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Xi-cam is an extensible platform for data management, analysis and

visualization. Xi-cam aims to provide a flexible and extensible approach to

synchrotron data treatment as a solution to rising demands for high-volume/

high-throughput processing pipelines. The core of Xi-cam is an extensible

plugin-based graphical user interface platform which provides users with an

interactive interface to processing algorithms. Plugins are available for SAXS/

WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. With Xi-cam’s

‘advanced’ mode, data processing steps are designed as a graph-based workflow,

which can be executed live, locally or remotely. Remote execution utilizes high-

performance computing or de-localized resources, allowing for the effective

reduction of high-throughput data. Xi-cam’s plugin-based architecture targets

cross-facility and cross-technique collaborative development, in support of

multi-modal analysis. Xi-cam is open-source and cross-platform, and available

for download on GitHub.

1. Introduction

Efficient use of synchrotron beamline time is critical to

synchrotron user and beamline productivity. With increasing

data rates and proliferation of high-throughput sample

switching, data analysis and management is increasingly

becoming the limiting factor of experiments. Live, intuitive,

interactive data viewing and reduction is necessary to provide

users with the best data quality feedback as they work.

Xi-cam is a graphical plugin-based platform for organizing,

viewing and analyzing X-ray scattering/grazing-incidence

X-ray scattering images developed by the Center for

Advanced Mathematics for Energy Research Applications

(CAMERA). This is a cross-platform open-source Python

project licensed under the Berkeley Software Distribution

(BSD) license.
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There are many existing tools for data reduction, analysis

and fitting. For X-ray scattering data, reduction and analysis

of area detector images can be performed using Fit2d

(Hammersley, 2016), view.gtk (Yang, 2013) or GIXSGUI

(Jiang, 2015). Small-angle X-ray scattering or grazing-inci-

dence small-angle X-ray scattering (SAXS or GISAXS) data

can be fit using a variety of models, as implemented in ATSAS

(Franke et al., 2017), ScatterSim (Yager et al., 2014), IsGISAXS

(Lazzari, 2002), BornAgain (Durniak et al., 2015) and

HipGISAXS (Chourou et al., 2013). While many of these

software tools allow for batch processing, there is currently

no uniform analysis environment allowing users to reduce,

explore, analyze and quantitatively fit their data within a

single environment. Xi-cam’s uniform set of controls and

plugin architecture provide just such an environment.

The Xi-cam interface is built from a software base designed

for portability and responsiveness without sacrificing perfor-

mance. The front-end interface utilizes Qt4 and the PyQt-

Graph library for displaying images and plotting. Images

and plots can be manipulated and interacted with as data

are explored. Expensive calculations have additional multi-

core CPU/GPU implementations optionally invoked with

supporting hardware/drivers.

Xi-cam provides an interface for browsing data locally or

from a Globus data server (Ave et al., 2017). Following a cloud

data model, Xi-cam has instant remote access to data acquired

at Advanced Light Source beamlines; data are streamed to

the National Energy Research Scientific Computing Center

(NERSC) data center as they are collected, and are instantly

available for remote access. Remote data access is provided

through Databroker (Databroker Development Team, 2017),

Globus (Ave et al., 2017), the SPOT data interface (SPOT

Development Team, 2017) and SFTP.

The Xi-cam back-end is designed to run both as a client to

process local data and a server daemon. As a server daemon,

image data can be pre-processed as part of the workflow

pipeline for storage. Expensive calculations (e.g. remeshing)

can be cached and packaged along with the original data in

NeXus (Könnecke et al., 2015) files for rapid viewing in the

Xi-cam interface.

The plugin-based design of Xi-cam allows for both exten-

sibility and cross-technique interaction, with plans for coop-

erative multi-modal analysis. The plugin framework allows

developers to implement techniques with unique interfaces

and processing while sharing global platform features such

as the remote data interface, IPython console, and live

processing.

Xi-cam is available for download at: https://github.com/

ronpandolfi/Xi-cam. Xi-cam’s documentation is available at:

http://xi-cam.readthedocs.io/en/latest/.

