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ABSTRACT OF THE DISSERTATION

Placement, Routing, and Post-Processing of Microfluidic Device Flow-Layers

by

Brian Russell Richard Crites

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2018

Dr. Philip Brisk, Chairperson

Continuous flow based microfluidic devices have made great strides in fields like rapid DNA

sequencing and ex-vivo tissue samples, so-called organ-on-a-chip devices, for biological test-

ing. While a large number of new components and biological processes have been developed,

tools to help design these devices have not followed suit. As the field grows and the devices

being designed become more complex, they will quickly become too difficult for a single

person or small group to develop without computer assistance. This necessitates the devel-

opment of tools and algorithms that can accelerate or automate parts of the design process.

This dissertation presents and evaluates a collection of algorithms that form the crux of a

larger software platform for microfluidic design. Algorithms are presented here for auto-

mated flow layer design and post-processing for area reduction and to automate the process

of high-throughput conversions. It concludes by introducing a suite of benchmarks and de-

sign metrics to facilitate unbiased comparisons between the microfluidic design automation

algorithms introduced here, and future work in the space to be performed by others.
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Chapter 1

Introduction

1.1 Microfluidic Devices & Principles

Devices based on continuous fluid flow microfluidics are used for a wide variety of bio-

chemical applications including high-throughput screening [23], protein crystallization [20],

long-term single cell culturing and monitoring [5], single-cell mRNA isolation and DNA syn-

thesis [36], single-cell tracking and imaging [14], solid-phase capture immunoassays [30], and

interrogation of protein-DNA interactions [67], among many others. Through automation

and miniaturization, microfluidic devices offer the benefits of higher throughput, lower sam-

ple/reagent usage, and reduced likelihood of human error compared to traditional benchtop

chemistry methods that they often replace. Additionally, their scale and automation can

allow them to perform more complex and sophisticated processes than those that can typ-

ically be performed by with traditional methods. One long-term objective of the scientific

movement to design and commercialize microfluidic devices is to create low-cost point-of-

1



care testing devices that can positively impact global health, especially in the developing

world [70].

Generally, microfluidic devices are characterized by having fluid flows that fall

within the laminar flow regime due to their typically low Reynolds numbers Re.

Re =
ρuL

µ

Here, ρ is the density of the fluid in the device, u is the velocity of the fluid, L

is the fluid channel width, and µ which is the dynamic viscosity of the fluid [53]. Because

the fluids used within an experiment are more or less fixed (with small exceptions for cases

where modifiers like surfactants can be used) the ρ and µ variables are relatively fixed.

Since the fluids of interest are typically biological in nature, the ρ and µ values are typically

close to that of water. This means that microfluidic devices operate in the laminar regime

because of their relatively small channel widths L and low fluid velocities u. As long as the

Reynold number Re < 1, the flows within the device will be in the laminar regime and the

fluid, and any material that the fluid is carrying, will travel in relatively straight parallel

lines.

Continuous flow microfluidic devices can be broken into two major categories. The

first and most popular form, especially when considering microfluidic products on the mar-

ket, are passive devices. Passive microfluidic devices are, in their most basic form, systems

of channels that may be etched or carved into a rigid substrate [29, 12, 49] or imprinted

in a flexible polymer [68] and mounted on a rigid substrate. Through the application of

flow pressure, either head or provided through an external pump, fluids move through these

2



Figure 1.1: A passive serpentine mixer (top), the shape of which induces turbulence causing
the two input flows to mix and a rotary mixer (bottom) which uses the peristaltic pumping
to mix.

channels in order to accomplish some biological or chemical process of interest. The pri-

mary means of accomplishing these processes is through the use of specific geometries in

the channels and chambers that make up the device.

Using knowledge of the medium of interest that will be used in the device and the

fluids used for transporting those mediums, the geometry of each component is designed to

ensure that the component can perform a particular action. For example, the serpentine

channel mixer shown in Figure 1.1 uses diffusion over a longer distance to create fluid mixing.

While some devices are designed to perform a single basic task, there are increasing numbers

of devices that integrate a number of different processes to perform increasingly complex

and sophisticated biological and chemical procedures.
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The second major category of devices are active devices. These types of devices

are capable of utilizing the same geometric designs to perform a specific process, but add

an additional layer whose primary purpose it to externally control the flow of fluids through

the microfluidic channels. They key enabling technology of active devices is the microvalve,

the fluidic analogue to the transistor. Microvalves allow external pressure sources to actuate

on-device valves, which can be used to start and stop the flow of fluid to create timing as

well as perform complex functions [60].

1.2 The Microvalve

A typical active device is comprised of two or more layers of ridged substrate separated by

a flexible membrane. In a typical two- or three-layer device, there is one “flow layer” which

transports biological medium and other transport fluid(s), and one or two control layers

which use pressure to start and stop the flow of fluids in the flow layer through integrated

microvalves. A microvalve (Figure 1.2) is formed at any point where a control channel on

one layer crosses a flow channel on another layer and that channel is large enough and/or the

pressure high enough to lead to a deformation in the flexible membrane. This deformation

causes the flexible membrane to block the flow of medium through the flow layer. Figure 1.2

illustrates the two major technologies for microvalves.

The microvalve technology illustrated at the top of Figure 1.2 is one version of

the multi-layer soft lithography valve [60]. Here, two layers of rigid substrate are separated

by a flexible membrane. The flow layer containing channels for fluid movement is on bot-

tom, while the control layer above provides actuation; however, the layer ordering can be

4



Pressure Source

Fluidic Input

Membrane

Control Layer

Flow Layer

Pressure Source

Fluidic Input

Flow Layer

Flexible
Membrane

Control Layer

Glass Wafer

Teflon Membrane

Glass Wafer

Liquid Inlet

Liquid Outlet

Gas/Vacuum connection
to displacement chamber 

Fluidic Input

Flexible Membrane

Pressure Source

Control Layer

Fluidic Input

Flow Layer

Figure 1.2: Microvalves in the multi-layer soft lithography (top) and monolithic membrane
(bottom) technologies

reversed. In a more typically configuration, this devices is made of two layers of a flexible

polymer substrate, usually polydimethylsiloxane (PDMS), which are mounted on top of

a rigid substrate such as a glass slide. This configuration allows for the flow layer to be

deformed by the control layer, making it easier to actuate the valve. By default, these types
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of microvalves are open. When the control layer and flow layer meet, if there is a large

enough area of intersection and/or a high enough pressure the flexible membrane (or flow

layer) is forced to deflect blocking the movement of fluid.

The microvalve technology illustrated at the bottom of Figure 1.2 is monolithic

membrane valve [19]. This valve is constructed in a similar fashion to the multi-layer

soft lithography valve with flow and control layers constructed using a ridged substrate,

separated by a flexible membrane. The primary difference in this valve is in its operation.

The monolithic membrane valve is by default closed, with the flexible membrane resting on

the gap etched between the two pieces of the flow channel. When a vacuum, rather than

pressure, is applied to the control channel the flexible membrane deflects away from the flow

layer towards the control layer, opening a space for fluid to flow through the now complete

channel. While there are still minimum size and pressure requirements necessary in order

to cause the valve to actuate, the amount of pressure (or in this case vacuum) is typically

far less than what is necessary in a multi-layer soft lithography valve. Additionally, if the

multi-layer soft lithography valve is fabricated in the more typical fashion from two layers

of PDMS, then monolithic membrane valves reduce the amount of contact that fluids have

with the PDMS. There are a number of issues that can occur when biological and chemical

fluids interact with PDMS, such as swelling or disintegrating of the PDMS in solvents or

leaching of monomers into a reactions ruining it.

Microvalves are of great interest to microfluidic designers because they give two

primary benefits: (1) they allow for precise control of timing withing a microfluidic device,

which makes biological or chemical processes containing multiple steps much easier and (2)
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they allow for direct control of fluids within the device, either for intermittent movement

or for switching between different available paths.

1.3 Microfluidic Very-large-scale Integration

This interest in integrating an ever increasing number of microvalves into a device to create

ever more complex processes has lead to the development of microfluidic very-large-scale

integration (mVLSI). The concept of mVLSI is directly related to the concept of very-

large-scale integration (VLSI) for microprocessors, which is the every increasing need to fit

more and more transistors onto a single device in order to drive forward compute power

and/or reduce device size. Modern research devices can integrate hundreds or thousands of

externally controllable microvalves [60, 19, 43, 3].

Similar to how several transistors can be assembled to implement arbitrary logic

functions, sets of microvalves can be organized to form larger more useful components.

Figure 1.1 (bottom) shows a rotary mixer which uses a number of valves to push two different

fluids into the top and bottom segments of the ring channel, peristaltically pumping the

ring while fluidically separating it from the rest of the device, and then flowing the mixed

fluid out of the ring. Combinations of valves and channels can create complex components

such as pressurized latches, multiplexers, demultiplexers, memories, and logic gates [43].

These components can then be assembled and connected to form fully integrated devices.

While these active devices show great promise, the vast majority of the devices currently

being fabricated in industry are passive devices or active devices with very few microvalves.
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There are a number of reasons for including the increased costs associated with

multi-layer devices. One is the need for additional equipment to run the device which may

not be available, especially for field deployed devices. Another is the reliability of valves,

especially over time and with different fluids. However, one of the primary causes is the

sheer amount of complexity that is required in order to create a device that takes advantage

of thousands of microvalves. This has lead to an increasing interest in creating software

capable of automating different aspects of the microfluidic design process similar to the

software that was developed to solve the challenges of VLSI design.

1.4 Limitations of Current Design Methods

At present, both layers of mVLSI devices are manually designed using software such as

SolidWorks or AutoCAD. Manual design is tedious, error-prone, and unlikely to scale as

integration densities increase. Using the semiconductor industry as a metaphor, the current

design paradigm is stuck in the early 1970s, before the Conway-Mead revolution led to

integrated semiconductor VLSI technology and computer-aided design tools, which are now

industry standard [42]. There is a fundamental limit to the microfluidic design complexity

that can be achieved by manual layout, and the most advanced devices that have been

designed and fabricated, to date, are readily approaching that limit.

mVLSI physical design is challenging because components are heterogeneous in

terms of size and dimensions and can be placed at any location and with any orientation on

the chip. This is distinct from semiconductor VLSI which follows standard design rules [42]

and where standard cells have a uniform height and are placed in rows. This means that
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while we use VLSI as an analog for mVLSI, established physical design techniques cannot

easily be adapted for microfluidic technology.

As the sophistication of microfluidic devices increases, new tools and algorithms

are necessary in order for microfluidic designers to be able to cope with the complexity. In

the following chapters we propose a number of different algorithms to automate or accelerate

the design process of the microfluidic flow layer. Where applicable, we discuss the effects

that these algorithms have on the control layer.
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Chapter 2

Planar Embedding Based

Placement & Routing

2.1 Planarity in Device Designs

In very-large-scale integration (VLSI), many different layers of printed circuit board (PCB)

containing electrical components and connections are stacked on top of each other to form

a single device. When a component from one layer needs to connect with a component

on another, a through layer via is used in order to allow that connection to cross the

intermediate layers. While microfluidic devices can contain through layer vias for both

the flow and control layers, allowing fluids to move freely between layers, these vias are

undesirable. The reasons are similar to those for the inclusion of microvalves; the cost

of the device increases as more layers are added and the reliability is reduced because of

bursting or leakage where vias connect two layers.
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Because of this one of the challenges of manual design today is to produce a planar

layout for the flow layer which does not compromise the desired functionality of a chip. In

the context of design automation, this means that only chips having planar architectures

can be fabricated. Two primary approaches to microfluidic very-large-scale integration

(mVLSI) placement were proposed before this work: Incremental Cluster Expansion (ICE)

[56] and Simulated Annealing (SA) [45, 41]. ICE selects sets of components that should be

placed near one another to simplify the mVLSI chip architecture, while SA uses random-

ization and iterative improvement to reduce the number of intersections. These methods

attempt to reduce the total area necessary to place all components as well as trying to find

a good starting point for routing. The mVLSI routing algorithms proposed before this work

attempted to minimize the total fluid channel length, but did not consider the issue of pla-

narity, or legality of chip for fabrication. Proposed techniques include variants of Hadlock’s

Algorithm for grid routing [45, 41], Dijkstra’s Algorithm [56], and Steiner Tree construction

[35]. Because these algorithms were designed to reduce total channel length, they allowed

channels to cross in order to meet that goal.

These methods are not focused on directly finding a planar design, but have instead

corrected any intersections created in the flow layer by the placement and routing process

through the introduction of additional switches as shown in Figure 2.1 [41]. This switch is

made up of four separate microvalves (Figure 2.2), with each opposing pair of microvalves

connected a control line. While this method is theoretically sound, there are a number of

issues with it in practice. The inclusion of a switch necessitates a control layer in order

to actuate the microvalves, meaning these methods cannot be used to generate a passive
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device. Additionally, the number of input and output (I/O) ports which can be fabricated

onto a device are limited in practice, effectively limiting the number of switches that can be

inserted. Finally, because each switch introduces two additional control lines each inserted

switch increases the difficulty of finding a valid set of routes for the control layer.

Figure 2.1: When the routes are non-planar, 4-way switches must be added to compensate,
adding to control system complexity and fabrication cost

(a) (b) (c)

Figure 2.2: (a) two channels that intersect during routing, if left uncorrected (b) lead to
the two fluids intersecting when the device is running. This is corrected by (c) inserting
switches to separate the flows of fluids in the channels.

Because of these issues, methods to create a planar flow layer, one that introduces

no intersections, are necessary for the automation design of passive devices and desirable

for active devices. Here we take inspiration from planar embedding algorithms in graph
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theory, which are capable of taking an abstract netlist of nodes and edges between those

nodes laying them out in a planar fashion such that no two edges intersect and nodes

only intersect edges where designated. However, these algorithms are insufficient for direct

usage as a placement step. Planar embeddings treat vertices as points, whereas in mVLSI

technology, each component has two dimensions with area.

To address this limitation, we have augmented an existing planar embedding al-

gorithm with a number of post-placement processing steps that accounts for component

sizes. We also introduce a planar fluid channel routing algorithm that performs port as-

signment as a co-optimization while disallowing intersections. In this chapter, we evaluate

these algorithms on a set of planar benchmarks taken from mVLSI chips that have been

designed and laid out by hand, along with a small set of synthetic planar designs. Our ex-

periments demonstrate that our algorithm can obtain legal planar embeddings that adhere

to the design rules laid out by the Stanford Microfluidics Foundry [2]. In contrast, existing

algorithms that have been proposed for mVLSI placement and routing do not obtain pla-

nar layouts, and therefore yield solutions that violate foundry design rules and cannot be

fabricated.

