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The ab initio non-crystalline structure
database: empowering machine learning
to decode diffusivity

Check for updates

Hui Zheng1, Eric Sivonxay 2,3, Rasmus Christensen1,4, Max Gallant1,2, Ziyao Luo1,
Matthew McDermott 1,2, Patrick Huck 1, Morten M. Smedskjær 4 & Kristin A. Persson 1

Non-crystalline materials exhibit unique properties that make them suitable for various applications in
science and technology, ranging from optical and electronic devices and solid-state batteries to
protective coatings. However, data-driven exploration and design of non-crystalline materials is
hampered by the absence of a comprehensive database covering a broad chemical space. In this
work, we present the largest computed non-crystalline structure database to date, generated from
systematic and accurate ab initio molecular dynamics (AIMD) calculations. We also show how the
database can be used in simple machine-learning models to connect properties to composition and
structure, here specifically targeting ionic conductivity. Thesemodels predict the Li-ion diffusivity with
speed and accuracy, offering a cost-effective alternative to expensive density functional theory (DFT)
calculations. Furthermore, the process of computational quenching non-crystalline structures
provides a unique sampling of out-of-equilibrium structures, energies, and force landscape, and we
anticipate that the corresponding trajectories will inform future work in universal machine learning
potentials, impacting design beyond that of non-crystallinematerials. In addition, combining diffusion
trajectories fromour datasetwithmodels that predict liquidus viscosity andmelting temperature could
be utilized to develop models for predicting glass-forming ability.

Amorphous materials are generally characterized by the lack of long-range
order as a result of synthesis processes that freeze in anon-equilibrium, non-
crystalline structure.Notably, suchnon-crystallinematerials canmanifest in
structures characterized, e.g., as liquid, supercooled liquid, or glass1. Com-
pared to the stringent synthesis requirements of crystalline materials for
ordered atomic arrangement, synthesizing non-crystalline materials tends
to be less energy-intensive as it is often done via low-temperature methods
such as ballmilling, vapor deposition, and sol-gel synthesis or through rapid
cooling from the liquid state via the melt-quenching method2. Different
synthesis methods generally lead to different structures. For glass produced
via melt-quenching, the rate at which a material is cooled from a liquid to a
solid state can influence the structure and, thereby, its properties
significantly1. Such tunability can be leveraged to engineer a wide range of
physical, chemical, and mechanical properties. As examples, bulk metallic
glasses with unique magnetic properties are found in high-efficiency
transformers3,4, amorphous alkali-aluminosilicates were made famous as
the world-leading cover glass for portable electronics5, and amorphous 2D

boron nitrides are proposed for the next-genmemory solutions due to their
ultra-low dielectric constant combined with excellent electrical and
mechanical properties6,7.

Amorphous materials are also considered for various applications in
energy storage. For example, amorphous anodes, particularly silicon and
silicon-tin alloys, are pursued as high-capacity, lower-cost alternatives to
graphite.8–14 Furthermore, the conformal nature of amorphous materials
proffers major advantages in electrode coating applications15–18 and as
electrolytes for all-solid-state batteries. While crystalline Li7La3Zr2O12

(LLZO) exhibits high Li-ion conductivity, it also allows for lithium dendrite
growth through the grain boundaries19–21, whichpresents safety concerns. In
comparison, amorphous LLZO exhibits lower Li-ion diffusivity but shows
marked improvement in safety and cyclability21. In contrast, amorphous
lithium phosphorus oxynitride (LiPON) shows a higher Li-ion diffusivity
than its crystalline counterpart20–22, which indicates a possible design space
where ionic conductivity and safety can be optimized within an amorphous
phase space.

1Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 2Materials Science and Engineering, University of California, Berkeley,
Berkeley, CA, USA. 3Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 4Department of Chemistry and Bioscience, Aalborg
University, Aalborg, Denmark. e-mail: kapersson@lbl.gov
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Unfortunately, measuring ionic diffusivity in inorganic (amorphous or
crystalline)materials is highly time-consuming, andmore often thannot, the
inherent bulk diffusivity is masked by other factors, such as pellet densifi-
cation.Therefore, current composition-property databases of glassmaterials,
such as SciGlass23 and INTERGLAD24, only contain measurements of these
properties for a limited number of compositions. It is possible to obtain an
estimate of the ionic diffusivity through Ab Initio Molecular Dynamics
(AIMD); However, unlike crystalline compounds, the atomic structures of
non-crystalline materials are usually not well known, as complete structural
mapping of non-crystalline materials is challenging to conduct in
experiments25. Furthermore, non-crystalline structures require larger unit
cells to capture sufficient and representative local environments compared to
crystals. As ofwriting, the only reported structure database is the amorphous
nanoporous materials database, which includes atomic configurations of 75
amorphous carbons, 119 polymers, and 16 kerogens. The database is curated
from earlier literature26 and covers a limited range of compositions. Tomeet
the need to accelerate our discovery and design of non-crystalline materials
with target functionality, in this study, we present an extensive, computed
database of melt-quenched non-crystalline structures covering 4849 com-
positions and 79 elements generated through systematic AIMDcalculations.
Due to the large coverage of compositions,where the vastmajority ofmelting
and glass transition temperatures are unknown, we are unable to rigorously
specify the phase of each composition. Therefore, we use the broad term
“non-crystalline structure” to encompass all non-crystalline phases studied.
We demonstrate one aspect of the database’s applicability in training an
efficient machine-learning model to rapidly and accurately predict Li dif-
fusivity, providing a cost-effective alternative to density functional theory
(DFT) calculations.Wealso anticipate a broaderusefulness of thedatabase as
it opens up new possibilities for improving current directions in universal
machine learning potentials by providing unique information about
structure-energy-force relationships far from equilibrium configurations.