2. Xi-cam platform

2.1. Plugin development

The plugin development process for Xi-cam is documented

at http://xi-cam.readthedocs.io/. The standard Xi-cam plugin

requires some knowledge of Qt and object oriented

programming. While this is a robust and flexible design, it

is often less accessible for scientific users testing custom

processing in Xi-cam. A convenience plugin factory method is

available, which greatly simplifies this task.

The Xi-cam EZPlugin provides, as a function, a simple

plugin constructor. This constructor allows easy customization

of the plugin name, toolbuttons, editable parameters, file

operations and visualizations. All the features of the standard

plugin are also available.

2.2. Remote execution

Remote execution in Xi-cam is handled through two core

components: the Paramiko-based1 (Paramiko Development

Team, 2017) remote connection interface and Dask-Distrib-

uted (Dask Development Team, 2016), a flexible parallel

computing library for analytic computing.

Paramiko, a Python-based ssh library, provides a secure

remote connection interface between the Xi-cam application

and the remote service. Additionally, Xi-cam uses Paramiko

to handle any hops between client and destination through

implicit port forwarding and creating additional ssh tunnels,

which is often the case in supercomputing environments.

Furthermore, the interface also sets up an appropriate

execution environment for the destination service such as

ensuring use of batch schedulers for workers, and that the

appropriate paths are set for finding remote libraries and

executables.

The second component utilizes Dask-Distributed to

transfer Xi-cam workflows to the remote service. The Dask-

Distributed API provides a mechanism to create and execute a

local workflow graph remotely and provides an asynchronous

event handler to notify whether the remote execution has

completed successfully or whether an error has occurred.

There are three main Dask integration points in Xi-cam:

(i) The local Dask-Distributed interface, which sets up and

maintains the connection between the local and remote

scheduler.

(ii) The Dask scheduler, which parcels out work and

communicates results to the local interface.

(iii) The Dask worker, which executes the Python algorithm

sent from Xi-cam.

2.3. Hardware compatibility

Hardware profiles for a wide variety of detectors are

available through the pyFAI (Ashiotis et al., 2015) API.

Xi-cam heuristically identifies detector models automatically

for uniquely shaped detectors (i.e. Pilatus); for less unique

detectors, the detector profile can be selected manually in the

experimental configuration. For detectors with inactive area

computer programs
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(Mar, Pilatus, etc.), pre-defined detector masks are auto-

matically applied.

2.4. Data formats

Core functionality is provided for loading and saving data in

a variety of formats. Interfaces for many formats are provided

through the FabIO package (see the FabIO documentation for

a list of compatible formats; Knudsen et al., 2013). Further

formats are provided through extensions to FabIO. The

following additional formats are made available through

FabIO extensions:

(i) FITS format, provided by astropy (Robitaille et al.,

2013).

(ii) DXchange, provided by dxchange (De Carlo et al.,

2014).

(iii) NeXus provided by nexusformat (Könnecke et al.,

2015).

(iv) Igor Pro General Binary, .gb (Nika/Irena) (Ilavsky,

2012).

(v) RAW.

(vi) Multi-image tiff.

(vii) Other beamline-specific HDF5 formats.

To implement an additional format, a class inheriting from

fabio.fabioimage must be registered with fabio. Such a class

requires as minimum: a single method taking a filepath as

input and reading array data; a list of compatible file exten-

sions. For full details, see the FabIO documentation (Knudsen

et al., 2013), template at fabio/templateimage.py, and examples

in pipeline/formats.py of Xi-cam.

3. SAXS toolset

Xi-cam features an extensive toolset for SAXS data, including

single-frame reduction (‘Viewer’), multi-frame series reduc-

tion (‘Timeline’), batch reduction, forward GIXS simulation

(‘HipGISAXS’), reverse Monte Carlo (‘HipRMC’) and

CDSAXS (critical dimension small-angle X-ray scattering)

fitting.

