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Focus Issue

Introduction

Sample matrices commonly used in veterinary molecular-
based testing, including feces,15,29 milk,5,35 semen,47 oral flu-
ids,7 and environmental swabs,9 are prone to inhibit PCR and 
nucleic acid sequencing. There can additionally be consider-
able variability in the concentration of the inhibitors found in 
these matrices, as well as variability associated with different 
animal species. Substances capable of causing inhibition in a 
PCR assay are often intrinsic to the specimen type, such as 
complex polysaccharides, bilirubin, and bile salts found in 
stool2,24,29,49; proteases and calcium found in milk5,38; or 
hemoglobin, heparin, and hormones found in blood and tis-
sues.38,50 Inhibitors can also be introduced inadvertently via 
contamination from the environment,50 or intentionally 
introduced during specimen collection and transport (e.g., 
gel media9,12 and anticoagulants).11,28,51 Ethylenediamine 
tetra-acetic acid (EDTA), which is a common component in 
many blood collection, transport, and nucleic acid elution 
buffers, is known to have an inhibitory effect on downstream 
PCR applications,38,50 although EDTA is typically diluted or 
removed during the nucleic acid extraction process.19

The mechanisms of action of common inhibitors include 
degradation or interference with PCR-critical proteases, deg-
radation or interference with nucleic acids, competition with 
the nucleic acid template, and reduction in primer specific-
ity.38,50 Commonly encountered examples of inhibition in 
biologic samples include the ability of heme in blood to 
block the DNA polymerase active site,1,38 and endogenous 
proteinases to degrade assay-critical polymerases.35 For 
environmental samples, humic substances and components 

of soil and sediments such as iron have the potential to inhibit 
polymerase activity and primer binding.44,45,50 Reduced ana-
lytic sensitivity caused by inhibitors in environmental sam-
ples has been described extensively, and is particularly 
problematic in the surveillance of amphibian diseases.23

Mitigation strategies for dealing with common inhibitors 
include thorough washing during nucleic acid extraction and 
screening for inhibitor-resistant polymerases.44 Immuno-
magnetic49 separation and immunocapture38 have been 
described as being efficient in removal of PCR inhibitors for 
selected pathogens, particularly enterics, because the PCR 
target is specifically separated from the sample matrix and 
thus from sample-associated inhibitors. Sample dilution is 
another readily available option for attenuating the impact of 
inhibitory substances, with the caveat that dilution also 
reduces analytic sensitivity for detecting the target. Addition 
of substances to the PCR mixture to counter or bind inhibi-
tors is also a common strategy, and may include bovine 
serum albumin, dimethyl sulfoxide, non-ionic detergents, 
and proteinase inhibitors.38,50 Commercial kits for nucleic 
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acid purification and PCR amplification are generally 
designed to remove PCR inhibitors; however, the effective-
ness of the individual commercial product is dependent on 
the sample matrix, and commercial products are often not 
optimized for the range of species tested in veterinary labo-
ratories.

Despite efforts to remove inhibitors, absolute assurance 
that a negative PCR test result represents a true negative in 
the sample requires that the presence of inhibitors, as well 
as extraction failure and technical or reagent error associ-
ated with the individual test sample, be ruled out. External 
controls routinely used during PCR-based assays monitor 
the reagents and technical steps associated with extraction, 
amplification, and cross-contamination at the run level, 
but not at the individual sample level. Internal controls 
(ICs), which by definition are tested as a component of the 
sample containing the assay target, serve the purpose of 
ensuring that individual samples are effectively extracted, 
amplified, and importantly that inhibitory substances do 
not mask the intended target. The combination of external 
and internal controls during PCR-based testing ensures 
that inhibition, in addition to technical or reagent failures, 
is not responsible for causing false-negative and false-pos-
itive test results.

ICs can be categorized into endogenous ICs (EICs) and 
exogenous ICs (XICs). EICs are found naturally in the test 
specimen, for example as a sequence of the host genome 
such as beta-actin21,30,46,53 or beta-2-microglobulin,4,14,53 or 
alternatively are found in the specimen as a genome sequence 
from the host’s microflora (e.g., 16S rRNA). XICs are spiked 
into samples prior to processing for testing, during nucleic 
acid extraction, or prior to the amplification steps of the PCR 
assay.

