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Abstract 

Bayesian reasoning tasks require processing data in probabilis-
tic situations to revise risk estimations. Such tasks are difficult 
when data is presented in terms of single-event probabilities; 
the multiplicative combination of priors and likelihoods often 
is disregarded, resulting in erroneous strategies such as prior 
neglect or averaging heuristics. Proportions (relative frequen-
cies) are computationally equivalent to probabilities. However, 
proportions are connected to natural mental representations 
(so-called ratio sense). Mental representations of nested pro-
portions (70% of 20%) allow for a mental operation that corre-
sponds to a multiplicative combination of percentages. In two 
studies, we focused on the conceptual understanding underly-
ing Bayesian reasoning by utilizing graphical representations 
without numbers (to avoid calculations with percentages). We 
showed that verbally framing Bayesian tasks in terms of pro-
portions, as opposed to single-event probabilities, increased 
correct Bayesian judgment, and reduced averaging heuristics. 
Thus, we claim, proportions can be regarded as a natural view 
on normalized Bayesian situations.  

Keywords: Bayesian reasoning; averaging heuristics; biased 
strategies; mental representations; nested proportions 

Introduction 
Bayesian reasoning is a type of inference that revises the sub-
jective probability of hypotheses H on the world by consid-
ering new data D and its likelihood. When and why humans 
are capable of such inferences has been investigated exten-
sively in situations with quantifiable data. One of the most 
prominent situations asks for the probability of a disease (H) 
after a positive test result (D) using information on the prev-
alence of the disease as well as the test’s sensitivity and spec-
ificity (Eddy, 1982; Gigerenzer & Hoffrage, 1995). Simi-
larly, teachers may judge the probability of a misconception 
in a student (H) after observing an erroneous solution (D) us-
ing information on the prevalence of the misconception at 
that grade level as well as information on the task (Leuders 
& Loibl, 2020). 

While most research investigates Bayesian reasoning with 
precise numbers, in many situations, one may only have ac-
cess to approximate estimations of these values and make a 
judgment by qualitative reasoning: e.g., “a large part of the 
small part of patients with the disease is tested positive – 
which proportion of the positive tested patients actually has 
the disease?” The situation can also be verbally framed in 
probabilities for a single case: “There is a small probability 
that a patient has this disease and there is a high probability 

that a patient with the disease is tested positive – what is the 
probability that a positively tested patient has the disease?”  

In both framings the step of multiplicatively combining the 
two probabilities (e.g., "70% of 20%", or, when no numerical 
values are given: “a small proportion of a large proportion”) 
is crucial for producing a correct estimation. However, with-
out support, few people correctly combine two probabilities 
multiplicatively in conjunctive situations (Gigerenzer & 
Hoffrage, 1995; Cosmides & Tooby, 1996; Juslin et al. 2015).  

In research on Bayesian reasoning, many elements of the 
information presentation have been varied systematically in 
order to disentangle the relevant cognitive processes (cf. 
McDowell & Jacobs, 2017). So far, the focus has been pre-
dominantly on the difference between probabilities and natu-
ral frequencies. Solution rates increase drastically when the 
data is presented as natural frequencies (e.g., “140 of 1000 
patients have a disease and of those 80 are tested positive”). 
However, with natural frequencies the base rate (prevalence) 
and the hit rate (test specificity) are already contained in the 
given information (“10 out of 140 of 1000”), eliminating the 
necessity of the step of combining them. We do not further 
elaborate on the distinction between absolute and natural fre-
quencies since our research focus on the comparison of prob-
abilities and proportions (relative frequencies), both requir-
ing the combination step.  

In our research, we directly compare a framing of single-
event probabilities with a proportion framing. In the propor-
tion framing the verbal description (“part of” wording, mul-
tiple cases indicated by plural) can activate mental represen-
tations of part-whole ratios and, more specifically, the repre-
sentation of “nested proportions” (proportions of propor-
tions) which allow for a mental operation that corresponds to 
a multiplicative combination of the base rate and hit rate. So 
far, only few studies focused on the impact of proportions 
(usually termed relative frequencies). This can be ascribed to 
the fact that it is hard to distinguish cognitive representations 
and processes induced by probabilities and proportions, when 
they are presented numerically: A probability of 40% may be 
immediately translated into the proportion 40 out of 100.  

