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The role of oxidative stress in the 
pathogenesis of infections with 
coronaviruses
Chandrima Gain , Sihyeong Song , Tyler Angtuaco , Sandro Satta  and 
Theodoros Kelesidis *

Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, 
CA, United States

Coronaviruses can cause serious respiratory tract infections and may also impact 
other end organs such as the central nervous system, the lung and the heart. The 
coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. 
Understanding the mechanisms that contribute to the pathogenesis of coronavirus 
infections, will set the foundation for development of new treatments to attenuate 
the impact of infections with coronaviruses on host cells and tissues. During infection 
of host cells, coronaviruses trigger an imbalance between increased production of 
reactive oxygen species (ROS) and reduced antioxidant host responses that leads to 
increased redox stress. Subsequently, increased redox stress contributes to reduced 
antiviral host responses and increased virus-induced inflammation and apoptosis 
that ultimately drive cell and tissue damage and end organ disease. However, 
there is limited understanding how different coronaviruses including SARS-CoV-2, 
manipulate cellular machinery that drives redox responses. This review aims to 
elucidate the redox mechanisms involved in the replication of coronaviruses and 
associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction 
and tissue damage that collectively contribute to multiorgan damage.
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Introduction

The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. 
Coronaviruses can cause serious respiratory tract infections and may impact other end organs such 
as the central nervous system. Coronaviruses are enveloped single-stranded positive-sense RNA 
viruses named after their crown-like appearance of their spike proteins on their surface (Singhal, 
2020). To date, there has been seven human coronaviruses (HCoVs) identified: severe acute 
respiratory syndrome coronavirus (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome 
coronavirus (MERS-CoV), Human coronavirus 229E (HCoV-229E), HCoV-OC43, HCoV-NL63, 
and HKU-1. Four of them including HCoV-OC43, HCoV-NL63, HCoV-229E, and HKU-1, typically 
trigger only mild respiratory illnesses in humans. On the other hand, SARS-CoV-2, SARS and MERS 
are known to cause more severe illness, acute respiratory distress syndrome (ARDS) or multi-organ 
dysfunction, especially in aged people with comorbidities (Li et al., 2021a). Understanding the 
mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation 
for development of new treatments to attenuate the impact of coronaviruses on host cells and tissues. 
However, there is limited understanding how different coronaviruses including SARS-CoV-2, 
manipulate cellular machinery to drive host cell responses.

Emerging evidence suggests that human diseases including viral infections often disrupt the 
host natural balance between increased production of reactive oxygen species (ROS) and reduced 
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antioxidant host responses that collectively increases redox stress 
(Amini et  al., 2022; Figure  1). ROS are free radical and nonradical 
byproducts of metabolic processes in organelles such as plasma and 
nuclear membranes, the mitochondria, peroxisomes and the 
endoplasmic reticulum (ER; Reshi et al., 2014). ROS are necessary for 
cellular processes like mitochondrial energy production, host defense, 
cellular signaling, and the regulation of gene expression. Mitochondria 
are the main location of production of ROS (mito-ROS) during energy 
production. Increased ROS during viral infections have not only 
detrimental impact on the cells and tissues but are also important for 
antiviral immune function (Yang et al., 2007; Finkel, 2011) during viral 
infections like influenza (To et al., 2014), respiratory syncytial virus 
(RSV; Fink et  al., 2008) and rhinoviruses (Kaul et  al., 2000; Fink 
et al., 2008).

However, an excess of ROS can damage cellular components 
including lipids, proteins, and DNA, alter immune functions, 
inflammatory responses and induce organ and tissue dysfunction 
(Preiser, 2012; Reshi et al., 2014; Labarrere and Kassab, 2022). Indeed, 
several studies have shown that oxidative stress contributes to the 
pathogenesis of respiratory viral infections (Khomich et  al., 2018), 
influenza and RSV. Increased oxidative stress in severe COVID-19 
contributes to inflammation, endothelial cell dysfunction, thrombosis 
that can lead to multiorgan damage (Li et  al., 2021a; Alam and 
Czajkowsky, 2022). Oxidative stress, induced by coronavirus, also 
interferes with inflammatory pathways that may lead to more long-
lasting tissue damage. However, there is limited understanding how 
different coronaviruses including SARS-CoV-2, manipulate cellular 
machinery that drives redox responses.

In this review, we summarize the scientific evidence regarding the 
cellular and molecular pathways modulated by oxidative stress that 
are implicated in the pathogenesis of coronavirus infections. 
We  specifically review the role of redox pathways in major 
pathophysiological underpinnings that contribute to cell and tissue 
damage in coronavirus infection: (1) virus replication, (2) virus-
associated inflammation, (3) virus-associated apoptosis, (4) 

redox-related end organ disease. We review the scientific evidence 
related to these redox pathways, separately for SARS-CoV-2 versus all 
the other coronaviruses [SARS-CoV, MERS, respiratory coronaviruses 
and other coronaviruses used to model SARS-CoV-2 infection such 
as the murine hepatitis virus (MHV)]. Finally, we  discuss the 
relevance of these redox pathways with regards to acute severe 
COVID-19 and Post-Acute Sequelae of SARS-CoV-2 infection 
(PASC) and potential antioxidant treatments.

Redox mechanisms that regulate 
replication of coronaviruses

Several redox mechanisms can regulate both viral entry and 
cytosolic replication of coronaviruses (Figure 2; Table 1; Wang and 
Zhang, 1999; Kulisz et al., 2002; Halestrap et al., 2004; Mizutani et al., 
2004; Emerling et al., 2005; Kefaloyianni et al., 2006; Doughan et al., 
2008; Lucas et al., 2008; Cho et al., 2009; Garrido and Griendling, 
2009; Hosakote et al., 2009; Jamaluddin et al., 2009; Wosniak et al., 
2009; de Wilde et  al., 2011; Kesic et  al., 2011; Xia et  al., 2011; 
Kosmider et al., 2012; Yamada et al., 2012; Kim et al., 2012b; Lee et al., 
2013; Nguyen Dinh Cat et al., 2013; Komaravelli and Casola, 2014; 
Hyser and Estes, 2015; Kindrachuk et al., 2015; Komaravelli et al., 
2015; Paszti-Gere et al., 2015; Shirihai et al., 2015; Simon et al., 2015; 
Demers-Lamarche et al., 2016; Kau et al., 2016; Morris et al., 2016; 
Zhang et al., 2016; Daiber et al., 2017; Trempolec et al., 2017; Khomich 
et al., 2018; Tu et al., 2019; Olagnier et al., 2020; Tao et al., 2020; 
Verdecchia et al., 2020; Herengt et al., 2021; Moghimi et al., 2021; 
Youn et al., 2021).

Redox mechanisms that regulate virus entry 
of coronaviruses

The spike S proteins on the surface of coronaviruses are responsible 
to their attachment to host receptors in airway epithelial cells such as the 
angiotensin-converting enzyme 2 (ACE2) receptors that interact with 
host cell proteases, such as transmembrane protease serine 2 (TMPRSS2; 
Hamming et al., 2004; Irigoyen et al., 2016; Lukassen et al., 2020; Xu 
et  al., 2020). While many coronaviruses utilize peptidases, such as 
ACE2, dipeptidyl peptidase 4, aminopeptidase N, as their cellular 
receptors, SARS-CoV, SARS-CoV-2 and HCoV-NL63 utilize ACE2 as 
their receptors thus disrupting the renin-angiotensin system (Verdecchia 
et al., 2020).