2.1.1 Motivating Example

Figure 2.3a shows a microfluidic device that was designed manually and published in 2006

[61]. The approach advocated here is to start with a language-based specification of the de-

vice, e.g., using microfluidic hardware design language (MHDL) [39], which is then compiled

into a netlist, represented by a graph. To produce the layout, the first step is to compute a

13



(a) (b) (c) (d) (e)

Figure 2.3: (a) A programmable mVLSI device laid out manually [61]; (b) planar embedding
of a mVLSI netlist representation of the device where no components or routes overlap or
intersect, making it planar; (c) component expansion after planar embedding yields an
illegal layout, where several microvalves and I/O ports overlap with the expanded memory
and mixer components; (d) shifting the positions of expanded components yields a legal
layout, which is larger but similar to the original planar embedding; and (e) the legal layout
after routing and port recovery, with valid port-to-port connections.

planar embedding of the graph as shown in Figure 2.3b, which yields a planar layout with

single points representing the components. For this particular netlist, two components, a

rotary mixer and a memory, are considerably larger than I/Os and microvalves. Given this

layout, expanding the vertices to represent the actual dimensions of the components creates

an illegal layout, as shown in Figure 2.3c, due to multiple components and fluid channels

overlapping. To legalize this placement, many of the components must be moved to new

positions to accommodate the fully expanded mixer and memory, as shown in Figure 2.3d,

while trying to maintain as much of the original planar embedding as possible. The final

step is to identify the locations of I/O ports on the perimeters of the expanded components,

and to route fluid channels to the I/O ports, as opposed to the centroids of the components,

as shown, in Figure 2.3e. This process produces a legal, although not necessarily optimal,

flow layer design.
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2.2 Preliminaries

2.2.1 Graph Abstraction

The architecture of an mVLSI device can be viewed as a netlist of components and the

connections between them. Each component ci ∈ C in the netlist is defined as a tuple

ci = (Ti, Pi, xi, yi, wi, hi), where (xi, yi) is the coordinate for the upper left corner, wi and

hi are the width and height respectively, tj ∈ T corresponds to the component cj being

connected to ci, and Pi is the set of ports on the component. The port locations pj ∈ Pi

are the only locations on the component to which channels can connect. Non-rectangular

components, such as circular mixers, are approximated by rectangular components that

represent their bounding boxes.We use the (xi, yi) coordinate to represent the component

as a single point in the graph abstraction, G, during the placement phase of the physical

synthesis.

The netlist is represented by a graph G = (V,E), where vertex vi ∈ V represents

component ci ∈ C; and edge ei = (vi, vj) ∈ E represents a fluidic channel that connects

vi and vj . The primary difference between vertices and components is that vertices are

points while components are rectangles. Our approach to placement starts with vertices

and replaces them with components while preserving the desired properties of planar layout.

15



2.2.2 Planar Graphs

(a) (b)

Figure 2.4: The Kuratowski subgraphs (a) K5 and (b) K3,3.

A graph G is planar if it can be embedded in the plane, i.e., if it can be drawn

on the plane in such a manner that edges only cross at their endpoints. In the context

of mVLSI, this means that the graph can be placed and routed such that fluid routing

channels intersect only at components (represented, for now, as points). Every planar

graph also admits a straight line planar embedding in which the planar graph property is

preserved and all edges can be drawn as straight line segments.

Algorithmic planarity testing is typically based on an alternate, but equivalent

definition of planarity: graph G is planar if and only if it does not contain the specific

graphs K5 or K3,3, Figure 2.4, as minors, where a minor is a graph H that can be obtained

from G by deleting vertices and/or deleting or contracting edges [31].
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2.2.3 Implications for mVLSI Technology

A legal placement and routing solution for the flow layer of an mVLSI chip is essentially a

planar embedding that treats vertices as components with dimensions, rather than points.

In this context, a legal planar embedding means that components do not overlap one an-

other, routed fluid channels do not intersect components or other fluid channels. Our

approach is to take a planar graph embedding and convert it into a planar mVLSI layout.

2.3 Planar Placement

Methods that utilize a planar embedding as a starting point for their placement step have

generally come to be referred to as “Planar Placement” methods. While this term can refer

to a planar embedding paired with any of the expansion methods presented here, when we

reference the term “Planar Placement” later in this dissertation we are referring specifically

to the Baseline Expansion method described in Section 2.4.1 unless otherwise stated.

2.3.1 Straight Line Planar Embedding

The process starts with a graph G = (V,E) representing the netlist of components and

their connections; vertices do not yet have dimensions or area. The first step is to make

G fully connected, and check for planarity using the Boyer-Myrvold method [6]. If G is

planar, then it is transformed to be biconnected and maximally planar. The vertices vi ∈ V

are then ordered canonically and the Chrobak-Payne straight line embedding algorithm [8]
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Require: G := (V,E) an undirected graph
Ensure: G := (V,E) with each vi ∈ V placed
1: G := make connected(G)
2: if !boyer myrvold planarity test(G) then
3: exit()
4: end if
5: G := make biconnected planar(G)
6: G := make maximal planar(G)
7: X := planar canonical ordering(G)
8: G := chrobak payne straight line(G,X)

Figure 2.5: Pseudocode for the Chrobak-Payne straight line embedding from the Boost
library. The function calls shown here are Boost library calls.

is invoked to obtain a straight line planar embedding. Our implementation of these steps

uses the Boost Library; Figure 2.5 provides a high-level overview.

2.3.2 Component Expansion

The straight line embedding does not account for the dimensions of components. To create

a valid mVLSI embedding, we must apply a component expansion technique in order to

expand components and remove any overlap between them. Here we explore a number of

different techniques for component expansion which are compared in Section 2.8.3.

2.4 Component Expansion Methods

2.4.1 Baseline Expansion

The Baseline Expansion (BaseEx) method makes two passes over the set of components to

perform the expansion. The first pass sorts the components ci ∈ C by their xi coordinate in

ascending order, and expands each component by its width wi. All subsequent components

cj ∈ C, where j > i, are shifted in the positive x direction by wi; xj = xj + wi. The
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second pass of the expansion applies the same steps along on the y-axis, while expanding

and shifting components based on their heights, rather than their widths. This method of

expansion is relatively naive, however by moving every other component by the full width

and height of the component being expanded, we guarantee that there can be no overlap

between the components as shown in Figure 2.6.

(a) (b) (c)

(d) (e)

Figure 2.6: (a) The original graph, (b-e) expands the components one at a time to their
full size. The dotted line represents the straight line connection that has been invalidated
because of the expansion.

In practice, we have observed that component expansion rarely preserves the

straight line planar embedding that was computed previously. Figure 2.6 shows how the

component expansion invalidates the straight line planar embedding. Moreover, there is no

direct mechanism to assign fluid channels to component ports after expansion. Our solution

to these issues is to simultaneous compute a port assignment and a new set of fluid channel

routes that remains planar in the presence of expanded components.
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2.4.2 Shift Expansion

The Shift Expansion (ShiftEx) method tries to reduce the amount that each components

shifts the set of other components surrounding it. Let ci be the component currently

being expanded, and assume that C contains only those components that have not yet be

expanded. The basic premise is to shift the position of component cj ∈ C by an amount

that is proportional to the distance between cj and ci in the x- and y-directions, which

moves the component cj out of the expansion area of ci with a smaller shifting factor than

in [38]. To do this, shift expansion computes shift factors dx and dy which are applied to

each component cj , shifting it to position (xj + |xj − xi| × dx, yj + |yj − yi| × dy); the shift

may include an additional term, ∆buf , to add additional spacing if routability is a concern.

The position of component ci is represented by coordinate (xi, yi) at its upper left

corner; the length and width of ci after expansion are li and wi respectively. To compute

dx and dy (Figure 2.7a and Figure 2.7b respectively) the algorithm selects three not-yet-

expanded components, cf , cg, and ch, which are the points lying closest to ci in the respective

regions above, inside, and to the left of ci’s expanded component. The algorithm scales

length li and width wi by the differences in the x- and y- coordinates between ci and the

three selected points, yielding terms dx,f , dx,g, and dx,h in the x-direction, and dy,f , dy,g,

and dy,h in the y-direction; dx and dy are then selected as the respective maximum values

between the two sets of three terms and the components are sifted by the same factor x-

and y− directions (Figure 2.7c).
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(a)
(b)

(c)

Figure 2.7: Shifted Expansion example: (a)-(b) Computation of dx and dy; (c) each non-
expanded point is shifted based on dx, dy and its distance from the expanding component

2.4.3 Scaled Expansion

The Scaled Expansion (ScaleEx) expands upon ShiftEx and tries to find the smallest global

scale factor that can remove component overlap from the initial placement. The algorithm
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checks each possible integer scale factor in the x- and y-dimensions until a valid placement

(including any buffer spacing) is found.

Scaled expansion begins with integer scale factors of 2 in the x- and y-dimensions.

For component ci ∈ C, the algorithm multiplies xi by the x-dimension scaling factor, scalex

and yi by the y-dimension scaling factor, scaley. The algorithm then determines if any

two components overlap. If so, the algorithm reverts each component ci back to its initial

location, (xi, yi). If a valid placement is not found in either the x- or y-dimension, the

algorithm increments the scaling factor(s) and repeats the process until no overlap occurs.

2.5 DIagonal Component Expansion (DICE)

Here we introduce Diagonal Component Expansion (DICE), which improves upon the orig-

inal component expansion algorithm outlined in Section 2.3. As it’s name suggests, DICE

tends to place components on a diagonal axis from the upper left corner of the chip to the

lower right corner, yielding a compact, yet routable, layout.

2.5.1 Component Selection via Circular Propagation

DICE selects components one-by-one for expansion, expanding each point into a two-

dimensional component. Components are processed in Circular Propagation order, as shown

in Figure 2.8. The origin, (0, 0), is the upper left corner. Components are expanded in non-

decreasing order of their distance from the origin. Equidistant components lie on a circle

centered at the origin; as a tiebreaker, equidistant components are processed in increasing

order of their y-coordinates.
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Figure 2.8: Component selection by circular propagation. Components are selected in
increasing order of subscript.

2.5.2 Diagonal Expansion

Require: C := set of components in the system, ∆buf := minimum component spacing
Ensure: All ci ∈ C placed with no overlap
1: for all ci ∈ C do
2: C ← C \ {cj}
3: ∆x ← 0, ∆y ← 0
4: ci.expand component()
5: for all ci ∈ C do
6: if ci.inside left or above(cj) then
7: δx ← xi + li − xj
8: δy ← yi + wi − yj
9: if δx > ∆x then

10: ∆x ← δx
11: end if
12: if δy > ∆y then
13: ∆y ← δy
14: end if
15: end if
16: end for
17: for all ci ∈ C do
18: xi ← xi + ∆x + ∆buf

19: yi ← yi + ∆y + ∆buf

20: end for
21: end for

Figure 2.9: Pseudocode for the DICE method
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Diagonal Expansion (pseudocode in Figure 2.9) tries to minimize the necessary

increase in chip area used during the component expansion step of a planar embedding-

based placement method by shifting components across the device diagonal.

Let cj denote the component selected for expansion. DICE calculates a shift factor

in the x- and y-directions for each component ci in the regions inside, above, or to the left of

cj ’s expanded two-dimensional area. The shift factor in the x-direction, δx = xj + lj −xi, is

the distance between ci’s x-coordinate and cj ’s right edge (Figure 2.10a); the shift factor in

the y-direction, δy = yj +wj − yi, is the distance between ci’s y-coordinate and cj ’s bottom

(a)
(b)

(c) (d)

Figure 2.10: DICE example: (a)-(c) Computation of ∆x and ∆y; (d) each non-expanded
point is shifted accordingly.
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edge (Figure 2.10b). DICE takes the maximum calculated δx and δy as the shift factors in

the x and y directions, ∆x and ∆y (Figure 2.10c). The last step is to reposition components

to remove overlap. Each remaining component in ck ∈ C, k > j is shifted to the right by ∆x

and downwards by ∆y (Figure 2.10d). If routability is a concern, a constant ∆buf can be

added to ∆x and ∆y to add extra buffer space to assist the fluid channel router. The new

coordinate for component ci is (xi + ∆x + ∆buf , yi + ∆y + ∆buf ). These shifts will spread

the components along the device diagonal, leaving the majority of the component’s ports

unblocked by other components and free for use in routing.

2.6 Network-flow Based Routing

2.6.1 Routing Grid

The next step is to instantiate a routing grid R = (U,F ), where U is a set of grid

points, and F is a set of edges representing potential channel routes between adjacent grid

points. For each component ci ∈ C a vertex ui for the ports ph ∈ Pi is instantiated and

added to U . A grid of vertices is then instantiated in the empty space between components.

Pseudocode is presented in Figure 2.11. In lines 17 and 20, edges that represent potential

routing channel segments are added to F by instantiating a bidirectional edge fi with a

capacity of 1 between ui ∈ U and uj ∈ U if and only if (uj .x−ui.x == 1)⊕(uj .y−ui.y == 1).

The network flow model ensures that no edge is used more than once. It is also

necessary to ensure that no vertices are used more than once in routing. This is accomplished

by splitting each vertex ui ∈ U into u′i and u′′i and adding a directed edge fi = (u′i, u
′′
i ) to
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Require: C := set of all components in the system
Require: max x,max y := the maximum x and y values in the plane
Ensure: R := (U,F ) grid of vertices
1: for all ci ∈ C do
2: for all ph ∈ ci do
3: U ← U ∪ ui = (ph.x, pi.y)
4: end for
5: end for
6: for all 0 < x < max x do
7: for all 0 < y < max y do
8: if !within component(x, y) then
9: U ← U ∪ ui = (x, y)

10: end if
11: end for
12: end for
13: for all 0 < x < max x do
14: for all 0 < y < max y do
15: ui ← (x, y)
16: F ← F ∪ get east neighbor(ui)
17: F ← F ∪ get south neighbor(ui)
18: end for
19: end for

Figure 2.11: Pseudocode for the grid creation algorithm used in Network-flow based routing

F . All incoming edges to ui are now forced through u′i, and all outgoing edges from ui leave

through u′′i . Thus, any fluid channel that routes through ui, must go through the edge fi,

and the capacity constraint on edges ensures that there can be at most one such channel

using that vertex.

2.6.2 Network Flow Model

Once the grid R = (U,F ) has been constructed, the next step is to route channels between

the components. This is accomplished using a network flow routing method based on Ref.

[69]. Components are processed in-order, and unrouted channels that are incident on each

component are routed together using this model. The special nodes super sources, super
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Require: A grid R = (U,F ) representing all available routing space
Ensure: A network flow preparation from ci ∈ C to all tj ∈ Ti
1: U ← U ∪ usupersink
2: for all tj ∈ Ti do
3: U ← U ∪ usinkgroup ti

4: F ← F ∪ fj = (usinkgroup ti , usupersink, cap = 1, cost = 1)
5: for all pk ∈ Pj do
6: U ← U ∪ upk
7: F ← F ∪ fpk = (usinkgroup tj , upk , cap = 1, cost = 0)
8: end for
9: end for

10: U ← U ∪ usupersource
11: for all pj ∈ Pi do
12: U ← U ∪ upj
13: F ← F ∪ fpj = (usupersource, upj , cap = 1, cost = 0)
14: end for

Figure 2.12: Pseudocode for adding route enforcement nodes for the Network-flow based
routing method

sinks and sink groups; are added to the routing problem which enables the network flow

to simultaneously perform port assignment as well. Figure 2.12 shows the pseudocode for

adding preparing the routing grid for network flow routing and Figure 2.13 a visualization

of the same process.

For routing a component ci ∈ C set of routes from ci to all tj ∈ Ti is found by

computing the maximum flow from usupersource to usupersink, followed by a path reclamation

step adapted from Lee’s algorithm [33]. The paths computed by the network flow algorithm

include port assignment at the source and sinks, and may present multiple valid paths. The

purpose of the trace back, as shown in Figure 2.14 is to compute the shortest valid path

from the port pk at each sink ti to its corresponding port pj at the source component ci, as

determined by the solution to the network flow problem. The super source, super sink, and
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Figure 2.13: The addition of the super source, super sink, and sink group vertices with
accompanying edges allows the use of minimum cost maximal flow algorithms to do both
port selection and channel routing. Note that a sink group is connected to every port of a
particular sink

sink groups along with their accompanying edges are then removed from the routing grid,

and the process repeats for each component in the system, taking care not to route fluid

channels that have already been routed.

One problem that may occur is that a route between components ci and cj may

abut a third component, ck, potentially blocking one of its ports. To avoid this, we create

buffer zones of a few vertices around every component that is not currently being routed.

The vertices within the buffer zone are removed from the routing grid ensuring that the

28



Figure 2.14: The maximum flow minimum cost network flow algorithm numbers the nodes
as they are discovered, ending when it reaches an unused port. These numbers are then
used to trace back the path of the channel route.

ports are not blocked, and only added back to the grid temporarily while routing to or from

the respective component.