To address this gap, we (1) analyze the literature that com-
pares probability and proportion and (2) develop a study de-
sign (and implement it in two studies with different contexts) 
that allows for a clearer theoretical and empirical distinction 
of the thinking connected to probability and proportion. 
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Bayesian reasoning with proportions 
Generally, one may conclude that research has shown that in-
dividuals’ capacity for Bayesian reasoning, i.e., for pro-
cessing information on the prior and conditional values of 
data, depends on the conceptual framing. A conceptual fram-
ing of a Bayesian reasoning situation comprises all elements 
of a given situation that induce the activation and use of cer-
tain concepts, in our case probabilities, proportions (relative 
frequencies), or absolute frequencies (cf. Table 1). 

 
Table 1: Cues within probability, proportion (relative fre-

quency), and absolute frequency framing. 
 

Probability  
framing 

Proportion (rela-
tive frequency) 
framing 

Absolute  
frequency  
framing 

Single event  
“a 20% chance” 
“a 0.2 probabil-
ity” 

Multiple events/ 
sample 
“20% of all cases”  
“1/5 of all cases” 

Multiple events/ 
sample 
“200 out of 
1000” 

 
The most frequently studied variation of the conceptual 

framing is the comparison of Bayesian reasoning with either 
probabilities or natural frequencies (cf. McDowell & Jacobs, 
2017). Proportions are much less explicitly addressed in re-
search on Bayesian reasoning. As with probabilities, data is 
presented as percentages or fractions and is also normalized 
and, thus, requires a multiplicative combination of base rates 
and hit rates. In contrast to single-event probabilities, propor-
tions refer to multiple cases from an abstract sample (i.e., 
“80% of all ...”). These differences between probabilities and 
proportions may result in different mental representations. 

Mental representations and operations during 
Bayesian reasoning 
Bayesian situations can be regarded as (mathematical) word 
problems (Johnson & Tubau, 2015; McDowell & Jacobs, 
2017; de Corte et al., 2000). A crucial factor in solving word 
problems is the construction of a mental representation of the 
situation and the mental operations that lead to a solution. 
When the mental representations bear structural analogies to 
the world, individuals are able to mentally read off infor-
mation or draw inferences via mental manipulation (Johnson-
Laird, 1983, Gentner & Stevens, 1983; Vosniadou, 2002, for 
mathematics see Prediger, 2008; Fischbein, 1989; vom Hofe 
& Blum, 2016; Thevenot, 2010). For the case of Bayesian 
reasoning with proportions or probabilities the relevant steps 
are the following (similar to the “cognitive algorithms” by 
Gigerenzer & Hoffrage, 1995, who however focus on Bayes-
ian reasoning with natural frequencies vs. probabilities). 
 
Step 1: Mental representation: Structure of the situation 
and quantitative values The mental representation of the 
structure of the situation requires an understanding of its rel-
evant constituents and their relationships. In Bayesian rea-
soning, this means recognizing a specific subset configura-
tion (Tversky & Kahneman, 1983; Gigerenzer & Hoffrage, 

1995; Girotto & Gonzales, 2001), sometimes referred to as 
nested set structure (Sloman et al., 2003). When presenting a 
Bayesian situation with proportions, the subset structure is 
made salient via the part-of-a-whole relationship that is in-
herent in the proportion concept through phrases like “of all” 
and “of these”. In particular, the specific subset structure of 
Bayesian reasoning can be characterized as “nested propor-
tions” or “part-of-part relation”. However, due to the normal-
ization – which is inherent in the proportion concept – the 
sizes of the part and the whole are not explicit (conversely, a 
presentation of natural frequencies explicitly shows the 
sizes). A probability framing activates different mental rep-
resentations: The single event formulation (“probabil-
ity/chance that a person”) and the sequential process of a ran-
dom experiment do not directly suggest the subset structure.  