3.1. One-click calibration

As part of an automated data pipeline, a ‘hands-free’ cali-

bration procedure is provided. First, the beam center is

identified by one of three methods: autocorrelation, circular

wavelets and circle fitting. A pixel-space azimuthal integration

is calculated from that center, from which the first calibrant

peak position is identified; a first approximation of sample–

detector distance is made from the beam center position and

first calibrant peak. This is used as input to DPDAK’s

refinement algorithm (Benecke et al., 2014), which also fits

additional further peaks. Using this procedure, small detector

tilt may be corrected in the refinement stage automatically. A

heuristic optionally determines the detector model prior to the

above calibration steps. A detector model matching the file

extension and image size is identified from the available

FabIO detector profiles. Pixel shape, inactive areas (i.e.

module gaps from Pilatus detectors) and binning are loaded

from the FabIO profile. For confirmation, an overlay is

displayed, simulating the calibrant scattering pattern (shown

as green rings in Fig. 1). In case the automatic calibration

algorithms are insufficient, calibration parameters may be set

and adjusted manually, including detector model.

3.1.1. Autocorrelation. With autocorrelation-based center

detection, the maxima position of the autocorrelation of a

calibrant image provides an estimation of the beam center.

This is a fast method when using fast-Fourier-transform-based

convolution. It is highly effective when more than 180�of a

calibrant ring is visible; a geometry with the beam center near

a corner or off the image causes failure. A heuristic algorithm

further identifies the order of the first ring.

3.1.2. Circular wavelets. Continuous wavelet transforms

(CWTs) are widely used in image processing for pattern

recognition (Carmona et al., 1998; Du et al., 2006). A CWT of a

signal sðxÞ can be represented as (Daubechies, 1992)

Cð�; �Þ ¼
1ffiffiffi
�
p

Z1

�1

sðxÞ 
x� �

�

� �
dx; ð1Þ

where  ðxÞ is a continuous function of � and �, the mother

wavelet. The mother wavelet is used to generate daughter

wavelets by varying either or both of the independent vari-

ables � representing the width and � representing the loca-

tion. As the wavelets are slid across the signal sðxÞ, the value of

kCð�; �Þk1 changes, with the maximum obtained when the

location and width of the wave matches one of the calibrant

rings. The second derivative of the Gaussian distribution, also

known as the Ricker wave, is a commonly used wavelet. We

designed a two-dimensional radial Ricker wavelet, by modi-

fying the orginal, for our purpose,

 ðr; �Þ ¼  
�
�ðrÞ; �; �

�
: ð2Þ

Thus the value of C is maximum when r and � equal the radius

and width of the ring, respectively. Provided that the search

computer programs
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Figure 1
Automated calibration of silver behenate (AgB) data (center panel) by
autocorrelation. The AgB rings (yellow) are directly obscured by the
simulated calibrant rings (green), and the first AgB peak is translated to
a q value of 0.106 3�1, indicating proper calibration. The reduced one-
dimensional spectra is immediately displayed (bottom).



range is appropriate, this technique can fit properly even if the

beam center projection is outside the image.

3.2. Tilt auto-calibration

Detectors oriented with some tilt, such that the point of

normal incidence is not the point of intersection with the

direct beam, require a more detailed procedure to detect the

experimental geometry. A general outline of this procedure is:

(i) Generate a point cloud from points along each calibrant

ring.

(ii) Segment the point cloud into separate calibrant rings.

(iii) Fit an ellipse to each point cloud.

(iv) For each ellipse, calculate major/minor axes, tilt (from

eccentricity) and the position of the direct beam.

(v) Cross-correlate parameterized ellipses, defining a single

geometry which best matches the set.

It is important to note that (often contrary to intuition), the

direct-beam position is not at the center of a calibrant ellipse.

Rather, for detector tilt angle � and calibrant ring defined

by scattering double-angle 2�, the direct beam position P

between major axis ends A and B is defined such that

PA

PB
¼

cosð2� � �Þ

cosð2� þ �Þ
: ð3Þ

3.3. Masking

Four types of masking tools are available for use in Xi-cam.

A detector active area mask is automatically applied when a

frame is read, masking out inactive or anisotropically sensitive

regions of the pixel-space image. A zinger/cosmic ray masking

tool uses the Astropy cosmics detection algorithm to mask

particle tracks from cosmic background. A threshold masking

tool allows masking of pixels below a threshold value,

including (optionally) a neighborhood size for morphological

closing. Finally, a polygon masking tool allows the user to

directly define any polygonal shape to mask over the image.

