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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR

OF AFFINE MOTION OF 3D IDEAL FLUIDS

SURROUNDED BY VACUUM

THOMAS C. SIDERIS

Abstract. The 3D compressible and incompressible Euler equa-
tions with a physical vacuum free boundary condition and affine
initial conditions reduce to a globally solvable Hamiltonian system
of ordinary differential equations for the deformation gradient in
GL+(3,R). The evolution of the fluid domain is described by a
family ellipsoids whose diameter grows at a rate proportional to
time. Upon rescaling to a fixed diameter, the asymptotic limit
of the fluid ellipsoid is determined by a nontrivial positive semi-
definite quadratic form of rank r = 1, 2, or 3, corresponding to the
asymptotic degeneration of the ellipsoid along 3 − r of its princi-
pal axes. In the compressible case, the asymptotic limit has rank
r = 3, and asymptotic completeness holds, when the adiabatic
index γ satisfies 4/3 < γ < 2. The number of possible degenera-
cies, 3 − r, increases with the value of the adiabatic index γ. In
the incompressible case, affine motion reduces to geodesic flow in
SL(3,R). For incompressible swirling flow (with uni-axial vortic-
ity), there is a structural instability. Generically, when the vortic-
ity is nonzero, the domains degenerate along only one axis, but the
physical vacuum boundary condition fails over a finite time inter-
val. The rescaled fluid domains of irrotational motion can collapse
along two axes.

1. Introduction

We shall consider the affine motion of ideal fluids in three spatial
dimensions. An affine motion is a one-parameter family of deformations
of the form

x(t, y) = A(t)y,

defined on the reference domain

B = {y ∈ R
3 : |y| < 1}.

The deformation gradient A(t) takes values in GL+(3,R), the set of
invertible 3×3 matrices with positive determinant. We shall show that
the equations of motion for ideal fluids, surrounded by vacuum, support
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2 THOMAS C. SIDERIS

affine solutions satisfying the physical vacuum boundary condition, in
the case of compressible ideal gases and the case of incompressible
fluids. In both cases, the PDEs reduce to globally solvable systems of
Hamiltonian ODEs for the deformation gradient, see equations (3.23)
and (3.41).
All hydrodynamical quantities are expressed explicitly in terms of the

deformation gradient A(t) and the initial conditions, resulting in global
finite energy classical solutions of the initial free boundary value prob-
lem, with one proviso in the incompressible case. For incompressible
motion, the evolution of A(t) turns out to be geodesic flow in SL(3,R),
the set of 3 × 3 with determinant equal to unity. This should be seen
as a special case of the general result of Arnold [1] which provides an
interpretation of the motion of perfect incompressible fluids as geodesic
flow in the space of volume-preserving deformations, see also Rouchon
[20]. The curvature of A(t), as a curve in the vector space of 3 × 3
matrices, determines the sign of the pressure, with the potential effect
that the physical vacuum boundary condition may fail. Thus, although
solutions are global in time, there may, in general, be a time interval
on which the solution is not physically realistic because the pressure
vanishes or even becomes negative. This will be illustrated for swirling
flow and shear flow in Section 6.
For general affine motion, the fluid domains Ωt = A(t)B are ellip-

soids. We shall show that their diameters grow at a rate proportional
to time, provided the physical vacuum boundary condition holds. This
improves upon the lower bound obtained by the author in [22] for gen-
eral flows. The growth of the diameter, together with the form of the
aforementioned ODEs, suggests that limt→∞ ‖A′′(t)‖ = 0, and there-
fore, we are lead to consider the existence of asymptotic states of the
form

A∞(t) = A0 + tA1

such that

lim
t→∞

‖A∞(t)‖ = +∞ and lim
t→∞

‖A(t)−A∞(t)‖ = 0.

Given this asymptotic behavior, we see that 0, 1, or 2 of the prinicipal
axes of the rescaled ellipsoids t−1Ωt may collapse, depending upon the
rank of the matrix A1. In the incompressible case, where the volume
of Ωt is constant, at least one axes must collapse. After scaling down
the domains to t−1Ωt, we shall see a full breakfast menu of asymptotic
states: eggs, pancakes, and sausages.
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In the compressible case, the set of possible asymptotic states in-
creases with the adiabatic index γ. We shall show that any asymp-
totic state A∞(t), with limt→∞ detA∞(t) = +∞, is the limit of a so-
lution, for values of the adiabatic index γ > 5. If γ > 4/3, then any
state with detA1 > 0 is the limit of a unique solution. Moreover, if
4/3 < γ < 2, there is a wave operator, i.e. a bijection between ini-
tial data (A(0), A′(0)) with detA(0) > 0 and asymptotic asymptotic
states with detA1 > 0, and moreover, asymptotic completeness holds.
If γ > 2 or 3, then there exist asymptotic states with rankA1 = 2 or 1,
respectively, which are approached by a unique solution. These results
are proven in Section 5, using a fixed point argument applied to a suit-
able Cauchy problem at infinity involving the quantity A(t)−A∞(t).
We do not attempt a classification of asymptotic behavior in the

incompressible case. Instead, we examine the case of affine swirling
flow with uni-axial vorticity, where a full range of asymptotic behavior
can be found. Generically, the rescaled fluid domains collapse along one
axis as t→ ±∞, but there is a bounded time interval within which the
pressure becomes negative and the vacuum boundary condition fails,
see Theorem 8. For the sub-case of irrotational axi-symmetric flow, the
pressure remains positive for all times, but the rescaled fluid domains
collapse along two axes as t→ +∞ or −∞ and along only one axis as
t → −∞ or +∞, depending upon the initial conditions, see Theorem
9. Thus, at least on the level of ODEs, there is a structural instability
in passing from irrotational to rotational affine swirling flow.
The use of affine hydrodynamical motions in free space is a well-

established technique for gaining a basic understanding of qualitative
behavior, see for example the expository article of Majda [17] devoted
to incompressible flow. Of course in free space, these solutions have
infinite energy. In the present situation, affine finite energy solutions
are constructed in bounded moving domains with prescribed boundary
conditions. This restricts the evolution of the deformation gradient and
the related hydrodynamical quantities. Liu [16] considered the special
case of spherically symmetric affine solutions, where the deformation
gradient A(t) is a multiple of the identity, in connection with damped
compressible flow surrounded by vacuum to recover Darcy’s Law in
the asymptotic limit. The author used this same ansatz to provide
a explicit example of spherical domain spreading for the vacuum free
boundary problem in the (undamped) compressible case in [22]. The
present work demonstrates that a much richer spectrum of asymptotic
behavior is possible for non-spherically symmetric affine motion. In
particular, the are no nontrivial spherically symmetric affine solutions
in the incompressible case.
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Formation of singularities for classical large and small amplitude 3D
compressible flow with a non-vanishing constant state outside a com-
pact region was established by the author in [21]. Makino, Ukai, and
Kawashima obtained an analogous result for a smooth compactly sup-
ported disturbance moving into a vacuum state, see [18], [19]. A crucial
role in singularity formation for these classical solutions is played by
the constant propagation speed of signals at the boundary of the dis-
turbance determined by the constant sound speed at infinity, which
strongly suggests the presence of compressive shocks at the front. In
1D, this has been well-understood since the work of Lax [11], and
Christodoulou’s pioneering work [3] confirms this for irrotational rela-
tivistic fluids in 3D. For the vacuum free boundary problem, the en-
thaply has a jump discontinuity across the free boundary, the solutions
to the problem are merely weak (in R

3), and the results on singularity
formation do not apply. It is unknown whether non-affine solutions
to the vacuum free boundary problem develop singularities within the
fluid domain in finite time. Affine solutions, by virtue of their simplic-
ity, do not allow for the development of small spatial structures, which
rules out shock formation. Nor, as we shall demonstrate, do affine
motions lead to finite time collapse or blow-up of the fluid domain.
The challenging problem of local well-posedness for the initial free

boundary value problem for ideal fluid motion has been exhaustively
studied by a number of authors in recent years. Wu considered the
full water wave problem with gravity, in two and three dimensions, see
[23], [24], respectively. Christodoulou and Lindblad initiated the study
of the vacuum free boundary problem for incompressible flow without
gravity in [4]. Adopting a geometric point of view, they establish key
a priori estimates for Sobolev norms of solutions and the second fun-
damental form of the free boundary of the fluid domain. Using this
framework, Lindblad established local well-posedness for the linearized
problem in [13], and he subsequently resolved local well-posedness for
the nonlinear problem using Nash-Moser iteration in [15]. Coutand
and Skholler provided an alternative proof, with and without surface
tension, which avoided the use of Nash-Moser, see [6] and [7]. Local
well-posedness for compressible liquids (nonzero fluid density on the
free boundary) was established by Lindblad, in the linearized case [12]
and then in the full nonlinear case [14]. Finally, the case of ideal gases
(vanishing fluid density on the free boundary), with an isentropic equa-
tion of state, was first studied by Coutand, Lindblad, and Shkoller, [5],
who established a priori estimates. Coutand and Shkoller then ob-
tained local well-posedness for isentropic gases using parabolic regular-
ization, [8]. Jang and Masmoudi solved the one-dimensional version of
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the problem in [9], and they later provided a proof in the multidimen-
sional setting based on weighted energy estimates in [10]. All of these
works rely heavily on the physical vacuum boundary condition: for in-
compressible fluids the normal derivative of the pressure is negative on
the boundary, and for gases the normal derivative of the enthalpy must
be negative.