ACE2, a peptidase that exists on the cell surfaces of most organs 
(Hamming et al., 2004), is one of the most crucial key players in 
induction of redox stress (Shatizadeh Malekshahi et  al., 2022). 
Angiotensin II (AngII), the ligand of ACE2, is a potent activator of 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
and an inducer of ROS production in the vasculature, kidney and 
brain (Garrido and Griendling, 2009). Typically, ACE2 helps avert 
NAPDH oxidase activity by converting Ang II into angiotensin 1–7, 
thereby reducing ROS levels; Ang II stimulates NAPDH oxidase. 
ACE2 overexpression has been shown to reduce ROS, and ACE2 
deficiency has been shown to induce oxidative stress (Xia et al., 
2011; Pena Silva et al., 2012). The complex cross-talk between ACE2 
and redox pathways is further emphasized by a possible bidirectional 
redox regulation of ACE2 levels. High ACE2 activity may reduce 
redox stress but vice versa high redox stress may regulate ACE2 

FIGURE 1

Redox imbalance in coronavirus infections. Coronavirus infection 
triggers an imbalance between increased production of reactive 
oxygen species (ROS) and reduced antioxidant host responses that 
leads to increased redox stress in the host cell. Increased redox stress 
induces inflammation, apoptosis and ultimately tissue damage and end 
organ disease.
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activity. In vitro studies showed that NOX-driven ROS may reduce 
ACE2  in vascular smooth muscle cells (Lavrentyev and Malik, 
2009). Consistent with this evidence, independent in vitro studies 
demonstrated that Ang II-induced activation of mitochondrial 
Nox4 is an important endogenous source of ROS and is related to 
cell survival in kidney epithelial cells (Kim et  al., 2012b). The 
crosstalk between NOX and ACE2 has also been shown in vivo in 
mouse models of disease and increased levels of ACE2 are generally 
associated with reduced oxidative stress in mammalian cells (Xia 
et al., 2011).

Angiotensin II is often upregulated in viral infections (Doughan 
et al., 2008; Wosniak et al., 2009; Lee et al., 2013; Daiber et al., 2017). 
However, when cells are infected with coronavirus, there is a reduction 
of ACE2 receptors on the cell surface and this results in an increase of 
Ang II which binds to ACE1 and increases ROS levels through NADPH 
oxidase (Nguyen Dinh Cat et  al., 2013). Experimental studies have 
demonstrated that in vitro exposure to S protein induces excessive 
oxidative stress in endothelial cells, which is mediated specifically by 
activation of NADPH oxidase isoform 2 (NOX2), but not NOX1 or 
NOX4 (Youn et al., 2021). However, it is unclear if there is bidirectional 
link between ACE2 levels and increased redox cellular pathways in the 
setting of SARS-CoV-2-induced ACE2 downregulation in airway 
epithelial cells.

TMPRSS2 is expressed in both the cytoplasm as well as in the cell 
membrane in epithelial cells (Lucas et al., 2008). In vitro studies with 

porcine intestinal epithelial cells have shown that acute excessive 
oxidative stress induces altered distribution pattern of TMPRSS2 and 
relocalized transmembrane serine protease activity that may 
contribute to weakening of epithelial barrier integrity (Paszti-Gere 
et  al., 2015). However, a small study of COVID-19 patients and 
uninfected controls showed that measures of oxidative stress in sperm 
epithelial cells were not associated with levels of TMPRSS2 (Moghimi 
et  al., 2021). Similarly, another experimental study showed that 
cigarette smoking extract (CSE) that is an established trigger of 
oxidative stress (Kau et  al., 2016) had no effect on ACE2 and 
TMPRSS2 expression in endothelial cells (Youn et al., 2021). Overall, 
there is no solid evidence to support a role of increased redox stress 
in regulation of TMPRSS2.

Other than redox-dependent regulation of membrane receptors for 
coronaviruses, mito-ROS are also instigators of aberrant vacuole 
formation (Demers-Lamarche et al., 2016) by activation of adaptor-
associated kinase 1 (AAK1), a regulator of endocytosis (Chen et al., 
2006) that has been targeted therapeutically in SARS-CoV-2 infection 
with baricitinib (Stebbing et  al., 2020). Mito-ROS can also induce 
alterations in membrane lipid rafts and lipid-based cellular signaling 
changing their properties (Morris et al., 2016) and these membrane 
changes may also impact viral entry of coronaviruses. Thus, redox 
mechanisms may regulate entry of coronaviruses in mammalian cells 
but these mechanisms need to be further studied specifically in airway 
epithelial cells and in vivo.

FIGURE 2

Schematic representation of redox pathways that contribute to viral replication, inflammation, and apoptosis during coronavirus infection. 
Coronaviruses bind to the ACE2 receptor and replicate through host proteases such as TMPRSS2 and by hijacking cytosolic cellular machinery such as 
the mitochondria and the endoplasmic reticulum (ER), which engages the unfolded protein response (UPR). The plasma membrane, the ER and 
mitochondria harbor different isoforms of the NADPH oxidase (NOX) enzyme. Coronaviruses induce cellular oxidative stress with generation of reactive 
oxygen species (ROS) and mitochondrial ROS (mito-ROS) and impairment of stress-inducible, antioxidant, anti-inflammatory and antiviral responses 
such as the Nrf2 pathway and other key downstream mediators such as Heme oxygenase-1 (HO-1). Mito-ROS induce downstream signaling pathways 
such as MAPK, JNK, MEK/MNK1 that induce both viral replication and proinflammatory pathways such as induction of cytokines (e.g., IL-1b, IL-6, and 
TNF-a). Mito-ROS, ROS and ER stress response induce the proinflammatory pathway NF-κB. ROS and mito-ROS also induce apoptosis through 
alterations in apoptotic pathways such as PI3K/AKT, mTOR and induction of mitochondrial apoptosis. Collectively, redox mediated pathways that drive 
viral replication, inflammation and apoptosis contribute to cell and tissue damage that drive end organ disease in coronavirus infection. Endogenous 
antioxidant host pathways and exogenous therapeutic antioxidants could attenuate redox mediated pathways that drive pathogenesis of coronavirus 
infections.
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Redox mechanisms that regulate 
cytoplasmic replication of coronavirus

Viral infections may alter the mitochondrial dynamics leading to 
excessive mito-ROS generation, mitochondrial biogenesis, and altered 
mitochondrial β-oxidation (Elesela and Lukacs, 2021). Mitochondria are 
targeted by coronavirus (Shi et al., 2014). Coronaviruses may directly 
induce production of mito-ROS in cells. Non-structured viral proteins, 
such as coronavirus 3a protein directly activate NLRP3 inflammasome 
in macrophages, which is mediated by increased mito-ROS level (Zhou 
et al., 2011; Chen et al., 2019). Finally, redox pathways also regulate 
cellular machinery that propagates replication of coronaviruses through 
multiple pathways.

First, Mito-ROS regulate the endoplasmic reticulum stress and 
the unfolded protein response (UPR) that contribute to replication of 
coronaviruses (de Wilde et  al., 2011; Hyser and Estes, 2015; 
Kindrachuk et  al., 2015; Zhang et  al., 2016) and associated Ca2+ 
signaling systems. Second, mito-ROS induce the mitochondrial 
permeability transition pore (mPTP) that is a proviral factor for 
replication of coronaviruses. Indeed, by blocking the mPTP, 
cyclosporin A impacts coronavirus replication (Halestrap et  al., 

2004). Mitochondria-targeted antioxidants inhibit mPTP, mito-ROS 
(Halestrap et al., 2004), and ROS (Dikalova et al., 2010; Dikalov et al., 
2014). Third, mito-ROS regulate mitophagy that regulates replication 
of coronaviruses. Protein misfolding mitochondrial depolarization 
and ROS activate mitophagy (Shirihai et al., 2015). Viral proteins like 
SARS-CoV ORF-9 (Shi et  al., 2014) interact with mitophagic 
machinery such as LC3 and Beclin1 (Zhang et al., 2018). Therapeutic 
targeting of aberrant autophagy through Beclin1 reduces MERS 
infection (Gassen et al., 2019). Fifth, mito-ROS trigger MEK (Zhang 
et al., 2016), MNK1 (Wang and Zhang, 1999) and MAPK signaling 
pathways (Kulisz et al., 2002; Emerling et al., 2005; Trempolec et al., 
2017) that propagate viral protein synthesis and SARS-Co-V 
replication (Mizutani et al., 2004; Kefaloyianni et al., 2006; Jamaluddin 
et al., 2009). Sixth, ROS regulate cytoplasmic interferon host antiviral 
responses during coronavirus infection. ROS promotes MHV 
replication by downregulating interferon host responses during MHV 
infection (Tao et al., 2020). Lastly, preclinical studies suggest that 
mito-ROS may contribute to viral reservoirs and replication of SARS-
CoV-2 in macrophages, but this has not been clearly demonstrated in 
vivo (Codo et al., 2020). Thus, mito-ROS induce multiple proviral 
cytoplasmic pathways.

