + α2I2

J2max

√ , (A24)

where I = 4.6 ⋅QPAR,∗ is the incident photosynthetically active photon flux (mmols m− 2 s− 1) and converted from
QPAR,∗ in Equation A15, α is the quantum yield (mol e− mol− 1 quanta) and Jmax is the maximum rate of electron
transport (μmol m− 2 s− 1), respectively. Values of Jmax, Vcmax, Kc, Ko, and Rd are temperature dependent. Kc, Ko,
and Rd are calculated using the Arrhenius equation that delineates an exponential increase with the temperature
(see Equation 10 in Bernacchi et al. (2013)). Jmax and Vcmax are calculated using the modified Arrhenius equation
to account for the value decrease at extreme temperatures (see Equation 11 in Bernacchi et al. (2013)).

Simple conductance relations are used to relate Ci with the surface (Cs) and ambient (Ca) CO2 concentrations as:

Cs = Ca −
A

gb,m/1.6
(A25)

Ci = Cs −
A

gs,m/1.6
, (A26)

where gb,m and gs,m are the conductances of the leaf laminar boundary layer and the stomata, respectively, in units
of mol m− 2 s− 1. Ca and gb,m are external inputs to the photosynthesis model calculated in Equation A20. gs,m is
calculated using the Ball‐Berry model as:

gs,m =
mAθl
Cs

+ g0, (A27)

where θl is the leaf relative humidity; and m and g0 are the model slope and intercept, respectively. m and g0 are
tunable parameters. Here, we obtain θl by using both an equation with saturation assumption and a hybrid model
that links soil moisture content to account for the plant water deficit (see Equation 13 in the main manuscript).

Equations A21–A27 lead to a cubic equation of A. We used the resulting analytical solution of A derived in
Baldocchi (1994).

Fluxes intergrated across canopy. The total fluxes from the canopy is the weighted sum of the fluxes from each
canopy layer timed by the leaf area index in the layer:

Acan =∑
M

i=1
(Asun,iPsun,i + Ashade,iPshade,i)ΔLi (A28)

Rd,can =∑
M

i=1
(Rd,sun,iPsun,i + Rd,shade,iPshade,i)ΔLi, (A29)

where Psun,i is the probability of sunlit or beam portion of the leave and calculated as the derivative of Pi with
respect to leaf area index Li, adjusted for the sunlit leaf angles:

Psun,i = −
sin β
G

dP0
dLi

= Ω exp(−
LiGΩ
sin β

). (A30)
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Correspondingly, the remaining part is the shaded portion:

Pshade,i = 1 − Psun,i. (A31)

A4. Leaf Energy Balance

The energy balance of a two‐sided leaf is conserved among the net radiation Rn,l (W m− 2), the latent heat flux LEl
(W m− 2), the sensible heat flux H (W m− 2), the incoming radiation Qin,l (W m− 2), and the outgoing longwave
radiation Ll (W m− 2). For simplicity, we omit the layer index i and shaded or sunlit options and express the leaf
energy balance as below:

Rn,l = Qin,l − Ll = LEl + Hl (A32)

LEl =
0.622λρagw

Pa
(es (Tl) − ea) (A33)

Figure A4. Time series of flux tower observations and MODIS leaf area index at both flux tower sites US‐Whs (left) and US‐Hn1 (right), including air temperature (Ta,
°C), ambient vapor pressure (ea, kPa), air pressure (Pa, hPa), ambient CO2 concentration (Ca, ppm), wind speed (WS, m s− 1), friction velocity (u∗, m s− 1), solar radiation
(Q, W m− 2), soil temperature (Ts, °C), volumetric soil water content (θs, m3 m− 3), latent heat flux (LE, W m− 2), net ecosystem exchange (NEE, μmol m− 2 s− 1), net
radiation (Rn, W m− 2), sensible heat flux (H, W m− 2), and ground heat flux (G, W m− 2).
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Hl = 2ρaCpgh (Tl − Ta) (A34)

Ll = 2ϵσT4l , (A35)

where ρa is air density; λ is the latent heat of vapourization; gw is the conductance for water vapor transfer (m s− 1);
gh is the conductance for sensible heat transfer (m s− 1); Pa is air pressure (kPa); Tl is the leaf temperature (K); Ta is
the air temperature (K); ea is the ambient vapor pressure (kPa); es is the saturated vapor pressure (kPa); and Cp is
the specific heat of air. The incoming radiation Qin is calculated in the radiative transfer subroutine (Equa-
tions A18 and A19). Here, we omit the subscripts for the layer index and the leaf type for convenience.