Results
Data scope
The synthesis method used to obtain a non-crystalline structure sig-
nificantly impacts its final form. This variability poses a challenge when
creating a non-crystalline structure database, as a single composition can
yield a broad variety of non-crystalline structures. To address this, we have
developed a self-consistent and computationally efficient methodology for
generating non-crystalline structures across various chemical compositions,
detailed in the Methods section. Our approach emulates the experimental
melt-quenching technique, commonly used in simulations to produce non-
crystalline structures. For computational efficiency, we employ instanta-
neous cooling to target temperatures, followed by volume relaxation using
an equation of state approach.

The produced non-crystalline structure database includes two subset
databases. The first one consists of 5120 compounds, which are melted at
5000K using the MPMorph workflow. Details about the workflow can be
found inMethods section. This database is here denoted as the “5000Knon-
crystalline database”, containing liquid structures of these compounds. A
second lower temperature database is generated for 220 selected compounds
by instantaneously quenching the last snapshot structures from the 5000K
database to the target temperatures of 1000K, 1500K, 2000K, and2500Kand
annealing them using the same MPMorph workflow. This database is
denoted as the “multi-temperature non-crystalline database.” As our
database encompasses structures ranging from liquid to supercooled liquid
and glassy states, we have classified it as the “non-crystalline structure
database.” This terminology captures the diversity of non-crystalline
structures present, acknowledging their varying degrees of structural
disorder.

Among the 4849 compositions in the 5000K non-crystalline database,
3533 compounds contain lithium (Supplementary Fig. 1). Figure 1 presents
the proportion of each element’s occurrence within the compositions in the
5000K non-crystalline database, compared to its occurrence within the
Materials Project database. We note that the 5000K database exhibits
extensive coverage, providing a similar representation of compositions
compared to the Materials Project. The element occurrence of the com-
pounds in the Materials Project is shown in Supplementary Fig. 2, where
there are approximately 50,000 compounds containing Li. Similarly, the
element occurrence in the compositions covered in the multi-temperature
non-crystalline database is shown in Supplementary Fig. 3. Supplementary
Fig. 4 shows the ratio of the element occurrence within the multi-
temperature non-crystalline database compared to its occurrencewithin the
Materials Project database. We find that the multi-temperature non-crys-
talline database also effectively captures a diverse range of material com-
positions, ensuring a comprehensive chemical representation.

Correlations between Li+ diffusivity and composition
Amorphous materials exhibit short-range ordering, which is strongly
dependent on the composition. For example, amorphous Al2O3 exhibits a
distribution of 4, 5, and 6-fold oxygen-coordinated Al3+ units, where the
distribution depends on the synthesis or formation conditions. Since
cationic diffusion in amorphous structures has been shown to be highly
correlated and dependent on bond-formation/breaking events between the
cation and its anionic environment15,16, we anticipate that Li+ diffusion in
non-crystalline inorganic materials will correlate strongly to anion specie
and composition. In the following section, we identify and analyze the
correlations between the Li-ion diffusivity and (1) the composition of the
materials, (2) the size of the anions and cations, and (3) the electronegativity
difference between the compositional species.

Fig. 1 | Elemental occurrence in the 5000K non-
crystalline database compared to the Materials
Project.Element occurrence ratios for compositions
in the non-crystalline database are shaded by
color scale.
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In the context of data coverage, we emphasize that the samples
obtained from the collected group may have different sizes. For instance,
there is a higher number of compounds containing oxygen compared to
those containing sulfur, selenium, and tellurium. Similarly, there is a greater
presence of compounds with fluorine compared to compounds containing
chlorine, bromine, and iodine. This is demonstrated in Fig. 2 and Supple-
mentary Fig. 3. A small sample size may impact the accuracy in comparing
different anion groups. Therefore, our analysis focuses on compounds with
larger sample sizes, ensuring that the distributions are distinct enough to
yield conclusive results.

