
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A Hybrid Density Functional Theory for Solvation and Solvent-Mediated Interactions

Permalink
https://escholarship.org/uc/item/4p6713xb

Author
Jin, Zhehui

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4p6713xb
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 
RIVERSIDE 

 
 
 
 

A Hybrid Density Functional Theory for Solvation and Solvent-Mediated Interactions 
 
 
 
 

A Dissertation submitted in partial satisfaction 
of the requirements for the degree of 

 
 

Doctor of Philosophy 
 
 

in 
 
 

Chemical and Environmental Engineering 
 
 

by 
 
 

Zhehui Jin 
 
 

March 2012 
 
 
 
 
 
 
 

 
Dissertation Committee: 
 Dr. Jianzhong Wu, Chairperson 
 Dr. Ashok Mulchandani 
 Dr. David Kisailus 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Copyright by 
Zhehui Jin 

2012 
 
 

  
 



 
 
 
 
 
 
 
 
 The Dissertation of Zhehui Jin is approved:  
 
 
 
                _________________________________________________ 
 
 
 
                           _________________________________________________ 
 
 
 
                           _________________________________________________ 
                                                                                  Committee Chairperson 
 
 
 
 
 
 
 
                                                                             
 
                                                                            University of California, Riverside 
 

 
 
 
 
 



iv 
 

Acknowledgements 

 

 This thesis is the result of five years of work whereby I have been accompanied 

and supported by many people. I would like to express the most profound appreciation to 

my advisor, Prof. Jianzhong Wu. He led me to the field of statistical thermodynamics and 

guided me to define research problems and solve these problems through theoretical 

approaches. I have been greatly benefited from his wide knowledge and logical way of 

thinking and gained fruitful achievements during my Ph.D. study. His enthusiasms on 

research and passion for providing high-quality research works have made a deep 

impression on me.  

 I am deeply grateful to Dr. Yiping Tang, Prof. Zhengang Wang, Dr. De-en Jiang, 

Dr. Dong Meng, and Dr. Douglas Henderson who have assisted my research work and 

led me to different exciting fields of study. I would also thank for Dr. Zhidong Li and Dr. 

Tao Jiang for significant technical support in my early stage of Ph.D. study. I would also 

thank for Dr. Shuangliang Zhao for insightful discussions during everyday research 

works. His passion and strong motivation for research inspired me in my Ph.D. study. 

Special thanks are given to Profs. Ashok Mulchandani and David Kisailus for helping me 

in the qualified exam and dissertation defense. 

 I sincerely appreciate the nonstop support and encouragement from my parents 

during these years. I would like to thank Ms. Qingyan Jin for accompanying me, 

encouraging me and supporting me in the study and research.       



v 
 

 The text of this dissertation, in part or in full, is a reprint of the material as it 

appears in Physical Review E (Volume 84, Issue 4, Page 041805, Oct 2010) , Journal of 

Physical Chemistry B (Volume 115, Issue 6, Page 1450, Jan 2011), Journal of Physical 

Chemistry B (Volume 115, Issue 21, Page 6971, May 2011), Journal of Chemical Physics 

(Volume 134, Issue 17, Page 174702, May 2011). This thesis work is financially 

sponsored by the US Department of Energy (DOE) (DE-FG02-06ER46296), the National 

Science Foundation (NSF-CBET-0852353; NSF-CMMI-005400), and the National 

Institute of Health (R21-AI077532). This work utilizes supercomputer from the National 

Energy Research Scientific Computing Center (NERSC).     

 

 

 

 

 

 

 

 

 

 



vi 
 

ABSTRACT OF THE DISSERTATION 
 
 
 

A Hybrid Density Functional Theory for Solvation and Solvent-Mediated Interactions 
 
 

by 
 
 

Zhehui Jin 
 
 

Doctor of Philosophy 
Graduate Program in Chemical and Environmental Engineering 

University of California, Riverside, March 2012 
Professor Jianzhong Wu, Chairperson  

 

 Recent years have witnessed a renewed interest in statistical mechanics of 

solvation directed toward a better understanding of hydration and water-mediated 

interactions from a molecular perspective. A good understanding of aqueous solvation is 

essential not only in solution thermodynamics but also for studying functions and 

interfacial properties of nanostructured materials in a solution environment. Such 

knowledge is also indispensable for understanding biological processes in vivo and in 

vitro.  

While conventional theories of solvation are mostly based on a continuous 

representation of the solvent, due to the lack of fundamental understanding of the 

properties of solvent molecules near solute surface, the materials fabrication and self-

assembly of functional biomacromolecules often rely on costly and time-consuming 

“trial-and-error” approaches. The objective of this Ph.D. research is to provide a 
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theoretical framework for efficient investigation of the microscopic structure and 

thermodynamic properties of flexible and rigid molecules in solution through a unified 

density functional theory (DFT) and a hybrid method incorporating molecular 

simulations. Toward that end, I have applied the DFT to the study of the microscopic 

structure and thermodynamic properties of polymers and polyelectrolytes in in confined 

geometry. I have tested the numerical performance of the DFT with molecular 

simulations and scaling analysis and examined the effects of packing densities, the 

curvature of confinement, the degree of polymerization, the salt concentration and 

valence on the properties and microscopic structure of confined polymers and 

polyelectrolytes. In addition, I developed a hybrid method combining the molecular 

simulations and used the DFT to study the microscopic structure and thermodynamic 

properties of complex systems. While molecular simulation can provide the microscopic 

structure, the DFT can connect the microscopic structure to the thermodynamic properties 

through accurate free energy functional. This efficient hybrid method was extend to the 

study of colloidal interactions and potential of mean force underlying “lock-and-key” 

interactions in a solution environment and to ion solvation in water. The numerical 

performance of hybrid method is very good comparing to molecular simulations, while 

the new method drastically reduces the calculation time. Furthermore, I studied the 

solvent distribution and behavior near a solute ranging from microscopic to macroscopic 

scales, which is closely related to the understanding of hydrophobic phenomena and 

fabrication of superhydrophobic materials. Lastly, the solvation free energy of 
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nanoparticles and the shape effect on the nanoparticle solvation were investigated 

through morphological thermodynamic with negligible computational costs.  

Accomplishments from this work contribute toward a better understanding of 

solvation and solvent-mediated interactions in complicated molecular systems and will 

have broad impacts on both fundamental research and engineering applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      



ix 
 

Table of Contents 

Title Page 

Copyright Page 

Approval Page 

Acknowledgements                                                                                                               iv 

Abstract                                                                                                                                  vi 

Table of Contents                                                                                                                ix 

List of Figures                                                                                                                   xv 

List of Tables                                                                                                                    xxviii 

 

Chapter 1. Introduction                                                                                                         1 

1. 1 Scope of Research                                                                                         1 

1. 2 Theoretical Background                                                                                2 

1. 3 Thesis Organization                                                                                 10 

Chapter 2. Basic Formulism of Density Functional Theory                                           16 

2. 1 Density Profile                                                                                         17 

2. 2 Density Functional Theory                                                                      19 

2. 3 Intrinsic Helmholtz Free Energy                                                               22 

2. 4 Euler-Lagrange Equation                                                                           22 

2. 5 Excess Helmholtz Free Energy                                                                   24 



x 
 

2. 5. 1 Fundamental Measure Theory                                                         25 

2. 5. 2 Thermodynamic Perturbation Theory for Chain Connectivity     39 

2. 5. 3 Excess Helmholtz Energy Due to Van der Waals Attraction         46 

2. 5. 4 Excess Helmholtz Energy Due to Direct Coulomb Interaction     49 

2. 5. 5 Electrostatic Correlation                                                                  51 

2. 6 Numerical Method                                                                                   53 

2. 7 Hybrid Method                                                                                           56 

Chapter 3. Entropic Forces of Single-Chain Confinement in Spherical Cavities      59 

3. 1 Introduction                                                                                               59 

3. 2 Polymer Model and Methods                                                                    61 

3. 3 Results and Discussions                                                                             66 

3. 3. 1 Comparison between MC and DFT                                               66 

3. 3. 2 Comparison with The Scaling Analysis                                           69 

3. 4 Conclusions                                                                                               75   

Chapter 4. Density Functional Theory for Polyelectrolytes in Viral Capsid                 85 

4. 1 Introduction                                                                                                86 

4. 2 Molecular Model and Theory                                                                   89 

4. 2. 1 Model                                                                                             89 

4. 2. 2 Polymeric Density Functional Theory                                           93 

4. 3 Results and Discussions                                                                            101 



xi 
 

4. 3. 1 Comparison between MC and DFT                                             101 

4. 3. 1. 1 Flexible Polyelectrolyte Encapsidation                          102 

4. 3. 1. 2 Effects of Chain Rigidity                                              105 

4. 3. 1. 3 Effects of Salt Valences                                               106 

4. 3. 2 Effects of The Outside Environment                                            108 

4. 3. 3 Net Charge of Spherical Capsid                                                 110 

4. 3. 4 Discontinuity of Dielectric Constant                                            112 

4. 4 Conclusions                                                                                             114 

Chapter 5. Hybrid MC-DFT Method for Studying Multidimensional Entropic     

Forces                                                                                                           136 

5. 1 Introduction                                                                                              137 

5. 2 Theoretical Approaches                                                                         140 

5. 2. 1 MC-DFT                                                                                       141 

5. 2. 2 MC-PDT                                                                                       144 

5. 3 Results and Discussions                                                                           145 

5. 3. 1 Two Identical Spheres                                                                   145 

5. 3. 2 A Sphere near A Hard Wall                                                        147 

5. 3. 3 Colloidal Lock and Key Interactions                                           148 

5. 3. 4 Angle-Dependent Entropic Potential                                           150 

5. 4 Conclusions                                                                                            152                                           



xii 
 

Chapter 6. New Theoretical Method for Rapid Prediction of Solvation Free Energy 

in Water                                                                                                       173 

6. 1 Introduction                                                                                              173 

6. 2 Theory                                                                                                       175 

6. 3 Results                                                                                                     181 

6. 4 Conclusions                                                                                             184 

Chapter 7. A Perturbative Density Functional Theory for Square-Well Fluids      187 

7. 1 Introduction                                                                                              187 

7. 2 Theory and Simulation Details                                                              192 

7. 3 Results and Discussions                                                                           196 

7. 3. 1 Radial Distribution Functions of Bulk SW Fluids ( 2λ σ> )     196 

7. 3. 2 Distribution of SW Fluids near Sphere Cavities                        198 

7. 3. 3 Density Profiles of SW Fluids in Slit Pores                               201 

7. 4 Conclusions                                                                                            203  

Chapter 8. Drying Transition at A Non-Attractive Surface: Continuous or 

Precipitous                                                                                                   219 

8. 1 Introduction                                                                                             219 

8. 2 Molecular Model and DFT Equation                                                      224 

8. 3 Results and Discussions                                                                          227 

8. 4 Conclusions                                                                                            233                                                                                                                       

Chapter 9. The Shape Effect on Nanoparticle Solvation: A Comparison of 

Morphometric Thermodynamics and Microscopic Theories                 241 



xiii 
 

9. 1 Introduction                                                                                             241 

9. 2 Theoretical Methods                                                                              245 

9. 2. 1 Morphometric Thermodynamics                                                  245 

9. 2. 2 Density Functional Theory                                                          248 

9. 3 Results and Discussions                                                                           251 

9. 3. 1 Cubic Particles                                                                            251 

9. 3. 2 Cylindrical Particles                                                                   252 

9. 3. 3 Cones                                                                                             253 

9. 3. 4 Equilateral Triangle Prisms                                                           254 

9. 3. 5 Comparison between Particles of Different Geometries               255 

9. 3. 6 Lock-and-Key in A Hard-Sphere Solvent                                     258 

9. 4 Summary                                                                                                   262  

Chapter 10. Conclusion                                                                                                      275 

Appendices 

Appendix A: Excess Chemical Potential Due to Chain Connectivity of A Mixture of 

Block Copolymers and Monomers                                                                 282 

Appendix B: Solution of One-Dimensional Poisson Equation                                          287 

Appendix C: Theoretical Method for Rapid Prediction of Solvation Free Energy in Water: 

Computational Details for MD Simulation and DFT Calculations                289 

C. 1 MD Simulation                                                                                     289 

C. 2 Direct Correlation Function                                                                    292 

C. 3 Effective Hard-Sphere Diameter of Water Molecules                           295 



xiv 
 

C. 4 Ion Solvation Free Energy                                                                   300 

References                                                                                                                          307 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xv 
 

List of Figures 
 
 

Figure 1-1 Schematic representation of ion solvation in water.                                            14 
 
 
Figure 1-2 Schematic representation of a polyelectrolyte chain in continuous solvent (i.e., 
water). Polyelectrolyte is represented by a freely joined chain (orange) with positive 
charge surrounded by cations (pink) and anions (green). Solvent is depicted as continuum.                                                         
                                                                                                                                            15 
 
 
Figure 2-1 Schematic representation of block copolymer.                                                  58 
 
 
Figure 3-1 The segment-density profiles for three hard-sphere chains ( 50N = , 150  , 
2400 ) confined in a spherical cavity of radius 10cR σ= . For clarity, the density profiles 
for 150N =  are up shifted by 0.2  units. Symbols represent MC simulation results and 
the solid lines are from the DFT predictions.                                                                                                                                                                                                                                                          78 
 
 
Figure 3-2 The same as Fig. 3-1 but for a single hard-sphere chain ( 150N = ) 
encapsulated in three different spherical cavities 4σ  with 15cR σ= , 10σ and 4σ , 
respectively. For clarity, density profiles for 15cR σ=  are up shifted by 0.2  units.                                   79 

 
 
Figure 3-3 (a) The confinement free energy of a single chain ( 200N = ) versus the cavity 
radius. (b) Effect of the polymer chain length on the confinement free energy in a 
spherical cavity of radius 20cR σ= . Symbols represent MC simulation results and the 
solid lines are from the DFT predictions.                                                                             80 
 
 
Figure 3-4 The reduced packaging free energy per segment /F Nβ∆  versus the chain 
length N  at a fixed cavity radius 10cR σ= . The solid line is from DFT, the dashed line is 
from scaling analysis, the dotted line is from SCFT, and the dash dotted line is the scaling 
fitting by imposing the exponent 0.5v = , while the dash dot dotted line with exponent 

0.588v = .                                                                                                                              81 
 
 
 
 



xvi 
 

Figure 3-5 The reduced packaging free energy ( ) ( )3/ 3 1
/

v

gF Rβ σ
−

∆  versus the cavity 

radius cR  at different chain lengths, 1000N = (Red line), 2000N = (Green line), and 
3000N = (Cyan line). The dash dotted lines are the scaling fitting by imposing the 

exponent 0.5v =  and dash dot dotted lines are the scaling fitting with exponent 

0.588v = . Note that the scaling analysis predicts that ( ) ( )3/ 3 1
/

v

gF Rβ σ
−

∆  is independent 
of N .                                                                                                                                  82 
 
 
Figure 3-6 The reduced packaging free energy per segment /F Nβ∆  versus the polymer 
packing fraction η . The DFT results are given at a fixed cavity radius 10cR σ= (Solid 
line) and at a fixed chain length 2000N = (dotted line). The dashed line is from the 
scaling analysis, and the dash dotted line is by fitting of the DFT results (i.e., 

1.31~/F Nβ η∆ ).                                                                                                                   83 
 
 
Figure 3-7 The reduced osmotic pressure 3 / Bp k Tσ  versus the polymer packing fraction 
η . The dash dotted line represents the scaling fitting with exponent 0.5v =  and the dash 
dot dotted line is the scaling fitting with exponent 0.588v =  of the DFT calculations. The 
red line represents the DFT results for a given chain length 2000N =  and the green line 
is for a given cavity radius 10cR σ= . The dotted line represents the bulk osmotic 
pressure for a hard-sphere chain fluid with chain length 2000N =  from the bulk 
equation of state.                                                                                                                  84 
 
 
Figure 4-1 A schematic picture of the model system studied in this work. The dark blue 
spheres stand for polyelectrolyte segments, the green spheres for anions, the red spheres 
for cations, and the dark red shell with shaded background for a semi-permeable protein 
capsid. The entire system is embedded in a spherical cell such that the boundary (solid 
line) has negligible effects.                                                                                                 118 
 
 
 
 
 
 
 
 
 
 
 



xvii 
 

Figure 4-2 (a) Density distribution of polymer segments ( )p rρ  is plotted as a function 
of radial distance r  for a flexible polyelectrolyte confined in a spherical shell with total 
charge 250cQ = + . Here the polymer chain length is 100M =  and each segment carries 
unit negative charge, the valences of cations and anions are 1Z+ = + and 1Z− = − , 
respectively.  In MC simulation, the cell radius is 50nmcellR = , the numbers of cations 
and anions simulated are 100N+ = and 250N− = , respectively. (b) The same as Fig. 4-2 
(a) except that the polymer chain length is 250M =  , cell radius 56.3nmcellR = , and the 
number of cations simulated is 250N+ = . (c) The same as Fig. 4-2 (a) except that the 
chain length is 400M = , the cell radius is 61.4nmcellR = , and the number of cations 
simulated is 400N+ = .                                                                                                        119 
 
 
Figure 4-3 The same as Fig. 4-2 but for the density profiles of anions.                            120 
 
 
Figure 4-4 The same as Fig. 4-2 but for the density profiles of cations.                           121 
 
 
Figure 4-5 The same as Fig. 4-2 but for a semi-flexible polyelectrolyte with bending 
stiffness parameter 0 10βφ = .                                                                                               122 
 
 
Figure 4-6 The same as Fig. 4-5 but for the density profiles anions .                                123 
 
 
Figure 4-7 The same as Fig. 4-5 but for the density profiles of cations.                           124 
 
 
 
 
 
 
 
 
 
 
 
 
 



xviii 
 

Figure 4-8 (a) Density distribution of polymer segments ( )p rρ  versus radial distance r  
for a flexible polyelectrolyte in a spherical shell. Here the polyelectrolyte chain length is 

252M =  and each segment carries unit negative charge.  The total charge of the 
spherical shell is 252cQ = + . In MC simulation, the cell radius is 10nmcellR = , the 
numbers of cations and anions simulated are 252N+ =  and 252N− =  , respectively, and 
the valences of cations and anions are 1Z+ = + and 1Z− = − , respectively. The solid lines 
represent results from the DFT calculation and symbols are from MC simulation [132]. (b) 
The same as (a) except for 2Z+ = +  and that the number of cations used in the simulation 
is 126N+ = . (c) The same as (a) except for 3Z+ = +  and that the number of cations 
simulated is 84N+ = .                                                                                                                  125 
 
 
Figure 4-9 The same as Fig. 4-8 but for the density distributions of monomeric anions.  
                                                                                                                                          126 
 
 
Figure 4-10 The same as Fig. 4-8 but for the density distributions of cations.               127 
 
 
Figure 4-11 (a) The density distribution of polyelectrolyte segments ( )p rρ  as a function 
of radial distance r  for a flexible polyelectrolyte with chain length 100M =  in a 
spherical shell with a total charge 250cQ = + . The cell radius is 56.5nmcellR = , the 
valences of cations and anions are 1Z+ = + and 1Z− = − , respectively, and the bulk salt 
concentration is 110mMsaltC = . The black line is the density profile predicted by the 
DFT with explicit consideration of the outside environment, i.e., without the assumption 
of the charge neutrality within the shell; and the red line depicts that without considering 
the outside environment but assuming the capsid is overall neutral. (b) The same as (a) 
except for 250M = . (c) The same as (a) except for 400M = .                                                                 128 
 
 
Figure 4-12 The same as Fig. 4-11 but for the density distributions of monomeric anions.                                                                           

                                                                                                                                          129 
 
 
Figure 4-13 The same as Fig. 4-11 but for the density distributions of monomeric cations.                                                        

                                                                                                                                          130 
 
 
 
 



xix 
 

Figure 4-14 The DFT prediction on the net charge of capsid complex versus 
polyelectrolyte chain length at various salt concentrations. The capsid charge is 

252cQ = + , the cell radius is 56.5nmcellR = , the valences of cation and anion are 
1Z+ = +  and 1Z− = − . The red line depicts bulk salt concentration 11mMsaltC = , the 

green line presents bulk salt concentration 110mMsaltC = , and the blue line is for bulk 
salt concentration 550mMsaltC = , respectively.                                                                 131 
 
 
Figure 4-15 The DFT prediction on the net charge of capsid complex versus 
polyelectrolyte chain length at various cation valences. The capsid charge is 252cQ = + , 
the cell radius is 56.5nmcellR = , the valence of anion is 1Z− = − , and bulk salt 
concentration 110mMsaltC = . The red solid line depicts cation valence 1Z+ = + , the 
green solid line presents cation valence 2Z+ = + , and blue solid line is cation valence 

3Z+ = + ,  respectively.                                                                                                         132 
 
 
Figure 4-16 (a) The density distribution of polyelectrolyte segments ( )p rρ  as a function 
of radial distance r  for a flexible polyelectrolyte with chain length 100M =  in a viral 
capsid with a total charge of 250cQ = + . The cell radius is 56.5nmcellR = , the valences 
of cations and anions are 1Z+ = +  and 1Z− = − , respectively, and the bulk salt 
concentration 110mMsaltC = . The black line is the density profile with capsid dielectric 
constant 78.4cε =  and the red line depicts that with the capsid dielectric constant 4cε = . 
(b) The same as (a) except for 250M = . (c) The same as except for 600M = .             133 
 
 
Figure 4-17 The same as Fig. 4-16 but for the density distributions of monomeric anions.  
                                                                                                                                          134 
 
 
Figure 4-18 The same as Fig. 4-16 but for the density distributions of monomeric cations.  
                                                                                                                                          135 
 
 
Figure 5-1 Depletion potential between two large particles in a solvent of small particles 
at different densities. The size ratio between the big and small particles is 5s = . The 
symbols are MC simulation results by Dickman, the red lines are from the MC-DFT 
calculations, the green lines are from  MC-PDT , and the blue lines are from DFT-PDT 
calculations. The solid lines are bulk solvent packing density 0.116η =  and dashed lines 
are bulk solvent packing density 0.229η = .                                                                      155 



xx 
 

 
 
Figure 5-2 (a) Contour plots of the solvent density near two big spheres at contact 
( 0H = ). Here the packing density of small spheres is 0.116η = . The centers of two big 
particles are placed along the x-axis ( 0y = , 0z = ). (b) 1.5H σ= . (c) 2.5H σ= .        156 
 
 
Figure 5-3 Depletion potentials between a big sphere ( 5s = ) and a flat hard wall 
immersed in a sea of small hard spheres at different bulk densities. The symbols are MC 
simulation results by Dickman, the red lines are from the MC-DFT calculations, and the 
green lines are from the MC-PDT predictions. The solid lines are bulk solvent packing 
density 0.1η =  and dashed lines are bulk solvent packing density 0.2η = .                   158 
 
 
Figure 5-4 The geometry of the key and lock system ( 0y =  plane cut). The key is a big 
spherical particle with diameter keyD  and the lock is a substrate with a hemispherical 
pocket with diameter lockD . The separation between key and lock is represented by the 

distance between the centers of key placing at ( ),0,0x  and lock at ( )0 ,0,0x .                  159 
 
 
Figure 5-5 (a) Depletion potential between a hard spherical key with key diameter 

4keyD σ=  and a hard hemi-spherical lock substrate with lock diameter 5lockD σ=  in a 
hard- sphere solvent at bulk packing fraction 0.367η = . We compare the MC-PDT (blue 
line) and MC-DFT (magenta line) methods with the simulation data (symbols), HNC 
results (red line) from Kinoshita and DFT results (green line) from P.M. Konig. (b) The 
same to Fig. 5-5 (a) except with key diameter 5keyD σ= . (c)  The same to Fig. 5-5 (a) 
except with key diameter 6keyD σ= .                                                                                160 
 
 
Figure 5-6 Contour plots for the solvent density near a “key-lock” system. The key 
diameter is 5keyD σ=  , and the hemi-spherical lock has a cavity of diameter 5lockD σ= . 
The packaging fraction of hard spheres in the bulk is 0.367η = . The centers of the key 
and lock are aligned in the x-direction and the figure is plotted in a way similar to that in 
Fig. 5-2. (a) 0 0x x− = , (b) 0 2x x σ− = , and (c) 0 4x x σ− = . (d) The excluded volume 
difference ( ) ( ) ( )0 0ex ex exV x x V x x V∆ − = − − ∞  for different separation between lock and 
key particle. ( )0exV x x−  is the excluded volume due to lock substrate and key particle. 
The solvent available volume is negatively proportional to the excluded volume.          162 
 
 



xxi 
 

Figure 5-7 The same as Fig. 5-6 except that the key diameter 4keyD σ=  and (a) 

0 0.5x x σ− = − .                                                                                                                    165 
 
 
Figure 5-8 Schematic of a hard rod near a wall ( 0y =  plane cut) in a hard-sphere solvent. 
The spherocylinder is placed at ( ),0,0x  while the wall is at 0x = . The closet distance 

between them is ( ) ( )min cos / 2x Lθ σ θ= + .                                                                     167 
 
 
Figure 5-9 The contact potential ( )min ,W xβ θ  as a function of angle θ  between a hard 
spherocylinder and a flat wall. The length of the hard spherocylinder is 10L σ=  and the 
packing fraction for the hard spheres in the bulk is 0.2239η = . The solid line is from 
DFT by R. Roth, the dashed line is from AO theory, and symbols represent the MC-DFT 
results.                                                                                                                                168 
 
 
Figure 5-10 Contour plots ( 0y =  plane) for density distribution of small hard spheres in 
the presence of a hard rod at ( )5.5 ,0,0σ  and a flat wall at 0x = . The packaging fraction 

of the bulk state is 0.2239η = . (a) 0θ =  , (b) 30θ =  , and (c) 90θ =  .                        169 
 
 
Figure 5-11 The torque ( ),M xβ θ  between a hard rod and a flat wall in a hard-sphere 
solvent. Here 5.5x σ= , the length of the hard spherocylinder is 10L σ= , and the 
packaging fraction of the bulk state is 0.2239η = . The solid line is our MC-DFT 
calculation and symbols are from MD.                                                                            171 
 
 
Figure 7-1 (a) The radial distribution function of a bulk SW fluid with range of attraction 

2.2λ σ=  at reduced temperature * / 5.0BT k T ε= =  and reduced bulk density 
* 3 0.75b bρ ρ σ= = . The solid line is from MFMT+FMSA and the symbols denote NVT  

MC simulation data. (b) The same as (a) but for 2.4λ σ= . (c) The same as (a) but for 
2.6λ σ= . (d) The same as (a) but for 2.8λ σ= .                                                              206 

 
 
 
 
 



xxii 
 

Figure 7-2 (a) The radial distribution function of a bulk SW fluid with range of attraction 
2.3λ σ=  at reduced temperature * / 3.1BT k T ε= =  and reduced bulk density 

* 3 0.01b bρ ρ σ= = . The solid line is from MFMT+FMSA and the symbols denote data 
from NVT  MC simulation. (b) The same as (a) but for 2.5λ σ= , * 3.9T = . (c) The same 
as (a) but for 2.7λ σ= , * 4.9T = . (d) The same as (a) but for 3.0λ σ= , * 6.7T = .        207 
 
 
Figure 7-3 (a) The same as Fig. 7-2(a) but at reduced bulk density * 0.77bρ = . (b) The 
same as Fig. 7-2(b) but at reduced bulk density * 0.72bρ = . (c) The same as Fig. 7-2(c) 
but at reduced bulk density * 0.7bρ = . (d) The same as Fig. 7-2(d) but at reduced bulk 
density * 0.72bρ = .                                                                                                              208 
 
 
Figure 7-4 (a) The density distribution of a SW fluid around a hard cavity of radius
R σ= . The range of attraction is 1.5λ σ= , and the reduced temperature and density are 

* 1.0T =  and * 0.677bρ = , respectively. The solid line represents prediction of 
MFMT+FMSA, the dashed line is from MFMT+MFT, and symbols are from VTµ  MC 
simulation. (b) The same as (a) but * 0.685bρ = . (c) The same as (a) but * 0.706bρ = . (d) 
The same as (a) but * 0.733bρ = . (e) The same as (a) but * 0.775bρ = .                              209 
 
 
Figure 7-5 (a) The density distribution of a SW fluid around a hard cavity of radius
R σ= . The range of attraction is 1.5λ σ= , and the reduced temperature and density are 

* 1.2T =  and * 0.586bρ = , respectively. The solid line represents prediction of 
MFMT+FMSA, the dashed line is from MFMT+MFT, and symbols are from VTµ  MC 
simulation. (b) The same as (a) but * 0.602bρ = . (c) The same as (a) but * 0.638bρ = . (d) 
The same as (a) but * 0.679bρ = . (e) The same as (a) but * 0.735bρ = .                              210 
 
 
Figure 7-6 (a) The density distribution of a SW fluid around a cavity of radius R σ= . 
The range of attraction is 1.7λ σ= , and the reduced temperature and density are * 1.0T =  
and * 0.711bρ = , respectively. The solid line represents prediction of MFMT+FMSA and 
symbols are from VTµ  MC simulation. (b) The same as (a) but * 0.716bρ = . (c) The 
same as (a) but * 0.731bρ = . (d) The same as (a) but * 0.755bρ = . (e) The same as (a) but 

* 0.794bρ = .                                                                                                                       211 
 



xxiii 
 

 
Figure 7-7 The same as Figure 7-4 but 5R σ= .                                                             212 
 
 
Figure 7-8 The same as Figure 7-5 but 5R σ= .                                                             213 
 
 
Figure 7-9 The same as Figure 7-6 but 5R σ= .                                                             214 
 
 
Figure 7-10 (a) The density profiles of a SW fluid near a hard wall. Here the range of 
attraction is 1.5λ σ= , the reduced temperature is * 1.0T = . The surface area and the 
height of the simulation box are 231.22A σ= and 21.18H σ= , respectively. The solid 
line represents prediction  of MFMT+FMSA, the dashed line is from MFMT+MFT, and 
the symbols are MC simulation data. (b) The same as (a) but the simulation condition was 
changed to surface area 227.82A σ=  and height 11.55H σ= . (c) The same to (a) but for 

225.89A σ=  and 11.18H σ= .                                                                                         215 
 
 
Figure 7-11 (a) The density distribution of a SW fluid near an attractive wall. Here the 
range of attraction is 1.5λ σ= , the reduced temperature is * 1.0T = . The solid line 
represents prediction of MFMT+FMSA, the dashed line denotes MFMT+MFT result, and 
the symbols are MC simulation data. The MC simulation was carried out within a 
rectangular prism with cross section area 2100A σ=  and height 10H σ=  containing 

620N =   SW particles.  (b) The same as (a) but for particle number 654N = . (c) The 
same as (a) but for particle number 730N = .                                                                  216 
 
 
Figure 7-12 The same as Fig. 7-11 but at higher temperatures. (a) * 1.2T = , 545N = . 
(b) The same to (a) but 600N = . (c) The same as (a) but 700N = .                          217 
 
 
 
Figure 7-13 (a) The density distribution of a SW fluid near an attractive wall. Here the 
range of attraction is 1.7λ σ= , the reduced temperature is * 1.0T = . The solid line 
represents prediction of MFMT+FMSA, and the symbols are MC simulation data. The 
MC simulation was carried out within a rectangular prism with cross section area 

2100A σ=  and height 10H σ=  containing 615N =   SW particles.  (b) The same as 
(a) but for particle number 648N = . (c) The same as (a) but for particle number 

730N = .                                                                                                                           218 
 
 



xxiv 
 

Figure 8-1 Vapor-liquid coexistence curves for a square-well fluid with interaction range 
1.5λ σ= . The solid line is calculated from FMSA, and the dashed line is from the 

mean-field approximation. The horizontal dotted line identifies the corresponding liquid 
densities at the temperature used in this work ( * / 1.0BT k T ε= = ).                                  235 
 
 
Figure 8-2 The influence of curvature ( / Rσ ) on the contact density for a spherical 
cavity in a saturated square-well liquid. The blue line is predicted by FMT+FMSA at 
reduced solvent density 3 0.668755FMSAρ σ = ; and the red line is from FMT+MFT at 

3 0.601662MFTρ σ = . The symbols represent exact values according to Eqs. (8.13) and 
(8.14).                                                                                                                                236 
 
 
Figure 8-3 Comparison of the density profile of a near-saturated liquid in contact with a 
hard wall (symbols) with that of a saturated liquid near a spherical cavity (lines). (a) 

/ 1R σ = ; (b) / 10R σ = ; (c) / 100R σ = ; (d) 3/ 10R σ = ; (e) 4/ 10R σ = . In all 
panels, h r R= −  for the spherical cavity case and / 2h z σ= −  for the flat wall; 

2 / ( )gl Rδµ γ ρ∞= ∆ . The results from FMT+FMSA are colored blue and those from 
FMT+MFT are red.                                                                                                           237 
 
 
Figure 8-4 The thickness of a vapor-like layer ( eqL  ) for a square-well liquid near a hard 
wall with the solvent chemical potentials approaching saturation. The symbols are 
obtained from DFT calculations and the dashed lines are correlations according to Eq. 
(8.4).                                                                                                                                  238 
 
 
Figure 8-5 The thickness of a vapor-like layer near a spherical cavity in a saturated 
square-well liquid obtained from FMT+MFT and FMT+FMSA.                                     239 
 
 
Figure 8-6 (a) Vapor-layer thickness eqL  versus ( )x ln / 2 /gla Rξ ρδµ γ ∞ = ∆ + 
calculated from FMT+MFT at 0.01β µ∆ = , 0.001β µ∆ = , 0.0001β µ∆ = , and 0β µ∆ = . 
The dashed line is obtained from the sharp-kink approximation eqL x= . (b) The same as 
Fig. 8-6a except from FMT+FMSA.                                                                                  240 
 
 
Figure 9-1 Schematic representation of B  with different geometry considered in this 
work: (a) Cube; (b) Cylinder; (c) Cone; (d) Equilateral triangle prism.                          265 
 



xxv 
 

 
Figure 9-2 (a) The solvation free energy of a cubic B  versus length a  in a hard sphere 
solution with solvent density 3 0.1ρσ = . (b) The same as Fig. 9-2(a), except 3 0.3ρσ = . 
(c) The same as Fig. 9-2(a), except 3 0.5ρσ = . (d) The same as Fig. 9-2(a), except 

3 0.7ρσ = .                                                                                                                         266 
 
 
Figure 9-3 (a) The solvation free energy of a cylindrical B  of height 2h d=  versus 
radius r  in a hard sphere solution with solvent density 3 0.1ρσ = . (b) The same as Fig. 
9-3(a), except 3 0.3ρσ = . (c) The same as Fig. 9-3(a), except 3 0.5ρσ = . (d) The same as 
Fig. 9-3(a), except 3 0.7ρσ = .                                                                                            267 
 
 
Figure 9-4 (a) The solvation free energy of a cone B  of height 2h d=  versus radius r  in 
a hard sphere solution with solvent density 3 0.1ρσ = . (b) The same as Fig. 9-4(a), 
except 3 0.3ρσ = . (c) The same as Fig. 9-4(a), except 3 0.5ρσ = . (d) The same as Fig. 9-
4(a), except 3 0.7ρσ = .                                                                                                      268 
 
 
Figure 9-5 (a) The solvation free energy of an equilateral triangular prism B  of height 

2h d=  in a hard sphere solution with solvent density 3 0.1ρσ = . (b) The same as Fig. 9-
5(a), except 3 0.3ρσ = . (c) The same as Fig. 9-5(a), except 3 0.5ρσ = . (d) The same as 
Fig. 9-5(a), except 3 0.7ρσ = .                                                                                         269 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xxvi 
 

Figure 9-6 (a) The relative curvature contribution with respect to a cube with edge length 
a , ( ) ( ) ( )solute cubicC a C a C aκ κ  ∆ = −   of cylinders with the same volume and surface 
areas as that of the same cube immersed in a hard sphere solution with bulk density 

3 0.7ρσ = . The red line indicates cylinder type 1 with radius / 0.401r a = , height 
/ 1.982h a =  and blue line indicates cylinder type 2 with radius / 0.713r a =  and height 
/ 0.626h a = . The green line presents the relative curvature contribution of spheres with 

the same volume as the cube with edge length a  and the magenta line depicts that of the 
sphere with the same surface areas as cube with edge length a . The radius of sphere is 

/ 0.62r a =  for the same V  and / 0.69r a =  for the same A . (b) The relative curvature 
contribution with respect to a cone with radius 0r  and height 0 0h r= , 

( ) ( ) ( )0 0 0
solute coneC r C r C rκ κ  ∆ = −   of cylinder and equilateral triangle prism with the 

same volume and surface area as that of the same cone immersed in a hard sphere 
solution with bulk density 3 0.7ρσ = . The red line indicates cylinder type 1 with radius 

0/ 0.298r r =  and height 0/ 3.751h h = , blue line indicates cylinder type 2 with radius 

0/ 0.919r r = , height 0/ 0.395h h = , the green line presents equilateral triangle prism type 
1 with edge length 0/ 2.24a r = , height 0/ 0.482h h = , blue line indicates equilateral 
triangle prism type 2 with edge length 0/ 1.115a r =  and height 0/ 1.946h h = .             270 
 
 
Figure 9-7 The schematic representation of the lock and key system. The key is a big 
spherical particle with diameter keyD  and the lock is a substrate with a hemispherical 
pocket with diameter lockD . The separation between key and lock is represented by the 
distance between the centers of key placing at ( ),0,0x  and lock at ( )0 ,0,0x .               272 
 
 
Figure 9-8 (a) The schematic representation of the key particle of radius keyR . The dash 
line shows the solvent-accessible surface enclosing excluded-volume by the key particle. 
(b) The same as Fig. 9-8 (a), except the lock particle. (c) The same as Fig. 9-8 (a), except 
the lock and key complex for radius of key particle key lockR R=  located at ( )0 ,0,0x  and 
dotted line represents a surface parallel to the solvent-accessible surface with distance 
u .(d) The same as Fig. 9-8 (c), except the lock and key complex for radius of key particle 

key lockR R=  located at ( ),0,0x .                                                                                           273 
 
 
 
 
 



xxvii 
 

Figure 9-9 (a) Depletion potential between a hard spherical key with key diameter 
4keyD σ=  and a hard hemi-spherical lock substrate with lock diameter 5lockD σ=  in a 

hard- sphere solvent at bulk packing fraction 0.367η = . We compare the morphological 
thermodynamics (red line) with MC-DFT (green line) and MC-PDT (blue line) methods 
and simulation data (symbols). (b) The same to Fig. 9-9 (a) except with key diameter 

5keyD σ= .                                                                                                                          275 
 
 
Figure C-1. Schematic diagrams for a pair of water molecules and for a water and an ion. 
(a) The intermolecular frame for two water molecules. The relative conformation can be 
determined by the center-to-center distance and by the Euler angles of both molecules, 
i.e., ( 1 1 1 2 2 2, , , , , ,r θ ϕ ψ θ ϕ ψ ) with r  being the oxygen-oxygen distance and ( , ,i i iθ ϕ ψ )i=1,2 
the Euler angles of each water molecule. (b) The intermolecular frame for a spherical ion 
and a water molecule. The relative conformation is determined by ( , , ,r θ ϕ ψ ) with r  the 
ion-oxygen distance and ( , ,θ ϕ ψ ) the Euler angles of the water molecule.                      302 
 
 
Figure C-2. The radial distribution function of bulk water ( )1 2 12, cos ,cos ,g r θ θ ϕ  at three 

representative orientations ( )1 2 12cos ,cos ,θ θ ϕ : (-0.9, 0.9, 0.95π), (-0.1, 0.9, 0.95π), and 
(0.9, 0.9, 0.95π).                                                                                                               303 
 
 
Figure C-3. The reduced density profile of water molecules, ( ) ( ) 0, cos ,cos /g r rθ ρ θ ρ=  
around (a) a sodium ion and (b) a chloride ion at various values of cosθ .                      304 
 
 
Figure C-4. The total and direct oxygen-oxygen correlation functions of SPC/E water in 
Fourier space. (a) The total oxygen-oxygen correlation functions calculated with Fourier 
transform (solid line) and with direct calculation of structure factor from simulation 
(circled dash line); (b) Direct oxygen-oxygen correlation function obtained by average of 
( )1 2 12, cos ,cos ,c k θ θ ϕ  over orientations (circled line) and from total oxygen-oxygen 

correlation function (solid line).                                                                                         305 
 
 
Figure C-5. The averaged LR bridge function over orientations of water (solid blank line) 
and bridge function of reference hard-sphere system (red line) for (a) Na+ in water (b) Cl- 
in water. The dashed lines are for a guide to the eye.                                                      306 
 
 
 



xxviii 
 

List of Tables 
 
 

Table 5-1 Different methods for calculation of the potential of mean force (PMF).       172 
 
 
Table 6-1 Solvation free energies of cations and anions in SPC/E water obtained from 
different methods. All values are negative and in the units of kcal/mol. The temperature is 
300K and mass density of SPC/E water is 0.996 g/cm3.                                                     186 



1 
 

Chapter 1 Introduction 

Equation Chapter (Next) Section 1 

1. 1 Scope of Research  

Solvation is a ubiquitous phenomenon in nature and plays an important role in 

solution chemistry, molecular biology and many aspects of materials science and 

nanotechnology. While classical thermodynamics describes solvation with a continuous 

representation of the solvent, the macroscopic approach is inadequate for applications 

such as structure-based drug design where the solute properties and performance are 

closely affiliated with the local solvent inhomogeneity. This thesis aims to provide a 

quantitative description of solvation and solvent-mediated interactions from a 

microscopic perspective. The main content is decomposed into two parts. One aspect is to 

study the microscopic structure and thermodynamic properties of flexible molecules in 

complicated solution environments. In particular, the theoretical study is focused on the 

structure and thermodynamic properties of various polymers and polyelectrolytes under 

various confinements. Another aspect of this thesis deals with the microscopic structure 

and interfacial behavior of solvent molecules near rigid solutes and extended surfaces. 

The work on solvation of rigid molecules is also extended to studying solvent-mediated 

interactions as well as solvation free energy calculations.  

Whereas most previous work on the microscopic details of solvation and solvent-

mediated interactions is based on molecular dynamics (MD) or Monte Carlo (MC) 

simulations, simulation is not well suited for calculation of thermodynamic properties 

such as the solvation free energy and potential of mean force. A key theoretical 
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contribution of this work is development of a hybrid method we call MC-DFT that 

combines MC/MD simulation for the solvent structure and analytical equations from the 

classical density functional theory (DFT) to calculate thermodynamic properties. The 

new theoretical framework utilizes well-established force fields and simulation protocols 

for obtaining the microscopic details of multi-dimensional systems but avoids lengthy 

simulation of thermodynamic pathways to calculate the configurational properties. 

Although in principle the microscopic distribution of solvent molecules can be obtained 

self-consistently by functional minimization of the grand potential, direct application of 

the DFT to multi-dimensional systems is often hampered by the expensive computational 

cost. On the other hand, the computational time in molecular simulations does not scale 

with the complexity of the solute molecule, while molecular simulations are usually 

extremely time-consuming in calculation of thermodynamic properties such as solvation 

free energy. Therefore, a combination of molecular simulations and DFT takes the 

advantages of both methods and provides a power theoretical tool to study the structural 

and thermodynamic properties of complex multi-dimensional molecular systems.     

1. 2 Theoretical Background 

Solvation is a molecular event entailing complex interactions of an ensemble of 

solvent molecules with a solute at infinite dilution. In contrast to that in vacuum, the 

physicochemical properties of a solute are sensitive to the local solvent structure that 

conforms to a statistical distribution dictated by the thermodynamic state of the solvent as 

well as the microscopic solute-solvent interactions. Characterization of the local 

distribution of solvent molecules and the solvation free energy often serves as a starting 
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point to understand the solution behavior of solute molecules.  In addition, solvation is 

closely related to solvent-mediated interactions among many solute molecules or particles.  

From a theoretical perspective, a solute molecule is considered as rigid if its 

conformation does not vary with the interaction with solvent molecules. In that case, 

solvation depends only on the degrees of freedom of the solvent molecules. Because the 

solute-solvent interaction can be represented by an effective external potential, the rigid 

solute model greatly simplifies the computational procedure.  The rigid model is most 

suitable for investigating solvation of small molecules, spherical ions, globular proteins, 

colloidal particles.  For example, Figure 1-1 gives a schematic representation of ion 

solvation in water. For rigid solutes, the essential task in theoretical investigation of 

solvation is to calculate the ensemble averages of the solvent molecules in the presence of 

an external field. 

For flexible molecules such as polymer chains, solvation is dependent not only on 

the properties of solvent and solute-solvent interactions but also on the statistics of the 

intramolecular configurations. Figure 1-2 presents a schematic representation of a 

polymer/polyelectrolyte chain surrounded by solvent molecules and small ions. Unlike a 

rigid solute such as a nanoparticle or a spherical ion whose solvation free energy is fully 

determined by the properties of solvent and solute-solvent interaction, the polymer 

configuration plays an important role in determining the solvation free energy and the 

properties of the dissolved polymer chain. In this case, theoretical calculation should 

account for the statistics of both polymer configuration and solvent distributions.  
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 Understanding solvent distribution near rigid solutes or particles is pertinent to a 

broad range of biological, chemical and physical processes in solutions [1-4]. In 

particular, the solvation free energy is instrumental for controlling the size and shape of 

nanoparticles during the synthesis and the properties of nanocrystals are often related to 

their sizes and shapes [5-7]. Solvation of a solvent-phobic solute (e.g., hydrophobic 

substrate) is also related to the underlying mechanism of hydrophobic phenomena near 

macroscopic substrates [8] that are important for rational design and fabrication of 

superhydrophobic materials [9]. As the size of solute increases from microscopic to 

macroscopic scale, the presence of macroscopic solutes in solvent exerts strong 

confinement effect and the microscopic structure of solvent is dependent on the curvature 

and properties of substrates. Whereas current knowledge on solvation of small rigid 

molecules has been well advanced, quantification of the microscopic structure of the 

solvent near an extended solute and molecular solvation free energy remains a daunting 

theoretical challenge. In particular, the colloidal force arising in a solution or colloidal 

dispersion is difficult to quantify if it entails surface phase transitions [10]. 

Understanding solvent-mediated interaction is key to colloidal self-assembly processes 

[11, 12] and the microscopic mechanisms underlying biological processes including 

protein folding [13] and structure-based rational drug design [14, 15].   

A cornerstone for describing solvation of rigid solutes is provided by the scaled-

particle theory (SPT) that was originally proposed by Reiss, Frisch and Lebowitz bout 50 

years ago [16]. According to this theory, dissolution of a solute molecule into a solvent 

can be considered as a two-step process: first, formation of a cavity to accommodate the 
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solute molecule and second, application of the solute-solvent attractions. The first step 

accounts for the molecular excluded-volume effect; and it can be represented by 

dissolution of a hard body or cavity that excludes solvent molecules. The second step 

accounts for the attractive energy between the solute and solvent molecules and its 

influence on the local solvent structure. While the solvation process is perceived as a 

two-step process, the total solvation free energy is calculated by using a semi-empirical 

correlation near the bulk limit [17]. SPT has been successfully applied not only to hard-

sphere systems as well documented, but also to liquid crystals [18] and to hydrophobic 

phenomena [8, 19]. In this thesis, I will discuss an extension of the SPT to solutes with 

complicated geometry and to solvent-mediated “lock-and-key” interactions. 