Symmetry operation tools can be used to fill in masked

regions of the image using information from symmetrically

opposing areas. Other algorithms for data infill (for display

purposes) have been considered as future extensions of this

functionality, including a heat equation solver, bilinear inter-

polation and a scattering physics-aware ‘healing’ algorithm

(Liu et al., 2017).

3.4. Timeline

Visualization of reduced data along independent axes

provides further insight for differential measurements (see

Fig. 2). Timeline is a mode for series data analysis which

visualizes changes across a single parameter space. This can be

a time-resolved series, or a scan of another parameter such as

temperature, energy, incoming angle, solution composition,

etc. In the default mode, the lower panel of Timeline displays

a single one-dimensional plot of the �2 difference between

consecutive frames. A variety of other functions are included

for other modes of analysis, including azimuthal integration.

Custom functions are supported, allowing more specialized

metrics. Region-of-interest cuts can also be defined to select

the region to process. Peak tracking optionally adjusts the

region of interest for each frame as peaks shift by toleranced

maximum convolution. The Timeline mode supports custom

functions for visualization by adding to the variationoper-

ators.py module. New functions must follow the template

input signature, and return a Float, Collections.OrderedDict

or one-dimensional numpy.ndarray to generate a line plot,

multi-line plot or waterfall plot, respectively.

3.5. CDSAXS

To meet the challenges of sub-10 nm feature characteriza-

tion, new methods are under development by the semi-

conductor industry. Critical-dimension small-angle X-ray

scattering (CDSAXS) has been targeted as promising for the

dimensional control of line gratings with nanometer scale

resolution. The transmission scattering geometry enables a

100 mm � 100 mm patterned area to be probed. CDSAXS

measurements have been shown to be sensitive to shape and

structural properties of line gratings, including the pitch,

linewidth, line profile (line height and sidewall angle) and line

roughness (Hu et al., 2004; Sunday et al., 2015; Wang et al.,

2009).

The fast development of the CDSAXS technique led to the

appearance of several analytical models and experimental

approaches, developed mostly in synchrotrons during the last

few years. Moreover, a laboratory-source instrument was

developed by NIST allowing increased private use of

CDSAXS. However, there have been no open-source software

available to analyze CDSAXS patterns. The development of

CDSAXS in Xi-cam will provide a new CDSAXS approach,

going from the experimental data through the calculation of

(qx, qz) cartography to the fitting of the line profile, all from a

single interface.

Our approach is based on the work of Hannon et al. (2016).

A genetic algorithm, using a covariance matrix adaptation

computer programs
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Figure 2
A 300 frame data series from an OPV drying experiment loaded in
Timeline. The crystalline peak arc has been selected on the image (cyan).
The reduced data displayed in the bottom panel show the integrated
intensity in the selected region. This shows that crystallization began
around frame 100; however, dynamics continue to drive structural change
to a lesser degree, as indicated by a drop in intensity towards frame 250.



evolutionary strategy, has been developed in order to mini-

mize the mean-absolute error log goodness between the

experimental and simulated data. The user-friendly GUI

interface allows every user to extract the full information from

experimental images, by only giving the initial guess of

dimension of the line profile. The CDSAXS plugin takes as

input raw data generated at each angle. After procedural

alignment of the sample tilt, the raw data are converted to

(qx, qz) automatically (see Fig. 3). From initial parameters

given by the users, such as initial height, linewidth and sidewall

angle, the minimization algorithm runs until the fit converges,

and returns the fitted parameters as well as the accuracy of

the fit.

In demonstration, silicon line gratings were studied. Line

gratings were designed as dense arrays of line/space patterns

with a constant periodicity of 86 nm and a line width of 40 nm.

From the experimental profile obtained from�60� to 18�, with

0.5� step, line profiles were extracted from a model of seven

stacked trapezoids, illustrated in Fig. 3. From the precision of

the model, uncertainty was calculated; the fitted model was

confirmed by critical-dimension scanning electron microscopy.