As fluid channels are routed one-by-one, the routing grid becomes fractured, lead-

ing to failures due to routed channel intersections. If a routing failure occurs, the old routes

are removed and the queue of components is reordered so that components whose routes

have failed in the past are now routed first. We limit the number of times that the com-

ponent queue may be reordered; if this limit is exceeded, we declare a routing failure. No

routing failures were observed in our experiments; however, they may still occur in practice.

In the presence of failure, the mVLSI flow layer architecture must be redesigned.
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2.6.3 Diagonally-constrained Channel Routing

(a) (b)

Figure 2.15: An mVLSI netlist laid out using DICE with (a) unconstrained routing; and
(b) diagonally constrained routing. Only routes that cross the diagonal boundaries are
depicted.

Figure 2.15a shows a legal fluid channel routing solution following DICE; only

the routes that cross the boundary of the diagonal envelope are shown. These routes are

minimum length under the assumption that only horizontal and vertical directions may be

used; however, they unnecessarily extend the chip area.

Diagonally-constrained routing re-routes the fluid routing channels that cross l1

and l2. As shown in Figure 2.15b, the new routes run parallel to l1 and l2 while obeying

spacing rules. If diagonal routes are not allowed, which they generally are in most microflu-

idic fabrication techniques, these routes can be approximated using a zig-zag pattern. The

expansion in chip area depends on the number of re-routed channels, channel width, and

foundry-imposed spacing rules between channels.

Since the mVLSI layout is planar, no edges that cross the diagonal chip boundaries

overlap, and each crossing edge crosses twice. It suffices to order the crossing edges by the
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positions of their crossing points along the chip boundary; they can be routed optimally

using the Left Edge Algorithm [21]. From there, the resulting mVLSI chip can be cut and

rotated. The high degree of routability provided by diagonal expansion, coupled with its

ability to re-route channels along the diagonal axis, reduces the space needed to fully place

and route a chip. This tends to improve area utilization and decreases reduce flow channel

route length.

However, it is possible for a placement to be generated that cannot yield a valid

channel routing; either while routing the flow layer, or when routing the control layer. When

either the flow or control layer fails to route then the current partial route is removed, the

constraints used to generate the original placement are relaxed, and the netlist is re-placed.

This process can then repeat as necessary until the flow and control layers are validly

routed.

2.7 mVLSI Placement Metrics

Although mVLSI technology and its underlying physical design processes share many princi-

ple similarities with semiconductor VLSI, there are also important differences which cannot

and should not be ignored. Prior work has mistakenly evaluated the quality of mVLSI

layouts using semiconductor metrics such as area and wirelength (fluid channel length) as

proxies for good quality layouts. Although we report these metrics in the next section for

the purpose of enabling direct comparison with prior work, we do so with reservations.

Without considering the larger context, these metrics are fundamentally flawed, as they

do not account for the factors that influence performance (bioassay execution time) or the
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differences between semiconductor and mVLSI fabrication processes, economies of scale,

etc. We dive deeper into these topics in Chapter 6.

2.7.1 Area

In semiconductor VLSI, chip area correlates directly to cost (number of chips per wafer)

and indirectly to performance (reducing area may, in some cases, reduce the lengths of the

longest wires routed on-chip). While there are a number of different methods for fabricat-

ing microfluidic devices, most lack the economies of scale that are present in semiconductor

manufacturing. In an academic setting, the most labor-intensive steps are alignment, hole

punching, and testing, which are often performed by PhD students or postdocs. If a fixed

number of chips (say 100) need to be fabricated and tested to produce statistically robust

results for a publication, then the cost driver is not the number of chips per wafer but the

manual labor involved. Thus, area minimization (within reason) is far less important than

producing a functionally correct layout. These issues have also hampered industrial adop-

tion of mVLSI technology; industrial preference is strongly biased toward passive devices

(no valving) using fabrication processes such as injection molding or glass etching. The pur-

pose of this statement is not to disparage academic efforts on mVLSI design automation;

it is simply to place the work in its appropriate context.

The number of mVLSI chips per mold depends on wafer size (mold size) and chip

size. For large and complex mVLSI chips, the number of chips per mold may be relatively

small (e.g., 10 or less); these are, of course, the most challenging chips to lay out algorithmi-

cally. For a given chip design, a significant reduction in area through more effective physical

design could, in principle, free up enough space to add another chip to the mold; on the
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other hand, incremental reductions in area that do not increase the number of chips per

mold will simply reallocate area from the device to the extra material that is removed and

discarded. As placement algorithms become increasingly effective, incremental improve-

ments in the 1− 2% range (which would certainly be valuable in semiconductor VLSI) are

likely to have minimal impact, outside of rare corner cases. Thus, it is fair to question the

utility and practicality of long-running and optimal and near-optimal algorithms such as

those based on integer linear programming (ILP) [59] or boolean satisfiability (SAT) solving

[17].

2.7.2 Routing Channel Length

In semiconductor VLSI, channel length can directly affect clock frequency, power dissipation

and signal integrity; these are non-issues in mVLSI. mVLSI chips are not aggressively

clocked; they do not consume power directly, as fluid is driven by external pressure sources,

which are typically plentiful in biological laboratories; and fluid transport integrity issues

are minimized due to pumping. This issue is much more challenging and prevalent for

passive device designs, which do not utilize pumps for the movement of fluid and where

reductions in channel length may be more useful.

Reducing fluid channel length can reduce fluid transport times; however, in mi-

crofluidics, bioassay execution time is typically dominated by biological phenomena (e.g.,

culturing cells), and in any given scenario, the biological phenomena may or may not be

dominant when considering the entire end-to-end workflow of the laboratory. Thus, the

performance motive to shave a few seconds from a process that may take hours or days is
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questionable at best. Any claim that reducing fluid channel length is integral to mVLSI

chip performance is spurious.

There is, however, one benefit that can be accrued by reducing fluid channel

lengths. The key issue is that fluid is transferred in continuous flows, not discrete packets.

Thus, reducing fluid channel lengths can reduce the total volume of fluid required to per-

form a bioassay. This can lead to tangible cost savings when dealing with limited sample

volumes and expensive reagents. Additionally, shorter channels generate less resistance and

therefore require less pressure to drive. While this is rarely a problem for active devices, it

can be a limiting factor in passive devices that may be driven with head pressure.

2.8 Experimental Results

DICE was implemented in C++ using a unitless grid, which decouples the layout and

design rule checking processes from the manufacturing resolution of any one specific mVLSI

technology [42]. From the layout, we can easily count the number of switches inserted (if

applicable), measure area (and/or area utilization) and (gridless/normalized) fluid channel

length, and convert the resulting layout to a technology-specific grid. From there, we can

lay out one or more instances of an mVLSI chip (or a heterogeneous set of chips) on a

silicon wafer/mold of a known size. In all cases, the Network-flow based router introduced

in Chapter 2 is used to perform the routing step.
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2.8.1 Experimental Comparison

We compare six different mVLSI layout algorithms, including two variants of DICE. We

briefly summarize these methods here.

• Simulated Annealing (SA) refers to the simulated annealing algorithm proposed

by McDaniel et al. [41] and introduced in Chapter 2, which uses Hadlock’s Algorithm

for channel routing. SA cannot guarantee a planar layout for planar netlists; all other

methods included here provide this guarantee.

• Baseline Expansion (BaseEx) refers to the Baseline component expansion method

(Section 2.4.1).

• Shift Expansion (ShiftEx) replaces the BaseEx component expansion step with

Shift Expansion (Section 2.4.2).

• Scaled Expansion (ScaleEx) replaces the BaseEx component expansion step with

Scaled Expansion (Section 2.4.3).

• Diagonal Component Expansion Unconstrained (DICE-U) replaces the BaseEx

component expansion step with DICE (Section 2.6.3), implemented with unconstrained

fluid channel routing (Figure 2.15a).

• Diagonal Component Expansion (DICE), implemented with diagonally-constrained

fluid channel (Figure 2.15b).
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2.8.2 Benchmarks

We make our comparison using netlists for four real-world planar mVLSI chips that have

been designed, fabricated, and evaluated in literature, as well as five netlists obtained by

synthesizing synthetic benchmarks. The real-world netlists are as follows:

• aquaflex-3b & aquaflex-5a: proprietary mVLSI device netlists provided by Mi-

crofluidic Innovations, LLC.

• hiv: a multi-layer polydimethylsiloxane (PDMS) chip that performs a bead-based

HIV1 p24 sandwich immunoassay [34].

• mgg: a molecular gradients generator that can generate five concentration levels of a

two-sample mixture [52].

The five synthetic benchmarks were generated by compiling a set of publicly

available DAG specifications through an established mVLSI architectural synthesis flow

[45, 39, 22]. Additional information for these benchmarks are presented in Section 6.3.2

and Table 6.2. Experiments were run using a buffer of 5 grid spaces for each component.

Legal planar mVLSI embeddings were obtained for all component expansion algorithms.

2.8.3 Results and Analysis

For each component expansion heuristic and benchmark, we report the area utilization

(Figure 2.16) the ratio of component area to total chip area expressed as a percentage)

and the average routing channel length (Figure 2.17) and discuss channel intersections.
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Computation time of the framework is dominated by the routing and port assignment

phase; varying the component expansion heuristic made a negligible impact.

Channel Intersections

As was stated in Chapter 2, channel intersections necessitate the introduction switches,

which in turn, require additional control lines; these, in turn, increase chip area, and may

lead to a design rule violation of the number of switches in the netlist exceeds found-specific

limits.

The heuristics based on planar placement with component expansion, as expected,

did not introduce any new intersections, given that the input netlists were planar; SA, in

contrast, introduced numerous unnecessary channel intersections to all netlists (¿10 inter-

sections in all cases). Consequently, few, if any, of the netlists produced by SA could be

fabricated at the Stanford Microfluidics Foundry [2], which limits the number of I/O hole

punches to 35; the total number of punches would be the sum of the netlist’s initial flu-

idic I/O and control requirement, plus two additional control lines per intersection. These

results demonstrate the need to properly account for planar embedding during layout.

Area Utilization

Figure 2.16 reports the area utilization (i.e., the percentage of total chip area dedicated to

components and channels). DICE achieved the highest area utilization for each benchmark,

and the gap between DICEs result and the best result of the remaining heuristics was

significant in all cases. On average, DICE improves area utilization by a factor of 8.90x
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compared to BaseEx and 2.64x compared to ScaleEx. SA does not perform particular well

in this comparison, except for the Synthetic-5 benchmark, where it achieves the second

highest area utilization; however, this result is built on top of 207 channel intersections

(necessitating 414 control lines), which cannot be fabricated.

Figure 2.15 illustrates the reason that DICE improves area utilization compared

to DICE-U. DICE-U performs routing on a square chip with a relatively long and densely

packed (in terms of components) diagonal; it finds minimum-Manhattan distance fluid chan-

nel routes, which mostly follow simple X-Y and Y-X routing patterns with one bend. In

contrast, DICEs diagonally constrained routing tends to reduce overall chip area. ScaleEx,

in contrast, tends to generate chips with shorter diagonals than DICE-U, leading to smaller

rectangular area and higher area utilization; however, this inhibits the effectiveness of

Figure 2.16: Comparison of area utilization between SA, BaseEx, ShiftEx, ScaleEx, DICE-
U, and DICE
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diagonally-constrained routing. These observations explain why DICE achieves the highest

area utilization reported in Figure 2.15.

Average Channel Length

Figure 2.17: Comparison of the average channel length between SA, BaseEx, ShiftEx,
ScaleEx, DICE-U, and DICE

For all benchmarks in Figure 2.17, either ScaleEx or DICE achieve the shortest

average fluid routing channel length, and in most cases, the disparity between the two

is quite small. These results indicate that the initial planar embedding solution is quite

effective in terms of limiting the fluid channel length, and ScaleEx retains those benefits

by maintaining the same relative position of components. DICE, in contrast, repositions

components in a manner that primarily improves chip area while retaining the channel
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length benefits of the planar embedding. On average, DICE improves average fluid routing

channel length by 47.4% compared to BaseEx and 9.62% compared to ScaleEx.

Runtime

Figure 2.18: Comparison of runtimes between SA, BaseEx, ShiftEx, ScaleEx, DICE-U, and
DICE

Figure 2.18 reports the runtimes of the planar layout algorithms. The runtime

of SA, it should be noted, depends on parameter configurations, and is thus variable. We

used the same SA parameter settings as in Ref. [41], which coincidentally had SA running

approximately as fast as the planar embedding methods that we evaluated here. It is

also worth noting that SA uses a router based on Hadlock’s Algorithm, as opposed to the

network flow-based router used by the planar embedding heuristics [69]. Better results, in
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principle, could be obtained by letting SA run longer; that said, it seems unlikely that SA

would achieve planar layouts within a reasonable runtime.

The remaining placers typically complete in milliseconds; the router dominates

the total runtime. For a given benchmark, variations in runtime among the different layout

heuristics is determined primarily on how quickly the router can obtain a valid solution.

Future work may attempt to reduce the runtime by exploring more efficient routing algo-

rithms.

2.8.4 Case Study: aquaflex-3b

As a case study, Figure 2.19 shows the flow layers of the aquaflex-3b benchmark using all

six placement and routing heuristics. SA (Figure 2.19a) yields a non-planar layout with

poor area utilization; in principle, adjusting the parameters to provide a longer runtime

could yield better results, however, it is unlikely to guarantee a planar layout that could be

fabricated.

BaseEx (Figure 2.19b) achieves a planar layout, which can be fabricated, but with

poor area utilization. Each time BaseEx expands a new component, it shifts the positions of

all components that have not yet been expanded by the expansion amount in the horizontal

and vertical directions. For example, consider two points on a common vertical axis that

would not overlap if expanded. When the first point is expanded, the second will be shifted

in both directions, arguably unnecessarily. This ensures that any horizontal or vertical

line cutting through the design will intersect at most one component. Although BaseEx

preserves planarity, it does so at the expense of area utilization.
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(a) (b) (c)

(d) (e) (f)

Figure 2.19: Visual comparisons of layouts for the AquaFlex-3b device using (a) SA, (b)
BaseEx, (c) ShiftEx, (d) ScaleEx, (e) DICE-U, and (f) DICE

ShiftEx (Figure 2.19c) and ScaleEx (Figure 2.19d) generate similar layouts, with

the latter achieving slightly better area utilization. The key to the improvement is to

scale the length of the horizontal and vertical shifts by the distance of the component being

expanded to its nearest neighbors, which yields shorter shift distances than BaseEx. ShiftEx

retains a slight advantage over ScaleEx because it computes a shift distance independently

for each not-yet-expanded component, while ScaleEx computes one scale factor that is

applied to shift all not-yet-expanded components.
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DICE-U (Figure 2.19e) achieves a tighter layout by shifting components in a man-

ner that tends to lay them out along a diagonal axis. Although components are clustered

along the diagonal, the length of the diagonal and total chip area is larger than the results

produced by ShiftEx and ScaleEx, and may result in long fluid routing channels whose

length is equal to the Manhattan Distance between their incidental components. DICE (

Figure 2.19f), which allows for diagonal routing parallel the diagonal axis, eliminates these

inefficiencies, once the chip is cut out and rotated.