 Like a typical classical thermodynamic method, SPT is not concerned with the 

solvent structure. In statistical mechanics, the distribution of solvent molecules near a 

rigid solute and the solvent-mediated interactions are often described by the Ornstein-

Zernike (OZ) integral equation theory [20]. The OZ equation defines direct correlation 

functions in terms of the total correlation functions. To solve direct and total correlation 

functions, we need a closure approximation [21] or input pair correlation data from 

computer simulation. With a good closure for the OZ equation, the solvent distribution 

and subsequently pertinent thermodynamic properties can be obtained following standard 

equations of statistical mechanics. Integral equation theory has been applied to the study 

of colloidal interaction and self-assembly [22] and protein solvation [23]. While it is 

efficient for relative simple systems, integral equation theory is computationally 

expensive if it requires solving the three-dimensional density profile of solvent molecules 
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near complex solutes. In addition, a faithful representation of the bridge functional is 

often difficult [24].  

Polymers and polyelectrolytes have been of great interest among scientists and 

engineers for their broad applications ranging from synthetic plastics and fibers in 

polymer engineering [25] to biopolymers such as nucleic acids, genome and proteins in 

many biological systems [26]. In particular, when polymers are under confinement [27, 

28], they have been widely used to understand genome packaging [29-33], which is key 

in virus replication and gene delivery [29-33]. In biological systems, polyelectrolytes 

(e.g., RNA/DNA) under confinement are solvated in water and surrounded by various 

salt ions. As a result, the properties of polymers in viral capsid are dependent on the 

properties of solvent (water) and salt as well as the confined environment.  

The theoretical methods for solvation of flexible molecules are quite different 

from those for rigid solutes. A number of statistical-mechanical theories are available for 

describing the structure and thermodynamic properties of various polymers at uniform as 

well as inhomogeneous conditions. The simplest approach is scaling analysis pioneered 

by de Gennes [34, 35], which is based on analogies with critical phenomena in phase 

behavior of magnets. Scaling analysis incorporates repulsion between monomers and it 

may account for important intermolecular interactions beyond the usual mean-field 

approximations (e.g., Flory-Huggins theory) [36-38]. The scaling methods are most 

adequate for very long polymers chains whose thermodynamic properties such as the 

osmotic pressure and the mean-square end-to-end distance have simple power-law 

dependences on scaling variables [39]. Another popular choice for the study of the 
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thermodynamic properties of polymer systems is based on the self-consistent field theory 

(SCFT) [40-43], in which the many-body interaction is replaced by a term where all 

bodies of the system interact with an effective field [44]. Because SCFT reduces a multi-

body problem to an effective one-body problem, it predicts the properties and behavior of 

complex many-body systems at relatively low computational cost. The SCFT has been 

applied to many aspects of polymer physics, such as block copolymer and self-assembly 

[45], polymer adsorption [46], polyelectrolytes [47], and single polymer in solution [48]. 

However, because SCFT uses Gaussian chains as a reference, the atomistic details are 

lost. Furthermore, because mean-field approximation simplifies many-body to one-body 

effective field, it cannot capture the fluctuation effects.  

 The reference interaction site model (RISM) is applicable to solvation of rigid and 

flexible polymeric molecules [49]. Indeed, RISM was originally developed by Chandler 

and Anderson for small rigid molecules and later extended to polymeric systems by 

Curro and Schweizer [50-52]. The so-called polymer RISM integral equation allows a 

self-consistent determination of the equilibrium properties of polymer solutions and melts. 

In principle, RISM-type integral equations require solving the intra- and inter-molecular 

structure self-consistently [53]. At certain conditions, however, computation of intra-

molecular correlations can be avoided by assuming that polymer average conformation is 

determined only by the chain connectivity [21]. Such approximation is adequate when the 

excluded-volume interactions between sites far apart are screened by interactions with 

surrounding chains [54]. For simplified chains, such as freely joined chains, the intra-
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molecular correlation can be solved analytically. For complex chains, it can be in turn 

determined from a single-chain molecular simulation.  

 Thanks to the rapid surge in computer power in the past several decades, 

molecular simulation provides an effective approach to study the microscopic structure 

and thermodynamic properties of complex molecular systems. In general, molecular 

simulation can be divided into two categories: molecular dynamic (MD) simulation [55] 

which follows the dynamic trajectories of molecules, and Monte Carlos (MC) simulation 

[56, 57] which samples the microstates of individual systems based on the ensemble 

statistics. In MD simulation, the trajectories of molecules are determined by numerically 

solving the Newton’s equation of motion for a system of interacting particles. Toward 

that end, the interactions between particles are defined by a molecular force field. In MC 

simulation, the movement of molecules is fully determined by the change in the 

microscopic probability distribution. The macroscopic properties are evaluated by 

ensemble averages of microstates after the system reaches a thermodynamic equilibrium. 

Because molecular simulation is concerned with molecular interactions and potential 

energy directly, it provides reliable microscopic details for calibration of different 

theoretical methods.  

Molecular simulation has been widely used to study solvation and solve many 

statistical mechanical problems for polymeric fluids, such as liquid crystals [58], block 

copolymer and self-assembly [59, 60], protein folding [61], and polyelectrolytes [62]. 

Molecular simulation has also been widely used to the study of colloids solvation and 

interaction. Although molecular simulation is able to provide microscopic structure of 
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solvent for complex systems, it is often very difficult to calculate the thermodynamic 

quantities because computation of configurational properties requires not only the 

microscopic details at thermodynamic conditions of interest but also for a pathway 

connecting the thermodynamic state to a reference condition. While MD and MC 

simulations are exact in principle, the simulation methods are plagued by the fact that the 

computational cost scales with the system size and atomistic simulation becomes 

computationally too expensive for large polymeric systems. At present, molecular 

simulation for polymers is largely limited to short chain length and relatively small 

systems with coarse-grained models.      

 Density functional theory provides an analytical connection between the 

microscopic structure and thermodynamic properties of complex molecular systems from 

molecular perspective [63-65]. Conceptually, DFT is formulated on the basis of the 

Hohenberg-Kohn theorem [66], which states that there is an invertible relation between 

one-body density profile and the one-body system external potential [63]. Although the 

Hohenberg-Kohn theorem was originated in quantum mechanics of inhomogeneous 

electrons, it can be generalized for classical systems including polymers [67]. DFT has 

been used to investigate colloidal interaction [68], interfacial phenomena [69], ionic 

liquids [70], and solvation free energy [24]. Unlike a phenomenological method or a 

mean-field theory such as SCFT, DFT takes into account the segmental level interactions 

and can provide analytical expressions for the complex many-body correlation effects. 

Typically, the free energy functional in DFT is divided into the ideal gas term and 

excess part that arises from thermodynamic non-ideality due to molecular interactions. 
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Although the exact formulation of excess free energy functional is unknown, it can be 

constructed by using different approximations to account various contributions from 

molecular interactions. Because of the flexibility in construction of the excess Helmholtz 

free energy functional, DFT can be applied to various aspects of statistical mechanical 

problems with relatively low computational cost. Thanks to the unique features of DFT, it 

provides a unified theoretical basis to describe equilibrium and dynamic properties of 

various complex fluids including polymer science, material and colloid sciences, surface 

engineering and biological systems [30, 31, 67, 71-76]. 

1. 3 Thesis Organization 

 This thesis includes 10 Chapters. After this brief introduction, Chapter 2 describes 

the basic formulation and numerical implementation of DFT and the hybrid method 

proposed in this work. Here the emphasis is given to construction of various excess 

Helmholtz free energy functionals that arise from thermodynamic non-ideality. For most 

systems considered in this work, the contribution from excess Helmholtz free energy can 

be divided into hard-sphere repulsion, the chain connectively of polymer, the van der 

Waals attraction, the direct Coulomb interaction, and the electrostatic correlation for 

different systems. After the formalism of the DFT, the general procedure and ideas of the 

hybrid method are also discussed in this chapter.  

 Chapter 3 examines the structural and thermodynamic properties of individual 

polymer chains inside fully enclosed environments. The key purpose of this work is to 

study the confinement effect on the properties of individual polymer chains such as those 

appeared in gel chromatography and biomacromolecules in capsids. Our study is focused 
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on the confined hard-sphere chains that represent the chain connectivity and molecular 

excluded-volume effects. Although hard-sphere chain model is oversimplification of any 

realistic polymer or biomolecule, it can partially capture the confinement effects on the 

excluded volume properties of polymers. DFT predictions are in excellent agreement 

with the simulation results for the distributions of polymer segments as well as the free 

energy of confinement, especially at high polymer concentration. With the advantage of 

numerical efficiency, the DFT is also able to reproduce key conclusions from the scaling 

analysis and recent experimental observations.  

 Chapter 4 extends DFT calculation to the study of flexible and semi-flexible 

polyelectrolyte packaging in a spherical cage within the primitive model of electrolyte 

solutions. Confined flexible and semi-flexible polyelectrolytes were often utilized to 

study the properties of RNA and DNA in viral capsid. Unlike previous genome 

packaging calculations, the loaded capsid and its surroundings are explicitly included in 

the calculation; our calculation is free of the prerequisite of charge neutrality of capsid 

that is usually assumed in previous calculations. DFT calculation shows a good 

agreement with Monte-Carlo simulation for the segmental density distributions of 

polymer segments and small ions. The effects of the density distribution of small ions in 

the outside environment and discontinuous dielectric constants on the structural 

properties of polyelectrolyte and small ions as well as the net charge of capsid complex 

are investigated. 

 Chapter 5 presents a hybrid DFT method to study the colloidal force and self-

assembly of solute in solvent. The hybrid method incorporates the Monte-Carlo 
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simulation and density functional theory calculation. While computer simulation is 

difficult to study the solvation free energy, DFT can relate the microscopic structure and 

thermodynamic properties efficiently. Therefore, unlike conventional method, this new 

hybrid method can be applied to the study of structural and thermodynamic properties of 

complex multi-dimensional systems. The numerical performance is tested by extensive 

comparison with Monte-Carlo simulation and alternative theoretical methods for solvent-

mediated interaction in colloidal dispersions and receptor-ligand systems. 

 Chapter 6 extends the hybrid method to the study of the solvation free energy of 

ions in water. However, in contrast to Chapter 5, the hybrid method incorporates 

molecular dynamic (MD) simulation and the classical DFT. Unlike a hard-sphere solvent, 

the DFT is based on an accurate free energy functional for water that incorporates the 

simulation results for long-range correlations and the fundamental measure theory for the 

molecular excluded-volume effects. The numerical performance of the theoretical method 

has been validated with simulation results and experimental data for the solvation free 

energies of various cations and anions in water.  

 Chapter 7 represents a perturbative density functional theory to study the 

structural and thermodynamic properties of uniform as well as inhomogeneous square-

well fluids. The solvation of solute and solute-solvent interactions alter the microscopic 

structure of solvent and the corresponding thermodynamic properties. The theory yields 

good agreement with simulation results for the radial distribution function of bulk 

systems and for the density profiles of square-well fluids near the surfaces of spherical 
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cavities or in slit pores over a broad range of the parameter space and thermodynamic 

conditions.  

 Chapter 8 investigates the solvent behavior and depletion from a non-attractive 

surface, which is closely related to hydrophobic phenomena and superhydrophobicity of 

patterned materials. Although the solvent behavior is well understood near microscopic 

substrates, the prediction of the solvent behavior near an extended surface is more 

complicated and the nature of drying transition has been a long controversy. To study the 

essential physics, the theoretical work is focused on a model system that consists of a 

spherical cavity submerged in a square-well liquid close to saturation. In this chapter, a 

perturbative density functional theory is used to study the receding of a saturated solvent 

from microscopic and macroscopic spherical non-attractive surfaces and the nature of 

drying transition. 

 Chapter 9 presents morphological thermodynamics for nanoparticle solvation. 

Within the context of morphological thermodynamics, any thermodynamic quantity 

which satisfies motion invariance, continuity and additivity can be represented by the 

bilinear combination of four morphometric measures and the corresponding 

thermodynamic coefficients. The theory predicts the solvation free energies of 

nanoparticles in good agreement with alternative theoretical calculations and studies the 

dependence of free energy of solvation on nanoparticle geometry.  

 Finally, Chapter 10 summarizes the key conclusions from this dissertation and 

possible implications.   
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Figure 1-1 Schematic representation of ion solvation in water. 
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Figure 1-2 Schematic representation of a polyelectrolyte chain in continuous solvent (i.e., 
water). Polyelectrolyte is represented by a freely joined chain (orange) with positive 
charge surrounded by cations (pink) and anions (green). Solvent is depicted as continuum.   
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Chapter 2 – Basic Formulism of Classical Density Functional Theory  

Equation Chapter (Next) Section 1 

 Density functional theory (DFT) is an effective computational tool to study the 

microscopic structure and thermodynamic properties of complex fluids, such as polymers, 

colloids, and ionic liquids at uniform as well as inhomogeneous conditions. Different 

from molecular simulations, DFT provides analytical relations between the microscopic 

structure and thermodynamic quantities from a molecular perspective. Also different 

from simulation methods, practical application of DFT requires the formulation of an 

approximate free energy functional F  in terms of the one-body density profile ( )r r . Its 

numerical implementation relies on variational calculus to obtain the equilibrium density 

profile and subsequently thermodynamic variables. While the equilibrium density profile 

can be obtained from the molecular simulations, simulation of thermodynamic properties 

such as the free energy calculation is extremely time consuming.  On the other hand, 

direct minimization of the free energy functional with respect to the density profile is also 

computationally challenging for systems with three-dimensional inhomogeneity. In this 

work, we propose a hybrid method combining the merits of molecular simulation and the 

DFT and calibrate the new theoretical procedure through its application to studying 

solvation.  Because molecular simulation for solutes of complicated shapes does not 

require additional computational cost, combination of molecular simulation and DFT 

method enables efficient study of the structural and thermodynamic properties of 

complex multi-dimensional systems. The density functional methods can be naturally 

applied to systems with multiple length scales and various intermolecular interactions 
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that are difficult to handle by using alternative computational methods. This chapter 

presents an overview of the basic concepts of DFT and the hybrid method application of 

the DFT to various complex fluids.  

2. 1 Density Profile 

 In DFT, thermodynamic properties are often represented in terms of the 

functionals of the molecular density profiles. A density profile describes the average 

distribution of molecules in a many-body system. For a system containing N  identical 

particles, the microscopic instantaneous particle density ( )r̂ r , which counts the number 

of particles at a position r  is   

 ( ) ( )
1

ˆ
N

i
i

r δ
=

= −∑r r r , (2.1) 

where δ  is the Dirac-Delta function defined as  

 ( )
0, '

'
, '

δ
≠

− = ∞ =

r r
r r

r r
. (2.2) 

The Dirac-Delta function is subject to the normalization condition 

 ( )' 1d δ − =∫ r r r . (2.3) 

The equilibrium density profile is defined as an ensemble average of the instantaneous 

density [77] 

 ( ) ( ) ( )
1

ˆ
N

i
i

r r δ
=

= = −∑r r r r . (2.4) 
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For a one-component open system at fixed temperature T  and volume V , the 

equilibrium one-body density profile is related to the Hamiltonian of the system and the 

grand partition function Ξ   

 ( ) ( )3
1

1 exp
!

N
N N

iN
N i

d N
N

β µ ϕ
=

  Ξ = − Γ + +  Λ   
∑ ∑∫ r r r  (2.5) 

where Λ  is the thermal wavelength, ( )NΓ r  stands for the total interaction potential of 

N  particles at configuration ( )1 2, ,...,N
N=r r r r , µ  is the bulk chemical potential of 

particle, ( )1/ Bk Tβ = , Bk  is the Boltzmann constant, and ( )ϕ r  is the one-body external 

potential.  

 By substituting Eq. (2.4) into Eq. (2.5), the one-body density profile ( )r r  is 

related to the grand partition function 

 ( ) ( ) ( ) ( )3
1 1

1 1 exp
!

N N
N N

i iN
N i i

d N
N

r δ β µ ϕ
= =

  = − − Γ + +  Ξ Λ   
∑ ∑ ∑∫r r r r r r . (2.6) 

The right hand side of Eq. (2.6) is related to the functional derivative of the grand 

partition function with respect to the external potential. After rearrangement, the one-

body density profile is then given by  

 ( ) ( ) ( )
1 lnδ δr
β δϕ βδϕ

Ξ Ξ
= − = −

Ξ
r

r r
. (2.7) 

The grand potential Ω  is defined by the grand partition function given by  

 lnβΩ = − Ξ . (2.8) 

Substituting Eq. (2.8) into Eq. (2.7) yields 
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 ( ) ( )
δr

δϕ
Ω

=r
r

.  (2.9) 

2. 2 Density Functional Theory 

Although broad application of DFT to quantum and classical statistical 

mechanical calculations began in the mid-1960s, the basic ideas were proposed by van 

der Waals in late 19th century, who justified the choice of functional minimization of the 

free energy as the criterion of equilibrium in a liquid-gas system [78]. However, modern 

DFT is built upon the Hohenberg-Kohn theorem [66], which states that for an equilibrium 

system at a given temperature and the chemical potentials of all species, the one-body 

external potential can be uniquely determined by the one-body density profiles. This 

mathematical theorem enables a definition of intrinsic Helmholtz free energy F  which is 

independent of the one-body external potential [63]. For a one-component system, the 

intrinsic Helmholtz free energy is defined as  

 ( ) ( )F A d ϕ r≡ − ∫ r r r , (2.10) 

where A  is the Helmholtz free energy. The Helmholtz energy is related to the grand 

potential by  

 
( ) ( )
( ) ( )

A N F d N

F d

µ ϕ r µ

ϕ µ r

Ω = − = + −

= + −  

∫
∫

r r r

r r r
. (2.11)  

The intrinsic Helmholtz free energy and subsequently the grand potential are 

functionals of the one-body density profiles of particles/molecules. Such feature allows 

determination of the equilibrium density profiles by the minimization of the grand 

potential: 



20 
 

 
( )
( )

0
δ r
δr
Ω   =

r
r

. (2.12) 

Combining Eq. (2.11) and Eq. (2.12), we have  

 
( )
( ) ( )

Fδ r
µ ϕ

δr
   = −

r
r

r
. (2.13) 

The functional derivative of the grand potential with respect to the one-body density 

profile provides a mathematical framework to solve the microscopic structure and all 

pertinent thermodynamic properties.  

To further illustrate the basic ideas of DFT, we consider a multi-component 

system consisting of mixture of polymers and monomers with varying intermolecular and 

intra-molecular interactions at temperature T , total volume V , and bulk chemical 

potential of polymers Mµ  and that of monomers aµ . According to a standard coarse-

grained model, polymers are represented by freely joined spherical segments with the 

degree of polymerization M  and segment diameter pσ . Within this model, the bond 

length is the same as the polymer segment diameter. The monomers are represented by 

spherical particles with diameter aσ .  

If for simplicity we neglect the bending potential and the effects on bond angles 

on the properties of polymers, the bond potential of a polymer chain ( )bV R  is given by 

 ( ) ( )1
1

exp
M

b i i p
i

Vβ δ σ+
=

− ∝ − −   ∏R r r , (2.13) 
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where ( )1 2, , , M≡ ⋅⋅⋅R r r r  is a set of coordinates specifying the polymer configuration, and 

ir  is the i -th segmental position of the polymer chain. The proportionality constant in Eq. 

(2.13) are determined from the normalization condition 

 ( )1 exp 1bV d
V

β− =  ∫ R R . (2.13) 

Substitution of Eq. (2.13) into Eq. (2.13) yields  

 ( ) ( )1
2

1

exp
4

M
i i p

b
i p

V
δ σ

β
πσ

+

=

− −
− =   ∏

r r
R . (2.13) 

 The central goal of DFT is to formulate the grand potential Ω , or equivalently, 

the intrinsic Helmholtz free energy F  in terms of the molecular density distributions. For 

a multi-component system containing polymers and monomers, the grand potential can 

expressed in terms of intrinsic Helmholtz free energy functional and one-body external 

potentials,  

 
( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( )

, ,M a M a

M M M a a a
a

F

d d

r r r r

µ r µ r

   Ω = +   

Ψ − + Ψ −      ∑∫ ∫

R r R r

R R R r r r
, (2.13) 

in which 1 2 Md d d d= ⋅⋅⋅R r r r  represents a set of differential volumes, ( )Mr R  is a multi-

dimensional polymer density profile as a function of the polymer configuration R , 

( )ar r  is the segmental distribution of monomers, ( )aΨ r  stands for the external 

potential of monomers, and ( )MΨ R  is the summation of the external potential of 

polymer segments, i.e. ( ) ( )
1

M

M i i
i
ϕ

=

Ψ =∑R r .  
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2. 3 Intrinsic Helmholtz Free Energy 

 The intrinsic Helmholtz free energy can be decomposed into two parts: ideal gas 

term idF  that is free of non-bonded interactions and excess term exF  arising from the 

thermodynamic non-ideality due to inter-molecular and intra-molecular interactions 

 ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }, , ,id ex
M a M a M aF F Fr r r r r r     = +     R r R r R r . (2.13) 

The ideal-gas Helmholtz free energy is known exactly for polymer and monomer 

mixtures. It is dependent on the configuration of polymer and monomers as well as the 

bond potentials 

 
( ) ( ) ( ) ( )

( ) ( )

ln 1

ln 1

id
M M b M

a a
a

F d V d

d

β r r β r

r r

= − +  

+ −  

∫ ∫
∑∫

R R R R R R

r r r
 .  (2.13)    

Seeking an accurate representation of excess Helmholtz free energy is key to DFT 

calculations. Unfortunately, the exact formulation for excess free energy is in general 

unknown. However, good approximations can be used to calculate exF  arising from 

thermodynamic non-ideality, i.e., contribution of the intermolecular interactions to the 

free-energy functional. Detailed representations and approximations about excess 

Helmholtz free energy will be described later on. 

2. 4 Euler-Lagrange Equation 

The equilibrium density ( )Mr R  and ( ){ }ar r  correspond to the minimum value 

of the variational grand potential functional Ω  as indicated in Eq. (2.12). Following the 

rules of calculus of variations, we may express the condition of equilibrium by 

minimization of the grand potential for the mixture  
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( )

0
M

δ
δr

Ω
=

R
, (2.14) 

 
( )

0
a

δ
δr

Ω
=

r
. (2.15) 

These functional derivatives of the grand potential with respect to the density 

distributions lead to a set of Euler-Lagrange equations for the segmental density 

distribution of polymers and monomers, 

 ( ) ( ) ( ) ( )expM M b MVr βµ β β βϕ= − − Ψ −  R R R R , (2.16) 

 ( ) ( ) ( )
exp

ex

a a a
a

Fδβr βµ β
δr

 
= − Ψ − 

 
r r

r
. (2.17) 

In Eq. (2.16), ( ) ( )/ex
MFβϕ β r= ∂ ∂R R  represents an effective potential field due to 

intra- and intermolecular interactions [79]. On the other hand, the functional derivative of 

excess Helmholtz free energy with respect to the density profile of a monomer yields 

excess chemical potential of the monomer:  

 ( ) ( )
ex

ex
a

a

Fδβµ
δr

=r
r

. (2.18)  

The number segment density of polymer segments ( )pr r  is given by  

 ( ) ( ) ( ) ( )
1 1

M M

p si i i M
i i

dr r δ r
= =

= = −∑ ∑∫r r R r r R , (2.19) 

where ( )sir r  is the local density of segment i . Using Eq. (2.19), ( )ϕ R  can be 

simplified to 
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 ( ) ( ) ( )1

ex exM

iM p i

F Fδ δϕ
δr δr=

= =∑R
R r

. (2.20)   

Substitution of Eq. (2.20) into Eq. (2.16) yields 

 ( ) ( ) ( )
1

exp
M

M M b i i
i

Vr βµ β β λ
=

 = − −  
∑R R r , (2.21) 

where ( )i iλ r  represents an effective one-body potential 

 ( ) ( ) ( )
ex

i i i i
p i

Fδλ
δr

= +Ψr r
r

. (2.22) 

and ( )i iΨ r  is the external potential for segment i. The i -th segment density ( )sir r  can 

be obtained by combining Eq. (2.19) and Eq. (2.21),  

 ( ) ( ) ( ) ( )
1

exp
M

si i M b i i
i

d Vr δ βµ β β λ
=

 = − − −  
∑∫r R r r R r . (2.23) 

Integration over the all beads in polymer chain gives 

 ( ) ( ) ( ) ( ) ( )
1 1

exp exp
M M

p M i b j j
i j

d Vr βµ δ β β λ
= =

 
= − − − 

 
∑ ∑∫r R r r R r . (2.24) 

From Eqs. (2.17) and (2.24), it can be seen that the formalism of one-body effective 

potential ( )i iλ r  or equivalently excess Helmholtz free energy exF  is key to the DFT 

calculation.    

2. 5 Excess Helmholtz Free Energy 

The excess Helmholtz free energy can be decomposed into several contributions 

due to different molecular interactions and correlations. For polymer systems considered 

in this work, the excess Helmholtz free energy can be expressed as:  
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 ex ex ex ex ex ex
hs ch C el attF F F F F F= + + + + , (2.25) 

where ex
hsF  represents excess Helmholtz free energy due to the hard-sphere repulsion, ex

chF  

is that due to the chain connectivity, ex
CF  is that due to the direct Coulomb energy, ex

elF  

represents the electrostatic correlations, and ex
attF  depicts that due to the long-range 

attractions, respectively.  

One key advantage of DFT is that it can explicitly represent the contributions to 

thermodynamic potentials from different components of intermolecular forces. Therefore, 

within the framework of DFT, these different excess Helmholtz free energy functionals 

can be easily organized based on the specific system under consideration. As in Eq. 

(2.18), the functional derivative of excess Helmholtz free energy with respect to the 

density profile yields the excess chemical potential ( )exµ r , 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ex ex ex ex exex
ex hs ch C el att

ex ex ex ex ex
hs ch C el att

F F F F FF δβ δβ δβ δβ δβδββµ
δr δr δr δr δr δr

βµ βµ βµ βµ βµ

= = + + + +

= + + + +

r
r r r r r r

r r r r r
, (2.26) 

where ( )ex
hsµ r , ( )ex

chµ r , ( )ex
Cµ r , ( )ex

elµ r , and ( )ex
attµ r  represent the excess chemical 

potential due to corresponding excess Helmholtz free energies. In the following 

subsections, we present  the detail expressions for the excess Helmholtz free energies and 

the corresponding excess chemical potentials.   

2. 5. 1 Fundamental Measure Theory     

 The excess Helmholtz free energy due to the hard-sphere repulsion ex
hsF  accounts 

for the molecular excluded-volume effect. Hard-sphere interactions are defined by 
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impenetrable spheres that cannot overlap. Hard-sphere model represents a simple 

description of the extreme repulsions that spherical molecules experience at very close 

distances.  

For a mixture of hard spheres, the hard-sphere potential between two spherical 

particles is given by 

 ( )
( )

( )

10,
2,
1,
2

i j i j

i j

i j i j

u
σ σ

β
σ σ

 − ≥ += 
∞ − < +


r r
r r

r r
 (2.26) 

where ir  and jr are the particle positions , and iσ  and jσ  are the diameters. Although the 

hard-sphere model is an oversimplification for any realistic fluid, it serves a useful 

reference to study the structural and thermodynamic properties of complex fluids and 

solids.  

 There have been numerous theories to describe the structural and thermodynamic 

properties of hard-sphere fluids, including the Percus-Yevck (PY) integral equation[80], 

the scaled-particle theory (SPT) [16], the local density approximation (LDA) [81], and 

the weighted-density approximation (WDA) [82]. Among these theories, fundamental 

measure theory (FMT) originally  proposed by Rosenfeld [83] has been the most 

effective approach. Within FMT, the free energy density is taken to be a function not just 

of one but of several weighted densities that are defined by the geometrical 

characteristics of the particles. In principle, FMT can be applied to not only spherical 

particles systems but also to systems containing non-spherical particles. FMT was 

originally inspired by the link between SPT and PY approximation for hard sphere [21]. 
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While SPT provides the thermodynamic properties of hard-sphere fluids, PY theory 

describes complementary pair distribution functions.  

 The excess Helmholtz free energy for a mixture consisting of v  species of hard 

spheres can be obtained from a diagrammatic expansion [21]: 

 ( )ex
hs iFβ r

• • • • • • • •
− = + + + + +   • • • • • • • • •

r  , (2.27) 

In Eq.(2.27),  each line represents a Mayer function, and the closed circles depict 

multiplication by the average one-body density of specie k , and the integration over all 

spaces [21].  

At the low density limit, higher order terms are negligible and the excess 

Helmholtz free energy is given by [83, 84]  

 ( ) ( ) ( ) ( )
,

1 ' ' '
2

ex
hs i i i j ij

i j
F d d fβ r r r= − −   ∑∫ ∫r r r r r r r  (2.28) 

where Mayer function f   is defined by  

 ( ) ( )exp 1ij i j ij i jf uβ − = − − − r r r r  (2.29) 

For hard-sphere fluids, the Mayer function for a pair of spheres is  equal to 

negative of the Heaviside step function θ ,  

 ( ) / 2 / 2ij i j i j i jf θ σ σ − = − + − − r r r r . (2.30) 

Eq. (2.30) indicates that the Mayer function is 1−  when two spheres overlap and 0  

otherwise. Substitution of Eq. (2.30) into Eq. (2.28) gives the exact low density 

expression for the free energy functional 
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 ( )( ) ( ) ( )
,

1 ' ' / 2 / 2
2

ex
hs i i i j i j i j

i j
F d dβ r r r θ σ σ = + − − ∑∫ ∫r r r r r r r . (2.31) 

The Heaviside step function in Eq. (2.30) can be decomposed into a sum of 

convolutions of four scalar and two vector weight functions given by the following 

identity: 

 
(3) (0) (0) (3) (2) (1) (1) (2)

( 2) ( 1) ( 1) ( 2)

/ 2 / 2i j i j i j i j i j i j

V V V V
i j j i

θ σ σ ω ω ω ω ω ω ω ω + − − = ⊗ + ⊗ + ⊗ + ⊗ 

− ⊗ − ⊗

r r

ω ω ω ω
   

, (2.32) 

where 

 ( ) ( )( ) ( ) ( ) ( )
i j i i j jdα β α βω ω ω ω⊗ = − −∫ r r r r r . (2.33) 

These convolutions are only the functional of the difference vector i j−r r  , and ( )
i
αω  also 

applies to vector valued weight functions.  

The six weight functions are independent of the density profiles, but are directly 

related to the geometry of a spherical particle i : 

 ( ) ( )(2) / 2i ir rω δ σ= − , (2.34) 

 ( ) ( )(3) / 2i ir rω θ σ= − , (2.35) 

 ( ) ( ) ( )( 2)
/ / 2

V
i ir rδ σ= −ω r r


, (2.36) 

Integration of two scalar weight functions ( )(2)
i rω  and ( )(3)

i rω  with respect to position 

yields the particle surface area and volume, respectively. On the other hand, the 

integration of the vector weight function ( )( 2)V
iω r


 with respect to position gives the 
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gradient across the sphere in the r  direction. Other weight functions are proportional to 

these three functions,  

 ( ) ( ) ( )(1) (2)
(0)

2/ 2
i i

i
i i

r r
r

ω ω
ω

σ πσ
= = , (2.37) 

and 

 ( ) ( )( 2)
( 1)

2

V
V i

i

iπσ
=
ω r

ω r




. (2.38) 

The three-dimensional Fourier transform of the weight function are [85]  

 ( ) ( )(0) 2sin / 2 /i i ik k kω σ σ= , (2.39) 

 ( ) ( )(1) sin / 2 /i ik k kω σ= , (2.40) 

 ( ) ( )(2) 2 sin / 2 /i i ik k kω πσ σ= , (2.41) 

 ( ) ( ) ( ) ( )(3)
3

sin / 2 / 2 cos / 2
4 i i i

i

k k k
k

k
σ σ σ

ω π
−

= , (2.42) 

 ( ) ( ) ( )( 1) (3)1 / 2
V

i i ikω πσ= − −ω k k , (2.43) 

 ( ) ( )( 2) (3)1
V

i i kω= − −ω k k . (2.44) 

The deconvolution of Eq. (2.32) can be plugged into the expression for the exact 

low density limit, Eq. (2.31) to yield 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( )1 20 3 1 2
ex

V Vhs iF d n n n nβ r  = + − ∫r r r r r r n r n r
 

 (2.45) 

where ( )nα r  are a set of weighted densities defined as  

 ( ) ( ) ( ) ( )( )' ' 'i i i
i i

n n dα
α α r ω= = −∑ ∑∫r r r r r r . (2.46)   
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For systems with only one-dimensional inhomogeneity, the calculation of 

weighted densities reduces to one-dimensional integrations. If the density profiles are 

spherically symmetric, the density profile ( )r r  is only r  dependent and the weighted 

densities are given by [85] 

 ( ) ( )
/2

2, /2
' ' 'i

i

ri
i ir

n r dr r r
r

σ

σ

πσ r
+

−
= ∫ , (2.47) 

 ( ) ( ) ( )
2/2 2

3, /2
' ' ' '

4
i

i

r i
i ir

n r dr r r r r
r

σ

σ

σπ r
+

−

 
= − − 

 
∫ , (2.48) 

 ( ) ( )
2/2 2 2

2,
/2

' ' ' '
4

i

i

r i
V i ir

dr r r r r
r r

σ

σ

σπ r
+

−

 
= − + 

 
∫

rn r


, (2.49) 

 ( ) ( ) ( )1, 2,
0, 2

2 i i
i

i i

n r n r
n r

σ πσ
= = , (2.50) 

 ( ) ( )2,
1,

2
V i

V i

iπσ
=

n r
n r





. (2.51) 

For the case of system with slab geometry, the weighted densities are [85] 

 ( ) ( )
/2

2, /2
' 'i

i

z

i i iz
n z dz z

σ

σ
πσ r

+

−
= ∫ , (2.52) 

 ( ) ( ) ( )
2/2 2

3, /2
' ' '

4
i

i

z i
i iz

n z dz z z z
σ

σ

σπ r
+

−

 
= − − 

 
∫ , (2.53) 

 ( ) ( ) ( )
/2

2,
/2

' ' 'i

i

z
V i i iz

z dz z z z
z

σ

σ
πσ r

+

−
= − −∫

zn


, (2.54) 

 ( ) ( ) ( )1, 2,
0, 2

2 i i
i

i i

n z n z
n z

σ πσ
= = , (2.55) 
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 ( ) ( )2,
1,

2
V i

V i

i

z
z

πσ
=

n
n





. (2.56) 

A key assumption in the fundamental measure theory (FMT) is that the excess 

Helmholtz free energy can be described in terms of  the excess Helmholtz free energy 

density: 

 ( ){ }ex ex
hs hsF n dαβ  = Φ  ∫ r r , (2.56) 

where ex
hsΦ  is the reduced excess energy density.   

The precise functional form of the free energy density in Eq. (2.56) remains to be 

specified. Within the spirit of a virial expansion, the free energy density for 

inhomogeneous hard-sphere fluid can be expressed by the linear combination of the 

lowest powers of the weighted densities and their products. Because exΦ  is a scalar with 

the dimension of density, it can only be a sum of functions ( )0n r , ( ) ( )1 2n n⋅r r , ( )3
2n r , 

( ) ( )1 2V V⋅n r n r
 

, and ( ) ( ) ( )2 22 V Vn  ⋅ r n r n r
 

, with corresponding coefficients that are 

represented by the functions of packing fraction ( )3n r ,  

 { } ( )3
1 2 2 21 0 2 1 2 3 2 4 5 2

ex
V V V Vhs n n n n n nα φ φ φ φ φΦ = + + + ⋅ + ⋅   n n n n
   

. (2.56) 

We note that the last two terms on the right hand side of Eq. (2.56) will vanish for 

uniform fluid due to the homogeneity in every direction.  

 The excess Helmholtz free energy functional in Eq. (2.56) is related to the 

corresponding excess grand potential,  

 { } { } { } ( ) ( )
ex

ex ex ex
i i i i

i i

FP d F dδr r r r
δr

Ω = − = −           ∑∫ ∫r r r
r

. (2.56) 
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Therefore, the excess pressure exP  is given by the expression 

 { }
ex

ex ex hs
i hsP n

nα
α α

δβ r
δ
Φ

= −Φ +   ∑ . (2.56) 

 To illustrate the mathematical procedure to derive FMT, we focus on one-

component hard-sphere fluid. Within the framework of SPT, which is used to calculate 

the thermodynamic properties of spherical particle γ  with radius Rγ  solvated in a bulk 

hard sphere fluid, the excess chemical potential ex PVγµ →  in the limit Rγ → ∞ , where 

P  is the bulk pressure of hard sphere fluid, and Vγ  is the volume of the solute. The bulk 

pressure P  can be decomposed into two terms: ideal term idP  and excess term exP . The 

ideal part of pressure is known exactly,  

 idPβ r= , (2.56) 

where r  is the bulk density of hard-sphere fluid. On the other hand, the excess chemical 

potential of solute is given by  

 ( )2

3

ex ex ex
ex hs hs hsn V R

n n
α

γ γ
αγ α γ

δβµ
δr r
Φ ∂Φ ∂ ∂Φ

= = = +Ο
∂ ∂ ∂∑ . (2.56) 

where Rγ  is ???.  Therefore, we can easily find the equivalence between 3/ex
hs n∂Φ ∂  and 

Pβ  for a uniform fluid. (not clear).  Within the framework of FMT, a further assumption 

can be made to postulate that such equivalency can be applied to inhomogeneous fluid. 

Thus,  

 { } 0
3

ex
exhs

iP n
n

β r∂Φ
= +  ∂

. (2.56) 
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Substitution of Eq. (2.56) into Eq. (2.56) yields 

 0
3

ex ex
exhs hs
hs n n

n nα
α α

δ δ
δ δ
Φ Φ

= −Φ + +∑ . (2.56) 

Combination of Eq. (2.56) and Eq. (2.56) leads to determination of five coefficients in Eq. 

(2.56) which is each function of iφ .  

After some simple derivation, the five coefficients are 

 

( )
( )
( )
( )
( )

1 3 1

2 2 3

2
3 3 3

4 4 3

2
5 5 3

ln 1

/ 1

/ 1

/ 1

/ 1

n c

c n

c n

c n

c n

φ

φ

φ

φ

φ

= − − +


= −


= −
 = −
 = −

, (2.56) 

where ic  are constants. The coefficients of 1c , 2c , and 4c  can be obtained from the low 

density limit of the free energy functional given in Eq. (2.45). For homogeneous one-

component hard-sphere fluid at low density, i.e. 0r → ,  

 ( )3 3lim ln 1 n n
r→∞

− − =   , (2.57) 

 ( )3lim 1 1n
r→∞

− = , (2.58) 

Substituting Eqs. (2.56), (2.57), and (2.58) into Eq. (2.45) yields 

 1 2 40, 1, 1c c c= = = − . (2.59) 

On the other hand, 3c  can be obtained from the exact 2nd and 3rd virial coefficients for 

one-component hard spheres, 

 2
3 3/ 1 4 10hsP n nβ r = + + + ⋅⋅⋅ . (2.60) 
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For homogeneous one-component hard spheres, the vector terms in Eq. (2.56) vanish. 

Thus, the bulk pressure can be obtained from the combination of Eqs. (2.56) and (2.56), 

 ( )
( )

2
3 3 3

3
3

1 72 2
/

1hs

n c n
P

n
π

β r
+ + −

=
−

, (2.61) 

At low density limit, we have 

 
( )

( )32 2
3 3 3 33

3

1 1 1 3 6
1

n n n n
n

≈ + + + ⋅⋅⋅ = + + + ⋅⋅⋅
−

 (2.62) 

Substitution of Eq. (2.62) into (2.61) yields 

 ( ) 2
3 3 3/ 1 4 7 72hsP n c nβ r π= + + + + ⋅⋅⋅ . (2.63) 

Thus, comparison between Eq. (2.60) and (2.63) yields 

 3
1

24
c

π
= . (2.64) 

Finally, the constant 5c  is obtained from the requirement that the pair direct 

correlation function ( )(2)c r  is regular in the limit 0r →  [84]. The pair direct correlation 

function is obtained from the second functional derivative of the free energy functional 

[21],  

 
( ) ( ) ( )

2
(2) ,

ex
hs

i j
i j

Fc

i i i i i
j j j j j

δ β
δr δr

= −

• • •
= + + + + +

• • • •

r r
r r

    



    

. (2.65) 

At low density limit, all higher-order diagrams in Eq. (2.65) are negligible [21] and can 

be obtained from the second diagram: 

 ( ) ( ) ( ) ( ) ( )(2) , , , ,i j k k ik i k ij i j kj k jc d f f fr= ∫r r r r r r r r r r . (2.66) 
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For uniform fluid, we have 

 ( )kr r=r . (2.67) 

Combination of Eq. (2.66) and Eq. (2.67) yields 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

(2) ,

' ' '

i j k ik i k ij i j kj k i

ij i j k ik i k kj k i

c d f f f

f d f f

f d f f

r

r

r

= − − −

= − − −

= −

∫
∫

∫

r r r r r r r r r

r r r r r r r

r r r r r

, (2.68) 

where  

 i j= −r r r , (2.69) 

 ' i k= −r r r . (2.70) 

The Mayer function for the hard-sphere interaction is given by  

 
1,

( )
0,

r
f r

r
σ
σ

− ≤
=  >

. (2.71) 

Substituting Eq. (2.71) into Eq. (2.68) yields 

 ( )
3

(2)
4 31 ,
3 4 16

0,

r r r
c r

r

π r σ

σ

  
− − + ≤  =   
 >

, (2.72) 

where we assume 1σ = .  

In Fourier space, the direct correlation function is given by 



36 
 

 

( ) ( )

( )

( ) ( ) ( )
( ) ( )

31(2)

0

2 31

0

3 4 22

6 2

4 4 3sin 1
3 4 16

16 3sin 1
3 4 16

4 sin 5 cos 12 cos
3 24 sin 24cos 24 24

r rc k r kr dr
k

r rr kr dr
k

k k k k k k
k k k k k

π πr

π r

π r

  = − − +  
  

 
= − − + 

 
 + +

=  
+ + − −  

∫

∫ . (2.73) 

On the other hand, the direct correlation function of the uniform fluid is [21]   

 ( )
2

(2)
ex
hsc k

n n α β
α β α β

ω ω∂ Φ
= − ⊗

∂ ∂∑∑ . (2.74) 

A comparison of Eq. (2.73) and Eq. (2.74) gives  

 5
1

8
c

π
= − . (2.75) 

Once we have the coefficients for Eq.(2.56),  the free energy density is then given 

by  

 ( )
( )

3
1 2 2 21 2 2 2

0 3 2
3 3

/ 3ln 1
1 8 1

V V V Vex
hs

n n n nn n
n nπ

− ⋅ − ⋅
Φ = − − + +

− −

n n n n
   

. (2.75) 

To be noted that at the bulk limit, FMT can be reduced to the scaled-particle free energy 

density given by 

 ( )
( )

3
1 2 2

0 3 2
3 3

ln 1
1 24 1

ex
ex hs
hs

F n n nn n
V n n

β
π

Φ = = − − + +
− −

. (2.76) 

On the other hand, the bulk pressure obtained from FMT can reproduce the value from 

PY equation of state 

 
( )

2
3 3

3
3 3

11/
1

ex
hs

hs
n nP

n n
δβ r

r δ
Φ + +

= =
−

. (2.77) 
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Boublik [86] and independently Mansoori, Carnahan, Starling, and Leland 

(BMCSL) [87] found that the thermodynamic properties of a hard-sphere fluid from PY 

equation can be greatly improved by an empirical combination of the results from the 

compressibility equation and viral equation [85]. In contrast to original FMT, BMCSL 

equation of state [87] is given by 

 
( ) ( ) ( )

33
0 3 21 2 2

2 3 3
3 3 3 3

1 1 12 1 36 1CS
n n nn n nP

n n n n
β

π π
= + + −

− − − −
. (2.77) 

In contrast to BMCSL, the final term in Eq. (2.77) is absent in PY equation [88]. Thus, 

Eq. (2.56) can be modified as 

 0

ex
ex hs

CS hsP n n
nα

α α

δβ
δ
Φ

= −Φ + +∑ . (2.77) 

Correspondingly,  the five coefficients are given by [85, 88] 

 ( )1 3ln 1 nφ = − − , (2.77) 

 2
3

1
1 n

φ =
−

, (2.77)    

 ( ) ( )
( )

2
3 3 3

3 22
3 3

1 ln 1
36 1

n n n
n n

φ
π

+ − −
=

−
, (2.77) 

 4 2φ φ= − , (2.77) 

 5 33φ φ= − . (2.77) 

The corresponding excess free energy density is formulated as [85, 88]  
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( )

( ) ( ) ( )
( )

1 21 2
0 3

3
2

3 3 33
2 22 2 22

3 3

ln 1
1

1 ln 1
3

36 1

V Vex
hs

V V

n nn n
n

n n n
n n

n nπ

− ⋅
Φ = − − + +

−

+ − −
− ⋅

−

n n

n n

 

 

. (2.77) 

Eq.(2.77) is the modified fundamental measure theory (MFMT) [85] or FMT of the 

White Bear version [88]. It generally improves the performance on the density profiles of 

inhomogeneous hard-sphere fluids and the pair distribution function over original FMT. 

MFMT represents the best available DFT for strongly inhomogeneous hard-sphere fluids 

at all densities, especially at high density. To be noted that MFMT is obtained from the 

empirical plugging of BMCSL equation of state rather than derived self-consistently. The 

results from original FMT and MFMT can be applied to not only uniform as well as 

inhomogeneous one-component system but also mixtures.  