TABLE 1 Redox mechanisms that regulate replication of coronaviruses.

Mediators Effect on redox balance References

Redox mechanisms that may regulate viral entry of coronaviruses

Bidirectional cross talk 

between virus and the 

ACE2-AngII (ligand of 

ACE2)-NOX axis

 • ↑Ang II →↑ activation of Nox4 Doughan et al. (2008), Garrido and Griendling (2009), 

Wosniak et al. (2009), Xia et al. (2011), Kim et al. 

(2012b), Lee et al. (2013), Nguyen Dinh Cat et al. (2013), 

Daiber et al. (2017), Verdecchia et al. (2020)

 • ↑ACE2 → ↓ NOX

 • Virus ↓ ACE2 →↑ NOX

 • Bidirectional crosstalk between virus, mitochondria and NOX

TMPRSS2 (host protease 

essential for replication of 

coronavirus)

 • No solid evidence to support role of redox stress in TMPRSS2 regulation but excess 

redox stress may alter distribution pattern of TMPRSS in epithelial cells
Lucas et al. (2008), Paszti-Gere et al. (2015), Kau et al. 

(2016), Moghimi et al. (2021), Youn et al. (2021)

Mito-ROS  • ↑ vacuole formation through AAK activation Demers-Lamarche et al. (2016), Morris et al. (2016)
 • Alters membrane lipid-based cellular signaling

Redox mechanisms regulating cytoplasmic replication of coronaviruses

Mito-ROS  • Regulate ER stress and unfolded protein response Wang and Zhang (1999), Kulisz et al. (2002), Halestrap 

et al. (2004), Mizutani et al. (2004), Emerling et al. 

(2005), Kefaloyianni et al. (2006), Jamaluddin et al. 

(2009), de Wilde et al. (2011), Hyser and Estes (2015), 

Kindrachuk et al. (2015), Shirihai et al. (2015), Zhang 

et al. (2016), Trempolec et al. (2017), Tao et al. (2020)

 • Regulate Ca2+ signaling systems

 • ↑ MPTP

 • Regulate mitophagy (protein misfolding, depolarization of mitochondria)

 • ↑ MEK, MNK1, MAPK →↑ viral protein synthesis

 • Regulate interferon host responses

 • ↑ Nrf2 pathway

Keap1-Nrf2-ARE pathway  • ROS ↑ antioxidant gene expression, →↑ HO-1, NQo-1, SOD, glutathione derived 

molecules catalase, peroxiredoxins, glutathione peroxidases Respiratory viruses ↓ 

Nrf2

Cho et al. (2009), Hosakote et al. (2009), Kesic et al. 

(2011), Yamada et al. (2012), Kosmider et al. (2012), 

Komaravelli and Casola (2014), Komaravelli et al. (2015), 

Simon et al. (2015), Khomich et al. (2018), Tu et al. 

(2019), Olagnier et al. (2020), Herengt et al. (2021)

 • ↑ stress-inducible, anti-inflammatory, antiviral responses

 • ↑ antiviral HO-1

 • ↑ antiviral immunity

 • Mediates pathogenesis and tissue damage of many viral infections, including HIV, 

RSV, Influenza, SARS-CoV-2

 • ↓ apoptosis that regulates viral replication (cell death and release of virions)

Abbreviations: AAK, adaptor-associated kinase; ACE2, Angiotensin-converting enzyme 2; AngII, Angiotensin II; ARE, antioxidant response element; Ca2+, Calcium (II) ion; ER, endoplasmic 
reticulum; HIV, human immunodeficiency virus; HO-1, Heme oxygenase 1; Keap1, Kelch-like ECH-associated protein 1; MAPK, mitogen-activated protein kinase; MEK, Mitogen-activated protein 
kinase; Mito-ROS, Mitochondrial reactive oxygen species; Mnk1, mitogen-activated protein kinase (MAPK) interacting protein kinase 1; mPTP, mitochondrial permeability transition pore; NOX, 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; Nrf2, nuclear factor erythroid 2–related factor 2; NQo-1, NAD(P)H quinone oxidoreductase; RSV, Respiratory Syncytial Virus; 
SOD, Superoxide dismutase; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TMPRSS2, Transmembrane serine protease 2; UPR, unfolded protein response.
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Antioxidant mechanisms that regulate 
cytoplasmic replication of coronavirus

The primary transcription factor regulating the antioxidant 
response is the nuclear factor E2-related factor 2 (Nrf2), which regulates 
the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2-antioxidant 
response elements (ARE) pathway (Khomich et  al., 2018). Under 
normal circumstances, the Keap1-Nrf2-ARE pathway is activated by 
the oxidative stress resulting from ROS production. Nrf2, which is 
usually bound to Keap1 by ubiquitination or degraded by Keap1 in the 
absence of oxidative stress, is translocated to the nucleus when oxidative 
stress modifies the conformational structure of Keap1 and prevents it 
from binding Nrf2 (Komaravelli and Casola, 2014; Han et al., 2021). 
Mito-ROS activate Nrf2 through protein kinases, and induce 
production of antioxidant proteins and genes involved in mitochondrial 
quality control (Kasai et al., 2020). The activation of Nrf2 results in the 
upregulation of antioxidant gene expression as Nrf2 binds to 
antioxidant response element (ARE) sites, leading to the expression of 
key players of the antioxidant response, including heme oxygenase-1 
(HO-1), NADPH quinone oxidoreductase 1 (NQO-1), superoxide 
dismutases (SOD), and glutathione derived molecules catalase, 
peroxiredoxins, and glutathione peroxidases which collectively 
attenuate oxidative stress (Khomich et al., 2018; Tu et al., 2019).

Several studies have found that respiratory viruses downregulate the 
expression of antioxidant genes by inhibiting Nrf2, preventing it from 
mobilizing to the nucleus and binding to ARE sites (Komaravelli and 
Casola, 2014). The Nrf2 pathway that mediates pathogenesis and tissue 
damage of several viral infections including HIV, RSV (Cho et al., 2009; 
Hosakote et al., 2009; Komaravelli et al., 2015), influenza (Kesic et al., 
2011; Kosmider et al., 2012; Yamada et al., 2012; Simon et al., 2015), and 
SARS-CoV-2 (Olagnier et al., 2020). Induction of the Nrf2 pathway and 
key downstream mediators such as Heme oxygenase-1 (HO-1) triggers 
stress-inducible, anti-inflammatory, and antiviral responses present in 
most human cells (Espinoza et al., 2017). NRF2 has antiviral properties 
but, it remains unclear which genes mediate these effects and how they 
exert antiviral effect (Herengt et al., 2021).

Emerging evidence has increased our understanding of the role of 
Nrf2 activation in SARS-CoV-2 infection. In vitro experiments with 
Vero hTMPRSS2 cells, Calu-3 and primary human airway epithelial cell 
lines and using gene silencing of Keap1 and Nrf2 agonists 4-octyl-
itaconate (4-OI) and dimethyl fumarate (DMF), it was shown that the 
Nrf2 pathway has a critical role in inhibiting SARS-CoV-2 replication, 
in addition to limiting the host inflammatory response. SARS-CoV-2 
reduced in vitro basal levels of HO-1 and NQO-1 in lung cells. Notably, 
considering Nrf2’s known role in inhibiting anti-viral IFN responses, it 
was shown that the antiviral effect of Nrf2 is independent of interferon 
responses (Olagnier et al., 2020). Mechanistic preclinical studies showed 
that Nrf2 activation reduced SARS-CoV-2 replication by inducing the 
metabolite biliverdin, whereas SARS-CoV-2 altered the NRF2 axis 
through the cross-talk between the nonstructural viral protein NSP14 
and the NAD-dependent deacetylase Sirtuin 1 (SIRT1; Olagnier et al., 
2020; Zhang et al., 2022).

