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Abstract
This paper introduces a new approach toward characterizing local structural
features of two-dimensional particle systems. The approach can accurately
identify and characterize defects in high-temperature crystals, distinguish
a wide range of nominally disordered systems, and robustly describe com-
plex structures such as grain boundaries. This paper also introduces two-
dimensional functionality into the open-source software program VoroTop
which automates this analysis. This software package is built on a recently-
introducedmultithreaded version of Voro++, enabling the analysis of systems
with billions of particles on high-performance computer architectures.
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1. Introduction

Many two-dimensional physical systems can be studied as large sets of point-like particles, and
the arrangement of these particles in space often determines many of these systems’ chemical,
electronic, and mechanical properties [1–6]. It is therefore important to have available precise,
robust, and efficient tools that can automatically identify structural objects such as crystals and
defects in large atomistic data sets. Figure 1 illustrates a pair of adjacent crystals, separated by
a grain boundary and containing a vacancy. Although the rough contours of these defects can
be observed visually, identifying them precisely enough for automated, quantitative analysis
is challenging.

Recent decades have witnessed the development of powerful tools to automate the iden-
tification and analysis of structural objects in large atomistic data sets [7, 8]. Many of these
approaches describe arrangements of particles by quantifying their similarity to an ideal refer-
ence arrangement with respect to some property. For example, somemethods count the number
of particles in a fixed range from each central particle [9], quantify the variation in distances
to neighbors [10], or else the variation in angles between neighboring particles [11, 12]. Other
methods quantify the degree to which the neighborhood is centrosymmetric [13], a defining
feature of lattice crystals.

These approaches typically require carefully-chosen cutoffs for analyzing different kinds
of systems. Moreover, such approaches are typically ineffective for characterizing particular
kinds of defects. Perhaps most significantly, although these methods are typically well-suited
for studying systems at low temperatures, they often perform poorly when applied to systems
at high temperatures, or otherwise strongly perturbed from their ground state [7]. Topological
approaches tend to be more effective, due to the method in which they segment data in a
high-dimensional configuration space, instead of in an image of that space under a continuous
mapping [14, 15]. Numerous methods based on machine learning have also been introduced in
recent years [16–18], though these methods do not characterize crystalline structure directly.

This paper introduces a new, simple approach for classifying structure in two-dimensional
particle systems. This approach is based on Voronoi topology and thus naturally ignores small
fluctuations in particle positions associated with thermal vibrations and small strains, without
the need for quenching, temporal averaging, or arbitrary order-parameter cutoffs. The method
is further useful for studying both ordered and nominally disordered systems. Many ideas sug-
gested here can be considered as adaptations and extensions of ideas introduced and developed
previously for three-dimensional systems [15, 19, 20].

In addition to developing a new approach towards characterizing structure in two-
dimensional particle systems, this paper also introduces two-dimensional functionality into
the open-source command-line program called VoroTop to automate this analysis. The latest
version of VoroTop is designed to utilize a recently-introduced, multithreaded version of the
Voro++ library [21, 22] for computing Voronoi cells, enabling the study of large systems
with billions of particles.

This paper is organized as follows. Section 2 describes the basics of Voronoi cells,
and explains how their topology can be used to characterize and analyze structure in
two-dimensional particle systems. Section 3 describes the two-dimensional VoroTop function-
ality and its core functions and features. Section 4 illustrates several example applications,
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Figure 1. Two adjacent crystals separated by a grain boundary and containing a vacancy.
The system was created using molecular dynamics through the cooling of a Lennard-
Jones liquid: (a) particles, (b) particles and their Voronoi cells, (c) particles colored by
the number of edges of their Voronoi cells.

including the identification of defects in crystals, the characterization of order in disordered
systems, and the analysis of grain boundaries, including chiral features, in non-ideal systems.

2. Voronoi topology

2.1. Voronoi cells and their shapes

In a system of discrete particles, the Voronoi cell of each particle is the region of space closer to
it than to any other particle [23–25]. Figure 1 illustrates a bicrystal and Voronoi cells of some of
the particles. Geometric and topological features of a Voronoi cell can be used to characterize
features of local ordering in the vicinity of each particle [26]. For example, particles can be
defined as neighbors if they share a Voronoi edge, so that the number of Voronoi cell edges
gives a count of neighbors. In a defect-free hexagonal crystal, even at temperatures above zero,
the Voronoi cell of each particle has six edges. In crystals containing defects the Voronoi cells
of some particles will have other numbers of edges. This can be vividly observed in figure 1(c),
in which many Voronoi cells have five and seven edges.

