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Emergent social structure is typically not
associated with survival in a facultatively
social mammal

Conner S. Philson1,2 and Daniel T. Blumstein1,2
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Los Angeles, CA 90095-1606, USA
2Rocky Mountain Biological Laboratory, Box 519, Crested Butte, CO 81224, USA

CSP, 0000-0002-5974-347X; DTB, 0000-0001-5793-9244

For social animals, group social structure has important consequences for
disease and information spread. While prior studies showed individual con-
nectedness within a group has fitness consequences, less is known about the
fitness consequences of group social structure for the individuals who
comprise the group. Using a long-term dataset on a wild population of facul-
tatively social yellow-bellied marmots (Marmota flaviventer), we showed social
structure had largely no relationship with survival, suggesting consequences
of individual social phenotypes may not scale to the group social phenotype.
An observed relationship forwinter survival suggests a potentially contrasting
direction of selection between the group and previous research on the individ-
ual level; less social individuals, but individuals in more social groups
experience greater winter survival. This work provides valuable insights
into evolutionary implications across social phenotypic scales.
1. Introduction
An individual’s social phenotype has important implications for its fitness in
group-living species [1]. Survival, an important fitness correlate, is influenced
by the degree, rate and context of social interactions in some species, as measured
by social network analysis. For example, stronger social relationships have been
associated with greater survival in male bottlenose dolphins (Tursiops sp.; [2]),
chacma baboons (Papio hamadryas ursinus; [3]), Barbary macaques (Macaca sylva-
nus; [4,5]) and feral horses (Equus caballus; [6,7]). Several mechanisms contribute
to this positive sociality–survival relationship, such as predator defence and
detection [8–10] and resource exploitation [11,12]. Yet, higher rates of sociality
can also be costly in terms of survival, as seen in female bottlenose dolphins [2]
and is often associated with predator attraction and disease acquisition [13–15].

This previous work exclusively explored the fitness consequences of an
individual’s social phenotype, leaving the consequences of the group social
phenotype unstudied [16–18]. Group social structure—emergent network traits
generated by the interactions of all group members—quantifies the group
social phenotype in a way more complex than averages of individual-level net-
work values [19–22]. Social structure influences key ecological and evolutionary
processes [23] such as group formation and regulation [24] and movement pat-
terns [25]. Social structure is in turn influenced by ecological conditions [26,27]
and group composition of individual social and non-social phenotypes [28,29].
In most species, social structures are non-random, repeatable across years,
group compositions, and environmental gradients and conditions [18,29–37].

Social structure may also have fitness consequences. Captive bluebanded
gobies (Lythrypnus dalli), an obligately social species, have reduced reproductive
success when living in groups with more reciprocated aggressive interactions
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mailto:cphilson@ucla.edu
https://doi.org/10.6084/m9.figshare.c.6466944
https://doi.org/10.6084/m9.figshare.c.6466944
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Table 1. Measures of social structure with the a priori hypothesized direction of the relationship.

measure description references interpretation
summer
hypothesis

winter
hypothesis

density number of interactions

observed represented as

a fraction of all possible

interactions

Burt [46]; Wasserman

& Faust [20];

Grund [47]

how connected a group is + −

transitivity proportion of completely

connected triads out of

the total possible triads

Wasserman & Faust

[20]; Milo et al.

[48]; Faust [49]

how cyclically connected a group

is. There are more transitive

components in affiliative

networks in this system [50]

+ −

reciprocity the number of mutual

interactions divided by

the number of possible

mutual interactions

Wasserman & Faust

[20]; Kankanhalli

et al. [51]; Squartini

et al. [52]

used to quantify how mutual or

one-sided interactions are in a

group

+ +

degree

assortativity

tendency for social ties to

share similar individual

degree measures

McPherson et al. [53];

Currarini et al. [54]

how socially homogeneous a

group is, in terms of

individual’s number of social

partners

+ +

average path

length

average of the shortest

paths between all pairs

of nodes

Watts & Strogatz [55];

Broder et al. [56]

identifies the size of a network, in

addition to raw group size

− +

cut points number of social ties that

if cut will result in two

or more separate

networks

Wasserman & Faust

[20]; Borgatti [57]

how stable or fragmentable

(breakable) a group is

− +
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[38]. In wild yellow-bellied marmots, adult female repro-
ductive success modestly increases when living in more
fragmentable social groups [39]. Adults also gain body mass
more slowly when living in more connected groups, though
yearlings gain mass more quickly in socially homogeneous
groups [40]. These studies highlight how social structure
may have different fitness consequences across species, demo-
graphic roles and social systems [16,17]. However, how social
structure specifically relates to patterns of survival in animal
populations is not understood.