Experimental studies have also shown that downregulation of 
antioxidant genes by SARS-CoV-2 and SARS-CoV-1 is combined with 
an upregulation of oxidative stress genes like myeloperoxidase (MPO), 
calprotectin (S100A8 and S100A9), sulfiredoxin-1 (SRXN1), glutamate 
cysteine ligase modifier subunit (GCLM), sestrin2 (SESN2), and 
thioredoxin-1 (TXN; Saheb Sharif-Askari et al., 2021). The results of 
these studies have revealed key aspects of SARS-CoV-2 infection: such 

as downregulation of host’s antioxidant pathway as an important role in 
viral replication, and possible utility of activators of antioxidant 
pathways as specific therapeutic targets.

Redox mechanisms that regulate replication 
of coronavirus through apoptotic pathways

Many viruses alter apoptosis or programmed cell death of the 
infected cell as a mechanism of increased production of virus progeny, 
cell killing and virus spread (Roulston et al., 1999). Apoptosis is the 
programmed cell death that involves the activation of proteases called 
caspases and a cascade of events that link apoptosis-initiating stimuli 
to final death of the cell. ROS (Pierce et al., 1991; Kasahara et al., 
1997) and mitochondria play pivotal roles in induction of apoptosis 
under both physiologic and pathologic conditions. Increased 
mito-ROS induce apoptosis and cell death (Orrenius et al., 2007). 
Excessive ROS can activate pro-apoptotic Bcl-2 family proteins by 
increasing mitochondrial permeability to drive the mitochondrial 
membrane potential, release cytochrome c, mtDNA (Santos et al., 
2003), and pro-apoptotic caspase-3 and-9. This leads to the activation 
of intrinsic or mitochondrial driven cell death by apoptosis (Green 
and Llambi, 2015). Coronaviruses impact apoptosis through several 
pathways. Notably, mitochondrial apoptosis is directly and uniquely 
induced by SARS-CoV (Pfefferle et  al., 2011) triggering viral 
replication (Supinski et al., 2009; Maiti et al., 2017). SARS-CoV-2 
infection also downregulates the Nrf2 pathway (Olagnier et al., 2020; 
Zhang et al., 2022) which has antiapoptotic cellular effect (Niture and 
Jaiswal, 2012; Khan et al., 2018). Thus, coronaviruses induce apoptosis 
through multiple pathways, either directly (Pfefferle et al., 2011), or 
indirectly by inducing production of mito-ROS and downregulating 
antiapoptotic pathways such as Nrf2 and the virus-induced alteration 
of mitochondrial apoptosis contributes to increased replication of 
coronaviruses (Supinski et  al., 2009; Pfefferle et  al., 2011; Maiti 
et al., 2017).

Redox mechanisms that regulate replication 
of coronavirus through the complement 
system

The complement system is a major host defense mechanism against 
viral replication. Several viruses hijack the complement system for 
cellular entry and spread (Agrawal et  al., 2017). The role of the 
complement system in the pathogenesis of coronavirus infections is 
complex and contradictory (Santiesteban-Lores et al., 2021). During 
SARS-CoV-2 infection, the complement system is a host defense 
mechanism against viral replication in asymptomatic or mild cases 
(Santiesteban-Lores et al., 2021). However, complement activation has 
also potent proinflammatory effect and can increase local and systemic 
damage in severe COVID-19 (Santiesteban-Lores et  al., 2021). As 
outlined above, coronavirus induce production of mito-ROS during 
infection. Mito-ROS induce the “complement–metabolism–
inflammasome axis”(Arbore and Kemper, 2016). MERS-CoV can also 
directly induce the complement system (Chen et al., 2010). Collectively, 
limited evidence suggests that complement activation through redox 
pathways may have a more important role in cell and tissue damage in 
severe coronavirus infections rather than a major regulatory role in 
replication of coronaviruses.
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Redox mechanisms that regulate replication 
of coronavirus through mitophagy

Mitophagy, the cellular process that clears excess or damaged 
mitochondria, has a key role in function of mitochondria and 
mammalian cells and regulates severeal physiological and 
pathological processes, including apoptosis, immunity and 
inflammation. Emerging evidence suggests that several viruses 
hijack mitophagy to enable viral replication and escape host 
immune responses (Li et al., 2022). SARS-CoV can encode open 
reading frame-9b (ORF-9b), which is localized in mitochondria and 
induces mitochondrial elongation which further triggers mitophagy 
and coronavirus replication (Shi et al., 2014). Preclinical studies 
have shown that SARS-CoV-2 directly causes mitochondrial 
dysfunction and mitophagy impairment (Shang et  al., 2021). 
Notably, defects in autophagy and mitophagy processes may regulate 
host response to coronavirus infection (Pacheco et  al., 2021). 
Coronaviruses also induce production of mito-ROS that have an 
established complex crosstalk with mitophagy (Schofield and 
Schafer, 2021). Overall, further evidence is needed to clearly link the 
role of aberrant redox pathways and mitophagy in the regulation of 
replication of coronaviruses.

Redox pathways that regulate 
inflammation during infection with 
coronaviruses

Several redox mechanisms regulate inflammation during 
infection with coronaviruses (Figure 2; Table 2; Shono et al., 1996; 
Wesselborg et  al., 1997; Chua et  al., 1998; Canty et  al., 1999; 
Tenjinbaru et al., 1999; Wang and Zhang, 1999; Cooke and Davidge, 
2002; Pearlstein et al., 2002; Takada et al., 2003; Mizutani et al., 
2004; Desouki et  al., 2005; Mukherjee et  al., 2005; Kefaloyianni 
et al., 2006; Xie and Shaikh, 2006; Schrader et al., 2007; Doughan 
et al., 2008; Nanduri et al., 2008; Cho et al., 2009; Hosakote et al., 
2009; Jamaluddin et al., 2009; Martinon et al., 2009; Wosniak et al., 
2009; Dikalova et al., 2010; Bulua et al., 2011; Kesic et al., 2011; 
Kosmider et al., 2012; Yamada et al., 2012; Lee et al., 2013; Nakajima 
and Kitamura, 2013; Nguyen Dinh Cat et al., 2013; Komaravelli and 
Casola, 2014; Zinovkin et al., 2014; Komaravelli et al., 2015; Simon 
et al., 2015; Sun et al., 2016; Zhang et al., 2016; Daiber et al., 2017; 
Espinoza et al., 2017; Khomich et al., 2018; Tu et al., 2019; Valle 
et al., 2019; Connors and Levy, 2020; Mahmud-Al-Rafat et al., 2020; 
Olagnier et al., 2020; Herengt et al., 2021; Saheb Sharif-Askari et al., 
2021; Toro et al., 2022).

NF-κB pathway

Nuclear factor-κB (NF-κB) is a redox-sensitive transcription factor 
that is regulated by ROS through the classical IkB kinase (IKK)-
dependent canonical pathway (Liu et al., 2017) and coordinates innate 
and adaptive immunity, inflammation, and apoptosis (Piette et  al., 
1997). The redox regulation of the NF-κB pathway has been reviewed 
elsewhere and varies between different mammalian cells and in the 
setting of cancer (Gloire et al., 2006). Although it is established that 
cytokines and lipopolysaccharides induce proinflammatory activation 

of NF-κB (Schreck and Baeuerle, 1991), ROS may also reduce NF-κB 
activity (Nakajima and Kitamura, 2013). Oxidative stress in the early 
phase may induce activation of NF-κB in epithelial cells (Wesselborg 
et al., 1997; Tenjinbaru et al., 1999; Thevenod et al., 2000) and endothelial 
cells (Shono et al., 1996; Chua et al., 1998; Canty et al., 1999; Cooke and 
Davidge, 2002) which are targets of coronaviruses. Redox stress in 
epithelial cells in the late phase may also inhibit basal and inducible 
activation of NF-κB (Xie and Shaikh, 2006; Yang et al., 2007; Nakajima 
and Kitamura, 2013). The regulation of NF-κB by ROS is dependent not 
only on the phase of responses and the pattern of stimulation, but also 
depends on specific cell types (Nakajima and Kitamura, 2013). However, 
most of the evidence regarding redox regulation of the NF-κB pathway 
is not based on airway epithelial cells, the main target of SARS-CoV-2, 
and heterogeneous redox stimuli have been utilized in several 
experimental studies, often in supraphysiological concentrations. Thus, 
it is not well defined how ROS regulate activity of NF-κB in a 
bidirectional fashion in airway epithelial cells (Nakajima and 
Kitamura, 2013).