SA (Figure 2.19a) does not achieve a planar layout because the Hadlocks-based

router that it utilizes does not explicitly try and avoid intersections. However, because this

method does not try and improve upon a initial placement that is planar or close to planar,

even when it is paired with a router that disallows intersections explicitly it is unlikely

to generate a layout that can be routed. The implementation of SA used here is based

directly from the original publication [41], and uses the values suggested for temperature and

movements per degree. This implementation is highly dependent on the initial placement

because it relegates inputs and outputs to the edges of the device with no mechanism to

move move those edges closer to the center. While we present a standard implementation

here, in Chapter 3 we implement SA with additional mechanics to overcome these issues

and increase the temperature and movements per degree while still allowing it to introduce

an infinite number of intersections. This produces an algorithm that can be thought of

as near-optimal, since it is allowed to concentrate on minimizing route lengths and area

without generating a valid layout. Comparisons to the BaseEx and DICE methods are

presented in Chapter 3 for completeness.
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2.9 Conclusion

The Planar Placement algorithms presented here are among the first attempts to automat-

ically generate a flow-layer without inserting any additional intersections, allowing them to

be used for both active and passive devices. While these methods do not guarantee that

such a design can be found, the empirical analysis in this chapter, as well as more extensive

benchmarking described later in Chapter 6, shows that they perform well in scale and for a

wide variety of netlist topologies. The Planar Placement algorithms work very well in the

general case, however we have identified many netlist topologies for which they exhibit high

failure rates, and others for which dramatic improvements can easily be identified. We fur-

ther explore the effects of netlist topology on these methods in Chapter 6 and in Chapter 3

we introduce new microfluidic physical design techniques that are tied to common netlist

topologies, and leverage this insight to drive design improvement.
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Chapter 3

Directed Placement for mVLSI

Devices

3.1 Introduction

After the development of Planar Placement and Network-flow based routing, a number of

new methods were introduced which also focused on created a planar layout that avoided

intersections. These new methods were primarily developed using integer linear program-

ming (ILP) [59] and boolean satisfiability (SAT) [17] techniques to yield a (near-) optimal

solution for both the flow and control layers. While these techniques yield layouts with

relatively small device area and channel lengths, both ILP and SAT methods have difficulty

scaling to large problem sizes, meaning that as microfluidic very-large-scale integration

(mVLSI) devices scale up to larger numbers of components and connections, these methods

are unlikely to scale.
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Rather than creating an ILP or SAT solution to this problem, we developed a new

method based on observations of how domain experts were creating their device designs.

After reviewing devices from literature and discussing techniques with domain experts, the

realization was made that most devices are laid out linearly in a stepwise fashion. While

this is not a universal rule, designs primarily have fluidic inputs on one end and fluidic

outputs on the other with control I/O being placed around the perimeter (often near the

top and bottom of the device). Between the inputs and outputs, a number of process steps

are laid out in a linear manner. Through this observation, we created a method that utilizes

input and output ports as “beginning” and “ending” points, respectively. The netlist is then

represented as a graph and traversed from the beginning to the end, with each component’s

distance from the beginning representing which process step it belongs to and where it will

be laid out linearly from the input ports.

3.2 Preliminaries

An mVLSI netlist M = (C,E) consists of a set of components, C, and a set of edges, E,

between them. A component ci ∈ C is a tuple ci = (Ti, Pi, xi, yi, hi, wi) where Ti is the set of

neighboring components to ci, Pi is the set of ci’s ports, (xi, yi) is the coordinate location of

the upper left corner of ci, and hi and wi are the height and width of ci, respectively. A port

on a component ci ∈ C, pi,j ∈ Pi is located at (ai,j , bi,j), a point on the perimeter of ci; ci is

called a terminal component if |Ti| = 1. An edge, ei ∈ E, is a pair of components ei = (ci, cj)

which represents a fluidic connection between them. An optional set of components I ⊂ C

can also be provided that represents the inputs of the microfluidic device.
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A lane Li is defined to be an ordered set of components that align vertically. These

lanes are numbered and ordered L0, L1, ...Ln, where L0 is the leftmost lane and Ln is the

right most lane. The first component in the set c0 ∈ L is at the top of the lane and the

last component in the set c|L|−1 ∈ L is at the bottom of the lane. Adjacent lanes may be

separated by an optional buffer space ∆ to improve routability and/or to satisfy fabrication

design rules relating to spacing.

3.3 Placement

3.3.1 Preprocessing

Directed Placement uses a microfulidic netlist as an input, but does not require a microflu-

idic application in order to perform placement and routing. Because no application is given

as input no optimizations can be made to the netlist, since it would be impossible to de-

termine if a change to the netlist would render the application unable to map. Previous

methods for generating and optimizing netlists based on applications [45] have been pro-

posed, and methods to optimize the netlist before placement and routing are compatible

with the Directed Placement method. For these reasons architectural optimization is out of

scope for this work, and the assumption is made that all components and connections are

required to create a valid layout.

Directed Placement, like Planar Placement, requires that the input device archi-

tecture is planar as this is a requirement for the manufacturing of the physical device.

Planarity in a graph can be determined by the absence of the Kuratowski subgraphs K5
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Figure 3.1: (a) The input graph is converted to such that (b) Type-II nodes are introduced
for all components with an edge degree larger than 2 and connected to the original Type-
I nodes. (c-f) Pairs of Type-I nodes that are connected through an edges are iteratively
combined until no more pairs exist. In the case of the K5 this results in a single Type-I
node that will be replaced with a five way switch.
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and K3,3 (illustrated in Figure 2.4) as proven in Kuratowski’s theorem [31]. If a non-planar

graph is given as input for Directed Placement, then the planarization method introduced

by Tseng et al. [59] can be used to pre-process the non-planar input into a planar one for

placement, routing, and fabrication. This technique was not introduced in Chapter 2, as it

was developed after those techniques were introduced, however it is non the less compatible

with all forms of Planar Placement. A short description of this method follows here for

completeness.

First, a new graph of the system is constructed with two different node types. The

first is a Type-I node, which represents a switch that will be inserted into the system and can

have an unconstrained number of edges. The second is a Type-II node, which represents

any component within the system and will be constrained to having a maximum of two

edges. The original input architecture is then processed with Type-II nodes representing

each component, and if a given component has more than two edges a Type-I node is

introduced with all the components original edges routing to the new Type-I node along

with an additional edge between the Type-I node and the Type-II node representing the

component. After the entire input has been processed in this way, the resulting graph is

then iteratively reduced by combining any two Type-I nodes that connect through an edge.

When all possible reductions of this type have been completed, then every Type-I node left

in the system is replaced with a switch component capable of handling the number of edges

associated with that node and the input graph has been planarized, and each Type-II node

is replaced with the component it represents. A short example showing the planarization

process of a K5 subgraph can be seen in Section 3.3.1.
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It should be noted that this method requires the insertion of switches into the

system which require valves to operate, and can therefore only be used on active devices.

Passive devices which are non-planar cannot be fabricated onto a single layer. Because the

majority of microfluidic devices are being developed by hand with a single flow layer, they

are naturally planar in nature. Should non-planar mVLSI netlists become prevalent (e.g.,

due to widespread adoption of mVLSI architecture synthesis tools [45, 39], none of which

guarantee planar netlists), then this planarization technique will allow for a bridge between

non-planar netlists and the current generation of placement and routing algorithms which

require a planar input. While this technique does not guarantee that a small enough number

of switches will be introduced to be feasibly fabricated, it does guarantee that any netlist

can be minimally placed using these methods.

3.3.2 Initial Lane Assignment

As an optional first step, all input components ci ∈ I are added to the first lane L0.

Many microfluidic devices naturally place all of the inputs on one side, and, without loss

of generality, during device operation, the fluid tends to flow from left to right. If I is not

specified, the first step is to add the component cj ∈ C with the smallest |Tj | to L0, in the

case of ties the component with the fewest ports |Pj | is chosen, if there is still a tie choose

randomly from the candidates.

A queue Q is created to facilitate a breadth-first traversal of the components. Ini-

tially, all components cj ∈ L0 are enqueued. The initial lane assignment heuristic proceeds

until Q is empty.
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(a) (b)

(c) (d)

Figure 3.2: (a) The mVLSI input netlist is represented as an abstract graph, with compo-
nents as nodes and connections as edges. In this example A is the only input. (b) Using
a breadth-first traversal the nodes are assigned to an initial lane based on their traversal
depth. Here the different subgroups are circled for illustration. Note that I is a terminal
component so it is added to the same lane as its parent E. (c) Node B is moved to the
center since it’s subtree {F,G,H} is the largest. (d) In L2, nodes F and H are added first
because they are processed from their last parent in the previous lane B. G is then added
because it’s last parent is D, which leads to a swap of G and H. This provides an abstract
lane ordering but does not represent an actual placement

The first step is to dequeue a new component, cq. Each neighbor cr ∈ Tq that has

not yet been assigned to a lane is enqueued; cr is also assigned to lane Lf+1 where Lf is

the lane to which cq is assigned.

51



If cr is a terminal component, then it is added to Lf to allow for a short connection

(cq, cr); we enforce the constraint that both components are placed adjacent to one another

within the lane. In order to minimize the lane width and simplify the later routing, a

maximum of two terminal components connected to cq may be placed in lane Lf and all

additional terminal components connected to cq are added to lane Lf+1.

If an mVLSI netlist consists of multiple connected components, then some compo-

nents will not be assigned to a lane once Q is empty. This is unlikely to occur when placing

and routing a single microfluidic device but may occur when performing these steps for a

number of different devices on a single mask in order to increase production yields for mass

manufacturing. If this occurs, the unassigned component cj with the smallest degree |Tj |

is inserted into Q and initial lane assignment proceeds as normal. The process terminates

when all components have been assigned a lane.

Figure 3.2a depicts an mVLSI netlist, and Figure 3.2b shows the initial lane as-

signment after the breadth-first search completes. In Figure 3.2b, components are grouped

into subsets, as will be discussed in the next section.

3.3.3 Lane Ordering Optimization

Once each component has been assigned to a lane, those components need to be ordered

within the lane to reduce route lengths. This is done by segmenting the components within

a lane Li into some number of ordered subsets Li,0, Li,1, ..., Li,mi such that now the lane

Li is an ordered set of ordered component subsets, the union of which contains all the

components in the original lane Li = Li,0∪Li,1∪ ...∪Li,mi . These ordered subsets continue

to form a vertical arrangement of components, with the subset Li,0 being at the top of
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the lane and the subset Li,mi being at the bottom. Within these ordered subsets the first

component c0 ∈ Li,0 will be placed at the top and the last component c|Li,0|−1 ∈ Li,0 will

be placed at the bottom before the next subset Li,1 begins to be placed within the lane.

There are three stages to ordering the components within their lane:

1. Subset Assignment: Components within a lane Li are assigned to a subset Li,j

based on their parents in the preceding lane

2. Subtree Ordering: Components within a lane subset Li,j are ordered based on their

subtree in successive lanes

3. Parental Reordering: Components within a lane subset Li,j are re-ordered based

on the position of their parent components in the previous lane

Each step processes all components in all lanes before the next step begins.

Subset Assignment

In the first step, each lane Li starting with L0 is partitioned into subsets Li,0, Li,1, ..., Li,mi .

In the first lane, L0, each component cj ∈ Li is partitioned into its own subset such that

m = |L0|. For each subsequent lane Li, i > 0, the components cj ∈ Li are partitioned into

subsets based on their connections to components in the previous lane Li−1. All cj ∈ Li

connected to the same ck ∈ Li−1 are partitioned into the same subset Li,s, where s is the

lowest unused subset index in the lane Li. If cj connects to multiple components ck in Li−1,

it is partitioned into the first possible subset. Figure 3.2b depicts the components in three

lanes partitioned into subsets.
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Subtree Ordering

The second step begins after all components cj ∈ C have been partitioned into some subset

Li,s. During this step, all lanes Li and subsets within lanes Li,j are traversed via indices

0 ≤ i ≤ |L| − 1 and 0 ≤ j ≤ mi; recall that mi is the number of subsets in lane Li.

First, each component ck ∈ Li,j is sorted based on the length of its subtree in

subsequent lanes Lp, p > i. The subtree length is determined using a breadth-first traversal

starting from ck. If the search is presently processing component cj in lane Lb, then it is

not allowed to expand to any components belonging to lane La where a < b. The number of

components traversed is then used to sort the components within the lane subset, with the

component with the largest subtree in Li,j being at the center of the subset and subsequent

components being ordered away from the center. This is illustrated in Figure 3.2c.

Parental Reordering

Once the components have been ordered based on their subtree size, the third step is to

re-order them to remove edge crossings between lanes. When the components with large

subtrees are moved toward the center in the previous step, doing so can increase the number

of intersections between lanes. Parent reordering tries to re-order the components based

on their parents’ locations to remove these intersections. A new lane Lt is created to

temporarily store the new ordering of the components during the re-ordering. The lanes

Li,j are iterated in reverse order from i = |L|−1 to 1 and component in forward order j = 0

to mi. For each component ck ∈ Li,j from the top of the subset to the bottom, the algorithm

searches through ck’s neighbors in the previous lane Li−1 and adds them to Lt based on
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their ordering in Li−1. If a component in Li−1 is a neighbor of multiple components in Li,

then it is added to Lt when processing its last neighbor in Li. Any components in Li−1

not connected to a component in Li are then added to Lt, and the previous lane Li−1 is

updated to Li−1 = Lt. This is illustrated in Figure 3.2d.

The same steps are performed in the opposite direction, iterating the lanes from

i = 0 to |L| − 2, and j = 0 to mi. In this iteration, for all components ck ∈ Li,j from the

top of the subset to the bottom we will identify neighbors in the next lane Li+1 and add

these components to Lt, with the rest of the process continuing as previously described,

and updating Li+1 to the ordering of Lt.

3.3.4 Component Rotation & Port Assignment

The previous ordering steps mean that components are in optimized locations relative to

their neighbors, but it does not mean that the ports of those components are located in a

good position for routing. This necessitates a component rotation step before components

can be given a location and routing can be performed.

The source and sink of a connection in input architecture can be either port as-

signed or port unassigned. When a connection’s source and/or sink is port assigned, then

it is required to route to a specific port on the component it is connected to. This occurs

because the component that it routes to is functionally dependent on fluids flowing into its

input ports and out of its output ports. An example of this would be a rotary mixer, which

requires fluids to flow in through a certain port in order for the valve actuation sequence

to correctly input and mix the two fluids. When a connection’s source and/or sink is port
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(a) (b)

(c) (d)

Figure 3.3: (a) The mVLSI device after placement. (b) The components are rotated based
on a weight function so that the number of ports facing connected components is maximized,
causing U , W , X, and Y to rotate. (c-d) Port assignment is performed on component V ,
which performs a radar sweep to determine processing order. In this case, the Manhattan
distance used for port assignment matches the radar sweep ordering.

unassigned, it does not have a specific port on its source/sink component that it needs to

route to and can be routed to any port that is not already port assigned. This usually

occurs on components that can function in any direction equally well, such as cameras and

detection mechanisms.

In order to account for this, for each component ci ∈ C a weight is calculated for

the component with rotations of 0 90 180 and 270 which are the only orientations that are

allowed because of the grid based routing that is performed. For each orientation the weight

is calculated to be the sum of the number of port assigned connections with their matching

connected component in that same direction and the sum of the lesser of the number of
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unassigned ports or the number of connected port unassigned components. This value is

calculated for each side of the component and its corresponding direction.

That is, for a component located at Li,j the weight in the east direction would be

the number of assigned ports on the east side of the components who’s connected compo-

nents exist in a lane east of the component (Lk, k > i) summed with the lesser of the number

of unassigned ports on the east side of the component or the number of port unassigned

connected components in a lane east of the component (Lk, k > i). This is then calculated

for the ports on the west side (Lk, k < i), the north side (Li,k, k < j), and the south side

(Li,k, k > j). These values are then summed to create the weight for that particular com-

ponent orientation. The weight for each orientation is then calculated, and the orientation

with the highest weight chosen.