4. GIS(W)AXS toolset

4.1. GIWAXS remeshing

Remeshing is necessary for an accurate representation of

a grazing-incidence wide-angle X-ray scattering (GIWAXS)

image with orthogonal reciprocal space axes. This trans-

formation redistributes pixel intensities by a backwards

geometric mapping, transforming the data into proper q-space.

A missing wedge on the remapped image is a consequence of

the reflection geometry (see Fig. 4) (Baker et al., 2010; Jiang,

2015; Hexemer & Müller-Buschbaum, 2015). For high data-

rate processing, a GPU version of this algorithm is also

included in Xi-cam.

4.2. Crystal simulator

GIS(W)AXS is routinely employed to determine the

nanoscopic crystalline structures in assembled thin films

consisting of nanoparticles, phase-separated block-copolymers

and their nanocomposites. With user inputs of lattice para-

meters, space group (or customized lattice construction),

relative crystal orientation, materials properties and experi-

mental parameters (incident angle, energy, etc.), the crystal

simulator toolset calculates diffraction peak locations in terms

of scattering angles on an area detector. When solving for the

scattering angles that satisfy the Laue condition within the

framework of the distorted-wave Born approximation, two

diffraction channels (reflection and transmission) are expected

(Jiang, 2015), a unique phenomenon of the grazing-angle

scattering geometry. The expected diffraction peaks can be

superimposed on top of the experiment scattering pattern

for a quick exploration and indexing of three-dimensional

nanostructures of thin films (see Fig. 5). For a complete

description of the technical approach, see Jiang (2015).

4.3. HipGISAXS

HipGISAXS is a massively parallel GISAXS simulator,

based on the distorted wave born approximation, developed at

the Lawrence Berkeley Laboratory (Chourou et al., 2013). It

can scale from everyday laptops to multi-CPU and multi-GPU

clusters [for performance metrics, see Chourou et al. (2013)].

HipGISAXS has a very large input deck, even for relatively

simpler problems. It grows proportionally, as the complexity

of the problem. Xi-cam’s flexible and modular plugin infra-

structure provides an excellent way to construct an intuitive

user interface for running HipGISAXS and viewing the

output. It was the integration of HipGISAXS into Xi-cam that

pushed its remote execution capabilities to the current state.

Fig. 6 shows a screenshot of the HipGISAXS interface. The

left-hand panel has tools to create hierarchical structures,

computer programs
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Figure 3
Cartographic (qx, qz) transformation from raw CDSAXS data. The
vertical lines indicate locations where one-dimensional peak profiles
would be extracted for fitting. Fitting these profiles can provide
estimations for critical dimensions of the periodic form factor.

Figure 4
Proper conversion of a GIWAXS image into Q-space results in the
missing vertical wedge, as a result of the projection of the Ewald sphere.
Reflections within this forbidden region are not accessible.



using analytical shapes such as spheres, cylinders, boxes, etc,

and arranging the shapes into various geometric lattices (see

Fig. 6). The right-hand panel has user input parameters to

modify the structures. The center panel displays a 3D repre-

sentation of structure. Once the user is satisfied with the input

structure, and beam parameters, they can run the simulator

locally or on any remote machine they can access using ssh.

The scattering pattern is displayed in the center panel after the

simulation is finished (see Fig. 7).

5. Tomography toolset

The Xi-cam tomography plugin provides an easy-to-use

interface for viewing data, constructing workflows and

performing reconstructions on raw tomography datasets. It

offers a highly customizable workflow editor, as well as several

features to precisely tailor this workflow to individual datasets.

Features include quick reconstructions of individual sino-

grams and downsamplings of the full dataset. It also provides a

built-in overlay visualization tool for manually detecting the

centers of rotation when automatic center detections fail. An

example of this feature is shown in Fig. 8. The combination

of a customizable workflow editor and reconstruction

previews allow users of varying levels of tomography expertise

to find optimal pipelines for their unique datasets. Custom

processing piplines can then be saved and subsequently used,

either as-is or as a starting point, for other datasets.