Overall, cumulative evidence suggests that there is context-
dependent regulation of NF-κB by ROS (Nakajima and Kitamura, 
2013). Preclinical studies have shown that ROS trigger NF-κB 
activation in airway epithelial cells (Jany et al., 1995; Ito et al., 2004). 
In contrast, inhibition of cytokine-triggered NF-κB activation under 
pre-exposure to ROS has been described in distal airway alveolar 
epithelial cells (Korn et  al., 2001; Reynaert et  al., 2006). The 
oxidative stress– unfolded protein response (UPR) pathway and 
redox ER responses play a key role in the bidirectional control of 
NF-κB (Nakajima and Kitamura, 2013). Thus, the opposite, 
bidirectional effects of redox stimuli on NF-κB seem to depend on 
the phase of response, the context, the type of cells and the specific 
redox stimuli. Overall, this bidirectional crosstalk is not well 
characterized specifically in coronavirus infections.

Viruses may hijack cellular signaling pathways and transcription 
factors and control them to their own advantage. In particular, the 
NF-κB pathway appears to be an attractive target for common human 
viral pathogens (Santoro et al., 2003). Distinct viral proteins encoded 
by viruses such as HCV, rotavirus, EBV, HBV, HTLV-1, and HIV-1 
activate NF-κB by interacting with cellular signaling pathways 
including calcium-or redox-regulated signals or through ER stress 
mechanisms. Accumulation of viral dsRNA activates PKR, which in 
turn stimulates IKK. However, most of the evidence regarding virus-
induced regulation of the NF-κB pathway is based on chronic viral 
infections or infections with DNA viruses (Santoro et al., 2003). There 
is limited evidence regarding the direct impact of coronaviruses on 
this pathway.

Evidence has suggested that proteins of SARS-CoV-2 can 
directly or indirectly impact NF-kB activation. In vitro studies 
showed that the spike protein of SARS-CoV induces a strong 
cytokine response through the NF-kB pathway (Dosch et al., 2009). 
It was also shown that SARS-CoV nucleocapsid protein activated 
NF-kB in Vero E6 cells in a dose dependent manner (Liao et al., 
2005). ORF7a protein of SARS-CoV-2 mediates activation of 
NF-kB and induced proinflammatory expression of cytokines (Su 
et  al., 2021). Similarly, Nsp5  in SARS-CoV-2 activated NF-kB 
pathway through upregulation of SUMOylation of mitochondrial 
antiviral-signaling proteins (Li et al., 2021b). Notably, studies show 
that the NF-κB signal pathway is a central pathway involved in 
induction of pro-inflammatory cytokines and chemokines in 
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respiratory virus infection, including SARS-CoV-2-triggered 
COVID-19 (Kircheis et al., 2020; Hariharan et al., 2021; Kandasamy, 
2021). Thus, the pharmacological inactivation of the NF-κB 

signaling pathway can represent a potential therapeutic target to 
treat severe COVID-19 (Kircheis et al., 2020; Hariharan et al., 2021; 
Kandasamy, 2021).

TABLE 2 Redox mechanisms that regulate cell and tissue damage during infection with coronaviruses.

Mediators Effect on redox balance References

Redox NF-kB  • Context-dependent since ROS can in theory ↑ or ↓ NF-kB (e.g., phase of responses, pattern of 

stimulation, cell types of kB, etc).

Nakajima and Kitamura (2013)

 • Overall evidence supports that ROS ↑ NF-kB during acute infection

 • Drive cytokine storm, triggering lung damage during viral infection

ROS  • ↑ NF-kB Pearlstein et al. (2002), Mukherjee et al. (2005), 

Zinovkin et al. (2014) • ↑ TNF-induced IL-6 expression.

 • ↑ TNF-dependent ↑ expression of the adhesion molecules and ↑ endothelial permeability.

 • ↑ apoptosis and cell/tissue damage

 • ↑ end organ disease (brain, lung, cardiometabolic damage) in Long COVID

Mito-ROS  • ↑ NF-kB Shono et al. (1996), Wesselborg et al. (1997), Chua 

et al. (1998), Canty et al. (1999), Tenjinbaru et al. 

(1999), Wang and Zhang (1999), Cooke and 

Davidge (2002), Mizutani et al. (2004), Desouki 

et al. (2005), Kefaloyianni et al. (2006), Xie and 

Shaikh (2006), Doughan et al. (2008), Jamaluddin 

et al. (2009), Martinon et al. (2009), Wosniak et al. 

(2009), Bulua et al. (2011), Lee et al. (2013), Sun 

et al. (2016), Zhang et al. (2016), Daiber et al. 

(2017), Saheb Sharif-Askari et al. (2021)

 • ↑ complement-metabolism-inflammasome axis

 • ↑ Indirectly inflammatory caspases 1, 12, cytokines IL-1B, IL-18 through NLRP3 inflammasome

 • ↑ activation of MAPK, MEK, MNK1 pathways →↑ production of IL-6 and TNF-a

 • ↑ induce release of IL-1B, IL-6 and lung injury under viral infection

 • ↑ Mito-ROS regulates NOX and impacts survival rates of mice with post-viral pneumonia

 • Regulate Ca2+ signaling systems that may impact inflammatory host responses

 • ↑ Nrf2 pathway

 • Regulate ER stress and unfolded protein response that may impact inflammatory host responses

 • Regulate interferon host responses

 • ↑ apoptosis and cell/tissue damage

 • Regulate mitophagy/autophagy and cell/tissue damage

Keap1-Nrf2-

ARE pathway

 • ↑ anti-viral responses Cho et al. (2009), Hosakote et al. (2009), Kesic et al. 

(2011), Yamada et al. (2012), Kosmider et al. (2012), 

Komaravelli and Casola (2014), Komaravelli et al. 

(2015), Simon et al. (2015), Espinoza et al. (2017), 

Khomich et al. (2018), Tu et al. (2019), Olagnier 

et al. (2020), Herengt et al. (2021), Toro et al. (2022)

 • ↑ anti-inflammatory responses

 • Remove toxic heme

 • Protect against oxidative injury

 • ↑ anti-apoptotic responses

 • Regulates angiogenesis

 • Regulates autoimmunity

 • Regulates vascular injury

 • Mediates pathogenesis and tissue damage of many viral infections, including HIV, RSV, Influenza, 

SARS-CoV-2

 • ↓ apoptosis that regulates cell death and tissue damage

Ang II  • ↑ ROS levels through NADPH oxidase, →↑ cytokines (e.g., IL-6, IL-8, TNF-a) through NF-kB 

upregulation →↑ pro-inflammatory response

Nguyen Dinh Cat et al. (2013), Mahmud-Al-Rafat 

et al. (2020)

Type I IFNs  • Coronaviruses and ROS downregulate interferon host responses that impact a cascade of signaling 

events that may drive tissue damage

Dikalova et al. (2010)

Cytokines 

(bidirectional 

link with redox 

stress)

 • Cytokines (e.g., IL-1, IL-6, TNFa) activate macrophages, neutrophils, endothelial cells through 

NOX, disrupting redox balance of the cell

Takada et al. (2003), Schrader et al. (2007), Nanduri 

et al. (2008), Valle et al. (2019), Connors and Levy 

(2020) • IL-6 directly induces mito-ROS production and NOX in endothelial cells

Abbreviations: ACE2, Angiotensin-converting enzyme 2; AngII, Angiotensin II; ARE, antioxidant response element; COVID, COrona Virus Disease; Ca2+, Calcium (II) ion; ER, endoplasmic 
reticulum; HIV, human immunodeficiency virus; HO-1, Heme oxygenase 1; IFNs, Interferons; IL, interleukin; Keap1, Kelch-like ECH-associated protein 1; MAPK, mitogen-activated protein 
kinase; MEK, Mitogen-activated protein kinase; Mito-ROS, Mitochondrial reactive oxygen species; Mnk1, mitogen-activated protein kinase (MAPK) interacting protein kinase 1; NF-κB, Nuclear 
factor kappa B; NOX, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; Nrf2, nuclear factor erythroid 2–related factor 2; NQo-1, NAD(P)H quinone oxidoreductase; ROS, reactive 
oxygen species; RSV, Respiratory Syncytial Virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TNF, Tumor necrosis factor; UPR, unfolded protein response.
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Mito-ROS pathways