In addition to the structure, the (relative) size of the values 
need to be represented mentally. There is ample evidence that 
humans (and even primates) are capable of discerning and 
discriminating continuous magnitudes and ratios (propor-
tions) in various formats and modalities (Bonn & Cantlon, 
2017; Jacob et al., 2012; Park et al., 2020). Therefore, pro-
portions can be assumed to have a non-symbolic mental rep-
resentation. The mental representation of the size of proba-
bilities, however, is less clear (Juslin et al., 2015). 
 
Step 2: Mental operation: Combining normalized infor-
mation Our tenet is, that mental representations of propor-
tions as part-whole ratios can support mental operations to 
combine the given information: When the base rate and hit 
rate are mentally represented as part-whole ratios, one can see 
the part in the base rate (e.g., patients with disease, students 
with misconception) as the whole in the hit rate (positively 
tested patients among those with disease, students with error 
among those with misconception). Such a mental representa-
tion of a ratio within a ratio (i.e., nested proportions) allows 
for drawing inferences on the magnitude; for example, a 
small part of a large part is similar to a large part of a small 
part. This combination of base rate and hit rate is adequate 
for Bayesian reasoning in normalized situations. It is equiva-
lent to a formal multiplication of base rate and hit rate when 
they are given by numbers. In contrast, such a multiplicative 
interaction is not intuitive when values are framed as single-
event probabilities (“a chance of 95% after a chance of 
20%”). When individuals do not construct a mental represen-
tation of a situation of nested proportions, they may resort to 
using heuristics, such as determining the average (instead of 
the product) of the two values, to combine the two probabili-
ties. 

 
Step 3: Mental operation: Determining requested ratio 
Finally, Bayesian reasoning requires two mental operations 
to determine the requested ratio. First, the two nested propor-
tions, the results from the previous step, must be joined to a 
new whole. Then, the ratio of one part to the new whole must 
be determined. Both operations can be considered as mental 
operations within the mental representation of proportions 
based on the ratio sense described above. Recognizing a ratio 
independent of the absolute size of the constituents defines 
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the human capacity to identify part-whole ratios, as found in 
many studies (e.g., Matthews & Ellis, 2018). The mental 
steps as described above are necessary for Bayesian reason-
ing in normalized situations with a proportion or probability 
framing (cf. Table 2). 

 
Table 2: Mental steps in Bayesian reasoning with propor-

tion or probability framing. 
 

Step Proportion framing Probability framing 
1 Given: 

20% of all cases are H 
70% of H cases  
show data D 
10% of non-H cases  
show data D 

Inferred: 
Non-H part of all cases:  
100% – 20% = 80%  

Required: 
Which proportion of cases  
with D are also H cases? 

Given:  
20% chance of H 
70% chance of D  
given H  
10% chance of D  
given non-H 

Inferred: 
Chance of non-H:  
100% – 20% = 80% 

Required: 
What is the chance of H  
for a single case with D?  

2 70% with D of 20% H ® 
14%  
10% with D of 80% non-
H ® 8%  

20% chance of H and then 
70% chance of D ® 14% 
80% chance of non-H and 
then 10% chance of D ® 8% 

3 All cases with D:  
14% + 8% = 22%  
Proportion of H cases of all 
cases with D:  
14% of 22% ® 63% 

Chance for D:  
14% + 8% = 22% 
Chance of H for a single case 
with D:  
14% / 22% ® 63% 

Research on different conceptual framing 
Research on Bayesian reasoning has examined the effects of 
different conceptual framings (mostly probability and natural 
frequency, but also proportion) and different sampling struc-
tures (normalized or naturally sampled) (cf. Table 3). 
 

Table 3: Overview of different conceptual framings and 
sampling structures. Our studies compare ④ vs. ⑤. 