2. Notation

The set of all 3×3 matrices over R will be denoted byM
3. Given A ∈

M
3, its determinant, trace, transpose, inverse (if it exists), and cofactor

matrix will be written detA, trA, A⊤, A−1, and cof A, respectively. We
define A−⊤ = (A−1)⊤. The vector space M

3 is isomorphic to R
9, and

the Euclidean norm of an element A ∈ M
3 is (trAA⊤)1/2. The operator

norm of A ∈ M
3 will be denoted by ‖A‖. These norms are equivalent.

We denote the identity component of the general linear group by

GL+(3,R) = {A ∈ M
3 : det A > 0},

and the special linear group by

SL(3,R) = {A ∈ GL+(3,R) : det A = 1}.

We adopt the standard notation x . y to denote two nonnegative
functions x and y for which there exists a generic constant c > 0 such
that x ≤ cy. We write x ∼ y if x . y and y . x. The notation O(y)
will be used to denote a quantity x with the property x . y.

3. Global Existence of Affine Solutions

3.1. Kinematics. We shall consider affine motions

x(t, y) = A(t)y, y ∈ B = {y ∈ R
3 : |y| = 1}.

The as yet unknown deformation gradient Dyx(t, y) = A(t) satisfies
the minimal requirement

A ∈ C(R,GL+(3,R)) ∩ C2(R,M3).

Incompressible motion is volume preserving, and so in this case, we will
require

A ∈ C(R, SL(3,R)) ∩ C2(R,M3).

The domain occupied by the fluid at time t is the image Ωt of the
reference domain B under the deformation x(t, ·), that is,

Ωt = {x(t, y) ∈ R
3 : y ∈ B}.



6 THOMAS C. SIDERIS

Using the polar decomposition, we may writeA(t) = (A(t)A(t)⊤)1/2R(t),
where R(t) is a rotation, so for affine motion, we have

Ωt = A(t)B = (A(t)A(t)⊤)1/2R(t)B = (A(t)A(t)⊤)1/2B.

This shows that Ωt is an ellipsoid whose principal axes are oriented in
the directions of an orthonormal system of eigenvectors for the positive
definite and symmetric matrix (A(t)A(t)⊤)1/2, called the stretch tensor.
In a coordinate frame determined by the eigenvectors, we have that

Ωt =

{

x ∈ R
3 :

3
∑

i=1

(xi/λi(t))
2 < 1

}

,

where {λi(t)}
3
i=1 are the (strictly positive) eigenvalues of the stretch

tensor. Therefore, the diameter of Ωt is equal to twice the largest
eigenvalue of the stretch tensor. This implies that

diamΩt ∼ tr(A(t)A(t)⊤)1/2 =

3
∑

i=1

λi(t).

In material coordinates, the velocity associated to this motion is

(3.1) u(t, x(t, y)) =
d

dt
x(t, y) = A′(t)y, y ∈ B,

or equivalently,

(3.2) u(t, x) = A′(t)A(t)−1x, x ∈ Ωt,

in spatial coordinates. It follows from (3.1) that the material time
derivative of the velocity is

Dtu(t, x) =
d

dt
u(t, x(t, y))

∣

∣

∣

∣

y=A(t)−1x

(3.3)

=
d

dt
A′(t)y

∣

∣

∣

∣

y=A(t)−1x

= A′′(t)y|y=A(t)−1x

= A′′(t)A(t)−1x.

From (3.2) we see that for affine motion, the velocity gradientDxu(t, x)
is spatially homogeneous. Define

(3.4) L(t) = Dxu(t, x) = A′(t)A(t)−1.

We note that by (3.4)

(3.5) A′(t) = L(t)A(t),
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and also

(3.6) trL(t) = ∇ · u(t, x).

Denote the Jacobian by

J(t) = detA(t).

Then J(t) > 0, t ∈ R, since A(t) ∈ GL+(3,R). It follows from (3.5)
that

(3.7) J ′(t) = trL(t)J(t), J(0) = detA(0).subsection

3.2. Rescaled Asymptotic Fluid Domains. Ultimately, we shall
construct affine motions A(t) with the property that

(3.8) lim
t→∞

‖A(t)− A∞(t)‖ = 0,

for some affine asymptotic state of the form

A∞(t) = A0 + tA1, A0, A1 ∈ M
3, A1 6= 0.

If Ωt = A(t)B is the family of fluid domains, define the rescaled
asymptotic fluid domain

Ω∞ = lim
t→∞

t−1Ωt = {x ∈ R
3 : x = lim

t→∞
t−1A(t)y, for some y ∈ B}.

If (3.8) holds, then Ω∞ is simply the image of B under A1. Thus, in
the appropriate coordinate frame, we will have

Ω∞ = {x ∈ R
3 :

r
∑

i=1

(xi/λi)
2 < 1; xi = 0, r < i ≤ 3},

where {λi}
r
i=1 are the nonzero eigenvalues of the positive semi-definite

symmetric matrix (A1A
⊤
1 )

1/2. We shall have A1 6= 0, provided the
vacuum boundary condition holds. Thus, the domain Ω∞ will be an
ellipsoid (r = 3), an ellipse in some two-dimensional subspace (r = 2),
or a line segment (r = 1) in some one-dimensional subspace.

3.3. Compressible case. The compressible Euler equations with an
equation of state for an ideal gas are

ρDtu+∇p = 0,(3.9)

Dtρ+ ρ∇ · u = 0,(3.10)

Dtε+ (γ − 1)ε∇ · u = 0,(3.11)

p = p(ρ, ε) = (γ − 1)ρε, γ > 1,(3.12)

in which u, ρ, ε, and p are the fluid velocity vector field, density,
specific internal energy, and pressure, respectively. The operator Dt

stands for the material time derivative Dt = ∂t+u ·∇. The constant γ
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is the adiabatic index. The vacuum free boundary problem consists in
solving the system (3.9), (3.10), (3.11), (3.12) in a regular open space-
time region of the form CT = {(t, x) ∈ R × R

3 : x ∈ Ωt, |t| < T},
where Ωt ⊂ R

3 is a family of regular, simply connected, open sets
with a well-defined unit normal ηx(t, x) for x ∈ ∂Ωt. The lateral (free)
boundary BT of CT has a well-defined normal η = (ηt, ηx) ∈ R × R

3.
The space-time velocity vector field (1, u) is parallel to BT :

(3.13) η(t, x) · (1, u(t, x)) = 0, (t, x) ∈ BT .

The physical vacuum boundary condition is

p(t, x) = 0, (t, x) ∈ BT ,(3.14)

Dnε(t, x) = ηx(t, x) · ∇ε(t, x) < 0, (t, x) ∈ BT .(3.15)

We are going to construct global solutions of this system in the class
of affine deformations. The next three preparatory lemmas will simplify
the statement of this result. The first two concern the initial data for
the density and internal energy, and the third establishes the evolution
of the deformation gradient.

Lemma 1. Let

Y = {f ∈ C0[0, 1] ∩ C1[0, 1) : f(s) > 0, s ∈ [0, 1), f ′(0) = f(1) = 0}.

Choose a function ρ0 ∈ Y such that

(3.16) 0 < lim
s→1−

(1− s)−δρ0(s) <∞, for some δ > 0.

If

(3.17) ε0(s) =

∫ 1

s
ςρ0(ς) dς

(γ − 1)ρ0(s)
,

then ε0 ∈ Y, and

(3.18) ε′0(1) = −[(γ − 1)(1 + δ)]−1 < 0.

Proof. Since ρ0 ∈ Y, it is clear that ε0 ∈ C1[0, 1) and that ε′0(0) = 0.
Let L = lims→1−(1− s)−δρ0(s). By l’Hôpital’s rule

(3.19) lim
s→1−

∫ 1

s
ςρ0(ς) dς

(1− s)1+δ
= lim

s→1−

−sρ0(s)

−(1 + δ)(1− s)δ
=

L

1 + δ
.

Since by (3.17)

(3.20) ε0(s) =

∫ 1

s
ςρ0(ς) dς

(1− s)1+δ

(1− s)δ

(γ − 1)ρ0(s)
(1− s),
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it follows from (3.19) that lims→1− ε0(s) = 0, and so ε0 ∈ Y. Also from
(3.17) and (3.20), we have

lim
s→1−

ε0(s)− ε0(1)

s− 1
= − lim

s→1−

∫ 1

s
ςρ0(ς) dς

(1− s)1+δ
·

(1− s)δ

(γ − 1)ρ0(s)

= −
L

1 + δ
·

1

(γ − 1)L

=
−1

(γ − 1)(1 + δ)
.

Thus, ε′0(1) exists, and (3.18) holds. �

Lemma 2. Let A ∈ GL+(3,R) and set Ω = {Ay ∈ R
3 : y ∈ B}.

Define the functions

(3.21) ρ(x) = ρ0(|A
−1x|), ε(x) = ε0(|A

−1x|), x ∈ Ω,

in which ρ0, ε0 ∈ Y and ε0 is defined by (3.17), (see Lemma 1). Then
the functions ρ, ε are nonnegative, they belong to C0(Ω) ∩ C1(Ω), and
they vanish on ∂Ω. The function ε satisfies the condition

(3.22) Dnε(x) = ε′0(1) < 0, x ∈ ∂Ω.