We explored the relationship between group social
structure and survival over both the active summer season
and winter hibernation in a long-studied population of
yellow-bellied marmots. In this system, an individual’s social
phenotype predicts survival [41,42] and other fitness correlates
(alarm call propensity: [43]; reproductive success: [44]; longev-
ity: [45]). Informed by previous work on the individual and
group levels in this system, we developed a priori hypotheses
(table 1) for six network measures, capturing the connected-
ness, mutuality and homophily of a group, and both summer
and winter survival. Females living in larger social groups
and yearling females engaging in more social interactions
experience enhanced summer survival [42]. Predation is the
primary driver of summer mortality in this system [58],
thus more social individuals, or those residing in more con-
nected groups, may better detect and avoid predators [8–10].
We predict that residing in more connected, reciprocal and
socially homogeneous groupswill be associatedwith increased
summer survival. However, more social marmots are less
likely to survive hibernation [41]. Since body condition is
the primary driver of winter mortality, this may be a function
of social interaction time costs [59] and/or individuals in
groups having more costly periodic arousals during social
hibernation [60,61]. Thus, we predict that residing in more
connected, less reciprocal and socially heterogeneous groups
will be associated with decreased winter survival, as was
seen for mass gain and reproductive success [39,40].
2. Methods
(a) Study system
Yellow-bellied marmots are harem-polygynous, facultatively
social ground-dwelling squirrels living in matrilineal colonies
with one to two territorial males [62,63]. The population at the
Rocky Mountain Biological Laboratory in Colorado (38°570N,
106°590W; ca 2900 m elevation) has been continuously studied
since 1962. These marmots are active for five months annually
(mid-April tomid-September). Following their winter hibernation,
theymate soon after emergencewith yearlings dispersing and new
pups emerging in late-June to early-July. Annually,mostmales and
about half of females disperse as yearlings, typically resulting in
movement out of the study area [63]. We only explore adult
summer and winter survival because yearling dispersal creates
uncertainty about yearling survival.
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(b) Data collection
We repeatedly trapped and observed marmots during their active
season from 2002 to 2020. All individuals studied in our popu-
lation have unique non-toxic dye marks on their dorsal pelage,
allowing accurate identification of interacting individuals and pre-
cise estimates of survival. A detailed ethogram and behavioural
observational methodology are outlined in Blumstein et al. [64].
The initiator, recipient, location, time and type of each interaction
is recorded, withmost interactions (79%) occurring between ident-
ified individuals. The remaining 21% interactions could not be
identified because of interacting individuals’ posture or visual
obstructions. We excluded these interactions from our data,
which should not significantly influence our estimates of social
structure [65].

Only adults and yearlings are included in our social interaction
data because only these cohorts were present in spring, when social
interactions were most common. Pups were excluded because of
their mid-season emergence and primary interaction with their
mother and each other [66]. We eliminated transients by excluding
individuals observed or trapped fewer than five times in a given
year [41,43–45]. Colony sites are grouped into higher and lower
elevation sites (five are at higher and seven are at lower elevation
sites). Higher elevation sites are approximately 166 m higher and
experience harsher weather conditions [36,67,68].
(c) Social network measures
Directed and weighted interaction matrices were constructed from
affiliative interactions for each year (2002 to 2020) the package
‘igraph’ (version 1.3.5; [69]) for R 4.2.0 [70].We focused on affiliative
interactions (e.g. allogrooming, greeting and play) because
they relate to summer and winter survival on the individual
level [41,42] and affiliative interactions comprised 88% of inter-
actions. These affiliative matrices consisted of 38 968 social
interactions between 726 individuals (626 of whom were observed
across multiple years). A social group is defined as a network com-
ponent (set of connected individuals with no other external
connections) appearing naturally within a valley location (higher
elevation or lower elevation) in a given year. This operationaliza-
tion produced 137 social groups with group sizes ranging from 3
to 58 individuals with a mean of 20.51 (s.e. = 0.52). Details on
identical behavioural observation and network methods can be
found in Philson & Blumstein [39].