 
  Conceptual framing 

  Probability 
(single 
case) 

Proportion 
(multiple 
cases, abstract 
sample) 

Frequency 
(multiple 
cases, con-
crete sample) 

Sam-
pling 
struc-
ture 

Normalized ① ② ③ 
Non-nor-
malized ④ ⑤ ⑥ 

 
The most frequently studied variation is the comparison of 

Bayesian reasoning with either normalized probabilities (①) 
or natural frequencies (⑥) (cf. McDowell & Jacobs, 2017). 
However, the effects of the different conceptual framings 
(single-event probability vs. multiple-case absolute frequen-
cies) and the reduction of computational complexity often re-
main intertwined in this design (Brase & Barbey, 2006).  

Macchi (2000) describes two conditions that contribute to 
the comparison of probability and proportion: In a so-called 
“partitive condition”, the subset structure was made explicit 
and also the numerical values were given with proportions of 

multiple cases (②; “360 out of 1000, 75% of these” referred 
to as probability by the author). In a so-called “non-partitive” 
condition, the subset structure was implicit, and the numeri-
cal values were given as single-case probabilities (①). Thus, 
the better results in the partitive condition may – as Macchi 
(2000) argues – be attributed to the supported recognition of 
the subset structure (cf. mental step 1). It may, however, also 
be caused by the facilitated combination of normalized infor-
mation via nested proportions (cf. mental step 2).  

Gigerenzer and Hoffrage (1995, study 2) also compared 
probabilities (①) to proportions (②, in the form of relative 
frequencies) represented as percentages. The verbal descrip-
tions systematically differed with regard to probabilities ver-
sus relative frequencies. However, the questions were always 
posed in terms of single-event probabilities. Using this de-
sign, they found no differences between probability and pro-
portion with respect to the numerical solution procedure and 
solution rates. As previously mentioned, the symbolic arith-
metic procedure is the same for both proportions and proba-
bilities. Moreover, the question format may have triggered all 
participants to switch to thinking in probabilities.  

Indeed, Weber et al. (2018), using a design adopted from 
Gigerenzer and Hoffrage (1995), showed that participants 
very often switch between the concepts of probability/pro-
portion and absolute frequency. The concepts and procedures 
actually used by the participants predicted the rates of suc-
cessful Bayesian reasoning much more accurately than did 
the conceptual framing provided in the task.  

These findings strongly suggest that a modified research 
approach is needed to better separate the effects of the com-
putational procedure from the conceptual reasoning process. 
We therefore attempted to minimize internal switches be-
tween probabilities and proportions by implementing con-
sistent conceptual framings throughout the task (representa-
tion format, verbal description, question, and answer format) 
and by avoiding symbolic representations (e.g., percentages), 
since these can trigger either implicit transitions between 
probabilities and proportions (“percent of”) or procedural 
knowledge (“multiply percentages”).  

Strategies and heuristics employed during the mul-
tiplicative step of Bayesian reasoning 
In normalized Bayesian situations, the prior values (i.e., prior 
probabilities or base rates) and conditional values (i.e., like-
lihoods or hit rates) have to be combined multiplicatively to 
derive the posterior values. However, such a multiplicative 
interaction is not intuitive and is therefore cognitively de-
manding (Sundh, 2019). Unsurprisingly, research shows that 
humans often fail to apply the Bayes rule correctly, even 
when strongly supported (Weber et al., 2018). Research re-
vealed multiple strategies that deviate from standard Bayes-
ian updating, such as neglecting part of the information 
(Gigerenzer & Hoffrage, 1995, see also Bruckmaier et al., 
2019; Leuders & Loibl, 2020, for overviews on these incor-
rect strategies). Among these are various evidence-only strat-
egies (EOS; also known as base rate neglect) or prior-only 
strategies (POS). Moreover, when considering all pieces of 
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information, people tend to combine the information addi-
tively as opposed to multiplicatively. In an early study, Shan-
teau (1975) showed that, when updating probability estima-
tions based on non-informative evidence, the probability up-
dates of the participants suggest averaging instead of multi-
plying strategies (cf. Loibl & Leuders, 2020: averaging-pri-
ors-and-evidence strategy, APES). Similar additive strategies 
have been identified for joint probabilities (Sundh, 2019; 
Juslin et al., 2015) and Bayesian reasoning (Cohen & Staub, 
2015; Juslin et al., 2009; Lopes, 1985; Macchi, 2000; Shan-
teau, 1975). Such erroneous strategies can also be seen in 
mathematics education: When solving word problems, stu-
dents often regress to additive strategies when unable to con-
struct a situation model with a multiplicative structure (Ver-
schaffel et al., 2020).  

