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Abstract

This is a reference document. Its purpose is to present the Earth
Centered Earth Fixed (ECEF) strapdown inertial navigation mech-
anization and error state propagation equations.

1 Notation

To clearly distinguish between models and computations, this note
uses two different equality symbols. The symbol = indicates that
the equation is a model or definition. Models are used to analyze,
understand, and physically interpret measurements, often with the
goal of designing algorithms to estimate quantities that are of in-
terest (e.g., position). The symbol = indicates that an equation
represents an actual algorithmic calculation. When it is necessary
to represent the actual and computed versions of a variable, x will
represent the actual value, and X will represent the computed or es-
timated value. Vector and matrix variables will be printed in bold
font. For a vector v, the notation [v];, selects the k-th component of
v. For example, p* represents the actual position vector for satellite
s while p* represents the computed position vector for satellite s.
The frame-of-reference in which a vector is represented will be in-
dicated by a pre-superscript. The main frames-of-reference used
herein are: body frame (b); Earth-Centered, Earth-Fixed frame
(ECEF) (e); and, local frame (7).

2 ECEF Kinematic Model

The ECEF frame kinematic model, as derived in Section 11.2.2
of [1], is:
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where “p, and “v, denote the rover position and velocity resolved
in ECEF frame, R represents the rotation matrix transforming a
vector from the body frame to ECEF frame, ¢€2;, is the skew-
symmetric matrix computed from the earth rotation rate vector
‘wje. The rotation matrix R is equivalently represented in quater-
nion form by jq € R* for state propagation. The symbol g repre-
sents the local gravity vector in ECEF frame. Finally, €, is the
skew-symmetric matrix form of ®w,;, which represents the angular
rate of the b-frame with respect to the e-frame represented in the

b-frame. The specific force vector is defined as
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which is the difference between the body frame acceleration with
respect to the inertial frame “a;, and the local gravity vector ’g. All
vectors are represented in body frame.

3 IMU Measurements

An IMU consists of two triads of orthogonally mounted inertial
sensors namely gyroscopes and accelerometers. The measurement
model of these sensors are:

b

3)
“4)

The symbol ? u, denotes the measurement of the angular rate bwi,
of the body frame with respect to the inertial frame, both of which
are represented in body frame. The symbol “u, denotes the mea-
surement of the specific force.

The IMU measurements are imperfect, modeled as being cor-
rupted by additive error signals z,(r) and z,(¢). A tutorial dis-
cussing methods to develop a state-space model for these errors
can be found in [2].

To exemplify the process, the IMU stochastic model assumed
herein is

Zg(1)=by (1) +, (1) b (1)=Agh, (1) + (1), (5)
24(1)=b, (1) +4(1) b (t)=Xaba(t) +€4(t).  (6)

The symbols ~,(f) and 7,(r) represent Gaussian white random
processes with Power Spectral Densities (PSDs) of G%g and 62“,
respectively. The symbols b, (r) and b, (z) represent slowly time-
varying errors, referred to herein as biases, that are driven by the
Gaussian white noise vectors €,(¢) and €,(r) with PSDs of O'gg and

ug (1)="wip (1) + 24 (1)
Pug (1) =" (1) +24(t)

Gyro Model

Accelerometer Model.

with
with

ng, respectively. This model can closely match the N and B por-
tions of the ASD plot (for details, see [2])). This is sufficient for the
studies focusing in INS error accumulation over tens of seconds.

4 INS Time Propagation Model

The INS integrates the (bias compensated) IMU measurements
through the vehicle kinematic model to propagate the vehicle state
through time at the IMU measurement rate [1, 3,4]. This section
briefly presents the INS kinematic and error models.
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4.1 INS Kinematic Model

Based on the ECEF kinematic model of eqn. (1), the INS naviga-
tion equations in the ECEF frame are:
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where each variable with a hat denotes the INS estimate of the same
variable as defined in eqn. (1). For example, “p, is the INS estimate
of p,. The symbol ?€2,;, is the skew-symmetric matrix form of
b& ., computed from the gyro measurement as
b~ b 0 bR

Deb = ("ug —bg) — Rwie, )]
where f)g is the current estimate of the gyro bias. The specific force
vector is computed from the IMU measurement as

"Tip=("us — bu), ©)
where f)a is the current estimate of the accelerometer bias.