Proof. Since ρ0, ε0 ∈ Y, the functions ρ(x), ε(x) belong to C0(Ω) ∩
C1(Ω). The unit outward normal n(x) at a point x ∈ ∂Ω is n(x) =
|A−⊤A−1x|−1A−⊤A−1x. From (3.21), we have ∇ε0(x) = ε′0(1)n(x), for
x ∈ ∂Ω, and so Dnε0(x) = ∇ε0(x) · n(x) = ε′0(1) < 0, for x ∈ ∂Ω. �

Lemma 3. Let γ > 1 be given. For arbitrary initial data

(A(0), A′(0)) ∈ GL+(3,R)×M
3,

the system

(3.23) A′′(t) = (detA(t))1−γA(t)−⊤

has a unique global solution A ∈ C(R,GL+(3,R)) ∩ C∞(R,M3). The
solution satisfies the conservation law

(3.24) E(t) ≡
1

2
trA′(t)A′(t)⊤ + (γ − 1)−1 detA(t)1−γ = E(0).

Proof. Let A ∈ M
3, and set C = cof A. Fix indices (i, j). Using the

cofactor expansion across the ith row of A, we have

(3.25) detA =
3

∑

ℓ=1

AiℓCiℓ.



10 THOMAS C. SIDERIS

By definition, the cofactor Ciℓ is independent of the (i, j)th entry Aij,
for ℓ = 1, 2, 3. Thus, regarding detA as a function from M

3 into R, we
have from (3.25) that

(3.26)
∂

∂Aij
detA = Cij.

For A ∈ GL+(3,R), the standard formula

(3.27) A−1 = (detA)−1(cof A)⊤

allows us to express the nonlinearity as

(3.28) N(A) = (detA)1−γA−⊤ = (detA)−γ cof A,

from which it is clear that N(A) is a C∞ function of A on GL+(3,R).
Writing the system (3.23) in first order form in the variables (A1, A2) =

(A,A′) ∈ GL+(3,R)×M
3, we have

A′
1(t) = A2(t), A′

2(t) = N(A1(t)).

The vector field F (A1, A2) = (A2, N(A1)) maps the open set GL+(3,R)×
M

3 ⊂ M
3×M

3 into M
3×M

3, and the preceding paragraph shows that
this vector field is C∞ in (A1, A2). Therefore, the Picard existence and
uniqueness theorem for ODEs implies that the initial value problem for
(3.23) has a unique local solution

(A1, A2) ∈ C((−T, T ),GL+(3,R)×M
3) ∩ C1((−T,T),M3 ×M

3),

for some T > 0.
Using (3.26) and (3.28), we obtain

(3.29) N(A) = (detA)−γ ∂

∂A
detA = (1− γ)−1 ∂

∂A
(detA)1−γ.

Combining (3.29) and (3.23), we can now verify that the solution
satisfies the conservation law (3.24):

E ′(t) =
d

dt

[

1

2

3
∑

i,j=1

A′
ij(t)

2 + (γ − 1)−1(detA(t))1−γ

]

=

3
∑

i,j=1

[

A′
ij(t)A

′′
ij(t) + (γ − 1)−1 ∂

∂Aij
(detA)1−γ

∣

∣

∣

∣

A=A(t)

A′
ij(t)

]

=

3
∑

i,j=1

A′
ij(t)[A

′′
ij(t)−N(A(t))ij ]

= 0.

Since the energy satisfies E(t) = E(0) > 0, for t ∈ (−T, T ), we see
that trA′(t)A′(t)⊤ is uniformly bounded above and that detA(t) is
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uniformly bounded below. The boundedness of trA′(t)A′(t)⊤ implies
that trA(t)A(t)⊤ . 1 + t2. This shows that (A(t), A′(t)) remains in a
compact subset of the domain of the vector field F over every bounded
time interval. It follows that A can be extended to a unique global so-
lution in the desired space. Finally, the smoothness of the nonlinearity
implies that A ∈ C∞(R,M3). �

Remark. The system (3.23) is time reversible. If A(t) is a solution with
initial data (A(0), A′(0)), then Ã(t) = A(−t) is a solution with initial
data (A(0),−A′(0)). This means that any statement which holds for
all solutions as t→ ∞ will also hold for all solutions as t→ −∞.

Theorem 1. Fix γ > 1. Given initial data

(A(0), A′(0)) ∈ GL+(3,R)×M
3,

let A ∈ C(R,GL+(3,R)) ∩ C∞(R,M3) be the global solution of (3.23).
Define Ωt = A(t)B and C = {(t, x) : t ∈ R, x ∈ Ωt}. Let ρ0, ε0 ∈ Y

with ε0 defined by (3.17). Then the triple

u(t, x) = A′(t)A(t)−1x

ρ(t, x) = ρ0(|A(t)
−1x|)/(detA(t))(3.30)

ε(t, x)) = ε0(|A(t)
−1x|)/(detA(t))γ−1(3.31)

lies C0(C)∩C1(C), solves the compressible Euler equations (3.9), (3.10),
(3.11), (3.12) in C, and satisfies the boundary conditions (3.13), (3.14),
(3.15).

Proof. Since A(t) ∈ GL+(3,R) for t ∈ R, Lemma 2 shows that ρ, ε
are nonnegative functions on C lying in C0(C) ∩C1(C). The boundary
condition (3.14) holds by the definition (3.12), and ε satisfies (3.15) by
(3.22).
The velocity u is C∞, and the boundary condition (3.13) holds since

the domains Ωt are obtained as the image of B under the motion
x(t, y) = A(t)y determined by u(t, x), see (3.2).
It remains to verify the PDEs (3.9), (3.10), (3.11). For this it is

convenient to use material coordinates (t, y) and to set J(t) = detA(t).
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By (3.30), (3.6), (3.7), we have

Dtρ(t, x) =
d

dt
ρ(t, A(t)y)

∣

∣

∣

∣

y=A(t)−1x

=
d

dt
J(t)−1ρ0(|y|)

∣

∣

∣

∣

y=A(t)−1x

= − trL(t)J(t)−1ρ0(|A(t)
−1x|)

= −ρ∇ · u(t, x).

This verifies (3.10). An identical calculation yields (3.11).
We now turn to (3.9). Note that we shall regard u and ∇ as column

vectors in this calculation. In (3.3), we derived

(3.32) Dtu(t, x) = A′′(t)A(t)−1x.

By (3.12), (3.30), (3.31), we have
(3.33)
p(t, x) = J(t)−γ p0(s(x)), p0 = (γ − 1)ρ0ε0, s(x) = |A(t)−1x|.

From the definition (3.17), it follows that

(3.34) p′0(s) = −sρ0(s).

Combining (3.33), (3.34), and (3.30), we compute the pressure gradient

∇p(t, x) = J(t)−γ ∇[p0(s(x))](3.35)

= J(t)−γ p′0(s(x)) ∇s(x)

= J(t)−γ [−s(x) ρ0(s(x))] ∇s(x)

= −J(t)−γ ρ0(s(x)) (1/2)∇(s(x)2)

= −J(t)1−γ ρ(t, x) A(t)−⊤A(t)−1x.

Since A(t) satisfies (3.23), the formulas (3.32) and (3.35) imply that

ρ(t, x)Dtu(t, x) +∇p(t, x)

= ρ(t, x)(A′′(t)− J(t)1−γA(t)−⊤)A(t)−1x = 0,

and so (3.9) holds. �

Remark. We note that (3.34) is the key condition behind this verifica-
tion.

Remark. We point out the role implicitly played by the vacuum bound-
ary condition (3.15). Consider (3.23) with the “wrong sign” on the
right-hand side. Then the energy density E in (3.24) would no longer
be positive definite, and we can lose the existence of global solutions.
Indeed, blow-up can occur in the spherically symmetric case, A(t) =



AFFINE MOTION OF IDEAL FLUIDS 13

α(t)I, for a scalar α(t). The preceding verification leads to a local solu-
tion of the PDEs with negative internal energy and pressure, violating
the condition (3.15).

Remark. In the isentropic case, p = ργ, i.e. ε = (γ − 1)−1ργ−1, the
relation (3.34) leads to an ODE for ρ0 whose solution is

ρ0(s) =

[

γ − 1

2γ
(1− s2)

]1/(γ−1)

.

Thus, the parameter in (3.16) is δ = 1/(γ − 1). We also have

ε0(s) =
1

2γ
(1− s2).

3.4. Incompressible case. The Euler equations for an incompressible
perfect fluid take the form

Dtu+∇p = 0,(3.36)

∇ · u = 0.(3.37)

These are again to be solved in a space-time cylinder CT , as in the
compressible case, with the boundary conditions

η(t, x) · (1, u(t, x)) = 0, (t, x) ∈ BT ,(3.38)

p(t, x) = 0, (t, x) ∈ BT ,(3.39)

Dnp(t, x) < 0, (t, x) ∈ BT .(3.40)

The next lemma describes the evolution of the deformation gradient
of affine solutions in the incompressible case.