 The functional derivative of excess Helmholtz free energy due to the hard-sphere 

repulsion yields the excess chemical potential ,
ex
hs iµ  given by 

 

( ) ( ) ( )

( )
( )
( )

( ) ( )

,

( )

'

'
'

'

' '
'

ex ex
ex hs hs
hs i

i i

ex
hs

i

ex
hs

i

F d

n
d

n

d
n

α

α α

α

α α

δβ δβµ
δr δr

δ
δr

ω

Φ
= =

∂Φ
=

∂

∂Φ
= −

∂

∫

∑∫

∑∫

r r
r r

r
r

r r

r r r
r

. (2.78) 

 A set of ( )/ex
hs nαδ δΦ r  from MFMT are given by 

 
( ) ( )3

0

ln 1
ex
hs n

n
∂Φ

= − −
∂ r

, (2.79) 
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( )

2

1 31

ex
hs n

n n
∂Φ

=
∂ −r

, (2.80) 

 
( )

( )
( )

22
231 2

2
2 3 3 33

ln 1 1
1 121

ex
Vhs nn n

n n n nn π

 −∂Φ −
= + + 

∂ − −  

n
r



, (2.81) 

 
( )

( ) ( )
( ) ( )

( )

2
23 3 3 3

22 233 2
3 3 3 3

1 20 1 2
2

3 3

ln 1 1 3 1
3

18 36 1

1 1

ex
hs

V

V V

n n n
n n

n n n n

n n n
n n

π π

 − − + −∂Φ
= − + − 

∂ −  

−
+ +

− −

n
r

n n



 

, (2.82) 

 
( )

2

1 31

ex
Vhs

V n
∂Φ

= −
−∂
n

n r



 , (2.83) 

 
( )

( )
( )

21 3 2
3

2 3 3 33

ln 1 1
1 61

ex
VVhs

V

n n
n n nn π

 −∂Φ
= − − + 

−∂ −  

nn
n r



 . (2.84) 

2. 5. 2 Thermodynamic Perturbation Theory for Chain Connectivity 

 The excess Helmholtz free energy due to chain connectivity exists only in 

polymeric fluids. In other words, for pure monomeric fluids, this term vanishes. The 

thermodynamic properties due to chain connectivity can be described by the perturbation 

theory using the corresponding monomeric system as a reference. For uniform systems, 

the thermodynamic perturbation theory (TPT) was first proposed by Wertheim [89] to the 

study of associating hard-sphere molecules by using monomeric hard-sphere fluids as the 

reference. Although there are many different versions of TPT, this subsection gives a 

brief derivation of the extension of the first-order thermodynamic perturbation theory 

(TPT1) for inhomogeneous systems.  
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For simplicity, we consider a mixture of  hard-sphere chains and hard spheres. In 

this case, the thermodynamic non-ideality comes from the hard-sphere repulsion and the 

constraint of chain connectivity. The formation of the bond is essentially to bring two 

monomers from infinite separation to contact; and this work is equivalent to the potential 

of mean force [90].  

The potential of mean force W  is given by 

 ( ) ( )lnp MM pW yβ σ σ= − , (2.84) 

where ( )pp py σ  is the contact value of the cavity correlation function (CCF) of the 

polymer segments when they are disconnected. W  can be understood as the Helmholtz 

energy required to link two polymer segments together in the medium.  

The CCF is given by  

 ( ) ( ) ( )expy r g r u rβ≡    , (2.84) 

in which ( )g r  is the pair distribution function (PDF), and ( )u r  is the pair interaction 

potential. In case of hard-sphere chains, ( ) 0u r =  for pr σ≥ , the contact value of CCF is 

equal to that of PDF:  

 ( ) ( )pp p pp py gσ σ= . (2.84) 

If we further assume that all  bonds of the hard-sphere chains are independent of each 

other, the excess Helmholtz free energy ex
chF  for forming a hard-sphere chain of 

polymerization M  is 

 ( ) ( )1 lnex
ch pp pF M yβ σ= − − , (2.84) 
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where 1M −  represents the number of bonds within a hard-sphere chain. Thus, the total 

excess Helmholtz free energy due to chain connectivity for a mixture of N  hard-sphere 

chains with the same degree of polymerization is  

 ( ) ( )1 lnex
ch pp pF N M yβ σ= − − . (2.84) 

In generalization of TPT1 for inhomogeneous systems, we can present ex
chF  in a 

similar manner of Eq. (2.56),  

 ( ){ }ex ex
ch chF n dαβ  = Φ  ∫ r r , (2.84) 

where ex
chΦ  is the free energy density due to the chain connectivity.  

For a mixture of uniform hard-sphere chains and hard-sphere monomers, ex
chΦ  is 

homogeneous and is given by [79]  

 ( ),
,

1 lnex b b
ch p b pp p

M y
M

r σ−
Φ = , (2.84) 

where ,p br  is the bulk polymer segment density. To extend Eq. (2.84) to inhomogeneous 

polymeric fluids, the bulk density and CCF can be represented by the weighted densities 

of FMT. ,p br in Eq. (2.84) is replaced by 0 p pn ζ  and the cavity correlation function for 

inhomogeneous fluid is represented by [79, 91] 

 ( ) ( )
( ) ( )

2 2
2 2

2 3
3 3 3

1, ,
1 4 1 72 1

M M
pp M pp p

n ny n g n
n n nα α

σ ζ σ ζσ σ= = + +
− − −

, (2.84) 

where 2
2 2 21 /V p V pp pnζ = − ⋅n n

 

 and 2
2 2 21 /V V nζ = − ⋅n n

 

. Thus, the free energy density 

due to the chain connectivity for inhomogeneous hard-sphere chains and hard-sphere 

mixture is given by 
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 ( )0
1 ln ,ex

ch p p pp p
M n y n

M αζ σ−
Φ = . (2.84) 

Now we consider a mixture of homo-polyelectrolytes and ions in a solvent which 

is treated as dielectric continuum with dielectric constant ε . Polyelectrolyte is composed 

of charged hard-sphere chain of each segment with electric charge pZ e  , and ions are 

consisting of charged hard spheres with cation charge Z e+  and anion charge Z e− . Here e  

stands for elementary charge.  

The pair potential in a system composed of charged hard spheres is given by 

 ( )
,

,

ij

ij i j
B ij

r
u r Z Z

l r
r

σ
β

σ

∞ <
= 

≥

, (2.84) 

where 2 /Bl eβ ε=  is Bjerrum length. 

Because the pair potential does not vanish at contact point and the exact PDF is 

elaborate to obtain, it is more subtle to get the free energy density for charged polymer. 

One popular way to obtain the contact value of the PDF function is from Blum’s mean-

spherical approximation (MSA) [92-94] for charged hard spheres. The contact value of 

PDF from MSA for inhomogeneous polyelectrolyte solution is given by [95, 96]  

 ( ) ( )
( )

2 2 22 22 2

2
3 3

1 /1,
1 44 1

V Vp pMSA
pp p

p B

n n a
g n

n lnα

σ
σ

πσ

− ⋅ Γ
= + −

− −

n n
 

, (2.84) 

where  

 
( )

22 2
2

0
, , 3

1
1 2 1

n i
B i i

i p i

Pl n Z
n

π σπ
σ= + −

  
Γ = −    + Γ −   

∑ , (2.84) 
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and  

 

1

, ,

3

, ,3

2
1

31
1 1

i i

i p i
n

i

i p i

n Z

P n
n

σ

σ

= + −

= + −

+ Γ
=

+
− +Γ

∑

∑
. (2.84)   

In the above three equations, we use weighted densities of FMT to replace the bulk 

density contribution.  

The pair potential at contact is known exactly 

 ( )
2

B p
pp p

p

l Z
u σ

σ
= . (2.84) 

Substitution of Eq. (2.84) and Eq. (2.84) into Eq. (2.84) yields 

 ( ) ( )
2

, , exp B pMSA
pp p pp p

p

l Z
y n g nα ασ σ

σ
 

=   
 

. (2.84) 

However, it has been shown that ( ),MSA
pp pg nασ  from MSA is not very accurate for high 

coupling and low polymer segment density [96]. A major improvement over PDF at 

contact is from the EXP approximation [97-99]given by 

 ( ) ( ) ( ) ( ), , exp , ,EXP hs MSA hs
pp p pp p pp p pp pg n g n g n g nα α α ασ σ σ σ = −  , (2.84) 

where ( ),hs
pp pg nασ  is the PDF for hard-sphere at contact from MSA given by 

 ( ) ( )
( )

2
2 22 2

2
3 3

1 /1,
1 4 1

V Vphs
pp p

n n
g n

n nα

σ
σ

− ⋅
= +

− −

n n
 

. (2.84) 
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Please note that Eq. (2.84) is different from Eq. (2.84), because Eq. (2.84) is solved from 

MSA route, while Eq. (2.84) is from FMT. By substituting both Eq. (2.84) and Eq. (2.84) 

into Eq. (2.84), the CCF of polyelectrolyte is given by [67, 76]  

 ( ) ( )
( )

2 2 2 22 22 2

2
3 3

1 /1, exp exp
1 44 1

V Vp p B p
pp p

p B p

n n a l Z
y n

n lnα

σ
σ

πσ σ

 − ⋅    Γ = + × −      − −     

n n
 

.(2.84) 

Thus the free energy density due to chain connectivity of homo-polyelectrolyte can be 

obtained from the combination of Eqs. (2.84) and (2.84).  

The expression for the excess Helmholtz energy density is complicated for 

heterogeneous polymers, e.g. polyelectrolytes composed of segments with different 

charges and sizes. To illustrate the free energy density due to chain connectivity for 

heteropolymers, as an example, we consider a mixture consisting of pm  species of block 

copolymers and am  species of monomers. Each block copolymer is made of kp  blocks 

of polymerized monomers, i.e., the k -th block copolymer has k
iM  number of segments 

with diameter k
iσ and point charge k

iZ  ( 1, 2, , ki p= ⋅⋅⋅ ). Thus, within k -th type of block 

copolymer, there are 1k
iM −  number of k k

i iB B−  bonds for identical bead i , 1kp −  

number of 1
k k
i iB B +−  bonds for different consecutive beads. The schematic representation 

of block copolymer is shown in Figure 2-1.  

Similar to Eq. (2.84), the free energy density due to k -th type of block copolymer 

,
ex
ch kΦ  is given by 
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 ( ) ( ) ( )
1

0
, , , , 1 , 1
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where 

 0 0,
1

kp
k k

i
i

n n
=

=∑ , (2.86) 

 
2, 2,

2 2 1 1
2

2 2
2,

1

1 1

k k

k

p pk k
k k V i V i
V Vk i i

k k p
k

i
i

n n
n

ζ = =

=

⋅
⋅

= − = −
×  

 
 

∑ ∑

∑

n n
n n

 

 

, (2.87) 

 ( ),
1
2

k k k
i j i jσ σ σ= + . (2.88) 

The CCF in Eq. (2.85) is given by  
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The total free energy density is a sum of all polymers:  

 ,
1

pm
ex ex
ch ch k

k=
Φ = Φ∑ . (2.90) 

In all cases, the excess chemical potential ,
ex
ch tµ  due to chain connectivity is given 

by 

 ( ) ( ) ( ) ( )( )
,

,

' '
'

ex ex
ex ch ch
ch t t

t t

F d
n

α

α α

δββµ ω
δr

∂Φ
= = −

∂∑∫r r r r
r r

. (2.91) 
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For block copolymers, t  applies to all species of block copolymer segments and 

monomers. Unlike Eq. (2.78), ( ),tnα r  in Eq. (2.91) are not total weighted densities but 

weighted densities of t -th specie. The detailed expressions of ,
ex
ch tµ  can be found in 

Appendix A.    

2. 5. 3 Excess Helmholtz Energy Due to Van der Waals Attraction  

 In this subsection, we present the derivation of excess Helmholtz free energy due 

van der Waals attraction. For simplicity, van der Waals force is represented by a pairwise 

attractive inter-particle force between two spherical particles. Typical examples of van 

der Waals fluids include Square-Well [100] (SW), Lennard-Jones [101] (LJ), and 

Yukawa [102] potentials. To illustrate the basic idea for formulation of the excess 

Helmholtz free energy due to van der Waals attraction, SW potential is used as a model 

fluid.  

In the SW model, the pair potential is the combination of a hard-sphere potential 

and a fixed attractive energy of finite distance right beyond the hard core [103]. For a 

one-component system, the intermolecular interaction ( )u r  is given by 

 ( )
0

r
u r r

r

σ
ε σ λ

λ

∞ <
= − ≤ <
 ≥

, (2.91) 

where σ  is the hard-core diameter, λ  denotes the range of attraction, and 0ε >  

represents an attractive energy or the attraction well depth.  

The simplest way to construct the excess Helmholtz free energy for 

inhomogeneous fluid is from the mean-field theory (MFT), which ignores the density 
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correlation and reduces many-body system to an effective simple one-body system. 

Within the framework of MFT, the excess Helmholtz free energy due to van der Waals 

attraction is given by  

 ( ) ( ) ( )1 ' ' '
2

ex
att attF d d uβ r r= −∫ ∫ r r r r r r , (2.91) 

in which the attractive potential is ( )attu r ε= −  for r λ< . Thus, the excess chemical 

potential due to long-range attraction ( )ex
attµ r  from mean-field theory is given by 

 ( ) ( ) ( ) ( )' ' '
ex

ex att
att att

F u dδββµ r
δr

= = −∫r r r r r
r

. (2.92) 

 A more accurate way to formulate the excess Helmholtz free energy of an 

inhomogeneous fluid is from the functional expansion. The functional Taylor expansion 

of the excess Helmholtz free energy due to van der Waals attraction with respect to that 

of a bulk fluid at constant temperature, system volume and chemical potential yields 

 

( ) [ ] ( ) ( )
( )

( )

( ) ( ) ( )
( ) ( )

( ) ( )1 2

2

1 2 1 2
1 2

1
2

b

b

ex
attex ex

att att b

ex
att

F
F F d

F
d d

r r

r r r

δβ r
β r β r r

δr

δ β r
r r

δr δr

=

= =

  = + ∆  

  + ∆ ∆ + ⋅⋅⋅

∫

∫ ∫
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r
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r r

, (2.92) 

where [ ]ex
att bF r  is the excess Helmholtz free energy due to attraction of bulk fluid, br  is 

the bulk density, and ( ) ( ) br r r∆ = −r r . At equilibrium, terms beyond the second-order 

have little contribution to total excess Helmholtz free energy. In other words, the first-

order and second-order derivatives of excess Helmholtz free energy are related to the 
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first-order and second-order direct correlation functions (DCF) of the bulk fluid, 

respectively,  
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( )
( )

( )1

b

ex
att

att

F
C

r r

δβ r
δr

=

   = −∆
r

r
r

,                                 (2.92) 
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. (2.92) 

The first-order direct correlation function ( )1
attC∆  is equal to bulk excess chemical potential 

due to van der Waals attraction attµ ; the second-order direct correlation function due to 

van der Waals attraction ( ) ( )2
1 2attC −r r  is simply called direct correlation function due to 

van der Waals attraction and labeled as ( )1 2
attc −r r .  

With expressions for the first- and second-order direct correlation functions, Eq. 

(2.92) can be rewritten as 

 
( ) [ ] ( )

( ) ( ) ( )1 2 1 2 1 2
1
2

ex ex att
att att b

att

F F d

d d c

β r β r βµ r

r r

= + ∆  

− ∆ ∆ −

∫

∫ ∫

r r r

r r r r r r
. (2.92) 

while the first term on the right hand side of Eq. (2.92) vanishes in functional derivative 

of excess Helmholtz free energy, and the second term cancels out combined with the bulk 

chemical potential, derivation of ( )1 2
attc −r r  is more difficult.  

One popular way to solve ( )1 2
attc −r r  is from the Ornstein-Zernike (OZ) 

equation. For one-component homogeneous systems, direct correlation function c  and 

total correlation function h  are related within OZ equation [103],  
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 ( ) ( ) ( ) ( )1 2 1 2 1 3 3 2 3, , , ,bh c c h dr= + ∫r r r r r r r r r , (2.92) 

where ( ) ( )1 2 1 2, , 1h g= −r r r r . The total direct correlation function includes hard-sphere 

repulsion part hsc  and van der Waals attraction attc , 

 ( ) ( ) ( )1 2 1 2 1 2, , ,hs attc c c= +r r r r r r . (2.92) 

Because there are two unknowns in one equation in OZ equation, a closure is 

necessary to solve Eq. (2.92). Mean spherical approximation has been an effective tool to 

solve h  and c  analytically. The MSA is defined in terms of the PDF and DCF by 

 ( ) 0,g r r σ= < , (2.92) 

 ( ) ( ) ,c r u r rβ σ= − > . (2.92) 

Combining with MSA, OZ equation can be solved analytically. However, the solution of 

OZ equation is non-trivial. For SW fluids, the DCF has been recently derived by Tang 

[100] for 2σ λ σ< ≤ and by Hlushak et al. [104] for 2 3σ λ σ< ≤ . The DCF of LJ [101] 

and Yukawa [102] fluids are also derived by Tang. The detailed derivations of DCF are 

referred to above cited papers.  

 The excess chemical potential due to long-range attraction ( )ex
attµ r  from quadratic 

expansion is given by 

 ( ) ( ) ( ) ( )' ' '
ex

ex att attatt
att

F c dδββµ βµ r
δr

= = − ∆ −∫r r r r r
r

. (2.93) 

2. 5. 4 Excess Helmholtz Energy Due to Direct Coulomb Interaction         

 The excess Helmholtz free energy due to the Coulomb interactions can be 

separated into two parts: one is the direct Coulomb interaction and the second part 
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accounts for the correlation of charge distributions. In this subsection, we present the 

derivation of excess Helmholtz free energy due to direct Coulomb interaction ex
CF  . The 

excess Helmholtz energy due to charge correlation will be described in next subsection.  

The excess Helmholtz energy due to direct Coulomb Interaction 
ex

CF  appears in 

conventional Poisson-Boltzmann (PB) equation [105]. It is identical to that from the 

mean-field given bytheory 

 
( ) ( )

, , ,

'
'

2 '
i j i jex B

C
i j p

Z ZlF d d
r r

β
= + −

=
−∑ ∫ ∫
r r

r r
r r

. (2.93) 

It should be noted that because of the long-range nature of the Coulomb potential, the 

integrals on the right side of Eq.  (2.93) diverges for any pair potential. To avoid the 

numerical problem, the electrostatic energy is often calculated from the local mean 

electrostatic potential ( )ψ r ,  

 ( ) ( )
, ,

'
'

4
j j

j p

Z e
d

r
ψ

πε= + −

=
′−∑∫

r
r r

r r
. (2.93) 

The local mean electrostatic potential satisfies the Poisson equation 

 ( ) ( )2 4
c

eπψ r
ε

∇ = −r r , (2.93) 

where ( ) ( )
, ,

c i i
i p

Zr r
= + −

= ∑r r . Eq. (2.93) can be solved analytically for a one-dimensional 

system with appropriate boundary conditions and numerically for a three-dimensional 

system. The detailed solutions of Poisson equation in one-dimension are discussed in 

Appendix B.  



51 
 

The Helmholtz energy functional given by Eq. (2.93) alone would lead to the 

conventional Boltzmann distribution for charged species. Thus, the PB equation for 

electrostatic systems can be understood as a simple application of the DFT.  

The excess chemical potential due to direct Coulomb interaction ( ),
ex
C iµ r  is given 

by 

 ( ) ( ) ( ),

ex
ex C
C i i

i

F Z eδββµ β ψ
δr

= =r r
r

. (B.94) 

To be noted that the excess chemical potential in bulk vanishes because of charge 

neutrality in bulk electrolyte solution.  

2. 5. 5 Electrostatic Correlation 

 In this subsection, we discuss the formulation of excess Helmholtz free energy 

due to electrostatic correlation ex
elF . Similar to the calculation of ex

attF , ex
elF  is 

approximated by a quadratic functional Taylor expansion with respect to that for a 

monomeric bulk fluid of densities{ }b
ir  [106],  
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   = + ∆   

− ∆ ∆ −

∑ ∫

∑ ∫ ∫

r r r

r r r r r r
, (2.94) 

where el
iµ  is a set of bulk excess chemical potential due to electrostatic correlation of 

specie i , and el
ijc  is DCF due to electrostatic correlation. In writing (2.94), it is assumed 

that the effect of chain connectivity on the electrostatic part of the DCF can be neglected 

[76]. Thus, ( )el
ijc r  can be obtained from MSA [106],  
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 ( ) ( ) ( ) ( )el C hs
ij ij ij ijc r c r c r c r= − − , (2.94) 

in which ( ) ( )ij ijc r u rβ= − is total DCF from MSA, ( ) /C
ij B i jc r l Z Z r= −  is the DCF due 

to direct Coulomb interaction and ( )hs
ijc r  is that due to hard-sphere repulsion from PY 

approximation [80]. One interesting feature of ( )el
ijc r  is that it vanishes when 

( ) / 2ij i jr σ σ σ> = + . Therefore, only inside core part is important to the DFT 

calculation.  

The DCF due to Coulomb interaction ( ) ( )el C
ij ijc r c r+  from MSA is derived by 

Blum [93] and later by Hiroike[107] for asymmetric electrolytes. When 

0 / 2i jr σ σ≤ ≤ − , the DCF is [107] 

 ( ) ( ) ( ) ( )( )22 / 3hs
ij ij B i j i i i i i ic r c r l Z N X N X N Xσ − = − − + +Γ − +Γ  , (2.94) 

and when / 2i j ijrσ σ σ− ≤ ≤ , 

 ( ) ( ) ( ) 2 4
1 2 3 4
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ij ij B i jc r c r l L rL r L r Lσ σ − = − − + +  , (2.94) 

where, 
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and  

 i i iS N X= +Γ . (2.94)  

The parameter Γ  is given by 

 
1/2

2b
B i i

i
l Xπ r Γ =  

 
∑ , (2.94) 

and the parameter iN  can be obtained from 

 i i
i

i

X ZN
σ
−

= , (2.94) 

where iX  is solved from the system of linear equations 

 ( ) 21 b
i i i j j j i

j
X v X Zσ σ r σ+Γ + =∑ , (2.94) 

 ( ) ( )
1

3/ 2 1 / 6 b
i i

i
v π π r σ

−
 ≡ −  

∑ . (2.94) 

The quadratic expansion is sufficient to capture counter-intuitive electrostatic phenomena 

such as attraction between like charges and charge inversion in the presence of 

multivalent ions, which defy predictions for conventional mean-field theories.  

The excess chemical potential due to electrostatic correlation ( ),
ex
el iµ r  of specie i  

is given by 

 ( ) ( ) ( ) ( ),
,

' ' '
ex

ex el elel
el i i j ij

ji

F c dδββµ βµ r
δr =+ −

= = − ∆ −∑ ∫r r r r r
r

. (2.95) 

2. 6 Numerical Method   

 For three-dimensional system where the density profile is non-symmetric, the 

direct solution of Eqs. (2.14) and (2.15) is computationally expensive. For multi-
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dimensional systems, the density profile and thermodynamic properties can be obtained 

from a hybrid method [10] which we will discuss later on. For one-dimensional systems, 

the calculation time can be drastically reduced.  

For a system with spherical geometry, the density distribution varies only in r  

direction. In that case, Eqs. (2.17) and (2.24) can be simplified to 

 ( ) ( ) ( )
exp

ex

a a a
a

Fr r
r

βr βµ β
r

 ∂
= − Ψ − ∂ 

, (2.96) 

 ( ) ( ) ( ) ( ) ( )
1 1

exp exp
M M

p M i b j j
i j

r d r r Vr βµ δ β β λ
= =

 
= − − − 

 
∑ ∑∫ R R r . (2.96) 

Substituting Eq. (2.13) into Eq. (2.96) yields 

 ( ) ( ) ( ) ( ) ( )1

1
exp exp

M
i M i

p M j j
j

r r G r G rr βµ βλ + −

=

 = − ∑ , (2.96) 

where the propagator functions ( )iG r  arise from the connection of the polymer segments 

due to the bond connectivity. They are identical to the Green functions used in a typical 

polymer SCFT [108]. The propagator functions are determined from the recurrence 

relation [29] 

 ( ) ( ) ( ) ( )1
'

'exp ' '
2

pi i
i

p

r r
G r dr r G r

θ σ
βλ

σ
−

− −
= −  ∫ , (2.96) 

 for 2,...,i M=  with ( )1 1G r = . 

 If the chain length approaches infinity, the effect of end segments becomes less 

significant and all segments in polymer are indistinguishable. In this case, the Green 
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function uniformly approaches a limiting function ( )G r  and can be solved self-

consistently by the relation [109], 

 ( ) ( ) ( ) ( )
'

'exp ' '
2

p

p

r r
G r dr r G r

θ σ
βλ

σ

− −
= −  ∫ , (2.96) 

and accordingly, Eq. (2.96) can be simplified as 

 ( ) ( )( ) ( ) 2
expp Mr M r G rr βµ βλ= −    . (2.96) 

On the other hand, for a slab system where the density profile is only z  

dependent, the density distributions of monomers and polymer segments are given by 
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 where 
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G z dz z G z

θ σ
βλ

σ
−

− −
= −  ∫ , (B.99) 

for 2,...,i M=  with ( )1 1G z = . For long chain, these Green functions are the same,  

 ( ) ( )iG z G z= , (B.100) 

and Eq. (2.98) can be simplified as 

 ( ) ( )( ) ( ) 2
expp Mz M z G zr βµ βλ= −    . (B.101) 
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For mixture of polymers and monomers, the chemical potentials of both 

components can be extended from Wertheim’s TPT1 equation of state for bulk hard-

sphere-chain fluids [110], 
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. (2.101)  

To be noted that, both C
aβµ  and C

Mβµ  vanish due to charge neutrality.   

In this work, the density profiles of polymer segments and monomers are solved 

by the conventional Picard iteration method [91]. The iteration starts from an initial guess 

(i.e., bulk densities) for density profiles of polymer segments and monomers. The 

effective fields ( )i rλ  and the Green function ( )iG r  can be obtained from Eq. (2.96) for 

short polymer and from Eq. (2.96) for long polymer where end effect can be neglected. 

The new set of density profiles obtained from Eqs. (2.96) and (2.96) or (2.96) are then 

mixed with the previous results as new input. The iteration repeats until the difference 

between input and output density profile at all points is smaller than 61 10−× . After 

obtaining the equilibrium density profile, the thermodynamic properties can be derived 

by inputting density profiles into Eqs. (2.13) and (2.25).  

2. 7 Hybrid Method 
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As mentioned above, it would be time-consuming for DFT to obtain three-

dimensional (3D) density profiles from Eqs. (2.16) and (2.17), when a simple geometry is 

not applicable. Because extension of molecular simulation from simple geometry systems 

to anisotropic systems requires essentially no increase of the computational cost and 

becasue DFT provides an efficient link between the microscopic structure and 

thermodynamic potentials, a combination of simulation and DFT takes advantages of the 

good features of both methods.  

The main idea of the hybrid method is as following: first, we use molecular 

simulation to obtain the microscopic structure. For example, in solvation studies, we 

simulate one system containing the solute and solvent molecules. To obtain the solvent 

distribution near the solutes, in MC simulation the solute molecule is usually fixed while 

the trial moves are only applied to the solvent molecules, and in MD simulation we 

concern the pair distribution function between the solute and solvent molecules. After all 

of simulation cycles finished we output the density profile. In the second step, we will 

use the density profile from the molecular simulation as an input to calculate the 

thermodynamic properties of the system based on the DFT equations. With accurate free-

energy functionals for inter-molecular and intra-molecular interactions, the numerical 

accuracy of the hybrid method is on the same level of molecular simulations, while 

drastically reduce calculation time.  

In this work, the hybrid method has been applied to the study of solvent-mediated 

colloidal interactions, lock-and-key interaction [10], and ion solvation in water [24]. 

More details about hybrid method are given in Chapter 5 and 6.  
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Figure 2-1 Schematic representation of block copolymer.  
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Chapter 3 Entropic forces of single-chain confinement in spherical cavities 

 

Reprinted in part with permission from [Zhehui Jin, Shuangliang Zhao and Jianzhong Wu, 

Physical Review E, Volume 84, Issue 4, Page 041805, 2010]. Copyright (2010), The 

American Physics Society.  

Equation Chapter (Next) Section 1 

Abstract 

Thermodynamic properties of a single chain in a confined space have been studied before 

with the polymer scaling theory and computer simulations. However, a comprehensive 

understanding of the entropic effects due to the molecular excluded volume and chain 

connectivity is emerging only recently, especially in the limit of large polymer packing 

densities as often encountered in biological systems. In this work, we propose a polymer 

density functional theory (DFT) to study the entropic forces for the confinement of single 

polymer chains in spherical cavities. At conditions accessible to Monte Carlo simulations, 

we show that the DFT predictions are in excellent agreement with the simulation results 

for the distributions of polymer segments as well as the free energy of confinement. The 

numerical efficiency of the DFT allows us to unify key conclusions from various 

theoretical analyses and experimental observations. 

3. 1 Introduction 

A number of recent theoretical investigations have been reported on the properties 

of polymers in confined spaces [27, 28]. The renewed interest is motivated primarily by 

the close connection of polymers under confinement to biological processes such as 
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genome packaging in viral capsids or chaperone-assisted protein folding [111, 112]. 

While the knowledge for the bulk and interfacial behavior of polymers has been well 

advanced [34], much less known is the spatial organization and the thermodynamic 

properties of single polymer chains inside fully enclosed environments. Unlike polymers 

near a macroscopic surface or interface, the behavior of a fully confined 

biomacromolecule depends not only on the geometry of confinement (that restricts the 

chain conformation) but also on the properties of the local cellular environment (that 

often favors the packaging of biomacromolecules). Despite the poor characterization of 

molecular details in a typical biological milieu, it has been well established that the 

confinement effect can be partially described by simple molecular models that captures 

the local geometry and the thermodynamic properties of the surroundings [27, 28].  

The main purpose of this work is to investigate the confinement entropy for single 

polymer chains in spherical cavities. The problem has been studied before in different 

contexts using the scaling analysis [36], self-consistent-field theory (SCFT) [113], or 

molecular simulations [27]. Whereas good progress has been made at low and 

intermediate polymer concentrations, a comprehensive understanding of the entropic 

effects is yet to be established, in particular at conditions of interest for biological 

systems [28]. To capture the effects of confinement on chain configuration and the 

excluded-volume interactions over a broad range of polymer conditions, we consider in 

this work a simple coarse-grained model where a confined polymer chain is represented 

by tangentially-connected hard spheres and the confinement is due to a spherical cavity. 

A polymer density functional theory (DFT) is used to calculate the spatial distributions of 
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the polymer segments, the free energies of confinement, and the surface osmotic 

pressures of the system at different cavity sizes, polymer chain lengths and packing 

fractions. The DFT predictions are validated by extensive comparison with those from 

alternative approaches and from Monte Carlo (MC) simulations. 

The remainder of this article is organized as follows. In section 2, we introduce 

briefly the thermodynamic model and the theoretical/simulation methods used in this 

work. The detail equations for the polymer DFT have been reported in our previous 

publications [79]. Section 3 compares the DFT predictions with the simulation results for 

the density profiles of polymer segments and the free energies of packaging at different 

polymer chain lengths and cavity sizes. In this section, we will also present other 

thermodynamic properties of confined polymer chains and compare the DFT predictions 

with those from the scaling analysis and the SCFT calculations. In section 4, we 

summarize the key conclusions.  

3. 2 Polymer Model and Methods 

To study the influence of a spherical cavity on polymer conformation, we assume 

that the polymer can be represented by a linearly-connected chain of identical hard 

spheres dispersed in a continuous medium. The model mimics a single confined polymer 

chain in a good solvent. Within this model, the bond length is the same as the segment 

diameter and the intra-chain bonding potential satisfies [79] 

 ( ) ( )1
1 1

2
1

exp[ ]
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N
i

b
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V
δ σ

β
πσ

−
+

=

− −
− =∏

r r
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where N  stands for the number of hard-sphere segments, ( ), ,...,≡ 1 2 NR r r r  denotes a set 

of coordinates describing the segmental positions, σ  is the hard-sphere diameter, and δ  

stands for the Dirac-delta function. In a spherical cavity of radius cR , each hard-sphere 

segment is subject to a “hard-wall” potential 

 ( )
/ 2

0 / 2
c

c

r R
r

r R
σ

ϕ
σ

∞ > −
=  ≤ −

. (3.2) 

Qualitatively, the hard-sphere-chain model is equivalent to other coarse-grained models 

of self-avoiding polymer chains commonly used in the polymer literature. For example, it 

differs from a conventional bead-spring model of flexible polymers (e.g., FENE) mainly 

in terms of the bonding potential, i.e., instead of having a flexible bond length, here the 

separation between nearest-neighboring segments is fixed equal to the segment diameter. 

In both cases, neither the bending energy nor the angular constraint is applied to the 

neighboring bonds. It has been shown in our previous work [30] that, augmented with 

electrostatic and van der Waals forces among polymer segments, the hard-sphere-chain 

model can be generalized to describe the structure and thermodynamic properties of 

realistic biomacromolecules under confinement. Nevertheless, this work is focused on the 

athermal model for the confined chain (and the external potential) because in this case, 

the free energy of polymer confinement is exclusively due to the entropy effects. 

We are interested to calculate the structure and thermodynamic properties of a 

fully confined hard-sphere chain in a hard spherical cavity by using both the polymer 

density functional theory (DFT) and Monte Carlo (MC) simulations. In the DFT 

calculations, we assume that the density of polymer segments varies only in the radial 
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direction. For a single chain of N  tangentially connected hard spheres in a cavity of 

radius cR , the local segment density is determined from the Euler-Lagrange equation: 

 ( )
( ) ( ) ( )

( ) ( ) ( )

1

1

1 2

0
1

exp

4 expc

N
i N i

i
NR i N i

i

N r G r G r
r

r G r G r r dr

βλ
r

π βλ

+ −

=

+ −

=

−  
=

−  

∑

∑∫
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where ( )1/ Bk Tβ = , Bk  is the Boltzmann constant, T  is the absolute temperature, ( )rλ  

represents an effective one-body potential affiliated with the inter-segment interactions, 

and ( )iG r  is a propagator function related to the chain connectivity. If the polymer chain 

is relatively short, ( )iG r  can be calculated from the recurrence relation 

 ( ) ( ) ( ) ( )1'
'exp ' '

2
i ir r

G r dr r G r
θ σ

βλ
σ

−− −
= − ×  ∫ , (3.4) 

for 2,...,i N=  with ( )1 1G r = . Because the propagator function, ( )iG r , is defined in 

terms of individual polymer segments, the numerical iteration becomes computationally 

intensive for a very long polymer chain. Fortunately, the end effect becomes insignificant 

as the chain length increases, i.e., for a sufficiently long homogeneous polymer chain, 

( ) ( )iG r G r≈ becomes independent of the segment index. In that case, Eq. (3.3) is 

simplified to  

 ( ) ( ) ( )
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2 2
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4 expcR

N r G r
r
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π βλ
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, (3.5) 

with 
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 ( ) ( ) ( ) ( )
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r r
G r dr r G r

θ σ
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σ
− −

= − ×  ∫ . (3.6) 

The no-end-effect approximation (NEA) drastically accelerates the convergence of the 

iterations and thus enables us to investigate the properties of confined polymers of 

arbitrary chain length. To ensure the numerical accuracy, we will check the end effect by 

comparing the results from the full DFT calculations.  

The one-body segment potential is related to the excess Helmholtz energy exF  of 

the system by 

 ( ) ( )/exr F rλ δ δr= . (3.7) 

For a hard-sphere-chain system, exF  includes contributions due to the segment excluded 

volume effect the intra-chain correlations. The former is represented by a modified 

fundamental measure theory [85, 88], and the latter is accounted for by the first-order 

thermodynamic perturbation theory [79]. The explicit expression for the excess 

Helmholtz energy functional can be found in our previous publication [63]. With an 

analytical expression for exF , we can calculate the one-body density profile of polymer 

segments ( )rr  via the Picard iteration method [101]. 

From the density distribution of the polymer segments, it is straightforward to 

calculate the Helmholtz energy and subsequently other thermodynamic properties 

including the entropy of confinement. The free energy of polymer confinement 

corresponds to the potential of mean force to “ghost” a single polymer chain from an 

infinite dilution into the confined space. Similar to the potential of mean force between 

two rigid particles, the confinement free energy is independent of the translational 
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entropy of the entire polymer chain. It is determined by the difference between the 

Helmholtz energy of a single chain in the spherical cavity and that of the same chain 

without the confinement: 

 ( ) ( )0, , , , ,F F T V N F T V Nϕ∆ = − . (3.8) 

In Eq. (3.8), the reference Helmholtz energy 0F  corresponds to that of a single chain free 

of confinement; 0F  is related to system volume V  that is accessible to the polymer center 

of mass, an effective thermal wavelength Λ , and the intra-molecular partition function 

0ω  at infinite dilution 

 ( ) ( )3
0 0, , ln / lnF T V N Vβ ω= − Λ − . (3.9) 

In calculation of the confinement free energy, both the effective thermal wavelength and 

the intra-molecular partition function are immaterial because the former cancels with that 

of the confined state and the latter is simply affiliated with the boundary condition, i.e., 

( ) 0F V∆ →∞ = .  

From the density profile of polymer segments, we can also estimate the osmotic 

pressure p inside the cavity by following the contact-value theorem [85, 114] 

 c Bp k Tr≈ , (3.10) 

where cr  is the segment density at the cavity inner surface. In writing Eq. (3.10), we 

neglect the interfacial tension between the polymer and the cavity surface, presumably to 

be small for an athermal hard-sphere chain in contact with a hard cavity.  
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To calibrate the numerical performance of the DFT, we have also performed the 

configurational-biased Monte Carlo (MC) simulations for a single hard-sphere chain 

confined in a spherical cavity with various combinations of the cavity size and the 

polymer chain length. Different MC moves, including the chain re-growth and the cut-

and-rebridging methods, are used with approximately equal frequency of sampling. Each 

simulation runs over 85 10×  MC steps, with the one third of MC steps for the system to 

reach equilibrium and rest for ensemble averages. The free energy of confinement is 

related to an ensemble average of the system free of confinement 

 ( )
0

1ln expF d
V

β βϕ ∆ = − −  ∫ r , (3.11) 

where 0  stands for an ensemble average over all polymer configurations in the free 

space. Because the confinement is represented by a hard-wall potential, Eq. (3.11) is 

implemented by generating a large number of polymer configurations in free space and 

enumerating the probability of the polymer insertion in the spherical cavity without 

overlapping with the surface.  

3. 3 Results and Discussions 

3. 3. 1 Comparison between MC and DFT 

For a comprehensive comparison between the MC and the DFT calculations, we 

consider a number of different combinations of the polymer chain length and the cavity 

size. The thermodynamic conditions to be discussed below correspond to three 

representative regimes of the polymer concentration, i.e., the concentrated regime 

( c gR R<< ), the semi-dilute regime ( c gR R≈ ), and the dilute regime ( c gR R>> ). For a 
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tangent hard-sphere chain at infinite dilution, the radius of gyration gR  can be estimated 

from an empirical correlation of the simulation results [68, 115] 

 ln 0.62405ln 0.87535gR
N

σ
= − . (3.12) 

Eq. (3.12) is obtained by best fitting of the simulation results for relatively short hard-

sphere chains. The Flory exponent (0.588) would be recovered if the polymer chain 

length approaches infinite. To check the thermodynamic properties of the polymer chain 

within different density regimes, we calculate the radial distribution of polymer segments 

and the confinement free energy by varying the polymer chain length at a given cavity 

radius and by varying the cavity size at a given polymer chain length. 

Figure 3-1 shows the density profiles of polymer segments calculated from the 

MC simulations and from the DFT. Here the cavity radius is fixed at 10cR σ= , and the 

polymer chain lengths are 50N = , 150 or 2400 . According to Eq. (3.12), the polymer 

radii of gyration are 5gR σ≈ , 10σ  and 54σ , suggesting that the average concentrations 

of the confined polymers correspond to the dilute, the semi-dilute, and the concentrated 

conditions, respectively. For the case with a long polymer chain ( 2400N = ), the DFT 

calculations were based on the no-end-effect assumption [Eq. (3.5)] or by replacement of 

the single chain with 12 identical short chains, each with 200N =  segments. As shown 

in a previous work [30], division of a long single chain into several short chains does not 

alter the radial distribution of the polymer segments as long as the total number of 

polymer segments or the polymer concentration remains unchanged. The good agreement 

of the density profile of a single chain with that of several “broken chains” affirms a key 
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hypothesis in the scaling analysis [28], i.e. the correlation length of a confined polymer is 

bounded by the cavity size. In all cases, the DFT predictions are in excellent agreement 

with the simulation data. 

At high polymer density, accumulation of the polymer density near the cavity 

surface is due to the strong short-range repulsion among the polymer segments. The 

excluded-volume effect becomes less significant as the polymer concentration or the 

chain length decreases. At low polymer concentrations, the segment density near the 

cavity wall is smaller than that in the center. As well documented, the depletion effect is 

due to the surface constriction of the polymer configurations. Because the depletion is 

affiliated with the long-range intra-chain correlations but the DFT captures only the bond 

connectivity and short-range non-bonded correlations, the density profile predicted by the 

DFT becomes less accurate as the polymer concentration decreases. Fortunately, at very 

low polymer density, the system becomes an ideal solution so that the effect of non-

bonded correlation on the thermodynamic non-ideality is less important. 

Figure 3-2 shows another comparison of the DFT with the MC simulation results 

for the density profiles of hard-sphere segments. Different from Fig. 3-1, here the 

polymer chain length is fixed at 150N =  but the cavity radius is changed such that the 

overall polymer concentration corresponds to the dilute regime ( 15cR σ= ), the semi-

dilute regime ( 10cR σ= ), and the concentrated regime ( 4cR σ= ). The overall agreement 

between the theory and simulation is similar to that observed in Fig. 3-1. Whereas the 

distribution of the polymer segments near a hard surface is mainly determined by the 

overall polymer concentration inside the cavity, the polymer size and the cavity radius are 
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two independent parameters of the inhomogeneous system. At a fixed polymer density, 

the structures of the bulk and the confined systems have different dependences on the 

polymer chain length due to the cavity size or the surface curvature effect.  

Figure 3-3 (a) and (b) compare the theory and simulation results for the 

confinement free energies at a fixed chain length and at a fixed cavity radius, respectively. 

In both cases, the DFT predictions are again in good agreement with the MC simulations. 

At a fixed chain length ( 200N = ), the free energy of confinement falls monotonically 

with the cavity size. The confinement free energy vanishes as the cavity radius 

approaches to infinite. Conversely, the total confinement free energy increases with the 

chain length at a fixed cavity radius ( 20cR σ= ). The good agreement between the DFT 

and the MC simulations for both the structure and thermodynamic properties of a single 

chain in a cavity, in particular at high polymer packing fractions, allows us to examine 

systematically the dependences of the confinement entropy on the polymer chain length 

and on the cavity radius. 

3. 3. 2 Comparison with The Scaling Analysis 

The scaling analysis provides a conventional way to describe the configurational 

entropy, or equivalently the free energy of confinement, for a single polymer chain in a 

confined space. At semi-dilute concentrations, the free energy of a confined chain can be 

derived within the framework of the self-avoiding-chain model [36]. The free energy of 

confinement for a self-avoiding chain in a spherical cavity of diameter D  is [113] 
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where 0.588v ≈  is the Flory exponent [116]. For a self-avoiding chain, the radius of 

gyration gR  is related to the monomer diameter σ  and the degree of polymerization N  

by gR Nνσ≅ . The scaling analysis predicts that the confinement free energy is on the 

order of Bk T , depending only on the Flory exponent and the ratio of the polymer chain 

length or the cavity radius. At a fixed cavity diameter, the reduced confinement free 

energy per segment scales with the polymer chain length as 1.31/F N Nβ∆ ≅ . For a given 

polymer, the reduced free energy of confinement scales with the cavity radius as 

3.93~F Dβ −∆ . On the other hand, the SCFT predicts that the free energy of confinement 

depends on the degree of polymerization N  and on the average volume fraction of the 

confined chain [113] 

 2 3 3~ /F N N Dβ η σ∆ = , (3.14) 

where 3 3/N Dη σ= . The discrepancy between the SCFT and the scaling analysis mainly 

arises from the mean-field approximation for describing the polymer excluded-volume 

effect. At low polymer concentrations, the power-law dependence of the confinement 

free energy on the chain length has been confirmed by Monte Carlo simulation within a 

bead-spring representation of a polymer chain in a spherical cavity [27].  

Whereas the power-law dependences of the confinement free energy on the 

polymer chain length and on the cavity diameter have been validated by molecular 

simulations, the agreement between the theory and simulation data is by no mean 

quantitative. Indeed, the absolute value of the confinement free energy calculated from 

molecular simulation can be larger than that predicted from Eq. (3.13) by several orders 
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of magnitude. Besides, simulation and experimental investigations [27, 117] revealed 

noticeable deviations from the power-law relations at high polymer concentrations. To 

our knowledge, no comprehensive theoretical analysis has been reported to capture the 

properties of a single confined polymer in a cavity at both semi-dilute and concentrated 

concentrations. As indicated earlier, the high concentration region is particularly relevant 

to the packaging of biopolymers in a cellular environment. For example, the volume 

fraction of RNA/DNA in a fully packaged viral capsid is typically in the range of 

0.32 0.49−  [118].  

Figure 3-4 shows the confinement free energy per polymer segment /F Nβ∆  

versus the chain length N  predicted by the DFT. Here the cavity radius is fixed at 

10cR σ=  in the DFT calculations. For comparison, also shown in Fig. 3-4 are predictions 

from the scaling analysis and from the SCFT. Whereas the three different theoretical 

methods show similar power-law dependence of the reduced free energy on the polymer 

chain length, the confinement free energy predicted by the DFT exceeds that from the 

scaling analysis or from the SCFT by orders of magnitude. Nevertheless, the DFT yields 

a scaling exponent in excellent agreement with the scaling analysis at moderate polymer 

concentrations. Because the Flory exponent is not valid at high polymer concentration, 

the slope predicted by DFT is noticeably different from the scaling analysis. As indicated 

before[27], the discrepancy can be corrected by replacing using 0.5v = , which is more 

appropriate for concentrated polymer solutions. As shown in Fig. 3-4, the modified 

scaling analysis yields good agreement with the DFT calculation at high polymer 

densities. However, at high density the confinement free energy per segment predicted by 
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the DFT shows a curve up shape in contrast to the tangent straight line predicted from the 

scaling fitting. Whereas the scaling exponent from the SCFT is quite different, 

quantitatively the overall free energy predicted by the DFT is much closer to that from 

the SCFT. The scaling analysis drastically under-estimate the free energy of packaging 

because in the blob-based method, the major source of the free energy increase arises 

from the confinement of a pseudo ideal chain within the cavity [119]. While the 

interaction among the blobs is neglected in the scaling analysis, the DFT takes into 

account not only non-bonded interactions among monomers but also the entropic loss due 

to the restriction of polymer configurations near the cavity surface. As a result, the 

confinement free energy predicted by the DFT is much larger than that from the scaling 

analysis. On the other hand, the SCFT underestimates the free energy of confinement 

because the mean-field approximation under-estimate the excluded-volume effects.  

Figure 3-4 also shows that the discrepancy between the DFT and the scaling 

analysis magnifies as the polymer chain length increases. In the blob-scaling description, 

the number of monomers in each blob bN  is given by [119] 

 1/1 3v
bN η −≅ . (3.15) 

Eq. (3.15) indicates that the number of monomers in a blob decreases with the polymer 

packing fraction. The scaling analysis becomes unreliable at high polymer concentrations 

because the des Cloizeaux exponent ( )1/ 3 1v − , derived from the polymer behavior at 

semi-dilute conditions, becomes invalid. As a result, at a fixed cavity radius, the scaling 

relation deteriorates as the chain length increases [27]. Because the long-range 

correlations are screened by the confinement, the DFT reproduces the non-mean-field 
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dependence of the confinement free energy on the chain length even at low and moderate 

polymer densities. 