Figure 2 and Supplementary Fig. 6 show the Li diffusivity and activa-
tion barrier distributions calculated from the multi-temperature non-crys-
talline database. We make several observations of Li-ion diffusivity trends
within different groups of the Periodic Table. Within the halogen group,
compositions that include fluorine (F) demonstrate significantly lower
diffusivity and higher activation energy (Ea) compared to those containing
chlorine (Cl), bromine (Br), or iodine (I). The general trend matches the
order of the bonddissociation energy. i.e., Li-Fhas thehighest bond strength
of 577 kJ/mol, compared to 469 kJ/mol for Li-Cl, 423 kJ/mol for Li-Br, and
352 kJ/mol for Li-I.27 Similarly, in the chalcogen group, compositions
incorporating oxygen (O) exhibit lower diffusivity and a higher Ea when
compared to those that include sulfur (S). Compounds containing elements
from the VA group have been evenly distributed Ea due to the small sample
size. Compounds with tin (Sn) have slightly lower Ea compared to those
with silicon (Si). These trends all follow a similar pattern, such that a larger
atomic radius of the anion species—corresponding to elements froma larger
row number within the same group—results in lower Li activation energy
(Ea) and, thus, higher Li diffusivity. Correspondingly, higher electro-
negativity or higher charge density leads to stronger bondingbetweenLi and
anions, resulting in higher Ea for Li diffusion. The even distribution of
activation energies (Ea) among compounds containing oxyanions, as shown
in the bottom distribution, may be attributable to the small sample size.

In addition to the correlation between anion species and Li diffusivity,
thepresenceof other cations canalso influenceLidiffusivity. Supplementary
Fig. 7 depicts the average Li diffusivity values from the 5000K non-
crystalline database across compounds containing specific elements from
the periodic table. Certain elements correspond to higher Li diffusivity than

others. For example, there are two regions of elements that contribute to
high Li diffusivity: the alkali/alkaline metals group (IA and IIA) and the
right-hand side of the periodic table, encompassing groups IB, IIB, and IIIA
through VIIA. For compounds containing elements from these groups, a
trend is observable: with an increasing row number (and hence, larger
atomic radius), Li diffusivity also increases. The presence of cations origi-
nating from groups IIIA to VIIA will likely result in polyanionic environ-
ments (carbonates, nitrates, phosphates, polyhalogens, etc.) within the non-
crystalline material, which on average, leaves the Li+ less directly coordi-
nated to oxygen and hencemore free tomove. Supplementary Fig. 8 further
illustrates the standard deviation (STD) of Li diffusivity for compounds
containing specificperiodic elements.Notably, compounds that incorporate
elements from groups IIB and IIIA toVIA demonstrate smaller STDswhen
compared to compounds containing alkali elements.

Supplementary Figs. 9 and 10 present similar plots for the activation
barrier (Ea) of Li

+, derived from the more limited multi-temperature non-
crystalline dataset. Owing to the smaller sample size of the data, the dis-
tribution of elements associatedwith lowerLiEa is not as pronounced as the
Li diffusivity distribution from the 5000K database displayed in Supple-
mentary Fig. 7. Nevertheless, compounds containing Cl, Br, I, S, Se, Pb, Sr,
Sn, In, Ba,Na, K, andRb demonstrate lowerEa than other compounds. This
observation aligns with cases of high Li diffusivity in the 5000K database, as
depicted in Supplementary Fig. 7.

Our analysis encompasses compounds that range from binary to
ternary, quaternary, and even quinary. Consequently, Li-ion diffusivity
associated with one element often cross-correlates with other elements
present in the same set of compounds. This necessarily results in some over-
counting and cooperative effects on Li diffusivity or Ea. We focus on
available binary LiX compounds (whereX represents any species within the
composition) to deconvolute these relationships. This approach allows us to
clarify the correlations between Li diffusivity and other elements. Figure 3
illustrates the correlation between the activation barrier of Li (Ea) and the
properties of the X species in LiX compounds. Panel a reveals a negative
correlation between Ea and the Li fraction in the composition. This obser-
vation corresponds to a similar phenomenon found in crystalline solid-state
electrolyte systems, denoted “Li stuffing”, where increased Li content
improves Li diffusion28. A similar trend is observed in the curated