Endogenous internal controls

Ribosomal genes are a common choice for EICs (Table 1). 
The eukaryotic 18S rRNA gene has the versatility to be used 
as an EIC for multiple animal species when designed properly, 

but, because the gene occurs in all eukaryotes, it cannot be 
used to verify that a particular sample comes from the stated 
species. The conserved portion of the16S rRNA gene can also 
be used as an EIC in samples such as feces, in which bacteria 
are always present (Centers for Disease Control and Preven-
tion [CDC]. Multiplex real-time PCR detection of Klebsiella 
pneumoniae KPC carbapenemase (NDM-1) and New Delhi 
metallo-β-lactamase genes. Available from: https://www.cdc.
gov/hai/settings/lab/kpc-ndm1-lab-protocol.html). Because 
16S rRNA is found in all prokaryotes, bacterial DNA, includ-
ing that from a recombinant Taq expression host, will be 
detected by a 16S rRNA EIC if present in a diagnostic or 
research sample. Further, extra caution is warranted to pre-
vent reagents from becoming contaminated with bacteria, 
given that contaminating bacteria will also be detected by a 
16S rRNA EIC. The use of ribosomal genes for EIC has obvi-
ous advantages, including the presence of multiple copies in 
genomes, making ribosomal genes more readily detectable 
than single-copy genes. The practical disadvantage of 
employing ribosomal genes as EICs is that they are highly 
conserved and occur in relatively high copy number, which 
may facilitate assay cross-contamination (e.g., aerosol-related 
contamination from a strong-positive IC resulting in a false-
positive result for the negative PCR amplification or no-tem-
plate controls). In this scenario, a real-time PCR (rtPCR) 
cycle threshold (Ct) related to EIC cross-contamination 
would typically show a weak signal (e.g., Ct 33–38) compared 
to the expected Ct from true-positive samples (e.g., 15–25). 
Routine monitoring of the rtPCR Ct levels of EICs allows 
cross-contamination issues to be readily detected, traced, and 
resolved.

Host-specific EICs have historically been used in the less 
quantitative molecular techniques, for instance many refer-
ence genes (housekeeping genes, conserved genes) used in 
northern blots are also commonly targeted in rtPCR (e.g., 
beta-actin). Many studies on human as well as animal spe-
cies have suggested specific reference genes as potential can-
didates for EICs.41–43,48,53,54 The criteria for selection of 
appropriate host genes to be used as rtPCR EICs have been 

Table 1.  Examples of endogenous internal controls published for veterinary species.

Target gene Host species targeted Reference

18S ribosomal RNA (18S rRNA) All eukaryotes 13,27,53, Martín 2008

16S ribosomal RNA (16S rRNA) All prokaryotes *

Beta actin (ACTB) Avian, bovine, porcine 21,30,46

Beta-2-microglobulin (B2m) Equine, bovine 4,14

Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH)

Equine, bovine, canine, apidae 37,42,43,54

Mitochondrial ribosomal protein S7 (MRPS7) Canine 26

Elongation factor 1 alpha (ELF1α) Salmonids 40

* https://www.cdc.gov/hai/settings/lab/kpc-ndm1-lab-protocol.html.

https://www.cdc.gov/hai/settings/lab/kpc-ndm1-lab-protocol.html
https://www.cdc.gov/hai/settings/lab/kpc-ndm1-lab-protocol.html
https://www.cdc.gov/hai/settings/lab/kpc-ndm1-lab-protocol.html
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reviewed.36 A number of software programs are available to 
assist with selection and validation of EICs (e.g., Norm-
Finder,3 BestKeeper,34 and geNorm).48 It should be noted 
that the software programs cited target identification of bet-
ter reference genes for gene expression studies and may not 
be equally applicable for selecting reference genes to be used 
as EICs for clinical testing purposes.

EIC targets can be difficult to design; however, it is very 
likely that an EIC target designed for a PCR assay detecting 
a specific pathogen or target in a given matrix and species 
will additionally work for alternative targets in the same spe-
cies and matrix. It is important to note, however, that each 
PCR target and the assay parameters must be optimized indi-
vidually with the selected EIC to ensure that no adverse 
interaction occurs between the primer and probe sequences 
of the target and the EIC, and that competition for PCR com-
ponents does not alter the assay limit of detection.