Figure 3-5 shows the dependence of the confinement free energy on the cavity 

diameter D . According to the scaling analysis [Eq. (3.13)], the reduced confinement free 

energy, ( ) ( )3/ 3 1
/

v

gF Rβ σ
−

∆ , is a universal function of the reduced cavity diameter /D σ , 

independent of the polymer chain length. The DFT calculations indicate, however, that 

the universal relation is true only for very long polymer chains in large cavities. 

Noticeable deviations from the scaling relation are observed for polymers in small 

cavities. If we allow the Flory exponent to change from 0.588  to 0.5  at different 

polymer concentrations, the slope predicted by the DFT is in good agreement with the 

scaling analysis. Nevertheless, because the scaling analysis ignores the inhomogeneous 

distribution of polymer segments under confinement and the strong excluded volume 

effect at high polymer density, it predicts erroneously that the confinement free energy 

depends only on the ratio of the polymer radius of gyration and the cavity radius. 

Figure 3-6 shows the influence of the polymer packing fraction η  on the 

confinement free energy. Here the DFT calculations were performed both at a given 

cavity radius ( 10cR σ= ) and at a given polymer chain length ( 2000N = ). As predicted 

by the scaling analysis and by the SCFT, the DFT calculations show that the confinement 

free energy per segment ( /F Nβ∆ ) is primarily determined by the polymer packing 

fraction up to moderate concentrations ( 0.2η ≤ ). At high polymer concentrations 

( 0.2η > ), however, the confinement free energy per monomer depends not only on the 
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average polymer packing fraction but also noticeably on the cavity size. The increase of 

the scaling exponent at high polymer concentrations ( 0.2η > ) is consistent with the 

simulation results from a bead-spring chain model of polymers in a spherical cavity [27]. 

An increased scaling exponent for the dependence of the confinement free energy on the 

polymer concentration is also consistent with experimental results on the partitioning of 

polyethylene glycol in protein nanopores [120]. 

At a given polymer concentration, variation of the confinement free energy per 

segment with the cavity size is mainly due to the polymer-surface contact area. The free 

energy per segment for the confined chain can be expressed in terms of that of the bulk 

fluid plus an excess arising from the polymer-wall surface tension 

 ( )2/ / 4 / / 3 /b bF N F N R N F N Rπ γ γ r= + = + . (3.16) 

While for a bulk fluid the free energy per segment depends only on the average polymer 

concentration, the free energy per segment for a confined chain is inversely proportional 

to the cavity radius, provided that the surface tension γ  is independent of the curvature. 

Because the surface tension is positive, the confinement free energy per segment 

increases as the cavity becomes smaller. The scaling analysis ignores the polymer 

inhomogeneity at the cavity surface and thus does not capture the effect of cavity size on 

the confinement free energy. 

Finally, Figure 3-7 compares the osmotic pressure p  of a confined polymer 

predicted by the contact value theorem [Eq. (3.10)] with that from scaling analysis [28, 

113] 
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 ( )3 / 3 1~ / ~ v vp F Nη η −∆ . (3.17) 

If the Flory exponent is fixed, we observe noticeable deviation from the power-law 

relation at both low and high polymer densities. As well documented, the deviation at low 

density arises from the mean-field nature of the theory for describing the intra-chain 

correlations. On the other hand, the DFT predicts a “curve up” shape at high polymer 

packing fraction, implying a higher power-law relation in comparison to the scaling 

fitting with exponent 0.5v = . Figure 3-7 also compares the osmotic pressure of a 

confined chain with that of a bulk polymer at the same average packaging fraction [28, 

113]. It shows that that the osmotic pressure is little influenced by the hard-cavity 

confinement, especially in the high density limit. The weak dependence of the osmotic 

pressure on confinement is in part due to the fact that the surface tension effect was 

neglected in our application of the contact value theorem.  

3. 4 Conclusions 

In summary, we have shown that the polymer density functional theory (DFT) is 

capable of predicting both the structural and thermodynamic properties for individual 

polymer chains confined in spherical cavities. The theoretical predictions are in 

quantitative agreement with simulation results at dilute, semi-dilute, and concentrated 

polymer densities. While the theoretical calculations discussed in this work are only 

concerned with athermal systems where the confinement free energy is solely determined 

by the entropic effects, we expect that the theoretical framework can be extended to 

realistic polymeric systems with an explicit consideration of the solvent effects. 
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From a theoretical point of view, the DFT is equivalent to the SCFT except that 

the former is convenient to account for the segment-level interactions and short-range 

correlations explicitly [79]. Although for bulk systems, both the DFT and the SCFT 

exhibit mean-field characteristics such as the molecular weight dependence of the 

osmotic second viral coefficient for long polymer chains, DFT is able to capture short-

range correlations in particular the segment-level excluded-volume effects that are 

important at high polymer concentrations [85]. Besides, recent scaling analysis revealed 

that in the semi-dilute regime, a long polymer chain inside a spherical cavity becomes 

equivalent to multiple shorter chains with the radius of gyration comparable to the cavity 

size [28]. In other words, the range of intra-chain correlation for a confined polymer is 

bounded by the cavity size. As a result, by capturing the short-range correlations and 

exact polymer topology, the DFT provides a reasonable representation of the 

thermodynamic properties of a long polymer in a spherical cavity in both semi-dilute and 

concentrated regimes.  

As suggested by early scaling analysis, the long-range intra-chain correlation at 

semi-dilute regime is suppressed by the finite size of the confining space. As a result, the 

DFT is able to reproduce the scaling exponents for both the confinement free energy and 

the osmotic pressure in excellent agreement with the scaling analysis at moderate 

concentrations. However, the DFT and the scaling relations give drastically different 

values of the thermodynamic properties at high polymer concentration where the 

excluded-volume effect is predominant. Because the scaling analysis does not fully 

account for the polymer inhomogeneity and the excluded-volume effects, and also 
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ignores the curvature of the confinement surface, it significantly underestimates, 

sometimes by several orders of magnitude, on the confinement free energy. Unlike the 

scaling analysis, the DFT predicts that the confinement free energy per segment depends 

both on the average polymer density and on the cavity size. At high polymer densities, 

the DFT calculations agree well with simulation and experimental results.  
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Figure 3-1 The segment-density profiles for three hard-sphere chains 
( 50, 150, 2400N = ) confined in a spherical cavity of radius 10cR σ= . For clarity, the 
density profiles for 150N =  are up shifted by 0.2  units. Symbols represent MC 
simulation results and the solid lines are from the DFT predictions.  
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Figure 3-2 The same as Fig. 3-1 but for a single hard-sphere chain ( 150N = ) 
encapsulated in three different spherical cavities 4σ  with 15cR σ= , 10σ and 4σ , 
respectively. For clarity, the density profiles for 15cR σ=  are up shifted by 0.2  units. 
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Figure 3-3 (a) The confinement free energy of a single chain ( 200N = ) versus the cavity 
radius. (b) Effect of the polymer chain length on the confinement free energy in a 
spherical cavity of radius 20cR σ= . Symbols represent MC simulation results and the 
solid lines are from the DFT predictions. 
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Figure 3-4 The reduced packaging free energy per segment /F Nβ∆  versus the chain 
length N  at a fixed cavity radius 10cR σ= . The solid line is from DFT, the dashed line is 
from scaling analysis, the dotted line is from SCFT, and the dash dotted line is the scaling 
fitting by imposing the exponent 0.5v = , while the dash dot dotted line with exponent 

0.588v = . 
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Figure 3-5 The reduced packaging free energy ( ) ( )3/ 3 1
/

v

gF Rβ σ
−

∆  versus the cavity 

radius cR  at different chain lengths, 1000N = (Red line), 2000N = (Green line), and 
3000N = (Cyan line). The dash dotted lines are the scaling fitting by imposing the 

exponent 0.5v =  and dash dot dotted lines are the scaling fitting with exponent 

0.588v = . Note that the scaling analysis predicts that ( ) ( )3/ 3 1
/

v

gF Rβ σ
−

∆  is independent 
of N .  
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Figure 3-6 The reduced packaging free energy per segment /F Nβ∆  versus the polymer 
packing fraction η . The DFT results are given at a fixed cavity radius 10cR σ= (Solid 
line) and at a fixed chain length 2000N = (dotted line). The dashed line is from the 
scaling analysis, and the dash dotted line is by fitting of the DFT results (i.e., 

1.31~/F Nβ η∆ ).  
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Figure 3-7 The reduced osmotic pressure 3 / Bp k Tσ  versus the polymer packing fraction 
η . The dash dotted line represents the scaling fitting with exponent 0.5v =  and the dash 
dot dotted line is the scaling fitting with exponent 0.588v =  of the DFT calculations. The 
red line represents the DFT results for a given chain length 2000N =  and the green line 
is for a given cavity radius 10cR σ= . The dotted line represents the bulk osmotic 
pressure for a hard-sphere chain fluid with chain length 2000N =  from the bulk 
equation of state.     
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Chapter 4 Density Functional Theory for Encapsidated Polyelectrolytes 

Equation Chapter (Next) Section 1 

Abstract 

In this chapter, we used the classical density functional theory (DFT) to investigate 

packaging of flexible and semi-flexible polyelectrolytes in a spherical capsid permeable 

to small ions but not the confined polymer. The thermodynamic system is represented by 

an extension of the primitive model for electrolyte solutions in which the solvent is a 

dielectric continuum and the polymeric segments and small ions are described as charged 

hard spheres. Flexible and semi-flexible polyelectrolytes were treated as tangentially 

connected charged hard spheres without and with a bending potential along the polymer 

backbone, respectively. The thermodynamic system was used by others in molecular 

simulations and it provides an idealized representation of genome packaging in viral 

particles. The DFT predictions were found in good agreement with Monte Carlo 

simulation for the density distributions of polymer segments and small ions at a wide 

variety of conditions. After extensive comparison with simulation results, the DFT was 

then used to study the density distributions of small ions coexisting with the viral capsid 

and the effect of dielectric inhomogeneity of the capsid on the structure and surface 

properties of polyelectrolyte segments and small ions as well as the net charge of 

polyelectrolyte-capsid complexes. The DFT predicts that the net charge of a vrial particle 

is sensitive to solution conditions and presumption of local charge neutrality may lead to 

erroneous conclusions. Because of the finite thickness of the capsid walls, it appears that 

the dielectric inhomogeneity has insignificant effect on viral packaging.  The numerical 
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efficiency and good agreement of the DFT with MC simulations allows quantification of 

the structural and thermodynamic properties of virus packaging and gene delivery in 

realistic systems. 

4. 1 Introduction 

Genome encapsidation is a critical step during virus replication in vivo and has been 

studied extensively by biologists, physicists as well as engineers [121-125]. While 

analytical tools for determining the genomic sequence and the structures of capsid 

proteins are well advanced, much more difficult is characterization of the internal 

structure in particular conformation of flexible biomolecules inside a nucleocapsid under 

various physiological conditions. A theoretical description of genome packaging will be 

helpful to unravel microscopic details that involves entropic, electrostatic as well as 

bending energies of genome molecules (DNA or RNA) that are sensitive to the local 

environment [126].  

Recently, it was found that the genome encapsidation is regulated by strong 

electrostatic interactions between nucleic acids and oppositely charged capsid proteins 

[33]. However, many questions remain unanswered such as how the non-bonding 

molecular forces regulate genome packaging, what the internal conformations are for 

biomolecules in a viral capsid, and how non-electrostatic forces affect the charge 

neutrality of viral capsids. Because genome encapsidation is a microscopic process 

difficult to be address directly with experiments, theoretical and computational 

approaches are helpful for the study of RNA/DNA encapsidation as well as the internal 

structures and thermodynamic properties.  
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Numerous computer simulations and analytical calculations have already been 

reported to address the genome conformation in viral capsids [127-135]. Because a 

typical viral capsid is made of billions of atoms and viral packaging is sensitive to the 

background solution conditions, most theoretical investigations are based on coarse-

grained models. For example, RNA molecules were modeled as flexible charged hard-

sphere chains, while DNA molecules were depicted as semi-flexible charged hard-sphere 

chains with bending energy for the backbone rigidity. For all of these studies, only 

molecules inside the capsid were considered and the local charge neutrality was imposed 

for the viral capsid. It has been well documented that local charge neutrality is not valid 

for inhomogeneous electric systems and the total charge of a virus is in general not 

neutral [136, 137] Under physiological conditions, viral particles coexist with a 

background electrolyte solutions such that small ions can move into or out of the capsid 

freely [31].  

Recently Angelescu et al [131, 132] reported a coarse-grained model for genome 

packaging and studied the structure of confined polyelectrolyte and encapsidation free 

energy. The model system takes into account not only molecules the inside capsid but 

also small ions in the outside environment [33, 134]. Monte Carlo simulation of the 

model system indicates that the capsids loaded with genome molecules are in general not 

neutral [131]. On the other hand, theoretical investigation of viral packaging often rely on 

the overused Debye-Huckel approximation [135]. It  has been shown that the mean-field 

theory is insufficient to account for the correlation effect among charged particles [33]. 

Likewise, the Poisson-Boltzmann equation is insufficient to predict charge inversion and 
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attraction between like charged particles [106, 138]. Some theoretical investigations [133, 

134] ignored the excluded-volume effect. Considering that the volume fraction of 

biomolecules is substantial in a typical viral capsid, we believe that molecular excluded 

volume effect plays an important role in genome encapsidation. 

In previous work, we proposed Density Functional Theory (DFT) to study 

properties of inhomogeneous polyelectrolytes near charged surfaces [67, 76] and in viral 

capsids [33]. Here we extend DFT calculations to flexible and semi-flexible 

polyelectrolyte in spherical capsids. After extensive comparison of the DFT predictions 

with simulation data, we examine the effect of the solution condition on viral packaging 

by comparing the density distributions of polyelectrolytes and small ions of an open (with 

surroundings) system with that of a semi-open (without surroundings under charge 

neutrality assumption) system defined in Ref. [33]. While the small ions are freely 

moving into and out of the viral capsid for the open system, the small ions are completely 

confined in viral capsid for the semi-open system with the average density defined by a 

chemical potential in the bulk solution. We find that the outside environment drastically 

influences the structural and thermodynamic properties of the confined polyion as well as 

small ions. In the open system, the net charge of capsid complex is not neutral as 

erroneously assumed in many theoretical investigations but dependent on the density 

distribution of polyelectrolyte segments, and the dimensions of viral capsid and small 

ions. In this work, we will study the effects of these parameters on the net charge of 

polyelectrolyte-capsid complex systematically. In addition, we will study the effect of 

dielectric inhomogeneity on the properties of confined polyions. This part of work is 
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motivated by the fact that the viral capsid is mainly composed of proteins that have a 

dielectric constant different from that of an aqueous solution. Discontinuity in dielectric 

constants would influence the distributions of all charged species. In different contexts 

such effect has been studied by the computer simulations [139, 140] by using image 

charge effects. More recently, Gillespie [141] applied classical DFT to study the image 

charge effect and made comparison with MC simulation. However, to our knowledge 

there is no previous report on the effect of dielectric discontinuity on viral packaging. 

Because explicit consideration of dielectric discontinuity is complicated for viral capsids 

and the DFT calculation is computationally very extensive, in this work we will solve the 

generalized Poisson equation [142] to minimize the computational time. Although it does 

not include the fluctuation force, the generalized Poisson equation gives a good first-

order approximation on the effect of discontinuous dielectric constant on viral packaging. 

The remainder of this chapter is organized as the following. In section 2, we 

introduce the molecular model and density functional theory. In section 3, we first 

calibrate our DFT calculations by comparing with previous computer simulation results. 

After the calibration, we will study the effects of the outside environment on the density 

distributions of confined polyelectrolytes and small ions as well as the net charges of 

polyelectrolyte-capsid complexes and the dependence of density profiles on the dielectric 

inhomogeneity of the capsid. In section 4, we summarize the key conclusions. 

4. 2 Molecular Model and Theory 

4. 2. 1 Molecular Model 
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In this work, we follow a model viral system originally proposed by Angelescu et 

al [131, 132] to investigate a polyelectrolyte chain confined in a spherical capsid with 

inner radius cR , wall thickness cD . The capsid bears positive charge cQ  uniformly 

placed at a surface with the radial distance of qR  from the capsid center. The model 

system has been applied to studying 3T =  virus such as cowpea chlorotic mottle virus 

(CCMV) [131, 132, 143]. Although it is not concerned with a specific real virus, 

theoretical investigations of the model system have provided useful insights into the 

generic features of genome packaging in realistic viral systems [131].  

The primitive model [67, 76] is used to represent the polyelectrolyte chain and 

small ions. The polymer is made of tangentially-connected charged hard spheres of 

diameter σ and each with a unit negative charge, i.e., the valence of a polyion segment is 

1pZ = −  . In addition to the bond connectivity defined by a tangent chain, the 

neighboring segments are subject to a bond bending potential bE  [144]:  

 ( )0 1 cosbE φ γ= + , (4.1) 

where 0φ  characterizes the bending energy, and γ  is the bond angle between two 

immediate neighboring bonds. In the primitive model, the solvent (water) is represented 

by a dielectric continuum.   

The capsid wall is impermeable to the polyelectrolyte segments but permeable to 

small ions. In contrast to our previous work for HBV [33], the monomeric polyelectrolyte 

and capsid counterions that separately neutralize the charges of polyelectrolyte and 

capsid  are depicted as charged hard spheres with valence Z+  and Z−  and can pass across 
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the capsid freely. For simplicity, the diameter of small ions is set to be identical to that of 

polyion segments. We set a spherical cell with radius cellR  which is far from the outer 

capsid surface to make sure that it reaches the bulk solution properties. Therefore, the net 

charge of the whole cell is zero instead of the charge of the capsid itself. Such settings 

represent a thermodynamic equilibrium between a polyelectrolyte containing capsid and a 

bulk salt solution, which resembles that experienced by genome capsids in physiological 

conditions. The schematic representation of this coarse-grained system is depicted in Fig. 

4-1.  

Similar to the previous primitive model [33], the reduced interaction potential 

between any pair of charged spheres ( i  and j ) is given by 

 ( )
,

,ij B
i j

r
u r lZ Z r

r

σ
β

σ

∞ <
= 

≥

, (4.2) 

where ( )1/ Bk Tβ = , Bk  is the Boltzmann constant, T  stands for the absolute 

temperature, r  is the center-to-center distance, and iZ  stands for the valence of particle i . 

The Bejrrum length 2 / 4B Bl e k Tπε≡ , characterizes the distance where the electrostatic 

potential between two monovalent spheres (small ions or polymer segments) is equal to 

the thermal energy TkB  and ε  is the dielectric constant of solvent. In aqueous solution at 

temperature 298T K= , the Bejrrum length is 0.715Bl = . The bonding potential ( )bV R  

of flexible and semi-flexible polyelectrolyte chain is given as [145] 
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where M  is the degree of polymerization, ( )1 2, , , M= ⋅⋅⋅R r r r  is a set of coordinates 

representing the polymer configuration, and δ  is Dirac-delta function. Therefore, the 

local polyelectrolyte segmental density ( )pr r  is determined from 

 ( ) ( ) ( ) ( )s M
1 1

M M

p i
i i

dr r δ r
= =

= = −∑ ∑∫r r R r r R . (4.4) 

In the first case, the dielectric constant of the capsid wall cε  is assumed to be the 

same as that of the solvent, i.e., cε ε= . For an open system, the effective potentials 

exerted on polyion segments ( )p rΨ  and monomeric ions ( ), r+ −Ψ  due to the capsid wall 

can then be expressed as 
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93 
 

On the other hand, for a semi-open system, the small ions are confined in the spherical 

capsid with chemical potentials determined by a bulk solution. The effective potentials 

from capsid surface of semi-open system are given as 
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. (4.6) 

Similar to our previous work [33], the electrostatic interaction due to the capsid is 

accounted within the overall electrostatic potential of the entire system. Besides, the viral 

capsid exerts excluded-volume effect to polyelectrolyte segments and small ions. 

4. 2. 2 Polymeric Density Functional Theory   

The performance of DFT hinges on accurate formulation of the grand potential Ω  

in terms of molecular density profiles. In this work, the grand potential is given by [76] 

 
( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( )
,

, = ,M M

M M M

F

d d

α α

α α α
α

r r r r

µ r µ r
=+ −

   Ω +   

Ψ − + Ψ −      ∑∫ ∫

R r R r

R R R r r r
, (4.7) 

where 1 2= Md d d d⋅ ⋅ ⋅R r r r represents a set of differential volumes, ( )Mr R  is the 

polyelectrolyte density as a function of the polymer configuration R , ( )αr r  is the 

density profile of small ion α , and Mµ  and αµ are the chemical potentials of 

polyelectrolyte and small ion, respectively. F is the intrinsic Helmholtz free energy of 
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mixture. ( )MΨ R  is the external potential on polyelectrolyte, which can be separated into 

individual segments of polyion, i.e. ( ) ( )1
= M

M Mi=
Ψ Ψ∑ iR r ; ( )αΨ r is the external 

potential for small ions. 

The intrinsic Helmholtz free energy can be divided into an ideal-gas term idF  that 

include bond potentials and molecular configuration and an excess term exF  that 

accounts for thermodynamic non-ideality due to different non-bonded inter-segment 

interactions. In general, the intrinsic Helmholtz free energy F  can be divided into five 

distinct contributions: 

 id ex ex ex ex
hs ch C elF F F F F F= + + + + , (4.8) 

where idF  is the ideal-gas term of intrinsic Helmholtz free energy without non-bonded 

interactions, ex
hsF  is the excess Helmholtz free energy due to hard-sphere repulsion, ex

chF is 

the excess Helmholtz free energy due to chain connectivity, ex
CF  is the excess Helmholtz 

free energy due to direct Coulomb interaction, and ex
elF  is the excess Helmholtz free 

energy due to electrostatic correlation. 

The ideal-gas term idF  depends on the chain configuration, bonding potential and 

segmental distribution of small ions, 

 
( ) ( ) ( ) ( )

( ) ( )
,

ln 1

ln 1

id
M M M bF d d V

d α α
α

β r r β r

r r
=+ −

= − + +  

−  

∫ ∫
∑ ∫

R R R R R R

r r r
. (4.9) 

The hard-sphere-like short-range repulsion plays a key role in determining the 

structure of a condensed matter and thus is important in virtually all classical DFT 
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calculations. The excess Helmholtz free energy due to hard-sphere repulsion ex
hsF  can be 

accurately represented by modified fundamental measure theory (MFMT) [85, 88], 

 ( )ex hs
hs wF n dβ = Φ   ∫ r r , (4.10) 

where the reduced excess free energy density hsΦ  is represent by six weighted densities 

( )wn r  [83] 
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  −
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−  

n n

n n
. (4.11) 

The detailed expression of weighted densities  , 1, 2,3, 1, 2wn w V V  can be found in 

Rosenfeld’s original work [83]. 

In addition to the excluded-volume effects represented by the hard-sphere 

interactions, the excess Helmholtz energy includes also contributions due to the intra-

chain correlations. According to an extension of the first-order thermodynamic 

perturbation theory (TPT1) [76, 79], the excess Helmholtz free energy due to chain 

connectivity ex
chF  is given by 

 ( )0
1 ln ,ex

ch p p
MF n y n d

M ωβ ζ σ−
= ∫ r , (4.12) 

where 2
21 pp nV2pV2pnn−=ζ  accounts for the effect of local density variation,  and 

( ),y nωσ  is the contact value of the cavity correlation function (CCF) of the polymeric 

segments.  
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A key assumption of TPT1 is that CCF can be represented by that corresponding 

to a monomeric reference system [95, 96] 

 ( ) ( )
( )

2 2 2 2
2 2

2 2
3 3

1 /1, exp exp
1 44 1
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B
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σ
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V2 V2n n
. (4.13) 

where parameters Γ  and pa  are calculated from 
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with 
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The excess Helmholtz free energy due to the electrostatic interactions includes 

two parts: one is due to the direct Coulomb interaction as that appeared in the Poisson-

Boltzmann (PB) equation [146], and the other part accounts for the electrostatic 

correlations [76]. Given the distributions of charged species, the energy due to the direct 

Coulomb interactions can be written as 

 
( ) ( )

, , ,2
i j i jex B

C
i j p

Z ZlF d d
r r
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where ,  ,  p + −  stand for polyion segments, cations and anions respectively. Because of 

the long-range nature of the electrostatic potential, the integrals on the right side of Eq. 

(4.17) diverge for any pair interactions.  

To avoid numerical problems, we calculate the electrostatic energy from the local 

mean electrostatic potential 

 ( ) ( )
, ,

'
4

j j

j p

Z e
d

r
ψ

πε= + −

′
=

′−∑∫
r

r r
r r

, (4.18) 

where e  is the unit charge. Eq. (4.18) is the integrated form of the Poisson equation 

 ( ) ( )2 crψ
ε

∇ = −
r

r , (4.19) 

where ( )cr r is the local net charge density. Because the Helmholtz energy functional 

given by Eqs. (4.9) and (4.17) alone would lead to the conventional Boltzmann 

distribution for charged species, the Poisson-Boltzmann equation for electrostatic systems 

can be understood as a simple application of the DFT. 

The excess Helmholtz free energy due to electrostatic interaction ex
elF  can be 

obtained by a quadratic functional expansion of excess Helmholtz free energy with 

respect to that for a bulk fluid of uniform densities { }b
ir  [106, 147], 
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where (1)el
iC∆  and (2)el

ijC∆   are the first-order and the second-order direct correlation 

functions (DCF) due to the electrostatic correlations in the reference system, 

 ( )(1) /el el ex
i i el i bC Fβµ δβ δr∆ = − = − r , (4.21) 

 ( ) ( ) ( )(2) 2' /el ex
ij el i j bC Fδ β δr δr∆ − = −r r r r . (4.22) 

Here, we assume that the electrostatic correlation due to the chain connectivity can be 

ignored [76]. In this work, the DCF is obtained from mean-spherical approximation 

(MSA) of simple electrolytes [93, 96]. 

At equilibrium, the grand potential is minimized with respect to the density 

profiles of polyions segments and small ions as required by the second law of 

thermodynamics, leading to the Euler-Lagrange equations: 

 ( ) ( ) ( ) ( )M M b
1

exp
exM

p i
i p i

FV δβr βµ β β
δr=

   = − − Ψ +  
    

∑R R r
r

, (4.23) 

 ( ) ( )
( ) exp

exF
α α α

α

δβr βµ β
δr

 
= − Ψ − 

 
r r

r
. (4.24) 

For the polyelectrolyte systems considered in this work, the segmental density 

profiles of polyions and monomeric ions vary only in the r direction, i.e. the radial 

direction of a spherical capsid. As a result, the Euler-Lagrange equations [Eqs. (4.23), 

(4.24)] can be simplified to 

 ( ) ( )expr rα α αr βµ βλ= −   , (4.25) 

and for segmental distribution of flexible polyelectrolyte, 
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where ( )rαλ  and , ( )p flex rλ  present the effective one-body potential for a small ion and 

flexible polyelectrolyte segment, respectively, ( )i
flexG r  stands for a polymer propagator 

function (i.e., Green function) of flexible polyion, determined from the recursive relation 

 ( ) ( ) ( ) ( )1
,

'
' ' exp '

2
i i
flex flex p flex

r r
G r dr G r r

θ σ
βλ

σ
− − −

 = − ∫ , (4.27) 

for 1, 2, ,i M= ⋅⋅⋅ with ( )1 1flexG r = .  

For a sufficiently long homopolymer, we may use the no-end-effect 

approximation [29]. In that case, the Green function becomes indistinguishable for each 

segment: ( ) ( )i
flex flexG r G r≈ . Therefore, Eq. (4.26) can be simplified as 
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with 
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Similar to the density distribution of flexible polyelectrolyte, the segmental 

distribution of a semi-flexible polyelectrolyte is given by 

 ( )
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where 
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With the assumption of no-end-effect [31, 109], the chain propagator of semi-flexible 

polyelectrolyte is given as 

 ( ) ( ) ( )1, ' '' '' '', , , ''
2
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G r r dr r G r r P r
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σ
α θ

σ
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where 

 ( ) ( ) ( ) ( ), 0 0, , '' exp '' 1 cos cos sin sinp semiP r r Iα θ βλ φ θ α θ α = − − +  . (4.33) 

α  and θ  are the inside angles formed by the i -th bond and 1i − -th bond with vector ir  

and 1i−r , respectively. 
2

0 0

1( ) exp( cos )
2

I x x d
π

π
= − Φ Φ∫  is a modified Bessel function. 

More details about the segmental distribution function of semi-flexible polyelectrolyte 

can be referred to the supplementary materials of Ref. [31].  

The effective one-body potential λ  depends on the external potential ( )rΨ  in Eq. 

(4.7), the mean electrostatic potential ( )rψ  in Eq. (4.18), and local excess chemical 

potentials due to hard-sphere repulsion, chain connectivity and electrostatic correlation 

effects: 

 ( ) ( ) ( ) ( ) ( )/ex ex ex
k k k hs ch el kr r Z e r F F F rλ ψ δ δr= Ψ + + + + . (4.34) 

The mean electrostatic potential is given by 
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* *
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≡ = = − − 
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∑∫ . (4.35) 
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Eq. (4.35) can be derived from the integration of Poisson equation (Eq. (4.19)) by 

applying boundary condition ( ) 0 0rd r drψ = =  at the capsid center. On the other hand, 

by applying another boundary condition ( ) 0rψ = ∞ = , we can obtain mean electrostatic 

potential at capsid center, e.g. ( )* 0rψ = . 

We solve the density distributions of polyion segments and small ions with the 

Picard iteration method. The numerical procedure starts with an initial guess for the 

density profiles of polyions and monomeric ions based on their bulk densities. The 

reduced electrostatic potential ( )* rψ , the effective fields for polyion segments and 

monomeric ions, ( )k rλ , and the Green function ( )iG r  for polyions are then calculated. 

Subsequently, new density profiles are updated by using Eqs. (4.25) and (4.26). The new 

density profiles are mixed with the previous results as the new inputs. The iteration 

procedure repeats until the change in the input and output density profiles of polyions and 

monomeric ions is smaller than 0.01%  at all positions. 

4. 3 Results and Discussions 

4. 3. 1 Comparison between MC and DFT 

In this section, we validate the numerical performance of the polyelectrolyte 

density functional theory (DFT) with molecular simulations for polyelectrolytes in 

spherical capsids. To explore a broad parameter space, we consider polyelectrolytes with 

different bending energies and electrolyte solutions with various salt concentrations and 

ionic valences. We compare the density profiles of polyions and small ions to those 

obtained from Monte Carlo (MC) simulations.  
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 Because of numerical challenges in calculation of electrostatic interactions in an 

extended environment, simulation results are rare for confined polyelectrolytes. 

Fortunately, Angelescu, et, al. [131, 132] reported a series of studies on thermodynamics 

and electrostatics of a single polyion confined in a charged capsid using MC simulations. 

For the sake of comparison, the parameters in our DFT calculations are chosen to be the 

same as those used in their studies, i.e., 0.4nmσ = for ionic and segment diameters,  

5.0nmcR =  for the inner radius of the spherical capsid, and 1.2nmcD =  for the capsid 

thickness. For numerical convenience, our DFT calculations are based on the tangent 

chain model for polymer backbone but the simulation uses the bead spring model. With a 

reasonable choice of the parameters for the bond connectivity, we expect that the 

difference between these two models is insignificant. Because the simulations were 

performed in the NVT ensemble, the cut-off distance in the DFT calculations (or the size 

of calculation cell) is chosen to be the same as the simulation cell. We use the chemical 

potentials as the Lagrange multipliers to impose number conservations for all species 

inside the calculation cell. 

4. 3. 1. 1 Flexible Polyelectrolyte Encapsidation 

 In this subsection, we compare the density profiles of polyelectrolyte segments 

and small ions with the MC simulation results. For a flexible polyelectrolyte chain, the 

parameter specifying the intrinsic bending stiffness satisfies 0 0βφ = . 

Figure 4-2 shows the distributions of polyion segments obtained from the DFT 

calculations and from MC simulations for flexible polyelectrolytes of different chain 

lengths in a spherical capsid. The total capsid charge is 250cQ = + , and the valences of 
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cations and anions are 1Z+ = + and 1Z− = − , respectively. As in MC simulation, we 

consider three different polyion chains with length 100M = , 250M =  and 400M = ;  

the corresponding calculation cell radii are 50nmcellR = , 56.3nmcellR =  and 

61.4nmcellR = , respectively, to ensure that the small ions reach bulk properties near the 

boundary. In MC simulations, the number of anions is fixed at 250N− =  , the same as 

the number of charges of the spherical capsid, and the number of cations are 100N+ = , 

250N+ =  and 400N+ =  for three different polyion chain lengths. The total cation charge 

is the same as the charge of the polyelectrolyte. The model system mimics capsids 

dispersed in an aqueous electrolyte solution with low bulk salt concentration. 

Despite different models for the polymer backbone, the DFT is able to reproduce 

the MC results near quantitatively. However, the distinctive features of soft and hard 

potentials are noticeable near the hard-wall surface within a distance comparable to the 

diameter of polymer segments. While the density profile generated by the soft potential 

used in MC for molecular excluded volume and chain connectivity is smooth, the tangent 

hard-sphere chain model exhibits sharp edges at the hard wall and the bond length and 

such edges are more visible as the polymer concentration/chain length increases. The 

polyelectrolyte segments accumulate near the inner surface of capsid due to strong 

electrostatic attraction from the positively charged surface. The density of polymer 

segments is near zero until the total charge of polyelectrolyte is larger than the capsid 

charge (e.g. 400M = ). Despite the opposite charge at the capsid surface, the DFT 
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predicts that the polymer segments are slightly repelled from inner surface due to the 

intra-chain correlations. Such depletion was less apparent in the simulation results.  

Figure 4-3 and 4-4 show, respectively, the density profiles of monomeric anions 

and cations for the systems considered above. The agreement between DFT and MC 

simulation is excellent for both cases. Because the cations are coupled with 

polyelectrolyte segments, the difference between DFT and MC simulation shown in 

Figure 4-4 is probably due to discrepancies on polymer segment distributions near the 

inner capsid surface. When the polyion net charge is less than that of the capsid, the 

capsid contains more anions than cations. However, when the polyelectrolyte has equal or 

more net charge than the capsid, strong accumulation of polyions near the inner capsid 

surface makes the integrated charge distribution function ( ) ( )
0

, ,
d ' '

r

k k
k p

P r r Z rr
= + −

= ∑∫
 

negative at / 2cr R σ≈ − . In this case, the electric field produced by such charge 

distribution (according to the Gauss law) points inward to the capsid center and therefore 

repels the anions from accumulating at the inner capsid surface and attracts cations. On 

the other hand, the positive electric field from the capsid out surface has opposite effect 

and the competitions among various electric field and excluded-volume effect results in a 

maximum in the distribution of cations at 4nmr = .  

When 100M = , the polyelectrolyte-capsid complex is positively charged and 

thus attracts anions to and repels cations from the outer capsid surface, shown in Figure 

4-3 (a) and 4-4 (a) respectively. On the other hand, when 400M = , the complex is 

negatively charged and thus attracts cations to and repels anions from the outer capsid 
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surface (case c). The overcharged capsid attracts extensive number of cations into the 

capsid, as shown in Figure 4-4 (c). Although electrostatic interactions facilitate the 

polymer segments to reside at the inner surface of the capsid, the polymer segments 

extend into the capsid center due to strong excluded-volume effect and chain connectivity. 

For the case such that the polyelectrolyte and capsid have the same electric charge 

( 250M = ), some anions are released from the capsid and some cations reside inside the 

capsid, making the net charge of the complex slightly positive. Overall, the small ion 

distributions inside the capsid do not compensate the net charge of polyelectrolyte and 

capsid complex and the overall net charges are 108e , 6e , and 23e− , respectively, in 

good agreement with the simulation data [131]. Our DFT calculation affirms that the 

overall charge of a capsid complex is not neutral. The charge neutrality is valid only for 

the entire system that includes both polymer-containing capsid and small ions in the bulk 

solution. 

4. 3. 1. 2 Effects of Chain Rigidity 

In this subsection, we validate the DFT results for confined semi-flexible 

polyelectrolytes with MC simulation data [131] by comparing the density profiles for the 

polymer segments as well as for small ions. The model parameters are similar to those 

used in the previous subsection except that now the potential for chain connectivity takes 

in to account the bending stiffness  ( 0 10βφ = ). 

Figure 4-5 shows the DFT and MC simulation results for the density distributions 

of semi-flexible polyelectrolyte segments in a spherical capsid. Here the model 

parameters are the same as those used in Figure 4-2 but with the bending stiffness. By 
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comparing to Figure 4-2, we see noticeable influences of the chain stiffness on the 

density distributions of polymer segments. In contrast to flexible polyelectrolytes, the 

density profiles for semi-flexible polyions do not exhibit sharp edges and they are more 

attracted towards the inner capsid surface. It appears that the bending rigidity suppress 

the penalty of chain configurational entropy. Furthermore, the contact density of semi-

flexible polymer at inner capsid surface is slightly higher than that of flexible 

polyelectrolyte. Although we take into account the bending energy on the mean-field 

basis, the DFT shows good agreement with simulation data [131]. 

Figure 4-6 and 4-7 present the density profiles of anions and cations for the 

confined semi-flexible polyelectrolytes, respectively. Similar to encapsidation of 

intrinsically flexible polyions discussed above, the agreement between DFT and MC 

simulation is very good. Unlike polymer segment distributions, the effect of chain 

stiffness on the distribution of small ions is insignificant. Because a semi-flexible 

polyelectrolyte chain is closer to the inner surface of capsid, the capsid contains slightly 

fewer cations in comparison to the case of flexible polymer. Because the chain stiffness 

has little effects on the microscopic structure, at the same condition the net charge of 

semi-flexible polyion-capsid complex remains similar to that of flexible polyion-capsid 

complex.  

Overall, the segmental density distributions of polymer monomers and small ions 

are in good agreement with MC simulation for both semi-flexible and flexible 

polyelectrolytes. 

4. 3. 1. 3 Effects of Salt Valences 
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In this subsection, we compare the DFT calculations with MC simulation for the 

segmental distributions of polyelectrolytes in electrolyte solutions with various ionic 

valences. In this case, the valences of polyion segment and anion remain the same (-1), 

while we consider three different cation valences (Z+=1, 2, 3). Because the effect of chain 

stiffness was considered in the previous subsection, our comparison here is focused on 

flexible polyelectrolytes. 

Figure 4-8 shows the DFT and MC simulation results for the density distributions 

of flexible polyelectrolyte segments in a spherical capsid surrounded by electrolytes of 

different cation valences [132]. In all cases, the cell radius is fixed at 10nmcellR = . As the 

cation valence increases, the polyion segments are more depleted from the inner surface 

because of stronger screening effects. The total packing density inside the capsid falls as 

the cation valence increases; and more anions are attracted to the inner surface. While 

qualitatively the DFT results agree well with MC simulation, the discrepancy clearly 

increases with the cation valence. The difference can be attributed in part to 

approximations of the DFT and in part due to  small simulation range [132]. The small 

cell size makes the properties of small ions near the boundary different from those in the 

bulk and because of the small ionic concentration, such difference has a drastic effect on 

the density profiles. Furthermore, the interaction between the small ions and the cell wall 

was represented by a hard-wall potential that truncates the long-ranged electrostatic 

interactions. Due to the long-ranged nature of electrostatic interactions, such cell would 

influence the distributions of small ions and polymer segments in MC simulation but has 

little effects in the DFT calculation that is based on the grand canonical ensemble [132]. 
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While the size effect is significant in MC simulation, the DFT calculation fully 

incorporates the long-ranged electrostatic interactions so that the properties of small ions 

at the boundary are the same as those in the bulk limit. 

Figures 4-9 and 4-10 present the density distributions of anions and cations, 

respectively for the system discussed above. As the valence of cation decreases, the 

capsid contains more anions to neutralize the positively charged capsid surface. The 

cations are accumulated approximately at 4nmr =  due to the interplay between 

excluded-volume effect and electrostatic interactions. In general, DFT results agree with 

MC simulation qualitatively, but not quantitatively probably due to the reason we 

explained above. 

Figure 4-9 and 4-10 present the density distributions of anions and cations, 

respectively. As the valence of cation decreases, more anions are attracted to the inner 

surface to neutralize the positively charged capsid surface. The cations accumulated 

approximately at 4nmr =  as a result of the interplay between excluded-volume effect 

and electrostatic interaction. In general, DFT calculations agree with MC simulation 

qualitatively, but not quantitatively probably due to the reason we explained above. 

4. 3. 2 Effects of The Outside Environment 

Unlike more previous theoretical investigation of polyelectrolyte packaging [33, 

134], this work takes into account the solution environment outside the capsid explicitly. 

In other words, we do not impose the condition of charge neutrality to space occupied by 

the capsid but to the overall thermodynamic system. We find that the local charge 

neutrality would have huge impact on the distributions of polyion segments and small 
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ions. To illustrate the effects of the solution environment outside the capsid, we compare 

the density profiles of polyelectrolyte and small ions with and without explicit 

consideration of the background electrolyte solution. For convenience, the former is 

referred to as an open system and the latter as semi-open system because the ionic 

distributions outside the capsid are not explicitly considered. In the latter case, the charge 

neutrality condition is imposed for the capsid and the small ions are confined in spherical 

capsid with chemical potentials defined by the bulk solution. 

Figure 4-11 compares the density distributions of polyelectrolyte segments with 

and without considering the outside environment. To be consistent, we assume that the 

bulk properties of small ions for the semi-open system are set to be the same as those of 

the open system. At low polyelectrolyte concentration ( 100M =  and 250M = ), the 

assumption of capsid charge neutrality results in a distribution of  polyion segments 

qualitatively different from that without the assumption. With the charge neutrality 

assumption for the capsid, the DFT predicts that the polyion is depleted from the 

oppositely charged surface, in sharp contrast to strong accumulation of the polyion 

segments without that assumption.  As shown later in Figures 4-12, the semi-open system 

(with the charge neutrality assumption) contains much more small ions, screening the 

electrostatic attraction from the capsid surface. The increased small ion concentration is 

primarily because the outer surface of the viral capsid is unavailable to small ions. At 

large polyelectrolyte concentrations, the polyion distribution is mainly determined by 

direct electrostatic interaction and the excluded-volume effects. In that case, the anions 

are depleted from the capsid in the semi-open system, and as indicated in Fig. 4-4(c), the 



110 
 

cations are mostly attracted inside the capsid to neutralize the excess charge of the 

polyion for the open system. As a result, the difference in the segmental density 

distributions of polyelectrolytes is small. 

Figures 4-12 and 4-13 compare the semi-open and open systems for the density 

distributions of anions and cations, respectively. Because no ions are outside for the 

semi-open system, we present the density profiles only inside the capsid. As mentioned 

above,  the capsid in the semi-open system contains more anions and cations when the net 

polyion charge is less or equal to that of the capsid. However, the opposite is true if the 

net polyelectrolyte charge is larger than that of the viral capsid. Due to strong 

electrostatic interactions from the polyelectrolyte, anions are almost completely depleted 

from the viral capsid in the semi-open system. 

In comparison to the open system, the capsid surface area accessible to 

counterions is greatly reduced for the semi-open system. As a result, the small ions are 

more attracted inside the viral capsid for the semi-open system except when the 

polyelectrolyte charge is much larger than that of the viral capsid. Because of the 

difference in the ionic concentration, the distribution of polyelectrolyte segments varies 

drastically. Therefore, the outside environment dramatically affects the structural and 

thermodynamic properties of confined polyelectrolytes. 

4. 3. 3 Net Charge of Spherical Capsid 

In this section, we study the net charges of polyelectrolyte-capsid complexes at 

different polymer chain lengths and ionic concentrations. The net charge NQ  of a 

polyelectrolyte complex is defined by 
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 in in
N c pQ Q MZ N Z N Z+ + − −= + + + , (4.36) 

where inN+  and inN−  are the numbers of cations and anions inside the capsid, respectively. 

In most previous studies of polyelectrolyte packaging [33, 134], the outside environment 

was not considerably explicitly and the net charge of viral capsid was presumed neutral. 

Explicit  consideration of the outside environment allows us to assess the local charge 

neutrality assumption and to examine how the net charge varies with the properties of the 

confined polyelectrolyte, viral capsid size and charge density, and the concentration and 

valences of small ions. 

Figure 4-14 shows the DFT predictions for the net charge of a polyelectrolyte-

capsid complex varying with the polyelectrolyte chain length at different salt 

concentrations. At high salt concentration ( 550mMsaltC = ), the net charge of the 

polyelectrolyte complex decreases slowly with the polyelectrolyte chain length but 

remains positive even though the total charge of the polyelectrolyte is larger than that of 

the viral capsid. When the salt concentration is low ( 11mMsaltC = ), however, the net 

charge decreases quickly with the polyion chain length, and after a certain point the net 

charge is inversed due to the increased excluded-volume and screening effects originated 

from the polyelectrolyte backbone. Interestingly, charge inversion is most likely in 

monovalent solutions. In all cases, the net charge of a polyelectrolyte complex is clearly 

not neutral; it varies with the polyelectrolyte chain length as well as the salt concentration. 

Figure 4-15 shows the DFT predictions for the net charge of a polyelectrolyte-

capsid complex changing with the polyion chain length. Here the capsid is surrounded by 
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electrolyte solutions of different cation valences. For the system containing monovalent 

cations, the net charge of the polyelectrolyte-capsid complex decreases with the polymer 

chain length;  but for the system containing trivalent cations, the net charge of the 

complex reaches a plateau after a certain polymer chain length. Similar to the case of 

high salt concentration, the net charge of capsid complex remains positive for trivalent 

cations, even though the polyion charge is larger than that of the capsid. As shown in 

Figure 4-14, the charge neutrality is not satisfied for a polyelectrolyte-capsid complex; 

the net charge depends on the polyion chain length and the valences of small ions. 

4. 3. 4 Discontinuity of Dielectric Constant 

In both DFT calculations and MC simulations, we have assumed that the 

dielectric constant of the capsid is the same as that of an aqueous solution. In reality, 

however, the viral capsid may have a dielectric constant ( cε  ) quite different from that of 

an aqueous solution ( ε ). In this subsection, we study the effect of inhomogeneous 

dielectric constants on the density distributions of polyelectrolyte segments and small 

ions. 

For simplicity, we assume that the position dependence of the dielectric constant 

( )ε r  inside the capsid is given by  

 ( )
4,

78.4, otherwise
c c c cR r R Dε

ε
ε

= < < +
=  =

r , (4.37) 

where cD  is the capsid wall thickness, the capsid dielectric constant 4cε =  is typical for 

the hydrophobic domain of a protein, and 78.4ε =  corresponds to the dielectric constant 
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for water at ambient conditions. With the discontinuity of the dielectric constant defined 

above, we can obtain the electric potential by solving the generalized Poisson equation 

 ( ) ( )
( )

2 crψ
ε

∇ = −
r

r
r

. (4.38) 

using two boundary conditions, e.g., ( )
0

d
0

d
r

r
r

ψ

=

=
 
and ( ) 0cellr Rψ = =  as well as the 

continuous nature of electrostatic potential. From the mean electrostatic potential from Eq. 