Fig. 2 | Li diffusivities and activation energies.
Distributions of Li diffusivity, D (2500 K), and
activation energy, Ea, calculated from the multi-
temperature non-crystalline database. Composi-
tions are sorted based on the anion element present
in the system and collated by group on the periodic
table. The annotation on the right panel shows the Li
Ea order of the peak location from kernel density
estimate (KDE) as shown in Supplementary Fig. 6.
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experimentally measured Li conductivity in glasses, as reported by Har-
greaves et al.29 and visualized in Supplementary Fig. 22. SciGlass23 database
also reported limited Li diffusivity; a similar trend is observed in Supple-
mentary Fig. 23. The parity plots between the experimental and DFT-
calculated data of Li diffusivity and Li conductivity can be found in Sup-
plementary Fig. 24. Figure 3b demonstrates a strong negative relationship
between LiEa and the atomic radius ofX (RX), showing that largerX species
facilitates Li diffusion by providing more spacious frameworks and—in the
case of anions, lowers the electronegativity. In Supplementary Fig. 11, the
color gradient further clarifies why some large-radius points do not exhibit
correspondingly small Ea: a lower Li percentage. Thus, for compounds with
similar Li percentages, a larger atomic radius ofX implies lowerEa. Figure 3c
presents an approximately linear negative correlation between Li Ea and the
product of Li fraction (Li%) and atomic radius of XRX. Panels d and e
explore the influence of X species’ group and row numbers on Li Ea in LiX.
As the group number of X and the corresponding electronegativity differ-
ence between Li and X increase, Li Ea tends to rise due to stronger Li-X
bonds, thus inhibiting Li diffusion. Although an increase in X row number
generally results in lowermean values of LiEa, the impact is not pronounced
due to thewideEadistributionwithin species of the same rownumber. Panel
f highlights the trend that largerX rownumbers correlatewith larger atomic
radii, with the hue distinguishing X species from different groups.

Feature design for machine learning
As previously analyzed, both compositional and elemental properties of
species correlate with Li diffusivity. However, other features also directly or
indirectly impact Li diffusivity. Building on the work of Sendek et al.30, who
developed a feature set to differentiate high- and low-diffusivity materials,
we have expanded the feature set to include more compositional features.
This approach equips the machine learning models to learn the underlying
correlations between the features and Li diffusivity more comprehensively.
The expanded list of features, sorted by their Pearson correlation coefficient,
is provided in Table 1. The compositional features added to the feature set
here include Li percentage (Li%),which has a significant positive correlation

with the Li diffusivity in different compositions. A similar trend has been
observed in amorphous coating materials for Li-ion batteries as well as
crystalline solid-state electrolyte materials15,16,28. The weighted average of
cohesive energy Ecoh is calculated from the cohesive energy of the ground
state of the constituent elemental systems. The cohesive energy provides a
useful metric for describing the average bond strength of the local units in
the non-crystalline material. Specifically, the stronger the bonds, the
harder it is for the activated bond-breaking process to occur, which
underpins the diffusion process.Hence,Ecoh negatively correlateswith the
Li diffusivity. In addition, a few other features show a negative correlation
with Li diffusivity and can be explained in terms of the packing fraction of
a set of non-lithium (non-Li) atoms that are in close proximity to a central
lithium (Li) atomwithin a specified radius. We here denote these features
as (1) set-of-non-Li-atoms packing fraction (SPF), (2) set-of-non-Li-
atoms neighbor count (SNC), (3) Li neighbor count (LNC), (4) Li bond
ionicity (LBI), and (5) density. These structural features also showa strong
negative correlation with Li diffusivity, as when the non-Li atoms are
parking closely and form a tight structural motif framework, it is harder
for Li to diffuse. For more details on the quantitative definition of other
features, such as weighted average bulk moduli (B) and electronegativity
(X), please refer to Table 1, supplementary materials, and Supplementary
Note of reference by Sendek et al.30.

Machine-learning models
Three different diffusivity-prediction models are trained on the non-
crystalline database. Two ensemble learning models, Random Forest (RF)31

and Extreme Gradient Boosting (XGBoost)32, were employed to learn the
temperature-dependent diffusivity. The parity plots comparing the DFT
calculated Li diffusivity and ML-predicted Li diffusivity for both training
and test data are shown in Fig. 4. We observe that both algorithms achieve
coefficients of determination (R2) close to 1, very low mean absolute error
(MAE), and root mean squared error (RMSE). Fivefold cross-validations
have been used to assess the performance and the generalization ability of
these two models via Scikit-learn33. Both RF and XGBoost measure feature

a b

c d

d

c

e f

Fig. 3 | Effect of composition on Li activation energies in binary compounds.
a–e show the correlations between the activation energy Ea of Li in binary com-
pounds and the elemental properties of the coexisting speciesX and Lithium fraction
(Li%) in the binary composition (LiX), such as atomic radius of element X (RX), the

multiplication of these two (Li% ⋅ RX), group number of X, row number of X. Color
and marker shapes signify the row number of element X. f Plots the correlation
between the RX and row number of X; colors are used to distinguish group numbers
of element X.
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importance, which indicates the relative significance of a particular feature
in diffusivity prediction. The top 11 most relevant features identified from
RFandXGBoostmodels are shown inFig. 4c and f, respectively.We also use
the SHAP method to analyze the feature importance as listed in Supple-
mentary Figs. 13, 14. Somewhat trivially, both models rank temperature as
the most important feature for predicting the diffusivity at different tem-
peratures. Further,while the orders of the important features predicted from
RF and XGBoost may differ, both models share similar highly ranked fea-
tures: average atomic volume (AAV), the ratio (RBI) of average Li bond
ionicity (LBI) with average bond ionicity of set-of-non-Li-atoms (SBI),
average Li neighbor count (LNC), Li percentage in the compositions (Li%),
etc. The definitions of features can be referenced in Table 1, Supplementary
Note, and ref. 30 for details.