As outlined above, coronavirus induce production of mito-ROS 
during infection. Mito-ROS have been shown to inhibit interferons 
and induce aberrant alterations of lipids, membranes, proteins and 
ultimately tissue damage. Mito-ROS induce inflammasome 
activation (Dashdorj et  al., 2013; Han et  al., 2018) and the 
“complement–metabolism–inflammasome axis”(Arbore and 
Kemper, 2016), Mito-ROS indirectly regulate inflammatory 
caspases 1 and 12, as well as the cytokines IL-1β and IL-18  in 
macrophages through the NLRP3 inflammasome (Martinon et al., 
2009). Mito-ROS induce NFκB (Imai et al., 2008) which drives a 
cytokine storm, triggering lung damage during viral infection. 
Mito-ROS also induce activate MAPK pathways and promote 
production of IL-6 and TNF-α (Wang and Zhang, 1999; Mizutani 
et al., 2004; Kefaloyianni et al., 2006; Jamaluddin et al., 2009; Bulua 
et al., 2011; Zhang et al., 2016). Mito-ROS directly induce release of 
IL-1β (Dashdorj et al., 2013; Han et al., 2018), IL-6 (Lowes et al., 
2008, 2013; Bulua et al., 2011; Li et al., 2019). Consistent with this 
evidence it has been shown that Mito-ROS induce inflammatory 
response and lung injury in mouse models of viral infections (Hu 
et  al., 2019a; Hu et  al., 2019b). Thus, mito-ROS may regulate 
redox cytoplasmic proinflammatory responses in respiratory 
viral infections.

Nf2 pathways

Heme oxygenase 1 (HO-1), a downstream protein of the Nrf2 
pathway, contributes to anti-inflammatory and antiviral responses, 
removes toxic heme, protects against oxidative injury and also regulates 
apoptosis, inflammation and angiogenesis (Espinoza et al., 2017). While 
the exact mechanism by which SARS-CoV-2 affects HO-1 and, 
conversely, how HO-1 exerts its antiviral effects against SARS-CoV-2 is 
still being studied, there is an established association between HO-1 and 
a reduction of tissue damage through its anti-inflammatory and 
antioxidative functions throughout the body (Toro et al., 2022). This 
makes HO-1 an important target for developing novel COVID-19  
therapeutics.

Angiotensin II and NOX

During SAS-CoV-2 infection, the reduction of ACE2 on the cell 
surface leads to increase of Ang II and NOX (Nguyen Dinh Cat et al., 
2013). Bidirectional crosstalk between mitochondria and NOX, 
markedly affects redox responses to angiotensin II, the ligand of ACE2 
that is upregulated in viral infections (Doughan et al., 2008; Wosniak 
et al., 2009; Lee et al., 2013; Daiber et al., 2017). Indeed, therapeutic 
targeting of NOX, triggered by mito-ROS (Desouki et  al., 2005), 
increased the survival of mice with post-influenza pneumonia (Sun 
et al., 2016). Thus, as a result of increased NOX, NF-κβ activation there 
is activation of the pro-inflammatory response and release of cytokines 
like IL-6, IL-8, and TNFα (Mahmud-Al-Rafat et  al., 2020). 
Pro-inflammatory cytokines like IL-1, IL-6, and TNFα activate 
macrophages, neutrophils, and endothelial cells through NADPH 
oxidase, resulting in a greater production of superoxide and H2O2 
(Takada et al., 2003; Nanduri et al., 2008; Connors and Levy, 2020).

The complement system

As outlined above, coronavirus induce production of mito-ROS 
which trigger the “complement–metabolism–inflammasome 
axis”(Arbore and Kemper, 2016). MERS-CoV can also directly 
induce the complement system (Chen et al., 2010). The complement 
activation has also potent proinflammatory effect and can increase 
local and systemic damage in severe COVID-19 (Santiesteban-Lores 
et al., 2021). Preclinical in vitro studies have shown controversial 
data regarding the role of the complement system in binding 
coronaviruses (Santiesteban-Lores et  al., 2021). Experimental 
studies with animals have shown that complement activation 
induces a systemic pro-inflammatory response during experimental 
infection with SARS-CoV and MERS that drives disease progression 
(Gralinski et al., 2018; Jiang et al., 2018). Small human cohorts also 
show that complement activation is associated with disease 
progression of SARS (Wang et al., 2005). Collectively, limited and 
often controversial evidence suggests that complement activation 
through redox pathways may have an important role in cell and 
tissue damage in severe coronavirus infections.

Other proinflammatory mechanisms in 
coronavirus infections

Other than activation of proinflammatory NF-kB, mito-ROS and 
NOX pathways and downregulation of anti-inflammatory ACE2 and 
Nrf2 pathways, different coronaviruses may also directly induce other 
proinflammatory effects. MERS-CoV can induce the complement 
system and increase inflammatory response, pyroptosis and eventually 
lung tissue damage (Chen et  al., 2010). MERS-CoV infected 
macrophages increase pro-inflammatory cytokines and chemokines 
(Pruijssers and Denison, 2019). SARS-CoV and MERS-CoV may also 
attenuate levels of endogenous Type I IFNs that are immunomodulatory 
(Dikalova et al., 2010). Finally, mouse hepatitis virus (MHV) directly 
upregulated interleukin signaling such as IL-27 during 
acute encephalomyelitis.

Redox pathways that regulate 
apoptosis during infection with 
coronaviruses

As described above, coronaviruses induce apoptosis through 
multiple pathways, either directly (Pfefferle et  al., 2011), or 
indirectly by inducing production of mito-ROS and downregulating 
antiapoptotic pathways such as Nrf2. Excessive ROS generation can 
lead to loss of mitochondrial function and apoptosis of lung 
epithelial cells (Sun et al., 2013). Increased mito-ROS also directly 
contribute to acute injury in lung tissue in mouse models of viral 
infections (Hu et  al., 2019a,b). Indeed, increased apoptosis of 
epithelial cells is associated with lung injury in COVID-19 
(Hussman, 2020). Studies have also shown that CD4 and CD8 T 
cells in patients with COVID-19 are more likely to get affected by 
apoptosis (Nieto-Torres et  al., 2015). Thus, increased apoptosis 
during coronavirus infection contributes to increased tissue damage 
and pathogenesis of coronavirus infections.
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Redox pathways that regulate 
mitophagy during infection with 
coronaviruses

As outlined above, coronaviruses induce production of mito-ROS 
that have an established complex crosstalk with mitophagy (Schofield 
and Schafer, 2021). Mitochondrial ROS and damage-associated 
molecular patterns (DAMPs) activate inflammasomes to induce 
inflammatory responses and tissue injury. Emerging evidence suggests 
that mitophagy protects against the hyperinflammation induced by ROS 
and DAMPs and regulates inflammatory responses in several diseases 
(Zhao et  al., 2015). Thus, by inducing production of mito-ROS, 
mitochondrial dysfunction and mitophagy impairment, SARS-CoV-2 
may contribute to inflammation and tissue damage (Shang et al., 2021).

Redox pathways that regulate other 
instigators of tissue damage during 
infection with coronaviruses

Other than regulation of viral replication, inflammation and 
apoptosis, redox pathways may also contribute to regulation of other 
pathways that contribute to tissue damage such as autoimmunity and 
vascular dysfunction. Oxidative stress plays a central in autoimmune 
diseases (Ramani et al., 2020). Specifically, the antioxidant pathway 
Nrf2 has also a key role in regulation of autoimmunity (Freeborn and 
Rockwell, 2021). Given the possible role of autoimmunity in 
pathogenesis of COVID-19 and Long COVID, further understanding 
of the contribution of dysregulation redox pathways in development 
of autoimmunity during coronavirus infections is needed (Liu et al., 
2021; Saad et al., 2021).