The Xi-cam tomography plugin provides a graphical user

interface supporting the full capabilities of TomoPy (Gürsoy

et al., 2014; Pelt et al., 2016; Vogelgesang et al., 2012; Pelt &

Andrade, 2016; Pelt & Batenburg, 2015), an open-source

Python library for tomographic data processing and image

reconstruction. The plugin includes all required functionality

for pre-processing, filtering and reconstructing datasets

by exposing the algorithms of three popular tomographic

processing libraries. For data processing and reconstructions,

the plugin uses the ASTRA toolbox (Pelt et al., 2016), a library

of highly parallelized reconstruction algorithms, and TomoPy.

Users may also insert their own custom functions. For reading

and writing datasets, the plugin uses DXchange (De Carlo et

al., 2014). Data must be provided in either HDF5 or tif

formats.

The left side of the GUI window contains both the workflow

editor and the filebrowser (Fig. 9). Users open datasets either

computer programs
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Figure 6
User interface for HipGISAXS in Xi-cam showing a cubic lattice of
spherical particles embedded in a layer. The user may configure
parameters for the scattering geometry, particle, structure, ensemble,
layers and substrate. The green ‘play’ buttons run the described
simulation.

Figure 7
An example simulated GISAXS image generated from the material
described in Fig. 6.Figure 5

Screenshot of simulated data (cubic structure) with transmission (green/
square) and reflection (magenta/circle) peaks overlayed. Hovering over a
peak indicator displays the properties of the peak. The mouse has place
the crosshair over the (1, 1, 1) reflection peak.



by double-clicking the desired dataset in the browser or by

dragging and dropping the file into the central workspace.

Upon loading the dataset, the raw projections and sinograms

(Fig. 10) are immediately viewable in the center window. The

toolbar at the top of the plugin (Fig. 11) contains buttons for

reconstruction previews. The third-to-last button on the right

enables the center of rotation overlay tool. Fig. 12 shows

a single slice reconstruction preview using the workflow

displayed on the left side of the GUI. Fig. 13 shows a three-

dimensional reconstruction preview of a downsampled version

of the dataset. By using the workflow editor, users can find the

optimal workflow for their datasets and reconstruct the entire

dataset. A single slice of this full reconstruction is shown in

Fig. 14.

The standard use case requires minimal or no user input, as

the plugin comes with a default processing workflow. More

advanced users can tailor the workflow to their specific data-

sets by adding new or custom functions, changing function

parameters, or changing the relative order of the functions. In

addition, the plugin provides a tool to handle problematic

parameters, such as the center of rotation or filter-specific

parameters: by right-clicking a parameter in the workflow

editor, users may provide a range of values for the parameter

to be used in a series of single-sinogram preview reconstruc-

tions.

6. XAS toolset

X-ray absorption spectroscopy (XAS) is defined as the fine

structure of absorption spectra associated with inner shell

excitation by different energy X-rays or electrons. The tech-

nique is described by many other acronyms including EXAFS

(extended X-ray absorption fine structure), XAFS (X-ray

computer programs
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Figure 10
Plugin interface with workflow on the left and the raw projection data on
the right. Users can use ‘Timeline’ below the image to look through
projections or sinograms.

Figure 8
Plugin interface showing the built-in overlay visualization for finding
centers of rotation. The tool overlays the first projection in the dataset
with a mirror image of the last projection (top). By moving one of the
projections, the user can match features from both projections (bottom).
The plugin uses the relative horizontal displacement of both images to
calculate the center of rotation of the dataset.

Figure 9
Filebrowser on the left GUI window (left). Workflow editor on the left
GUI window with default pipeline (right).



absorption fine structure), XANES (X-ray absorption near-

edge spectroscopy) and NEXAFS (near-edge X-ray absorp-

tion fine structure). The spectra are typically measured at

synchrotron facilities and the community has seen consider-

able growth in the past decades with the increasing availability

of synchrotron radiation worldwide. One issue facing the XAS

community is choosing which software to use to analyze the

XAS data. GUIs include Sixpack, Athena and Artemis which

are all based on the IFEFFIT code base developed by Matt

Newville and Bruce Ravel. Other efforts include a GUI based

in the IGOR Pro language (XMCD Panel, Anders Glans),

LabVIEW-based program (Matthew Marcus, Advanced Light

Source), and multiple efforts at the Stanford Synchrotron

Radiation Light Source (SSRL) including XAS-Collect

(Martin J. George) and EXAFSPAK (Graham George).