Exogenous internal controls

XICs are spiked into the test sample in a defined concentra-
tion or copy number. Compared to use of EICs that can vary 
with the health status of the animal, adding a known amount 
of XIC into the lysis buffer prior to extraction provides a 
more stable, easily standardized, and more readily imple-
mented control for quantitative molecular applications.20 
Additionally, spiking a standard concentration of an XIC into 
all test samples can serve to normalize data and compare 
results across studies.10,20,31

XICs can be designed to be homologous (i.e., competi-
tive) or heterologous (i.e., noncompetitive). Homologous 
XICs are artificial templates constructed to use the same 
primer binding sites as the assay target sequence and a differ-
ent internal sequence for the XIC so that the two can be dis-
tinguished by amplicon size or by use of specific probes.18,38 
Selecting the appropriate concentration of homologous XICs 
used in PCR reactions is critical to the detection limit of the 
assay18 because of the possibility of competition for PCR 
reagents (e.g., oligonucleotides, DNA polymerase) between 
the assay target and XIC. An overabundance of an XIC can 
result in amplification being inhibited for one or both targets 
depending on the molar ratio, and the length, sequence, and 
secondary structure of the DNA fragments.18

Heterologous XICs are designed using primers and probes 
unique to the XIC.18,38 The noncompetitive XIC design still 
requires that the concentration of the control is carefully 
managed in order to limit competition for oligonucleotides 
and DNA polymerase during the PCR reaction.18 Heterolo-
gous XICs are considered very efficient for deployment in 
veterinary laboratories based on their ability to be used uni-
versally for different animal species and matrices.

A number of synthetic sequences have been developed by 
academia and industry, including by the National Institute of 
Standards and Technology (NIST) as a part of the External 

RNA Controls Consortium (ERCC; https://www.nist.gov/
programs-projects/external-rna-controls-consortium), an ad-
hoc group with ~ 70 members from private, public, and aca-
demic organizations. The ERCC assembled a library of 176 
DNA sequences that could be transcribed into RNA for use 
as XICs. Additionally, encapsulated Escherichia coli phage 
MS2 has been reported as a universal XIC,8 having the ben-
efit of not sharing homology with animal hosts or potential 
pathogen targets. Specific examples of XICs used for rtPCR 
in veterinary testing (Table 2) include an in vitro transcript of 
enhanced green fluorescent protein,17 and herpesviruses 
including Marek disease virus33 and phocine herpesvirus,25 
both used in assays targeting unrelated DNA pathogens. As 
seen with the herpesvirus example, an intact virus can be an 
effective XIC for monitoring extraction efficiency and sub-
sequent PCR amplification steps used for the detection of 
either RNA or DNA targets. Compared to DNA-based XICs, 
the innate low stability of RNA and the ubiquitous nature of 
RNases make RNA-based XICs more susceptible to tem-
plate degradation. Armored RNA, composed of RNA 
sequences artificially encapsulated in a protein coat to pro-
tect them from RNase digestion, was initially developed to 
provide assay controls and standards used in testing for the 
human immunodeficiency virus,32 and has since been 
adopted for use as an XIC or surrogate for additional human 
and animal RNA targets.16,52 Armored or protected RNA for-
mulations, and encapsulated RNA XICs such as MS2, are 
available commercially.

Quality control

Assays using ICs must be developed, validated, and man-
aged to ensure that the IC does not interfere with the assay 
limit of detection by competing with the assay target for 
essential PCR assay components. XICs, whether produced 
in-house or obtained commercially, must be titrated to the 
lowest possible concentration such that, when used with 
samples free of inhibitors, the assay target remains consis-
tently within the detection limit of the assay and the IC is 
detected consistently.38 For most commonly used rtPCR plat-
forms available in veterinary diagnostic laboratories (VDLs), 
the XIC would typically be titrated for results in the 30–35 Ct 
range. Commercially available XICs often have a manufac-
turer-recommended range lower than 30–35 Ct; however, to 
ensure the optimal limits of detection for the assay, re-titrat-
ing the XIC to the lowest concentration that still allows the 
IC to be detected is warranted. An example showing how to 
properly titrate a heterologous (noncompetitive) XIC is pro-
vided (Fig. 1).