The number of edges of a Voronoi cell, however, is a rather coarse description of local
structure in particle arrangements. As can be seen in figure 1(c), five- and seven-sided Voronoi
cells are associated with grain boundaries and vacancies, and so the number of edges alone
provides only modest structural information. A more refined description of local arrangements
of particles can provide a more nuanced, and useful, description. In particular, we characterize
each particle according to its number of edges and the number of edges of its neighbors, ordered
sequentially. Figure 2 illustrates three central particles and their Voronoi cells. Although each
of the three central particles have Voronoi cells with five neighbors, these neighbors have
different numbers of neighbors themselves, reflecting distinct local orderings. In figure 2(a),
all neighbors have six neighbors except for one that has seven; this particle is associated to a
dislocation. The two particles in figures 2(b) and (c) each have three six-sided neighbors and
two five-sided ones. They are structurally distinct, however, in that the two five-sided neighbors
are adjacent in figures 2(b) but not in (c); one belongs to a vacancy while the other belongs to
a grain boundary.

The number of edges of the Voronoi cells of a particle and its neighbors thus provides
a simple description of particle arrangements that can distinguish particles associated with

3
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Figure 2. (a)–(c) Three central particles, each with five neighbors, associated to distinct
structural defects. These structural differences are reflected in differences in the numbers
of edges of neighboring Voronoi cells. Particle colors indicate numbers of Voronoi edges
or neighbors.

different kinds of defects. Since topological features of Voronoi cells do not change under
rotations, translations, or rescalings, this description is consistent with the intuition that such
transformations do not impact structurally significant features of a system. Furthermore, since
topological features of Voronoi cells do not generally change under small perturbations of
particle coordinates, characterization will typically be insensitive to small measurement errors.
Finally, even in special cases in which small perturbations will result in discrete shifts in topo-
logy, those shifts can be completely understood and the resulting topologies are fully described
in statistically precise terms. All of this might be contrasted with approaches that rely on geo-
metric features, such as Voronoi cell areas or perimeters. These quantities typically change
under perturbations, and methods constructed based on them consequentially require choos-
ing cutoffs, often somewhat arbitrary, for classification.

2.2. Canonical representations

We thus use the term Voronoi topology of a particle to refer to the number of edges of its
Voronoi cell and those of its neighbors, ordered sequentially. For each particle whose Voronoi
cell has n edges, this information is represented by an ordered list of n+ 1 numbers. The
first counts the neighbors of the central particle, equivalently the number of edges of its
Voronoi cell; subsequent numbers count the numbers of neighbors of neighboring particles.
This description might be considered a two-dimensional analogue of the Weinberg codes con-
sidered elsewhere for characterizing three-dimensional polyhedra [27–29]. We note that the
first element of the p-vector is currently redundant, since the information can be inferred from
the length of the vector. It is included to facilitate future generalizations, such as to multicom-
ponent systems.

As an example, we consider the arrangement of particles in figure 2(c). The central particle
has five neighbors. If we enumerate the number of edges of its neighbors in counterclockwise
order beginning with the particle to its left, we arrive at the sequence (5,6,6,7,6,7). If we had
instead begun with the neighbor above, we would arrive at the sequence (5,7,6,6,7,6); begin-
ning with other neighbors can result in other sequences. Since all of these sequences describe
the same structural information, we choose the lexicographically first one as the canonical rep-
resentation of the Voronoi topology, and use the term p-vector to denote it. We say that two
arrangements of particles have the same Voronoi topology if their p-vectors are identical.

A subtle issue arises when considering orientation. In some cases, had we enumerated the
number of edges of neighbors in a clockwise manner instead of in a counter-clockwise manner,
we would arrive at a different set of sequences and a different p-vector, indicating a chirality,
or handedness, of the arrangement. In other cases, the two orientations generate the same sets
of sequences, indicating a mirror symmetry in the arrangement.

4
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Table 1. Lists of integer sequences associated with particle arrangements illustrated in
figures 3(a) and (b). The sequences associated with the clockwise and counterclock-
wise orientations for figure 3(a) are identical, indicating a mirror symmetry and lack
of handedness. In contrast, the sequences for the two orientations are different for the
arrangement in figure 3(b), indicating a handedness. Since the lexicographically lowest
sequence is in the counterclockwise list, we call the arrangement left-handed.

Orientation 1 Orientation 2

(5,6,6,7,6,7) (5,6,6,7,6,7)
(5,6,7,6,6,7) (5,6,7,6,6,7)
(5,6,7,6,7,6) (5,6,7,6,7,6)
(5,7,6,6,7,6) (5,7,6,6,7,6)
(5,7,6,7,6,6) (5,7,6,7,6,6)

Orientation 1 Orientation 2

(6,5,6,6,6,6,7) (6,5,7,6,6,6,6)
(6,6,6,6,6,7,5) (6,6,5,7,6,6,6)
(6,6,6,6,7,5,6) (6,6,6,5,7,6,6)
(6,6,6,7,5,6,6) (6,6,6,6,5,7,6)
(6,6,7,5,6,6,6) (6,6,6,6,6,5,7)
(6,7,5,6,6,6,6) (6,7,6,6,6,6,5)

Figure 3. (a) In this arrangement of particles, p-vector descriptions of neighboring edges
are identical whether we list neighbors sequentially in clockwise or counterclockwise
fashion. (b) In this arrangement, p-vector descriptions will differ depending on whether
we list neighbors in a clockwise or counterclockwise manner.