Six social network measures were calculated for each group
to quantify social structure (table 1). Density, transitivity,
average path length and cut points quantify connectivity;
reciprocity and degree assortativity quantify homophily. We
selected these measures due to their importance in our system
[39,40,50], other systems [18,27,38,71], and because these
network measures have analogous measures on the individual
level (e.g. density and degree; transitivity and clustering
coefficient; [18]), aiding our understanding of consequences of
social behaviour across social phenotypic scales [20]. The
reliability of the social network measures is facilitated by our
observations of marmot social groups across their entire active
season (mean n observations per individual across years =
28.81, range of each year = 6.79– 75.14) and low rate of unknown
individuals involved in social interactions [65,72,73]. Because
group size is associated with many marmot social network
measures (e.g. density, cut points; [35,39,40]), we standardized
each measure not already ‘standardized’ (i.e. degree assortativity
and cut points) by dividing the network measures by group size
[20,39,40].
(d) Data analysis
Summer survival was defined as individuals seen or trapped
after 1 August or in the following years. Winter survival was
defined as individuals seen the following year/s. Survival data
were paired with network measures from the current active
season (for summer survival) or the active season before hiber-
nation (for winter survival). We fitted two generalized linear
mixed models (summer and winter) with a binomial distribution
and a bobyqa optimizer with 20 000 iterations using ‘lme4’ [74,–
76]. Model assumptions and zero inflation were checked after fit-
ting. The summer survival model included the six network
measures, social group size, age, sex, June mass, valley location
and a predation index as fixed effects. The winter survival model
included the six network measures, group size, age, sex, August
mass, valley location, and the date bare ground was first visible
because of melting snowpack in the centre of our colony areas.
Models had 559 observations consisting of 252 unique individuals
in 91 social groups across 19 years.

We included the individual attributes age, sex, mass and
location because survival ismulti-causal andwewished to account
for important attributes with known fitness implications [77–79].
Group size was included due to its relationship with fitness corre-
lates in this system [35,44]. Predation index is a binary variable
calculated by whether the number of predators observations at
that colony was below or above the median number of predator
observations across all colony areas in that year [80], providing a
value relative to all other years [42]. Individual ID and year were
included as random effects to account for annual environmental
and demographic differences [36,81,82] and individuals observed
over multiple years.

All continuous variables were standardized (mean-centred
and divided by 1 s.d. using the ‘scale’ function in base R; [83]).
Group size was log10 transformed before scaling, but we
employed no other transformations. We checked for multi-colli-
nearity between fixed effects and found each had a correlation
coefficient of less than 0.8 [84,85], though both density and
group size had a VIF of greater than 5 in both the summer and
winter models (electronic supplementary material, table S1).
Because group size has known relationships with fitness in this
system [35,39,40,44], we removed density from both models and
the interpretation of the results for the measures of social structure
did not change (electronic supplementarymaterial, table S2). Since
this suggests our models were relatively robust, we report models
that included both density and group size here.

Marginal and conditional R2 values for each model and the
semi-partial marginal and conditional R2 that estimate variance
explained by each fixed effect were calculated using ‘partR2’
[86,87]. We estimated 95% confidence intervals for our R2

values using 100 parametric bootstrap iterations. Figures were
generated with ‘ggplot2’ [88].
3. Results
Contrary to our a priori hypothesis, we found a statistically
significant negativemain effect of cut points onwinter survival
(B =−0.359; p = 0.031; s.e. = 0.167; figure 1; table 2), suggesting
individuals residing in more fragmentable—breakable into
two or more separate groups of two or more individuals—
social groups experienced reduced winter survival. Overall,
five of the sixmeasures of social structure did not have a signifi-
cant statistical relationshipwithwinter survival, suggesting the
relationship is modest. This model had a marginal R2 value
of 6.28% and a conditional R2 value of 7.93%. Cut points
explained 1.11% of the marginal semi-partial R2 variance
further suggesting the relationship is modest.