(4.38), we can subsequently the distributions of polymer segments and small ions. We 

note that the generalized Poison equation neglects the “image charge” effect due to the 

discontinuity of the dielectric constant. 

Figure 4-16 shows the density distribution of polyelectrolyte segments with the 

dielectric discontinuity specified by Eq. (4.37). For comparison, we also present the 

density profile with a uniform dielectric constant. When the polyelectrolyte charge is less 

or equal to that of the capsid, the dielectric inhomogeneity makes polyion slightly closer 

to the inner surface; but the opposite is true when the polyion charge is larger than that of 

the capsid. For smaller dielectric constant, it needs more polyelectrolyte segments to 

neutralize the charge of capsid when the charge of polyion is not larger than that of 

capsid surface. In both cases, the effect of capsid dielectric constant on the distribution of 

polyion segments is rather insignificant, which justifies in part the extensive use of 

uniform dielectric model in the literature. 

We observe a similar trend for the effect of dielectric discontinuity on the anion 

distribution. As shown in Figure 4-17, introduction of the dielectric discontinuity makes 
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anions more attracted to the capsid inner surface but more repelled from the outer surface 

when the polyion charge is less or equal to that of the capsid. When the polyelectrolyte 

charge is larger than that of the capsid, however, the dielectric inhomogeneity makes 

anions more attracted to the outer surface of the capsid but has only negligible effect on 

the anion distribution near the inner surface of the capsid. 

Figure 4-18 shows that the effect of dielectric discontinuity on cation distribution 

is completely opposite to that of anions. Cations become more depleted from inner 

surface of the capsid when the polyion charge is less or equal to that of the capsid and 

more attracted to the inner surface when the polyion charge is more than that of the cage. 

The trend is opposite for cations outside the shell. Overall, the DFT calculations indicate 

that the inhomogeneous dielectric constants have insignificant effect on the density 

distributions of polyelectrolyte segments and small ions. 

4. 4 Conclusions 

In this chapter, we have used the density functional theory (DFT) to study the 

structural and surface properties of flexible and semi-flexible polyelectrolytes confined 

within spherical capsids. Unlike most previous work [33, 134], we consider the 

polyelectrolyte containing capsids in equilibrium with a bulk salt solution. After 

extensive comparison of the density profiles of polymer segments and small ions 

predicted by DFT with MC simulation data [131], we investigated in detail the effects of 

solution conditions and capsid dielectric inhomogeneity on the overall capsid charge and 

the polyelectrolyte segment and ionic distributions.     
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The DFT equations are similar to those used in our previous works for 

inhomogeneous polyelectrolyte solutions [33, 76]. Specifically, we adopted the modified 

fundamental measure theory to account for the excess Helmholtz energy functional due to 

the hard-sphere repulsion. The extended first-order thermodynamic perturbation theory 

accounts for the excess Helmholtz free energy functional due to the polyion chain 

connectivity. The mean-spherical approximation accounts for the excess Helmholtz 

energy functional due to the electrostatic correlation. The mean electrostatic potential 

from Poisson equation takes into account the excess Helmholtz energy functional due to 

direct Coulomb interactions. 

 Extensive comparison of the DFT and simulation results indicates that the DFT 

provides an efficient and reliable way to describe the density distributions of 

polyelectrolyte segments and small ions as well as net charges of capsid complex for 

different chain lengths and bending stiffness. Similar to our previous work for 

inhomogeneous polyelectrolytes, the agreement between DFT and MC simulation [131] 

is near quantitative over a broad range of the parameter space pertinent to polyelectrolyte 

encapsidation. The numerical performance is less satisfactory only when there is certain 

discrepancy in the thermodynamic conditions defining the DFT and MC calculations. 

Similar to MC simulation [131], the DFT calculations reveal that the small ions do not 

compensate the net charge of the polyelectrolyte and capsid complex and the assumption 

of local charge neutrality is in general not valid. 

We also examined the dependence of density distributions of polyelectrolyte 

segments and small ions on the outside solution conditions. Our DFT calculations 
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indicate that the outside environment has significant impact on the distributions of both 

polyelectrolyte segments and small ions especially when the polymer concentration is 

low. In comparison with the calculation based on the local charge neutrality, the capsid 

contains fewer amounts of small ions when the outside environment is explicitly 

considered. The reduction of small ion content can be explained by neutralization of the 

capsid charge by counterions outside of the capsid surface that is not accounted for in the 

charge neutrality assumption. Because we consider the outside environment explicitly in 

our DFT calculations, the charge neutrality is imposed to the entire thermodynamic 

system instead of the space inside the capsid. As a result, we are able to examine whether 

or not the net charge of capsid complex is neutral and how the net charge varies with the 

polyelectrolyte chain length, the salt concentration and ionic valences. At high ionic 

strength, the net charge of capsid complex is insensitive to the polyelectrolyte chain 

length due to the strong screening effect. At low ionic strength, however, the trend is 

opposite. The DFT predicts that charge inversion occurs at low salt concentration and 

large polyelectrolyte chain length. We find that in general the local charge neutrality is 

not valid for a viral capsid. The outside solution environment has significant effects on 

the net charge of polyelectrolyte-capsid complex and the distributions of polyelectrolyte 

and small ions.  

We also studied the influences of the dielectric constant of the capsid wall on the 

density profiles of polyion segments and small ions. Our DFT calculations indicate that 

the dielectric inhomogeneity has opposite effects the charge distributions at low and high 

polyions concentrations. Although the image charge effect was not considered in our 
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calculations, it appears that the inhomogeneity in dielectric constants has insignificant 

effect on the structural and thermodynamic properties of polyelectrolyte packaging. 
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Figure 4-1 A schematic picture of the model system studied in this work. The dark blue 
spheres stand for polyelectrolyte segments, the green spheres for anions, the red spheres 
for cations, and the dark red shell with shaded background for a semi-permeable protein 
capsid. The entire system is embedded in a spherical cell such that the boundary (solid 
line) has negligible effects. 
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Figure 4-2 (a) Density distribution of polymer segments ( )p rr  is plotted as a function 
of radial distance r  for a flexible polyelectrolyte confined in a spherical shell with total 
charge 250cQ = + . Here the polymer chain length is 100M =  and each segment carries 
unit negative charge, the valences of cations and anions are 1Z+ = + and 1Z− = − , 
respectively.  In MC simulation [131], the cell radius is 50nmcellR = , the numbers of 
cations and anions simulated are 100N+ = and 250N− = , respectively. (b) The same as 
Fig. 4-2 (a) except that the polymer chain length is 250M =  , cell radius 56.3nmcellR = , 
and the number of cations simulated is 250N+ = . (c) The same as Fig. 4-2 (a) except that 
the chain length is 400M = , the cell radius is 61.4nmcellR = , and the number of 
cations simulated is 400N+ = . 
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Figure 4-3 The same as Fig. 4-2 but for the density profiles of anions. 
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Figure 4-4 The same as Fig. 4-2 but for the density profiles of cations. 
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Figure 4-5 The same as Fig. 4-2 but for a semi-flexible polyelectrolyte with bending 
stiffness parameter 0 10βφ = .  
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Figure 4-6 The same as Fig. 4-5 but for the density profiles anions. 
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Figure 4-7 The same as Fig. 4-5 but for the density profiles of cations. 
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Figure 4-8 (a) Density distribution of polymer segments ( )p rr  versus radial distance r  
for a flexible polyelectrolyte in a spherical shell. Here the polyelectrolyte chain length is 

252M =  and each segment carries unit negative charge.  The total charge of the 
spherical shell is 252cQ = + . In MC simulation, the cell radius is 10nmcellR = , the 
numbers of cations and anions simulated are 252N+ =  and 252N− =  , respectively, and 
the valences of cations and anions are 1Z+ = + and 1Z− = − , respectively. The solid lines 
represent results from the DFT calculation and symbols are from MC simulation [132]. (b) 
The same as (a) except for 2Z+ = +  and that the number of cations used in the simulation 
is 126N+ = . (c) The same as (a) except for 3Z+ = +  and that the number of cations 
simulated is 84N+ = . 
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Figure 4-9 The same as Fig. 4-8 but for the density distributions of monomeric anions. 
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Figure 4-10 The same as Fig. 4-8 but for the density distributions of cations. 
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Figure 4-11 (a) The density distribution of polyelectrolyte segments ( )p rr  as a function 
of radial distance r  for a flexible polyelectrolyte with chain length 100M =  in a 
spherical shell with a total charge 250cQ = + . The cell radius is 56.5nmcellR = , the 
valences of cations and anions are 1Z+ = + and 1Z− = − , respectively, and the bulk salt 
concentration is 110mMsaltC = . The black line is the density profile predicted by the 
DFT with explicit consideration of the outside environment, i.e., without the assumption 
of the charge neutrality within the shell; and the red line depicts that without considering 
the outside environment but assuming the capsid is overall neutral. (b) The same as (a) 
except for 250M = . (c) The same as (a) except for 400M = .  
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Figure 4-12 The same as Fig. 4-11 but for the density distributions of monomeric anions. 
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Figure 4-13 The same as Fig. 4-11 but for the density distributions of monomeric cations. 
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Figure 4-14 The DFT prediction on the net charge of capsid complex versus 
polyelectrolyte chain length at various salt concentrations. The capsid charge is 

252cQ = + , the cell radius is 56.5nmcellR = , the valences of cation and anion are 
1Z+ = +  and 1Z− = − . The red line depicts bulk salt concentration 11mMsaltC = , the 

green line presents bulk salt concentration 110mMsaltC = , and the blue line is for bulk 
salt concentration 550mMsaltC = , respectively. 
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Figure 4-15 The DFT prediction on the net charge of capsid complex versus 
polyelectrolyte chain length at various cation valences. The capsid charge is 252cQ = + , 
the cell radius is 56.5nmcellR = , the valence of anion is 1Z− = − , and bulk salt 
concentration 110mMsaltC = . The red solid line depicts cation valence 1Z+ = + , the 
green solid line presents cation valence 2Z+ = + , and blue solid line is cation valence 

3Z+ = + ,  respectively. 
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Figure 4-16 (a) The density distribution of polyelectrolyte segments ( )p rr  as a function 
of radial distance r  for a flexible polyelectrolyte with chain length 100M =  in a viral 
capsid with a total charge of 250cQ = + . The cell radius is 56.5nmcellR = , the valences 
of cations and anions are 1Z+ = +  and 1Z− = − , respectively, and the bulk salt 
concentration 110mMsaltC = . The black line is the density profile with capsid dielectric 
constant 78.4cε =  and the red line depicts that with the capsid dielectric constant 4cε = . 
(b) The same as (a) except for 250M = . (c) The same as except for 600M = . 
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Figure 4-17 The same as Fig. 4-16 but for the density distributions of monomeric anions. 
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Figure 4-18 The same as Fig. 4-16 but for the density distributions of monomeric cations. 
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Chapter 5 Hybrid MC-DFT Method for Studying Multi-dimensional Entropic 

Forces 

 

Reprinted in part with permission from [Zhehui Jin and Jianzhong Wu, Journal of 

Physical Chemistry B, Volume 115, Issue 6, Page 1450-1460, 2011]. Copyright (2011), 

American Chemical Society.   

Equation Chapter (Next) Section 1 

Abstract 

Entropic force has been the focus of many recent theoretical studies because of its 

fundamental importance in solution thermodynamics and its close relevance to a broad 

range of practical applications. Whereas previous investigations are mostly concerned 

with the potential energy as a one-dimensional function of the separation, here we 

propose a hybrid method for studying multi-dimensional systems by combining Monte 

Carlo simulation for the microscopic configurations and the density functional theory for 

the free energy. We demonstrate that the hybrid method predicts the potential of mean 

force between a test particle and various concave objects in a hard-sphere solvent in 

excellent agreement with the results from alternative but more expensive computational 

methods. In particular, the hybrid method captures the entropic force between 

asymmetric particles and its dependence on the particle size and shape that underlies 

“lock and key” interactions. Because a single molecular model is used for both the theory 

and the simulation, we expect that the hybrid method provides a new avenue to predicting 

entropic forces in complex molecular systems. 
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5. 1 Introduction 

An entropic force arises in a solution or a colloidal dispersion when the local 

distribution of solvent (or co-solvent) molecules is disrupted due to the presence of the 

solute. Because it is affiliated with the solvent configuration rather than a specific 

microscopic energy, the microscopic origin of an entropic force appears obscure and 

sometimes it is misinterpreted. Even in its simplest form induced by the excluded-volume 

effects, current understanding is mostly limited to interaction between colloidal particles 

in the presence of polymer chains dissolved in a good solvent. The first attempt to 

quantify such interaction was made by Asakura and Oosawa (AO) [148] who treated 

colloidal particles as non-penetrable spheres and polymer chains as “ideal-gas” molecules 

that are depleted from the particle surface due to the polymer excluded volume. 

According to the AO theory, two colloidal particles experience an entropic attraction 

when the polymer depletion layers overlap. The attraction is introduced by an increase of 

the system entropy or accessible volume for the polymer. Despite its simplicity, the AO 

theory captures the polymer-mediated entropic force at low and intermediate polymer 

concentrations semi-quantitatively. However, its performance is unsatisfactory at high 

polymer concentration when the inter-chain interactions become non-negligible. Besides, 

the AO theory is inadequate if the size of the colloidal particles is smaller or comparable 

to the radius gyration of the polymer chains [149]. Towards an improvement of the AO 

theory, many theoretical investigations and molecular simulations had been reported over 

the past decades. Common computational methods include the hyper-netted-chain (HNC) 

equation [150], the polymer self-consistent-field theory [151], the classical density 
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functional theory (DFT) [68, 152], and various forms of computer simulations [153, 154]. 

These investigations are mostly focused on the entropic potential between two spherical 

particles, or a spherical particle and a hard wall, in the presence of hard-sphere-like 

solvent.  

Whereas existing theoretical methods are adequate to quantify entropic force in 

colloidal systems with relatively simple geometry, their extension to multi-dimensional 

interactions such as those important for biological systems is computationally challenging. 

On the one hand, simulation of the entropic potential entails free-energy calculations that 

are computationally demanding. The power of analytical methods, on the other hand, is 

often compromised by the numerical solution of multi-dimensional density distribution 

functions. Unlike a typical colloidal potential, interaction between biomacromolecules 

often depends on the center-to-center distance as well as the molecular geometry and 

orientation. While in general the entropic force is closely affiliated with the self-

organization of water molecules around the solute, the geometry or shape of 

biomacromolecules plays a key role in receptor-ligand or “lock and key” interactions and 

its contribution to the overall potential is often manifested through the exclude-volume 

effects of the surrounding water molecules [150, 155, 156]. Recently, colloidal “lock and 

key” systems have been developed to mimic the geometry affinity of bio-interactions [11, 

12, 157-160]. Such model systems have generated extensive interests not only because 

they resemble interactions in biological processes, including protein folding [161] and 

recognition between drug compounds [162], but because the affinity force empowers a 

precise control of the microscopic structure during colloidal self-assembly [11]. These 
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model systems have also inspired a number of theoretical and simulation works. For 

example, Kinoshita [22] used a three-dimensional HNC equation to examine interactions 

between a substrate with a hemi-sphere cavity and a testing spherical particle in a hard-

sphere solvent. Konig and coworkers [155] used the White Bear [88] version of 

fundamental measure theory (FMT) [83] and a curvature expansion technique [163] to 

study the depletion potential between a smooth substrate and a biaxial elliptical testing 

particle. On the simulation side, Odriozola and coworkers [164] investigated the effective 

interaction between a sphere with an open cavity using Monte Carlo (MC) simulation.  

In this work, we propose a hybrid method for computation of entropy forces by 

using MC simulation to predict the density distributions of solvent molecules and the 

fundamental measure theory for free-energy calculations. Whereas the DFT is formulated 

in terms of the density profiles, direct minimization of the free energy functional with 

respect to a three-dimensional density is unrealistic for most anisotropic systems. This is 

because the DFT calculation often entails lengthy iterations and requires an extremely 

small grid (~0.002 molecular diameter). On the other hand, simulation of the solvation 

free energy is in general very time-consuming but simulation of the solvent density at a 

fixed solute configuration is not a computationally demanding task. For calculating the 

solvent density, simulation on the time scale comparable to that corresponding to fast the 

relaxation dynamics is often sufficient. Besides, the simulation is not limited by the 

dimensionality and much larger grids (~0.1 molecular diameter) can be used to sample 

the solvent density profile. While extension of molecular simulation for simple colloidal 

systems to those with solutes of more complicated shape requires essentially no increase 
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of the computational cost, DFT provides an efficient link between the microscopic 

structure and thermodynamic potentials. A combination of simulation and DFT takes 

advantages of the good features of both methods.  

With an analytical expression from DFT for the free-energy as a functional of the 

solute and solvent density profiles, we can calculate the entropic force by using the 

potential distribution theorem (PDT) [165]. This method has been previously used to 

calculate the colloidal force between two big particle and particle-wall interactions [68, 

152] in the presence of a hard-sphere solvent or polymers [68]. Alternatively, entropic 

force can be calculated from the free energy of the solvent with the colloidal particles 

treated as an external potential. In comparison with PDT, computation of the free energy 

at explicit colloidal configurations is more time consuming but the latter method is useful 

when an accurate expression for the free energy functional of the solute-solvent mixture 

is not attainable.  

The remainder of this article is organized as follows. In section 2, introduce the 

molecular theory and simulation methods. In section 3, we define the thermodynamic 

system and molecular models studied in this work and validate the proposed methods by 

comparing with previous computer simulations and theoretical investigations on the 

colloidal force for the targeted systems. In section 4, we summarize the key conclusions 

and discuss further implications of newly implemented methods. 

5. 2 Theoretical Approaches 

The main idea behind our new method for calculating the entropic force in 

multidimensional systems is as the following: First, we use MC simulation to generate 3-
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dimensional density profiles required in analytical calculations. Then, we use the DFT 

calculate the free energy and subsequently the entropic forces. The hybrid method can be 

implemented either by explicit consideration of the colloidal configuration or by using 

the potential distribution theorem (PDT). The first procedure is referred to as the MC-

DFT and the second as MC-PDT. Because PDT requires only the density profile of the 

solvent molecules around a single solute, the numerical advantage of MC-PDT is self-

evident. However, MC-PDT hinges on a free energy functional that is accurate for the 

solute-solvent mixture, and the numerical efficiency is often compromised by 

approximations introduced in the DFT. In this work, we will validate both procedures by 

considering entropic forces (1) between two spherical particles, (2) between a spherical 

particle and a planar hard wall, (3) between a spherical particle and a substrate with a 

hemispherical cavity mimicking the “lock and key” system, and (4) between a hard rod 

and a hard wall. In all cases, the molecular excluded volume effect is represented by 

using a hard-sphere solvent, and the theoretical predictions will be validated with results 

from direct simulations of the colloidal forces.  

5. 2. 1 MC-DFT 

In MC-DFT, the density profile of solvent molecules is simulated at each solute 

configuration. For interaction between two colloidal particles in a hard-sphere solvent, 

the potential of mean force corresponds to the reversible work to separate them apart or 

the difference in the free energy when the system is at a given colloidal configuration and 

that when the particles are infinitely apart. If both particles are spherical, the potential of 
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mean force depends only on the center-to center distance r . In that case, the potential of 

mean force ( )W r  can be calculated from 

 ( ) ( ) ( )W r r= Ω −Ω ∞ , (5.1) 

where ( )rΩ  stands for the grand potential of the system when the particles are separated 

and ( )Ω ∞   for the grand potential of the same system but when the particles are “far” 

apart, i.e., r →∞ : Eq. (5.1) can be directly extended to many-body interactions and 

multi-dimensional systems by augmenting  r  with the orientation angles and/or solute 

configurations.   

In a one-component hard-sphere system, the grand potential can be related to the 

intrinsic Helmholtz energy functional ( )F r  r  via the Legendre transform: 

 ( ) ( ) ( ) ( )[ ]F V dr r µ rΩ = + −       ∫r r r r r , (5.2) 

In Eq. (5.2), 𝑑𝐫 denotes a differential volume, ( )r r  is the density distribution of hard 

spheres, µ  is the chemical potential, and ( )V r  stands for the external potential. Here 

( )V r  refers to the potential due to the colloidal particles. The intrinsic Helmholtz free 

energy functional can be further divided into two parts: an ideal-gas term and an excess 

free energy. The former is exactly known: 

 ( ) ( ) ( ){ }3ln 1id
BF k T dr r r λ = −    ∫r r r r , (5.3) 
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where Bk  is Boltzmann’s constant,  T  is the thermal temperature, and λ  is the thermal 

wavelength. For hard-sphere systems, the excess Helmholtz free energy functional can be 

accurately represented by the modified fundamental measure theory [85, 88] 

 ( )ex
BF k T n dα= Φ   ∫ r r , (5.4) 

where ( )Φ r  is the reduced excess Helmholtz free energy density 
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In Eqs. (5.4) and (5.5), ( )nα r , 0,1, 2,3, 1Vα =  and 2V  are weighted densities [83]. The 

expression for ( )nα r  are given in previous publications [85]. 

In contrast to typical DFT calculations, in this work the three dimensional (3D) 

density profiles are not calculated from minimization of the grand potential but from 

grand-canonical Monte Carlo simulations. The two procedures are equivalent if the free-

energy functional is exact.  While minimization of the grand potential is numerically 

efficient if the density profile varies only in a single dimension, its extension to higher 

dimensional becomes numerically cumbersome.  To implement the hybrid method, we 

first simulate hard-sphere systems in the presence of two colloidal particles within the 

grand canonical ( VTµ ) ensemble. The number of hard spheres simulated varies with the 

colloidal separation. The colloidal particles are fixed along the X-axis of the simulation 

box and the periodic boundary conditions are used in all directions. In each MC cycle, a 

trial random displacement is applied to all solvent spheres (but not colloidal particles) 
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and a solvent particle is randomly removed from or inserted into the simulation box at 

approximately equal probability. The MC moves are implemented by using the 

Metropolis algorithm [166]. The simulation consists of 1 million MC cycles for 

equilibrium and 5 million MC cycles for sampling the 3-dimensional density profiles. 

5. 2. 2 MC-PDT 

In the MC-PDT method, the potential of mean force is obtained from the one-

body direct correlation function. For example, the solvent-mediated potential between 

two spherical particles is related to the solvent density profile around a single particle and 

the one-body direct correlation of the second particle in the presence of the solvent [68] 

 ( ) ( ) ( )(1) (1)W r c c rβ = ∞ − , (5.6) 

where ( )1/ Bk Tβ = . The one-body direct correlation function of the second particle  

( )(1)c r  is obtained from the excess intrinsic Helmholtz free energy exF  for the particle 

and solvent mixture in the limit of zero particle concentration ( ) 0p rr →  

 ( ) ( )
( )

(1)

0p

ex

p r

Fc r
r

r

δβ
δr

→

= − . (5.7) 

When two particles are far apart, ( )(1)c ∞  is related to the reduced excess chemical 

potential of the particle in the bulk solvent, i.e., 

 ( )(1) ex
pc βµ∞ = − . (5.8) 

With the density profile of the solvent molecules around a single particle obtained from 

MC simulation, PDT allows us to calculate the potential of mean force between two 

particles at all colloidal separations. Like MC-DFT, MC-PDT can also be extended to 
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multi-dimensional systems. The key difference between the MC-DFT and the MC-PDT is 

whether simulation includes a single particle or two particles at different separations. For 

some relatively simple systems, we may derive the density profile of the solvent by direct 

minimization of the grand potential and use the PDT to calculate the PMF. The results 

calculated from this method are labeled as DFT-PDT.  

5. 3 Results and Discussions 

For calibration of the proposed computational procedures, we consider four model 

systems where the entropic potentials have been studied before and the physics is 

relatively well understood. The potential between two identical spheres or between a 

hard-sphere and a planar surface depends only on the surface-to-surface separation. On 

the other hand, the interaction in a colloidal key and lock system or between a hard rod 

and a hard wall depends on both the separation and orientation. We will compare the 

numerical performances of MC-DFT and MC-PDT with exact full simulation results or 

with alternative analytical methods. Table 5-1 lists different methods discussed in this 

work. 

5. 3. 1 Two Identical Spheres 

 Entropic interaction between two identical spherical particles immersed in a sea 

of small hard spheres is affiliated with the particle-hard sphere interaction 

 ( )
( )
( )

, / 2

0, / 2
B

SB
B

r D
r

r D

σ
ϕ

σ

∞ < += 
≥ +

, (5.9) 

and the pair interaction among small hard spheres 
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 ( )
,

0,SS
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r

r
σ
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σ

∞ <
=  ≥

. (5.10) 

In Eqs. (5.9) and (5.10), σ  stands for the diameter of the solvent hard spheres, BD  is the 

diameter of colloidal particle, and r  is the center-to-center distance. For comparison with 

results from direct simulation [154], we set 5BD σ= . In our MC-DFT calculations, two 

colloidal particles were placed at ( ), , ,0,0
2

BD Hx y z + = − 
 

 and 

( ), , ,0,0
2

BD Hx y z + =  
 

, respectively, where H  represents the contact distance 

between two colloidal spheres. The simulation box is a rectangular prism with side

22xL σ= and 14y zL L σ= = . In MC-PDT calculations, a single particle is placed at the 

center of a simulation with dimensions 20xL σ=  and 16y zL L σ= = .  

Figure 5-1 presents the depletion potentials calculated from direct MC simulations 

and from three different semi-analytical methods. Figure 5-2 shows the contour plots of 

the density profiles of the hard sphere solvent at different colloidal separations. Here 

3
0 / 6η πr σ=  stands for the packing fraction of the hard-sphere solvent in the bulk and 

0r  is the bulk density. In the DFT-PDT calculations [68], the density profile of the 

solvent molecules near a single particle is calculated from minimization of the grand 

potential. At low density ( 0.116η = ), all methods give virtually the same results. 

Noticeable differences are observed, however, at high density ( 0.229η = ). The DFT-

PDT method over-predicts the repulsive barrier regardless whether the density profile is 



147 
 

from the DFT or from simulation. On the other hand, MC-DFT provides good agreement 

with the simulation results [154]. 

As mentioned before, the attraction between colloidal particles arises from an 

overlap of the solvent depletion layers (see Fig 5-2). The depletion potential is most 

significant when the colloidal particles are at contact. Because the two particles are 

aligned in X-axis ( 0y = , 0z = ), the solvent density profiles are in cylindrically 

symmetric and can be represented in  terms of ( ),x rr  where ( )1/22 2r y z= + . Whereas 

all DFT–based methods are able to capture the simulation results quantitatively, the 

numerical performance of the AO theory is unsatisfactory. While it captures the surface 

depletion, the AO theory fails to describe accumulation of the solvent molecules at the 

interstice of colloidal spheres (as seen in Figure 5-2a) that is responsible for the repulsive 

barrier. 

5. 3. 2 A Sphere near A Hard Wall 

We now consider the PMF between a spherical particle and a hard wall in a hard-

sphere solvent. The system can be understood as the limit of the interactions between two 

asymmetric hard spheres. Similar to the case of two identical spheres, we again use MC-

DFT and MC-PDT to calculate the entropic forces. In MC simulations, the wall is placed 

at 0x =  of the simulation box, and a spherical particle of diameter 5BD σ=  is placed at 

,0,0
2

BDH + 
 

 where H  stands for the surface-to-surface distance between the hard 

wall and the colloidal particle. The dimensions of the simulation box are set as 24xL σ=
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and 14y zL L σ= =  for MC-DFT calculations and 16xL σ=  and 14y zL L σ= =  in MC-

PDT calculations. To apply the periodic boundary conditions to all three directions, we 

place the flat wall in the center of the simulation box and the boundaries are selected such 

that the solvent density approaches to that corresponding to the bulk.  

Figure 5-3 shows the depletion potential again at two representative solvent 

packing fractions. In this case, both MC-DFT and MC-PDT agree well with the 

simulation results. At both solvent densities, the entropic potential shows a global 

minimum at the contact point and a repulsive barrier at intermediate separation, similar to 

the interaction between identical spheres.  In comparison to Fig. 5-1, the performance of 

MC-PDT is slightly improved mainly because numerical integrations in 3D Cartesian 

grid is more easily formulated near the flat wall comparing to that between spherical 

surfaces. 

5. 3. 3 Colloidal Lock and Key Interactions  

We now investigate a model “lock and key” interaction where the lock is 

represented by a planar substrate with a hemispherical cavity and the key is represented 

by a spherical testing particle. The system is immersed in a sea of hard spheres. In 

contrast to the simple systems discussed earlier, the PMF for the lock-and-key interaction 

depends on the three-dimensional distribution of the solvent molecules. 

To facilitate numerical comparison between simulation and DFT calculations, we 

consider a symmetric configuration of the lock and key system as shown in Fig. 5-4. In 

our MC simulations, the center of the hemispherical cavity is placed at ( )0 ,0,0x  of the 
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simulation box with 0 3x σ=  and the center of the key is located at ( ),0,0x  with varying 

x . The radius of the cavity is fixed at 2.5lockR σ= . We examine the depletion potential 

( )0W x x−  for various key particles with radius keyR  along the symmetric axis. At all 

situations, the dimensions of the simulation box are 14y zL L σ= =  and 30xL σ= . The 

MC-DFT and MC-PDT calculations utilize the three-dimensional density profiles of the 

solvent molecules, with and without the key particles, respectively. Besides, we also use 

a direct sampling method originally proposed by Wu et al. [167] to obtain the entropic 

force ( )0f x x−  at different lock and key separations. The potential of mean force can be 

derived from the integration of the mean force [168]. 

Figure 5-5 presents the entropic potentials corresponding to a cavity lock and 

three different spherical keys. Again both MC-DFT and MC-PDT methods are in 

quantitative agreement with the direct sampling method. They all faithfully predict that 

the lock and key interaction is highly specific at short separations. When the key is either 

too small or too large, the entropic potential resembles that between two identical spheres 

or that between a spherical particle and a hard wall. In those cases, the entropic potential 

oscillates with separation and exhibits a maximum attraction at the contact. When the key 

geometry matches that of the substrate, the contact potential is drastically magnified and 

less intuitively, the repulsion barrier disappears. For comparison, also shown in Figure 5-

5 are predictions from the 3-dimensional HNC [22] and from the DFT and curvature 

expansion method [155]. While the HNC overestimates the maximum attraction between 

the lock and a perfectly matched key, the opposite is true for the results from the 
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curvature expansion method. Furthermore, application of the curvature expansion is 

ambiguous for concave objects, especially for systems with a discontinuous curvature 

[155, 169]. 

Similar to interactions between two identical spheres, the attraction between the 

lock and key is also related to the local distributions of small particles. Figure 5-6 shows 

the solvent density distributions obtained from MC simulation. When the size of the 

testing particle (key) matches perfectly that of the cavity at the substrate (lock), the 

system reaches the maximum entropy when the key fits into the lock. In this case, the 

solvent molecules have the maximum accessible volume. Figure 5-6d indicates that the 

solvent accessible volume and the lock-key potential decrease monotonically as 

separation between the key and the lock increases. When the separation between the lock 

and key is sufficiently large, we expect that the distributions of the solvent molecules 

around on the lock and key become independent and the entropic potential diminishes.  

Figure 5-7 shows similar solvent density profiles when the lock and key are not in 

perfect match. When the key is too small, the solvent enters into the unfilled hemi-

spherical pocket compromising the attraction at contact. Furthermore, at certain lock-key 

separation, the solvent is highly concentrated in the pocket (Figure 5-7b). The high local 

concentration results in the maximum repulsion in the lock-key interaction. The 

dependence of the PMF on separation for the oversized key is similar to that for the case 

of the perfect match case (Figure 5-5), and thus it is not shown here.  

5. 3. 4 Angle-Dependent Entropic Potential 
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To test the applicability of the proposed method for non-spherical systems, we 

study also the angle-dependence of the entropic potential between a spherocylinder and a 

hard wall. Because the modified fundamental measure theory (MFMT) is not directly 

applicable to rod-sphere mixtures, we calculate the depletion potential only from MC-

DFT and compare the results with simulation data and with predictions of an analytical 

method by Roth et al. [170]. Whereas the MC-PDT method requires the free energy 

functional of the mixture, the MC-DFT method requires only the free energy of the 

solvent, which makes it more generic for complicated multi-dimensional systems. 

Figure 5-8 shows a schematic representation of the cylinder-wall system. In 

simulation of the density profile of solvent molecules at a given rod configuration, we 

consider a hard wall placed at 0x =  and a hard spherocylinder of diameter σ  and 

cylinder length 10L σ=  with its center placed at distance x  from the wall. The 

orientation of the spherocylinder, relative to the direction perpendicular to the wall, varies 

from [ ]0, / 2θ π∈ . The simulation box is filled with a hard sphere solvent and the 

periodic boundary conditions are applied to the y  and z  directions [170]. Because the 

focus here is on the orientation dependence of the entropic potential, the rod center is 

either fixed at the smallest distance from the wall (i.e., with one end in contact with the 

surface, ( )min ( ) cos / 2x Lθ σ θ= + ) or at 5.5x σ= . For all cases, the lengths of the 

simulation box are 20y zL L σ= =  and 16xL σ= . 

Figure 5-9 presents the reduced depletion potential ( )min ,W xβ θ  as a function of 

θ . The agreement between MC-DFT and the DFT calculation by Roth et al is excellent 
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[170]. When the rod is parallel to the wall, i.e., / 2θ π= , the DFT calculations yield a 

contact potential significantly greater than that from the AO theory. The trend is 

consistent with their performance for the sphere-sphere and sphere-wall interactions[154]. 

The AO theory underestimates the contact potential primarily due to its negligence of the 

solvent-solvent interactions. Such depletion effect is due to the solvent density 

distribution which is shown in Figure 5-10.   

Because of the inhomogeneity of the depletion potential on the rod surface, the 

entropic force introduces a torque ( ),x θM  that varies with the rod position and angle θ  

[170].  From the depletion potential ( ),W x θ , we can obtain the torque ( ),x θM  around 

an axis passing through the center of the rod and parallel to the wall [170] 

 ( ) ( ),
,

W x
x θ

θ
θ

θ
∂

= −
∂

M n , (5.11)  

where θn  is the unit vector normal to the symmetry plane shown in Fig. 5-8. Figure 5-11 

shows the dependence of torque on orientation when the rod center is fixed at 5.5x σ= . 

The line denotes the results from the MC-DFT and the symbols are from molecular 

dynamics simulations [170]. The hybrid method and simulation agree well.  

5. 4 Conclusions 

We introduced two complementary methods for studying the entropic forces in 

hard-sphere solvents by combination of Monte Carlo (MC) simulation and the density 

functional theory (DFT). In the first method (MC-DFT), MC simulation is used to sample 

the solvent density profiles at different colloidal configurations, and the entropic force is 

obtained from the difference in the grand potential. In the second method (MC-PDT), 
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MC simulation is used to calculate the solvent density around a single particle, and the 

potential of mean force is obtained by using the potential distribution theorem (PDT). For 

hard-sphere systems, the free energy functional has been calibrated in a number of 

previous publications [85, 88] and has been broadly used by others [171]. Because the 

fundamental measure theory provides an extremely accurate prediction of the free-energy 

functional, the density profile obtained from minimization of the free energy is expected 

similar to that from simulation; thus, the latter can be used as an input for the DFT 

calculations. We have tested the performance of the hybrid MC-DFT method by 

comparing with results from direct MC/MD simulations for the potential of mean force 

between a pair of hard spheres, between a hard sphere and a hard-wall, in colloidal “lock 

and key” system, and between a hard rod and a hard surface. In addition, comparison was 

made between the hybrid method and direct DFT calculations. The theoretical predictions 

are all in good agreement with results from full simulations. Because MC-DFT requires 

only an accurate DFT for the solvent, its performance is in general superior to MC-PDT, 

which relies on the density profile of the solvent near a single particle and a free energy 

function for the solute-solvent mixture. Nevertheless, MC-PDT avoids simulation at 

different colloidal configurations and therefore it is numerically much more efficient. In 

comparison with alternative methods, both MC-DFT and MC-PDT take the advantages of 

simulation and analytical calculations for multi-dimensional structure and 

thermodynamic properties, and both are computationally more efficient than direct 

simulations. 
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Whereas for numerical calibration this work is focused on relatively simple 

systems, we expect that, with a good expression of the free-energy functional to account 

for various components of intermolecular interactions and correlation effects, a similar 

procedure can be extended to more realistic systems including to those underlying 

biological and physical processes of direct interest for practical applications.  
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Figure 5-1 Depletion potential between two large particles in a solvent of small particles 
at different densities. The size ratio between the big and small particles is 5s = . The 
symbols are MC simulation results by Dickman [154], the red lines are from the MC-
DFT calculations, the green lines are from  MC-PDT , and the blue lines are from DFT-
PDT calculations [68, 152]. The solid lines are bulk solvent packing density 0.116η =  
and dashed lines are bulk solvent packing density 0.229η = . 
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Figure 5-2 (a) Contour plots of the solvent density near two big spheres at contact 
( 0H = ). Here the packing density of small spheres is 0.116η = . The centers of two big 
particles are placed along the x-axis ( 0y = , 0z = ). (b) 1.5H σ= . (c) 2.5H σ= .  
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Figure 5-3 Depletion potentials between a big sphere ( 5s = ) and a flat hard wall 
immersed in a sea of small hard spheres at different bulk densities. The symbols are MC 
simulation results by Dickman [154], the red lines are from the MC-DFT calculations, 
and the green lines are from the MC-PDT predictions. The solid lines are bulk solvent 
packing density 0.1η =  and dashed lines are bulk solvent packing density 0.2η = . 
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Figure 5-4 The geometry of the key and lock system ( 0y =  plane cut). The key is a big 
spherical particle with diameter keyD  and the lock is a substrate with a hemispherical 
pocket with diameter lockD . The separation between key and lock is represented by the 

distance between the centers of key placing at ( ),0,0x  and lock at ( )0 ,0,0x . 
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Figure 5-5 (a) Depletion potential between a hard spherical key with key diameter 
4keyD σ=  and a hard hemi-spherical lock substrate with lock diameter 5lockD σ=  in a 

hard- sphere solvent at bulk packing fraction 0.367η = . We compare the MC-PDT (blue 
line) and MC-DFT (magenta line) methods with the simulation data (symbols), HNC 
results (red line) from Kinoshita [22] and DFT results (green line) from P.M. Konig [155]. 
(b) The same to Fig. 5-5 (a) except with key diameter 5keyD σ= . (c)  The same to Fig. 5-
5 (a) except with key diameter 6keyD σ= .  
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Figure 5-6 Contour plots for the solvent density near a “key-lock” system. The key 
diameter is 5keyD σ=  , and the hemi-spherical lock has a cavity of diameter 5lockD σ= . 
The packaging fraction of hard spheres in the bulk is 0.367η = . The centers of the key 
and lock are aligned in the x-direction and the figure is plotted in a way similar to that in 
Fig. 5-2. (a) 0 0x x− = , (b) 0 2x x σ− = , and (c) 0 4x x σ− = . (d) The excluded volume 
difference ( ) ( ) ( )0 0ex ex exV x x V x x V∆ − = − − ∞  for different separation between lock and 
key particle. ( )0exV x x−  is the excluded volume due to lock substrate and key particle. 
The solvent available volume is negatively proportional to the excluded volume.   
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Figure 5-7 The same as Fig. 5-6 except that the key diameter 4keyD σ=  and (a) 

0 0.5x x σ− = − . 
 

 

(a) 

 

(b) 



166 
 

 

(c) 

 

 

 

 

 

 

 

 

 

 

 



167 
 

Figure 5-8 Schematic of a hard rod near a wall ( 0y =  plane cut) in a hard-sphere solvent. 
The spherocylinder is placed at ( ),0,0x  while the wall is at 0x = . The closet distance 

between them is ( ) ( )min cos / 2x Lθ σ θ= + .  
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Figure 5-9 The contact potential ( )min ,W xβ θ  as a function of angle θ  between a hard 
spherocylinder and a flat wall. The length of the hard spherocylinder is 10L σ=  and the 
packing fraction for the hard spheres in the bulk is 0.2239η = . The solid line is from 
DFT by R. Roth [170], the dashed line is from AO theory, and symbols represent the 
MC-DFT results.  
 

 

 

 

 

 

 

 

 

 

0.0 22.5 45.0 67.5 90.0
-12

-10

-8

-6

-4

-2

0

 DFT by R. Roth
 AOs
 MC-DFT

η=0.2239, L/σ=10

 

 

βW
(x

m
in
(θ

),θ
)

θ[degrees]



169 
 

Figure 5-10 Contour plots ( 0y =  plane) for density distribution of small hard spheres in 
the presence of a hard rod at ( )5.5 ,0,0σ  and a flat wall at 0x = . The packaging fraction 

of the bulk state is 0.2239η = . (a) 0θ =  , (b) 30θ =  , and (c) 90θ =  . 
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Figure 5-11 The torque ( ),M xβ θ  between a hard rod and a flat wall in a hard-sphere 
solvent. Here 5.5x σ= , the length of the hard spherocylinder is 10L σ= , and the 
packaging fraction of the bulk state is 0.2239η = . The solid line is our MC-DFT 
calculation and symbols are from MD.  
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Table 5-1 Different methods for calculation of the potential of mean force (PMF). 
 

Methods MC-DFT 
 

MC-PDT DFT-PDT MC 

Density profile MC MC DFT Direct 
sampling 

 
Free energy 
calculation 

DFT PDT PDT Integration of 
the mean force 
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Chapter 6 A New Theoretical Method for Rapid Prediction of Solvation Free 

Energy in Water 

 

Reprinted in part with permission from [Shuangliang Zhao, Zhehui Jin and Jianzhong Wu, 

Journal of Physical Chemistry B, Volume 115, Issue 21, Page 6971-6975, 2011]. 

Copyright (2011), American Chemical Society. 

Equation Chapter (Next) Section 1 

Abstract 

We present a new theoretical method for rapid calculation of the solvation free energy in 

water by combining molecular simulation and the classical density functional theory 

(DFT). The DFT calculation is based on an accurate free-energy functional for water that 

incorporates the simulation results for long-range correlations and the fundamental 

measure theory for the molecular excluded-volume effects. The numerical performance 

of the theoretical method has been validated with simulation results and experimental 

data for the solvation free energies of halide (F-, Cl-, Br- and I-) and alkali (Li+, Na+, K+, 

Rb+ and Cs+) ions in water at ambient conditions. Because simulation is applied only to 

the particular thermodynamic condition of interest, the hybrid method is computationally 

much more efficient than conventional ways of solvation free energy calculations. 

6. 1 Introduction 

Understanding dissolution of various chemical species in water has been an 

eternal pursuit of solution chemistry [172-175]. While the literature is vast, recent interest 

has been mostly focused on the microscopic details of solute-water interactions and the 
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effect of the local water structure on the chemical and biochemical affinities of dissolved 

species [4, 176]. Such information is indispensible for studying chemical/biochemical 

processes in aqueous systems including relaxation dynamics, stability of 

biomacromolecules, and “lock-key” interactions for rational drug design [15, 177]. 

Whereas traditional thermodynamic methods and the semi-empirical theories of solvation 

(e.g., the Born model and the Langevin-Debye theory) treat water as an “inert” dielectric 

medium [178-181], recent theoretical and experimental investigations highlight the 

importance of the surrounding water molecules as an active component of the chemical 

and biochemical interactions [15, 177]. Despite significant progress in recent years 

toward a comprehensive understanding of solvation in water, quantification of the water 

structure at atomistic length scales and, more importantly, connection of the local water 

structure to the properties of dissolved species remain a daunting scientific challenge. 

Current theoretical investigation of water structure at very small length scales is 

mostly based on molecular simulations [182, 183]. Given a semi-empirical force field or 

an efficient first-principle algorithm for the solute-solvent interactions, computer 

simulation provides atomistic details of solvation in water including those pertinent to 

biological systems. While molecular simulation yields microscopic structure 

complementary to experimental measurements of the thermodynamic properties, lengthy 

calculation is often required to establish the structure-property relationships [184]. 

Besides, approximation of the intermolecular interactions (or first-principle calculations) 

necessitates certain discrepancy between simulation and experiment [185]. Alternatively, 

solvation in water may be studied with a number of analytical methods such as the 
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integral-equation theories [186-189], the classical density functional theory [190-192],  

the scaled-particle theory [8], and modified Born models [193]. These analytical methods 

are computationally efficient in comparison to molecular simulation and provide direct 

information on thermodynamic properties or/and explicit structure-property relationships. 

Regrettably, the numerical performance of conventional analytical methods is often 

limited not only by the semi-empirical nature of the intermolecular potential and but also 

by approximations for various multi-body correlation effects. 

In this work, we propose a new theoretical procedure to predict the solvation free 

energy in water by combining the merits of molecular dynamics (MD) simulation and the 

classical density functional theory (DFT). We use MD to calculate the microscopic 

structure up to atomic details and then the DFT to link the microscopic structure with 

thermodynamic properties. For efficient DFT calculations, the solute degrees of freedom 

are decoupled from those of the solvent molecules. The DFT free-energy functional 

incorporates the microscopic structure of water obtained from the simulation, the 

modified fundamental measure theory (FMT) [83, 85, 88] for molecular excluded volume 

effects, and a bridge functional for long-range correlations. The new computational 

procedure has been validated with simulation and experimental data for the solvation free 

energies of halide (F-, Cl-, Br- and I-) and alkali (Li+, Na+, K+, Rb+ and Cs+) ions in water 

[194]. 

6. 2 Theory 

We consider solvation of individual monovalent ions in water at ambient 

conditions. As being extensively studied before, water molecules are represented by the 
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SPC/E model [194] and water-ion interactions are represented by the Lennard-Jones 

potential plus Coulomb forces [195]. While we use relatively simple models for 

calibration of the new theoretical method, a similar procedure can be extended to systems 

where both the solute and solvent molecules are more complicated. 

The solvation free energy is defined as the reversible work to transfer a solute 

molecule from a hypothetical ideal-gas state into the pure solvent at a fixed temperature 

and the solvent chemical potential (or equivalently, the solvent temperature and pressure). 

To transfer a single solute molecule (or ion) from vacuum to a solvent of constant 

temperature, volume and chemical potential, the solvation free energy corresponds to the 

change in the grand potential, i.e., 

 ( ) ( ) [ ]0; , , ; , , ; , ,F V T V T V Tr µ r µ r µ= Ω −Ω      x x , (6.1) 

where ( )r x  stands for the density profile of water molecules near the solute; composite 

vector ( ),= Θx r  specifies the position and orientation of a water molecule, 0r  and µ  

are, respectively, the average density and the chemical potential of water molecules in the 

bulk, and T  stands for the absolute temperature. For bulk water, ( ) 0 0 /n dr r= = Θ∫x  

where 0n  is the number density of water molecules in the bulk. Because the solvation 

free energy is an intensive thermodynamic quantity independent of the system size, 

numerical implementation of Eq. (6.1) requires that the system volume V  must be 

sufficiently large such that the properties of water remote from the solute are the same as 

those corresponding to the bulk. 
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With a molecular model for water and water-solute interactions, it is 

straightforward to calculate the local density profile of water molecules by molecular 

simulation. Direct simulation of the solvation free energy, however, would entail an 

imaginary thermodynamic pathway to transfer a solute molecule from the ideal-gas state 

into bulk water. Because a large number of thermodynamic states must be used to 

represent the reversible process, the free-energy calculation is computationally 

demanding [196, 197]. Application of the DFT alleviates such numerical burden because 

it provides a direct connection between the microscopic structure and thermodynamic 

properties. 