Inhibition of amplification can be detected using ICs; 
however, ICs cannot differentiate between inhibition and 
failures in PCR amplification caused by human error, faulty 
equipment, or reagent issues. Effective control of all steps of 
the PCR assay requires that external controls (i.e., positive 
amplification controls, extraction controls, and reverse-tran-

https://www.nist.gov/programs-projects/external-rna-controls-consortium
https://www.nist.gov/programs-projects/external-rna-controls-consortium
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scription controls where applicable) be used in conjunction 
with ICs. Because competition for PCR components cannot 
be avoided when multiple targets are amplified in the same 
reaction vessel, it is critical that the IC be titrated to not com-
pete with assay target(s) for the critical reagents during PCR 
amplification. A higher than expected result value for an IC 
signals the potential for target competition and assay failure 
because of reduced or failed assay target detection in the 
sample. The potential for a strong-positive assay target to 
outcompete an IC additionally exists, as recognized by a 

lower than expected or negative IC response. Provided that 
other PCR system controls are valid, the result would in most 
cases be considered a valid test result6 (Table 3).

Control charting to monitor the performance of ICs 
allows laboratories to quickly initiate investigations when a 
deviation that could be the result of issues such as presence 
of inhibitors, defective reagent lot, failure of equipment 
performance, or human error is observed. In order to make 
the most effective use of ICs, quality control (QC) perfor-
mance ranges must be established prior to their routine use. 
The IC performance range established should be specific to 
each detection scheme (i.e., single or multiplex assay), 
reaction conditions, thermocycling program, and thermo-
cycler platform. IC performance ranges are based on a 
specified number of independent runs performed under the 
conditions established for a given assay, noting that the per-
formance range for ICs used in multiplex assays must be 
re-established following any change in the number of mul-
tiplexed targets. In order to develop performance criteria 
for RNA EICs, representative samples from animals both 
with and without clinical disease are required in order to 
include variability resulting from differential gene regula-
tion that occurs with different health conditions or disease 
states.36 There is no established statistical rule for the num-
ber of repeats needed to establish an initial mean and stan-
dard deviation (SD) for a PCR IC. The Laboratory 
Technology Committee of the AAVLD, through consensus 
discussion and technical experience, considers 15 indepen-
dently tested replicates sufficient to provide a reasonable 
balance in cost and other technical feasibility factors. The 
Clinical Laboratory Improvement Amendments (CLIA) 
Program, which sets standards for human clinical labora-

Figure 1.  Example of a properly titrated exogenous internal 
control (XIC), provided by the Laboratory Technology Committee 
of the AAVLD. The XIC (open circles) maintains a consistent cycle 
threshold (Ct) value over a wide target concentration range without 
compromising the limit of detection of the assay. Serial dilutions of 
equine herpesvirus 1 cell culture lysates were tested with a DNA 
XIC spiked into lysis buffer. Four replicates were tested at each 
viral concentration.

Table 2.  Common exogenous internal controls used in veterinary molecular testing.

Nucleic acid type Target sequence Example reference or commercial product

RNA Enhanced green fluorescent protein (EGFP) 17

Bacteriophage MS2 replicase 8

XIC synthetic from External RNA Control 
Consortium (ERCC; GenBank DQ883679)

39

Combination of 92 transcripts from ERCC ERCC spike-in mix (4456740; Thermo Fisher Scientific, 
Waltham, MA)

DNA Phocine herpesvirus (PhoHV) 25

Marek disease virus (MDV) 33

DNA or RNA Proprietary Internal extraction control for DNA (Int-DNA) and RNA 
(Int-RNA; Primerdesign; Genesig, Camberley, UK)

DNA or RNA Proprietary QuantiFast Pathogen PCR + IC (211352) or RT-PCR + IC 
(211452; Qiagen, Hilden, Germany)