We thus establish the following convention.We calculate the sequences associatedwith both
orientations and choose the lexicographically first one among all sequences as the canonical
p-vector; we also store information about the chirality of the arrangement for further analysis.
In particular, if the sequences for the two orientations are identical, then the arrangement is
non-chiral. Otherwise, if the lexicographically-first sequence is in the counterclockwise list,
we say that it is left-handed, and if the lexicographically-first sequence is in the clockwise
list, we say that it is right-handed. Section 4.4 illustrates an example system in which Voronoi
topology is able to detect chirality of a grain boundary.

To illustrate the procedure for constructing a canonical p-vector, table 1 lists the integer
sequences that describe the Voronoi topology of the arrangements in figures 3(a) and (b)
for each of two orientations, sorted in lexicographical order. The neighborhood illustrated
in figure 3(a) is non-chiral and the two sets of sequences are identical. In contrast, the arrange-
ment shown in figure 3(b) has a handedness, and the two sets of sequences are different. Since
the lexicographically first sequence of numbers results from a counterclockwise enumeration
of neighbor edges, this arrangement is considered left-handed.

2.3. Perturbation analysis

Small perturbations of particle coordinates do not always change their Voronoi topologies.
For example, in the bicrystal illustrated in figure 1, the Voronoi cells of most particles are six-
sided, even though the particles are slightly perturbed from ideal lattice positions as a result
of thermal vibrations and small internal strains. Similarly, the Voronoi topologies of particles
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Figure 4. Particles colored according to the number of edges of their Voronoi cells in
(a) an unperturbed square lattice and (b) a perturbed square lattice.

Figure 5. (a) An isolated dislocation and (b) interstitial with stable Voronoi topologies;
(c) an unstable vacancy resolves under perturbations as either (d), (e) or (f).

associated with the grain boundary and vacancy are also stable under small perturbations of
particle coordinates.

In some arrangements, however, especially those associated with perfect crystals and ideal-
ized defects, Voronoi topology can change under small perturbations such as those associ-
ated with thermal noise, small strains, or measurement error. As an example, figure 4 illus-
trates a square lattice; the p-vector of every particle is (4,4,4,4,4). Under small perturbations,
however, corners of Voronoi cells can resolve into edges and the resulting Voronoi cells can
have between 4 and 8 edges each, resulting in many different p-vectors. Similarly, particles
associated to the ‘ideal’ vacancy arrangement illustrated in figure 5(c) all have the p-vector
(5,5,5,6,6,6). Small perturbations of the particle coordinates, however, can result in differ-
ent Voronoi topologies of the associated particles, as illustrated in figures 5(d)–(f).

We therefore consider the possibility that a given structural object such as a crystal or defect
can be associated with multiple Voronoi topologies, equivalently p-vectors, under infinitesimal
perturbations.We use the term family to denote a set of Voronoi topologies that can be obtained
from an ideal structure through infinitesimal perturbations of particle coordinates. Particles
whose Voronoi topologies belong to a family of crystalline Voronoi topologies are classified
as belonging to a bulk crystal, while those whose topologies belong to a family of defect
topologies are classified as belonging to defects.

Families of Voronoi topologies associated with particular crystals and defects can some-
times be determined analytically by consideration of possible resolutions of individual
unstable corners [15, 20, 30, 31]. However, this approach is often complicated by analytical
and computational challenges.

2.4. Cluster analysis

The proposed approach characterizes the local ordering of individual particles. Analysis
of contiguous groups of particles with particular local structural classification can be sub-
sequently used to identify and analyze larger-scale structural objects. A defect-free hexagonal
crystal, for example, can be defined as a set of contiguous particles all of which have p-
vector (6,6,6,6,6,6,6). Likewise, interstitial defects can be identified with a particle with
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p-vector (6,5,7,5,7,5,7) surrounded by six neighboring particles with alternating p-vectors
(5,6,6,7,6,7) and (7,5,6,5,6,6,6,6), as illustrated in figure 5(b). This topological approach
to characterizing defects is general in that it can be used to characterize and subsequently
identify different kinds of crystals and defects. At the same time, this method is robust in that
small perturbations of particle coordinates do not generally affect this structural classification.

In a similar manner we can also identify contiguous regions of unspecified non-crystalline
order inside a crystalline system. In studying mechanisms such as melting, this approach
provides a well-defined, robust method for characterizing different parts of a system as crys-
talline or not, facilitating quantitative analysis of growth and degradation of phases within a
larger matrix such as those that occur under conditions suitable for phase transformations.

2.5. Indeterminate types and their resolutions

A complication that arises in enumerating families of Voronoi topologies is the possibility
that a topology belongs to multiple structural families; we call such topologies indeterminate.
As a concrete example, the Voronoi topology denoted by the p-vector (6,6,6,6,6,6,6) and
that appears in hexagonal crystals also appears in perturbations of a square lattice [30, 31].
Likewise, the p-vector (5,6,6,6,6,7) is associated with both an isolated dislocation, as illus-
trated in figure 5(a), as well as a vacancy, as illustrated in figure 5(e). To complicate the matter
further, this topology can also appear at the end of a grain boundary.