Solution for leaf temperature Tl. By using the Taylor Series expansion to approximate ϵσT4l and es (Tl) through
Clausis Claperyon, up to the second order, we can derive the quadratic equation to solve the difference between Tl
and Ta as below (Paw U & Gao, 1988):

a1ΔT2 + b1ΔT + c1 = 0. (A36)

The coefficients are given as:

a1 = 12ϵσT2a +
d2es (Ta)
dT2a

γLEl
2

(A37)

b1 = 8ϵσT2a + γHl + γLEl
des (Ta)
dTa

(A38)

c1 = − Qin,l + La + γLEl(es (Ta) − ea), (A39)

where γHl = 2ρaCpgh, γLEl =
0.622λρagw

Pa
, and La = 2ϵσT4a . Once ΔT is solved, we can obtain Tl = Ta + ΔT and

thus obtain H, L, Rn based on Equations A32, A34, and A35, respectively.

Solution for leaf latent heat flux LEl. A similar quadratic equation can be derived for LE as below for checking the
energy balance in Equation A32:

a2LE2l + b2LEl + c2 = 0. (A40)

The coefficients a2, b2, and c2 depend on the leaf type. For hypostomatous leaves, the conductance of water vapor
transfer gw is defined as gw =

gsgb
gs + gb

with gs and gb as stomatal conductance (m s− 1) and aerodynamic conductance
for water vapor transfer (m s− 1), respectively. Here, the conversions from gs,m and gb,m are performed based on:

gs = gs,mTl
101.3 × 0.022624

273.15Pa
(A41)

gb = gb,mTl
101.3 × 0.022624

273.15Pa
. (A42)

Correspondingly, the coefficients in Equation A40 are given as

a2 = γLEl
d2es (Ta)
dT2a

1
4γ

(A43)

b2 = − γ − γLEl
des (Ta)
dTa

− 2a2 (Qin,l − La) (A44)

c2 = a2 (Q2in,l − 2Qin,lLa + L
2
a) + γLEl((es (Ta) − ea)γ +

des (Ta)
dTa

(Qin,l − La)), (A45)
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where γ = γHl + 8ϵσT3a .

For amphistomatous leaves, gw is defined as gw =
gtop + gbottom
gtopgbottom

, where gtop = gbottom = 1
gb + gs/2

. The coefficients are

derived as:

a2 = γLEl
d2es (Ta)
dT2a

1
2γ

(A46)

b2 = − γ − γLEl
des (Ta)
dTa

− 2a2
Qin,l
γ
+ 2a2

La
γ

(A47)

c2 = a2 (Q2in,l − 2Qin,lLa + L
2
a) + γLEl((es (Ta) − ea)γ +

des (Ta)
dTa

(Qin,l − La)). (A48)

States and fluxes integrated across canopy. The total states and fluxes from the canopy is the weighted sum of the
fluxes from sunlit and shaded leaves at each canopy layer timed by the leaf area index in the layer:

gs,can =∑
M

i=1
(gs,sun,iPsun,i + gs,shade,iPshade,i)ΔLi (A49)

Tl,can =∑
M

i=1
(Tl,sun,iPsun,i + Tl,shade,iPshade,i)ΔLi (A50)

Rn,can =∑
M

i=1
(Rn,l,sun,iPsun,i + Rn,l,shade,iPshade,i)ΔLi (A51)

Hcan =∑
M

i=1
(Hl,sun,iPsun,i + Hl,shade,iPshade,i)ΔLi (A52)

LEcan =∑
M

i=1
(LEl,sun,iPsun,i + LEl,shade,iPshade,i)ΔLi. (A53)

A5. Soil Energy Balance

The soil column is divided into N + 1 layers with Tsl,i representing the soil temperature at the ith layer
(i ∈ [0,… , N + 1]). We denote Tsurf = Tsl,0 as the ground surface temperature. The soil energy balance is
solved by coupling the surface energy balance with soil heat transfer.