DNA or RNA Proprietary Xeno DNA (A29764) and Xeno RNA (A29763; Thermo 
Fisher Scientific)
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tory testing, recommends 20 separate determinations for 
establishing the initial mean and SDs, followed by monthly 
updates over a 3–6 mo period to establish a stable perfor-
mance range.6 The number of replicates for veterinary test-
ing is ultimately determined by each laboratory and should 
be documented as part of their quality management system. 
EIC and XIC performance values should continue to be 
monitored throughout the use of the IC to ensure consis-
tency of the assay and IC,6 and in order to identify and man-
age trends that would signal assay performance changes. 
The performance range used by the laboratory for monitor-
ing results may consist of 1, 2, or 3 SDs above and below 
the mean, dependent on the rejection criteria established by 
the individual laboratory’s quality management program.22 
An additional QC measure required of veterinary laborato-
ries, beyond those of human clinical laboratories, is the 
need to establish and monitor IC performance specifically 
for the different animal species and the coinciding sample 
matrices routinely encountered in veterinary testing. It  
is strongly recommended that genome-level studies be  
performed or consulted using stability algorithms for statis-
tical selection of appropriate targets.48

Strategy for use of internal controls

ICs provide a means of monitoring PCR-based tests at the 
level of the sample, and therefore can be used to detect fail-
ures resulting from inhibitors in the sample, as well as failure 
in an assay variously caused by reagents, equipment, or 
human error. If the IC is included in the sample naturally (i.e., 
EIC), or is added prior to extraction (i.e., XIC), the IC can be 

used to verify effective extraction, reverse transcription where 
applicable, amplification, and lack of inhibitors in the sample.

Use of one or multiple host genes as EICs is a common 
method of inhibition monitoring. The principle advantage of 
the approach is provision of control for sample quality as 
well as for species of origin.36,37,41,43 Properly validated EICs 
are ideal for genetic assays requiring precise quantitation of 
copy-number variants, including testing situations and data 
handling benefiting from data normalization.3,4,36,46 The use 
of EICs as standards for gene expression studies in humans 
and animals is common36; however, as a QC measure, this 
approach is less utilized in veterinary clinical testing given 
the need for workflow consolidation to efficiently accom-
modate the large number of host-pathogen combinations 
encountered. Disadvantages for use of EICs include innate 
variability because of inconsistent cellular counts in samples 
(e.g., nasal swabs), differences between sample matrices, 
and potentially the health status of the animal resulting in 
gene up- or down-regulation.30,46,48,53,54 Should the EIC con-
centration (i.e., copy number) be sufficiently higher than the 
assay target, the EIC can outcompete the assay target and 
thus not accurately detect the target at the detection limit of 
the assay,38 potentially resulting in the serious consequence 
of a false-negative assay result.

XICs, whether added prior to or after extraction, also pro-
vide control for amplification and sample quality (i.e., inhib-
itors) in PCR assays, and, like EICs, must be developed and 
monitored to ensure that the XIC does not compete with the 
assay target for PCR components in order to prevent a 
decrease in assay detection limit or a potential false-negative 
result. XICs can be added into the PCR reaction vessel (i.e., 

Table 3.  Inhibitor troubleshooting considerations.

Target Internal control External control Considerations Troubleshooting options

Strong-positive result Below range Valid amplification and 
extraction control values

IC outcompeted by strong-
positive target (potentially 
valid result for the assay 
target).

Review calculations performed 
for spiking XIC.

Weak-positive result  
or not detected

Below range Valid amplification and 
extraction control values

Template competition, 
depletion of PCR 
components.

Dilute the sample (e.g., 
1:3–1:10, or as recommended 
by the manufacturer) in 
nuclease-free water and 
repeat the assay for both 
target(s) and IC.

Any result Above range Valid amplification and 
extraction control values

EIC: incorrect species or 
matrix; specific target gene 
level altered by health 
status of the animal.

XIC: incorrect reagent or IC 
concentration.

Review calculations performed 
for spiking XIC.

Verify new lot or batch of 
IC, or PCR reagents was 
validated prior to use.

Positive result At or above range Positive IC result for no 
template control

IC-related cross-
contamination.

Identify and resolve source of 
IC cross-contamination.
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vial or plate) at different stages of the PCR assay process, or 
can be spiked directly into the test sample prior to process-
ing. When spiked into the lysis buffer prior to extraction, 
XICs provide the benefit of monitoring the effectiveness of 
the extraction step. Spiking XICs directly into the unpro-
cessed biologic sample has the benefit of controlling at all 
stages of testing from sample handling and extraction 
through amplification and detection; however, directly spik-
ing the sample may lead to degradation and reduced analytic 
sensitivity, especially for RNA XICs in samples with a natu-
ral abundance of proteases and RNases. It is possible to cir-
cumvent recovery and stability concerns associated with 
RNA by using DNA-based XICs in assays detecting RNA 
targets; however, control for the reverse-transcription step 
would have to be added to the overall assay control strategy.