Lemma 4. Given initial data (A(0), A′(0)) ∈ SL(3,R)×M
3 with

trA′(0)A(0)−1 = 0,

the system

(3.41) A′′(t) = Λ(A(t)) A(t)−⊤, Λ(A(t)) ≡
tr(A′(t)A(t)−1)2

tr(A(t)−⊤A(t)−1)
,

has a unique global solution A ∈ C(R, SL(3,R)) ∩ C∞(R,M3). The
solution satisfies the conservation law

(3.42) EK(t) ≡
1

2
trA′(t)A′(t)⊤ = EK(0).

If EK(0) > 0, the solution is a geodesic curve in SL(3,R). As a curve
in M

3, its curvature is

(3.43) κ(t) =
tr(A′(t)A(t)−1)2

2EK(0) (trA(t)−⊤A(t)−1)1/2
.



14 THOMAS C. SIDERIS

Proof. By (3.27), it follows that the right-hand side of (3.41) is a C∞

function of A on GL+(3,R). For the moment, take initial data in
GL+(3,R)×M

3. Arguing as in Theorem 1, we can construct a unique
local solution of (3.41) A ∈ C((−T, T ),GL+(3,R)) ∩C2((−T,T),M3),
for some T > 0.
We now show that if the initial data satisfies A(0) ∈ SL(3,R) and

trA′(0)A(0)−1 = 0,

then A ∈ C((−T, T ), SL(3,R)). Define

L(t) = A′(t)A(t)−1,

for t ∈ (−T, T ). By (3.5), we have

A′′(t) = L′(t)A(t) + L(t)A′(t),

and so, since A′′(t) = Λ(t)A(t)−⊤ by (3.41), we get

L′(t) = [A′′(t)− L(t)A′(t)]A(t)−1(3.44)

= A′′(t)A(t)−1 − L(t)2

= Λ(A(t)) A(t)−⊤A(t)−1 − L(t)2.

This implies that

trL′(t) = Λ(A(t)) trA(t)−⊤A(t)−1 − trL(t)2 = 0,

by definition of Λ(A(t)). By assumption on the initial data, we have
trL(0) = trA′(0)A(0)−1 = 0, and thus,

(3.45) trL(t) = 0, t ∈ (−T, T ).

By (3.7), (3.45), we see that J(t) = detA(t) satisfies J ′(t) = 0, and
so J(t) = J(0) = 1, since A(0) ∈ SL(3,R). We have proven that the
solution satisfies A ∈ C((−T, T ), SL(3,R)).
Next, we verify the conservation law. By (3.26) and (3.27), we have

(3.46) A−⊤ = (detA)−1 ∂

∂A
detA, A ∈ GL+(3,R).
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Thus, using (3.41) and (3.46), we have

E ′
K(t) =

d

dt

1

2
trA′(t)A′(t)⊤

=
3

∑

i,j=1

A′
ij(t)A

′′
ij(t)

= Λ(A(t))
3

∑

i,j=1

(A(t)−⊤)ijA
′(t)ij

= Λ(A(t))
3

∑

i,j=1

(detA)−1 ∂

∂Aij

detA

∣

∣

∣

∣

A=A(t)

A′(t)ij

= Λ(A(t)) (detA(t))−1 d

dt
detA(t)

= 0,

since detA(t) = 1. This proves (3.42).
Now that (3.42) holds, we have that trA(t)A(t)⊤ . 1+ t2. Let λ > 0

be an eigenvalue of the positive definite symmetric matrix A(t)A(t)⊤.
The eigenvalues of A(t)−⊤A(t)−1 = (A(t)A(t)⊤)−1 are the inverses of
the eigenvalues of A(t)A(t)⊤. Thus, we have

trA(t)−⊤A(t)−1 ≥ 1/λ ≥ (trA(t)A(t)⊤)−1 & (1 + t2)−1.

It follows that (A(t), A′(t)) remains in a compact subset of the domain
of the nonlinearity on every bounded time interval. Therefore, the
solution is global. It lies in C∞(R,M3) thanks to the smoothness of
the nonlinearity.
Since SL(3,R) = {A ∈ M

3 : det A = 1} is the level set of a smooth
function, we see that SL(3,R) is an embedded submanifold of M3 ≈
R

9. Equation (3.46) says that A−⊤ is normal to SL(3,R) at a point
A ∈ SL(3,R). Therefore,

n(A) = (trA−⊤A−1)−1/2A−⊤

is a unit normal along SL(3,R). Equation (3.41) implies that the tan-
gential component of the acceleration vector A′′(t) vanishes. In other
words, A(t) is a geodesic.
We finish the proof with the verification of (3.43). By (3.42), the

tangent vector A′(t) has constant length

(trA′(t)A′(t)⊤)1/2 = (2EK(0))
1/2 ≡ τ > 0.

The reparameterized curve Ã(s) = A(s/τ) in M
3 has a unit length

tangent, so its curvature is given by the length of its acceleration vector
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Ã′′(s), that is

κ(s) = (tr Ã′′(s)Ã′′(s)⊤)1/2.

The claim (3.43) follows from this and (3.41). �

Theorem 2. Given initial data (A(0), A′(0)) ∈ SL(3,R)×M
3 with

trA′(0)A(0)−1 = 0,

let A ∈ C(R, SL(3,R))∩C∞(R,M3) be the global solution of the initial
value problem for (3.41). Define Ωt = A(t)B and C = {(t, x) : x ∈
Ωt, t ∈ R}. Then the pair

u(t, x) = A′(t)A(t)−1x

p(t, x) =
1

2

tr(A′(t)A(t)−1)2

trA(t)−⊤A(t)−1
[1− |A(t)−1x|2]

solves the incompressible Euler equations (3.36), (3.37) in C and the
boundary conditions (3.38), (3.39). If the curvature defined in (3.43) is
positive, then the boundary condition (3.40) also holds.

Proof. This is a straightforward calculation. As in the proof of Theorem
1, we have that u ∈ C∞, the boundary condition (3.38) holds, and
Dtu(t, x) = A′′(t)A(t)−1x.
Since Ωt = A(t)B, the boundary condition (3.39) is satisfied. By

definition, the pressure is C∞, and its gradient is
(3.47)

∇p(t) = −Λ(A(t)) A(t)−⊤A(t)−1x, with Λ(A(t)) =
tr(A′(t)A(t)−1)2

trA(t)−⊤A(t)−1
.

Therefore, since A(t) is a solution of (3.41), we have that

Dtu(t, x) +∇p(t, x) = (A′′(t)− Λ(A(t))A(t)−⊤)A(t)−1x = 0,

so that the PDE (3.36) is satisfied.
From (3.4), (3.45), we obtain

∇ · u(t, x) = trA′(t)A(t)−1 = 0,

which verifies (3.37).
Since the unit normal along ∂Ωt is

n(t, x) = A(t)−⊤A(t)−1x/|A(t)−⊤A(t)−1x|,

the expression (3.47) yields

Dnp(t, x) = −Λ(A(t))|A(t)−⊤A(t)−1x|1/2, x ∈ ∂Ωt.

Since Λ(A(t)) and κ(t) share the same sign, we see that (3.40) holds
when the curvature is positive. �
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Remark. The physical vacuum boundary condition (3.40) is not re-
quired for the global solvability of the system of ODEs (3.41) nor for
the PDEs (3.36), (3.37).

Remark. Write L(t) = D(t) +W (t) with D(t) = 1
2
(L(t) + L(t)⊤) and

W (t) = 1
2
(L(t)− L(t)⊤). The symmetric part D(t) is called the strain

rate tensor, and the antisymmetric part W (t) defines the vorticity vec-
tor ω(t, x) = ω(t) through the operation W (t) = 1

2
ω(t)×. Notice that

trL(t)2 = trD(t)2 + trW (t)2 = trD(t)D(t)⊤ − trW (t)W (t)⊤.

Thus, it is apparent from (3.43) that negative curvature and pressure
can arise only if vorticity is present. We shall see in Theorem 8 that
negative curvature is indeed possible.
Incompressible irrotational flows (ω = 0) exist (at least locally) for

the general vacuum free boundary problem, and the pressure remains
positive within the fluid domain, by the maximum principle. For ir-
rotational affine motion, it is clear from the explicit formulas that the
pressure and curvature are positive. This will be further highlighted in
Theorem 9.

Remark. The solutions given in Theorems 1 and 2 can be extended to
global weak solutions on R×R

3 by setting all quantities to zero on the
complement of the space-time fluid domain C.

4. Spreading of Fluid Domains

In this section, we prove that for affine motion the diameters of the
fluid domains Ωt grow at a rate proportional to time, provided the
vacuum boundary condition holds. This improves upon the results for
general flows previously given by the author in [22] where only lower
bounds were obtained. We also obtain growth estimates for the volume
of Ωt in the compressible case, by showing that the potential energy
decays to zero.

Theorem 3. If A ∈ C(R,GL+(3,R)) ∩ C2(R,M2) is a solution of
(3.23) and Ωt = A(t)B, then

(4.1) diamΩt ∼ (trA(t)A(t)⊤)1/2 ∼ 1 + |t|, t ∈ R,

and

(4.2) 1 + |t|p . vol Ωt ∼ detA(t) . 1 + |t|3, t ∈ R,

with

p =

{

3, if 1 < γ ≤ 5/3,

2/(γ − 1), if γ > 5/3.
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Proof. Define the quantities

X(t) =
1

2
trA(t)A(t)⊤,

EK(t) =
1

2
trA′(t)A′(t)⊤,

EP (t) = (γ − 1)−1(detA(t))1−γ .