Once the component has been rotated, each port unassigned source and/or sink

on each connection must be assigned. For each component cu ∈ C with an unassigned

port from L0 to L|L|−1, processing from the top of the lane to the bottom, we perform a

radar sweep similar to the one described in [7] beginning in the upper left corner of the

component. As the radar sweep passes components, if it sweeps past a component cv ∈ Tu

then the associated edge ez = (cu, cv) ∈ E is processed. The Manhattan distance between

each unassigned port in the source component pj ∈ Pu and each unassigned port in the

sink component pk ∈ Pv. The combination of ports with the minimum Manhattan distance

is then assigned as the source and sink ports for that connection, and pj , pk are no longer

candidate ports for later assignments. This process continues until all connections with

unassigned ports have been assigned.
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3.3.5 In-lane Placement

At this point all components have been assigned to a lane, have been given an order within

each lane, and have been rotated to optimize connection routing. However, the components

have not yet been assigned an (x, y) coordinate for placement. An initial y-coordinate

can be determined for each component by iterating through each lane Li and placing the

components in-order, with appropriate spacing between them. The first component c0 ∈ Li

is given a y-coordinate of y0 = ∆ (assuming the top left of our 2D plane is the original at

(0, 0)). This ensure that all components have enough distance from the edge of the device

for routing and fabrication. Each subsequent component cj ∈ Li is then placed at the

position yj = yj−1 + hj−1 + ∆, which is the y-coordinate of the previous component placed

shifted to account for the height of the component and an adjustable spacing quanta, ∆.

From here, the components are adjusted to better align with their parents’ in the

preceding lane. The purpose is to improve routability and to try to create routes between

lanes that are of similar length. For each component cj ∈ Li, i > 0 a new set of components

V = {ck ∈ Li−1|(cj , ck) ∈ E} is created. If |V | > 1 then the component cj is shifted to

align with the average y-coordinate of the parent components in V . A shift factor (δ) is

calculated, such that:

δ =

∑|V |
i=1 yV [i] + (hV [i]/2)

|V |
− yj
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(a) (b)

(c)

Figure 3.4: (a) The horizontal red line represents the vertical center of the parents of
component J , calculated as the average of the y-coordinate of each parent component {H, I}.
(b) Component J is shifted to the center of its parents, shifting the other components in
the lane, K, by the same amount. (c) All other components in subsequent lanes, L in this
case, must also be shifted down by that amount.

In the case where |V | = 1, V is redefined as V = {cj ∈ Li|(ck, cj) ∈ E}, and all the

components in V are shifted such that the average y-coordinate of all the components in V

align with the center of component ck. In this case, the shift factor is calculated such that:

δ =

∑|V |
i=1 yV [i] + (hV [i]/2)

|V |
− yk

If either cj is shifted or the set of components in V are shifted, additional com-

ponents in the lane Li must be shifted to avoid intersections. Shifting a component cj (set

of components V ) requires the movement of all the components in La, where a < i, and
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(a) (b)

Figure 3.5: (a) During a backward iteration when processing component P , the component
has only a single parent N . This causes the subtree of the parent component N , which
contains {P,Q} to be shifted instead of P itself. (b) The subset {P,Q} is shifted down
to the center of their parent N . Since there are no other components in that lane and no
subsequent lanes, no other components need to be shifted.

the rest of Li to prevent overlap. If δ < 0, we shift cj (all components in V ) upwards and

need to ensure no components are moved above the chip’s boundaries. That is, we must

maintain for each ct ∈ C, xt ≥ ∆ and yt ≥ ∆. We first shift all ct ∈ C downwards by |δ|.

So for each ct ∈ C, yt = yt + |δ|.

Finally, shift the remaining elements of La by δ. For each ct ∈ La where yt > yj ,

ct is moved such that yt = yt + δ. Any terminal components connected to a component ct

should also be shifted by δ. Components in La with a < i are shifted by δ as well. At this

point the set V is emptied and the process continues with the next component. Figure 3.4

illustrate the shifting of the single component and subsequent components while Figure 3.5

illustrates the shifting of the component set.

If additional padding is required around the edge of the device to meet fabrication

requirements, it can now be added. The entire device can be shifted and/or the size of the

device can be increased to accommodate any padding requirements.
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3.3.6 In-lane Horizontal Centering

(a) (b) (c)

Figure 3.6: (a) The vertical red lines show the calculated horizontal center of the lane based
on the widest component, R in this case. (b-c) The center of component S and T are shifted
to the lane center.

The next step is to determine each component’s x-coordinate. This process begins

by iterating through each lane Li from i = 0 to |L|−1. For the first lane L0, all components

are given an x-coordinate equal to the buffer space, xj = ∆, ∀cj ∈ L0. This ensures that

all components in the left most lane have enough distance from the edge of the device for

routing and fabrication.

Next, the minimum width of the lane (wmin) is found. To prevent overlapping

components between the lanes, the minimum width of the lane is equal to the component

with the largest width such that wmin = min(wj),∀cj ∈ Li.

Once wmin is determined, a second iteration of all components cj ∈ Li is made

to center each component within the lane. Each component’s x/coordinate is shifted to
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center the component within it’s lane based on the following equation, which is illustrated

in Figure 3.6

xj = xj +
wmin − wj

2

Once all the components in the lane Li have had their x-coordinate re-centered within the

lane, the lane iteration continues. For all lanes Li, i > 0, instead of setting all components

cj ∈ Li initial x-coordinate xj = ∆ the initial x-coordinate is set to xj = x0 ∈ Li−1 +

wmin + ∆. This ensures that all the components in the next lane are far enough to the

right of the previous lane to ensure there is no component overlap between lanes with the

additional buffer space needed to improve routability and meet fabrication requirements.

3.4 Routing

3.4.1 Flow Layer Routing

Once the components have been placed and all connections assigned ports, the routing of

the connections is performed using a slight modification to the method described in Ref.

[37]. A brief description of that method as well as the modifications to it is provided for

completeness. A routing grid R = (U,F ), where U is a set of grid points, and F is a

set of edges representing potential channel routes between adjacent grid points. For each

component ci ∈ C a vertex ui for the ports ph ∈ Pi is instantiated and added to U . A

grid of vertices is then instantiated in the empty space between components. Edges that

represent potential routing channel segments are added to F by instantiating a bidirectional
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edge fi with a capacity of 1 between ui ∈ U and uj ∈ U if and only if (uj .x − ui.x ==

1)⊕ (uj .y − ui.y == 1).

Once the grid R = (U,F ) has been constructed, the next step is to route channels

between the components. Unlike in Ref. [37], where a network-flow based router is utilized

to do routing and port assignment, port assignment has already been completed. Instead of

a network-flow based routing; for each port pj ∈ Pi of component ci that has a connection

assigned to it, a breadth-first search is made start from the source port pj until it reaches that

connections assigned sink port pk. A path reclamation step adapted from Lee’s algorithm

[33] is then performed to find the shortest path from the sink pk to the source pj . The

reclaimed path is then set as the final route for that connection and its grid point are

marked as unusable for future routes. If there is a minimum padding between connections

required for fabrication reasons, then that number of additional units away from the route

are also marked as unusable. This process is repeated for every connection in the system.

3.4.2 Control Layer Considerations

While routing of the control layer is out of scope, the method presented here does allow

for placement relaxation that can be useful when routing the control layer. Since Directed

Placement places flow-layer components in a left to right orientation, it is advised that

control layer I/O should be placed along the top and/or bottom edge of the device. From

here, control lines can be routed through the buffer space between lanes or directly through

components (where fabrication allows) to the edges. It is also possible for the inter-lane

buffer space to be utilized by pin insertion methods [25] to insert control pins closer to the

components that they control and reduce control route length.
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In both these cases, the amount of unused space that can be utilized for control

routing can be increased in a targeted manner through the manipulation of the lane buffer

space ∆ for a subset of lanes. If, for example, a component cj ∈ Li was unable to be

routed to a viable control pin, then the ∆ between lanes Li−1, Li and Li, Li+1 could be

increased by some value σ to allow more space for pin insertion or control line routing. This

increase of σ would then re-trigger the in-lane placement and routing steps, and another

attempt by the control routing method to find a set of valid routes. This process could be

performed iteratively unless a valid control routing was found, or a maximum size threshold

was reached.

3.5 Results

The Directed Placement paired with the Lees’ based router described here is compared

to the Planar Placement Baseline Expansion (BaseEx) and Diagonal Component Expan-

sion (DICE) methods paired with the Network-flow based routing algorithm as described

in Chapter 2 and the Simulated Annealing (SA) based placer [41] paired with Hadlock’s

maze routing algorithm [45] also introduced in Chapter 2. All of these algorithms were

implemented in C++ utilizing a a unitless grid, which decouples the layout and design rule

checking processes from the manufacturing resolution of any one specific mVLSI technology

[42].
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3.5.1 Benchmarks

We obtained netlists for four real-world planar mVLSI devices that have been designed,

fabricated, and evaluated, as well as five netlists obtained by synthesizing synthetic bench-

marks. The real-world netlists are as follows: aquaflex-3b & aquaflex-5a are proprietary

mVLSI netlists provided by Microfluidic Innovations, LLC, hiv is a multi-layer PDMS chip

that performs a bead-based HIV1 p24 sandwich immunoassay [34] and mgg is a molecular

gradients generator that can generate five concentration levels of a two-sample mixture [52].

The five synthetic benchmarks were generated by compiling a set of publicly available DAG

specifications [22] through an established mVLSI architectural synthesis flow [45, 39]. Addi-

tional information on these benchmarks as well as the number of connections, components,

and average component area of each benchmark can be found in Section 6.3.2 and Table 6.2.

3.5.2 Results and Analysis

For each benchmark, we report the area utilization (Figure 3.7: the ratio of component area

to total chip area expressed as a percentage), average fluid channel length (Figure 3.8a),

average fluid channel length reduction (Figure 3.8b), and average runtime (Figure 3.9). Di-

rected Placement and Planar Placement (both BaseEx and DICE) achieved planar layouts

in all cases while SA did not. SA was not designed to minimize the number of intersections

during placement or routing, and is highly unlikely to produce a routing with no intersec-

tions. We do not report the number of crossings in the layouts produced by SA, but the

number was nonzero in all cases.
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Unlike in Chapter 2 we modify the SA method used here to yield better results. We

first remove the component segmentation requirement from SA which caused it to be tied

very closed to its initial placement. Additionally, we implement a sweeping mechanism for

finding the minimum size that could be used to still generate an initial placement. Finally,

we still allow for the Hadlocks-based router to introduce an infinite number of intersections,

creating unrealistic layouts. These modifications make the SA method presented here a

proxy for a closer-to-optimal layout.

Area Utilization

Figure 3.7: The sum of the area of all the components in the device divided by the total
area required to place and route the device, represented as a percentage per benchmark.

In Figure 3.7, SA achieves the highest area utilization for all the test cases except

one. This result is expected since the SA method is primarily focused on optimizing the
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total area of the device and ignores the requirement that no routes intersect in the system.

The one benchmark that SA is not best suited for is synthetic 2. Directed Placement and

DICE are especially effective on the synthetic 2 benchmark, increasing its area utilization

from 22.65% with SA, 3.60% with BaseEx, and 24.2% with DICE to 68.57% with Directed

Placement. This dramatic increase on this particular benchmark is due its particularly

linear nature, yielding a straight line layout with Directed Placement and a relatively linear

placement in DICE. The rest of the benchmarks have a more complex architecture and do

not allow for this type of straight line placement. On average Directed Placement is 81.60%

as effective as the SA method for area utilization.

Fluid Channel Length

For all benchmarks in Figure 3.8a, Directed Placement achieves the shortest average fluid

channel length. This is because Directed Placement utilizes the tree-like structure of mVLSI

devices to create designs that place neighboring components as close as possible. SA, in

contrast, starts with a random placement and seeks to primarily optimize the total area and

intersections. BaseEx utilizes a planar embedding for its initial placement, however these

planar embedding algorithms tend to lay out the components into triangular substructures

with increasing straight line distances between them. This leads to small densely packed

subgroups with large distances between them. DICE arranges the components across the

diagonal of the layout, which helps to increase area utilization but often yields many routes

that must cross a large portion of the layout in order to connect. Additionally, the Network-

flow based routing algorithm used with both BaseEx and DICE, like the one employed
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(a) The average length of all the fluid channels present in the device per benchmark.

(b) The percent reduction in the average fluid channel route length when compared against
Directed Placement per benchmark.

with Directed Placement, actively avoids introducing intersections into the system. SA

is not bounded by this requirement which allows for the second shortest routes across all
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connections. As shown in Figure 3.8b, Directed Placement reduces fluid channel length in

all cases while also avoiding adding any additional intersections to any of the benchmarks.

Runtime

Figure 3.9: The average runtime of all algorithms over five runs per benchmark.

Figure 3.9 shows the average runtime of each algorithm for each benchmark over

five runs. SA has variable parameters that will effect both its runtime and the solution that it

converges to. For the results presented here SA was run with 100, 000 moves per temperature

change, a cooling rate of 1%, and an initial temperature of 100. When Directed Placement is

compared to BaseEx and DICE, BaseEx and DICE tend to run faster on smaller benchmarks

while Directed Placement runs faster on larger ones. This occurs because the Directed

Placement algorithm is more complex than BaseEx and DICE, but yields a better placement

for the routing step. Since all three methods utilize the same or similar routing steps, on
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small test cases where the routing makes up a small portion of the runtime BaseEx and

DICE run faster but as the routing requirements increase Directed Placements superior

layout means a shorter routing time and a faster overall runtime. The one exception to this

is the synthetic 2 benchmark, which runs fastest on Diagonal Component Expansion while

still yielding a longer average fluid channel length. This is because the straight line nature

of that particular benchmark are trivial for the expansion method used in DICE and yields

long fluid channels with few possibilities for intersections. Since the Network-flow based

router will perform a rip and re-route step if an intersection occurs, a reduction in possible

intersections leads to a large reduction in the overall runtime. Because the SA method uses

a Hadlocks-based router that does not avoid intersections, the vast majority of the time

reported is spent in the placement stage. All other methods spend the majority of their

time performing the routing step.

3.6 Conclusion

Directed Placement algorithmically mimics one of the typical design layout strategies em-

ployed by real-world microfluidic designers. As a result, it generates designs that are effi-

cient, with relatively high area utilization and short channel lengths; however, it is designed

primarily for microfluidic netlists that implement assays that are specified as a relatively

linear sequence of steps. Although this may seem limiting, linear designs represent a large

portion of microfluidic devices currently under development today. On the other hand,

Directed Placement produces relatively poor layouts for grid-based netlists or devices that

feature internal loops. In principle, there is room to develop specialized layout algorithms
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for netlists that fall into these categories as well, although we do not attempt to do so here;

Chapter 6 contains several initial steps toward this objective.
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Chapter 4

Seam Carving-based Post

Processing

4.1 Introduction

End-to-end microfluidic design automation starting from a high-level language specification

of a biochemical reaction would be ideal; however, real-world microfluidic device designers

today do not yet trust this level of automation and would be reticent to use any tool that

removes their ability to manually intervene at each step of the design process [40]. New

microfluidic components in particular are highly dependent on specialized device geome-

tries and must be designed manually, often in conjunction with fluid modeling software.

Microfluidic device designers recognize the need for component libraries akin to standard

cells 1, but strongly prefer graphical design interfaces over end-to-end algorithmic solutions.

1This sentiment was clearly expressed by Emmanuel Delamarche (IBM, Zurich) in a special session talk
at DATE 2018
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In order to be able to support designers’ current methods as well as algorithmic

advances, we developed a number of post-processing techniques that are agnostic to the

method used to generate the layout. These algorithms can process layouts generated by

hand as well as those that are algorithmically generated. The first method we introduce is

one that adapts seam carving [4], an image size reduction technique, to reduce the device

area and channel lengths of sub-optimal microfluidic very-large-scale integration (mVLSI)

layouts. Currently, the only constraint to this technique is that channels must be routed

rectilinearly.