Finally, we developed a descriptor for Li+ diffusivity using the sure
independence screening and sparsifying operator (SISSO) method34. The
SISSOmodel training and prediction results are shown in Fig. 5. Themodel
successfully captures the relationship similar to the Arrhenius equation
between features and Li diffusivity. Specifically, the temperature term 1

kBT
is

present in each model shown in Fig. 5. As the dimensionality (n) of the
model increases from 1 to 6, the RMSE decreases monotonically and con-
verges around when n = 4 for the training set. The parity plots for n = 5 and
n = 6 are omitted due to the marginal improvement observed for both
training and test datasets; therefore, the n = 4 model is selected as the final
SISSOmodel. The analytical equation for the four-dimensional model is as
follows:

dlnDLi ¼ �0:33×
1

kBT
� 0:11 × LNC þ 0:11× LLB� 1:95× PF � 3:55

ð1Þ

The first term of this equation resembles the Arrhenius relationship
lnD ¼ lnD0 � Ea

kBT
, predicting a linear correlation between the natural

logarithmofDLi and the inverse temperature (1T), where kB is the Boltzmann
constant. This term captures that elevated temperatures tend to increase Li
diffusivity.Although theSISSOmodel predicts that lnDLi scales linearlywith
1
T, this behavior cannot be guaranteed, as diffusivity may be influenced by
phase changes, particularly when crossing the glass transition.

The remaining terms in the equation reveal a negative correlation
between lnDLi and both the Li neighbor count (LNC) and the structure’s
packing fraction (PF), consistent with the negative Pearson correlation
coefficients. This aligns with the intuition that if Li is bonded with more
neighbors and the structure ismore densely packed, it becomesharder for Li
to diffuse, resulting in a lower DLi. Conversely, the positive correlation
between the number of Li-Li bonds per Li (LLB) andDLi suggests that when
Li atoms are surrounded by more Li atoms, the DLi increases.

Table 1 | Pearson correlation coefficients between various
features and the Li diffusivity, obtained from 5000 K AIMD
calculations

Feature Feature description Pearson r Unit

Ecoh
weighted cohesive energy −0.81 eV

SPF set-of-non-Li-atoms packing
fraction

−0.76 1

density weight/volume −0.67 g ⋅ cm−3

LNC Li neighbor count −0.64 1

B weighted bulk modulus −0.64 GPa

X weighted electronegativity −0.64 1

SNC set-of-non-Li-atoms
neighbor count

−0.63 1

LBI Li bond ionicity −0.61 1

AFC anion framework coordination −0.54 1

ELi
coh

weighted cohesive energy
exclude Li

−0.53 eV

SLPE straight-line path
electronegativity

−0.51 1

PF packing fraction −0.46 1

SDLI standard deviation of Li bond
ionicity

−0.34 1

m weighted atomic mass −0.32 kg

G weighted shear modulus −0.29 GPa

ENS electronegativity of set-of-
non-Li-atoms

−0.29 1

XLi weighted electronegativity
exclude Li

−0.29 GPa

BLi weighted bulk modulus
exclude Li

−0.28 GPa

LLSD Li-Li separation distance −0.27 Å

RBI ratio of LBI and SBI −0.24 1

GLi weighted shear modulus
exclude Li

−0.10 GPa

SDLC standard deviation in Li
neighbor count

−0.08 1

RLi

�R
the ratio of the average radius
without Li and with Li

−0.04 1

�R
2 �

ffiffiffiffiffiffi

�B��R
�m

q

-Li synthetic feature (exclude Li) −0.01 m2/s

Li% Li percentage 0.77 1

SLPW_pp average straight-line path
width (point-to-point)

0.59 Å

AAV average atomic volume 0.58 Å3

R weighted average atomic
radius

0.56 Å

Xothers � XLi
weighted average
electronegativity difference

0.54 1

LLB Li-Li bonds per Li 0.49 1

LASD Li-anion separation distance 0.49 Å

SLPW average straight-line
path width

0.48 Å

VPA volume per anion 0.44 Å3

AASD minimum anion-anion
separation distance

0.36 Å

RLi weighted average atomic
radius (exclude Li)