The identity (3.24) can be written as

(4.3) E(t) = EK(t) + EP (t) = E(0).

Note that X(t) > 0 and EP (t) > 0, for t ∈ R. From (4.3), we also
have EK(t) = E(0) − EP (t) < E(0), for t ∈ R. It follows by direct
calculation using (3.23) that

(4.4) X ′′(t) = 2EK(t) + 3(γ − 1)EP (t).

Using (4.3) and (4.4), we can write

X ′′(t) = 2E(0) [Θ(t) + 3(γ − 1)/2 (1−Θ(t))] ,(4.5)

with

Θ(t) = EK(t)/E(0) ∈ [0, 1).(4.6)

Thus, (4.5) and (4.6) imply that

(4.7) X ′′(t) ∈ 2E(0)[σ, σ],

in which

σ = min(1, 3(γ − 1)/2), σ = max(1, 3(γ − 1)/2).

It follows by integration of (4.7) that

X ′(t)−X ′(0) ∈ 2E(0) t [σ, σ],(4.8)

X(t)−X ′(0)t−X(0) ∈ E(0) t2 [σ, σ].(4.9)

By (4.8), there exists a T > 0 such that

(4.10) X ′(t) & t > 0, t ≥ T.

Since X(t) > 0, (4.9) implies that

(4.11) X(t) ∼ 1 + t2, t ∈ R.

This proves (4.1).
Of course, (4.1) implies that the eigenvalues of the positive definite

matrix A(t)A(t)⊤ are . 1 + t2. Thus, detA(t) = (detA(t)A(t)⊤)1/2 .
1 + |t|3, which proves the upper bound in (4.2).
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By the Cauchy-Schwarz inequality, we have

|X ′(t)| = | trA(t)A′(t)⊤|

≤ (trA(t)A(t)⊤)1/2(trA′(t)A′(t)⊤)1/2

= 2X(t)1/2EK(t)
1/2,

and so by (4.6)

(4.12) U(t) ≡
X ′(t)2

4E(0)X(t)
≤ Θ(t) < 1.

Cycling this additional restriction on the range of Θ(t) into (4.5), we
obtain the improvement

X ′′(t) ≥ 2E(0) [U(t) + σ(1− U(t))],

or equivalently,

(4.13)
X ′′(t)

2E(0)
− U(t) ≥ σ(1− U(t)).

Differentiation of the function U(t) defined in (4.12) yields

(4.14) U ′(t) =
X ′(t)

X(t)

{

X ′′(t)

2E(0)
− U(t)

}

.

Combining (4.10), (4.13), (4.14), we get

U ′(t) ≥ σ
X ′(t)

X(t)
[1− U(t)], t ≥ T.

Integration of this differential inequality yields

[1− U(T )]

[

X(T )

X(t)

]σ

≥ 1− U(t) ≥ 1−Θ(t) = EP (t)/E(0).

The lower bound of (4.2), for positive times, is a consequence of this
estimate, (4.11), and the definition of EP (t). The estimate for negative
times follows by time reversibility. �

Remark. The identity (4.4) satisfied by the function X(t) is the affine
version of the integral identity used in [21], [22], insofar as

c0 X(t) =
1

2

∫

Ωt

|x|2ρ(t, x)dx, c0 =
4π

3

∫ 1

0

s5ρ0(s)ds.

In fact, the lemma holds for any globally defined general flow.

Remark. It follows from Theorem 3 and (3.12), (3.30), (3.31), that the
pressure satisfies

‖p(t, ·)‖L∞ . (1 + |t|)−γp.
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Remark. Bounds for the potential energy in compressible flow were also
investigated by Chemin in [2].

Theorem 4. If A ∈ C(R, SL(3,R))∩C2(R,M2) is a solution of (3.41)
with κ(t) ≥ 0 for t ≥ T and Ωt = A(t)B, then

diamΩt ∼ (trA(t)A(t)⊤)1/2 ∼ 1 + |t|, t ≥ T.

Proof. Consider once again the function X(t) = 1
2
trA(t)A(t)⊤. As in

the proof of Theorem 3, we obtain from (3.41),

X ′′(t) = 2EK(t) + 3Λ(A(t)), Λ(A(t)) =
tr(A′(t)A(t)−1)2

trA(t)−⊤A(t)−1
.

Recall that κ(t) ≥ 0 implies that Λ(A(t)) ≥ 0, and so we have that

X ′′(t) ≥ 2EK(t) = 2EK(0), t ≥ T.

On the other hand, since the operator norm and Euclidean norm are
equivalent, we have

|Λ(A(t))| .
‖A′(t)‖2‖A(t)−1‖2

‖A(t)−1‖2
. EK(t) = EK(0).

Therefore, we obtain

X ′′(t) ∼ EK(0),

and then X(t) ∼ 1 + t2, for t ≥ T . �

5. Cauchy Problem at Infinity for Compressible Affine

Motion

We now consider the asymptotic behavior of solutions to the system
(3.23). Having just shown that solutions A(t) satisfy limt→∞ detA(t) =
∞, it is reasonable to guess from (3.23) that limt→∞A′′(t) = 0. This
would suggest that the solution A(t) approaches a free state of the form
A∞(t) = A0 + tA1, as t → ∞. In order to establish a result of this
type, it is important to first understand the behavior of N(A∞(t)), as
t→ ∞, where N(A) is the nonlinearity (3.28).

Lemma 5. Let A0, A1 ∈ M
3, and define A∞(t) = A0 + tA1. Assume

that

(5.1) lim
t→∞

detA∞(t) = +∞.

Then

d ≡ deg detA∞(t) ∈ {1, 2, 3},
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A∞(t) ∈ GL+(3,R) for t≫ 1, and

‖A∞(t)−1‖ ∼ ta, t≫ 1, with a =











−1, if d = 3

0, if d = 2

0, 1, if d = 1.

Proof. The assumption (5.1) implies that A∞(t) ∈ GL+(3,R) for t≫ 1.
Since A∞(t) is linear in t, we can write

detA∞(t) =

3
∑

j=0

βjt
j .

If d = degA∞(t), then (5.1) implies that d ∈ {1, 2, 3}. Note that the
coefficient of t3 is β3 = detA1.
Again since A∞(t) is linear in t, its cofactor matrix has the form:

cof A∞(t) =
2

∑

j=0

Cjt
j ,

and ‖ cof A∞(t)‖ ∼ tb, for b ∈ {0, 1, 2}. Since

(5.2) (cof A∞(t))⊤A∞(t) = detA∞(t) I,

we have that a = b − d. We can identify powers of t in (5.2) to arrive
at the system

C⊤
2 A1 = β3I = detA1 I(5.3)

C⊤
2 A0 + C⊤

1 A1 = β2I(5.4)

C⊤
1 A0 + C⊤

0 A1 = β1I(5.5)

Notice that d = 3 if and only if A1 is invertible. In this case, (5.3)
gives C⊤

2 = detA1A
−1
1 6= 0, and so b = 2 and a = −1.

Next, suppose that d = 2, so that detA1 = 0 and β2 6= 0. If C2 = 0,
then (5.4) would imply that A1 is invertible, a contradiction. Thus,
again we find that b = 2, and so a = 0.
Finally, assume that d = 1. Then detA1 = β2 = 0 and β1 6= 0. If

C2 = C1 = 0, then (5.5) would imply that A1 is invertible, again a
contradiction. Thus, b ∈ {1, 2}, from which follows a ∈ {0, 1}. �

Remark. If

A∞(t) =





t 0 0
0 t 1
0 −1 0



 ,

then b = 2, d = a = 1. The other cases can be illustrated with diagonal
matrices.
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The next lemma will aid in the formulation of the Cauchy problem
at infinity.

Lemma 6. Suppose that A ∈ C2(R,M3) satisfies ‖A′′(t)‖ . t−µ−2,
t≫ 1, for some µ > 0. Then

(5.6) A(t) = A∞(t) +

∫ ∞

t

∫ ∞

s

A′′(σ)dσds,

in which

A∞(t) = A0 + tA1

A1 = A′(0) +

∫ ∞

0

A′′(σ)dσ,

A0 = A(0)−

∫ ∞

0

∫ ∞

s

A′′(σ)dσds.

Moreover, the following estimates hold:

‖A(k)(t)− A(k)
∞ (t)‖ . t−µ−k, t≫ 1, k = 0, 1, 2.

Proof. Let Ā(t) denote the function on the right-hand side of (5.6).
Given the decay rate for A′′(t), the constants A0, A1, and the func-
tion Ā(t) are well-defined. Note that Ā(t) satisfies Ā′′(t) = A′′(t),
Ā(0) = A(0), Ā′(0) = A′(0). By uniqueness, A(t) = Ā(t) for all
t ∈ R. Therefore, A(t) − A∞(t) = Ā(t) − A∞(t) satisfies the desired
estimates. �

Remark. This result motivates the condition on µ in the following the-
orem.