The basic premise of the technique we describe here is to identify seams (paths)

through the chip which can be removed without adversely affecting device functionality,

shortening fluid channels and reducing the devices overall size. Figure 4.1 shows a mo-

tivating example. Figure 4.1a shows a low quality initial layout [38] created using the

Planar Placement and Network-flow routing technique from Chapter 2. Figure 4.1b shows

an improved layout, which was derived using linear seam carving, which we introduce in

Section 4.4. Finally, Figure 4.1c shows a better result which was obtained with a more

aggressive technique, nonlinear seam carving, which we introduce in Section 4.5.

4.2 Related Work

4.2.1 Seam Carving

A seam is a path of pixels through an image whose removal minimally degrades image

quality. Seams can be identified by converting an image into a weighted graph, where each
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(a) (b) (c)

Figure 4.1: (a) Shows the benchmarks synthetic 1 after the baseline placement and routing
[38] has completed. (b) is the same benchmark after linear seam carving has been applied,
while (c) is after non-linear seam carving has been applied.

vertex represents a pixel and each vertex’s weight represents its relative importance to image

quality [4]. Seam carving then finds the lowest-cost path from one perimeter edge to its

opposite and removes it from the image. The process repeats until the desired reduction in

size is achieved.

Existing seam carving techniques cannot directly be applied to mVLSI devices.

Components are usually designed to have specific geometries that cannot be modified with-

out adversely affecting their functionality. Thus, the seam identification process must ex-

plicitly exclude them. This requirement is also incompatible with other image re-sizing

techniques such as scaling [11], which expands or compresses an image by a scale factor.
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4.2.2 mVLSI Placement

Seam carving can reduce the area of mVLSI chips designed manually, or laid out using

sub-optimal heuristic methods such as Simulated Annealing (SA) [45], Incremental Cluster

Expansion (ICE) [56] and extensions to planar graph embedding [38]. Seam carving will not

be able to improve an optimal placement result [59] because the existence of a removable

seam contradicts the optimality of the result.

We are aware of one mVLSI post-processing step, which repeatedly selects com-

ponents on the perimeter of the layout and uses binary search to determine how far they

can be moved toward the center [38]. In our experiments, we found that the runtime of the

binary search method to be prohibitive, primarily because each potential movement rips

up and reroutes fluid channels incident to the component that was moved. Seam carving,

in contrast, does not recompute the placement of components or routing of fluid channels,

and runs considerably more efficiently as a result.

4.3 Preliminaries

The input to seam carving is a placed and routed mVLSI architecture A = (C,R, n,m),

where C is a set of placed components, R is a set of routed channel segments, and n

and m are the respective height and width of the layout. We represent each microfluidic

component ci = (xi, yi, wi, hi) using a bounding box: point (xi, yi) is the upper-left corner

of the component, and hi and wi are its respective height and width. Each routed channel

segment ri = (xi,t, yi,t, xi,l, yi,l) is a straight-line connection between points (xi,t, yi,t) and

(xi,l, yi,l); multiple segments may comprise a longer channel with twists and bends. The
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physical layout process may include an additional parameter, ∆, which adds white space

around each component to improve routability.

In microfluidic devices all space in an architecture can be classified into three cat-

egories. Components, which have a fixed height and width; we assume that component

dimensions are fixed by fluidic IP designers and cannot be reduced without adversely af-

fecting chip functionality. Fluidic channels, which can be of any length as long as they

provide a continuous flow of fluid between source and sink components; channel length can

be reduced without altering chip functionality. Free space, which is superfluous, except for

the buffer space surrounding each component.

A seam is a path through the architecture that connects one perimeter edge to

its opposite and contains no points that are invalid for removal; this ensures that correct

device functionality is maintained when the seam is removed. Invalid points include any

part of a component (including its buffer space) or a switch at a channel intersection. In the

latter case, removal of a switch would require the post-processor to re-place the switch and

reroute its incident fluid channels accordingly; it is preferable to avoid this overhead. Valid

points for removal include free space and channel segments that are not part of a switch

and would not break the route connection between connected components.

4.4 Linear Seam Carving

Linear seam carving restricts seams to be horizontal or vertical straight lines that do not

bend. Figure 4.2a shows an example mVLSI chip with a loose placement and ample white

space. Figure 4.2b shows four horizontal seams, two of which intersect fluid channels in the
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(a) (b) (c)

Figure 4.2: (a) A laid out mVLSI chip; (b) seam identification (∆ = 1); (c) the chip after
seam removal.

center of the chip. Figure 4.2c shows the smaller chip after the four seams are removed.

Device functionality is not altered, and the channel connecting the two components is

shortened but not disrupted.

4.4.1 Seam Identification

Linear seam carving employs two boolean arrays, Bx and By, which respectively represent

removable vertical and horizontal seams. Without loss of generality, as we move along the

x-axis, Bx[i] represents a vertical line containing all points within the component having i

as the x-coordinate. Both arrays are initialized to Bx[0 : m] = By[0 : n] = True.

The algorithm identifies vertical and horizontal seams for removal separately. To

identify vertical seams, the algorithm iterates through all components ci ∈ C setting Bx[xi :

xi + wi] = False; this disallows any seam that cuts through a component. For each route
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ri ∈ R the algorithm sets Bx[xi,t] = False and Bx[xi,l] = False to disallow the removal of

switches at channel intersections. Any index i for which Bx[i] = True represents a vertical

seam that could be removed. Horizontal seams are identified similarly, using By and the

y-coordinates of components and channel segments.

Seams are permitted to cut through channel segments, effectively shortening them.

If a channel segment of a pre-specified length is required (e.g., to achieve a chemical sepa-

ration), then it should be characterized as a component.

4.4.2 Seam Carving

Each index j ∈ {0, ...,m} where Bx[j] is True is a removable vertical seam. Each component

ci ∈ C such that xi > j is shifted left to fill the space removed by the seam; the height and

width of ci remain unchanged. Channel segments completely to the right of the removed

seam are shifted left by one grid point. For channel segments that cross the seam, the right

endpoint is shifted left by one grid point. Seam carving cannot completely remove a channel

because seams cannot contain channel endpoints. The final step is to reduce the length of

the guide Bx by one grid point by setting Bx[k] = Bx[k + 1], j ≤ k ≤ m, and decrementing

m. This process then repeats similarly for all vertical seams, 0 ≤ j ≤ n where By[j] is

True.

78



4.5 Non-linear Seam Carving

Non-linear seam carving eliminates the restriction that seams are exclusively horizontal or

vertical segments. Seams are still required to begin at one perimeter edge and end at the

opposite edge. This increases opportunities for seam removal and can lead to substantially

smaller chip designs.

4.5.1 Seam Identification

Seam identification employs an m × n Boolean grid G to determine if a given point is a

candidate for seam carving. All grid entries are initialized to True. For each component

ci ∈ C at position (xi, yi) we set G[j][k] = False, xi ≤ j ≤ xi+wi, yi ≤ k ≤ yi+hi, rendering

these points invalid for inclusion in a seam. For each routed channel segment ri ∈ R we

set G[xi,t][yi,t] = G[xi,l][yi,l] = False to disallow seam carving through switches at channel

intersection points. A seam S is a collection of straight line segments si = (ai, bi, ci, di),

where (ai, bi) and (ci, di) are the (x, y)-coordinates of the two endpoints.

Non-linear seam carving retains the directional approach of its linear counter-

part. Seams are first identified along the x-axis, with an artificial source connected to all

grid positions G[j][0], 0 ≤ j ≤ m and and artificial sink connected to all grid positions

G[j][n], 0 ≤ j ≤ m, as shown in Figure 4.3a. Lee’s Algorithm [33] is repeatedly called to

identify seams from source to sink, until no valid paths remain. Figure 4.3b shows two non-

linear seams, whose removal yields the smaller chip depicted in Figure 4.3c. This process

then repeats along the y-axis.
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(a) (b)

(c)

Figure 4.3: (a) A placed and routed mVLSI netlist (b) two nonlinear seams identified for
removal (∆ = 1); (c) the smaller chip after seam removal.

4.5.2 Perpendicular Channel Segments

Non-linear seam carving requires special handling of channel segments that run perpen-

dicular to the carving direction. Without loss of generality, assume that we are carving

in the y-direction and consider a horizontal channel segment ri having yi,t = yi,l. A seam

can be identified that cuts through ri in such a way that its removal causes yi,t 6= yi,l; the

updated channel would require a diagonal connection, or a small bend (necessitating three

new channel segments), neither of which is problematic, per se.

80



(a)

(b) (c)

(d) (e)

Figure 4.4: (a) A placed and routed mVLSI chip; (b) when carving along the y-axis (∆ = 1),
a set of non-linear seams are found that cross a perpendicular (horizontal) segment; (c)
removal of the preceding seams yields an invalid layout; (d) non-linear seams are prevented
from crossing the perpendicular segment; (e) removal of non-linear seams that do not cross
the perpendicular segment yields a legal layout.

Perpendicular carving, however, can cause a component to shift and collide with

the perpendicular channel. For example, Figure 4.4a shows a laid out mVLSI chip. Fig-

ure 4.4b shows multiple seams that cross perpendicular channel segments; in Figure 4.4c,

carving these seams causes a component to shift and collide with the perpendicular channel.

To prevent this, non-linear carving may not carve through perpendicular channel segments
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by setting G[xi,t][z] = False for yi,t < z < yi,l; Figure 4.4d depicts a valid set of seams, and

Figure 4.4e shows the resulting collision-free mVLSI chip after carving.

4.5.3 Seam Carving

Non-linear seam carving must choose whether to move a component or channel segment

endpoint based on the opposite axis along the seam. When carving along the x-axis, any

component ci ∈ C that exists to the right of a seam with xi > aj between bj ≤ yi ≤ dj for

any segment sj ∈ S will be shifted left to fill the the space that has been carved; to do this,

set xi = xi − 1. All channel segments ri ∈ R with a source to the right of the seam with

xi,t > aj and bj ≤ yi,t ≤ dj will be shifted left to xi,t = xi,t − 1; all segments with a sink to

the right of the seam with xi,l > aj and bj ≤ yi,l ≤ dj will be shifted left to xi,l = xi,l − 1.

This process then repeats similarly along the y-axis.

4.6 Experimental Results

Our Baseline algorithm is the mVLSI flow-layer Planar Placement and Network-flow based

router described in Chapter 2. We implemented the Baseline algorithm in C++, along

with linear and non-linear seam carving as post-processing steps. For evaluation, we use

a suite of nine benchmarks: aquaflex-3b and aquaflex-5a (proprietary netlists provided by

Microfluidic Innovations LLC), a bead-based HIV1 immunoassay (hiv) [34], a molecular

gradients generator (mgg) [52], and five synthetic netlists. Additional information on all

these benchmarks can be found in Section 6.3.2 and Table 6.2. Our implementation uses a
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Figure 4.5: Area utilization (larger is better)

Figure 4.6: Average channel length (smaller is better)
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Figure 4.7: Algorithmic runtime in seconds (log. scale)

“unitless grid” with a standard buffer size ∆ = 5 for all benchmarks. We report the area

utilization, (the percentage of the chip area consumed by components; Figure 4.5), average

channel routing length (Figure 4.6), and the average algorithmic runtime across five runs

per algorithm/benchmark (Figure 4.7).

Compared to the Baseline placement, linear seam carving marginally improved

area utilization and average channel length, while non-linear seam carving yielded far more

significant improvements. The Baseline placer is ineffective because its underlying planar

graph embedding algorithm does not try to minimize area, and further loses efficiency

as vertices (points) are expanded into 2D components, which necessitates further shifting

of components and re-routing of flow channels to eliminate overlap. Seam carving can
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effectively counteract these inefficiencies, and the results clearly show that there are far

more non-linear seams available for removal than linear seams.

The runtimes reported in Figure 4.7 include the Baseline placer in all cases. Al-

though its effectiveness is limited, linear seam carving imposes negligible runtime overhead;

in contrast, the runtime of non-linear seam carving is inversely proportional to the density

of the design, and, as a post-processing step, it often runs longer than the Baseline placer

(e.g., synthetic 1 and 2).

4.7 Conclusion

As a post-processing algorithm, seam carving can be applied to device designs that have

been physically laid out, either algorithmically or by hand. Seam carving can significantly

reduce device area and channel length, making it particularly useful for the conversion

of laboratory prototypes to more efficient designs that will be mass manufactured. Seam

carving is quite versatile, as it is always possible to introduce and apply new carving rules

to meet evolving needs. For example, if a channel is initially designed to be a certain length

in order to perform its function (e.g., passive mixing) then that connection could be made

invalid for carving; on the other hand, if the channel is initially longer than necessary,

it could be carved repeatedly until the reduction meets the required length. We hope to

further expand this work to remove assumption of rectilinear routing, as routes occurring

at any angle are quite common and can often yield desirable fluid flow properties at the

microfluidic scale.

85



Chapter 5

Automated Arraying of

Subsystems via Seam Insertion

5.1 Introduction

Here we introduce a second post-processing method to increase the parallelism and/or

throughput of a microfluidic device. This method can be applied either to a placed and

routed device (generated through an algorithm or by hand) or to a graphical design system.

The designer specifies a sub-region of the device that they would like to array (i.e., replicate

k times in parallel), then the algorithm automatically replicates the subsystem, expands

the requisite fluid channel subsystems to deliver fluid to the replicated components, and

if needed, extends the control interface to enable lock-step single instruction multiple data

(SIMD)-parallel execution of replicated subsystems.
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Figure 5.1: Four fabricated copies of a two input fluidic mixer device (left) and two fabri-
cated copies of the same device after automated arraying is performed.

In a graphical design framework, this algorithm provides freedom to the designer,

as opposed to placing the optimization under algorithmic control, since it is straightfor-

ward to revert back to the original design. For example, the designer can choose different

subsystems to replicate and vary the replication factor k; this provides the designer with

incremental control over the process. As designers gain comfort with semi-automated design

acceleration techniques of this type, they will increasingly become amenable to increasing

amounts of automation. In summary, research on microfluidic design automation will have

the greatest possible impact, especially short-term, by supplementing rather than trying to

replace the design tools and methodologies that are presently in use today.
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Table 5.1: List of variables referenced during the seam insertion and automated arraying
method description

Variable Description

A Input microfluidic architecture
C Set of placed components
R Set of routed connections
m The width of the input microfluidic architecture
n The height of the input microfluidic architecture
Pi The (x,y) coordinate of the ith component
wi The width of the ith component
hi The height of the ith component
Pi,s The (x,y) source coordinate of the ith connection
Pi,t The (x,y) sink coordinate of the ith connection
∆ Optional component buffer space
δ Amount of space to be inserted

G The grid of boolean nodes for seam identification
S A set of straight line segments representing a seam
d The seam identification direction (either north and south or east and

west)
Pi,a The (x,y) start coordinate of a seam segment
Pi,b The (x,y) end coordinate of a seam segment

B The bounding box representing the users arraying selection
N,E, S,W The north, east, south, and west edges of the bounding box
P(n,e,s,w),s The (x,y) source coordinate of the edge N,E, S,W

P(n,e,s,w),t The (x,y) sink coordinate of the edge N,E, S,W

X(n,e,s,w) The connection segments ri ∈ R that cross the edge N,E, S,W

Sc The set of components within B
Sr The set of connection segments within B
α The width of the selection B
β The height of the selection B
a The array direction (either north and south or east and west)
k The number of desired selection replications
γ The desired buffer space between the arrayed selections
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5.2 Seam Insertion

The input to seam insertion is a placed and routed microfluidic very-large-scale integration

(mVLSI) architecture A = {C,R, n,m}, where C is a set of placed components, R is a

set of routed connections, and n and m are the respective height and width of the layout.