These indeterminacies can be resolved in several ways. One approach involves considera-
tion of probabilities of the indeterminate topologies appearing in various systems. For example,
in a defect-free hexagonal crystal, all particles have the Voronoi topology given by the p-vector
(6,6,6,6,6,6,6). In contrast, this topology appears in the perturbed square lattice and ideal gas
with extremely small probabilities [31]. If we find such an arrangement in a general system,
we might conclude that it more likely belongs to an hexagonal crystal than to a square one or
to an ideal gas. This approach, however, is unsatisfactory since it suggests that every particle
characterized by the p-vector (6,6,6,6,6,6,6) be classified as having hexagonal local struc-
ture, including those that appear in a square crystal or ideal gas. Large square lattice crystals
with arbitrarily small random perturbations would then typically include particles classified as
defects.

A second approach involves randomly perturbing particle positions and recomputing their
topologies. We can repeat this process several times and classify the local structure according
to whether the majority of resolutions result in a determinate topology of one kind or another.
Such analysis was suggested in a paper describing an earlier version of VoroTop [19]. This
approach, however, requires computing Voronoi cells multiple times per particle. Moreover, it
also requires a default-case analysis so that (6,6,6,6,6,6,6) would be classified as hexagonal
if no perturbations resulted in a determinate square lattice topology.

We thus suggest a third approach that builds on the analysis described in section 2.4. In
particular, after classifying structure types of individual particles, we construct clusters of
particles that are identified as non-crystalline and whose Voronoi cells are contiguous. To
resolve indeterminate types, we then consider the Voronoi topologies of the particles that con-
stitute the cluster. A dislocation, for example, consists of an adjacent pair of particles, one with
Voronoi topology described by the p-vector (5,6,6,6,6,7), and one by (7,5,6,6,6,6,6,6).
Although such topologies can also appear individually at the ends of a grain boundary, know-
ing that they belong to a defect cluster with only one of each is sufficient to resolve them
as constituting a dislocation. An example demonstrating this kind of analysis can be found
in section 4.1. This approach might be contrasted with a mean-field approach developed and
previously applied to disordered systems [32].

7
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3. VoroTop software

The open-source VoroTop software package was developed to automate the analysis of struc-
tural features in particle systems using Voronoi topology [19]. The program was initially
designed for three-dimensional systems. We now describe extensions to automate analysis
of two-dimensional systems.

3.1. Language, license, and availability

The VoroTop software package is written in C++11 and is compatible with all major operating
systems.VoroTop is released under anOpenSource BSD 3-Clause license, which permits redis-
tribution and use of source and binaries, with or without modification, to both academic and
for-profit groups. VoroTop is available online in a Git repository at https://gitlab.com/mLazar/
VoroTop/.

3.2. Performance, optimization, and runtime

The latest version of VoroTop is built using a new version of Voro++ [21, 22] that incorpor-
ates multithreadingwith OpenMP [33]. The Voro++ library computes Voronoi cells individu-
ally, and the total computation time scales approximately linearly for typical, dense particle
arrangements. Since each Voronoi cell can be computed independently of others, the multith-
readed version has near-optimal parallel efficiency, in both two and three dimensions [22]. The
computation of the p-vectors in VoroTop is also multithreaded, and typically takes a constant
amount of additional work per particle. Running with a single thread on an Intel Xeon Gold
6240 CPU running at 2.60GHz, VoroTop can currently compute about 160 000 Voronoi cells
and p-vectors per second, or roughly ten million particles per minute.

3.3. Filters

We use the term filter to refer to a list of one or more families of Voronoi topologies used by
VoroTop to identify crystalline and defect structure. As a simple example, a filter can enumerate
only the unique p-vector (6,6,6,6,6,6,6) associated with the ideal hexagonal lattice, or else
also list families associated with defects such as dislocations, vacancies, and grain boundaries.

File format. Filter files are divided into three parts. The first part consists of optional comments
about the filter, such as its source, statistical analysis, or other notes; all lines that begin with
a ‘#’ are treated as comments. Lines in the second part begin with a ‘*’ and specify user-
defined structure types. Each such line, after the ‘*’, includes an index and a name for the
structure type. Indices of structure types are listed in increasing order and begin with 1. The
third part consists of lines that record Voronoi cell topologies, represented by p-vectors, and
their associated structure types. Each line begins with a structure type index and an associated
p-vector, as described above. Topologies listed as belonging to multiple structure types are
indeterminate. Filter files for several common structure types, included those considered in
this paper, can be found at www.vorotop.org.
VoroTop begins by reading in information about a system represented in the LAMMPS

dump file format [34]; if specified, a filter file is also read. Next, the Voro++ library [21, 22]
is used to compute the Voronoi cell of each particle, and VoroTop computes the Voronoi cell
topologies. Finally, the system is analyzed using features specified by the user and output is
saved to disk; all output is saved in plain-text format.
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3.4. Command-line options

Features of the VoroTop program are controlled through command-line options. Some features
described previously in [19] are omitted.