Water molecules around a single solute consist of an inhomogeneous system of 

pure water in the presence of an effective external field defined by the solute-solvent 

interactions. The grand potential is given by [65] 

 
( ) ( ) ( ){ }

( ) ( ) ( )

3; , , ln 1B

ex
ext

V T k T d

d V F

r µ r r

µ r r

 Ω = Λ −    

+ − +      

∫
∫

x x x x

x x x x
, (6.2) 

where Bk  stands for the Boltzmann constant, Λ  is an effective thermal wavelength for 

water molecules, and ( )extV x  represents the external potential (here the solute-solvent 

interaction). ( )exF r  x  denotes the excess intrinsic Helmholtz energy, i.e., deviation of 

the free energy from that of an ideal-gas state due to intermolecular interactions. Here 

intrinsic means that the property depends only on the pair potential and the microscopic 

distribution of water molecules, not directly related to the water-solute interaction. In 

other words, the free energy functional is universally applicable to water at arbitrary 
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inhomogeneous conditions. As described in Appendix C, Eq. (6.2) can also be used to 

calculate the self-solvation free energy (or excess chemical potential) of pure water by 

tagging one water molecule in the bulk.  

Formally, the excess intrinsic Helmholtz energy may be expressed relative to that 

of the bulk water at the same temperature and chemical potential [77, 198] 

 
( ) [ ] ( )

( ) ( ) ( ) ( )

0 0

1 2 1 2 1 2 0, ;
2

ex ex ex

B
B

F F d

k T d d c F

r r µ r

r r r r

= + ∆  

− ∆ ∆ +   

∫

∫ ∫

x x x

x x x x x x x
, (6.3) 

where ( ) ( ) 0r r r∆ = −x x , 0
exµ  and ( )1 2 0, ;c rx x  stand for, respectively, the excess 

chemical potential and the two-body direct correlation function for the pure water, and 

( )BF r  x  is a bridge functional that accounts for thermodynamic non-ideality beyond 

the two-body correlations. Without the bridge functional, Eq. (6.3) becomes equivalent to 

the hypernetted chain (HNC) approximation [21], which has been used extensively for 

the solvation research (see for example [199]).  As detailed in Appendix C, ( )r x  and 

( )0, ';c rx x  can be calculated from molecular simulation of bulk water.  

We divide the bridge functional ( )BF r  x  into a contribution due to the short-

range (SL) molecular excluded-volume effects and that due to longer-ranged (LR) van 

der Waals and electrostatic interactions: 

 ( ) ( ) ( )SR LR
B B BF F Fr r r= +          x x x . (6.4) 

The total bridge functional ( )BF r  x  must satisfy the Euler-Lagrange equation: 

 ( ) ( ) ( ) ( ) ( )0/ ln ' , '; 'BF y d cδβ r δr r r= − ∆   ∫x x x x x x x , (6.5) 
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where ( ) ( ) ( ) 0exp /exty Vr β r≡   x x x  denotes the solute-solvent cavity correlation 

function. Eq. (6.5) is obtained by minimization of the grand potential (Eq. (6.2)) with 

respect to ( )r x  . With the local density ( )r x  obtained from molecular simulation, we 

can calculate ( ) ( ) ( )/BB Fδ r δr≡   x x x  from Eq. (6.5) over the region accessible to 

water molecules. Within the solute core, the density profile vanishes but the solute-

solvent cavity correlation function remains finite. In this region, the bridge functional is 

closely related to the molecular excluded-volume effects. Whereas there is no a priori 

knowledge for the SR bridge functional, the excluded-volume contribution arises mainly 

from the physical size of water molecules. In this work, we assume that the short-range 

component of the bridge functional can be approximated by that of a hard-sphere system 

with the density profile identical to that of oxygen atoms in water, i.e., 

 ( ) ( )SR HS
B BF F nr ≈      x r , (6.6) 

where
 ( ) ( ),n dr= Θ Θ∫r r . Because of the universality of intrinsic Helmholtz energy for 

water, the hard-sphere diameter d  can be determined self-consistently by considering the 

excess chemical potential of pure water, i.e., by application of the same theoretical 

procedure to calculating the self-solvation free energy of a water molecule in bulk water 

(As detailed in Appendix C, we obtain 2.85d = Å for the SPC/E water considered in this 

work [200, 201]). For the hard-sphere reference system, the bridge functional is given by 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
0 0,

(2)
1 2 1 2 1 22

HS ex ex ex
B HS HS HS

B
HS

F n F n F n d n

k T d d n n c

µ= − − ∆      

+ ∆ ∆ −

∫

∫ ∫

r r r r

r r r r r r
, (6.7) 
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where ( ) ( ) 0n n n∆ = −r r , and 0,
ex

HSµ  and ( )(2)
1 2HSc −r r  are, respectively, the excess 

chemical potential and the direct correlation function of bulk hard spheres. Accurate 

equations are available for predicting the structural and thermodynamic properties of both 

uniform and inhomogeneous hard-sphere systems [171]. In this work, the properties of 

the reference hard spheres are calculated from the modified fundmanetal measure theory 

(MFMT) [85, 88]. 

Because for a system with uniform density the excess intrinsic Helmholtz energy 

reduces to that of the bulk system, both the SR and LR components of the bridge 

functional disappears as ( ) 0r∆ =x . Besides, it is known from previous work that the 

bridge functional is dominated by the short-range interactions [202-204]. As a result, we 

expect that the LR component of the bridge functional is relatively small and it may be 

approximated by a linear functional integration: 

 ( ) ( ) ( )LR LR
B BF k T d Br r≈ − ∆   ∫x x x x , (6.8) 

where 

 ( ) ( ) ( ) ( ) ( )0 0ln ' , '; ' /

0 otherwise
LR y d c

B
r r r r δ − ∆ ≥= 



∫x x x x x x
x . (6.9) 

In Eq. (6.9), parameter δ  defines the solvent accessibility: the space is solvent accessible 

if ( ) 0/r r δ≥x  and inaccessible otherwise. Apparently, δ  is intimately related to the 

hard-sphere diameter of the reference system. For calculations in this work, we use 

610δ −=  . We find that the theoretical results are not sensitive to small variations of  δ  . 
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Once we have explicit expressions for the SR and LR components of the bridge 

functional (Eqs. (6.6) and (6.8)), we can finally derive the solvation free energy from Eq. 

(6.1), which, after some algebra, becomes 

 
( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( )

0

1 2 1 2 1 2 0

ln

, ; +              
2

LR
B B

SRB
B

F k T d y k T d B

k T d d c F

r r r r r

r r r r

= − + − ∆  

− ∆ ∆   

∫ ∫

∫ ∫

x x x x x x x x

x x x x x x x
. (6.10) 

As expected, the solvation free-energy is immaterial to the effective thermal wave length 

of water molecules. Without the terms related to the bridge functional, Eq. (6.10) would 

yield a solvation free energy identical to that from the HNC approximation. 

6. 3 Results 

We first use MD simulation to obtain the direct correlation function of bulk water 

and the local density profile of water molecules around individual ions (see Appendix C 

for details). From the local density and bulk correlation functions, we then calculate the 

solvation free energies by numerical integrations of Eq. (6.10). In the region not 

accessible to solvent molecules ( ( ) 0/r r δ<x  ), the cavity correlation function and the 

long-range component of the bridge functional make no contribution to the solvation free 

energy. In this region, the solvation free energy is determined by that of a hard-sphere 

reference system using MFMT [85].  

Table 6-1 summarizes the theoretical results for the solvation free energies of 

alkali ions (Li+, Na+, K+, Rb+, Cs+) and halide ions (F-, Cl-, Br-, I-) in water at 300K and 

mass density 0.996 g/cm3. These monomeric ions are considered in this work because 

extensive experimental, simulation, and theoretical results are readily available from 
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previous studies thus the published results for these simple systems provide ideal 

benchmark data for calibration of the proposed computational procedure. For comparison, 

Table 6-1 also includes some representative results from previous theoretical 

investigations. 

As well documented [205, 206], the solvation free energies of individual ions are 

not accessible to direct experimental measurements. As a result, the conventional values 

are often tabulated relative to the solvation free energy of proton that cannot be directly 

used for compassion with theoretical predictions. The two sets of experimental data 

shown in Table 6-1 correspond to the “absolute” values obtained from different 

estimations of the proton solvation free energy. The data from Schmidt et al. used the 

proton solvation free energy (-251.4 kcal/mol at 298 K) estimated from thermodynamic 

measurements r dissociation of water [207]. The much cited values tabulated by Marcus 

involve a so-called “extra thermodynamic assumption”, i.e.,  a large cation and a large 

anion of equal size and equally low electric charge have the same solvation free energy 

(as predicted by Born model) [208]. Based on the extra thermodynamic assumption and 

the Gibbs energy of solvation for tetraphenylarsonium tetraphenylborate (TABA), 

Marcus deduced a proton solvation free energy (-252.4 kcal/mol at 298 K) remarkably 

close to that given by Schmidt et al. (even though they differ much in both the enthalpy 

and entropy of the solvation). Besides the difference in the reference solvation free 

energy, additional discrepancies between the two sets of experimental data, in particular 

for the solvation free energy of anions, are probably due to different sources of 

experimental measurements. Table 6-1 also includes two sets of simulation data which 
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differ slightly in terms of the Lennard-Jones parameters for ion-water interactions [195]. 

The simulation results were obtained without evoking a hypothetical vacuum-water 

interface, i.e., the solvation free energies calculated do not include the phase or surface 

potential arising from anisotropic distribution of water molecules at the interface [209]. 

Table 6-1 shows that, with the same parameters for water-water and ion-water 

interactions, our theoretical predictions for the ion solvation free energy agree well with 

those from a recent simulation by Joung and Cheatham [195]. In comparison with the 

experiment data, the solvation free energies predicted from this work are comparable to 

the simulation results: while for alkali ion (Li+, Na+, K+, Rb+, Cs+) the simulation results 

appear closer to experimental data, the opposite is true for halide ion (F-, Cl-, Br-, I-). 

From a practical point of view, the difference between the theory and simulation is 

insignificant, in particular if we refer to another set of simulation data predicted with a 

slightly different set of parameters for the Lennard-Jones potential between ion and water 

reported by Jensen and Jorgensen [210].   

We have also compared the solvation free energies predicted from this work with 

those from the Born solvation model and from the mean-spherical approximation (MSA) 

[211]. The well-known Born model accounts for the self-electrostatic energy for 

ionization of a neutral particle in a continuous dielectric medium. According to this 

model, the solvation free energy depends only on the particle size and the bulk dielectric 

constant of the solvent. Because the local dielectric property of the solvent near an ion 

can be quite different from that in the bulk and because an appropriate selection of the 

ionic radius is often questionable, the Born model is not very reliable and has been much 
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criticized. In comparison to the Born model, the MSA predictions are much closer to the 

experimental results. However, representation of water molecules in terms of hard 

spheres each with a point dipole is an oversimplification from a microscopic point of 

view. Besides, the numerical performance of MSA is not reliable even within the highly 

idealized model. 

Finally, we compare the solvation free energies predicted from Eq. (6.10) with 

those from the HNC approximation. These two methods differ only in terms of the bridge 

functional, i.e., contributions to the intrinsic Helmholtz energy beyond the quadratic 

terms. Table 6-1 shows that the agreement between the HNC predictions and the 

experimental results barely matches those from the Born model, indicating that a 

quadratic approximation is insufficient to capture the solvation free energy quantitatively. 

6. 4 Conclusions 

We present a new theoretical method for calculating the solvation free energies of 

ions in water using molecular dynamics (MD) simulation and the classical density 

functional theory (DFT). An accurate intrinsic Helmholtz energy functional for water has 

been developed by decomposing the intermolecular potential into a short-range (SR) 

repulsion and longer-ranged (LR) van der Waal and electrostatic interactions. The free 

energy due to the SR repulsion is accounted for by using an inhomogeneous hard-sphere 

reference system and that due to the LR interactions are calculated from a linear 

approximation of the bridge functional. With the local density distribution of water 

molecules obtained from MD simulation, the DFT predicts the solvation free energies of 

halide and alkali ions in excellent agreement with simulation results. In comparison to 
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conventional simulation methods, the new theoretical approach is computationally very 

efficient because it avoids simulation along a hypothetical thermodynamic pathway to 

connect the initial and final states of the solvation process.   

We should point out that the new computational method is not limited to any 

particular force field for water or ion-water interactions. Indeed, the same procedure can 

be applied to any semi-empirical models that entail a pairwise additive intermolecular 

potential for water. While combination of the DFT with MD simulation greatly reduces 

the computational cost for free energy calculations, our method is intrinsically limited by 

the applicability of MD simulation concerning the system size (e.g., solvation of large 

proteins) and by the reliability of the semi-empirical force field (e.g., molecular model for 

water and water-transition ion interactions). 
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Table 6-1 Solvation free energies of cations and anions in SPC/E water obtained from 
different methods. All values are negative and in the units of kcal/mol. The temperature is 
300K and mass density of SPC/E water is 0.996 g/cm3. 
 

 
Experiment  Simulation   Theory 

 

  
Marcus 
[208]  

Joung-
Cheatham 

[195] 

Jensen-
Jorgensen 

[210]  
 

This work 
MSA 
[211] 

Born 
[211] Schmid et 

al [207] 
 total HNC 

Li+ 113.8  113.5  113.3 105.6  111.9 178.7 115.5 186.2 
Na+ 88.7  87.2  88.4 76.4  88.4 153.2 96.4 141.3 
K+ 71.2  70.5  71 59.5  69.5 127.3 79.6 107.8 
Rb+ 66.0  65.7  65.6 54.5  64.2 118.7 75.6 100.6 
Cs+ 60.5  59.8  60.5 48.6  60.3 110.3 68.9 89.2 

 
    

  
    

 
F- 119.7  111.1  119.8 119.6  118 153.4 94.7 137.7 
Cl- 89.1  81.3  89.3 91  86.5 107.7 74.1 90.6 
Br- 82.7  75.3  82.7 85.8  81.5 97.6 69.6 90.1 
I- 74.3  65.7  74.4 77.5  72.9 82.2 63.1 79.6 
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Chapter 7 A Perturbative Density Functional Theory for Square-Well Fluids 

 

Reprinted in part with permission from [Zhehui Jin, Yiping Tang and Jianzhong Wu, 

Journal of Chemical Physics, Volume 134, Issue 17, Page 174702, 2011]. Copyright 

(2011), American Institute of Physics.  

Equation Chapter (Next) Section 1 

Abstract 

We report a perturbative density functional theory for quantitative description of the 

structural and thermodynamic properties of square-well fluids in the bulk or at 

inhomogeneous conditions. The free-energy functional combines a modified fundamental 

measure theory to account for the short-range repulsion and a quadratic density expansion 

for the long-range attraction. The long-correlation effects are taken into account by using 

analytical expressions of the direct correlation functions of bulk fluids recently obtained 

from the first-order mean-spherical approximation. The density functional theory has 

been calibrated by extensive comparison with simulation data from this work and from 

the literature. The theory yields good agreement with simulation results for the radial 

distribution function of bulk systems and for the density profiles of square-well fluids 

near the surfaces of spherical cavities or in slit pores over a broad range of the parameter 

space and thermodynamic conditions.   

7. 1 Introduction 

Understanding the equilibrium structure and thermodynamic properties of 

complex fluids such as colloids, protein solutions and micelles often relies on model 
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systems where drastically simplified potentials are used to describe the solvent-mediated 

potential of mean force [212-216]. Among such model systems, the square-well (SW) 

potential is a popular choice because it provides succinct description of the molecular 

excluded-volume effects as well as the strength and the range of solvent-mediated 

colloidal interactions. Despite its simplicity, accurate prediction of the properties of the 

SW fluids remains a theoretical challenge for systems with long-range attractions and/or 

at inhomogeneous conditions. 

Statistical-mechanical study of the equilibrium properties of SW fluids was 

originated in the late 1960s concomitant with development of the integral-equation and 

perturbation liquid-state theories [217]. In particular, the perturbation theory of Barker 

and Henderson provides the groundwork for much of later theoretical descriptions of the 

bulk thermodynamic properties [218-222]. The first attempt to derive an analytical 

expression for the equilibrium structure of SW fluids was reported by Baxter using the 

Percus-Yevick (PY) approximation [223]. Explicit expressions were also given for the 

equation of state and the internal energy of SW fluids in the limit such that the range of 

attraction vanishes and the well depth approaches infinite (i.e., in the “sticky” hard-

sphere limit). Baxter’s theoretical procedure was later extended by Nezbeda to systems 

with a non-zero but very short-range attraction [224]. Another extension of Baxter’s 

theory was proposed by Yuste and Santos based on statistical-mechanics sum rules and 

the low-density expansion of the radial distribution function [225]. These extensions are 

most accurate when the attraction range is extremely narrow, typically within about 5%  

of the hard-sphere diameter. The sticky-hard-sphere model was also used by Malijevsky 
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et al. as a reference for effective representation of short-range attraction in SW fluids 

[226]. Similar to other extensions of Baxter’s integral-equation theory, the mapping 

method is reliable only when the range of attraction is much smaller than the hard-sphere 

diameter. 

The properties of bulk SW fluids can be predicted by numerical solutions of the  

integral-equation theories incuding the hypernetted-chain (HNC) approximation [227, 

228], the mean-spherical approximation (MSA) [229], the self-consistent HMSA closure 

(i.e. an empirical superposition of the mean-spherical and the hypernetted-chain 

approximation) [230, 231], and more recently the self-consistent Ornstein-Zernike 

approximation (SCOZA) [232]. With the condition of thermodynamic self-consistency 

imposed at each equilibrium state, the SCOZA gives excellent predictions of the 

structural and thermodynamic properties of bulk SW fluids including the critical 

temperature and pressure. In addition to integral-equation theories, a simple expression 

was derived by Sharma and Sharma [233] for calculating the static structure factor of SW 

fluids. The closed form was obtained from the random phase approximation (RPA), i.e., 

the direct correlation function is assumed the same as that of the hard-sphere fluid within 

the hard core and the long-range component follows MSA. While the analytical 

expression is convenient for practical applications, the numerical performance can be 

much improved by using the optimized RPA (ORPA) of Andersen and Chandler[234] 

that imposes the exact constraint due to the hard-core exclusion. Recently, Lang and 

coworkers analyzed systematically the performance of ORPA, along with several 

integral-equation methods including the Rogers–Young (RY) integral-equation method, 
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for representing the structural and thermodynamic properties of bulk SW fluids by 

extensive comparison with Monte Carlo simulation data [235]. At intermediate and high 

temperatures, ORPA agrees well with the simulation results but its performance 

deteriorates at low temperature or as the range of attraction increases. For systems with 

narrow-range attractions, the RY method yields excellent results but numerical 

difficulties emerge as the range of the attractive potential increases. Another avenue to 

improve the RPA theory was proposed by Tang and Lu [236] by using the first-order 

MSA (FMSA) closure. Recently, Tang [100] derived an analytical expression for the 

direct correlation function of bulk SW fluids and the derivation was extended by Hlushak 

et al. for systems with longer-range interactions [104]. Although FMSA does not impose 

thermodynamic self-consistency per se, it offers analytical expressions for both the 

equation of state and various correlation functions of SW fluids that are convenient for 

practical applications.  

Whereas statistical-mechanical research on uniform SW fluids is now well 

advanced, relatively few theoretical developments have been devoted to SW fluids at 

inhomogeneous conditions [65, 69, 237-241]. Previous investigations of inhomogeneous 

SW systems often hinge on various forms of weighted-density or/and mean-field 

approximations that ignore nonlocal packaging effects and long-range correlations. 

Although the weighted density approximation (WDA) works well for inhomogeneous 

hard-sphere systems in comparison with exact results from molecular simulations, its 

combination with the mean-field approximation is mostly insufficient to capture the 

attractive potential quantitatively [242, 243]. 
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The purpose of this work is to extend a perturbative density functional theory 

(PDFT) proposed by Tang and Wu [101] to SW fluids and tests its performance by 

comparing with molecular simulations. The PDFT combines a modified fundamental 

measure theory (MFMT) for the hard-sphere excluded-volume effects [85, 88] and the 

first-order mean spherical approximation (FMSA) for the bulk direct correlation 

functions [244].  The non-mean-field method has been successfully applied to a number 

of inhomogeneous systems including Lennard-Jones fluids [245], systems with multiple 

Yukawa potentials [246, 247], and Sutherland fluids [248]. While MFMT is directly 

applicable to systems with hard-core interactions, analytical expressions for the direct 

correlation function of uniform SW fluids were derived only recently by Tang [100] for 

the width of square-well attraction smaller than one particle diameter and by Hlushak et 

al. [104] for up to two particle diameters. These correlation functions have been proved 

numerically reliable in comparison with simulation results for bulk systems. However, no 

work has yet been reported to test the applicability of these direct correlation functions 

for inhomogeneous SW systems. 

The remainder of this article is organized as follows. Section 2 describes the 

perturbative density theory (PDFT) and simulation details. Calibration of the theoretical 

method is presented in Section 3. Specifically, we will validate the proposed theory by 

extensive comparison with simulation results for the radial distribution functions of bulk 

SW fluids with long-range attractions, and with simulation results for the inhomogeneous 

density profiles of SW fluids near spherical cavities and in slit pores. In Section 4, we 

discuss the strength and pitfall of the PDFT and summarize the key conclusions. 
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7. 2 Theory and Simulation Details 

In a SW fluid, the intermolecular interaction is represented by a pairwise additive 

potential that includes a hard-sphere repulsion and a fixed attractive energy of finite 

distance (i.e., “square well”) right beyond the hard core.  For one-component systems, the 

pair potential is given by 

 ( )
0

r
u r r

r

σ
ε σ λ

λ

∞ <
= − ≤ <
 ≥

, (7.1) 

where r  designates the center-to-center distance between two spherical particles, σ  

stands for the hard-core diameter, λ  denotes the range of attraction, and 0ε >  represents 

an attractive energy or the well depth. For typical colloids, spherical micelles or globular 

proteins in an aqueous environment, the solvent-mediated van der Waals attraction is 

most significant within a range about 10% of the particle diameter (i.e., 1~ 1.λ σ  ) [214, 

215]. However, the range of attraction can be much extended for systems with 

electrostatic or polymer-mediated interactions.  

We use the classical density functional theory (DFT) to describe the equilibrium 

structure and thermodynamic properties of SW fluids [64, 77, 198]. While DFT provides 

an exact mathematical framework for describing the equilibrium properties of both 

uniform and inhomogeneous systems, its application requires formulation of the grand 

potential as a functional of the density profile. For systems containing spherical particles, 

the grand potential can be expressed in terms of intrinsic Helmholtz energy functional 

( )F r  r  and one-body external potential ( )extV r  : 
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 ( ) ( ) ( ) ( )[ ]extF V dr r µ rΩ = + −       ∫r r r r r , (7.2) 

where dr  denotes a differential volume, ( )r r  stands for the local number density or the 

density profile, and µ  is the chemical potential. In general, the intrinsic Helmholtz free 

energy can be further decomposed into that corresponding to an ideal-gas system with the 

same microscopic structure and an excess due to the intermolecular potential, 

 ( ) ( ) ( )id exF F Fr r r= +          r r r . (7.3) 

In Eq. (7.3), the ideal-gas term is known exactly 

 ( ) ( )3ln 1id
BF k T d r r = Λ − ∫ r r r , (7.4) 

where Bk  denotes the Boltzmann constant, T  is absolute temperature, and Λ  is the 

thermal de Broglie wavelength. With an appropriate expression for excess Helmholtz 

energy ( )exF r  r , minimization of the grand potential yields the Euler-Lagrange 

equation 

 ( ) ( )3

1 ln /exFr δβ δr βµ = − Λ
r r . (7.5) 

The numerical details for solving the Euler-Lagrange equation are given in previous 

publications (see, e.g., reference [101]). Once we have the density profile, all 

thermodynamic properties and correlation functions of the system can be subsequently 

derived from the analytical expression of the grand potential functional. 

 Whereas there is no a prior knowledge on the excess Helmholtz energy for most 

systems of practical interest, reasonable approximations can be developed by following a 

number of standard statistical-mechanical procedures [77]. For SW fluids, the 
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thermodynamic non-ideality due to short-range interactions arises mainly from the 

molecular packaging effect, and long-range interactions are closely related to the density 

fluctuations. Because of the different origins of thermodynamic non-ideality, separate 

strategies are typically used to deal with the short- and long-range contributions to the 

excess Helmholtz free energy. 

 In perturbative DFT, we adopt the fundamental measure theory of Rosenfeld [83] 

for hard-sphere repulsion and a perturbative density expansion of the Helmholtz energy 

for the SW attraction [101]. Specifically, we divide the total excess Helmholtz energy 

into contributions due to the hard-sphere repulsion and the square-well attraction:  

 ( ) ( ) ( )ex ex ex
hs attF F Fr r r= +          r r r , (7.6) 

where ( )ex
hsF r  r  represents the excess Helmholtz energy of a hard-sphere reference 

system, and ( )ex
attF r  r  is the contribution due to the perturbative attraction. As in 

applications of the DFT to Lennard-Jones and Yukawa systems [101, 244], the modified 

fundamental measure theory provides an accurate description of the excess Helmholtz 

free energy due to the hard-sphere repulsion [85, 88] 
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where ( )1/ Bk Tβ = . The detailed expressions for the scalar and vector weighted densities, 

nα , 0,1, 2,3, , 2α = V1 V  can be retrieved from previous publications [85, 88]. On the 

other hand, the excess Helmholtz free energy due to the attraction is formulated by a 
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quadratic density expansion with respect to that of a bulk system with the same chemical 

potential but uniform density br : 

 
( ) ( )

( ) ( ) ( )1 ' ' '
2

ex ex att
att att b b b

att
b b b

F F d

d d C

β β r βµ r r

r r r r

= + −  

− − − −      

∫

∫ ∫

r r

r r r r r r
, (7.8) 

where ( )ex
att bF r  and att

bµ  are the attractive parts of the bulk excess Helmholtz energy and 

the bulk chemical potential, respectively, and ( )att
bC r  stands for the attractive part of the 

bulk direct correlation function (DCF). While in principle the DCF can be calculated 

from Fourier transform of the radial distribution function obtained from molecular 

simulation, here we use analytical expressions of ( )att
bC r  by Tang [100] for 2σ λ σ< ≤

and by Hlushak et al. [104] for 2 3σ λ σ< ≤ . For comparison, we also consider the mean-

field representation of the attractive Helmholtz energy 

 ( ) ( ) ( )1 ' ' '
2

MF
att attF d d uβ r r= −∫ ∫ r r r r r r , (7.9) 

where the attractive potential is ( )attu r ε= −  for r λ< . Similar to the optimized random 

phase approximation (ORPA), the mean-field method ignores all long-range correlations. 

To calibrate the above Helmholtz-energy equations (Eqs. (7.8) and (7.9)), we have 

compared the DFT predictions with results from Monte Carlo (MC) simulation for the 

microscopic structures of bulk and inhomogeneous SW fluids. MC simulation for bulk 

fluids was carried out using the canonical ensemble ( NVT ) and that for inhomogeneous 

systems using the grand canonical ensemble ( VTµ ). In both cases, we used a cubic 

simulation box with periodic boundary conditions. Typically the simulation box contains 



196 
 

about 750 particles for bulk systems, around 5000 particles for SW fluids near a cavity, 

and around 600 particles in slit pores. The MC moves were implemented using the 

Metropolis algorithms with 0.1 million cycles per particle for equilibrium and another 0.1 

million cycles per particle for sampling [166].  

7. 3 Results and Discussions 

In the following we examine the numerical performance of the PDFT by direct 

comparison with MC simulation data for the radial distribution functions of bulk fluids 

and the density profiles of SW fluids near hard spheres (i.e., cavities) or in slit pores. 

Representative system parameters and thermodynamic conditions are selected to ensure a 

systematic test of the analytical methods. To distinguish the two versions of DFT 

discussed above, we designate combination of MFMT for hard-sphere repulsion with the 

FMSA for square-well attraction as “MFMT+FMSA” and that of MFMT with the mean-

field approximation as “MFMT+MFT”.  

7. 3. 1 Radial Distribution Functions of Bulk SW Fluids ( 2λ σ> ) 

 The radial distribution function (RDF) of a bulk SW fluid can be calculated from 

the density profile around a “test particle” fixed at the origin such that the interaction 

between the test particle and any other particle in the system is the same as the pair 

potential, i.e., ( ) ( )extV r u r=  . In this case, the density profile in the pseudo-

inhomogeneous system is directly related to RDF, i.e.,  

 ( ) ( )
b

r
g r

r
r

= . (7.10) 
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The test-particle method was used before to predict the RDFs of bulk SW fluids with the 

range of attraction less than two particle diameters [249]. Figure 7-1, 7-2, and 7-3 show 

further comparisons of the theoretical results with simulation data for systems with long-

ranged attractions. We first consider the RDF of a density fluid ( * 3 0.75b br r σ≡ = ) at a 

reduced temperature * / 5.0BT k T ε≡ = . The system can be a stable liquid or a 

supercritical fluid depending on the range of the SW attraction. Figure 7-1 shows, as for 

systems with short-range attractions, the predictions from MFMT+FMSA agree 

excellently with the simulation results. As expected, the RDF exhibits discontinuity at the 

boundaries of the SW potential. Unlike that for systems with short-range attractions 

( 2λ σ< ), hard-sphere packaging leads to a second peak in the RDF around 2r σ=  when 

the range of attraction exceeds two particle diameter. Because of the discontinuity in the 

SW potential, the second peak may be truncated at the boundary of the attraction (e.g.

2.2λ σ= ). Because the RDF of a dense fluid is mainly determined by hard-sphere 

repulsion [249], the results from the MFMT+MFT (not shown) are virtually identical to 

those from the MFMT+FMSA.  

 Figure 7-2 shows a similar comparison between the theoretical results and 

simulation data for SW fluids close the vapor side of the vapor-liquid coexistence. Here 

we consider RDF at different temperatures and ranges of attraction with the density fixed 

at * 3 0.01b br r σ≡ = . In all cases, the predictions from the MFMT+FMSA agree well with 

the simulation results. Unlike that for a dense fluid, the RDF at low density is mainly 

determined by the pair interaction potential. As expected, the RDF of the vapor phase is 

close to a constant within the range of the SW interaction and it approaches to unity. 
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Figure 7-3 shows further comparisons for the SW fluid near the liquid-side of the 

coexistence curve at different combinations of temperature and range of attraction. In all 

cases, the agreement between MFMT+FMSA and MC simulation is excellent.  

7. 3. 2 Distribution of SW Fluids near Spherical Cavities 

 Understanding solvent distribution around a spherical cavity provides useful 

information for studying solvation thermodynamics, wetting/drying transitions, and the 

curvature effects of interfacial phenomena [250].  Because of its broad relevance, the 

model system is used here for calibrating the numerical performance of the PDFT for 

inhomogeneous SW fluids. For a SW fluid near a hard-sphere or spherical cavity, the 

one-body external potential is given by 

 
,

( )
0,ext

r R
V r

r R
∞ <

=  ≥
, (7.11) 

where R  denotes the cavity radius, i.e., the maximum distance that prohibits the 

accessibility of the  centers of SW particles. 

We first consider the distributions of SW fluids near a small cavity ( R σ=  ) at 

different temperatures, different bulk densities, and different ranges of attraction. Figure 

7-4 compares the density profiles predicted by the PDFT and by MC simulation for a SW 

fluid with 1.5λ σ=  at reduced temperature * 1.0T =  and several bulk densities. For 

comparison, this figure shows the PDFT results both from MFMT+FMSA and from 

MFMT+MFT. As explained before, the simulation was performed in VTµ  ensemble 

with the cavity fixed at the origin. The simulation box is sufficiently large such that far 

from the spherical cavity the solvent density reduces to that of the bulk fluid. Figure 7-4 
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shows that, near a small cavity, both the MFMT+FMSA and the MFMT+MFT 

predictions agree well with the simulation data. Here the good performance of the 

MFMT+MFT is mainly because, as the RDF of a dense liquid, the inhomogeneous 

structure near a small cavity is primarily determined by the hard-sphere repulsions. A 

closer comparison between the MFMT+FMSA and the simulation results reveals some 

small discrepancy as the bulk density decreases ( * 0.677r = ).This discrepancy arises 

primarily from the quadratic approximation in the density expansion (Eq. (7.8)), which 

becomes less reliable as the fluid is significantly depleted from the surface. While 

MFMT+FMSA slightly underestimates the contact value at low densities, opposite 

predictions are given by MFMT+MFT. At low fluid densities, the discrepancy of 

MFMT+MFT from the simulation is probably due to the fact that the mean-field theory 

gives a phase diagram quite different from that from MC simulation (The coexistence 

density of liquid phase from MC is * 0.647lr =  [251], while MFT gives * 0.602lr = ). At 

high packing densities, the numerical performance of MFMT+FMSA is excellent while 

MFMT+MFT still underestimates the contact density. 

 Figure 7-5 presents the density profiles of the same SW fluid near the small cavity 

( R σ= ) but at a higher temperature ( * 1.2T = ). As the temperature approaches to the 

vapor-liquid critical point, discrepancy between the mean-field theory and simulation 

results become more significant. In that case, we expect that MFMT+FMSA will be 

much more accurate than MFMT+MFT. As shown in Fig. 7-5, the MFMT+FMSA 

predictions agree well with MC simulation at all conditions. However, the performance 

of the MFMT+MFT noticeably deteriorates as the temperature increases approaching to 
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vapor-liquid critical point. Besides, the discrepancy between MFMT+MFT and MC 

simulation magnifies as the particle density decreases. 

 To test the effect of the attraction range, we show in Figure 7-6 the density 

distributions of SW fluids with a longer-well width ( 1.7λ σ=  ) near the spherical cavity 

of radius R σ= . Here we did not include results from MFMT+MFT predictions because, 

according to the mean-field theory, the system would be unstable in the bulk at certain 

densities. While the inter-particle attraction enhances with the range of attraction, the 

numerical performance of the MFMT+FMSA remains very robust.   

We now consider the performance of the PDFT for SW fluids near a larger hard 

sphere or cavity. Figure 7-7 shows the results for the same SW fluids as depicted in Fig. 

7-4 but near a spherical cavity of larger radius ( 5R σ= ).Unlike that near the small cavity, 

the particles are depleted from the hard surface as the bulk density decreases. Because of 

the quadratic expansion of the excess Helmholtz energy for the SW attraction, 

MFMT+FMSA overestimates the simulation results at low bulk density. Nevertheless, it 

faithfully captures the transition from depletion to accumulation as the bulk density 

increases. In all cases the performance of MFMT+FMSA is significantly superior to that 

of MFMT+MFT.   

 Figure 7-8 shows the density profiles of the SW fluid near the same spherical 

cavity but at a higher temperature ( * 1.2T = ), slightly below the vapor-liquid critical point 

of the bulk fluid ( *
, 1.31c FMSAT = ). Despite that MFMT+FMSA is not able to capture the 

dewetting transition near a macroscopic hard surface, it yields a density profile in 

reasonably agreement with the simulation result. Interestingly, the numerical 
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performance of MFMT+MFT remains inferior to that of MFMT+FMSA even though in 

principle the mean-field theory is able to describe the dewetting transition. Figure 7-9 

shows the density profiles of a SW fluid with a longer interaction range ( 1.7λ σ=  ) near 

the same spherical cavity. As mentioned above, the MFMT+MFT results are not included 

because, according to the mean-field theory, the systems would be unstable at some bulk 

conditions. While in general the numerical performance of the MFMT+FMSA is 

insensitive to the range of attraction, near a slightly dewetting surface it overestimates the 

local density for systems with short-range attraction (Fig. 7-8) but the trend is opposite 

for systems with a longer-ranged attraction (Fig. 7-9). 

7. 3. 3 Density Profiles of SW Fluids in Slit Pores      

 We finally consider the numerical performance of the PDFT for SW fluids near 

extended surfaces. Because the simulation is not directly applicable to systems with a 

single wall, here the comparison is focused on the density profiles of SW fluids in slit 

pores of different thicknesses and surface energies. For convenience, we assume that the 

two confining walls are identical and that the surface-fluid interaction can also be 

represented by the square-well potential, i.e., 
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, (7.12) 

where H  stands for the pore width,  AWε  and Wλ  designate the strength and the range of 

the surface energy.  For SW fluids confined between hard walls (i.e., 0AWε =  in Eq. 

(7.12)), such system has been thoroughly studied by Henderson and van Swol [252] and 
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their simulation results are used directly for calibration of the PDFT. When the confining 

walls are attractive, we carried out some additional MC simulations using the NVT  

ensemble. In our MC simulation, the slit pore is represented by a rectangular prism with 

periodic boundary conditions in the planar directions. The cross section area of the 

rectangular prism is fixed at 2100A σ=  and the height is 10H σ= . MC simulations were 

performed for SW fluids at different temperatures and different average densities (or 

different numbers of particles) inside the slit pore. Figure 7-10 presents the density 

profiles of SW fluids of different densities near a hard wall. Here the simulation results 

are from Ref. [252]; the MC simulation was carried out with the averaged density inside 

the slit pore fixed at * 0.568aver = , 0.672  and 0.746 , respectively. In all cases, the range 

of attraction between SW particles is fixed at 1.5λ σ= , and the reduced temperature is  

* 1.0T = . In the PDFT calculations, the density profiles were calculated from the average 

density instead of the bulk chemical potential: 

 ( )
0

1 H

av z dz
H

r r= ∫ . (7.13) 

Figure 7-10 shows that, similar to what we have discussed above, the 

MFMT+FMSA predictions are much more accurate than those from MFMT+MFT at all 

conditions. When * 0.568aver = , the fluid density in the middle of the slit pore is very 

close to that of the saturated liquid in the bulk ( * 0.669aver = ). The excellent performance 

of MFMT+FMSA near dewetting transition is rather unexpected.   

 Figures 7-11, 7-12, and 7-13 present the density distributions of SW fluids inside 

an attractive slit pore. In all cases, the reduced surface energy is fixed at 1.5AWβε =  and 
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the range of the surface attraction is Wλ σ= . The results from MFMT+FMSA calculation 

are compared systematically with MC simulation as well as those from MFMT+MFT by 

varying the system temperature, the range of attraction between SW particles, and the 

average density inside the slit pore. While at large interaction range some noticeable 

discrepancy exists near the surface, overall the agreement between MFMT+FMSA and 

MC simulation is rather satisfactory, in particular, for systems with short-range 

attractions. MFMT+FMSA faithfully captured the curve-up shape in density profiles near 

the attractive surface, which is missed by MFMT+MFT when the interaction range is 

relatively short (Fig. 7-11 and 7-12). For SW fluids with short-range interactions, 

MFMT+MFT overestimates the contact densities at low packing densities but the trend is 

opposite at high packing densities. Similar to that shown in Figs. 7-6 and 7-9, 

MFMT+MFT is not included for comparison because the mean-field approximation 

predicts that the system is unstable in this region. In contrast to Figs. 7-11 and 7-12, 

Figure 7-13 reveals that inside the attractive well from the surface, MFMT+FMSA 

becomes less accurate as the interaction range increases.     

7. 4 Conclusions 

 In this work, we have examined the numerical performance of a perturbative 

density functional theory for quantitative representation of the equilibrium structure of 

square-well fluids in the bulk and at inhomogeneous conditions. The PDFT incorporates 

the modified fundamental measure theory (MFMT) to account for the excess Helmholtz 

energy functional due to the hard-sphere repulsion and the first-order mean-spherical 

approximation (FMSA) for perturbative representation of the square-well attraction. For 
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bulk fluids, the thermodynamic properties predicted by the PDFT are fully consistent 

with those from the FMSA, which have been calibrated with simulation results in 

previous publications [100, 236, 249]. The focus of the present work is calibration of the 

PDFT with MC simulation data for the radial distribution functions of bulk SW fluids, 

the density profiles of SW fluids near spherical cavities, and the density profiles of SW 

fluids in slit pores. The PDFT predictions are also compared with results from 

combination of the MFMT with a mean-field representation of the attractive energy 

(MFT).   

 As reported in an earlier work for SW fluids with relatively short-range attractions 

[249], the PDFT predicts the radial distribution functions of bulk SW fluids with long-

range attractions in excellent agreement with MC data. To test the PDFT performance for 

SW fluids at inhomogeneous conditions, we consider two representative systems, i.e., 

SW fluids near individual hard spheres (i.e., cavities) or in slit pores. We find that for 

both bulk and inhomogeneous systems the numerical performance of the PDFT is in 

excellent agreement with simulation data for several different temperatures and 

interaction ranges. By contrast, the mean-field predictions are much less reliable, in 

particular at conditions where the system temperature is close to the critical point. 

Because the thermodynamic properties of an equilibrium system are fully determined by 

the one-body density profile or equivalently the microscopic structure, the good 

agreement between theory and MC simulation results for the structural properties ensures 

that the theory will also be reliable for thermodynamic properties. Indeed, the DFT 
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reduces to an equation of state for bulk systems that yields an accurate phase diagram in 

comparison with simulation data [100, 236, 244]. 

While a quadratic density expansion for the attractive part of the Helmholtz 

energy functional is probably insufficient to capture long-range density correlations as 

occurred in wetting/drying transitions, the local density profiles predicted by the PDFT 

are all in reasonable agreement with simulation results even very close to the saturation 

point. Near wetting/drying transitions, the caveat may be removed by an alternative 

formulation of the intrinsic Helmholtz energy functional that also utilizes MFMT and 

FMSA: 

 
( ) ( ) ( )

( ) ( ) ( )2
1 2 1 2 1 2,

4

ex MFMT FMSA
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FMSAB
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F F d f

k T d d c

r r r
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= +          

+ − −  

∫

∫ ∫

r r r r

r r r r r r
, (7.14) 

where FMSA
Af  represents the attractive part of the Helmholtz energy density for a bulk 

system at the local density, and  ( )1 2,FMSA
Ac r −r r  is the attractive part of the bulk direct 

correlation function at average local density ( ) ( )1 2 / 2r r r= +  r r . A similar formulism 

was used before for predicting wetting transition near attractive surfaces [253]. 
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Figure 7-1 (a) The radial distribution function of a bulk SW fluid with range of attraction 
2.2λ σ=  at reduced temperature * / 5.0BT k T ε= =  and reduced bulk density 

* 3 0.75b br r σ= = . The solid line is from MFMT+FMSA and the symbols denote NVT  
MC simulation data. (b) The same as (a) but for 2.4λ σ= . (c) The same as (a) but for 

2.6λ σ= . (d) The same as (a) but for 2.8λ σ= . 
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Figure 7-2 (a) The radial distribution function of a bulk SW fluid with range of attraction 
2.3λ σ=  at reduced temperature * / 3.1BT k T ε= =  and reduced bulk density 

* 3 0.01b br r σ= = . The solid line is from MFMT+FMSA and the symbols denote data 
from NVT  MC simulation. (b) The same as (a) but for 2.5λ σ= , * 3.9T = . (c) The same 
as (a) but for 2.7λ σ= , * 4.9T = . (d) The same as (a) but for 3.0λ σ= , * 6.7T = . 
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Figure 7-3 (a) The same as Fig. 7-2(a) but at reduced bulk density * 0.77br = . (b) The 
same as Fig. 7-2(b) but at reduced bulk density * 0.72br = . (c) The same as Fig. 7-2(c) 
but at reduced bulk density * 0.7br = . (d) The same as Fig. 7-2(d) but at reduced bulk 
density * 0.72br = . 
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Figure 7-4 (a) The density distribution of a SW fluid around a hard cavity of radius
R σ= . The range of attraction is 1.5λ σ= , and the reduced temperature and density are 

* 1.0T =  and * 0.677br = , respectively. The solid line represents prediction of 
MFMT+FMSA, the dashed line is from MFMT+MFT, and symbols are from VTµ  MC 
simulation. (b) The same as (a) but * 0.685br = . (c) The same as (a) but * 0.706br = . (d) 
The same as (a) but * 0.733br = . (e) The same as (a) but * 0.775br = . 
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Figure 7-5 (a) The density distribution of a SW fluid around a hard cavity of radius
R σ= . The range of attraction is 1.5λ σ= , and the reduced temperature and density are 

* 1.2T =  and * 0.586br = , respectively. The solid line represents prediction of 
MFMT+FMSA, the dashed line is from MFMT+MFT, and symbols are from VTµ  MC 
simulation. (b) The same as (a) but * 0.602br = . (c) The same as (a) but * 0.638br = . (d) 
The same as (a) but * 0.679br = . (e) The same as (a) but * 0.735br = . 
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Figure 7-6 (a) The density distribution of a SW fluid around a cavity of radius R σ= . 
The range of attraction is 1.7λ σ= , and the reduced temperature and density are * 1.0T =  
and * 0.711br = , respectively. The solid line represents prediction of MFMT+FMSA and 
symbols are from VTµ  MC simulation. (b) The same as (a) but * 0.716br = . (c) The 
same as (a) but * 0.731br = . (d) The same as (a) but * 0.755br = . (e) The same as (a) but 

* 0.794br = . 
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Figure 7-7 The same as Figure 7-4 but 5R σ= .  
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Figure 7-8 The same as Figure 7-5 but 5R σ= .  
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Figure 7-9 The same as Figure 7-6 but 5R σ= .  
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Figure 7-10 (a) The density profiles of a SW fluid near a hard wall. Here the range of 
attraction is 1.5λ σ= , the reduced temperature is * 1.0T = . The surface area and the 
height of the simulation box are 231.22A σ= and 21.18H σ= , respectively. The solid 
line represents prediction  of MFMT+FMSA, the dashed line is from MFMT+MFT, and 
the symbols are MC simulation data [253]. (b) The same as (a) but the simulation 
condition was changed to surface area 227.82A σ=  and height 11.55H σ= . (c) The 
same to (a) but for 225.89A σ=  and 11.18H σ= .  
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Figure 7-11 (a) The density distribution of a SW fluid near an attractive wall. Here the 
range of attraction is 1.5λ σ= , the reduced temperature is * 1.0T = . The solid line 
represents prediction of MFMT+FMSA, the dashed line denotes MFMT+MFT result, and 
the symbols are MC simulation data. The MC simulation was carried out within a 
rectangular prism with cross section area 2100A σ=  and height 10H σ=  containing 

620N =   SW particles.  (b) The same as (a) but for particle number 654N = . (c) The 
same as (a) but for particle number 730N = . 
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Figure 7-12 The same as Fig. 7-11 but at higher temperatures. (a) * 1.2T = , 545N = . (b) 
The same to (a) but 600N = . (c) The same as (a) but 700N = . 
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Figure 7-13 (a) The density distribution of a SW fluid near an attractive wall. Here the 
range of attraction is 1.7λ σ= , the reduced temperature is * 1.0T = . The solid line 
represents prediction of MFMT+FMSA, and the symbols are MC simulation data. The 
MC simulation was carried out within a rectangular prism with cross section area 

2100A σ=  and height 10H σ=  containing 615N =   SW particles.  (b) The same as (a) 
but for particle number 648N = . (c) The same as (a) but for particle number 730N = . 
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Chapter 8 Drying Transition at A Non-Attractive Surface: Continuous or 

Precipitous? 