The choice of strategy for combining prior and conditional 
values is influenced by the representation of the situation. 
Proportions support mental representations of nested propor-
tions, thereby suggesting a combination that is equivalent to 
multiplicative reasoning. On the other hand, multiplicatively 
combining probabilities in consecutive events is not obvi-
ously supported by a mental representation. We consider this 
discrepancy between proportions and probabilities to be an 
explanation for the different tendencies to apply either the 
multiplicative Bayesian update strategy (BUS) or an additive 
strategy such as APES. However, the effects of framing the 
situation in terms of single-event probabilities or proportions 
on the use of additive and multiplicative strategies have rarely 
been investigated. 

Research question 
Our two studies attempt to complement the existing research 
by a systematic consideration of Bayesian reasoning within a 
proportion framing. In both studies, we (1) implement strictly 
parallel proportion and probability conditions, (2) provide in-
formation that equally requires multiplicative reasoning in 
both conditions (i.e., normalized samples), and (3) rely on 
non-symbolic presentations of quantitative values in order to 
exclude solutions based on (often superficial) procedural cal-
culations. 

We assume that framing Bayesian tasks in terms of propor-
tions as opposed to single-event probabilities improves 
Bayesian estimations of posteriors because – as described 
above – it activates mental representations of nested propor-
tions which allow for mental operations that correspond to a 
multiplicative combination of given quantities. Conversely, 
we assume that framing Bayesian tasks in terms of single-
event probabilities as opposed to proportions is more likely 
to result in inadequate additive combinations of prior and 
conditional values.  

More specifically, we hypothesize that different conceptual 
framings result in different distributions of updating strate-
gies, namely a predominance of the Bayesian update strategy 
(BUS) within a proportion framing and a predominance of 
the averaging-priors-and-evidence strategy (APES) within a 
single-event probability framing. 

Methods 

Participants 
The participants in study 1 were 37 students enrolled in a 
mathematics teacher education program from two parallel, 
identical courses on statistics. In this course, they had not yet 
worked on probability theory at the time of the study. Each 
course was randomly assigned to one of the two conditions, 
either proportion framing (N = 21) or probability framing (N 
= 16). The groups did not differ with regard to age (M = 22.4, 
SD = 1.3), semester (M = 5.6, SD = 1.5), nor in their self-
reported competence in proportions (M = 2.7, SD = 0.7) or 
probability (M = 2.5, SD = 0.7) on a scale from 1 to 4.  

The participants in study 2 were 61 11th graders with a ma-
jor in mathematics from a vocational high school. They had 
not worked on probability theory prior to the study. Individ-
ual students were randomly assigned to one of the two condi-
tions, either proportion framing (N = 31) or probability fram-
ing (N = 30). The groups did not differ with regard to age (M 
= 17.4, SD = 0.6) nor in their self-reported competence in 
proportions (M = 2.4, SD = 0.8). However, students in the 
probability condition reported a slightly higher competence 
in probability (M = 2.7, SD = 0.8 vs. M = 2.2, SD = 0.6) on a 
scale from 1 to 4.  

In both studies, all participants (and for the underaged stu-
dents their legal guardians) provided written consent to take 
part in the study.  