0.35 Å

ffiffiffiffiffiffiffiffiffiffiffiffi

Ecoh ��R
2

�m

q

synthetic feature 0.29 m2/s

SBI 0.26 1

Table 1 (continued) | Pearson correlation coefficients between
various features and the Li diffusivity, obtained from 5000 K
AIMD calculations

Feature Feature description Pearson r Unit

set-of-non-Li-atoms bond
ionicity

mLi average mass (exclude Li) 0.21 kg

�R
2 �

ffiffiffiffiffiffi

�B��R
�m

q

synthetic feature 0.18 m2/s

�R
2 �

ffiffiffiffiffiffi

�G��R
�m

q

synthetic feature 0.06 m2/s

RNC the ratio of LNC and SNC 0.01 1

�R
2 �

ffiffiffiffiffiffi

�G��R
�m

q

-Li synthetic feature (exclude Li) 0.01 m2/s

The coefficients are categorized into two bins—positive and negative—and the values within each
bin are sorted by the Pearson correlation coefficients.
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Application of universal machine learning potentials
Here, we explore whether the universal interatomic potential M3GNet35,
and CHGNet36 can be used as the surrogate for AIMD calculations to
generate the non-crystalline structures of any composition at a specific
temperature. Figure 6a shows the pairwiseRDFcomparisonbetweenAIMD
andM3GNet calculated structures for LiCuSi2 as an example; the parity plot
is shown in Fig. 6b, with the R2 equals to 0.99, very close to 1. Additional
comparisons of oxide glass between DFT-calculated and M3GNet-
calculated RDFs for LiO2, LiSiO, and LiSi2O can be found in the Supple-
mentary Information, specifically in Supplementary Figs. 17–19. For the rest
of the compounds, RDFs are available in the additional attachment file and
on the GitHub repository https://github.com/Tinaatucsd/DFT_
amorphous_structure. For 245 samples of non-crystalline compositions,
the distribution of R2 of RDF comparison is plotted in Fig. 6c, where 91% of
samples exhibit an R2 > 0.85, 85% of samples show R2 > 0.9, and 68% of
samples manifest R2 > 0.95. The parity plot of the structure feature com-
parison is shown in Fig. 6d, with a decent R2 of 0.95. The scales of the
structure featureshave awide range; the parity plotswith different scales can
be found in Supplementary Fig. 15. At all ranges, the M3GNet MD calcu-
lations can reproduce the AIMD-calculated structures. Therefore, we find
that M3GNet is able to generate reasonable non-crystalline structures and
calculate structure features as inputs for the SISSO model to predict Li
diffusivity.However,whileM3GNet is able to reproduce the Li diffusivity, as
shown in Supplementary Fig. 16a, decently well for the temperature range
from1000K to 2500K, it fails to reproduceAIMD-calculated Li diffusivity at

high temperatures (5000K). Therefore, it is suggested thatM3GNet be used
as a surrogate for AIMD calculations to generate non-crystalline structures
and then used to calculate structure features for the SISSOmodel to predict
Li diffusivity. By employingM3GNet-basedmolecular dynamics (MD), the
calculations achieve a significant speedup of ~2000 times (in CPU hours)
compared to traditional AIMD methods for diffusivity calculation.

Discussion
We have developed a comprehensive database for non-crystalline struc-
tures, employing precise but computationally intensive AIMD calculations
for 4849 compositions, spanning from binary alloys Na2Li9, RbLi2, SrLi4,
Li4Zr, and Li4Ta to ternary, quaternary compounds like Li4ðSiI3Þ3,
Sr2Li12Sn, Li5La3Nb2O12 and Li20Si2NiSn2. This database provides a robust
platform for various streamlined machine-learning models, enabling rapid
and accurate predictions of ionic diffusivity, here demonstrated for Li+ and
relevant for applications such as protective coatings and solid-state elec-
trolytes. Universal potentials such as M3GNet and CHGNet, which are
predominantly trained on crystalline relaxation trajectories, significantly
accelerate calculations compared to traditional AIMD methods and are
found to performwell in structure generation but less so for providing ionic
diffusivity data. The publication of this database provides unique infor-
mation about structure-energy-force relationships far away from equili-
brium configurations, and we anticipate that it will be a valuable asset in the
pursuit of superior universal potentials applicable to non-crystalline mate-
rials. Our database also provides a comprehensive resource for mapping
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Fig. 4 | Performance of ensemble learning models in diffusivity prediction. The
random forest andXGBoostmodels are used to predict the Li diffusivity. Parity plots
between the DFT calculated Li diffusivity, and the random forest model (a for
training and b for testing) and XGBoost model (d for training and e for testing)
predicted Li diffusivity, respectively. c, f Ranked the top 11 important features
analyzed from the random forest and XGBoost models, respectively. The perfor-
mance of these two models was assessed using the average fivefold cross-validation
(CV) root mean squared error (RMSE). The average fivefold CV RMSE for the