We represent each microfluidic component ci = (Pi, wi, hi) using a bounding box: point

Pi = (xi, yi) is the upper-left corner of the component boundary box and hi and wi are its

respective height and width. Each routed connection segment ri = (Pi,s, Pi,t) is a straight-

line connection between points Pi,s = (xi,s, yi,s) and Pi,t = (xi,t, yi,t); multiple segments may

comprise a longer channel with twists and bends. The physical layout process may include

an additional parameter, ∆, which adds buffer space around each component to improve

routability or meet fabrication requirements. Finally, a user input value δ is required which

represents the amount of space that should be inserted into the system.

In microfluidic devices all space in an architecture can be classified into three

distinct categories:

1. Component space which cannot be removed without disrupting the functionality of

the component.

2. Connection space which represents a flow or control channel connecting two compo-

nents, and can be of any length as long as there is a continuous path between both

components.

3. Empty space which is unused except as buffer space for components in the case where

∆ > 0.
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A seam is defined as a path through the architecture that travels from one perime-

ter edge to the opposite perimeter edge and contains no points which would affect the

functionality of the microfluidic device; this ensures that correct device functionality is

maintained when the seam inserts additional space in the design. Invalid points include any

space existing within a component as well as any connection segments which run parallel

to the seam identification direction d.

5.2.1 Grid Creation

The setup to this process is the same as the method introduced in Chapter 4. We begin by

creating an m×n boolean grid G that represents the placed and routed microfluidic device.

All the grid values are initially set to to True.

For each component ci ∈ C at position Pi = (xi, yi) we set G[j][k] = False,

xi ≤ j ≤ xi + wi, yi ≤ k ≤ yi + hi. This disallows any points within a component from

being selected as part of a seam. Additionally, a subset of the connections segments must

also be disallowed for seam selection.

If a seam is identified that crosses through a connection segment that runs parallel

to the seam identification direction, then when the seam shifts the architecture the source

and sink of the segment would no longer be parallel. This shift in connection segment angle

can cause it to collide with other components in the system, making the architecture invalid.

Because of this, connection segments that run parallel to the seam identification direction

are disallowed for seam selection. That is, when d is north and south, for all segments ri ∈ R

where Pi,s.x = Pi,t.x, G[Pi,s.x][z] = False for Pi,s.y < z < Pi,t, y. When d is east and west,

for all segments ri ∈ R where Pi,s.y = Pi,t.y, G[z][Pi,s.y] = False for Pi,s.x < z < Pi,t.x.
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5.2.2 Seam Identification

Once the grid has been initiated, we add two additional node source and sink to either the

north and south edges of the grid (g | g ∈ G, g.y = 0 and g | g ∈ G, g.y = n− 1) or the east

and west edges of the grid (g | g ∈ G, g.x = 0 and g | g ∈ G, g.x = m− 1) depending on d.

A seam S, which is a collection of straight line segments si ∈ S such that si =

(Pi,a, Pi,b) and Pi,a and Pi,b are the (x, y)-coordinates of the two endpoints, is then identified.

This search must begin at the source node and end at the sink node, but can traverse

through any other True value nodes in G. The path is identified through the grid using

a shortest path algorithm, such as Lee’s algorithm [33], from source to sink. If the seam

needs to traverse through a specific node or set of nodes in the grid, then the single shortest

path can be broken into a number of shortest path searches. A shortest path is then found

between each closest pair of points (sorted by either x for east and west or y for north and

south seam identification direction), and the collection of shortest paths are then combined

to create a single continuous seam.

5.2.3 Buffer Insertion

After a seam has been identified, it is used to insert δ additional space into the architecture.

Assuming a north and south seam identification direction d, any component ci ∈ C that

exists to the east of a seam with Pi.x > Pj,a.x between Pj,a.y ≤ Pi.y ≤ Pj,b.y for any

segment sj ∈ S will be shifted east by δ to add additional space into the design. To do

this, set Pi.x = Pi.x+ δ. All channel segments ri ∈ R with a source to the east of the seam

with Pi,t.x > Pj,a.x and Pj,a.y ≤ Pi,t.y ≤ Pj,b.y will be shifted east to Pi,t.x = Pi,t.x+ δ; all
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segments with a sink to the east of the seam with Pi,l.x > Pj,a.x and Pj,a.y ≤ Pi,l.y ≤ Pj,b.y

will be shifted east to Pi,l.x = Pi,l.x + δ. If the seam identification direction is east and

west, then the x and y coordinates are swapped, and everything is shifted south by δ.

5.3 Automated Arraying

5.3.1 Input

As input, this method requires a fully placed and routed mVLSI architectureA = {C,R,m, n}

as previously described in section Section 5.2. Additionally, a user selected portion of the de-

vice represented by the bounding box B = {N,E, S,W, Sc, Sr, α, β, a, k, γ} is required as in-

put. N,E, S,W are the north, east, south, and west edges of the bounding box respectively.

The sets Sc and Sr represent the components and connection segments that are contained

entirely within the selection, and α and β represent the width and height of the selection,

respectively. a represents the array direction input from the user, which must be either

north and south or east and west. k represents the number of times the selection should be

replicated and γ is an optional parameter representing additional buffer space that should

be inserted between replications during arraying. N,E, S,W = (P(n,e,s,w),s, P(n,e,s,w),t, X)

such that P(n,e,s,w),s and P(n,e,s,w),t are the start and end points of a bounding box edge

and X is the set of connection segments that cross that particular edge. For all connections

ri ∈ R, if a segment (Pj,s, Pj,t) ∈ ri crosses an edge N,E, S,W ∈ B then it should be added

to the set X for the edge that it crosses.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: (a) A placed and routed device is used as input, with a portion of the device
selection for arraying (yellow). The input device may contain other components and/or
connections that are not part of the selection but must be accounted for when performing
the replication to avoid overlapping or intersections. The selection is validated to ensure
that no components cross the selection. (b) Two sets of seams are identified, one running
perpendicular to the array direction (green) and another running parallel (red). (c) The
parallel seams are used to insert additional space (yellow) equal to the size of the selection
(height in this example) based on the number of replications k that need to be inserted. (d).
Components and connection segments within the selection are replicated and shifted into
the newly created space. (e) The perpendicular seams are then used to insert additional
space (blue) equal to the size of of a junction that can accommodate the number of arrayed
selections, and (f) an appropriate junction is inserted into the newly created space.

5.3.2 Selection

Some considerations must be made when choosing a selection. In the selection, all compo-

nents ci ∈ Sc must resides within the bounding box B and no component may cross any
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edge N,E, S,W ∈ B. This would represent only a piece of a component being selected

for arraying which would not be able to function properly. If the system allows composite

components, which are collections of components and connections represented as a single

higher order component, then that composite component should first be reduced into its

individual pieces before checking this criteria.

Additionally, any connection segments that cross the selection in parallel to the

array direction a must traverse the entire selection through to the opposite edge of the one

it enters. If a connection segment enters one edge of the selection but does not continue to

the other, then the replicated versions will not be able to connect to the rest of the device

and will not function properly. If the connection segment is incidental to the selection and

not necessary for the selection to function properly, then it can be annotated by the user

as an excluded connection and will not be processed for replication.

5.3.3 Breaking Crossing Connections

Connection segments that cross the selection must necessarily exist partially within the

selection, which should be arrayed, and partially outside the selection which should not.

Each crossing connection segment r ∈ X(n,e,s,w) is split into two separate connection seg-

ments ri (inner segment) and ro (outer segment). The connection segment (Pi,s, Pi,t) from

r ∈ X(n,e,s,w) that crosses the selection edge is identified and is split at the point Px where

the edge N,E, S,W and (Pi,s, Pi,t) intersect such that ri = (Pi,s, Px) and ro = (Px, Pi,t),

assuming Pi,s exists within the selection and Pi,t exists outside. If both points exist out-

side of the selection, then the connection must cross two opposite edges and the “internal”
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point is considered to be the intersection point with the other edge. After splitting all the

segments, the inner portions (ri) are added to Sr.

5.3.4 Control Layer Considerations

There are two cases to consider when control connections cross the selection edges. The first

is connections that pass through the selection perpendicular to the arraying direction a and

crossing two opposite boundary edges, but are incidental to the selection. This can occur in

designs with dense routings where flow or control connections that are only needed to run

components outside the selection cannot be spatially excluded from the it, and therefore

do not need to be replicated because the components they control are not being replicated.

These control connections should be annotated as excluded connections by the user and

will not be added to Sr or any X(n,e,s,w).

The second consideration is control connection segments that run parallel to the

array direction and need to connect between the arrayed units to allow for SIMD style

parallel execution of the arrayed components. If the control connections enter and exit the

selection at parallel points then they can simply be arrayed in the same manner as the flow

connections. This is because when the entry and exit points of the connection are aligned,

the output from one selection becomes the input to the next selection after replication, and

all valves connected to that control line will be actuated in parallel. If selection buffer space

γ is introduced between the selections then the control lines can be directly extended. If

the input and output positions are not parallel then a reclamation step must be utilized to

bridge the difference between the two positions. This requires enough selection buffer space
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γ to be inserted to perform a local routing from one selections outputs, through the buffer

space, to the inputs of the next.

5.3.5 Replication and Arraying

Once the crossing connection segments have been broken and the selection finalized, addi-

tional space must be inserted to allow the selected connection segments and components

to be replicated and integrated into the system without introducing intersections or design

rule violations.

This process begins by finding two seams through the system. For a north and

south array direction a, seam identification is performed in the opposite direction (d = east

and west) and using the north and south selection edges as intermediate routing points.

A seam segment is found from the source node to max(Pn,s, Pn,t) and from sink node to

min(Pn,s, Pn,t). A final segment (Pn,s, Pn,t) representing the edge itself is then added to

create a full seam. This process is then repeated for the south edge to create a set of two

seams. For an east and west array direction, seam identification is performed in the north

and south direction d and utilize the east and west selection edges to find seam segments

from source to max(Pe,s, Pe,t) and from sink node to min(Pe,s, Pe,t) adding (Pe,s, Pe,t) as

the final segment. This is then repeated using the west edge to create two seams.

These seams then insert δ additional empty space that will be used for replicating

the components and connection segments in the selection B. The value δ is determined

by the number of selection replications, k, that need to be added to the system, the width

α or height β of the selection, and any selection buffer γ. If there are an odd number of

replications (including the original, such that k = 1 would yield the original design) then
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((k − 1)/2) ∗ α + γ or ((k − 1)/2) ∗ β + γ space would be inserted into both seams in the

east and west or north and south direction respectively. If there are an even number of

replications then (((k/2) ∗α)− (α/2) + γ or (((k/2) ∗ β)− (β/2) + γ is added north or west

and south or east directions. Additionally, for an even number of replications the original

selection is shifted by (α/2) + γ in the east and west case or (β/2) + γ in the north and

south case.

Once the space has been allocated the components and connection segments within

the selection must be replicated and arrayed over the new space. A copy of each component

c ∈ Sc and each connection segment r ∈ Sr within the selection B is created and initially set

to the same position as the original selection. Each replication is then shifted (i−1)∗(α+γ)

or (i − 1) ∗ (β + γ) either north and east for i − 1 < (k − 1)/2 or south and west for

i − 1 ≥ (k − 1)/2 based on its index i (where i = 1 is the original selection) and array

direction.

5.3.6 Junction Insertion

Once the selection has been replicated, junctions must be inserted to connect all the repli-

cated inner connection segments that crossed a bounding edge to the single outer segment

of the selection that was not arrayed. To facilitate this seams are found in the same manner

as Section 5.3.5 but using the inverse d value and the inverse set of bounding edges.

Space is then inserted using a δ value equal to the width in the case of an east and

west array direction a, or height in the case of a north and south arraying direction a of a

large enough junction to support the the number of replications in the device technology
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and at least as large as the total selection space after replication to allow it to reach all

selection inputs. The required junction can then be inserted into the newly created space.

5.3.7 Junction Selection

There are several factors that must be considered when determining what junction should be

inserted to connect the system external to the arrayed selection to each selection. Junctions

must be introduced on each selection edge parallel to the array direction that has one or

more crossing connection segments. Each junction must contain a number of “inputs” on

one side equal to the number of crossing connection segments of the selection edge it will

abut (|X(n,e,s,w)|), and a number of “outputs” on the opposite side equal to the number of

crossing connection segments multiplied by the replication number (k ∗ |X(n,e,s,w)|).

Additionally, a consideration needs to be made as to whether the junctions being

introduced should be passive junctions, containing no valves and driven by channel length

and geometry, or active junctions, containing valves and being driven by pneumatic pressure

from the control layer.

Passive junctions contain no valves, and therefore require no additional processing

of the control layer or the microfluidic application. This, however, means that they will allow

for the fluids in the flow channels to mix freely as observed in Figure 5.3b and Figure 5.3d.

Active junctions contain valves and therefore must contain control lines to drive them.

These valves allow for fluids to be actively routed from an arbitrary input line to an arbitrary

replicated selection input, but will require at minimum a modification to the application as

the actuation of the junction will need to be accounted for.
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Active junctions can be further classified into two different types, embedded control

junctions and routable control junctions. Embedded control junctions, as illustrated in

Figure 5.5b, embed the pneumatic inputs necessary to drive the junctions control layer

within the component itself. This has the benefit of allowing for the active junction to

be added to the system without the need to re-route the control layer. Routable control

junctions, instead of containing pneumatic inputs, route the control lines to the edges of

the junction as illustrated in Figure 5.5c. This means that an additional routing step will

be required to connect the new junction to an existing control port. This method is best

suited for devices that use templated input and output port positions, such as cartridges

that need to be compatible with a standard control device, or where a control optimization

step is desired and the entire control layer will be re-optimized and re-routed.

In all these cases, it is assumed that the designers has access to a library of available

junctions for their fabrication technology or are able to generate the appropriate junction as

necessary using a previously defined methods [55, 18]. Because junctions vary depending on

type and fabrication method, junction generation is considered out of scope for this work.

5.4 Case Studies

5.4.1 Proof of Concept

As a proof of concept for this new technique, a new passive microfluidic device was designed

by hand, fabricated, and tested. The same design was then arrayed, fabricated, and tested to

show that the functionality from the original design was preserved and could be performed
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(a) (b)

(c) (d)

Figure 5.3: (a) The design for a two input mixer with a detection cell before the output and
(b) the fabricated version of that device showing red and blue food coloring being passively
mixed to create purple. (c) The same device after being arrayed north to south with a
k = 3 replication number and (d) the same experiment being re-run and showing the same
mixing.

on all of arrayed selections. The newly designed device contains two fluid inputs, each

connected to a single serpentine channel designed for passive mixing, which can be seen in

Figure 5.3a. Once the fluids are mixed they flow to a larger detection chamber to aid in

external sensing before being removed through an output port.

This device was created as an scalable vector graphic (SVG) using Inkscape and

fabricated in cast acrylic using a computer numeric controlled (CNC) mill with 0.5µm flow

channels. Two fluids (red and blue food coloring) were input and mixing was observed in

the serpentine channel as seen in Figure 5.3b, creating a purple output fluid. This mixed

fluid then traveled to the detector chamber before exiting the system through the output
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port. Once the original device was validated, the arraying algorithm was applied to a

selection that included all components except the fluid output, as illustrated in Figure 5.2a.

This created a new design (Figure 5.3c) that contains three independent two input mix and

detect stages that collect into a single passive junction and collectively flow to a single fluid

output.

The arrayed device was then fabricated in the same manner as the original device

and tested with three pairs of the same fluids (red and blue food coloring). All three of the

mix and detect stages were capable of generating mixing in the serpentine channel similar to

the original device, as seen in the purple output fluids in all three detectors in Figure 5.3d.