Design 
We investigated Bayesian reasoning in a non-symbolic set-
ting. That is, all relevant pieces of information (prior values, 
conditional values, and posteriors) were represented graph-
ically and qualitatively with bar charts on a computer screen 
and without symbols (neither numbers, variables, nor formu-
las, cf. Fig. 1). The representation enables the participants to 
(mentally and practically) manipulate the bars in a way that 
corresponds to the combination step (either correct multipli-
cation or biased addition). This is done without already dis-
playing the result of the combination step, which is the case 
in most graphical representations, e.g., a unit square that dis-
plays the combined sizes (Eichler et al., 2020; Khan et al., 
2015). And, most importantly, the bars can be verbally de-
scribed using both framings: probabilities and proportions 
and, thus, be described identically for both conditions. 

The context of the presented Bayesian tasks in study 1 (par-
ticipants: teacher students) described a population of learners 
having problems with decimals and the participants were 
asked to decide between one of two possible (and very com-
mon, e.g., Moloney & Stacey, 1997) misconceptions – the 
shorter-is-larger misconception (SL) and the whole-number 
misconception (WN) – after data in the form of an erroneous 
student response to a specific test question is known. In study 
2 (participants: high school students), we used the medical 
context of testing for the flu, as often applied in Bayesian rea-
soning research.  
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In order to systematically vary the conceptual framing, the 
wording (presented both verbally and through onscreen la-
bels) was adapted across conditions (e.g., study 1: “propor-
tion of students with SL” vs. “probability of a student for SL” 
and “proportion of students with error of students with SL” 
vs. “probability of a student for an error when SL”; study 2: 
“proportion of patients with the flu” vs. “probability of a pa-
tient for the flu” and “proportion of patients with the flu of 
the positive tested patients” vs. “probability of a patient for 
the flu when tested positive”).  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Structure of the graphical updating environment 
(labels for participants different, see example in text). 

 
Prior to data collection, participants received an instruction 

about the tasks and the meanings of the bar charts. After-
wards, participants had to judge eight cases in study 1 and six 
cases in study 2. Each case was made up of an unknown stu-
dent or patient, a test question or a medical test, and the in-
formation that the given student’s response was incorrect or 
the patient was tested positive. Each case presented the prior 
values (green and blue bars to the left in Fig. 1). These values 
were presented again in two separate bars, with the likeli-
hoods/hit rates of an error or a positive flu test given in two 
adjoining bars (gray and white bars in Fig. 1). Participants 
were prompted to combine the prior and conditional infor-
mation and to use auxiliary marker lines (dashed horizontal 
lines) to support their thinking. Finally, they were asked to 
estimate the posteriors by adjusting the posterior bar (the far-
right bar in Fig. 1) for the eight (or in study 2: six) succes-
sively presented cases. The wording of the instructions and 
the graphical display differed only with respect to probability 
and proportion language. The graphical display equally al-
lowed for participants in both framings to represent their 
strategy of combining information. After the final case, par-
ticipants described their strategy in a stimulated recall. 

The participants’ estimation of the posterior values for the 
eight cases enabled us to distinguish between their updating 
strategies. To this end, the prior and conditional values for 
the cases were selected in a way that the posteriors resulting 
from the possible updating strategies differed maximally – 
especially with regard to BUS and APES (see next section). 

Classification of updating strategy  
To classify the participants with respect to their updating 
strategies (Bayesian update strategy BUS, averaging-priors-

and-evidence strategy APES, evidence-only strategy EOS, or 
priors-only strategy POS), we inspected their posterior esti-
mations (i.e., their selected positions in the posterior bars) in 
the eight (or in study 2: six) estimation tasks and used the 
distance from the exact values for classification.  

As participants were not expected to hit the exact posterior 
position, an estimated posterior value (e.g., 60%) cannot be 
attributed with certainty to a particular updating strategy. In-
stead, an estimated posterior value contributes, at different 
levels of strength, to the plausibility of each of the four strat-
egies. Therefore, we followed a naïve Bayesian classification 
procedure (Duda et al., 2012); we modeled the likelihood of 
a subject’s judgment J (i.e., estimation of posterior) under the 
condition that he or she applied a specific updating strategy 
(e.g., BUS) using a Gaussian distribution. The likelihood of 
an estimation value Jij of subject j in task i decreases expo-
nentially as the distance to the mathematically exact judg-
ment increases. 