random forest is 1.41 × 10−4 cm2/s. For the XGBoost model, the average fivefold CV
RMSE was 1.23 × 10−4 cm2/s. The error bars in the prediction of the random forest
model are achieved by calculating the mean and standard deviation of predictions
from all individual trees in the forest. For the XGBoost model, the bootstrapping
method is used for 100 XGBoost models on different bootstrap samples to calculate
themean and standard deviation of these predictions. For bothmodels, Li-metal and
Li-Si alloys (e.g., SrLi4, RbLi2, Na9Li3Sn4, Na2Li9, Li4ðSiI3Þ3 etc.) present higher
error bars.
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Fig. 5 | Performance of SISSO models with different complexities in diffusivity
prediction. Parity plots between the DFT calculated Li diffusivity and the SISSO
model predicted Li diffusivity. a–d Correspond to the parity plots for training data.
The colors indicate the values of the first descriptor in the SISSO model, specifically
the inverse of the product of the Boltzmann constant kB and the temperature term

1
kBT

. Subfigures e–h are the parity plots for the test data. The complexity of the SISSO
model increases from (a–d), i.e., the dimension of the descriptor (a hyperparameter)
increases from one to four. The n = 4 model is selected as the final SISSO model. n-
dimensional descriptor means the set of features selected by the n nonzero com-
ponents of the solution vector c34.

Fig. 6 | The performance of M3GNet in reprodu-
cing the non-crystalline structures from
5000 K MD. a Pairwise radial distribution function
(RDF) of LiCuSi2, b parity plot comparing DFT-
calculated RDF against M3GNet-calculated RDF,
with the coefficient of determination regression
score (R2) annotated in the legend, c distribution of
R2 across the 245 samples of the composition,
d parity plot for structure features calculated from
AIMD and M3GNet at 5000 K.

LiCuSi2

R2 = 0.85,  0.9,   0.95
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experimental diffraction patterns to non-crystalline atomic structures,
addressing the challenge of interpreting diffraction data for materials
lacking long-rangeorder. By includingpairwise radial distribution functions
(RDFs) across diverse compositions and temperatures, we enhance the
analysis of short- and medium-range order in non-crystalline materials,
facilitating the identification and characterization of non-crystalline phases.

Methods
DFT workflow
The database is generated through a combination of well-benchmarked37

AIMD and MPMorph workflows (see Fig. 7a, b), which are designed to
generate a series of samples of non-crystalline structures and their respective
dynamic behavior at a range of temperatures. The structure sample gen-
eration uses PACKMOL38 to approximate an initial random structure for a
given composition of interest. Subsequently, the MPMorph workflow (Fig.
7b) scales the volumes to 0.8 and 1.2 times the initial volume, performing a
4 psNVTAIMDrun tofit the equation of state at the specified temperature.
A tentative volume is then used to execute another 4 ps NVT AIMD run,
ensuring the energy and density have converged. If convergence is achieved,
a 20 ps AIMD “production” run is conducted using this volume. If not, the

workflow iteratively rescales the volume until a value that ensures energy
and density convergence is identified. This converged volume is then
employed for the 20 psproduction run.As shown inFig. 7a, the 5000KNVT
runs have so far generated non-crystalline structures of 4849 compositions.
The database corresponding to the 20 ps 5000K NVT run trajectories is
denoted the “5000K non-crystalline database”. The last snapshot structure
from the 5000K run is used as the input structure forMPMorphworkflowat
1000K, 1500K, 2000K, and 2500K to generate the multi-temperature non-
crystalline database.

The AIMD simulations at 5000K are performed to ensure that each
material reaches its molten state, regardless of its unknown melting point.
This elevated temperature accelerates the attainment of equilibrium liquid
structures, which would otherwise be slower at temperatures closer to the
melting point. Thematerials in our database exhibit a wide range ofmelting
points (Tm) and glass transition temperatures (Tg), many of which are not
specifically determined. Calculating these temperatures for each composi-
tion individually would be computationally prohibitive. Consequently, we
opted to systematically measure diffusivity at four intermediate tempera-
tures (1000K, 1500K, 2000K, and 2500K) to facilitate efficient high-
throughput AIMD calculations. It is crucial to note that the machine

Fig. 7 | Non-crystalline database workflows. a Overview of the process used to generate the 5000K non-crystalline database and the multi-temperature non-crystalline
database. b The MPMorph workflow procedure, which involves identifying the equilibrium volume using the NVT ensemble prior to executing the production run.
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learning models discussed in this manuscript are exclusively trained on
diffusivity data derived from these intermediate temperature AIMD simu-
lations, rather than from the 5000K simulations.Weposit that data obtained
from these intermediate temperatures more accurately capture the
dynamics of different non-crystalline states such as liquids, supercooled
liquids, or even glasses.