Alternatively, a researcher can use any programming language

like MATLAB, Mathematica or Python to carry out the

calculations themselves. The purpose of providing yet another

XAS analysis tool is to streamline and unify XAS measure-

ment, analysis, interpretation and figure-making into a single

interface. To this end, newcomers to the field have a clear

choice in software. For example, beamline control is currently

operated by LabVIEW or spec at many beamlines. The data

are exported to .csv files and then imported into the desired

analysis program for normalization and possibly fitting.

Modeling and producing journal-quality figures would be

accomplished using two other pieces of software with likely

different computational resources (e.g. supercomputer).

Popular community supported code bases developed in

Python can support all these features in a seamless work-flow.

The novelty of such a Python-based XAS plugin capable of

so many functionalities is that a researcher can see commands

‘under the hood’ and directly manipulate data correspond-

ingly. This capability combines the small learning curve of a

GUI with the flexibility of having access to the command line.

In addition, the thriving Python community is a powerful

resource to leverage for rapid development, incorporation and

testing of new or previously developed functionality.

The Xi-cam XAS plugin uses Larch (Newville, 2013), an

evolution of the trusted IFEFFIT codebase being developed

in Python by Matt Newville. The beamline system control uses

the Experimental Physics and Industrial Control System

(EPICS) to automate measurements for high-throughput

XAS experimentation.

Data input supports .csv files with headers from beamlines

6.3.1, 6.3.2 and 11.0.1.2 at the Advanced Light Source. The

requirements for basic functionality are a column for incident

X-ray energy, initial beam intensity (I0) and absorption value

(Channeltron, TEY). Parameters include automatic or manual

setting of white-line energy, energy for unit normalization and

two pre-edge values for leveling.

computer programs
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Figure 11
Toolbar at the top of the plugin window. Buttons are for, in order: full
reconstructions, single-sinogram previews, multiple-sinogram previews,
downsampled three-dimensional previews, enabling the center of rotation
detection tool, cropping the dataset, and loading new flats/darks for
normalization.

Figure 12
Plugin interface with a single slice reconstruction preview (right side).

Figure 13
Plugin interface with a three-dimensional reconstruction preview of the
dataset shown in Fig. 12.

Figure 14
Full reconstruction of dataset previewed in Fig. 12 and Fig. 13.



7. Batch data processing toolset (PAWS)

Xi-cam includes a ‘Batch’ plugin for applying a variety of data

processing workflows to batches of files selected from the

application’s filesystem browser. Xi-cam’s batch processing

workflows are built on PAWS (the Platform for Automated

Workflows by SSRL).

PAWS is an abstraction layer for unifying lower-level

Python APIs for data processing, from very mature packages

(e.g. the scipy stack) to in-house scripts written for specific

applications. These lower-level APIs are wrapped into PAWS

Operations (for objects or functions that are only called upon

when a workflow is executed) or PAWS Plugins (for objects

that should persist for multiple workflow executions or be

used concurrently by multiple workflows). Using the PAWS

API, the Operations and Plugins are assembled into a PAWS

Workflow. The Workflow is a Python object containing input

data, any number of input parameters, and all of the functions

and objects needed to produce relevant output data. Xi-cam’s

workflows are written such that they can be copied or serial-

ized, so that the (potentially laborious) batch processing can

be run on remote machines or in parallel threads on a local

machine.

As an ongoing development, the functionalities of all of the

plugins described above are being adapted to PAWS work-

flows that can be executed on batches of files from the ‘Batch’

plugin.