-2 two-dimensional system. Interpret the data as describing a two-dimensional system. If
x, y, and z coordinates are all specified, then only the x and y coordinates are considered.

-f load filter file. Specifies a filter file to use for analysis. If this option is used, then a new
LAMMPS dump output file will be created that includes the original data plus the structure
types as determined by the given filter.

-p p-vectors. The Voronoi topology of each particle in the system is computed and saved
to disk. The following information is recorded for the Voronoi cell of each particle: its number
of edges, its number of neighbors with 3, 4, 5, etc edges, its canonical p-vector, the order of
its symmetry group, and its chirality. Left-handed chirality is indicated by −1, right-handed
chirality is indicated by 1, and a non-chiral Voronoi topology is indicated by 0.

-d distribution of p-vectors. This option calculates the distribution of Voronoi topologies in
a system, and records it as a histogram of p-vectors.

-c cluster analysis. This feature implements the cluster analysis described in section 2.4.
Each defect and crystal cluster is assigned a unique index, ordered by size. Positive indices
indicate crystal clusters; negative indices indicate defect clusters. Also recorded for each
particle is the size of the cluster to which it belongs. Particles with structure types listed in
the specified filter are treated as crystalline, and defect clusters are built from particles whose
structure types are not listed.

-r resolve indeterminate topologies. This feature implements the analysis described in
section 2.5; it is currently in testing form. Particles with indeterminate types are resolved by
consideration of other particles in the same defect cluster.

-v Voronoi pair correlation function. Computes the Voronoi pair correlation function for the
system as described in [35]. This is the average number of Voronoi neighbors at each Voronoi
distance from a central particle, averaged over all particles and normalized by data from the
ideal gas. If an integer is specified, then the program computes the Voronoi pair correlation
function up to that maximum Voronoi distance k; if left unspecified, data will be computed up
to k= 50.

The -u option outputs the unnormalized version of the Voronoi pair correlation function.
This is the average number of Voronoi neighbors at each Voronoi distance from a central
particle, averaged over all particles.

-e Encapsulated postscript. Outputs an encapsulated PostScript (eps) image of the sys-
tem’s particles and Voronoi cells. Table 2 lists different coloring scheme options. If no color
scheme is specified then particles are colored according to the number of edges of their Voronoi
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Table 2. Color schemes for the -e option.

Flag value Particle coloring

0 do not draw particles
1 color all particles black
2 color by number of edges
3 color by filter index
4 color by Voronoi distance from center

cells. The -n flag can be added to specify that only the particles themselves be drawn, and not
the Voronoi cells.

Drawing all particles may be undesirable for large systems. If the -e flag is followed by
two numbers, then the first specifies the coloring scheme and the second specifies the number
of particles that should be drawn; a window centered at the middle of the system and whose
area is proportional to the number of particles specified is drawn.

3.5. Limitations

At present, VoroTop cannot distinguish between particles of different sizes or chemical types.
A future version of VoroTop will handle particles of different sizes using the radical Voronoi
tessellation, a generalization of the standard Voronoi tessellation; computation of the radical
Voronoi tessellation is already available in Voro++. Analysis of multicomponent systemswill
require generalizing the canonical representation introduced in section 2.2; implementation of
this analysis in VoroTop will require new data structures and algorithms.

4. Application examples

4.1. Identifying defects in polycrystalline systems

To illustrate the effectiveness of Voronoi topology in characterizing and visualizing defects
in crystalline systems, figures 6 and 7 illustrate part of a two-dimensional polycrystal using
several standard methods, and with Voronoi topology. The simulated system was constructed
using a molecular dynamics simulation of a Lennard-Jones liquid, which was cooled until it
crystalized and then annealed at half of its bulk melting temperature. Although it is possible
to identify visually the rough contours of grain boundaries, dislocations, and vacancies from
the particles themselves, automating further analysis requires an algorithmic approach.

Standard methods. Particles in figure 6(a) are colored according to the areas of their Voronoi
cells. Particles whose Voronoi cells have smaller than average areas are colored yellow, while
those with larger than average areas are colored red. Figure 6(b) shows the same system but
with particles colored according to centrosymmetry [13]; darker shades indicate higher values.
Particles in figure 6(c) are colored according to a bond-angle order parameter, in particular
the sample variation of the angles formed by adjacent pairs of Voronoi neighbors. Finally, the
particles in figure 6(d) are colored according to the sample variation of the distances to Voronoi
neighbors. Generally speaking, particles belonging to defects have order parameter values that
are different from those associated to particles belonging to bulk crystals. Thus, with each
approach, defects can be detected through the presence of particles colored in darker shades.
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Figure 6. Apolycrystal with vacancies, dislocations, and grain boundaries created using
molecular dynamics through the cooling of a Lennard-Jones liquid. Particles colored
according to (a) Voronoi cells areas, with larger ones colored red, and smaller ones
colored yellow; (b) centrosymmetry, (c) bond-angle analysis, and (d) the variance in
distances to Voronoi neighbors.