Surface energy balance. At the soil surface (one‐sided), the energy balance is conserved as:

Rn,surf = Qin,surf − Lsurf = LEsurf + Hsurf + G (A54)

LEsurf =
0.622λρagw,surf

Pa
(es (Tsurf) − ea) (A55)

Hsurf = 2ρaCpgh,surf (Tsurf − Ta) (A56)

Lsurf = ϵsurfσT4surf , (A57)

Qin,surf = Q1,PAR,bm + Q
↓
1,PAR,df − Q

↑
1,PAR,df + Q1,NIR,bm + Q

↓
1,NIR,df − Q

↑
1,NIR,df + ϵL

↓
1 (A58)

where the subscript surf refers to the states or energy flux components at the ground surface; Tsurf is the surface
temperature (K); ϵsurf is the soil surface emissivity; G is the ground heat flux (W m− 2); and Qin,s is the overall
incoming radiation reaching the ground (Wm− 2). The sensible heat conductance of soil, gh,surf , is calculated using
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the Daamen and Simmonds methods (Daamen & Simmonds, 1996). The latent heat conductance, gw,surf , is
calculated as 1

1/ gh,surf + 1/ gH2O,surf with the surface water conductance gH2O,surf computed using the Kondo model

(Kondo et al., 1990).

Having the soil temperature profile solved (see below), we can calculate the ground heat flux G as:

Gt = ksl,1 (Ttsl,1 − T
t
sl,2) + cp,sl (T

t
sl,1 − T

t− 1
sl,1), (A59)

where the superscript t is the time index; ksl,1 is the top soil thermal conductivity (W m− 2 K− 1); cp,sl is the top soil
heat capacity rate (W m− 2 K− 1).

Solution for surface latent heat flux LEsurf . Following the linearization idea of Equation A33, LEsurf can be
obtained by solving a quadratic equation as:

a3LE2surf + b3LEsurf + c3 = 0, (A60)

where a3, b3, and c3 are the coefficients that are derived as (based on the linearization of both Clausis Claperyon
and Stefan Bolzmann equations up to the second order):

a3 = γLEsurf
d2es (Ta)
dT2a

1
2γsurf

(A61)

b3 = − γsurf − γLEsurf
des (Ta)
dTa

− 2a3 (Qin,surf − La − G) (A62)

c3 = a3 (Q2in,surf + L
2
a + G

2 − 2Qin,surfLa − 2Qin,surfG + 2GLa)

+γLEsurf(es (Ta) − ea)γsurf +
des (Ta)
dTa

(Qin,surf − La − G)),
(A63)

where γsurf = ρaCpgh,surf + 4ϵsσT3a ; γLEsurf =
0.622λρagw,surf

Pa
.

Solution for surface temperature Tsurf . Similar to the derivation of Tl, we can derive the quadratic equation to
solve the difference between Tsurf and Ta such that:

a4ΔT2surf + b4ΔTsurf + c4 = 0. (A64)

The coefficients are given as:

Figure A5. Learning trade‐off between LE and NEE. These plots show the change of MSE in Equation 15 over ω used in a multi‐objective optimization setting in
Equation 14 at the four sites. In each subplot, NSELE and NSENEE are plotted in the upper and bottom parts of the frame with yellow and violet lines representing the
results of PB‐ML and Hybrid‐ML models, respectively. The gray vertical arrow indicates the trend of an improved performance of MSE.

Water Resources Research 10.1029/2024WR038116

JIANG ET AL. 29 of 36

 19447973, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038116, W

iley O
nline L

ibrary on [15/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



a4 = 6ϵsurfσT2a +
d2es (Ta)
dT2a

γLE,surf
2

(A65)

b4 = 4ϵσT2a + γH,surf + γLEsurf
des (Ta)
dTa

(A66)

c4 = − Qin,surf + La + G + γLEsurf(es (Ta) − ea), (A67)

where γH,surf = ρaCpgh,surf . Subsequently, the derived ΔTsurf allows the calculation of Tsurf ,Hsurf , Lsurf , and Rn,surf .

Soil heat transfer. A transient, one‐dimensional heat conduction in the soil requires:

cv
∂Tsl
∂t

= −
∂F
∂z
=
∂
∂z
(K
∂Tsl
∂z
), (A68)

where cv is volumetric heat capacity (J m− 3 K− 1); Tsl is the soil temperature (K); K is soil thermal conductivity
(W m− 1 K− 1); and F is the heat flux by conduction (W m− 2) following the Fourier's law.