Equation Chapter (Next) Section 1 

Abstract 

Solvent depletion from a non-attractive surface has been extensively studied in recent 

years for its intimate connection to hydrophobic phenomena and superhydrophobicity of 

patterned materials. While such effect is well understood near microscopic substrates, 

prediction of the solvent behavior near an extended surface is more complicated and the 

nature of drying transition has been a long controversy. In this work, we use a 

perturbative density functional theory (DFT) to examine the receding of a saturated 

solvent from a spherical cavity as the radius varies from micro to macro length scales. 

The DFT calculations show that the solvent inhomogeneity remains microscopic when 

the cavity radius approaches the macroscopic limit and thus give a strong evidence of a 

first-order drying transition at non-attractive substrates.   

8. 1 Introduction 

Solvent distribution near macroscopic substrates is pertinent to materials 

performance in solutions and a broad range of biological, chemical and physical 

processes [1-4]. Whereas current knowledge has been well advanced, quantification of 

the microscopic structure of the solvent near an extended surface remains a daunting 

theoretical challenge. Computational predictions are difficult in particular when solvation 

is competing with a surface phase transition or occurs near a surface with chemical or 

topological heterogeneity at a length scale much larger than the size of the solvent 
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molecules [254]. The problem is imperative for understanding hydrophobic phenomena 

near macroscopic substrates [8] and for rational design and fabrication of 

superhydrophobic materials [9]. Despite much recent progress, a satisfactory solution is 

not yet attainable by microscopic theories or by molecular simulations. Interpretation of 

experimental results often hinges on phenomenological methods or mean-field 

approximations. In this work, we will study one aspect of this problem by considering 

depletion of a near saturated liquid from a non-attractive substrate when its size changes 

from microscopic to macroscopic scales. To capture the essential physics, our work is 

focused on a model system that consists of a spherical cavity submerged in a square-well 

liquid close to saturation. Whereas the simple model is not intended to represent any 

specific system of practical concern, we expect that, qualitatively, the results are relevant 

to the solvent behavior in realistic systems. 

For a non-attractive substrate immersed in a liquid that is thermodynamically 

stable, the liquid density can be significantly depressed near the substrate surface, leading 

to the formation of a vapor-like layer [239, 242]. The depletion layer thickness depends 

on the substrate size and surface energy as well as the closeness of the liquid to the 

saturation point. The so-called drying effect has been affirmed by molecular simulations 

for simple liquids near hard surfaces [255-258] and likewise for solvation of nanometer 

objects in water [175, 259, 260]. Similar results can be obtained by using the classical 

density functional theory (DFT) [91, 252, 261]. Because the microscopic methods are not 

directly applicable to large systems [262, 263], it is not immediately obvious whether the 

solvent inhomogeneity near a non-attractive surface remains microscopic or extends to 
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macroscopic scales as the surface curvature vanishes and the liquid approaches the 

saturation [264-266]. A recent study by Evans and coworkers on drying at curved 

substrates predicts that in a saturated liquid the vapor-layer thickness grows continuously 

with the substrate size and diverges at the planar limit [240, 250, 267]. The complete 

drying transition leads to non-analytical curvature effects on the interfacial free energy 

and the solvent density profile near the substrate, including the solvent contact density, 

that cannot be captured by conventional theory of solvation including various versions of 

the scaled particle theory (SPT) [16, 19, 268]. While such non-analytical behavior is not 

directly testable with experiments or molecular simulations, it appears consistent with 

predictions of microscopic theories and statistical-mechanical sum rules. However, a 

number of simulation results for saturated Lennard-Jones liquids near spherical cavities 

or confined in slit pores suggest that the film thickness does not grow indefinitely [257, 

258, 264, 266]. Several recent simulation and DFT calculations suggest that drying at a 

non-attractive surface is a first-order phase transition such that the vapor-layer thickness 

grows discontinuously at the transition point [269, 270].    

A cornerstone in the theoretical analysis by Evans et al is a phenomenological 

interface model that evokes the sharp-kink approximation for the solvent inhomogeneity 

and a repulsive disjoining potential between the liquid and the substrate [271]. For a 

spherical cavity of radius R  immerged in a near-saturated liquid, the solvent density 

profile is represented by a step function along the radial direction, reflecting the spherical 

cavity, a vapor-like depletion layer, and the bulk liquid:  
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where r  stands for the radial distance from the cavity center, br  is the number density of 

the liquid in the bulk, gr
+  is the number density of a metastable vapor with the 

temperature and the chemical potential identical to those corresponding to the bulk liquid, 

and L  denotes the vapor layer thickness.  According to this interface model, the solvation 

free energy depends on: 1) the difference between the grand potential of the metastable 

vapor phase and that of the bulk liquid of the same volume, 2) the solid-vapor and the 

vapor-liquid interface tensions, and 3) a repulsive disjoining potential or “binding 

potential” that describes the surface interaction between the substrate and the liquid. 

Given an explicit expression for the disjoining potential, the vapor layer thickness can be 

analytically determined by minimization of the solvation free energy. For cavity solvation 

in a square-well fluid, the equilibrium vapor-layer thickness is given by [240] 

 ln
2 /eq

gl

aL
R

ξ
rδµ γ ∞

 
=   ∆ + 

, (8.2) 

where ξ  denotes the correlation length of the vapor phase in the bulk, a  stands for an 

energy parameter depending on temperature. In Eq. (8.2), co co
l gr r r∆ ≡ −  is the 

difference between the coexisting liquid and vapor densities at the system temperature, 

b coδµ µ µ= −  where coµ  is the chemical potential at the gas-liquid coexistence point and  

bµ  is that for the bulk liquid, and glγ ∞  is the surface tension of the gas-liquid interface at 

the planar limit.  
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Eq. (8.2) indicates that when the liquid approaches saturation ( 0δµ → ), the 

equilibrium thickness of the vapor-like film scales as n~ leqL R  and diverges as the 

cavity size approaches infinity. On the other hand, near a planar hard wall ( R →∞ ), the 

film thickness varies with the liquid chemical potential according to n~ leqL δµ−  and 

diverges at the saturation point. For a large cavity in a near saturated liquid, the interface 

behavior can be divided into two regimes by using a critical cavity radius cR  [240], 
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. (8.3) 

The film thickness is mainly determined by the cavity size for the regime cR R<<  and by 

the liquid chemical potential or closeness of the liquid to saturation otherwise: 

 
ln ,

2

ln ,

c
gl

eq

c

aR R R
L

a R R

ξ
γ

ξ
rδµ

∞

  
<<     → 

  >>  ∆ 

. (8.4) 

The depletion layer thickness predicted by the phenomenological theory agrees 

well with the density functional calculations within the mean-field approximation for the 

attractive potential [240, 250, 267]. Whereas the mean-field approximation conforms the 

contact value theorem and the Gibbs adsorption theorem [267], it has been shown that 

neglect of the fluctuation effects may result in continuous variation of the vapor-layer 

thickness and thus yield a second-order drying transition [264]. In addition, it is well 

documented that quantitatively the mean-field method is not accurate in comparison with 

simulation results [101, 272, 273]. While most comparisons were made under conditions 
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away from the liquid-vapor coexistence, there is no reason that its numerical performance 

improves at the saturation point. In particular, the mean-field approximation overpredicts 

the contact density of a liquid near a hard wall [239, 242, 272]. On the other hand, the 

simulation results can be quantitatively reproduced by the DFT if it incorporates the 

correlation effect [67, 85, 101]. While non-mean-field DFT calculations are now well 

advanced [63, 64, 77], the effect of density correlation on drying effect has not been 

studied before. In this work, we use a perturbative DFT to re-examine the depletion of a 

near saturated square-well liquid from a spherical cavity and compare the DFT 

calculations with the results from the phenomenological theory. For convenience, the 

perturbative DFT is designated as “FMT+FMSA” because it incorporates the 

fundamental measure theory (FMT) of Rosenfeld [83] for the molecular excluded volume 

effects and the direct correlation function of the bulk fluid from the first-order mean 

spherical approximation (FMSA) [100, 103]. The DFT results will be compared with 

those based on FMT and the mean-field theory (MFT) for the attractive energy 

(designated as “FMT+MFT”).  

The remainder of this article is organized as follows. Section 2 introduces the 

molecular model and the DFT equations. In section 3, we compare the DFT predictions 

for the liquid density profiles around a spherical cavity and near a hard wall close to the 

drying transition. The vapor-layer thicknesses from FMT+FMSA and FMT+MFT will be 

compared with those from the sharp-kink approximation. In section 4, we summarize the 

key conclusions.    

8. 2 Molecular Model and DFT Equation 
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The intermolecular energy in a square-well (SW) fluid is represented by a 

pairwise additive potential that includes a hard-core repulsion and a short-ranged 

attraction: 

 
, 1
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Throughout this work, the hard-core diameter σ  is taken as the unit length,  r   

represents the center-to-center distance, λ  provides a measure of the range of attraction, 

and 0ε >  characterizes the strength of the intermolecular attraction. A spherical cavity is 

imposed by application of a hard-sphere-like repulsion to each SW particle:   
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. (8.6) 

Apparently, the presence of a spherical cavity of radius R  in a SW fluid is equivalent to 

solvation of a hard sphere of radius 1/ 2R −  . For a SW liquid near a hard wall, the 

external potential is given by 
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V z
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. (8.7) 

where z  represents the perpendicular distance between a particle center and the hard-wall 

surface. 

In the DFT calculations, the number density of a SW fluid near a cavity or a hard 

wall, ( )r r ,  is obtained by minimization of the grand potential: 

 ( ) ( ){ } ( ) ( )3ln 1 ex
B bk T d F d Vr r µ r Ω = Λ − + + −   ∫ ∫r r r r r r . (8.8) 
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In Eq. (8.8), Bk  is the Boltzmann constant, T  is absolute temperature, Λ represents the 

thermal wavelength, and 
exF  is the intrinsic excess Helmholtz energy functional.  In the 

FMT+FMSA version of DFT [101, 103], the excess Helmholtz energy functional is 

divided into two parts: the excess Helmholtz energy due to the hard-sphere repulsion ex
hsF  

and that due to attraction ex
attF . The former is represented by the modified fundamental 

measure theory (MFMT) [85, 88],  

 ( )ex hs
hsF n dαβ = Φ   ∫ r r , (8.9) 

where ( ) 1
Bk Tβ −= , hsΦ  represents the reduced excess energy density, and,

1 20,1, 2,3, ,V Vα = , are weighted densities. The detail expressions for hsΦ  and ( )nα r  can 

be found in previous publications [85, 88]. The excess Helmholtz free energy due to the 

SW attraction is represented by a quadratic expansion with respect to that of a bulk fluid 

with density br  [103]: 

 
( ) ( )

( ) ( ) ( )' ' '
2

ex ex att
att att b b

attB
b b

F F d

k T d d C

r µ r r

r r r r

= + −  

− − − −      

∫

∫ ∫

r r

r r r r r r
, (8.10) 

where ( )attC r  stands for the direct correlation function (DCF) due to the attractive 

component of the SW potential for the uniform system, and ( )ex
att bF r  and attµ  represent 

the corresponding excess Helmholtz energy and chemical potential, respectively. 

Accurate expressions for the DCF of SW fluids have been derived by Tang [100] and by 

Hlushak et al [104]. In In the FMT+MFT version of DFT, the  hard-sphere free energy is 
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the same as that in FMT+FMSA but the attractive component is given by the mean-field 

approximation [103]  

 ( ) ( ) ( )' ' '
2

ex B
att att

k TF d d φ r r= −∫ ∫ r r r r r r . (8.11) 

where the attractive potential is ( )att rφ ε= −  for 1 r λ≤ <  and zero otherwise.  

At a given external potential and the bulk thermodynamic condition, we obtain 

the equilibrium density profile by using the conventional Picard iteration method [250]. 

From the density distribution of the solvent particles obtained from the DFT, the vapor-

layer thickness is calculated from [250], 
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Because FMSA and MFT yield different equations of state, the DFT calculations are not 

performed at identical thermodynamic conditions but close to their corresponding vapor-

liquid coexistence curves. 

8. 3 Results and Discussions 

Drying at a non-attractive surface occurs only when the liquid approaches 

saturation, which is different according to different theoretical methods. Figure 8-1 shows 

the phase diagrams of a square-well (SW) fluid with interaction range 1.5λ =  predicted 

by the first-order mean-spherical approximation (FMSA) and by the mean-field theory 

(MFT). In comparison with the simulation results, the phase diagram from the FMSA is 

more accurate than that from MFT [244]. The difference is mainly because MFT ignores 

the density-density correlation due to the attractive potential. At high temperature, the 
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FMSA yields a saturation density on the liquid side larger than that from the MFT, while 

the opposite is true at low temperature. Throughout this work, we consider the SW fluid 

at reduced temperature * / 1.0BT k T ε= = . At this particular temperature, the reduced 

vapor and liquid densities at the coexistence are 3
, 0.03699co

g MFTr σ =  and 

3
, 0.601662co

l MFTr σ = , respectively according to MFT; and the coexisting densities are 

3
, 0.027326co

g FMSAr σ =  and 3
, 0.668755co

l FMSAr σ =  from the FMSA.  

Figure 8-2 shows the DFT predictions for the contact densities of the SW liquids 

near a spherical cavity as the radius varies from one half of the solvent diameter to 

infinity. The contact density is exactly known at both small and large limits of the cavity 

size [263]. When the cavity is small ( 1/ 2R ≤ ),  the contact density ( )Rr  is given by [16] 

 
1

34( ) 1
3b bR Rr r π r

−
 = − 
 

. (8.13) 

When the cavity radius approaches infinity, on the other hand, the contact density can be 

obtained from the bulk pressure through the contact value theorem [274] 

 ( )lim bR
R Pr β

→∞
= , (8.14) 

where bP  is the bulk pressure. Fig. 8-2 indicates that both FMT+FMSA and FMT+MFT 

reproduce their corresponding limiting contact densities reasonably well. Both theories 

predict that the contact density exhibits a maximum at an intermediate cavity radius 

(1/ 1.4R ≈ ). The non-monotonic behavior of the contact density reflects a balance of the 

surface depletion due to the inter-particle attraction and adsorption due to the solute 

excluded-volume effects.   
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The sharp-kink approximation predicts that for a spherical cavity of radius R  in a 

saturated liquid, the drying layer thickness is identical to that of the same liquid near a 

planar hard wall with the bulk chemical potential shifted by ( )2 /
l g

co co
gl Rδµ γ r r∞  = −  . 

Moreover, previous FMT+MFT calculations suggest that these two systems would yield 

virtually identical density profiles [267]. Apparently, the density profiles cannot be 

exactly identical because the bulk densities are different: one corresponds to that at the 

saturation and the other is for the compressed liquid. Nevertheless, recent simulations 

indicate that the two systems indeed have almost the same reduced density profile [258]. 

To examine whether such similarity is also reproduced with FMT+FMSA, we present in 

Figure 8-3 the DFT predictions for the density profiles of the SW fluid near curved 

surfaces at the saturation condition and those for the compressed liquids near a flat wall 

with the bulk chemical potential shifted. When the cavity is small (Fig. 7-3a), both MFT 

and FMSA predict that the planar and curved walls result in quite different reduced 

density profiles. In this case, the sharp-kink approximation is not valid because the gas 

film is nonexistent near the cavity or the flat surface. As the cavity size increases (Fig. 7-

3b-e), however, both theories predict that the two reduced density profiles are converging. 

Because FMSA utilizes the direct correlation function in the bulk, it accounts for at least 

in part the density fluctuation effects and the cavity-particle correlations. On the other 

hand, such correlations are ignored in the MFT. As a result, the FMSA yields density 

profiles systematically closer to the surface in comparison to the MFT results. Whereas 

MFT predicts that the liquid becomes more depleted form the surface as it approaches 
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saturation or as the cavity size increases, the FMSA results suggest that depletion layer is 

saturating rather than emerging into a macroscopic vapor phase.  

In general a drying transition can be introduced by changing the thermodynamic 

state of the liquid or the properties of the substrate such as size or surface energy. To 

explore these two different approaches, we consider the variation of the vapor-layer 

thickness for a cavity in a saturate liquid as the cavity size increases and for a liquid in 

contact with a hard wall as the chemical potential approaches the saturation point. The 

asymptotic behavior obtained from the DFT calculations provides a direct test of the 

sharp-kink approximation and may shed light on the order of the drying transition. Figure 

8-4 shows that for a non-saturated liquid near a planar hard wall ( R = +∞ ), the sharp-kink 

approximation provides a reasonable representation of the vapor-layer thickness 

predicted by the DFT. Correlation of the film thickness eqL  calculated from FMT+MFT 

with the second line in Eq. (8.4) yields / 0.43962MFTξ σ = and 3 / 0.667383MFT Ba k Tσ = , 

which are in good agreement with Ref. [240]. The bulk correlation length and surface 

energy are / 0.24534FMSAξ σ =  and 3 / 1.08202FMSA Ba k Tσ =  if we fit the sharp-kink 

approximation to the results from FMT+FMSA. While both versions of DFT agree well 

with phenomenological approximation when µ∆  is large, neither FMT+FMSA nor 

FMT+MFT predicts the film thickness diverges as 0µ∆ → . In comparison to 

FMT+FMSA, FMT+MFT shows better agreement with the sharp-kink approximation but 

it shows no sign of divergence when 0µ∆ = . The first-order drying transition predicted 
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by the DFT appears in good agreement with the simulation results in the early literature 

[264, 266]. 

Drying transition has been carefully examined by simulations but to our 

knowledge there is still no consensus on whether it belongs to first or second order. For 

example, Henderson and van Swol suggested that drying is a “fluctuation-induced” first-

order phase transition that cannot be represented by a mean-field method [264]. However, 

Nijmeijer and coworkers indicated that simulations are limited by finite size effect that 

results in a “quasi-first-order” transition [265, 275]. Drying transition becomes 

“continuous-like” with increasing the substrate area. Probably the controversy can be 

resolved by considering an Ising model for vapor-liquid transition where the molecules 

are placed on a lattice with vacancies. According to molecule-spin isomorphism [276], 

the occupied and unoccupied sites as well as the vapor-liquid phase diagram are perfectly 

symmetric. Similarly, phase transition of the system near a surface consisting of occupied 

sites (i.e. wetting) is symmetric with that of the same system near a surface of unoccupied 

lattice sites (i.e., drying). Such symmetry implies that for a system with short-range fluid-

substrate interactions, both wetting and drying are first order phase transitions  as long as 

the fluid is away from the critical point [277]. In that case, the first-order transition is not 

intrinsically affiliated with fluctuations and can be described by a mean-field theory [269]. 

Besides, the drying transition may be preceded by a pre-drying  parallel to pre-wetting in 

first order wetting transitions [270].      

The first-order drying transition is also evident from the DFT predictions for the 

vapor-layer thickness near a spherical cavity in a saturated SW liquid. Figure 8-5 shows 
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that at the microscopic scales, eqL  increases with the cavity radius in good agreement 

with the sharp-kink approximation. The vapor-liquid surface tension 

( 3
, / 0.18055gl MFT Bk Tγ σ∞ =  ) obtained from the mean-field approximation agrees well 

with that reported in Ref. [240]. Fitting of the sharp-kink approximation to the 

FMT+FMSA results yields a slightly larger surface tension (  3
, / 0.29535gl FMSA Bk Tγ σ∞ = ). 

A comparison of Figs 8-4 and 8-5 suggests that, as indicated in Ref. [240], the effect of 

surface curvature on the vapor-layer thickness is equivalent to that due to the change in 

the bulk chemical potential.  While the vapor layer thickness predicted by the mean-field 

theory is significantly larger than that from the perturbation theory, the DFT calculations 

give similar asymptotical behavior signaling a first-order phase transition in the planar 

limit.  

In addition to extreme limits ( R = +∞  and 0µ∆ = ), we have considered the 

depletion layer thickness for cavity solvation in near saturated SW liquids. Figure 8-6 

compares the DFT results with the phenomenological surface model, which predicts that 

the vapor-layer thickness is determined by parameter (Eq. (8.2)):  

 ( )x ln / 2 /gla Rξ rδµ γ ∞ = ∆ +  . (8.15) 

When the system is away from drying transition (large δµ  and small cavity radius), the 

mean-field theory shows excellent agreement with the sharp-kink approximation. Near 

drying transition, however, the discrepancy increases (see Fig. 8-6a). Such discrepancy 

was not identified in the previous mean-field DFT calculations probably due to small 

computation range [240]. While the results from FMT+MFT show good agreement with 
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the sharp-kink approximation over a wide range of the cavity size and the solvent 

chemical potential, the asymptotic behavior near drying transition is noticeably different. 

Such difference becomes more apparent in Fig. 8-6(b) that compares the sharp-kink 

approximation with FMT+FMSA calculations. Although the mean-field approximation 

ignores long-range correlation effect, it does not predict a second-order drying transition.  

8. 4 Conclusions 

We used two versions of classical density functional theory (DFT), one is based 

on the mean filed approximation (FMT+MFT) and the other incorporates the correlation 

effects (FMT+FMSA), to investigate the growth of a vapor-like layer near a non-

attractive substrate submerged in a near saturated liquid. We demonstrated unequivocally 

that drying near a nano-attractive surface belongs to first-order phase transition, similar to 

wetting near an attractive surface. By applying the Ising isomorphism, we argue that the 

drying transition may be preceded by a pre-drying that involves two coexisting vapor-like 

layers. Although the calculations were based on square-well fluids near a spherical cavity 

of varying size, we believe that the conclusions hold qualitatively for realistic systems.  

Whereas we were able to reproduce some of the numerical results reported in a 

previous work that also used the mean-field version of the DFT[240], our calculations 

agree with the sharp-kink approximation only at conditions remote from drying transition. 

Unlike prediction of the phenomenological surface model, both versions of DFT predict a 

finite vapor-layer thickness near a non-attractive surface as the solvent approaches 

saturation or the cavity size increases to infinity. While the numerical results are sensitive 

to formulation of the free-energy functional, introduction of the correlation effect in the 
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DFT does not render the qualitative behavior. Because drying occurs as a first-order 

phase transition, we expect that the interfacial properties exhibit no non-analytic behavior 

except at the critical point. The lack of non-analytic terms probably explains excellent the 

description of the cavity solvation free energy in a saturated Lennard-Jones liquid by the 

scaled-particle theory [257]. 
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Figure 8-1 Vapor-liquid coexistence curves for a square-well fluid with interaction range 
1.5λ σ= . The solid line is calculated from FMSA, and the dashed line is from the mean-

field approximation. The horizontal dotted line identifies the corresponding liquid 
densities at the temperature used in this work ( * / 1.0BT k T ε= = ). 
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Figure 8-2 The influence of curvature ( / Rσ ) on the contact density for a spherical 
cavity in a saturated square-well liquid. The blue line is predicted by FMT+FMSA at 
reduced solvent density 3 0.668755FMSAr σ = ; and the red line is from FMT+MFT at 

3 0.601662MFTr σ = . The symbols represent exact values according to Eqs. (8.13) and 
(8.14).  
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Figure 8-3 Comparison of the density profile of a near-saturated liquid in contact with a 
hard wall (symbols) with that of a saturated liquid near a spherical cavity (lines). (a) 

/ 1R σ = ; (b) / 10R σ = ; (c) / 100R σ = ; (d) 3/ 10R σ = ; (e) 4/ 10R σ = . In all panels, 
h r R= −  for the spherical cavity case and / 2h z σ= −  for the flat wall; 

2 / ( )gl Rδµ γ r∞= ∆ . The results from FMT+FMSA are colored blue and those from 
FMT+MFT are red.  
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Figure 8-4 The thickness of a vapor-like layer ( eqL  ) for a square-well liquid near a hard 
wall with the solvent chemical potentials approaching saturation. The symbols are 
obtained from DFT calculations and the dashed lines are correlations according to Eq. 
(8.4). 
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Figure 8-5 The thickness of a vapor-like layer near a spherical cavity in a saturated 
square-well liquid obtained from FMT+MFT and FMT+FMSA.  
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Figure 8-6 (a) Vapor-layer thickness eqL  versus ( )x ln / 2 /gla Rξ rδµ γ ∞ = ∆ + 
calculated from FMT+MFT at 0.01β µ∆ = , 0.001β µ∆ = , 0.0001β µ∆ = , and 0β µ∆ = . 
The dashed line is obtained from the sharp-kink approximation eqL x= . (b) The same as 
Fig. 8-6a except from FMT+FMSA. 
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          Chapter 9 The Shape Effect on Nanoparticle Solvation: A Comparison of 

Morphometric Thermodynamics and Microscopic Theories 

Equation Chapter (Next) Section 1 

Abstract 

A conventional wisdom for controlling nanoparticle size and shape during the synthesis is 

that particle growth favors the direction of a facet with the highest surface energy. 

However, the particle solvation free energy, which dictates the particle stability and 

growth, depends not only on the surface area/free energy but also on other geometric 

measures such as the solvent excluded volume and the surface curvatures and their 

affiliated thermodynamic properties. In this work, we study the geometrical effects on the 

solvation free energies of non-spherical nanoparticles using morphometric 

thermodynamics and density functional theories. For idealized systems that account for 

only molecular excluded-volume interactions, morphometric thermodynamics yields a 

reliable solvation free energy when the particle size is significantly larger than the solvent 

correlation length. However, noticeable deviations can be identified in comparison with 

the microscopic theories for predicting the solvation free energies of small nanoparticles. 

The conclusion holds also for predicting the potential of mean force underlying the 

colloidal “key and lock” interactions. In comparison with the microscopic theories, 

morphometric thermodynamics requires negligible computational cost and thereby is 

very appealing for broad practical applications.  

9. 1 Introduction 
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Characterization of the local distribution of solvent molecules and the solvation 

free energy often serves as a starting point to understand the solution behavior of 

nanoparticles including stability and self-assembly. In particular, the solvation free 

energy is instrumental for controlling the size and shape of nanoparticles during the 

synthesis and the particle geometry is inextricably related to their unique properties and 

utilities [5, 278, 279]. From a broader perspective, nanoparticle solvation is also 

important for understanding colloidal forces and the microscopic mechanisms underlying 

biological processes including protein folding [13] and structure-based rational drug 

design [14, 15]. For a given nanoparticle or a specific conformation of a biomolecule, 

modern instrumentation or computational methods are now well advanced that enable 

quantification of the solvation free energy and the local solvent structure up to atomistic 

details. But these methods are often labor intensive or computationally demanding 

thereby cumbersome for many practical applications. For practical purposes, one often 

seeks fast yet reliable methods that require little effort or computational cost. 

Theoretically, a new thrust toward that direction is provided by morphological 

thermodynamics that prescribes the solvation free energy in terms of various geometric 

measures of the solute-solvent interface and the affiliated thermodynamic variables. The 

geometrical measurements characterize the volume, surface area, integrated mean and 

Gaussian curvatures of the space occupied of the solute and their affiliated 

thermodynamic quantities are independent of the solute size and shape [280]. Proposed 

by Mecke, Roth and coworkers over the past few years [23, 280, 281], the thermo-
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geometric method has been successfully applied to a wide variety of systems including 

solvation of proteins [22, 88, 150, 152, 282-285]. 

A cornerstone of morphometric thermodynamics is the Hadwiger theorem from 

integral geometry concerning the valuations of convex bodies [286, 287]. This 

mathematical theorem asserts that for a functional defined on the set of bodies B  in 

space R  that satisfies motion invariance, conditional continuity, and additivity, the 

functional can be presented by a bilinear combination of the intrinsic volume of B  in 

different dimensions [288, 289]. The Hadwiger theorem implies that the solvation free 

energy of a rigid particle is a bilinear function of four geometrical measures (viz, the 

solute volume, surface area, and integral mean and Gaussian curvatures) and the 

corresponding thermodynamic coefficients (viz, pressure, surface tension, and bending 

rigidities, respectively). Although the Hadwiger theorem is not strictly valid if the solute-

solvent interaction consists of a long-ranged potential [280], or if the solute size is 

comparable to the solvent correlation length, or if the solute is in a concave shape [288], 

it has been shown that the morphometric method predicts the solvation free energy in 

good agreement with the results from the three-dimensional hyper-netted-chain (HNC) 

equation [23] or from the classical density functional theory (DFT) [283]. Recently, the 

morphological method has been applied to the study of solvation in water [285] and to 

proteins in multi-component solvents [284]. 

The objectives of this paper are twofold. First we use morphological 

thermodynamics to examine the shape effects on the solvation free energies of 

nanoparticles that are ignored in conventional interfacial thermodynamics. Because the 
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macroscopic approach is not strictly valid at microscopic length scales, a comparison of 

the solvation free energies from different theoretical predictions provides insights into the 

strengths and limits of morphological thermodynamics. In addition, we test the 

performance of the morphological method for predicting colloidal lock-and-key 

interactions. Specifically, we use the morphometric method to investigate the solvation 

free energies of four types of idealized non-spherical particles and the depletion 

potentials in colloidal “lock and key” systems. Unlike that for a spherical particle, the 

solvation free energy of a non-spherical object depends on the size as well as the solute-

solvent surface geometry. In particular, the edges and vertexes of the non-spherical 

particles make additional contributions to the solvation free energy and such effects have 

not been investigated before. The particle shape also plays an important role in colloidal 

“lock and key” interactions that entail colloidal spheres (keys) interacting with spherical 

cavities (locks) [11].  

As in previous applications of the morphometric method [10, 22, 155, 163], we 

consider solvation of hard particles in a hard-sphere solvent. In other words, we are 

concerned only with the molecular excluded-volume effects of the solute-solvent 

interactions. While clearly the hard-sphere model is an oversimplification for any realistic 

solvent, the system is ideal for testing the numerical performance of the morphometric 

method and for studying the shape effects of particle solvation. The hard-sphere model 

captures at least in part the solvent depletion or the excluded volume effects in realistic 

systems. For comparison with predictions from microscopic methods, we conduct in 

parallel theoretical investigations based on the DFT and Monte Carlo (MC) simulations. 
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The DFT methods are selected for comparison because they are numerically accurate in 

comparison to mean-field theories and provide potential alternatives to simulation 

methods for rapid prediction of the solvation free energies [24]. We expect that a 

comparison of the solvation free energies and the depletion potentials from different 

theoretical methods may shed light into future development of analytical solvation 

models toward large-scale practical applications.  

9. 2 Theoretical Methods 

9. 2. 1 Morphometric Thermodynamics 

 As in many previous applications of the morphometric method [10, 22, 155, 163], 

we consider solvation of non-spherical nanoparticles in a solvent of uniform hard spheres. 

The athermal system provides a simple yet non-trivial representation of the solvent 

excluded volume or depletion effects that are relevant to molecular solvation as well as 

colloidal self-assembly. Throughout this work, the free energy of solvation is defined as 

the reversible work to insert a nanoparticle from a fixed position in vacuum into a fixed 

position in the bulk solvent.  

 Based on Hadwiger theorem, the morphometric thermodynamics [23, 286] asserts 

that the solvation free energy solF  of a nanoparticle, here designated a continuous convex 

body designated as B , can be expressed in terms of a bilinear function of four 

geometrical (Minkowski) measurements and the corresponding thermodynamic 

coefficients: 

 solF PV A C Xσ κ κ= + + + , (9.1) 
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where ( )V B  stands for the excluded volume of the solute particle, ( )A B  for the total 

solute-solvent interfacial area, ( )C B and ( )X B  are the integral mean and Gaussian 

curvatures of the solute-solvent interface, respectively. Here the integral curvatures are 

defined by surface integrations of the local principal curvatures ( 1χ  and 2χ  ) at the 

solute-solvent interface:  

 ( )1 2
1( )
2

C dAχ χ
∂

= +∫ B
B , (9.2) 

 1 2( )X dAχ χ
∂

= ∫ B
B . (9.3) 

The coefficients on the right side of Eq. (9.1) are familiar thermodynamic variables: 

solvent bulk pressure P , solute-solvent interfacial tension σ  at the planar limit, and the 

surface bending rigidities κ  and κ  of the solute-solvent interface. These coefficients are 

defined by the properties of the pure solvent and by the solute-solvent interactions but 

independent of the particle size and geometry (body B ) [280].  

Eq. (9.1) is exact if the solvation free energy satisfies motion invariance, 

continuity, and additivity as required by Hadwiger theorem. While motion invariance and 

continuity are automatically satisfied for the solvation free energy, additivity holds 

exactly only in the thermodynamic limit, i.e., when both the solute and its embedding 

thermodynamic system are infinitely large. Nevertheless, additivity remains a good 

approximation if the solute has a convex shape and its size is much larger than the solvent 

correlation length. For a solute particle represented by a rigid convex body, the four 

geometrical measures can be calculated from Steiner’s formula [290].  
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The thermodynamic coefficients affiliated with the geometric measures can be 

obtained from experimental/simulation/theoretical results for the solvation free energies 

of solutes with relatively simple geometry (e.g., spherical particles of different diameters) 

[23]. Although no thermodynamic coefficients are explicitly related to the solute edges 

and corners, their effect on the solvation free energy is integrated within the curvature 

and the corresponding bending energy as shown in the last two terms of Eq. (9.1). 

For hard particles in a hard-sphere solvent, analytical expressions for the 

thermodynamic coefficients have been derived on the basis of the White-Bear version II 

(WBII) of the fundamental measure theory (FMT) [288, 291]: 
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2 3

3
1

1b
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+ + −
=

−
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4 ln 14 11 13 4 ,
3/ 2 3 1b d

ηβκ η η η
ηr η

−− + −
= − −

−
 (9.7) 

where d  is the diameter of a solvent hard sphere, br  is the number density of the hard-

sphere solvent in the bulk, and 3 / 6bdη πr=  is the solvent packing fraction. As usual, 

( )=1/ Bk Tβ ,  Bk  is the Boltzmann constant, and T  is the absolute temperature. For 

uniform systems, the modified FMT free energy reduced to that from the Carnahan-

Staling equation of state [292]. Like the bulk equation of state, FMT [85, 88] has been 
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proven to be the most accurate theory for the structural and thermodynamic properties of 

inhomogeneous hard-sphere fluids. 

Whereas the morphometric method has been used before to study protein 

solvation and interactions between spherical particles [288], we are unaware of previous 

work on its application to nanoparticles of non-spherical geometries. To study the effects 

of particle shape on the solvation free energy, we consider the solvation of four idealized 

particles: cubes, cylinders, cones, and equilateral triangular prisms (see Fig. 9-1). 

Different from spherical particles, these nanoparticles have sharp edges and vertexes and 

their contributions to the interfacial properties are not well defined by conventional 

methods. To validate the predictions of morphometric thermodynamics, we will compare 

the results with predictions from microscopic approaches including simulation and DFT 

calculations. Furthermore, we will test the performance of the morphometric method for 

predicting the colloidal lock-and-key interactions.  

9. 2. 2 Density Functional Theory 

As an alternative to molecular simulations, DFT provides a generic computational 

framework to predict the microscopic structure and thermodynamic properties of 

macroscopic systems on the basis of the molecular constituents [68, 198]. Because DFT 

is focused on density profiles instead of microstates and provides analytical expressions 

for thermodynamic variables of interest, it is computationally more efficient than 

simulation methods. For hard particles in a hard-sphere solvent, the free energies of 

solvation can be calculated either from the potential distribution theorem [293] or by 

direct evaluation of the grand potential [152]. Because the former requires an accurate 
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free-energy functional for the solute-solvent mixture that is not readily available, the 

latter method is used in this work.  

The free energy of solvation predicted by Eq. (9.1) can be tested with that from 

the three-dimensional (3D)-DFT or from the MC-DFT calculations [10]. Here MC-DFT 

refers to a combination of MC simulation for acquiring the three-dimensional density 

profiles of the solvent with the DFT equations for solvation free-energy calculations. 

While MC simulation is readily applicable to calculating the microscopic structure of 

complex multi-dimensional system, simulation of thermodynamic quantities such as the 

solvation free energy is extremely time-consuming. On the other hand, DFT provides 

analytical relation between microscopic structure and thermodynamic properties but 

computation of three-dimensional structures is computationally challenging. MC-DFT 

combines the merits of simulation and DFT methods but avoids the limitations. In both 

DFT-based methods, the solvation free energy is calculated from the difference between 

the grand potential ( )Ω B  of hard body B  in a hard-sphere solvent and that of a bulk 

system of hard spheres with the same volume and the solvent chemical potential: 

 ( )sol bF = Ω −ΩB . (9.8) 

The grand potential of the inhomogeneous system is calculated from a modified 

FMT [85, 88] and that for the bulk hard-sphere system ( bΩ ) from the Carnahan-Starling 

equation of state [292]. The two DFT-based methods differ in the way how we obtain the 

3D density distributions of the solvent hard spheres near the nanoparticle solute. In 3D-

DFT, the density profiles are calculated by minimization of the grand potential. At 
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equilibrium, the functional derivative of ( )rΩ   r  with respect to ( )r r  vanishes leading 

to the Euler-Lagrange equation 

 ( ) ( ) ( )exp exF Vβr βµ β
r

 ∂ = − − ∂  
r r

r
, (9.9) 

where µ  is the chemical potential of the bulk hard-sphere system, exF  represents the 

intrinsic excess Helmholtz energy. For the athermal system, the external potential , ( )V r , 

is given by  

 ( )
,

0,
V

otherwise
∞ ∈∂

= 


r B
r . (9.10) 

The Picard-type iterative method [85] was used to solve Eq. (9.9). The functional 

minimization is performed in a cubic box with the nanoparticle placed at the center and 

with the 3D density profile expressed in Cartesian coordinates. 

In MC-DFT, the density profiles of the solvent hard spheres are obtained from 

grand-canonical Monte Carlo ( VTµ ) simulations. Because FMT is very accurate for 

inhomogeneous hard-sphere systems, we expect that these two procedures yield similar 

results. However, it is not immediate obvious whether the MC calculation or the 3D 

minimization has better in terms of the numerical efficiency. As in functional 

minimization, we use a cubic simulation box with the regular periodic boundary 

conditions and the nanoparticle is fixed at the center of simulation box. The number of 

solvent hard spheres in MC simulation varies with the shape and the size of the 

nanoparticle such that the boundary effects can be neglected. In each MC simulation, we 
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run 1 million MC cycles for equilibration and 5 million cycles for sampling the solvent 

density profiles.  

9. 3 Results and Discussions 

We studied the effects of nanoparticle shape on the solvation free energy based on 

four types of non-spherical particles (see Fig. 9-1) in hard-sphere solvents at different 

packing fractions. The solvation free energy of each particle depends on the particle size, 

the shape as well as the solvent bulk density. We compare the numerical performances of 

morphometric method with 3D-DFT and MC-DFT calculations. In addition, we apply the 

morphometric approach to a colloidal lock-and-key system and compare the colloidal 

forces with results from microscopic methods. 

9. 3. 1 Cubic Particles  

The solvation free energy of a cube in a hard-sphere solvent depends only on the 

edge length ( a ) and the solvent packing fraction. According to Steiner’s formula [290], 

the geometric measures of the cube are given by: 

 

3

26
3
4

V a
A a
C a
X

π
π

 =


=


=
 =

. (9.11) 

In the 3D-DFT and MC-DFT calculations, the mass center of the cube is placed at the 

origin ( ) ( ), , 0,0,0x y z =  and the simulation box is also cubic with sides 

12x y zL L L d= = =  such that the boundary effect can be neglected. 



252 
 

Figure 9-2 presents the solvation free energy versus edge length a  at different 

solvent densities. The solid line is predicted by morphometric thermodynamics and 

symbols are from 3D-DFT and MC-DFT. At a given solvent density, the solvation free 

energy increases monotonically with the particle size due to the fact that it takes more 

work to insert a larger nanoparticle. The solvation free energy also rises with the solvent 

density. As expected, the results from 3D-DFT and MC-DFT are almost indistinguishable. 

For solvation of cubic particles, the agreement between the morphometric and DFT 

methods is very good in all cases. The excellent agreement among different methods is in 

part due to the use of Cartesian coordinates that match perfectly with the edges of cubic 

particles. In other words, for this particular system we can calculate the 3D density 

profiles and subsequently the solvation free energy in 3D-DFT and MC-DFT very 

accurately. While the computational cost for the morphometric method is negligible, it 

takes several hours or even days to obtain the density profiles from 3D-DFT or MC-DFT 

(on single core of AMD ‘Budapest’ 2.3 GHz processor computer at National Energy 

Research Scientific Computing Center). In particular, MC simulation becomes very time 

consuming at high solvent densities. 

9. 3. 2 Cylindrical Particles   

For a cylinder particle of height h  and base radius r , the four geometric measures 

are given by: 

 

2

2

2

2 2

4

V r h
A r rh
C h r
X

π

π π

π π
π

 =


= +


= +
 =

. (9.12) 
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To minimize the number of parameters, we fix the cylinder height at 2h d=  for 

simplicity. As for the cubic case, the mass center of the cylinder is placed at 

( ) ( ), , 0,0,0x y z = , and the simulation box is cubic with sides 12x y zL L L d= = =  in both 

MC simulation and DFT calculations. 

Figure 9-3 shows the solvation free energy of a cylindrical particle versus base 

radius r . Similar to that for a cubic particle, the solvation free energy rises monotonically 

with the radius at a given solvent density. Overall the results from the morphometric 

method are in good agreement with those from the DFT calculations. Because the solvent 

densities are highly localized near the edges of a cylindrical particle, we attribute the 

increased discrepancy for large particles dissolved at high solvent density to the Cartesian 

coordinates used in the DFT calculations. The particle geometry also does not perfectly 

match the grids for MC sampling of the solvent density profiles. 

9. 3. 3 Cones  

The four geometric measures of a right circular cone are given by 
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, (9.13) 

where r  is the base radius and h  stands for the height. As for a cylinder, we fix the 

height at 2h d= . In 3D-DFT and MC-DFT calculations, the origin of the coordinates 
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( ) ( ), , 0,0,0x y z =  is placed at the middle height of the cone. The simulation box is again 

cubic with sides 12x y zL L L d= = = . 

Figure 9-4 presents the size dependence of the solvation free energies of hard 

cones dissolved in a hard-sphere solvent at different solvent densities. Similar to other 

nanoparticles, in most cases the solvation free energy predicted by the morphometric 

method agrees well with 3D-DFT and MC-DFT. However, at high solvent density 

( 3 0.7rσ = ), the morphometric method predicts that the solvation free energy exhibits a 

minimum for a cone of moderate size, while both the 3D-DFT and MC-DFT predictions 

show a monotonic increase of the free energy as the particle grows. The discrepancy at 

small particle size is probably due to the correlation effect that becomes stronger and 

longer-ranged at higher solvent density. In other words, the performance of the 

morphometric method deteriorates when the cone size is comparable to the correlation 

length. In contrast to the case for cylindrical nanoparticles, the agreement between the 

DFT and morphometric method improves as the particle base radius increases.  

9. 3. 4 Equilateral Triangle Prisms 

We now consider the solvation of equilateral triangle prisms in a hard-sphere 

solvent. For simplicity, the prism height is fixed at 2h d=  , while a  stands for the 

triangular side length. The four geometric measurements of an equilateral triangle prism 

are given by 
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In 3D-DFT and MC-DFT calculations, the mass center of the equilateral triangle prism is 

placed at ( ) ( ), , 0,0,0x y z =  and the box is cubic with sides 12x y zL L L d= = = .  

Figure 9-5 shows the solvation free energies calculated from the morphometric 

method and DFT. Here the 3D-DFT and MC-DFT results were depicted together for easy 

comparison. Similar to the cylinder case, there is a discrepancy between morphometric 

approach and the DFT methods for large prisms dissolved in a high density solvent. The 

discrepancy grows as the bulk solvent density increases. Meanwhile, the results from 3D-

DFT and MC-DFT are slightly different because the grids of Cartesian coordinates 

cannot match a perfect triangle prism. At high bulk solvent density, the morphometric 

method erroneously predicts that the solvation free energy is negative when the side 

length a  is small, which contradicts the results from the 3D-DFT and MC-DFT. The 

negative solvation energy indicates that the morphometric approach breaks down as the 

solvent correlation length is comparable to the particle size. 

9. 3. 5 Comparison between Particles of Different Geometries 

A study of nanoparticles with the same volume and surface area but different 

geometries allows us to examine the effects of particle shape on the solvation free energy. 

For convex nanoparticles, the integral Gaussian curvature is invariant with the particle 
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geometry. As a result, when the particle volume and surface area are fixed, the shape 

effect is manifested exclusively in terms of the contribution from the integral mean 

curvature to the total solvation free energy. 

Figure 9-6(a) compares the solvation free energies of cylinders relative to that of a 

cube of the same solvent excluded volume V  and surface area A . For a given cube of 

edge length a , there are two types of cylinders that give the same V  and A : Type 1 has 

radius / 0.401r a =  and height / 1.982h a = ; Type 2 has radius / 0.713r a =  and height 

/ 0.626h a = . The difference in the solvation free energy is reflected in the curvature 

contribution: 

 ( ) ( ) ( )solute cubicC a C a C aκ κ  ∆ = −  . (9.15) 

The cone and equilateral triangle prism are not compared here because particles of these 

shapes cannot have the volume and surface area the same as those of a cube. Fig. 9-6 (a) 

indicates that the integral mean curvature contributions in cylinder type 1 and 2 are quite 

different. While the relative solvation free energy of type 1 cylinder (longer and thinner) 

is positive, the opposite is true for type 2 cylinder (shorter and thicker). In other words, 

the solvation free energy is decreased when the radius and height of the cylinder are close 

to each other. It should be noted that the surface of a cube is not curved according to 

conventional interfacial thermodynamics but because of the edge effect, its solvation 

energy can be either larger or smaller than that of a cylinder depending on the aspect ratio.  

For comparison, Fig. 9-6 (a) also shows the relative solvation free energy of a 

sphere with the same V  or A  as that of the cube. In both cases, the solvation free energy 

of a sphere is lower than that of either cylinder 1 or 2. In comparison to that for a cube of 
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either the same V  or the same A , the relative curvature contribution is always negative. 

At the same V , a sphere has less surface area than that of cube ( / 0.81sphere cubeA A = ), 

while at the same A , a sphere has larger volume ( / 1.38sphere cubeV V = ). In contrast to the 

case of the same volume, a sphere of the same area has larger solvation free energy due to 

a stronger contribution from the excluded volume effect. In both cases, the effect of the 

curvature on the solvation free energy is relatively insignificant.  