Classifying particles as belonging to either a bulk crystal or else to a defect requires choos-
ing an order-parameter cutoff. At low temperatures, there exists a gap between order-parameter
values associated with the bulk crystal and those associated with defects. Any choice of cutoff
in that gap will thus result in the same binary classification of particles. At finite temperat-
ures, however, and especially at high temperatures, thermal fluctuations result in bulk crystal
particles that have order parameter values associated with defects. Consequently, any choice
of order parameter cutoff will result in bulk crystal particles that are misidentified as belonging
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to defects, defect particles misidentified as belonging to a bulk crystal, or both. Consequently,
the particle-level details of defects are often difficult to discern.

Moreover, even when conventional order parameters can reliably detect the presence of a
defect, they typically cannot distinguish between defects of different kinds. Order-parameter
values associated with a vacancy, for example, might coincide with those associated with a
dislocation or grain boundary. Thus, even at low temperatures, when the distinction between
locally crystalline particles and those associated to defects is clear, distinguishing different
kinds of defects is still challenging.

Voronoi topology. Figure 7 uses Voronoi topology to characterize and visualize individual
particles. Particles in figure 7(a) are colored according to the number of edges of their Voronoi
cells. This basic approach highlights the efficacy of using topological features of the Voronoi
cells—particles belonging to crystals have hexagonal Voronoi cells, while those belonging to
structural defects have Voronoi cells with other numbers of edges.

Particles in figure 7(b) are colored using a filter of Voronoi topologies associated with bulk
crystals, grain boundaries, dislocations, and vacancies. The list of Voronoi topologies, denoted
by p-vectors, used to color this figure can be found in table 3. Note that certain topologies are
associated with multiple defects, and are hence called indeterminate and colored multiple col-
ors, corresponding to their multiple associated structures. Particles with other Voronoi topo-
logies are colored light grey. This visualization provides a clear picture of the bulk crystals as
well as vacancies, interstitials, and grain boundaries.

Finally, figure 7(c) shows the result of a post-processing cluster analysis to resolve inde-
terminate types and to identify structural defects such as dislocations, vacancies, and grain
boundaries. In particular, we considered contiguous sets of particles with non-crystalline
Voronoi topologies. A cluster containing one of each of the topologies associated with a dislo-
cation, and none of the other topologies in table 3, is identified as a dislocation. Defect clusters
with exactly three or six particles with topologies associated with vacancies are identified as
vacancies. Finally, contiguous sets of particles all of whose topologies are associated with
grain boundaries are identified as grain boundaries.

4.2. Characterizing order in disordered systems

Voronoi topology analysis can also be used to characterize and analyze nominally disordered
systems. In crystalline systems, local arrangements of particles are all of the same kind, or else
of a small number of kinds. This order is reflected in the relatively small number of Voronoi
topologies observed in such systems. In the hexagonal crystal, for example, all Voronoi cells
are hexagons and have the p-vector (6,6,6,6,6,6,6), even after particle coordinates are per-
turbed. Systems with multiple particles in a repeating unit cell may be associated with several
Voronoi topologies, though this number is always finite.

In contrast, nominally disordered systems can have an infinite number of possible arrange-
ments of particles due to their lack of long-range periodic order. A statistical description of
the relative frequencies of distinct particle arrangements, as classified through Voronoi topo-
logy, is one way to describe local structural features in these systems. We thus consider the
distribution of Voronoi topologies in several disordered systems.

We consider three examples: an ideal gas, a Lennard-Jones liquid heated to 150% of its
bulk melting temperature, and a hyperuniform system constructed using a Vicsek model of
collective motion [36]. To sample the ideal gas, we generated 80 systems, each containing 4
million points, randomly distributed in the unit square with periodic boundary conditions. To
sample from the Lennard-Jones liquid, we constructed 1600 systems, each containing 17 280
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Figure 7. A polycrystal with vacancies, dislocations, and grain boundaries created using
molecular dynamics through the cooling of a Lennard-Jones liquid. Particles colored
according to (a) the number of edges of each particle; (b) Voronoi topology using a
simple filter; indeterminate types are colored usingmultiple colors; (c) Voronoi topology
after indeterminate types are resolved using cluster analysis.

particles. We used a Vicsek model with one million particles, unit density, and uniform noise
in [−0.6π ,0.6π ]; simulations were run for 50 000 time steps. Particles in the three systems
are illustrated in figure 8.