ROS induce levels of the adhesion molecules and increase 
permeability in endothelial cells (Mukherjee et al., 2005; Zinovkin et al., 
2014). ROS also contribute to TNF-induced IL-6 expression and NF-κB 
activation (Pearlstein et  al., 2002). Notably, IL-6 directly induces 
mito-ROS production and NOX in endothelial cells (Schrader et al., 
2007; Valle et al., 2019) and impact NO bioavailability and endothelial 
function (Saura et al., 2006). SARS-CoV-2 S-protein binds to ACE2 and 
subsequently triggers reduction in ACE2 levels that cleaves ATII. High 
ATII level further leads to oxidative stress and endothelial dysfunction 
(Chernyak et  al., 2020) and induces ROS production via NOX in 
endothelial cells. Thus, increased redox stress induced by SARS-CoV-2 
may impact not only vascular permeability and vasodilation but also 
vascular inflammation.

Oxidative stress and end organ 
damage during infection with 
coronaviruses

All coronaviruses have the potential to induce tissue damage and 
end organ disease through viral replication, increased inflammation 
and apoptosis, induction of ROS and reduction of cytoprotective 
pathways such as the Nrf2 and HO-1 pathways. Increased redox 
stress is known instigator of lung dysfunction (Kellner et al., 2017), 
cardiovascular disease (Dubois-Deruy et al., 2020), central nervous 
system dysfunction such as neurodegeneration and neuropsychiatric 
disease (Reiter, 1998; Patel, 2016; Salim, 2017) and the metabolic 
syndrome (Ando and Fujita, 2009; Roberts and Sindhu, 2009; 

Carrier, 2017) which are all manifestations of both acute severe 
COVID-19 and post-acute sequelae of SARS-CoV-2 infection (often 
called Long COVID syndrome; Figure 3; Nalbandian et al., 2021). 
Coronaviruses differ in their potential to induce end organ damage 
(Table 3; Bonavia et al., 1997; De Albuquerque et al., 2006; de Wilde 
et  al., 2013; Josset et  al., 2013; Zhao et  al., 2015; Li et  al., 2016; 
Agostini et  al., 2018; Coperchini et  al., 2020; Huang et  al., 2020; 
Petersen et  al., 2020; Wang et  al., 2020; Yi et  al., 2020; Caldera-
Crespo et al., 2021; Paidas et al., 2021; Tian et al., 2021; Jansen et al., 
2022). Among the various human coronaviruses, end organ damage 
is observed in MERS, SARS-CoV-1, and SARS-CoV-2. These 
coronaviruses demonstrate a more severe pathology than HCoV-
229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1  in terms of 
their fatality and systemic effects on multiple organ systems. Multiple 
animal models have been used to uncover the ways coronaviruses 
lead to the end organ damage that presents in patient autopsies. The 
MHV mice model is the most studied model among the 
coronaviruses, and it has served as a useful proxy in understanding 
SARS-CoV-2 (Paidas et al., 2022); MHV is known to enteric and 
respiratory disease, hepatitis, encephalitis, and chronic demyelination 
and is useful in studying infection of the liver and brain (Weiss and 
Navas-Martin, 2005). Despite MHV-1 utilizing a different receptor 
than either MERS or the SARS coronaviruses (carcinoembryonic 
antigen-related cell adhesion molecule 1 instead of 
dipeptidylpeptidase 4 and angiotensin-converting enzyme 2), end 
organ damage in the MHV-1 model has been acclaimed as an 
appropriate model for MERS, SARS-CoV-1, and SARS-CoV-2 (De 
Albuquerque et al., 2006; Agostini et al., 2018; Caldera-Crespo et al., 
2021; Paidas et  al., 2021; Tian et  al., 2021). Herein, we  briefly 
summarize redox pathways that regulate damage of the lung and the 
brain, the two main target organs for end organ disease in acute 
COVID-19 and Long COVID.

Lung damage

The excessive generation of oxygen radicals under pathological 
conditions such as acute lung injury (ALI) and its most severe form 
acute respiratory distress syndrome (ARDS) leads to increased 
endothelial permeability. Increased redox stress leads to increased 
permeability of lung blood vessels, increased infiltration of immune cells 
and increased accumulation of fluids in the alveolar system (Kellner 
et al., 2017). Mitochondria, NADPH oxidase (NOX), xanthine oxidase 
(Shasby et al., 1985; Barnard and Matalon, 1992), and eNOS are the 
major contributors of ROS in cells of vasculature during active 
metabolism that also contribute to the pathogenesis of ALI (Gross et al., 
2015). Imbalance of antioxidant enzymes such as superoxide dismutase 
(SOD; Ndengele et al., 2005; Cai et al., 2014), catalase (Flick et al., 1988; 
Kozower et al., 2003) and glutathione peroxidase (GPx; Aggarwal et al., 
2012; Kim et al., 2012a) and Nrf2 (Zhu et al., 2013; Peng et al., 2016) also 
contribute to pathogenesis of ALI and ARDS. Similarly, to MERS and 
SARS, severe SARS-CoV-2 infection presents with high levels of 
pro-inflammatory cytokines like IL-6, and can lead to ARDS, which is 
associated with acute renal injury, acute respiratory injury, and septic 
shock (Chen et  al., 2020). COVID-19-related ARDS has a high 
prevalence and is different to ARDS due to other etiologies (Park 
et al., 2009).

SARS-CoV-2 directly impacts several of established instigators 
that contribute to pathogenesis of ALI/ARDS including 
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mitochondrial function (Srinivasan et al., 2021), NOX (Damiano 
et al., 2020; Violi et al., 2020; de Oliveira and Nunes, 2021), xanthine 
oxidase (Pratomo et  al., 2021; Al-Kuraishy et  al., 2022), eNOS 
(Guimaraes et  al., 2021), glutathione peroxidase (Labarrere and 
Kassab, 2022) and Nrf2 (Olagnier et al., 2020; Zhang et al., 2022). 
To date, there is no treatment for ARDS in COVID-19 disease 
(Jafari-Oori et al., 2021).

Brain damage

The brain is highly susceptible to oxidative stress due to 
enrichment for lipids, mitochondria, calcium, glutamate and 
increased redox stimuli (Cobley et al., 2018). Brain damage induced 
by oxidative stress may negatively impact normal functions of central 
nervous system and may contribute to the pathogenesis of 
neurodegenerative disorders such as Alzheimer and Parkinson 
disease and in the pathogenesis of neuropsychiatric disorders, 
including anxiety and depression (Salim, 2017). For these, increased 
oxidative stress through mitochondrial dysfunction, increased 
inflammation and energy imbalance has also been hypothesized to 
contribute to pathogenesis of neurocognitive dysfunction in Long 
COVID (Paul et al., 2021; Jarrott et al., 2022).

Antioxidant therapies in coronavirus 
infections

Multiple trials underway have tested antioxidants as therapeutic 
agents in COVID-19.1 Several therapies targeting redox imbalance 
already have been used for the treatment of COVID-19 including 
inhaled NO (Lotz et  al., 2021), ubiquinol (Fukuda et  al., 2016), 
combination of NADH and CoQ10 (Castro-Marrero et  al., 2015), 
N-acetyl cysteine, mitochondria-targeted antioxidant MitoQ (Codo 
et al., 2020; Petcherski et al., 2022) and Nrf2 agonists (Zinovkin and 
Grebenchikov, 2020). Other potential antioxidant treatments that have 
been considered include, ubiquinol, nicotinamide, glutathione (and 
glutathione donors), cysteamine, sulforaphane, melatonin vitamin C, 
vitamin D, vitamin E, melatonin plus pentoxifylline and selenium. 
However, most of the proposed antioxidant treatments have either not 
been directly tested in humans in the setting of randomized control 
clinical trials or due to several methodological issues of heterogeneous 
studies, the data were inconclusive (Table 4). Many ongoing clinical 
trials regarding the use of antioxidants in treatment of COVID-19 have 
not been published. Notably, oral antioxidants have not produced 
dramatic improvements in conditions associated with redox imbalance 
(Barcelos et al., 2020). No single antioxidant can scavenge all the various 
ROS and reactive nitrogen species (RNS). Further validation with 
animal models and clinical trials are necessary to reveal therapeutic 
potential of combination therapies of antivirals, antioxidant and anti-
inflammatory treatments.