Rejecting our a priori hypotheses, we found no significant
main effects of social structure in our summer survival
model (figure 2; table 2), suggesting social structure does
not play a primary role in summer survival. This model
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explained 7.39% of the marginal variance and 19.17% of the
conditional variance.

4. Discussion
We found no strong and consistent evidence that social struc-
ture is related to summer survival in this system. However,
because one measure of social structure (cut points) was
related to winter survival, group structure may have a limited
impact in specific contexts. Because group social structure
exists on a larger, emergent phenotypic scale than an individ-
ual’s direct social interactions [16,22,89], it is logical that the
relationship between social structure and fitness may be
quite modest because of its indirect nature, as seen in
previous work [18,38,39].

Social structure not relating to summer survival is sur-
prising given that more connected groups might excel
at predator detection and/or avoidance [8–10,90,91]. How-
ever, the lack of a statistically significant relationship may
result from the emergent, and hence indirect nature of
social structure [18–22]. Since these facultatively social
marmots experience mostly fitness costs from more social
individual and group phenotypes [39–41,43–45], the conse-
quences of more social individual phenotypes may not
scale linearly to the group social phenotype, as seen in
male forked fungus beetles [18]. That is, residing in a more
connected group may not incur the same benefits as
increased individual sociality. A marmot may have modest
benefits at an individual level of being more socially con-
nected with others, but still regulate their social interactions
by residing in less connected groups. Because of the few
associations with winter survival, the strength of group-
level selection is likely less than the strength of individual-
level selection for survival in this system. However, targeted
exploration of multi-level selection is required to specifically
test this hypothesis.

Interestingly, the one statistically significant relationship
we identified (between winter survival and cut points)
may have interesting evolutionary implications and further
suggests that the individual social phenotype may not scale
to the group phenotype [18]. In this system, more socially
connected individuals have decreased winter survival [41],
suggesting selection acts against more social individual phe-
notypes. As we have shown here, individuals residing in less
fragmentable (or more closely socially connected) groups
have increased winter survival, suggesting selection acts
towards more social group phenotypes. The mechanisms
for this are entangled. Winter survival is closely associated
with body mass [81]. Thus, more social individuals in more
social groups may have less time to forage to develop
energy reserves and may be more likely to socially hibernate,
increasing the risk of costly torpor interruptions [60,61].
However, residing in a less fragmentable group, where indi-
viduals may be more likely to share space and hear
conspecific alarm calls [26,27,30,92] may facilitate predator
avoidance and allow for more time to gain mass. This poten-
tial explanation is muddled, but not dismissed, by the lack of
an observed relationship for summer survival.

Importantly, residing in a less fragmentable group does
not necessarily imply that individuals within that group are
significantly more social [19–22]. This also does not imply
more connected social structures are beneficial in this species
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[39,40], but rather that in specific contexts some benefits to
increased sociality may emerge at different social scales. As
mentioned, the strength and potential contrasting direction
of selection between individual and group traits in this
system requires further exploration. Opposing selection has
been observed across species for non-social traits [71,93–98],
though less research investigates selection acting on social
behaviour across social scales [95,96,99]. Bluebanded gobies
[38], chacma baboons (Papio hamadryas ursinus; [3]) and
social bumblebees (Bombus sp.; [100,101]) experience fitness
benefits across social scales. However, not all species may
experience, or experience via the same mechanisms, aligned
fitness consequences across social scales [18].

Understanding the evolution of social behaviour requires
directly measuring the fitness consequences of natural behav-
ioural variation [38]. While the ranging fitness consequences
of individual social network position is well documented
[2,16,102–106], growing research supports group-level social
network traits also have a range of fitness consequences
across species [18,38–40]. This work highlights evolutionary
implications across social scales and our main finding is
that group social phenotype has a complex relationship
with fitness that does not necessarily scale. Our observed
relationship may further suggest complexity via contrasting
selection between the individual and group social
phenotypes on winter survival. However, because the
relationship is modest and little research investigates selec-
tion acting on behaviour across social scales, future work
using a multi-level selection approach is essential to better
understand the adaptive value of sociality.
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