Table 4 shows the frequencies of particles with different numbers of Voronoi cell edges or
neighbors in the three systems. Although the average number of Voronoi cell edges must be
six in all of them, the distribution of number of edges differs. Notice in particular that this
distribution appears narrowest in the Lennard-Jones liquid, reflecting what appears to be a
more regular kind of disorder as compared with that in the other systems.
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Table 3. A list of structural defects and associated Voronoi topologies, denoted by their
p-vectors. Note that some topologies are associated with multiple defects.

Crystal

(6,6,6,6,6,6,6)

Grain boundary
(5,6,6,6,6,7)
(5,6,6,7,6,7)
(6,5,6,6,6,7,6)
(6,5,6,6,7,6,6)
(7,5,6,6,5,6,6,6)
(7,5,6,6,6,6,6,6)

Vacancy

(5,6,6,6,6,7)
(5,6,6,6,6,8)
(5,6,6,6,7,7)
(6,5,6,6,6,6,8)
(6,5,6,6,6,7,7)
(6,6,6,6,6,6,8)
(7,5,6,6,6,5,7,7)
(7,5,6,6,6,6,7,6)
(8,5,6,6,6,5,6,6,6)

Dislocation

(5,6,6,6,6,7)
(7,5,6,6,6,6,6,6)

Interstitial
(5,6,6,7,6,7)
(6,5,7,5,7,5,7)
(7,5,6,5,6,6,6,6)

Figure 8. Images of particles in (a) an ideal gas, (b) a Vicsekmodel of collective motion,
and (c) a Lennard-Jones liquid heated to 150% of its bulk melting temperature; each
figure has roughly 200 particles. Colors indicate numbers of Voronoi edges or neighbors.

Table 4. The fraction of particles (%) in each system with a given number of Voronoi
sides or neighbors in the ideal gas, a Vicsek model of collective motion, and a Lennard-
Jones liquid.

Distribution of Voronoi cell sides

Sides Ideal gas Vicsek LJ liquid

3 1.12 1.47 0.05
4 10.69 12.11 4.94
5 25.94 26.12 27.69
6 29.47 27.48 38.42
7 19.88 18.42 21.46
8 9.01 9.10 6.22
9 2.97 3.63 1.09
10 0.74 1.20 0.13
11 0.15 0.35 0.01
12 0.02 0.08 0.00

Table 5 tabulates the frequencies of the most common Voronoi topologies observed in these
systems. Despite their different origins, the ideal gas and Vicsek model system appear most
structurally similar, judging by frequencies of Voronoi topologies in the systems. In contrast,
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Table 5. Lists of the ten most common p-vectors and their frequencies f in three nom-
inally disordered systems: the ideal gas, a Vicsek model, and a Lennard-Jones liquid
heated to 150% of its bulk melting temperature.

Ideal gas

p-vector f(%)

(4,6,6,7,8) 0.3502
(5,5,6,7,6,7) 0.3372
(5,5,6,6,6,7) 0.3371
(5,5,6,6,7,7) 0.3141
(5,5,6,6,7,6) 0.3123
(5,5,7,6,7,7) 0.3110
(4,5,6,7,7) 0.3000
(4,6,7,7,8) 0.2978
(4,6,6,7,7) 0.2954
(4,6,6,6,7) 0.2887

Vicsek model

p-vector f(%)

(4,5,6,6,7) 0.3691
(4,5,6,7,7) 0.3480
(5,5,6,6,6,7) 0.3276
(4,6,6,6,7) 0.3095
(5,5,6,6,7,6) 0.3091
(4,6,6,7,8) 0.2921
(4,5,7,6,8) 0.2761
(4,5,6,6,8) 0.2732
(5,5,6,7,6,7) 0.2659
(4,6,6,7,7) 0.2586

Lennard-Jones liquid

p-vector f(%)

(5,6,6,6,6,7) 1.1139
(6,5,6,6,6,6,7) 0.9264
(5,6,6,7,6,7) 0.9088
(5,5,6,7,6,7) 0.8961
(5,5,6,6,6,7) 0.8342
(5,5,7,6,7,7) 0.8190
(6,5,6,6,6,7,6) 0.7879
(5,6,6,6,7,7) 0.7838
(5,5,6,6,7,7) 0.7608
(5,5,6,6,7,6) 0.6780

the distribution of Voronoi topologies appears qualitatively different in the Lennard-Jones
liquid. In particular, the most common types in the Lennard-Jones liquid appear roughly three
times more frequently than the most common types in the other systems. These differences
in particle arrangements in the different systems likely reflect different energetic and entropic
forces that govern their behavior.

In all systems, the relatively high frequencies of Voronoi topologies whose central particle
have only four or five edges might appear puzzling, given that six-sided Voronoi cells are the
most common in all systems. This can be understood as a combinatorial result of the increas-
ing number of possible Voronoi topologies as the number of neighbors of a central particle
increases. Since there are many more ways of arranging 6 neighbors, for example, than only
5, the relative frequency of many arrangements with five neighbors will be greater than those
with 6.