Conclusion

There is limited understanding how different coronaviruses 
including SARS-CoV-2, manipulate cellular redox machinery to drive 
viral replication and associated host cell responses including 
inflammation, apoptosis and associated end organ disease. The 
crosstalk between NOX and ACE2 as well mito-ROS may impact viral 
entry of coronaviruses while mito-ROS may also induce multiple 
proviral cytoplasmic pathways. Experimental studies have also shown 
that coronaviruses induce downregulation of antioxidant genes such as 
Nrf2 in combination with an upregulation of oxidative stress genes like 
myeloperoxidase that may contribute to both increased viral replication 
and inflammation. Coronaviruses may induce several redox sensitive 
proinflammatory pathways such NF-kB, mito-ROS and NOX pathways 
and downregulate anti-inflammatory ACE2 and Nrf2 pathways. 
Coronaviruses may further trigger cell damage through activation of 
redox sensitive pyroptosis and apoptosis. Finally, other than regulation 
of viral replication, inflammation and apoptosis, redox pathways may 
also contribute to regulation of other pathways that contribute to tissue 
damage such as autoimmunity and vascular dysfunction. Thus, 
coronaviruses have the potential to induce tissue damage and end 
organ disease through viral replication, increased inflammation and 
apoptosis, induction of ROS and reduction of cytoprotective pathways 
such as the Nrf2 and HO-1 pathways. Coronaviruses differ in their 
potential to induce end organ damage. Among the various human 
coronaviruses, end organ damage is observed in MERS, SARS-CoV-1, 
and SARS-CoV-2. Increased redox stress is known instigator of lung 

1 https://clinicaltrials.gov/

FIGURE 3

Viral infection and end organ damage. Increased redox stress drives 
viral replication, inflammation, apoptosis, vascular dysfunction and 
autoimmunity, in both acute infection with coronaviruses and in the 
setting of Post-Acute Sequelae of SARS-CoV-2 (PASC or Long COVID). 
Collectively, redox mediated pathways that drive viral replication, 
inflammation, apoptosis, autoimmunity, and vascular dysfunction 
contribute to cell and tissue damage that drives end organ disease in 
coronavirus infection. Cells enriched in mitochondria such as neurons, 
endothelial and epithelial cells may be particularly susceptible to 
increased redox stress driven by coronaviruses. Ultimately, increased 
redox stress during acute infection with coronaviruses and in the 
setting of PASC can directly or indirectly drive end organ disease such 
as brain, lung, liver, kidney and cardiovascular damage and induce 
intestinal dysfunction.
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TABLE 3 Comparison of coronaviruses with regards to impact on end organ disease.

Differences SARS-CoV-2 with other coronaviruses Similarities between SARS-CoV-2 with other coronaviruses

 • ↑ Transmissibility and ↑ affinity to the ACE2 receptor compared to other 

coronaviruses (Coperchini et al., 2020).

 • ↑ cytokine storm, severe pneumonia, septic shock and multiorgan damage similarly 

to SARS and MERS

 • ↑ Viral replication compared to SARS (Huang et al., 2020).  • Infects the airways

 • ↑ Cytokine storm similarly to SARS  • Impacts the brain similarly to MHV (De Albuquerque et al., 2006; Agostini et al., 

2018; Caldera-Crespo et al., 2021; Paidas et al., 2021; Tian et al., 2021), HCoV-OC43 

and HCoV-229E (Bonavia et al., 1997).

 • ↑ Cytokine TH1 pro-inflammatory cytokines compared to SARS (Huang et al., 

2020).

 • Infects the liver (Wang et al., 2020) similarly to MHV (De Albuquerque et al., 2006; 

Agostini et al., 2018; Caldera-Crespo et al., 2021; Paidas et al., 2021; Tian et al., 2021) 

and MERS (Zhao et al., 2015).

 • ↓ Interferon response compared to SARS and MERS (Li et al., 2016)  • Impacts the heart similarly to MHV (De Albuquerque et al., 2006; Agostini et al., 

2018; Caldera-Crespo et al., 2021; Paidas et al., 2021; Tian et al., 2021).

 • Unlike MERS requires a TH17 type response (Yi et al., 2020)  • Impacts the kidney (Jansen et al., 2022) similarly to MHV (De Albuquerque et al., 

2006; Agostini et al., 2018; Caldera-Crespo et al., 2021; Paidas et al., 2021; Tian et al., 

2021).

 • ↓ Severe symptoms compared to SARS/MERS (Petersen et al., 2020).  • ↑ vascular injury and thrombosis (Siddiqi et al., 2021) similarly to MHV (De 

Albuquerque et al., 2006; Agostini et al., 2018; Caldera-Crespo et al., 2021; Paidas 

et al., 2021; Tian et al., 2021).

 • MERS is more cytopathic and causes greater immune system dysregulation compared 

to SARS-CoV-2 (de Wilde et al., 2013; Josset et al., 2013)

Abbreviations: ACE2, Angiotensin-converting enzyme 2; HCoV-229E, Human coronavirus 229E; HCoV-OC43; Human coronavirus OC43; HCoV-NL63; HKU-1, HCoV-HKU1 = human 
coronavirus HKU1; MERS-CoV, Middle East respiratory syndrome coronavirusl MHV, mouse hepatitis virus; SARS-CoV, Severe acute respiratory syndrome coronavirus; SARS-CoV-2, Severe 
acute respiratory syndrome coronavirus 2; TH1, Type 1 T helper

TABLE 4 Antioxidant treatments that have been tested in humans for treatment of coronavirus infections.

Mediators Effect References

Inhaled NO ↑ oxygenation in severe COVID-19, no effect on 

mortality

Lotz et al. (2021), Prakash et al. (2021)

Ubiquinol (CoQ10) Does not ↓ the number or severity of PASC-related 

symptoms when compared to placebo

Hargreaves and Mantle (2021), Hansen et al. (2022)

N-acetyl cysteine Oral high dose of N-acetyl cysteine may ↓ morbidity in 

severe COVID-19 in observational studies; many 

ongoing clinical trials with unpublished data

Wong et al. (2021), Izquierdo et al. (2022)

Glutathione ↓ reduces dyspnea in COVID-19 in a case series Horowitz et al. (2020)

Melatonin May improve clinical outcomes in patients with 

COVID-19 based on RCTs

Lan et al. (2022)

Vitamin C Controversial data may have some benefit in morbidity 

in COVID-19 based on clinical trials

Olczak-Pruc et al. (2022)

Vitamins Controversial data overall weak/negative; 

supplementation with vitamins A, B, C, D, and E could 

improve the inflammatory response and decrease the 

severity of disease in ICU-admitted patients with 

COVID-19

Beigmohammadi et al. (2021)

Zinc Overall limited data/no major effect on morbidity in 

COVID-19, many ongoing clinical trials with 

unpublished data

Perera et al. (2020), Balboni et al. (2022)

Selenium Overall limited data/no major effect on morbidity in 

COVID-19, many ongoing clinical trials with 

unpublished data

Alshammari et al. (2022), Balboni et al. (2022)

Pentoxifylline May reduce lung inflammation, ongoing clinical trials 

with unpublished data

Feret et al. (2021)

Abbreviations: RCT, Randomized control clinical trial; PASC, Post Acute Sequalae of SARS-CoV-2 infection.
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dysfunction (Kellner et  al., 2017), cardiovascular disease (Dubois-
Deruy et  al., 2020), central nervous system dysfunction such as 
neurodegeneration and neuropsychiatric disease (Reiter, 1998; Patel, 
2016; Salim, 2017) and the metabolic syndrome (Ando and Fujita, 
2009; Roberts and Sindhu, 2009; Carrier, 2017) which are all 
manifestations of both acute severe COVID-19 and Long COVID 
syndrome (Nalbandian et  al., 2021). Given the complexity of the 
pathogenesis of coronavirus infections and that oral antioxidants have 
not produced dramatic improvements in conditions associated with 
redox imbalance, further validation with animal models and clinical 
trials are necessary to reveal therapeutic potential of combination 
therapies of antivirals, antioxidant and anti-inflammatory treatments. 
Understanding the mechanisms that contribute to the pathogenesis of 
coronavirus infections, will set the foundation for development of new 
treatments for coronavirus infections.
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