Theorem 5. Let A0, A1 ∈ M
3, define A∞(t) = A0 + tA1, and assume

that (5.1) holds. Let a and d be the integers defined in Lemma 5.
If a 6= 1 and µ ≡ d(γ − 1) − a − 2 > 0, then (3.23) has a unique

global solution

A ∈ C(R,GL+(3,R)) ∩ C∞(R,M3)

with

(5.7) lim
t→∞

‖A(t)− A∞(t)‖ = 0.

Moreover, the solution satisfies the decay estimates

‖A(k)(t)− A(k)
∞ (t)‖ . t−µ−k, k = 0, 1, 2.

If a = d = 1 and γ > 5, then (3.23) has a unique global solution

A ∈ C(R,GL+(3,R)) ∩ C∞(R,M3)
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with

lim
t→∞

t‖A(t)−A∞(t)‖ = 0.

Moreover, the solution satisfies the decay estimates

‖A(k)(t)−A(k)
∞ (t)‖ . t4−γ−k, k = 0, 1, 2.

Proof. Choose T sufficiently large so that A∞(t) is invertible, for t ≥ T .
Then, by the definition (3.28) and Lemma 5, we have

(5.8) ‖N(A∞(t))‖ = (detA∞(t))1−γ‖A∞(t)−1‖ . ta−d(γ−1) = t−µ−2,

for t ≥ T .
The function B 7→ N(I + B) is well-defined and C1 for all B ∈ M

3

with ‖B‖ ≤ 1/2. Therefore, there exists a constant CN > 0 such that

‖N(I +B1)‖ ≤ CN(5.9)

and

‖N(I +B1)−N(I +B2)‖ ≤ CN‖B1 − B2‖,(5.10)

for all ‖B1‖, ‖B2‖ ≤ 1/2.
Now assume that a 6= 1, so that ‖A∞(t)−1‖ is uniformly bounded.

Define the Banach space

X(T ) = {B ∈ C(R,M3) : ‖B‖T ≡ sup
t≥T

‖B(t)‖ <∞},

and the ball

Bε = {B ∈ X(T ) : ‖B‖T ≤ ε}.

Since A∞(·)−1 ∈ X(T ), we may choose ε > 0 sufficiently small so that

ε‖A∞(·)−1‖T ≤ 1/2.

Then

(5.11) ‖A∞(·)−1B(·)‖T ≤ ‖A∞(·)−1‖T‖B(·)‖T ≤ 1/2,

for all B ∈ Bε.
If Bi ∈ Bε, i = 1, 2, then

(5.12) N(A∞(t) +Bi(t)) = N(A∞(t))N(I + A∞(t)−1Bi(t)),

is well-defined, and by (5.8), (5.11), (5.9), (5.10), the estimates

(5.13) ‖N(A∞(t) +Bi(t))‖

≤ ‖N(A∞(t))‖‖N(I + A∞(t)−1Bi(t))‖ . t−µ−2,
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(5.14) ‖N(A∞(t) +B1(t))−N(A∞(t) +B1(t))‖

. t−µ−2‖B1(t)− B2(t)‖,

hold for all t ≥ T .
Next, for B ∈ Bε, define the operator

S(B)(t) =

∫ ∞

t

∫ ∞

s

N(A∞(σ) +B(σ))dσds.

By (5.12), (5.13), and (5.14), the operator S is well-defined on Bε, and
the following estimates are valid:

‖S(B)‖T . T−µ, B ∈ Bε,

‖S(B1)− S(B2)‖T . T−µ‖B1 − B2‖T , B1, B2 ∈ Bε.

Therefore, if T is sufficiently large, S is a contraction from Bε into
itself. By the Contraction Mapping Principle, S has a unique fixed
point B ∈ Bε. By the definition of S, it follows that this fixed point
belongs to C∞([T,∞),M3), and

‖B(k)(t)‖ . t−µ−k, t ≥ T, k = 0, 1, 2.

Moreover, A(t) = A∞(t) + B(t) solves (3.23) on the interval [T,∞),
and

lim
t→∞

‖A(t)−A∞(t)‖ = lim
t→∞

‖B(t)‖ = 0.

Suppose that Ā(t) ∈ C2(R,M3) is a solution of (3.23), and let

B̄(t) = Ā(t)− A∞(t).

Assume that limt→∞ ‖B̄(t)‖ = 0. Recall that a 6= 1 and ‖A∞(t)−1‖ is
uniformly bounded, so without loss of generality, we may assume that
the time T defined previously is also large enough so that

(5.15) ‖A∞(·)−1B̄(·)‖T ≤ 1/2 and ‖B̄(·)‖T ≤ ε.

We may write

Ā′′(t) = N(Ā(t)) = N(A∞(t)+B̄(t)) = N(A∞(t))N(I+A∞(t)−1B̄(t)),

and just as in (5.13), we obtain

‖Ā′′(t)‖ . t−µ−2.
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Therefore, by Lemma 6, we find that

Ā(t) = Ā∞(t) +

∫ ∞

t

∫ ∞

s

Ā′′(σ) dσds(5.16)

= Ā∞(t) +

∫ ∞

t

∫ ∞

s

N(A∞(t) + B̄(t)) dσds

= Ā∞(t) + S(B̄(t)),

where the asymptotic state Ā∞(t) is defined by

Ā∞(t) = Ā0 + tĀ1,

Ā1 = A′(0) +

∫ ∞

0

N(Ā(σ))dσ,

Ā0 = A(0)−

∫ ∞

0

∫ ∞

s

N(Ā(σ))dσds.

By Lemma 6, we have the estimate ‖S(B̄)(t)‖ = ‖Ā(t)−Ā∞(t)‖ . t−µ,
and so, using (5.7) and (5.16) we obtain

lim sup
t→∞

‖Ā∞(t)−A∞(t)‖

≤ lim sup
t→∞

(

‖Ā∞(t)− Ā(t)‖+ ‖Ā(t)− A∞(t)‖
)

≤ lim sup
t→∞

(

‖S(B̄)(t)‖+ ‖Ā(t)− A∞(t)‖
)

= 0.

Thus, Ā∞(t) = A∞(t). With this, (5.16) implies that B̄ = S(B̄). By
(5.15), B̄ ∈ Bε ⊂ X(T ), and so by uniqueness of fixed points, B̄ = B.
Therefore, Ā(t) = A(t), for t ≥ T . By uniqueness of solutions for
(3.23), we conclude that Ā(t) = A(t), for all t ∈ R.
To prove the result in the remaining case, a = d = 1, we repeat the

preceding argument using instead the Banach space

X̄(T ) = {B ∈ C(R,M3) : ‖B‖T ≡ sup
t≥T

t‖B(t)‖ <∞}.

Since a = 1, we have ‖A∞(t)−1‖ ∼ t, and the additional decay for the
perturbation B(t) provided by the weight in the norm on X̄(T ) ensures
that ‖A∞(·)−1B(·)‖T ≤ 1/2, if ‖B(·)‖T is small. In order that the fixed
point of S lies in X̄(T ), we must now have

a− d(γ − 1) < −3,

which leads to γ > 5. �

Corollary 1. Let A0, A1 ∈ M
3, define A∞(t) = A0 + tA1, and assume

that (5.1) holds. If γ > 5, then (3.23) has a solution

A ∈ C(R,GL+(3,R)) ∩ C∞(R,M3)
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such that

lim
t→∞

‖A(t)− A∞(t)‖ = 0.

Proof. This follows immediately from Theorem 5 since all the cases in
Lemma 5 are included when γ > 5. �

Theorem 6. Define D = GL+(3,R)×M
3.

If γ > 4/3, then for any (A1, A0) ∈ D, there exists a unique solution

A ∈ C(R,GL+(3,R)) ∩ C∞(R,M3)

of (3.23) such that (5.7) holds. Define a mapping W+ : D → D by

W+(A1, A0) = (A(0), A′(0)).

If 4/3 < γ < 2, then W+ is a bijection.

Proof. The mapping W+ is well-defined for γ > 4/3, by Theorem 5.
If W+(A1, A0) = W+(Ā1, Ā0), then

lim
t→∞

[(A0 + tA1)− (Ā0 + tĀ1)] = 0.

This implies that (A1, A0) = (Ā1, Ā0), which proves that W+ is injec-
tive.
The theorem will follow if we can show that W+ is surjective for

γ < 2. Let (A(0), A′(0)) ∈ D be arbitrary initial data, and let A(t)
be the corresponding global solution of (3.23). By Theorem 3, we have
that detA(t) & tp, with p = 3, for 1 < γ ≤ 5/3, and p = 2/(γ − 1), for
γ ≥ 5/3. Since ‖A(t)‖ ∼ X(t)1/2, Theorem 3 says that ‖A(t)‖ ∼ t. It
follows that ‖ cof A(t)‖ . t2. Therefore, we obtain the estimates

‖A(t)−1‖ = (detA(t))−1‖ cof A(t)‖ . t2−p, t≫ 1(5.17)

and

‖N(A(t))‖ = (detA(t))−γ‖ cof A(t)‖ . t2−pγ, t≫ 1.(5.18)

From the definition of the exponent p, if 4/3 < γ < 2, then p > 2 and
2−pγ < −2. By (5.18) and Lemma 6, there exists a unique asymptotic
state A∞(t) = A0 + tA1 such that

‖A(t)− A∞(t)‖ . t4−pγ , t≫ 1.