The use of ICs significantly enhances the reliability of 
PCR-based assays to provide meaningful results. Table 4 
summarizes advantages and limitations of different inhibi-
tion monitoring strategies available to VDLs. The particu-
lar strategy employed for incorporation of ICs into a 
laboratory’s quality management scheme is the decision of 
individual laboratories and should take into account the 
cost versus benefit of each approach. An overview of com-
mon strategies is shown in Figure 2. XICs spiked prior to 
the extraction step can be used in conjunction with exter-
nal PCR controls (i.e., positive amplification control, no-
template control) to monitor inhibition, extraction 
efficiency, amplification, and cross-contamination. Alter-
natively, an assay-specific positive extraction control 
(PEC) can be used with an XIC spiked at the PCR setup 
stage for similarly monitoring all stages of the PCR assay. 

A third strategy is a combination of EIC and external con-
trols (i.e., positive amplification, no-template control). 
The strategies defined are relevant for PCR, microarrays, 
and nucleic acid sequencing procedures.

Conclusions

The volume of PCR-based tests performed in VDLs contin-
ues to grow at a rapid pace, as does the introduction of new 
PCR-based assays and methodologies aimed at ensuring 
high-quality testing for the entire range of animal species 
and matrices handled by most VDLs. Although not a recent 
innovation, the use of ICs has not yet become routine in 
PCR-based veterinary testing. We have reviewed IC options 
and strategies for use in controlling for sample-based inhi-
bition, ultimately in order to improve the reliability of neg-
ative PCR test findings in which inhibition may be an issue. 
Veterinary molecular testing encompasses varied and com-
plex sample types from a wide variety of animal species. 
The presence and impact of PCR inhibitors in the diverse 
sample set routinely handled by VDLs is not readily pre-
dictable, emphasizing the need for ICs at the sample level 
during PCR-based testing in order to validate individual 
test results. The Laboratory Technology Committee of the 
AAVLD has recommended to its membership that all new 
molecular assays being validated and implemented include 
an inhibition monitoring strategy based on internal valida-
tion for the host, target species, and sample matrix combi-
nation being tested. A component of the strategy to ensure 
that inhibition is not negating the value of the negative PCR 
result includes trend analysis during use of ICs. The infor-

Table 4.  Advantages and limitations of different inhibition monitoring strategies.

Advantages Limitations

EIC: animal rRNA gene (e.g., 18S 
rRNA)

Universal, sensitive Potential for cross-contamination given high copy 
number.

Cannot verify species of origin.
Result value (e.g., real-time Ct) may differ for 

different animal species and sample matrices.
Risk of decreasing limit of detection given 

competition for PCR components.
EIC: genome-specific reference 

genes (e.g., beta-actin, beta-2-
microglobulin, GAPDH)

Minimal risk of cross-contamination.
Useful in normalization.
Provides a control for species of origin.

IC must be developed and validated for each animal 
species.

May be impacted by health status of the individual.
May differ between sample matrices.
Risk of decreasing limit of detection because of 

competition for PCR components.
XIC: homologous (competitive; e.g., 

food safety assays18)
More stable, easily standardized, and 

readily implemented control.
Can be used for normalization and 

comparison of results across studies.

Assay specific.
Risk of decreasing limit of detection because of 

competition for PCR components.

XIC: heterologous (non-
competitive; e.g., MS2,8 VetMAX 
Xeno [Applied Biosystems])

Can be used universally with all sample 
matrices & animal species.

Flexible design options allow easier 
optimization for assay development.

Requires added step of spiking sample or spiking 
assay.

Risk of decreasing limit of detection because of 
competition for PCR components.
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mation and discussion provided by the AAVLD Laboratory 
Technology Committee is intended to encourage more rou-
tine and standardized use of ICs to detect inhibitors in PCR 
assays utilized in VDLs.
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