The functional used in the database is projector-augmented-wave
(PAW)39 PBE40. The selection of functional is consistent with that of the
Materials Project41, such that the database can be used to assess the syn-
thesizability of crystals based on the method used in ref. 37. The time step
used is 2 fs; the Nose-Hoover thermostat was used for AIMD calculations.
The distribution of the number of atoms in compositions in the 5000K
database andmulti-temperature database is added in Supplementary Fig. 5.
Most of the structures used in the simulations are described by unit cells of
around 100 atoms. Periodic boundary conditions are considered along all
three directions.

We employ the NVT method, fitting the equation of state (EOS) over
NPTdue to several advantages.NVT simulations aremore computationally
efficient and stable, especially at high temperatures, where NPT’s volume
fluctuations can introduce instabilities. TheNVT thermostat provides better
temperature control, directly regulating particle kinetic energy. Addition-
ally, NVT ensures consistency across simulations, facilitating easier com-
parisons with other studies. Finally, NVT achieves faster equilibration,
avoiding the extra time needed to stabilize volume fluctuations in NPT
simulations. These factors make NVT the preferred method for our work.
The same procedures were used to generate the structure for both 5000K
and multi-temperature databases.

Thenon-crystalline diffusivity database ismade accessible to the public
via the Material Project’s MPContribs42 website https://contribs.
materialsproject.org/projects/amorphous_diffusivity and advanced appli-
cation programming interface (API) with a dedicated Python client43. Ten
structures are sampled every 2 ps for DFT relaxation and static calculation,
with their corresponding formation energy serving as the amorphous limit
to predict synthesizability, following the method proposed by ref. 37.

Machine-learning potential workflow
The M3GNet model developed by Chen et al.35 offers an alternative sur-
rogate model for AIMD computations, enabling the generation of non-
crystalline structures and computation of Li diffusivities across various
compositions. This surrogate model has been incorporated into the
MPMorph workflow, serving as the calculator for energy and force. The
implemented version can be accessed at https://github.com/Tinaatucsd/
mpmorph/blob/chgnet_fm_refactor-pv-extract/src/mpmorph/flows/md_
flow.py.

Random forest and XGBoost models
For model development, we utilized random sampling to divide the multi-
temperature dataset into training and test sets. The training data constitutes
85% of the total data, with the remaining 15% reserved for testing. A fixed
random state of 62 was used for consistency. To evaluate model perfor-
mance, we experimented with different numbers of estimators (trees) for
both the Random Forest and XGBoost models, assessing error reduction as
more trees were added. For XGBoost, we used theeval_set parameter in
XGBRegressor32 to track training and testing errors during the training
process. The corresponding plots are presented in Supplementary Fig. 12.
Based on the loss curve in Supplementary Fig. 12, we selected n_esti-
mators=100 for both the Random Forest and XGBoost models. For
hyperparameter optimization of the XGBoost model, a grid search was
conducted over a predefined set of hyperparameters. The parameter grid
included variations in the number of estimators (50, 100, 150), learning rate
(0.01, 0.1, 0.5), and maximum tree depth (2, 4, 6). The optimal hyper-
parameters were determined to be a learning rate of 0.1, a maximum depth
of 4, andn_estimators=150. Despite this, the loss curve indicated that
the model had converged at n_estimators=100. Consequently, we
selected n_estimators=100 for the final XGBoost model used in this

study. The specific settings for XGBoost models are n_estima-
tors=100, max_depth=4, n_jobs=6, and cross-validation score =
negative root mean squared error. Default values are used for all other
hyperparameters of theXGBoostmodel and theRandomForest (RF)model
implemented in the scikit-learn package.

SISSO model
A number of SISSO models34 with increasing complexities were
trained, and their prediction performances are shown in Fig. 5. Some of
the key input settings for SISSO training include the dimension of the
descriptor desc_dim=4; the Number of scalar features is 43; The
parameters used to control the feature complexityfcomplexity=7;
The metric root mean square error (RMSE) is used for model selection;
The operator set considered include addition (+), subtraction (−),
multiplication (*), division (/), exponentiation such as (2), (3),
(6),(−1),(exp),(exp-),(log).

Data availability
The non-crystalline structures and diffusivity are made accessible to the
public via the Material Project’s MPContribs42 website https://contribs.
materialsproject.org/projects/amorphous_diffusivity and advanced appli-
cation programming interface (API) with a dedicated Python client43. The
zipped json files are also available at Figshare https://figshare.com/s/
30601968f9244d8dffaa.

Code availability
The code used to generate a non-crystalline structure and run workflow is
accessible from https://github.com/materialsproject/mpmorph. The code
used to analyze the non-crystalline structure dataset and train machine
learning models is available from https://github.com/Tinaatucsd/DFT_
amorphous_structure.
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