Using this and (5.17), we find that

‖A∞(t)A(t)−1 − I‖ ≤ ‖A(t)− A∞(t)‖ ‖A(t)−1‖ . t4−pγ+2−p,

and so

lim
t→∞

‖A∞(t)A(t)−1 − I‖ = 0.
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By continuity of the determinant, we obtain

(5.19) lim
t→∞

detA∞(t)

detA(t)
= lim

t→∞
detA∞(t)A(t)−1 = 1.

Since detA(t) & tp, p > 2, we find that limt→∞ t−2 detA∞(t) = +∞. It
follows that detA∞(t) is cubic, and so, detA1 > 0. Thus, (A1, A0) ∈ D

and W+(A1, A0) = (A(0), A′(0)). �

Remark. Since the system (3.23) is time-reversible, we can define anal-
ogously a bijective operator W− taking asymptotic states at −∞ to
initial data. Thus, we can construct a (bijective) scattering operator
Σ = W+W

−1
− : D → D, and we have asymptotic completeness.

Remark. It follows from (5.19) that detA(t) ∼ detA∞(t) ∼ t3, for
t≫ 1.

6. Asymptotic Behavior of Affine Impressible Swirling

and Shear Flow

6.1. Incompressible Swirling Flow. We shall now impose the fur-
ther symmetry of uni-axial swirling flow upon the system (3.41). The
resulting dynamics are governed by equations (6.2), (6.3) for two scalar
functions α and β which measure the strain and the rotation of the flow,
respectively.

Theorem 7. Define

I0 =

[

1 0
0 1

]

, W0 =

[

0 1
−1 0

]

.

Let (α′
0, β

′
0) ∈ R

2 be nonzero. The global solution A ∈ C(R, SL(3,R))∩
C∞(R,M3) of (3.41) with initial data

A(0) = I, A′(0) = α′
0

[

I0
−2

]

+ β ′
0

[

W0

0

]

has the block diagonal form

(6.1) A(t) =

[

α(t)I0
α(t)−2

] [

exp(β(t)W0)
1

]

,
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in which α(t), β(t) ∈ C∞(R), α(t) > 0, solve the system

(1 + 2α(t)−6)

(

α′(t)

α(t)

)′

(6.2)

+ (1− 4α(t)−6)

(

α′(t)

α(t)

)2

− (β ′(t))2 = 0,

β ′′(t) + 2

(

α′(t)

α(t)

)

β ′(t) = 0,(6.3)

with the initial conditions

(6.4)
α(0) = 1, α′(0) = α′

0

β(0) = 0, β ′(0) = β ′
0.

The conserved energy is

(6.5) e0 ≡
1

2
trA′(t)⊤A′(t)

= (α(t)2 + 2α(t)−4)

(

α′(t)

α(t)

)2

+ (α(t)β ′(t))2

= 3(α′
0)

2 + (β ′
0)

2,

and the curvature is

(6.6) κ(t) =
3 (α′(t)/α(t))2 − (β ′(t))2

e0(2α(t)−2 + α(t)4)1/2
.

Proof. All results follow by direct computation. Note first that detA(t) =
1. We have

A′(t) = L(t)A(t)

with

L(t) = A′(t)A(t)−1 =
α′(t)

α(t)

[

I0
−2

]

+ β ′(t)

[

W0

0

]

,

and so trL(t) = 0. In particular, that the initial data (A(0), A′(0)) sat-
isfies the necessary compatibility condition trA′(0)A(0)−1 = trL(0) =
0.
Since A(t) ∈ SL(3,R), we claim that (3.41) will hold provided that

there exists a scalar function Λ(t) such that A′′(t) = Λ(t)A(t)−⊤. For
then the relation (3.44) will be valid, and since trL(t) = 0, we see from
(3.44) that Λ(t) must have the desired form.
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Thus, since A(t) ∈ SL(3,R), the system (3.41) will hold provided
that there exists a scalar function Λ(t) such that

Λ(t)I =(L′(t) + L(t)2)A(t)A(t)⊤

=

{

(

α′(t)

α(t)

)′ [
I0

−2

]

+ β ′′(t)

[

W0

0

]

+

(

α′(t)

α(t)

)2 [
I0

4

]

+2

(

α′(t)

α(t)

)

β ′(t)

[

W0

0

]

+ (β ′(t))2
[

−I0
0

]}[

α2I0
α(t)−4

]

.

This is equivalent to

Λ(t) = α(t)2

[

(

α′(t)

α(t)

)′

+

(

α′(t)

α(t)

)2

− (β ′(t))2

]

= α(t)−4

[

−2

(

α′(t)

α(t)

)′

+ 4

(

α′(t)

α(t)

)2
]

,

0 = β ′′(t) + 2

(

α′(t)

α(t)

)

β ′(t),

which in turn leads to the system (6.2), (6.3), as well as the formula
(6.6) �

The next result gives the precise asymptotic behavior of the solutions
given in the previous result. Thanks to (6.3), it is possible to eliminate
β altogether. This leaves us with a second order ODE for α with a
parameter β ′

0. Using the Hamiltonian structure, phase plane analysis
allows for a simple visualization.

Theorem 8. Suppose that α, β ∈ C∞(R), α > 0, solve the initial value
problem (6.2), (6.3), (6.4), with e0 = 3(α′

0)
2 + (β ′

0)
2 6= 0.

If β ′
0 6= 0, then
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β ′(t) = β ′
0α(t)

−2,(6.7)

α′′(t) > 0,(6.8)

0 < e
1/2
0 − α′(t) . t−2, t≫ 1(6.9)

0 < α(t)− ᾱ(t) . t−1, t≫ 1,(6.10)

with ᾱ(t) = e
1/2
0 t+ 1−

∫ ∞

0

(e
1/2
0 − α′(s))ds,

0 < |β(t)− β̄| . t−1, t≫ 1,(6.11)

with β̄ = β ′
0

∫ ∞

0

α(s)−2ds.

There is a nonempty bounded time interval (t1, t2) ⊂ R such that

(6.12)

{

κ(t) < 0, t ∈ (t1, t2),

0 < κ(t) . (1 + |t|)−4, t ∈ R \ [t1, t2].

The corresponding solution A(t) of (3.41) in the form (6.1) satisfies

(6.13) ‖A(t)− A∞(t)‖ . t−2, t≫ 1,

in which

(6.14) A∞(t) =

[

[ᾱ(t)I0 + (β̄/e
1/2
0 )W0] exp(β̄W0)

0

]

.

Proof. Observe that (6.7) follows immediately from (6.3). Thus, (β ′(t))2 >
0, for t ∈ R.
Substitute (6.7) in (6.2) for α′′ to see that

(6.15) α′′ = (1 + 2α−6)−1[6α−7(α′)2 + (β ′
0)

2α−3].

The right-hand side is strictly positive since α > 0 and (β ′
0)

2 > 0,
confirming (6.8).
Using (6.7) in (6.5), we obtain the conserved energy

(6.16) (1 + 2α−6)(α′)2 + (β ′
0)

2α−2 = e0 > 0.

Since α′′ > 0, there can be no equilibrium solutions. Therefore, the
trajectory (α(t), α′(t)), t ∈ R, traces the entire energy level curve (6.16)
in the direction of increasing α′, as depicted in the phase diagram in
Figure 1.
Using (6.7) to eliminate β in (6.6), we see that the sign of the cur-

vature is determined by the sign of the quantity 3(α′α)2 − (β ′
0)

2. Since
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Figure 1. Phase diagram in the case where β ′
0 6= 0.

✲

✻

κ < 0 ✲

κ > 0

κ > 0

✶

✐

α

α′

e
1/2
0

−e
1/2
0

β ′
0 6= 0, a bounded, connected portion of the solution trajectory nec-

essarily lies in a region where κ < 0, as illustrated in Figure 1. This
establishes the existence of the time interval claimed in (6.12).
Next, we consider the asymptotic behavior as t→ +∞. The behav-

ior as t→ −∞ is similar and can be obtained simply by reversing time.
More precisely, let t0 ∈ R be the unique time such that α′(t0) = 0. Since
the equation (6.15) is time reversible, we have that α(t− t0) = α(t0− t)
for all t ∈ R.
Since (α(t), α′(t)) → (∞, e1/2), as t → ∞, we have that α′(t) >

e
1/2
0 /2 for t≫ 1, and thus

(6.17) α(t) > e
1/2
0 t/2, t≫ 1.

From (6.16), we obtain

(6.18) α′(t) = ψ(α(t)), ψ(α) ≡

(

e0 − (β ′
0)

2α−2

1 + 2α−6

)1/2

, t≫ 1.

Perform an expansion of ψ(α) for α≫ 1:

(6.19) ψ(α) = e
1/2
0 −

(β ′
0)

2

2e
1/2
0 α2

+ O(α−4), α≫ 1.

By (6.17), (6.18), (6.19), we have

(6.20) 0 < e
1/2
0 − α′(t) = e

1/2
0 − ψ(α(t)) . t−2, t≫ 1.
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which proves (6.9). Integration of (6.20) over an interval of the form
[t,∞), t≫ 1, shows that

0 <

∫ ∞

t

(e
1/2
0 − α′(s))ds . t−1.