4.3. Characterizing real grain boundaries

A significant challenge that arises in studying grain boundaries in realistic systems is their
structural complexity as compared with grain boundaries in ideal systems. Thus, while per-
fect symmetric tilt grain boundaries, for example, can be described in the language of
bicrystallography [37] and structural unit models [38–41], those in realistic ones typically
cannot. Figures 9(a) and (b) illustrate high- and low-angle symmetric tilt grain boundaries in
a two-dimensional, Lennard Jones bicrystal annealed at half of its bulk melting temperature.
The irregular nature of these grain boundaries complicate their description.

Voronoi topology can be used to provide a statistical characterization of order in local struc-
tural terms. Figure 9(c) illustrates the frequencies of different Voronoi topologies in realistic
symmetric tilt grain boundaries as a function of misorientation angle. This approach provides
a robust characterization of grain boundary structure that is largely independent of micro-
degrees of freedom [42]. Moreover, this characterization can be useful in solving a related
inverse problem—given a set of particle positions can we determine the misorientation angle?
Figure 9(c) suggests that knowledge of the distribution of Voronoi topologies, or even just
the relative frequencies of several common types, is sufficient to identify the misorientation
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Figure 9. (a) High- and (b) low-angle real symmetric tilt grain boundaries in two-
dimensional bicrystals; particles colored according to the number of edges of their
Voronoi cells. (c) The number density of various Voronoi topologies per unit length
as a function of misorientation angle; each color indicates a different Voronoi topology.

between the two grains. Voronoi topology thus provides amethod to robustly characterize com-
plex structure in statistical-structural terms. Analysis of energetic features of particle arrange-
ments might provide insight into energetic aspects of realistic grain boundaries.

4.4. Chirality in grain boundaries

A unique strength of the present approach towards structure characterization is its ability to
identify chiral features of particle arrangements. As described in section 2.2, certain arrange-
ments of particles lack a mirror symmetry, and hence can be distinguished from their mirror
images. Although the canonical representation of Voronoi topology via the p-vector ignores
differences in orientations, this information is recorded while computing the p-vector.

Figure 10 illustrates a circular grain boundary in a two-dimensional hexagonal Lennard-
Jones bicrystal heated to 50% of its bulk melting temperature. For some misorientation angles,
we expect that right-handed and left-handed versions of particle arrangements, as classified
through Voronoi topology, appear in the same proportions. Even if thermal vibrations result in
local differences, these differences should be negligible for large samples. However, for other
misorientation angles, grain boundaries, even in two dimensions, can exhibit an orientation.
This can be examined through Voronoi topology analysis.

Particles in figure 10 are colored according to their Voronoi topology and orientation, as
indicated in the key. In addition, particles with oriented p-vectors are further labeled with direc-
ted arrows, to indicate whether they are right- or left-handed. Notice that all right-handed forms
of the p-vector (6,5,6,6,6,6,7), colored red, and all left-handed forms of (6,5,6,6,6,7,6),
colored green, appear on the inside part of the circular grain boundary, whereas particles with
identical topologies but opposite orientations appear on the outside of the grain boundary. The
appearance of chiral features on the single-particle scale results from a chirality of the grain
boundary itself. Automating the analysis of chiral features in particle systems might aid in the
study of grain rotation and its impact on grain growth in two-dimensional polycrystals [43].
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Figure 10. A circular grain boundary in a two-dimensional hexagonal Lennard-Jones
bicrystal. The inside grain was constructed by rotating a circular region by 16◦ and then
annealing the system at 50% of its bulk melting temperature. The orientation of the grain
boundary can be observed in Voronoi topologies of the particles.

5. Discussion

Voronoi topology provides an effective approach to characterizing structural features of two-
dimensional particle systems. As a topological method, it is generally insensitive to small
perturbations of particle coordinates, making it particularly useful for analyzing imperfect sys-
tems, including finite-temperature crystals, and systems otherwise perturbed from their ground
states. Similarly, it is effective for analyzing experimental data, which is often characterized by
some measurement error. This robustness in the face of uncertainty is consistent with the intu-
ition that structural features of particle systems do not change under small local perturbations.

The effectiveness of the proposed approach in a broad range of applications—identifying
crystals and defects in high-temperature systems, characterizing disordered systems, non-ideal
grain boundaries, and even chiral features of particle systems—highlights its general utility.
Any one of these tasks can be challenging, and the ability to approach all of them with a single
set of tools is noteworthy.

The proposedmethod is limited in certain respects. Voronoi topology is naturally insensitive
to questions of scale, and also cannot capture local density fluctuations. To some degree, these
limitations could be remedied by consideration of Voronoi cell areas and perimeters, or other
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geometric features of the particle positions. The development of hybrid methods, integrating
Voronoi topology with geometric information, might provide a more powerful approach with
more general applications [44].

Another current limitation of Voronoi topology as described above is its identical treatment
of all particles. The methods described above, as well as the p-vector notation, however, can
be extended so to generalize the analysis for multicomponent systems such as those consisting
of particles of different chemical types. We leave these extensions to future work.
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