Figure 9-6 (b) presents the solvation free energies of a cylinder and an equilateral 

triangle prism relative to that of a cone with equal radius and height ( 0 0h r= ). Similar to 

Fig. 9-6 (a), these particles have the same solvent excluded volume and surface area. For 

a given cone dimension, there are two types of cylinders and two types of equilateral 

triangle prisms that give identical volume and surface area: Cylinder type 1 has radius 

0/ 0.298r r =  and height 0/ 3.751h h = ; cylinder type 2 has radius 0/ 0.919r r =  and 

height 0/ 0.395h h = ; Equilateral triangle prism type 1 has edge length 0/ 2.24a r = , 

height 0/ 0.482h h = , equilateral triangle prism type 2 has edge length 0/ 1.115a r =  and 

height 0/ 1.946h h = . While both equilateral triangle prisms have a higher solvation free 

energy in comparison with the cone, cylinder type 2 has a lower solvation free energy and 

the opposite is true for cylinder type 1. The comparison between prism and cone insists 

that more sharp edges may have higher solvation free energy. As depicted in Fig. 9-6 (a), 

the shorter and thicker cylinder (type 2) has a smaller solvation free energy. In other 

words, a reduction of the size disparity between radius/edge and height lowers the 

solvation free energy for both cylinder and equilateral triangle prism.  
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9. 3. 6 Lock-and-Key in A Hard-Sphere Solvent  

The colloidal “Lock and Key” system considered in this work consists of a planar 

lock with a hemispherical cavity and a key represented by a spherical particle. Both the 

lock and the key are immersed in a hard-sphere solvent. The colloidal “lock-and-key” 

system has been studied before with 3-D integral-equation theory [22], curvature 

expansion method [155], hybrid MC-DFT method [10], level-set method with variational 

implicit solvent model [159, 160], and computer simulations [164]. Here we re-examine 

the potential of mean force (PMF) for the lock-and-key interactions using the 

morphological thermodynamics.  

As discussed in Ref. [10], we consider only perpendicular alignment of the lock 

and key particles. Figure 9-7 shows a schematic representation of the lock and key 

system. The center of the hemispherical cavity is placed at ( )0 ,0,0x  and the center of the 

key is located at ( ),0,0x  with varying x . The radius of the cavity is fixed at 2.5lockR d= . 

We examine the depletion potential ( )0W x x−  for various key particles with radius keyR  

along the symmetric axis. 

When the key and lock particles are aligned, the PMF depends only on the center-

to-center distance r  between the hemispherical cavity and the spherical key:   

 ( ) ( ) ( )W r r= Ω −Ω ∞ , (9.16) 

where ( )rΩ  is the grand potential of system with lock and key separated by distance r  

and ( )Ω ∞  is that of the same system with particles are “far” apart, i.e., r →∞ . 

Substituting Eq. (9.8) into Eq. (9.16) gives 
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 ( ) ( ) ( )sol solW r F r F= − ∞ , (9.17) 

where ( )solF r  is the solvation free energy of the entire lock-and-key system when the 

particles are separated by distance r , and ( )solF ∞  is that of the same system with 

particles are “far” apart. When the lock and key are far apart, the lock and key particles 

are not correlated. As a result, ( )solF ∞  can be separated into the solvation free energies 

of lock lock
solF  and that of key key

solF :  

 ( ) lock key
sol sol solF F F∞ = + . (9.18) 

As for solvation of nanoparticles, both the morphometric and DFT methods are used to 

study the solvation free energies of the lock, the key, and the lock-and-key complexes.    

The geometric measurements of the spherical key particle are known exactly,  
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On the other hand, the geometric measurements of the substrate are given by  
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To obtain the four geometric measurements of the entire Lock-and-Key system, 

we create a contour parallel to the solvent-accessible surface of the solute with distance u . 

Figure 9-8 shows the effective shapes of the lock, the key, and the lock-and-key 

complexes. At given key and lock separation, we calculate numerically the volume ( )V u  

enclosed by such surfaces and subsequently surface area ( )A u , integral mean curvature 

( )C u  and integral Gaussian curvature ( )X u  from [283] 

 

( ) ( )
1( ) ( )
2

( ) ( )

u

u

u

A u V u

C u A u

X u C u

= −∂

= − ∂

= −∂

. (9.21) 

The desired geometric measurements of lock-key complex are obtained in the limit of 

0u →  by solving ( )V u  numerically.  

Figures 9-9a and 9-9b present, respectively, the depletion potential between the 

lock and key particles when the key is slightly smaller than the lock cavity and when 

there is a perfect match of the lock size. The results calculated from morphological 

thermodynamics are compared with the two DFT-based methods and with direct MC 

simulations [10]. Because an analytical expression is available the free energy functional 

of hard-sphere mixture, we may obtain the potential of mean force from the potential 

distribution theorem (PDT) [165]. In this method, we first obtain the solvent density 

profile near the lock particle and the lock-key potential is calculated from the local excess 

chemical potential of the key particle. The solvent density profile can be obtained either 

from MC simulation or from DFT. The former is referred to as MC-PDT and the latter is 
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referred to as DFT-PDT. More details about the PDT calculations can be given in Ref. 

[10]. Alternatively, the potential of mean force can also be obtained from the integration 

of mean force which is directly sampled from MC simulation from two particles far apart 

to a certain separation.  

In comparison with MC simulations, the morphometric method is not as accurate 

as the MC-DFT and MC-PDT for predicting the depletion potential [10]. And when the 

separation x  is larger than one diameter of hard-sphere solvent, a cavity appears in the 

interior of lock-key complex. In this case, Hadwiger theorem is not valid. So 

morphological thermodynamics shows a curve-up shape for smaller key ( 2keyR σ= ) case 

and a sudden jump is identified for perfect match case ( 2.5keyR σ= ) near 2.15x σ= . 

Such unphysical jump due to the contribution from mean integral curvature of line has 

appeared in sphere-sphere interactions [283]. Furthermore, when the excluded-volumes 

of key and lock are completely separated, morphological thermodynamics predicts that 

these two particles do not affect each other, because of additivity of Hadwiger theorem. 

However, it is well known that even though they are separated, they do experience 

solvent-mediated interactions. Therefore, when Hadwiger theorem is not valid, 

morphological thermodynamics predicts qualitatively inaccurate potential of mean force 

in comparison with MC simulation and DFT calculations. Nevertheless, it captures at 

least semi-quantitatively the potential of mean force for both cases when x  is less than 

one diameter of hard-sphere solvent. The numerical deficiency is probably because the 

size of concave container is comparable to the correlation length of the solvent. If the 

concave size is much larger than the correlation length, we expect that the morphological 
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thermodynamics will agree better with simulation results [280]. Indeed, morphological 

approach shows satisfactory agreement with simulation even when the concave size is 

comparable to the correlation length.  

9. 4 Summary 

In this work, we used morphometric thermodynamics to study the solvation free 

energies of non-spherical nanoparticles and colloidal “lock and key” interactions in a 

hard-sphere solvent. In comparison to molecular simulation and microscopic methods 

such as the classical density functional theory DFT, the morphological method does not 

require the configurations of the solvent molecules thus it drastically reduces the 

computational cost. While the statistical-mechanical methods perform best at small 

length scales, morphological thermodynamics does not scale with the system size and it 

becomes most accurate at large scales. As a result, the two approaches are 

complementary to each other and a combination of both can be most profitable for 

practical applications.  

Ideas similar to the morphometric method have being deployed in extension of the 

scaled-particle theory to studying hydrophobic solvation [8]. In application of the 

morphometric method to particle solvation in realistic solvents (e.g., Lennard-Jones fluid 

or water), the thermodynamic coefficients can be obtained from the solvation free energy 

of spherical particles. Because the thermodynamic properties of the solvent and the 

solute-solvent interactions are independent of the particle shape, the same coefficients are 

applicable to particles of arbitrary geometry. The solvation of hard particles in a realistic 

solvent may induce drying at the surface when the solvent is in the proximity of 
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saturation. In that case, the additivity condition required by the Hadwiger theorem 

breakdowns and the morphometric thermodynamics becomes inaccurate. The additivity 

also breaks down at small scales and at conditions where there exist significant long-

range correlations and fluctuation effects. Another drawback of the macroscopic 

approach is that it is not able to account for surface heterogeneity or defects that do not 

simply scale with system size. Under those conditions, we must use molecular simulation 

or microscopic theories. Because morphometric thermodynamics divorces the solute 

geometry from thermodynamic properties, this method is powerful in particular for 

calculation of the interfacial free energy of continuous systems that adopt different sizes 

and shapes. 

The morphometric thermodynamics compares well with DFT for predicting the 

solvation free energies of non-spherical particles, viz., cube, cylinder, cone and 

equilateral prism in a hard- sphere solvent of varying bulk densities. While the 

conventional wisdom is that the stability or solvation free energy of a nanoparticle is 

determined by the excluded-volume and surface area, morphological thermodynamics 

accounts for additional effects due to the surface curvature. For particles with different 

geometries but the same excluded-volume and surface area, morphological 

thermodynamics predicts that a reduction of the ratio between radius/edge and height of 

the particle lowers the solvation free energy. The DFT calculations also indicate that the 

solute curvature can have significant effects on the solvent behavior near solute and 

subsequently the solvation free energy. In morphometric thermodynamics, the edge and 
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corner effects are taken into account through the integrated curvatures, which make 

additional contributions to the solvation free energy [294]. 

We further applied morphological thermodynamics to the study of more 

complicated Lock-and-Key model system which includes complex convex and concave 

geometry. Although Hadwiger theorem breaks down for solute particles with concave 

regions which introduce confinement effect on solvent, the prediction from 

morphological thermodynamics is generally good comparing to alternative analytical 

methods and computer simulations. As the concave size increases and confinement effect 

becomes less significant, the morphometric approach should have better agreement with 

computer simulation, while it virtually costs no extra time. One very attractive feature of 

the morphometric approach is that it can be easily altered to study solvation in different 

solvents, because the properties of solvent are only presented by four thermodynamic 

coefficients [283]. 
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Figure 9-1 Schematic representation of B  with different geometry considered in this 
work: (a) Cube; (b) Cylinder; (c) Cone; (d) Equilateral triangle prism.  
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Figure 9-2 (a) The solvation free energy of a cubic B  versus length a  in a hard sphere 
solution with solvent density 3 0.1rσ = . (b) The same as Fig. 9-2(a), except 3 0.3rσ = . 
(c) The same as Fig. 9-2(a), except 3 0.5rσ = . (d) The same as Fig. 9-2(a), except 

3 0.7rσ = . 
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Figure 9-3 (a) The solvation free energy of a cylindrical B  of height 2h d=  versus 
radius r  in a hard sphere solution with solvent density 3 0.1rσ = . (b) The same as Fig. 
9-3(a), except 3 0.3rσ = . (c) The same as Fig. 9-3(a), except 3 0.5rσ = . (d) The same as 
Fig. 9-3(a), except 3 0.7rσ = . 
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Figure 9-4 (a) The solvation free energy of a cone B  of height 2h d=  versus radius r  in 
a hard sphere solution with solvent density 3 0.1rσ = . (b) The same as Fig. 9-4(a), 
except 3 0.3rσ = . (c) The same as Fig. 9-4(a), except 3 0.5rσ = . (d) The same as Fig. 9-
4(a), except 3 0.7rσ = .  
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Figure 9-5 (a) The solvation free energy of an equilateral triangular prism B  of height 
2h d=  in a hard sphere solution with solvent density 3 0.1rσ = . (b) The same as Fig. 9-

5(a), except 3 0.3rσ = . (c) The same as Fig. 9-5(a), except 3 0.5rσ = . (d) The same as 
Fig. 9-5(a), except 3 0.7rσ = . 
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Figure 9-6 (a) The relative curvature contribution with respect to a cube with edge length 
a , ( ) ( ) ( )solute cubicC a C a C aκ κ  ∆ = −   of cylinders with the same volume and surface 
areas as that of the same cube immersed in a hard sphere solution with bulk density 

3 0.7rσ = . The red line indicates cylinder type 1 with radius / 0.401r a = , height 
/ 1.982h a =  and blue line indicates cylinder type 2 with radius / 0.713r a =  and height 
/ 0.626h a = . The green line presents the relative curvature contribution of spheres with 

the same volume as the cube with edge length a  and the magenta line depicts that of the 
sphere with the same surface areas as cube with edge length a . The radius of sphere is 

/ 0.62r a =  for the same V  and / 0.69r a =  for the same A . (b) The relative curvature 
contribution with respect to a cone with radius 0r  and height 0 0h r= , 

( ) ( ) ( )0 0 0
solute coneC r C r C rκ κ  ∆ = −   of cylinder and equilateral triangle prism with the 

same volume and surface area as that of the same cone immersed in a hard sphere 
solution with bulk density 3 0.7rσ = . The red line indicates cylinder type 1 with radius 

0/ 0.298r r =  and height 0/ 3.751h h = , blue line indicates cylinder type 2 with radius 

0/ 0.919r r = , height 0/ 0.395h h = , the green line presents equilateral triangle prism type 
1 with edge length 0/ 2.24a r = , height 0/ 0.482h h = , blue line indicates equilateral 
triangle prism type 2 with edge length 0/ 1.115a r =  and height 0/ 1.946h h = . 
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Figure 9-7 The schematic representation of the lock and key system. The key is a big 
spherical particle with diameter keyD  and the lock is a substrate with a hemispherical 
pocket with diameter lockD . The separation between key and lock is represented by the 
distance between the centers of key placing at ( ),0,0x  and lock at ( )0 ,0,0x . 
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Figure 9-8 (a) The schematic representation of the key particle of radius keyR . The dash 
line shows the solvent-accessible surface enclosing excluded-volume by the key particle. 
(b) The same as Fig. 9-8 (a), except the lock particle. (c) The same as Fig. 9-8 (a), except 
the lock and key complex for radius of key particle key lockR R=  located at ( )0 ,0,0x  and 
dotted line represents a surface parallel to the solvent-accessible surface with distance 
u .(d) The same as Fig. 9-8 (c), except the lock and key complex for radius of key particle 

key lockR R=  located at ( ),0,0x . 
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Figure 9-9 (a) Depletion potential between a hard spherical key with key diameter 
4keyD σ=  and a hard hemi-spherical lock substrate with lock diameter 5lockD σ=  in a 

hard- sphere solvent at bulk packing fraction 0.367η = . We compare the morphological 
thermodynamics (red line) with MC-DFT (green line) and MC-PDT (blue line) methods 
and simulation data (symbols) reported in Ref. [10]. (b) The same to Fig. 9-9 (a) except 
with key diameter 5keyD σ= . 
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Chapter 10 Conclusions 

Equation Chapter (Next) Section 1 

 A key contribution of this thesis is development of a hybrid density functional 

theory (DFT) and its application for studying solvation of flexible and rigid molecules, 

surface wetting/drying transitions and colloidal forces. Flexible molecules studied in this 

work include polymers, block copolymers, and polyelectrolytes that are important in 

polymer engineering and biological systems. The research on solvation of rigid molecules 

is pertinent to hydrophobic interactions, drying transitions, and fabrications of 

nanoparticles. In the first place, I studied the structural and thermodynamic properties of 

polymers and polyelectrolytes in confined geometry as of interest in polymer separations 

by chromatography and in viral packaging and gene delivery. The numerical performance 

of the polymer density functional theory has been tested by extensive comparison with 

computer simulations and scaling analysis. Second, I creatively combined molecular 

simulations and density functional theory to study the colloidal interactions between rigid 

molecules and potential of mean force underlying “Lock-and-Key” interactions in an 

idealized solvent and for ion solvation in liquid water. The hybrid DFT method is able to 

describe the structural and thermodynamic properties of multi-dimensional complex 

systems with modest computational costs. Third, I studied the solvent distributions and 

thermodynamic properties near a rigid solute ranging from microscopic to macroscopic 

scales and illustrated the discontinuous nature of drying transition. Lastly, I applied 

morphological thermodynamics to study the solvation free energy of nanoparticles. Most 

results included in this thesis have been published in the leading journals.  



277 
 

 Chapter 2 outlines the theoretical framework of DFT used in this thesis, especially 

on the formalism of excess Helmholtz free energy arising from the thermodynamic non-

ideality due to segmental-level inter-molecular and intra-molecular interactions. Within 

classical DFT, the excess Helmholtz free energy is a functional of the one-body density 

distribution and can be decomposed into several different contributions based on the 

origins of molecular interactions. Moreover, derivations of one-body effective potential 

field (i.e., excess chemical potential) are provided in details. 

 In Chapter 3, I studied the structural and thermodynamic properties of single 

chain polymer under confinement. The microscopic distributions predicted from DFT are 

in excellent agreement with MC simulations. The confinement free energy and osmotic 

pressure of single chain presented a good agreement with the slope of scaling analysis 

when concentration is moderate and agreed well with simulation and experimental data 

for concentrated regime. While the theoretical calculations discussed in this work are 

only concerned with athermal systems where the confinement free energy is solely 

determined by the entropic effects, we expect that the theoretical framework can be 

extended to realistic polymeric systems with an explicit consideration of the solvent 

effects.  

 In Chapter 4, DFT was used to the study of microscopic distributions of flexible 

and semi-flexible polyelectrolytes and ions confined in a spherical cavity mimicking a 

viral capsid. Unlike previous publications, the outside environment is explicitly 

considered and the charge neutrality is imposed to a system including a polyelectrolyte 

containing capsid and a bulk salt solution. The density profiles of polymer segments and 
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small ions from DFT were compared with MC simulation data from the literature. Similar 

to the MC simulation work, our DFT calculation reveals that the net charge of 

polyelectrolyte and capsid complex is non-neutral in good agreement with experimental 

data. Although such coarse-grained model ignores the local solvent distribution and is not 

used to simulate a real virus model, we hope that an extended primitive model that takes 

into account the hydrophobic interactions and ionic polarizability can be applied to the 

studies of structural and thermodynamic properties of real genome encapsidation 

processes.   

In Chapter 5, I proposed a hybrid method for studying the entropic forces in hard-

sphere solvents by combination of MC simulation and the DFT. In this work, we tested 

the performance of the hybrid MC/DFT method by comparing with results from direct 

MC/MD simulations for the potential of mean force between a pair of hard solutes with 

various different shapes and a colloidal “Lock-and-Key” system. The theoretical 

predictions are all in good agreement with results from full simulations. Whereas for 

numerical calibration this work is focused on relatively simple systems, we expect that, 

with a good expression of the free-energy functional to account for various components 

of intermolecular interactions and correlation effects, a similar procedure can be extended 

to more realistic systems including to those underlying biological and physical processes 

of direct interest for practical applications. 

In Chapter 6, the hybrid method is extended to investigating the solvation free 

energies of ions in water by combining MD simulation and the DFT. An accurate free 

energy functional for water has been developed by accounting the short-range repulsion 
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and longer-ranged van der waals and electrostatic interactions. With the local density 

distribution of water molecules obtained from MD simulation, the DFT predicts the 

solvation free energies of small cations and anions in excellent agreement with simulation 

results. In comparison to conventional simulation methods, the new theoretical approach 

is computationally very efficient because it avoids simulation along a hypothetical 

thermodynamic pathway to connect the initial and final states of the solvation process.   

In Chapter 7, I applied a perturbative DFT to study the microscopic structure of 

the square-well fluids in the bulk and at inhomogeneous conditions. The DFT predicts the 

radial distribution functions of bulk SW fluids and structural properties of SW fluids at 

different inhomogeneous conditions in excellent agreement with MC data for several 

different temperatures and ranges of inter-particle interactions. Because the 

thermodynamic properties of an equilibrium system are fully determined by the one-body 

density profile or equivalently the microscopic structure, the good agreement between 

theory and MC simulation results for the structural properties ensures a good 

performance of the theory for thermodynamic properties of uniform as well as 

inhomogeneous systems. 

In Chapter 8, I used two versions of classical density functional theory to 

investigate the growth of a vapor-like layer near a non-attractive substrate submerged in a 

near saturated liquid. Whereas we were able to reproduce some of the numerical results 

reported in a previous work that also used the mean-field version of the DFT, our 

calculations agree with the phenomenological method only at conditions remote from 

drying transition. Unlike prediction of the phenomenological surface model, both 
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versions of DFT predict a finite vapor-layer thickness near a non-attractive surface as the 

solvent approaches saturation or the cavity size increases to infinity. We demonstrated 

unequivocally that drying near a nano-attractive surface belongs to first-order phase 

transition, similar to wetting near an attractive surface. By applying the Ising 

isomorphism, we argue that the drying transition may be preceded by a pre-drying that 

involves two coexisting vapor-like layers. Although the calculations were based on 

square-well fluids near a spherical cavity of varying size, we believe that the conclusions 

hold qualitatively for realistic systems. 

In Chapter 9, I used morphometric thermodynamics to study the solvation free 

energies of non-spherical nanoparticles and colloidal “lock and key” interactions in a 

hard-sphere solvent. In comparison to molecular simulation and microscopic theories 

such as DFT, the morphological method does not require the configurations of the solvent 

molecules thus it drastically reduces the computational cost. The numerical performance 

of the morphometric thermodynamics shows good agreement with alternative theoretical 

calculations for predicting the solvation free energies of non-spherical particles in a hard 

sphere solution of varying bulk densities. In addition, the dependence of the curvature of 

solute on the solvation free energy of nanoparticles was studied by the comparison 

between different geometries with the same excluded-volume and surface area. Because 

morphometric thermodynamics divorces the solute geometry from thermodynamic 

properties, this method is powerful in particular for calculation of the interfacial free 

energy of continuous systems that adopt different sizes and shapes. 
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In summary, DFT is proved to be unifying theoretical tool for describing the 

structural and thermodynamic properties of flexible and rigid molecules in a complicated 

thermodynamic environment. The theoretical framework established in this thesis 

provides a foundation for future applications to presenting the properties of polymeric 

fluids and colloidal dispersions of practical concern. With the proper molecular modeling, 

the DFT framework and the hybrid method presented in this work will provide insight 

into synthetic plastics and fibers in polymer engineering, biopolymers such as nucleic 

acids, genome and proteins in many biological systems and the synthesis of nanoparticles 

and the control of the shape and properties of nanocrystals.  

 

 

 

 

 

 

 

 

 

 

 

 

 



282 
 

Appendices 

Appendix A: Excess Chemical Potential Due to Chain Connectivity of A Mixture of 

Block Copolymers and Monomers 

Equation Chapter 1 Section 1 

The total free energy density due to chain connectivity of a mixture of block 

copolymers and monomers is given as:  
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where t  applies to all species of block copolymer segments and monomers. Because t  

includes both block copolymer segments and monomers, we separate t  into two species: 

block copolymers and monomers.  

Each functional derivative of free energy density due to chain connectivity for m -

th block copolymer segment type s  is given as 
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where 
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The functional derivative of ,/ m
snαδ δΓ and ,/k m

i sa nαδ δ  is given as 
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On the other hand, each functional derivative of free energy density due to chain 

connectivity for monomer type u  is given as 
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where 0,1,2,3, 1, 2V Vα = .  
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Appendix B: Solution of One-Dimensional Poisson Equation 

Equation Chapter 2 Section 1 

If the density profiles are spherically symmetric, the density distributions of 

polyelectrolyte segment and small ions are only r  dependent and the Poisson equation 

can be reduced to: 
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1 4
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r dr dr
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To solve Eq. (B.1), two boundary conditions are necessary and both boundary conditions 

can be specified depending on the system. For simplicity, we choose 
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where cr  means the calculation range beyond which the electrolyte solution already 

reaches bulk properties. To solve Eq. (B.1), we do integration on both sizes of Eq. (B.1), 
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By applying one boundary condition given in Eq. (B.2), we have 
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Similar to Eq. (B.4), we do integration on both sides of Eq. (B.5) and applies another 

boundary condition specified in Eq. (B.3),  
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For the case of slab, the density profile and electrostatic potential is only z  dependent 

and the Poisson equation can be simplified as 

 ( ) ( )4
c

d zd e z
dz dz

ψ π r
ε

 
= − 

 
. (B.7) 

Similar to spherical geometry case, two boundary conditions are needed to solve Eq. (B.7) 

depending on the specific system. For simplicity, we choose:  
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where cz  means the calculation range beyond which the electrolyte solution already 

reaches bulk properties. Similar to Eq. (B.4), we do integration on both sizes of Eq. (B.7) 

and apply one boundary condition given in Eq. (B.8):  

 ( ) ( )1 1
4 cz

cz

d z e z dz
dz
ψ π r

ε
= ∫ . (B.10) 

After another integration on both sides of Eq. (B.10) with Eq. (B.9) as a boundary 

condition, we have 
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Appendix C: Theoretical Method for Rapid Prediction of Solvation Free Energy in 

Water: Computational Details for MD Simulation and DFT Calculations 

Equation Chapter 3 Section 1 

In the following we describe the computational procedure to obtain the direct 

correlation function of SPC/E water in the bulk and the local distribution of water 

molecules around individual halide (F-, Cl-, Br- and I-) and alkali (Li+, Na+, K+, Rb+ and 

Cs+) ions. In addition, we give the detail equation for calculation of the excess chemical 

potential of SPC/E water in the bulk and that for the ionic solvation free energy. 

C. 1 MD Simulation  

We combine molecular dynamics (MD) simulation and the molecular Orenstein-

Zernike (OZ) equation [295, 296] to calculate the direct correction function of SPC/E 

water in the bulk. Namely, the direct correction function is solved from the OZ equation 

with the total correlation function extracted from MD simulation as the input. The MD 

simulation was carried out with package Moldy [297] within the NVT ensemble. The 

system temperature is set at T=300 K using the Nose-Hoover method. The number of 

water molecules simulated is N=4096, and the simulation box has a dimension of 49.738 

× 49.738 × 49.738 Å3. The periodic boundary condition is applied to all three directions. 

As depicted in Fig. C-1(a), the relative conformation for a pair of SPC/E water 

molecules can be described by the center-to-center distance between the oxygen atoms 

( r ) and by the Euler angles of each water molecule 1,2 1,2( , , )i i i i iθ ϕ ψ= =Θ = . Using the 

intermolecular frame with the z -axis coinciding the vector connecting the center of one 
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oxygen atom to the other [296, 298], we may express the pair distribution function in 

terms of the oxygen-oxygen distance plus four angular variables: 

 ( ) ( )(2)
1 2 1 2 12 1 2, , cos ,cos , , ,g g r θ θ ϕ ψ ψ=x x , (C.1) 

where 12 1 2ϕ ϕ ϕ= − . The usage of a relative frame greatly reduces the matrix size to 

describe the pair correlation function. 

 Because the intermolecular potential depends weakly on 1ψ  and 2ψ  (the 

rotational angles along the dipolar axes), we assume that the pair distribution function can 

be effectively represented in terms of the dipole-dipole orientation, i.e., 

 ( ) ( )
1 2

1 2 12 1 2 12 1 2 ,
, cos ,cos , ,cos ,cos , , ,g r g r

ψ ψ
θ θ ϕ θ θ ϕ ψ ψ= . (C.2) 

We extract the pair correlation ( )1 2 12, cos ,cos ,g r θ θ ϕ  over 100,000 system 

configurations. In numerical implementation of the OZ equation, the radial distribution 

( )1 2 12, cos ,cos ,g r θ θ ϕ  is discretized for 1cosθ  and 2cosθ  each by 10  equal intervals, 12ϕ  

by 20 equal intervals, and r  by a step length of 0.1 Å. 

 Figure C-2 shows 1 2 12( , cos ,cos , )g r θ θ ϕ  calculated from the MD simulation for 

three representative sets of orientations between two water molecules. Whereas the 

position of the first peak is almost doubled when the relative dipolar orientations of two 

water molecules are changed from parallel (~2.5 Å in dash-dotted line) to anti-parallel 

(~5 Å in solid line), the magnitude of the pair distribution function varies only slightly 

with the molecular orientations. In sharp contrast to the pair interaction potential between 

two isolated water molecules, it appears that the magnitude of the potential of mean force 
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in bulk water, 1 2 12ln ( ,cos ,cos , )Bk T g r θ θ ϕ− , is relatively insensitive to water 

orientations.  

The Moldy program is also used to calculate the local distribution of water 

molecules around each ion. Simulation of alkali ions (Li+, Na+, K+, Rb+, Cs+) and halide 

ions (F-, Cl-, Br-, I-) in SPC/E water was carried out with the NVT ensemble similar to 

that for pure water except that now an ion is placed at the center of the simulation box. 

The distribution of water molecules around the fixed ion is sampled within a spherical 

subsystem of diameter 40Å. This subsystem mimics an open system with the number of 

water molecules fluctuated and the chemical potential the same as that of the bulk. The 

Lennard-Jones parameters for the ions are the same as those reported by Joung and 

Cheatham [195]. The Lorentz-Berthelot combining rule is applied to the Lennard-Jones 

parameters between ion and water.  

As shown in Fig. C-1(b), the orientation of each SPC/E molecule around a 

spherical ion is specified by three Euler angles θ , ϕ  and ψ . Because of the spherical 

symmetry of the solute and the rotational symmetry of water molecules (ϕ  angle), the 

solvent density depends only on distance r and two Euler angles (θ , ψ ). Similar to 

water-water interactions, the water-ion interaction depends weakly on angle ψ  and such 

dependence can be treated as an average over all water molecules. After the ensemble 

average, the density profile can be expressed as ( ) ( )0, cos ,cosr g rr θ r θ=  where 0r  is 

the bulk density, and ( ), cosg r θ  represents the radial distribution function of water 
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molecules with respect to the solute. From each simulation, we sample the radial 

distribution function ( ), cosg r θ over 50,000 configurations. 

 As a representative example, Figure C-3 shows the reduced density profile of 

water molecules near a sodium ion and that near a chloride ion at three representative 

orientations. Near a cation surface, the orientation of water molecules is most favorable 

when its dipole aligns with the vector connecting the positions of the fixed ion and the 

oxygen atom. Interestingly, the most favorable orientation for a water molecule near an 

anion surface is not simply opposite to that near a cation surface. As shown in Fig. S3(b), 

near an anion surface the most favorable orientation corresponds to that when the anion 

center aligns with those of a hydrogen atom and the oxygen atom (instead of the charge 

center of two hydrogen sites). The asymmetry in the preferable orientations of water 

molecules near cations and anions is partially responsible for the difference in their 

solvation free energies. Such asymmetry cannot be captured by simple dipolar 

representation of water molecules.  

C. 2 Direct Correlation Function 

We calculate the direct correlation function (DCF) of bulk SPC/E water based on 

the intermolecular frame shown in Fig. C-1(a). In the Fourier space, the molecular 

Ornstein-Zernike (OZ) equation is given by [295, 296] 

 
( ) ( )

( )
( ) ( )

1 2 1 2 1 2 1 2

0
3 3 1 3 1 3 3 2 3 22

, cos ,cos , , , cos ,cos , ,

cos ,cos ,cos , , , cos ,cos , ,
4

h k c k

d d c k h k

θ θ ϕ ϕ θ θ ϕ ϕ
r θ ϕ θ θ ϕ ϕ θ θ ϕ ϕ
π

=

+ ∫
, (C.3) 
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where ( )1 2 1 2, cos ,cos , ,c k θ θ ϕ ϕ  are ( )1 2 1 2, cos ,cos , ,h k θ θ ϕ ϕ  Fourier transformations of 

the DCF and the total correlation function (TCF) 

 ( ) ( )1 2 12 1 2 12, cos ,cos , ,cos ,cos , 1h r g rθ θ ϕ θ θ ϕ= − . (C.4) 

With discretized representations of the orientational variables, the molecular OZ equation 

can be readily expressed as a multi-dimensional matrix equation at each k  value [21]. 

Whereas the OZ equation is formally exact, direct evaluation of TCF is not 

reliable when Fourier variable k  is small. To illustrate, Figure C-4(a) shows the total 

correlation function between oxygen atoms in the k  space, i.e., ( )OOh k , obtained from 

Fourier transformation and that from direct simulation of the structure factor 

 ( )
1 1

1( ) exp
N N

OO i j
i j

S k i
N = =

 = − ⋅ − ∑∑ k r r , (C.5) 

where N  stands for the number of water molecules, r  denotes the position of an oxygen 

atom, and ...  represents the ensemble average over all water configurations. The 

structure factor and total correlation function are related by [21] 

 ( ) ( )1OO O OOS k n h k= + . (C.6) 

where On  is the number density of oxygen atoms. In calculation of ( )OOh k  directly from 

simulation, we take vector k  along the coordinate axis, and the step length as 2 / Lπ  

with L  the length of the cubic simulation box explained above. Figure C-4(a) indicates 

that the direct simulation and the Fourier transform method give identical results at large 

k . However, noticeable difference is observed when k  approaches zero due to numerical 

uncertainty in transformation of the total correlation function from the real space to the 
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Fourier space. In this regime, the total correlation function may be represented by the 

asymptotic relation 

 ( ) (0) (2) 2
OO OO OOh k h h k= + +. (C.7) 

Substituting Eq. (C.7) into the OZ equation 

 ( ) ( )
( )01

OO
OO

OO

h k
c k

h kr
=

+
, (C.8) 

leads to 

 ( ) (0) (2) 2
OO OO OOc k c c k= + + . (C.9) 

Because direct simulation of the structure factor for the entire range of  k  is numerically 

cumbersome, in particular when the structure factor depends also on molecular 

orientations, we use the asymptotic relation (Eq. (C.9)) in this work to correct the direct 

correlation function ( )1 2 12, cos ,cos ,c k θ θ ϕ  at small k  at each set of molecular 

orientations. 

 Figure C-4(b) shows the oxygen-oxygen direct correlation function after an 

average over all intermolecular orientations, i.e., 

 ( ) ( )
1 1 2

1 2 12 1 2 121 1 0

1 cos cos ,cos ,cos ,
8OOc k d d d c k

π
θ θ ϕ θ θ ϕ

π − −
= ∫ ∫ ∫ . (C.10) 

For comparison, also shown in Fig. C-4(b) is the oxygen-oxygen direct correlation 

function obtained from Eq. (C.8) with the total correlation function obtained by Fourier 

transform for large k  and by direct simulation of the structure factor for small k  [21, 

299]. As expected, the two methods yield virtually identical results. The direct correlation 
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function in Fourier space, ( )1 2 12, cos ,cos ,c k θ θ ϕ , is directly used for evaluation of the 

solvation free energy. 

C. 3 Effective Hard-Sphere Diameter of Water Molecules 

The effective hard-sphere diameter of water molecules is determined by 

considering the self-solvation of a water molecule in bulk water. According to the SPC/E 

model, the self-solvation free energy of a water molecule or the excess chemical potential 

of pure water is -23.01 kJ/mol at the temperature and the liquid density considered in this 

work (300K and 0.996 g/cm3) [200, 201]. This value allows us to determine the reference 

hard-sphere diameter self-consistently.  

In computation of the self-solvation free energy, we use a relative intermolecular 

frame as shown in Fig. C-1(a) such that both the position and the orientation of the 

tagged water molecule are fixed. The origin of the coordinate system coincides with the 

position of the oxygen atom of the tagged water molecule, the z-axis aligns with the 

electric dipole, and the x -axis is parallel to the vector connecting the centers of the two 

hydrogen atoms. The solvent density profile near the tagged water molecule, ( )r x , is 

related to the radial distribution function obtained from simulation of the bulk water [298] 

 ( ) ( )0 1 2 12, cos ,cos ,g rr r θ θ ϕ=x . (C.11) 

The self-solvation free energy is calculated on a 3D cubic grid of size 

30.0×30.0×30.0 Å3. Such grid is discretized equally into 300×300×300 grid points while 

on each grid point the orientation space ( )cos ,θ ϕ  is discretized into 5 Gauss-Legendre 

angular grids and 10 equal intervals, respectively. In a relative frame with its origin at the 
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center of grid and three axes along the cubic grid box vectors, the density profile at each 

grid point, ( ), , , cos ,i j k l mx y zr θ ϕ , is transferred from ( )0 1 2 12, cos ,cos ,g rr θ θ ϕ  by linear 

interpolations. The self-solvation free energy is related to the solvent density profile 

( ), , , cos ,i j k l mx y zr θ ϕ  according to Eq. (C.10) of the main text except that, in calculation 

of the bridge function, the external potential (or the solute-solvent potential) is now 

replaced by the pair potential between water molecules 

 ( )
12 62

  
4

solute solvent
oo oo

ext oo
site site oo oo

q q e
V

r r r
α β

α β αβ

σ σε
    
 = + −   
     

∑ ∑x . (C.12) 

In Eq. (C.12), qα  and qβ  ( 1 2, , ,O H Hα β = ) are the electric valences, and e  is 

elementary charge, rαβ  is the ditance between those two sites, ooε  and ooσ  are, 

respectively, the energy and the size parameters of the Lennard-Jones potential.  

In calculation of the self-solvation free energy, the first term in Eq. (6.10) of the 

main text is rewritten as 

 ( ) ( ) ( ) ( ){ }1 0lnBF k T d yr r r r= − +   ∫x x x x x , (C.13) 

where the cavity function is related to the external potential 

( ) ( ) ( ) 0exp /exty Vr β r≡   x x x . Although ( )y x  cannot be calculated directly within the 

solute core, ( ) ( )ln yr x x  disappears as ( )r x  approaches zero. In this work, the solvent 

accessibility is defined numerically by the reduced local density ( ) 6
0/ 10r r δ −< =x . The 

final value of the solvation free energy is not sensitive to the threshold density. Beyond 
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the solute core, integration over ( );cos ,θ ϕ=x r  is carried out by summation over the 

grid points for the position and by the Gauss-Legendre method for orientations.  

To calculate the convolution between ( )1r∆ x  and ( )(2)
1 2 0, ;c rx x  in the second 

term in Eq. (6.10) of the main text 

 ( ) ( ) ( ) ( )2 1 2 1 2 1 2 0, ;
2
Bk TF d d cr r r r= − ∆ ∆   ∫ ∫x x x x x x x . (C.14) 

We first define an effective intrinsic potential 

 ( ) ( ) ( )int 2 1 1 1 2,
2
Bk TV d cr= − ∆∫x x x x x , (C.15) 

with the direct correlation in Fourier space obtained from the OZ equation, Eq. (C.15) 

can be readily evaluated with the fast Fourier transform (FFT) method. From ( )int 2V x , 

we can rewrite Eq. (C.14) as 

 ( ) ( ) ( )2 2 2 int 2F d Vr r= ∆   ∫x x x x . (C.16) 

In Eq. (C.16), the integral over 2x  is carried out on the 3D grid similar to that for 

( )1F r  x , i.e., integration over r  is via summation of ( ) ( )2 int 2Vr∆ x x in each grid cell, 

and the integration over orientations is carried out using the Gauss-Legendre method. 

Finally, we calculate the short-range (SR) and the long-range (LR) contributions 

of the bridge functional separately. As discussed in the main text, the short-range bridge 

functional ( )SR
BF r  x  is equivalent to that of a reference hard-sphere system, i.e.,

( )HS
BF n  r with ( ) ( ),n dr= Θ Θ∫r r . Because ( )HS

BF n  r  is independent of water 

orientations, Eq. (6.7) in the main text can be calculated on a 3D grid as detailed in our 
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previous work [85, 300]. According to the modified fundmanetal measure theory (MFMT) 

[85, 88], the free energy for the inhomogeneous hard sphere system is given by 

 ( ) ( ) ( )( ) ( )ex S CS V CS
MFMT BF n k T d = Φ +Φ    ∫r r r r , (C.17) 

with 

 

( ) ( )

( )
( )

( ) 1 2
0 3

3

3
3 222

3 3 3

ln 1
1

1 1ln 1
36 36 1

S CS n nn n
n

n n
n n nπ π

Φ = − − +
−

 
+ − + 

−  

r

, (C.18) 

and 

 ( ) ( )
( )

( ) 1 2
3 2 2 222

3 3 3 3

1 1ln 1
1 12 12 1

V CS V V
V Vn n

n n n nπ π

 ⋅
Φ = − − − + ⋅ 

− −  

n nr n n . (C.19) 

Weighted densities in  ( 0,1, 2,3i = ) and 1Vn , 2Vn  are determined by ( )n r and the 

relations can be found in previous publications [85, 88]. For bulk hard-sphere system 

with a uniform density 0n , ( )0
ex

HSF n  reduces to the Helmholtz energy from the Carnahan-

Starling (CS) equation of state [292] 

 ( ) ( )
( )

2

0 23

4 36
1

ex B
HS

Vk TF n
d

η η
π η

−
=

−
, (C.20) 

where 3
0 / 6n dη π=  stands for the hard-sphere packing fraction. The excess chemical 

potential from the CS equation is given by 

 
( )
( )

2

0, 3

8 9 3

1
ex

HS Bk T
η η η

µ
η

− +
=

−
. (C.21) 
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In Eq. (6.7) of the main text, integral ( )d n∆∫ r r  is determined through 

( )1 2 12, cos ,cos ,g r θ θ ϕ , i.e., 

 ( ) ( )20
1 2 12 1 2 12, cos ,cos , 1 cos cos

2
                =

nd n r dr g r d d d

N

θ θ ϕ θ θ ϕ∆ = −  

∆

∫ ∫r r . (C.22) 

While for calculation of ionic solvation freee energy Eq. (C.22) must be evaluated 

numericlly on the 3D grid, the integral is exactly known for self-solvation, i.e., 1N∆ = −  

(because exactly only one water moelcule has been singled out). In evaluation of the last 

term of Eq. (6.7) in the main text, the direct correlation of the reference hard-sphere 

system, ( )(2)
1 2HSc −r r , is calculated from MFMT [85, 88], and its convolution to ( )1n∆ r

and ( )1n∆ r  is implemented by FFT in a way similar to that for evaluation of ( )2F r  x .  

The long-range bridge term in Eq. (6.10) is calculated by substitution of Eq. (6.9) 

into Eq. (6.8) of the main text: 

 ( ) ( ) ( ) ( ) ( ){ }0ln ' , '; 'LR
B BF k T d y d cr r r r= − ∆ − ∆   ∫ ∫x x x x x x x x . (C.23) 

In Eq. (C.23), the integrals are applied only to the region accessible to water molecules, 

i.e., ( ) 0/r r δ≥x . The integration procedure for ( )LR
BF r  x  is similar to that for 

( )1F r  x  and ( )2F r  x . 

Finally the self-solvation free energy is obtained by adding up ( )1F r  x , 

( )2F r  x and the bridge contributions, i.e., ( ) ( )LR SR
B BF Fr r+      x x . Becasue the self-
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solvation free energy is uniquely determined by the effective hard-sphere diameter d , we 

find that d =2.85Å yields the expected value of the self-solvation free energy. 

C. 4 Ion Solvation Free Energy Computational procedure for the ion solvation free 

energy is similar to that for the self-solvation free energy of water. Because of the 

rotational symmetry of water molecules around a spherical solute, the calculation 

procedure can be slightly simplified. This simplification reduces the numerical error 

while improves the computational efficiency.  

To calculate the solvation free energy for each ion, we rewrite the first term on the 

right side of Eq. (6.10) of the main text: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ){ }
1 0

2
0 0

ln

2 cos ,cos ln ,cos ,cos 1

B

B

F k T d y

n k T r dr d g r y r g r

r r r r

π θ θ θ θ
∞

= − +      

= − +

∫
∫ ∫

x x x x x
, (C.24) 

where ( ) ( ) ( ), cos ,cos exp ,cosexty r g r V rθ θ β θ≡    , and the external potential 

( ), cosextV r θ  represents an average over angle ψ  (see Fig. C-1b) for the solute-water 

interaction, i.e., 

 
( ) ( )

( )
0

, cos ,cos ,

1ln exp ,cos ,

ext ext

B ext

V r V r

k T V r d

ψ

π

θ θ ψ

β θ ψ ψ
π

=

 = − −    ∫
, (C.25) 

Where 

 ( )
12 62 

 
, cos , 4

on water
s os os

ext os
site s

q q eV r
r r r
α

α α

σ σθ ψ ε
    = + −    
     

∑ . (C.26) 
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In Eq. (C.26), sq and qα are the valences of the solute and α  site (= O, H1, H2) of the 

water molecule, srα is the distance between solute and site α , osε  and osσ  are, 

respectively, the energy parameter and size parameter of Lennard-Jones potential 

between oxygen site and solute [195]. The external potential is averaged over angle ψ  

from 0 to π  because of the planar symmetry of the SPC/E model for water. In integration 

of Eq. (C.24), the integral is truncated at 16mr =  Å , where the solvent density becomes 

uniform for all ions considered in this work. 

For the hard-sphere reference system and an ion, the density profile ( )n r  depends 

only on the radial distance. In that case, Eq. (C.17) simplifies [85] 

 ( ) ( )HS HSF F g rr =      r , (C.27) 

with ( ) ( ), cos cos / 2g r g r d θ= ∫ . Calculation of the convolution term in Eq. (6.10) in 

the main text remains the same as that for self-solvation of water except that it entails on 

orientations. 

From the water density profile obtained from MD, we can calculate the short- and 

long-range components of the bridge functional using Eqs. (6.7) and (6.8) in the main 

text, respectively. Figure C-5 shows representative results of ( )LRB r  and ( )HSB r  (after 

averaged over all water orientations) for solvation of cations and anions in water. As 

expected, the hard-sphere bridge function (in red) is most significant within the region 

not accessible to water molecules, and the zig-zag behavior near the solute surface is due 

to the average over all water orientations.  
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Figure C-1. Schematic diagrams for a pair of water molecules and for a water and an ion. 
(a) The intermolecular frame for two water molecules. The relative conformation can be 
determined by the center-to-center distance and by the Euler angles of both molecules, 
i.e., ( 1 1 1 2 2 2, , , , , ,r θ ϕ ψ θ ϕ ψ ) with r  being the oxygen-oxygen distance and ( , ,i i iθ ϕ ψ )i=1,2 
the Euler angles of each water molecule. (b) The intermolecular frame for a spherical ion 
and a water molecule. The relative conformation is determined by ( , , ,r θ ϕ ψ ) with r  the 
ion-oxygen distance and ( , ,θ ϕ ψ ) the Euler angles of the water molecule. 
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Figure C-2. The radial distribution function of bulk water ( )1 2 12, cos ,cos ,g r θ θ ϕ  at three 

representative orientations ( )1 2 12cos ,cos ,θ θ ϕ : (-0.9, 0.9, 0.95π), (-0.1, 0.9, 0.95π), and 
(0.9, 0.9, 0.95π). 
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Figure C-3. The reduced density profile of water molecules, ( ) ( ) 0, cos ,cos /g r rθ r θ r=  
around (a) a sodium ion and (b) a chloride ion at various values of cosθ . 
 

 

(a) 

 

(b) 
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Figure C-4. The total and direct oxygen-oxygen correlation functions of SPC/E water in 
Fourier space. (a) The total oxygen-oxygen correlation functions calculated with Fourier 
transform (solid line) and with direct calculation of structure factor from simulation 
(circled dash line); (b) Direct oxygen-oxygen correlation function obtained by average of 
( )1 2 12, cos ,cos ,c k θ θ ϕ  over orientations (circled line) and from total oxygen-oxygen 

correlation function (solid line). 
 

 

(a) 

 

(b) 
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Figure C-5. The averaged LR bridge function over orientations of water (solid blank line) 
and bridge function of reference hard-sphere system (red line) for (a) Na+ in water (b) Cl- 
in water. The dashed lines are for a guide to the eye. 
 

 

(a) 

 

(b) 
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