The evidence from eight (or in study 2: six) estimation 
tasks was used to update an (unknown) prior probability for 
a strategy according to the product 𝑝!"#$(BUS) =
𝑝!%&"%(BUS) ∙ ∏ 𝑝&(	𝐽&'|BUS)& . The multiple ratios (read as 
pairwise ratios) express the change in probability for the clas-
sification induced by the accumulated evidence and are 
known as Bayes factors (BF): 

 
∏ 𝑝𝑖(	𝐽𝑖𝑗|BUS) ∶ ∏ 𝑝𝑖(	𝐽𝑖𝑗|APES) ∶! ∏ 𝑝𝑖(	𝐽𝑖𝑗|POS) ∶! ∏ 𝑝𝑖(	𝐽𝑖𝑗|EOS)!! 	 

 
 e.g. BFBUS:APES               BFAPES:EOS 

For a classification of the updating strategy of each subject 
j, we inspected the Bayes factor of the dominant strategy to 
the subsequent one, e.g., BFBUS:APES. The resulting certainty 
of classification equals the posterior ratio, assuming equal 
priors.  

Differences in the distribution of the updating strategies 
BUS and APES between the experimental conditions were 
analyzed using a Bayesian contingency table test with an in-
dependent multinomial model (Jamil et al., 2017) via JASP 
software. 

Results 
Most participants in study 1 could be classified with high cer-
tainty, mostly with extreme evidence, BF1:2 > 100. BF1:2 indi-
cates the increase of the likelihood of one classification over 
the other (the ratio of the dominant classification to the sub-
sequent one). The classification for five participants was un-
certain (BF1:2 ≤ 3). Table 4 lists the classification of the par-
ticipants to BUS, APES, or one of the other strategies (POS, 
EOS) after eight cases. When comparing the distributions of 
BUS and APES across conditions, a Bayesian contingency 
table test revealed moderate evidence (BF10 = 6.1) for our hy-
potheses: Participants in the proportion framing condition 
tended to apply more BUS, participants in the probability 
framing condition tended to apply more APES.  

Most participants in study 2 could be classified with high 
certainty. The classification for 16 participants was uncertain 
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(BF1:2 ≤ 3). Table 5 lists the classification of the participants 
to BUS, APES, or one of the other strategies (POS, EOS) af-
ter six cases. In contrast to study 1, many participants failed 
to combine the information and recurred to single-infor-
mation strategies (POS or EOS). When comparing the distri-
butions of BUS and APES across conditions, a Bayesian con-
tingency table test revealed moderate evidence (BF10 = 5.4) 
for our hypotheses: Participants in the proportion framing 
condition tended to apply more BUS, participants in the prob-
ability framing condition tended to apply more APES.  
 

Table 4: Number of participants per condition classified 
to the strategies with high certainty (BF1:2 > 3) in study 1. 

 
 BUS APES others BF1:2 ≤ 3 

Proportion 13 3 2 3 
Probability 5 8 1 2 

 
 

Table 5: Number of participants per condition classified 
to the strategies with high certainty (BF1:2 > 3) in study 2. 