The soil column is discretized into N evenly divided layers. Let K̄j = ηKt+ 1j + (1 − η)Ktj with η ∈ [0,1] and
j ∈ [0,… , N]. The discretized Ktj represents K between layers j + 1 and j at the time step t. We can further
discretize the partial differential equation (Equation A68) into:

cv
Tt+1sl,j − T

t
sl,j

Δt
zj+1 − zj− 1

2
= K̄j

[ηTt+1sl,j+1 + (1 − η)T
t
sl,j+1] − [ηT

t+1
sl,j + (1 − η)T

t
sl,j]

zj+1 − zj
−

¯Kj− 1
[ηTt+1sl + (1 − η)Ttsl,j] − [ηTt+1sl,j− 1 + (1 − η)Ttsl,j− 1]

zj − zj− 1
.

(A69)

Equation A69 is a general solution for temporal difference. When η = 0, Equation A69 yields a forward dif-
ference solution while it adopts a backward difference solution when η = 1.

Solving Equation A69 requires the rearrangement of the equation into the following linear equations

asl,jTt+1sl,j− 1 + bsl,jT
t+1
sl,j + csl,jT

t+1
sl,j+1 = dsl,j, (A70)

producing a matrix of equations for solving Tt+ 1sl,i with asl,j, bsl,j, csl,j, and dsl,j the coefficients. We used the Thomas
Algorithm (Bittelli et al., 2015) to solve the set of simultaneous equations with the conditions asl,1 = 0
and csl,N = 0.

The top and bottom boundary conditions adopt the simulated and observed soil temperature. The top boundary
condition Ttsl,0 uses the simulated surface temperature at the previous time step T

t − 1
surf . The bottom temperature

Ttsl,N+ 1 uses the observed temperature from sensors.

A6. Turbulence and Diffusion

Using Fick's law in Equation A1 requires getting the ambient concentration or heat content Cona. The model
employs a Lagrangian random walk method to resolve Cona at any height z as below (Baldocchi, 1992):

Cona(z) − Cona(r) =∑
M

i=1
Si (Conl (zi))Dz,ziΔzi, (A71)

where Conl is the source of the particles from the canopy; r is a reference level (e.g., flux tower); Δzi is the
incremental height of the ithe layer; andDz,zi is a dispersion matrix in units of sm

− 1 calculated using the algorithm
of Thomson (1987). Equation A71 describes that the concentration between the reference height r and any
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arbitrary height z at the ambient condition is the sum of the contributions of materials from different layers of the
canopy (Baldocchi et al., 1999).

A7. Calculation of Overall Fluxes

The energy fluxes reaching the top of canopy is the sum of the fluxes from both canopy and soil as:

Figure A6. Learning trade‐off between LE and NEE. These plots show the change of CC in Equation 17 over ω used in a multi‐objective optimization setting in
Equation 14 at the four sites. In each subplot, NSELE and NSENEE are plotted in the upper and bottom parts of the frame with yellow and violet lines representing the
results of PB‐ML and Hybrid‐ML models, respectively. The gray vertical arrow indicates the trend of an improved performance of CC.

Figure A7. JAX‐CanVeg simulation using the multi‐layer canopy setup at US‐Bi1. (a, b) plot the daily averaged simulations of LE andNEE with both the hybrid (violet)
and process‐based (yellow) models, using ω = 0.5 and ω = 1.0 in the loss function (Equation 14), respectively.
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Rn = Rn,can + Rn,surf (A72)

LE = LEcan + LEsurf (A73)

H = Hcan + Hsurf . (A74)

The corresponding carbon flux is calculated as the net ecosystem exchange NEE such that:

NEE = Rsl − GPP, (A75)

GPP = Acan − Rd,can, (A76)

where GPP is the gross primary production (μmol m− 2 s− 1) and Rsl is the soil respiration (μmol m− 2 s− 1). Rsl is
calculated by using a Q10‐power model (B. Wang et al., 2014) through soil temperature and soil moisture as:

Rsl = ar ⋅ br
(Tsl − 273.15)− 10

10 ⋅ θslcr , (A77)

where θsl is the volumetric soil water content (m3 m− 3) and ar, br, and cr are tunable parameters.

Figure A8. JAX‐CanVeg simulation using the multi‐layer canopy setup at US‐Me2. (a, b) plot the daily averaged simulations of LE and NEE with both the hybrid
(violet) and process‐based (yellow) models, using ω = 0.5 and ω = 1.0 in the loss function (Equation 14), respectively.
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Data Availability Statement
The source code of JAX‐CanVeg is available and maintained at https://github.com/pnnl/JAX‐CanVeg. A code
copy is also downloadable from Zenodo at Jiang et al. (2024).
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