Eqgn. (7) is numerically integrated at the IMU sample rate to
propagate the position, velocity, and attitude through time. For an
overview of the numeric integration process, see Section 5.5 in [5].
The position and velocity integration is well discussed in [6]. The
critically important attitude algorithms are well discussed in [7, 8].
The integration starts with a set of initial conditions. Because the
initial conditions are not perfect, the IMU is not perfectly cali-
brated, and the IMU measurements are themselves imperfect, the
integration process accumulates error over time. The rate of accu-
mulation is dependent on the quality and calibration of the IMU.

4.2 INS Error State Propagation Model

The INS error accumulation process is well understood and can be
accurately modeled. Presentation of such models is the purpose
of this section. Note that the models of this section are not im-
plemented and integrated through time. Instead, the models allow
analysis and prediction of the error accumulations as can be char-
acterized by the error covariance matrix (see eqn. (14)).

Both the INS state vector and IMU calibration parameters can be
initialized and corrected in real-time using state estimation meth-
ods. These methods are built upon linearized state-space error
models as summarized in this section. See [1,3-5] for derivations.

The linearized INS error state differential equation is:

espl [0 I 0 ¢Sp 0 07
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where ¢dp=°p, — P, and *dv=°v, — ¥, represent the position and
velocity error vectors, and °Fy;, is the skew-symmetric matrix com-
puted from “f;,, where “f;, = “R’f;,. The symbol ¢p € R? is de-
fined as an angle error vector such that 2R=R (I + [ px]) (see
Section 10.5 in [1]). The symbol G represents the Jacobian matrix
of the local gravity vector (see Section 11.1.4 in [1]). The sym-
bol I denotes the identity matrix and each O represents a matrix of
zeros of the appropriate size to conform with its row and column
placement.
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From eqns. (5-6), the accelerometer and gyroscope bias error
propagation equations are

{mag] N [Ag(Sbg + eg} an
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5 Combined INS and IMU Error Model

Sensor fusion can be accomplished by a variety of methods:
Kalman filter [9, 10], Extended Kalman filter [11, 12], Unscented
Kalman filter [13], maximum a posteriori optimization [14-16].
All of these methods define both a state and an error state. The
state estimate is propagated through time by the INS. The error
state is estimated in the sensor fusion process at discrete instants of
time at which aiding measurements are available. Then the error
state is used to correct the state estimate.

5.1 State and Error State Vector Definitions

The variables to be estimated include the vehicle state vector p;, v;,
andq € R*; and, the IMU calibration parameters b, and b,,. These
variables are organized into the state vector

x()=[p,(t)" ,v: ()", 5a(t)" ,ba(t)" bg(t)"]" € RO

Each of these symbols and parameters have already been defined
in previous sections. The estimated state vector is

A A~

2(0)=[p-()",9:(0),5a(1)" ba(r)" by (r) ] € R,

Because both $q and 7§ are unit vectors, the error between them
can be represented by the attitude error vector ¢p € R3. Therefore
the error state vector is defined as

Sa(r) = [8p(1)T. V()T (1), by(r) b (1))

which is a vector in R!°.

Before the aiding measurement arrives at time ¢, the INS has a
prior state estimate &, = &~ (#), computed by integration of eqn.
(7). The sensor fusion algorithm uses that prior and the measure-
ment at #; to produce an error state estimate 5:&,{*, which corrects
the prior to produce the posterior state estimate ﬁ:: The poste-
rior state estimate il‘: provides the initial condition from which the
INS integrates the vehicle state until the time of the next aiding
measurement.

5.2 INS Error State Time Propagation Model

The state &(¢) is integrated through time using eqn. (7) and the
IMU data as shown in eqns. (8-9). The full error state-space model

p.-2
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is obtained by combining eqns. (10) and (11):
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T
where w(f) = [va(r)" ()" €)' e®)'] .

Using standard methods (see Section 4.7 in [1]), the linear
stochastic differential equation in (12) can be converted to an

equivalent discrete-time model:

Oy =P 0y +wy (13)
where ®; is the discrete-time state transition matrix, wy is
the discrete-time noise vector equivalent to the integral of the
continuus-time noise vector w(¢) through the kinematic model, and
cov(wy) = Q. From eqn. (13), the equation for propagating the
error state covariance matrix Py through time is

P 1=8, P @] +Q. (14)
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