The estimate (6.10) follows from this since
∫ ∞

t

(e
1/2
0 − α′(s))ds(6.21)

=

∫ ∞

0

(e
1/2
0 − α′(s))ds−

∫ t

0

(e
1/2
0 − α′(s))ds

= α(t)− ᾱ(t).

We obtain (6.11) in the same way. By (6.17), we have

0 <

∫ ∞

t

α(s)−2ds . t−1, t≫ 1,

and by (6.7),

(6.22) β ′
0

∫ ∞

t

α(s)−2ds = β̄ −

∫ t

0

β ′(s)ds = β̄ − β(t).

The upper bound in (6.12) for the curvature follows from (6.6), the
bounds (6.9), (6.10), (6.11), and their analogs for t≪ −1.
It remains to verify the estimate (6.13), which is equivalent to show-

ing that

(6.23) ‖α(t) exp(β(t)W0)− [ᾱ(t)I − (β̄/e
1/2
0 )W0] exp(β̄W0)‖

. t−2, t≫ 1,

and

(6.24) α(t)−2 . t−2, t≫ 1.

Of course, (6.24) is a consequence of (6.17). To prove (6.23), we will
need to refine our asymptotic formulas slightly.
To this end, let us write

α(t) = ᾱ(t) + α̇(t) and β(t) = β̄ + β̇(t).

(The notation α̇, β̇ does not denote derivative here.) By (6.21), (6.20),
(6.19), and (6.17), we have that

α̇(t) = (β ′
0)

2/(2e
1/2
0 )

∫ ∞

t

α−2(s)ds+ O(t−3), t≫ 1,(6.25)
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and by (6.22)

β̇(t) = −β ′
0

∫ ∞

t

α−2(s)ds, t≫ 1.(6.26)

Now by (6.10), we have that α̇(t) . t−1. Therefore, for t ≫ 1, it
follows that

α(t)−2 = ᾱ(t)−2(1 + α̇(t)/ᾱ(t))−2

. ᾱ(t)−2(1 + |α̇(t)/ᾱ(t)|) . ᾱ(t)−2 + O(t−4).

Cycling this estimate into (6.25) and (6.26), we conclude that

α̇(t) = (β ′
0)

2/(2e0ᾱ(t)) + O(t−3), t≫ 1,(6.27)

and by (6.22)

β̇(t) = −β ′
0/(e

1/2
0 ᾱ(t)) + O(t−3), t≫ 1.(6.28)

Notice that these estimates provide the next two asymptotic terms in
the earlier expansions (6.10) and (6.11).

By (6.11), we have |β̇(t)| . t−1, and so using (6.28), we obtain

exp(β(t)W0) = exp(β̄(t)W0) exp(β̇(t)W0)

= exp(β̄(t)W0)(I0 + β̇(t)W0 +
1
2
β̇(t)2W 2

0 + O(t−3))

= exp(β̄(t)W0)(I0 + β̇(t)W0 −
1
2
β̇(t)2I0) + O(t−3).

We are now ready to estimate the desired quantity. We only need to
keep track of the terms of order tk, for k = 1, 0,−1. Thus, we have

α(t) exp(β(t)W0) = exp(β̄(t)W0)(ᾱ(t)I0 + ᾱ(t)β̇(t)W0

+ (α̇(t)− 1
2
ᾱ(t)β̇(t)2)I0) + O(t−2).

The result (6.23) follows from this since (6.27) and (6.28) imply that

ᾱ(t)β̇(t) = −β0/e
1/2
0 + O(t−2)

and

α̇(t)− 1
2
ᾱ(t)β̇(t)2 = O(t−2).

�

Remark. The existence of the asymptotic state A∞(t) and the decay
rate t−2 in (6.13) could also be deduced by applying Lemma 6 to (3.41)
and using (6.12). However, the argument of Theorem 8 also provides
the form (6.14) of A∞(t).
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Remark. The rescaled fluid domain collapses to a circular pancake as
t→ ∞, that is, Ω∞ = {(x1, x2, 0) ∈ R

3 : x21 + x22 ≤ e0}.

Remark. The vorticity is given by

1

2
ω(t, x)× =

1

2
ω(t)× =

1

2
(L(t)− L(t)⊤) = β ′(t)

[

W0

0

]

.

Therefore, ‖ω(t, ·)‖|L∞(Ωt) = |β ′(t)| . |α(t)|−2 . t−2.

6.2. Irrotational Incompressible Swirling Flow. We now consider
the case where the parameter β ′

0 vanishes. This eliminates the vorticity
and significantly changes the character of the phase diagram for (α, α′).

Theorem 9. Suppose that α, β ∈ C∞(R), α > 0, solve the initial value
problem (6.2), (6.3), (6.4).
If α′

0 < 0 and β ′
0 = 0, then

β(t) ≡ 0,(6.29)

α′′(t) > 0,(6.30)

0 < α′(t) + e
1/2
0 . (1 + |t|)−6, t < 0,(6.31)

0 < α(t)− e
1/2
0 |t| − α−∞ . (1 + |t|)−5, t < 0,(6.32)

with α−∞ = 1−

∫ 0

−∞

(α′(s) + e
1/2
0 )ds,

0 < (α(t)−2)′ − (2e0)
1/2 . (1 + t)−3, t > 0,(6.33)

0 < α(t)−2 − (2e0)
1/2t− α∞ . (1 + t)−2, t > 0,(6.34)

with α∞ = 1−

∫ ∞

0

[(α(s)−2)′ − (2e0)
1/2]ds.

Finally, the curvature is everywhere positive and
{

0 < κ(t) . (1 + |t|)−4, t < 0,

0 < κ(t) . (1 + t)−5/2, t > 0.

By time reversal, corresponding statements hold when α′
0 > 0.

Proof. The vanishing of β(t), (6.29), follows from (6.3), since β(0) =
β ′(0) = 0. The positivity of α′′(t), (6.30), follows from (6.2), as shown
in (6.15), and thus α′(t) is again strictly increasing.
The vanishing of β in (6.5) implies that

(6.35) α′(t) = ±

(

e0
1 + 2α(t)−6

)1/2

.
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Thus, the energy level curve now has two distinct components, as illus-
trated in Figure 2. By assumption α′

0 < 0, so we have (α(t), α′(t)) →

(∞,−e
1/2
0 ), as t → −∞, as before, but now (α(t), α′(t)) → (0, 0), as

t→ ∞.

Figure 2. Phase diagram in the case where β ′
0 = 0.

✲

✻

❡

✶

②

α

α′

e
1/2
0

−e
1/2
0

κ > 0

Since α′(t) ↓ −e
1/2
0 , as t→ −∞, we have that

(6.36) α(t) & (1 + |t|), for t < 0.

Since α′
0 < 0, we are on the lower branch of the energy curve (6.35), so

α′(t) + e
1/2
0 = −

(

e0
1 + 2α(t)−6

)1/2

+ e
1/2
0 =

2e
1/2
0

2 + α(t)6
.

Combining this with (6.36), we have shown (6.31). The bound (6.32)
follows from (6.31) by integration.
Next, we focus on the behavior for large positive times. From (6.35),

we have

(6.37) (α(t)−2)′ = −2α(t)−3α′(t) =

(

2e0
1 + α(t)6/2

)1/2

& 1, t > 0,

since α(t) ↓ 0, as t→ ∞. From (6.37) we obtain the bound

(6.38) α(t) . (1 + t)−1/2, t > 0.

Again by (6.37), we have

0 < (2e0)
1/2 − (α(t)−2)′ = α(t)6ψ(α(t)),
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where ψ(α(t)) → (e0)
1/2/4 > 0, as → ∞. Together with (6.38),

this proves the estimate (6.33). As above, (6.34) follows directly from
(6.33).
The statements about the curvature follow from the formula (6.6),

with β = 0, and the estimates (6.36), (6.38). �

Remark. For irrotational swirling flow with α′
0 < 0, the asymptotic

fluid domains are

Ω∞ = {(0, 0, x3) ∈ R
3 : x23 < 2e0}

and

Ω−∞ = {(x1, x2, 0) ∈ R
3 : x21 + x22 < e0}.

6.3. Shear Flow. Suppose that M ∈ M
3 is nilpotent, so that M3 =

0. Define A(t) = I + tM . Since the eigenvalues of M vanish, the
eigenvalues of A(t) are equal to unity, for all t ∈ R. It follows that
detA(t) = 1, for all t ∈ R, and so A ∈ C(R, SL(3,R)) ∩ C∞(R,M3).
Since A(t) is a line in M

3, its curvature vanishes. This can also be
verified directly from the formula (3.43) for κ(t). Since A′′(t) = 0 and
κ(t) = 0, for all t ∈ R, we see that A(t) is a solution of (3.41) whose
corresponding pressure vanishes identically. More generally, we could
take A(t) = (I + tM)A0, for an arbitrary element A0 ∈ SL(3,R).
Consider, for example, M = e2 ⊗ e1, whence A(t) gives rise to a

classical shear flow. In this case, the rescaled asymptotic fluid domain
is a line segment

Ω∞ = {x = (x1, 0, 0) : |x1| < 1}.

Or, if M = e2 ⊗ e1 + e3 ⊗ e2, then the rescaled limit is a disk

Ω∞ = {x = (x1, x2, 0) : x
2
1 + x22 < 1}.
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