The following example illustrates the use of the ‘Batch’

plugin to process a set of SAXS spectra. In x3.1 and Fig. 1, we

saw how a SAXS geometry can be calibrated in the Xi-cam

‘Viewer’ plugin. After performing this process, the calibration

parameters become immediately available to the other

plugins. By switching to ‘Batch’, the calibration parameters

can be used to integrate any number of SAXS spectra that

share the same geometry. The procedure is as follows:

(i) In the ‘Viewer’ plugin frame, load a calibrant image (e.g.

a silver behenate diffraction pattern).

(ii) See x3.1 to solve the SAXS beam–sample–detector

geometry from this calibrant image.

(iii) Switch to the ‘Batch’ plugin frame.

(iv) Select a list of files from the application’s filesystem

browser. Open the files to copy the list of file paths to the

‘Batch’ input files list.

(v) Select the ‘SAXS integrator’ workflow from the ‘Batch’

workflow selector.

(vi) Click the ‘Run’ button. The ‘SAXS integrator’ work-

flow will read the same calibration parameters that were

generated in steps (i)–(ii) above.

(vii) As the batch is processed, browse the results by

clicking through the Workflow viewer. Clicking an Operation

output in the Workflow viewer causes PAWS to generate

a widget that visualizes the output data. Data-appropriate

widgets are generated to display objects as simple as strings or

integers (text printouts), or as complex as multidimensional

arrays (interactive plot frames).

(viii) Adjust the settings of the Workflow by entering values

into the Workflow viewer. In this way the user can control

most or all details of the Workflow (e.g. limits in q-space,

q-resolution and output filenames, to name a few).

(ix) After finding workable settings, enable the output

Operations so that the integrated results will be saved to the

filesystem. Adjust the settings of the output Operations in the

Workflow viewer, to control the output directory, file type, file

name, data column headers, delimiters, etc.

(x) Run the Workflow again, and watch the output files

appear on the filesystem as the Workflow runs.

Since batch processing is likely to generate large amounts

of data, Xi-cam’s workflows are written to save nothing. The

outputs can be visualized as they are computed, but after this

they are de-referenced to free up memory. The end point of

‘Batch’ workflows is generally to produce a file containing

the results. In the example above, a set of diffraction images

(.tif files, for example) produces integrated diffraction data

(intensity versus q), and the integrated data can be inspected

directly and/or saved to a .csv file.

To illustrate the versatility of the batch processing plugin,

consider taking the above procedure one step further. After

integrating the SAXS spectra to a set of .csv files containing

intensity versus q, select this batch of .csv files and open them

for input for another batch-processing workflow. Select ‘saxs

guinier-porod fitter’ from the workflow selector, and run the

workflow. The integrated spectra are read in from the .csv files

and fit to a Guinier–Porod scattering equation (Hammouda,

2010) with a noise floor [via the XRSDKit package (XRSDKit

Development Team, 2017)]. The Guinier–Porod fit spectra can

be written out in a separate .csv file, and the user can compare

the measured data versus the Guinier–Porod fit.

8. Discussions and conclusions

Xi-cam provides a high-level GUI platform for users to

manage, visualize and reduce synchrotron data from scat-

tering, tomography and NEXAFS beamlines. From the user

perspective, Xi-cam’s development emphasizes interactive

data exploration, robust new algorithms and reactive design.

While a deeper, flexible functionality is also provided, users

require no programming or algorithmic knowledge to process

large data. Synchrotron users can employ Xi-cam’s plugin-

based framework to treat data from any facility, beamline and

technique in this single application. A variety of unique

analysis algorithms and visualizations are also included,

providing users with new approches to looking at their data.

Only minimal hardware is required; however, some processing

components scale well to multi-core/multi-GPU architectures,

with the availability of remote computing.

From the perspective of a scientific software developer,

Xi-cam provides a means to improve exposure of algorithmic

code across user facilities in a way that is agnostic to platform,

data format and instrument. As a plugin-based platform,

Xi-cam is easily extensible. Xi-cam’s rapid prototyping tools

allow even novice developers to present a user-friendly

interface on top of their reduction/treatment algorithm.

Naturally, this model supports open source, collaborative and

consolidated development efforts; continuing development of

computer programs
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Xi-cam will also emphasize these ideas. Further techniques

and algorithms are continuously being added to the Xi-cam

framework.
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