 
 BUS APES others BF1:2 ≤ 3 

Proportion 8 2 13 8 
Probability 3 7 11 9 

Discussion 
The main assumption of our studies was that the cognitive 
processes constituting Bayesian updating in non-symbolic 
situations can rely on mentally representing and processing 
proportions as parts of parts. We assumed that this mental 
representation and operation is at work when the relevant in-
formation (prior and conditional values) is presented in a pro-
portion framing. In contrast, a probability framing may not 
activate this parts-of-parts thinking to a similar extent. As hy-
pothesized, our results show that in both studies participants 
in the proportion framing condition tended to apply the valid 
Bayesian update strategy (BUS), whereas participants in the 
probability framing condition tended to apply a biased strat-
egy. More specifically, participants in the probability framing 
condition often combined the prior and conditional probabil-
ities additively (by averaging priors and evidence infor-
mation, APES) instead of multiplicatively. Therefore, we re-
gard our results as supportive for the assumption that parts-
of-parts thinking facilitates correct multiplicative Bayesian 
updating. Additive strategies (similar to APES) have also 
been detected by Cohen and Staub (2015), Juslin et al. (2009), 
Lopes (1985), and Shanteau (1975), although these studies 
could not ascribe the findings systematically to a probability 
vs. proportion framing.  

The substantial increase of BUS in the proportion framing 
condition in our studies is especially noteworthy when com-
pared to prior research on fostering Bayesian reasoning. Ap-
proaches that use natural frequencies instead of probabilities 
(e.g., Gigerenzer & Hoffrage, 1995; Hill & Brase, 2012), not 
only highlight the parts-of-parts structure (step 1) but also 
present the conditional values as joint frequencies (e.g., 2 of 

the 10 students with SL solve this task correctly). Thus, the 
priors (e.g., 10 of 100 students) are already contained in the 
joint frequencies, eliminating the necessity of the crucial step 
2 (determining the parts of parts). Similarly, graphical repre-
sentations such as the unit square (Eichler et al., 2020; Khan 
et al., 2015) explicitly present the parts-of-parts structure 
(step 1), but also the magnitude of the resulting parts of parts 
(step 2). In contrast, our proportion framing still requires all 
three steps. Thus, we could show an improvement in Bayes-
ian reasoning without reducing the complexity.  
Our investigation was – different from most approaches – 
conducted in a non-symbolic setting by providing the rele-
vant information in the form of bar charts instead of numbers. 
Previous studies also included graphical representations to 
visualize the structure of the situation (e.g., Eichler et al., 
2020; Kahn et al., 2015), but these studies usually also pro-
vided numerical information and do not rely solely on graph-
ical representations. Therefore, in these studies the expected 
valid strategy amounted to applying the Bayes rule by calcu-
lation. As known from research on word problems, providing 
numbers can lead to superficial calculations without con-
structing a situation model (for a review see Verschaffel et 
al., 2020). Indeed, other studies (for Bayesian reasoning, 
Gigerenzer & Hoffrage, 1995; for conjunctive probabilities, 
Juslin et al., 2009) found incorrect calculations that corre-
sponded to ad-hoc strategies in combining the provided num-
bers. A non-symbolic approach can help to reduce such inter-
ferences from procedural calculations.   In addition, non-sym-
bolic Bayesian reasoning also seems ecologically valid in 
many real-life contexts, such as teachers’ judgments of stu-
dents’ misconceptions, in which the information is rather not 
represented symbolically, but only by qualitative estimations, 
and thus, the process of Bayesian reasoning also relies on pro-
cessing such information qualitatively (Leuders & Loibl, 
2022). 

In our studies, we investigated the cognitive processes in-
volved in posterior estimation. In situations where only a de-
cision for the most likely hypothesis (e.g., which misconcep-
tion or disease) is required, the steps in our model can be sim-
plified. Loibl and Leuders (2020) have shown in a simulation 
that APES leads to correct decisions in most cases. Whether 
this phenomenon is also shown empirically still needs to be 
investigated. 

To conclude, our studies show that it is promising to sys-
tematically investigate the effect of recurring to mental rep-
resentations of proportions in Bayesian reasoning. With a fo-
cus on the parts-of-parts model, our studies investigated step 
2 (determining the parts of parts) of the cognitive model that 
is central to Bayesian updating. Further research should also 
investigate the other steps within the cognitive model. This 
endeavor requires a fundamental analysis of the interaction 
between representations and cognition as already put forward 
by Gigerenzer and Hoffrage (1995). In this regard, our stud-
ies suggest that investigating non-symbolic settings is a 
promising strategy to enlighten the cognitive processes at 
work in Bayesian reasoning. 
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