5.4.2 HT-CHiP Arraying

The high throughput automated chromatin immunoprecipitation (HT-ChiP) device orig-

inally designed by Wu et al. is capable of screening 16 different protein-DNA reactions

simultaneously [67]. This device and other chromatin immunopreceipitation devices are

typical of benchmarks used when testing many microfluidic placement and routing algo-

rithms [59, 71], especially when illustrating how placement and routing algorithms are able

to scale to larger sizes because of the devices relatively heterogeneous design. This device,

illustrated in Figure 5.4a, contains sixteen circular mixer units each of which contains an

independent fluid input, with each pair of mixers using a a shared set of pneumatic control

ports. Additionally, banks of eight mixers are configured to share a single connection to a

set of seven fluidic inputs and an output.
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Microfluidic ChIP assay (HTChIP)

Fig. 2 shows a labeled schematic of the device where different

stages of ChIP are performed. Fig. S1 illustrates the process flow

for a ChIP assay performed using HTChIP.

Cell and chromatin processing. Cells were processed as

previously described.27 Briefly, cells were treated with TNF-a
(20 ng ml21) for the indicated times. DNA was cross-linked for

10 min with 1% formaldehyde and stopped in 0.125 M glycine.

Purified chromatin was sonicated to y 500 bp using the

Bioruptor (Diagenode, Inc). The final chromatin concentration

was 25 000 cells mL21 equivalent. Fragmented chromatin was

snap frozen and stored at 280uC in single use aliquots (20 mL

each) to avoid repeated freeze/thaw cycles.

Immunoprecipitation and wash. Before each experiment, the

inside surface of the device is treated with 0.2% pluronic solution

(0.2% w/v cell culture grade Pluronic F127 (Sigma) in DPBS

(Dulbecco’s Phosphate Buffered Saline) (GIBCO)) for 15 min,

followed by rinsing with DPBS and air drying. The device has

dedicated inlets ‘A’ for flowing in Pluronic solution, and inlets

‘B’ for washing with DPBS. Inlets marked ‘Air’ are used to

introduce air into the device for drying (Fig. 2).

The rings are pre-loaded with antibody-functionalized beads

(Protein A Dynabeads (Invitrogen) with antibodies) between the

two valves in the black-boxed regions shown in Fig. 2, by flowing

beads through Inlets 1–16 to outlets 1–16 (Fig. S1-i). Sieve valves

trap the beads to make a bead column (Fig. S1-ii). Antibodies

are loaded into rings randomly, with no specific assignment of

antibody to a specific ring from experiment to experiment.

Roughly 2 mL of antibody-conjugated beads are loaded into each

ring for each ChIP assay, which corresponds to just under 0.5 ug

of antibody. 1.6 mL of chromatin is reserved as Input reference,

equivalent to four times the amount of chromatin used in each

ChIP measurement. The remaining chromatin is introduced into

all the rings by flowing it in through inlet marked ‘In’ (Fig. 2,

green-boxed). If two samples are to be processed simultaneously

with 8 measurements each sample, then the two independent ‘In’

inlets are used to load different chromatin samples to the two

sides of the device: Rings 1–8 loaded with one sample, Rings

9–16 loaded with another (as demonstrated in Fig. 1 by the green

and blue color dyes). Alternatively, both ‘In’ inlets can be used to

load the same sample into all of Rings 1–16 to achieve 16

measurements on a single sample. The bifurcated channels divide

the chromatin into equal parts of 10 000 cell equivalents per ring:

0.4 mL volume ring filled with 25 000 cells mL21 equivalent

chromatin. No outlets are opened in this step, so that the rings

can be ‘‘dead-end filled’ with chromatin; opening outlets will

result in loss of chromatin (Fig. S1-iii). Dead-end filling is

possible because PDMS is gas permeable; in a matter of minutes

the air in the rings is expelled and replaced by liquid. During IP,

the antibody-beads are mixed with the chromatin for 2 h, and the

device is placed on a Peltier device set at 4 uC (Fig. S1-iv).

After IP, the beads are re-stacked in a column behind sieve

valves SV1-SV16 (Fig. S1-v), and washed for 10 min with RIPA

buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 0.5 mM EGTA,

1% Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate, 140 mM

NaCl) introduced through inlets ‘W1’ (Fig. S1-vi). Inlets ‘W2’

and ‘W3’ were unused in this case, but could be used to flow in

other wash buffers if a multi-buffer wash system is desired. When

washing, the pneumatic pressure on the wash buffers is adjusted

to 5 psi to better control wash volume. A lower pressure also

prevents specifically bound materials from being stripped off the

antibodies under high shear forces and lost. Following the RIPA

wash, the beads were eluted into thin-walled PCR tubes with a

minimal amount of TE (10 mM Tris-HCl, 1 mM EDTA pH 8.0).

These PCR tubes were then immediately placed on a magnet and

the DPBS removed with a pipette leaving only the magnetic

beads. The DNA was then purified from the beads using the

Chelex (Bio-Rad) resin extraction method described pre-

viously.29 An ethanol precipitation was done on the input

Fig. 2 Schematic of HTChIP. Reagent-containing flow channels are shown in blue shades, and valve-actuating control channels in red. Antibody-

bead preparations are loaded into the black-boxed regions of rings via Inlets 1–16, and then mixed with sheared chromatin. After IP, samples are

washed in columns stacked behind sieve valves SV1-16, and collected from the device. All fluids are driven by pneumatic, non-pulsatile pressure at 5 psi.
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Figure 5.4: (a) The high throughput chromatin immunoprecipitation (HT-CHiP) designed
by Wu et al. [67]. (b) The automated arraying technique is applied to one mixer bank
(which consists of two mixers units with shared control) from the original design with a
replication value k = 3 to insert two additional mixer banks.

From the original design a pair of mixer units, their independent outputs, and

their shared pneumatic control ports were selected for arraying with a replication value of
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k = 3. Since the mixers existing control lines were aligned and actuated in a SIMD fashion

they can be arrayed directly and can be actuated using the original application. The only

modification to the application that needs to be accounted for after the device is arrayed is

to actuate the two new sets of pneumatic control inputs that were arrayed automatically by

virtue of being contained within the selection. If purely passive devices had been contained

in the selection, then no modification to the application would be necessary.

It should be noted that the selection made in this case was done for illustrative

purposes. Normally, an entire cross section of banks would be selected for arraying which

would fill in the relatively empty portions of the design with additional mixer units, bringing

the total mixer unit count to thirty-two rather than the twenty seen in the example.

5.4.3 Fluidic Memory Insertion

Any flow connection, which is an etched channel in a fabricated device, can be used to

temporarily store fluids for later use. This concept is best illustrated in the general purpose

microfluidic device introduced by Urbanski et al. [61] where fluidic memory was embedded

into the system to allow for complex mixtures to be made from a large number of base

chemical and biological fluids without the need for each to have its own independent fluidic

input.

Using automated arraying any straight line connection segment long enough to

hold the desired volume of fluid can be automatically converted into fluidic storage. First,

a selection of the channel (Figure 5.5a) is made and the replication number k is set to the

number of fluids that need to be stored in parallel. This number may need to be increased
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(a) (b)

(c) (d)

Figure 5.5: (a) An arbitrary channel segment in a placed and routed device (green) is
selected and (b) arrayed using the automated arraying technique presented here. Junctions
are added (yellow) to allow the new channels to be used as storage. The introduced junctions
can either (b) be embedded control or (b) routable control junctions. (d) These fluidic
memories (yellow) can then be re-arrayed as necessary, creating more memory and adding
additional junctions (blue).

by one if a bypass line is needed to allow fluids to pass through without affecting the other

fluids being stored. From there the arraying step will create k − 1 number of new channel

that can be used to store fluids. Two junctions are then automatically inserted, however

an active junction must be used. Because the fluidic memory will be required to select

fluids from individual channels on demand for use in the system, each channel needs to

be individually addressable which can only be accomplished in microfluidics with active

valving.
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The active junction that is inserted can either be an embedded control junction

(Figure 5.5b) or a routable control junction (Figure 5.5c). Which version of the junction

should be used depends largely on the original device. If the original device was a totally

passive device, then the embedded control junction would likely be chosen because no

additional processing steps would need to be performed except for the creation of a new

microfluidic application, since control is now required to run the device. If the original

device was active, then it may be preferred to use a routable control junction so the newly

introduced control lines can be routed to previously defined inputs, reducing the number of

total inputs to the device.

Once fluidic memory has been introduced into a device if more memory channels

are needed then the original device can be re-arrayed with a higher replication value k.

Alternatively, the memory that has already been introduced can be arrayed, as illustrated

in Figure 5.5d. Here, the memory from Figure 5.5c has been selected and the automated

arraying method is performed on it with a replication number k = 2.

5.5 Conclusion

The algorithm presented in this chapter solves the time consuming and error prone task of

automatically arraying a subsection of a microfluidic device, primarily in order to increase

throughput. In order for the arrayed device subsections to function correctly, the fluidic

resistance of all arrayed subsections must be equalized, as this chapter illustrated in the

small serpentine addition to the middle path in Figure 5.3c. This detail is often overlooked in

manual design leading to errors that are only discovered during testing. Utilizing automated
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arraying in conjunction with a multiplexer generator ensures that this class of errors does

not occur. While the multiplexer generation is only briefly mentioned here, the generation

of functionally correct junctions and multiplexers for a variety of different microfluidic

technologies and applications is an area ripe for further study. In the future, we hope to

partner with domain experts to develop a robust multiplexer generator toolkit which can

be used here and in any other design toolchains or workflows.
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Chapter 6

ParchMint: A Microfluidics

Benchmark Suite

6.1 Introduction

The project that this dissertation is based around was originally started by Dr. Jeffrey

McDaniel in 2012 to support the creation of the simulated annealing-based method for

component placement [41] which has been referenced throughout this document. While

the project was developed to outlive that specific publication, the benchmarks that were

originally used for publication were based on a set of openly available digital microfluidics

benchmarks created by Technical University of Denmark (DTU) [22] as that was one of

the few available sets of benchmarks and had already been used to generate continuous-

flow architectures by Minhass et. al [45]. When planar embedding based methods were

first being investigated during the development of the Planar Placement and Network-
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flow based routing method presented in Chapter 2 as a new placement method to that

same project, some of the benchmarks that were already available were found to be non-

planar. Since planarity is a requirement to that method the original benchmarks were hand

planarized through the introduction of additional switch components. This original set of

hand planarized benchmarks, along with a small subset of additional benchmarks created

from literature and those provided by Microfludic Innovations LLC, were used for testing

all the methods presented in the previous chapters.

As the project evolved and there was a desire to move towards fabrication as a

form of validation for algorithmically placed and routed devices, as well as devices that were

modified using post-processing methods, the benchmark set became a roadblock. While the

benchmarks that had been constructed were excellent for testing how the algorithms scaled

along with devices, they were too large for us to reasonably fabricate and test with the

resources we had available. To solve this problem in the short term, we started to develop

small architectures with accompanying entity designs to allow us to develop a full design

capable of fabrication, with the first result of this effort being the mixer device in Chapter 5

which was subjected to the automated multiplexing post-processing method. Entities were

created specifically for that design, and while the netlist was laid out by hand for the sake

of image quality, the automated multiplexing method was applied directly to that netlist

to create a file which was then fabricated and tested.

While this method is effective at creating high quality components which we know

will fabricate well in our facilities, there are two main issues. The first is that this is a

time and labor intensive process that requires many cycles of development, fabrication, and
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testing before valid components and devices can be created. The second is that develop-

ing components which are well fabricated in our facilities and of interest to our team and

collaborators means we are only creating benchmarks for a specific subset of microfluidics

technologies, which may skew our development efforts to target those specifically without

being generalizable to the field. In order to attempt to scale our benchmark development

more quickly and try and correct for choice bias, we reached out to Cross-disciplinary Inte-

gration of Design Automation Research (CIDAR) labs at Boston University (BU). CIDAR

labs had the inverse problem that we had in that they had originally designed their tools

with fabrication in mind and had many small benchmarks along with entities they were

capable of fabricating. This means that they were able to validate their designs through

fabrication, but their designs were too small to know if their algorithms could scale past a

relatively small number of components and connections.

Because our needs were so complimentary, we began a collaboration which evolved

into a long-term project to develop a benchmark ecosystem for continuous-flow microfluidic

devices. The first step in the development of this ecosystem was a JavaScript object nota-

tion (JSON) standard file format, which started with the desire to unify the benchmarks

developed by ourselves at University of California Riverside (UCR) as well as the CIDAR

labs team at BU through a standard interchange format in order to create a large available

set of benchmarks to utilize for evaluation. This then evolved into ParchMint, which is

a new system for defining, discussing, and generating continuous-flow microfluidic device

benchmarks in a standard and systematic way. ParchMint contains a standard interchange

format which allows research groups to exchange designs at various stages of the design
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automation process, provides a standard method for verifying design specifications and the

comparison of results. The associated benchmark suite is more substantial than any cur-

rently being used in literature and is highly varied across a number of known metrics of

interest to design automation researchers as well as some new parameters. These parameters

and their role in quantifying microfluidic designs in literature will help to deepen the discus-

sion around the effectiveness of design automation algorithms to real-world continuous-flow

microfluidic devices. Finally, we introduce Scribe, a benchmark generator that is capable

of creating arbitrarily large benchmarks with a known solution that can be tuned to stress

test how algorithms can cope with variance in specific metrics of interest.

The long term goal of this project is to create a benchmark ecosystem covering the

evaluation of everything from layout and fabrication to functional validation and individual

component design.

6.2 Background

Research into continuous-flow microfluidic microfluidic very-large-scale integration (mVLSI)

design automation currently relies on a small number of architectural netlists, as illustrated

in Table 6.1. These benchmarks have been generated either by converting bioassay spec-

ifications into an artificial architecture or by hand converting microfluidic designs from

literature, with little consistency between research teams in the benchmark set that they

use for testing. Here we briefly describe the provenance of the existing benchmarks and

some of the problems associated with them.
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Figure 6.1: Currently, individual research teams create benchmarks by analyzing device
images or layout files (such as CAD files) manually, as represented in the figure with device
from Wu et. al [67], or by converting bioassay applications through a variable architectural
generation step [45, 57, 48, 28]. ParchMint solves this problem by providing a standard
method for specifying benchmarks and a publicly available set to test against. Addition-
ally, it provides metrics to characterize new benchmarks and a method for automatically
generating new ones.

6.2.1 Bioassay Based Benchmarks

The only benchmark sets that are currently publicly available are two suites of bioassay

specifications for electrowetting-based digital microfluidics, one released by DTU [22] and

another by Duke University in the United States [54]. Over the years, these have become

the de facto “standard” benchmark suite for continuous-flow based microfluidics and con-

stituting approximately half of benchmarks in literature today. Because these benchmarks

represent a collection of microfluidic applications for electrowetting, not architectures for

a flow-based device, they must be converted into an architectural netlist to be used for
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Table 6.1: Comparison of the benchmarks used for the evaluation of different physical design
algorithms in literature
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]

EA [45]* 3

PCR [44, 54]* 3 3 3 3

IVD [44]* 3

CPA [44]* 3

Synthetic 1 (10) [44]* 3 3 3 3

Synthetic 2 (20) [44]* 3 3 3

Synthetic 3 (30) [44]* 3 3 3 3

Synthetic 4 (40) [44]* 3 3 3 3

Synthetic 5 (50) [44]* 3 3 3 3

ProteinSplit-1 [54]* 3 3

ProteinSplit-2 [54]* 3 3

InVitro-1 [54]* 3 3

InVitro-2 [54]* 3 3

InVitro-3 [54]* 3 3

Kinase act. [15] 3

Acid proc. [24] 3

mRNA iso [36] 3

Gradient Generator [52] 3

HIV1 [34] 3

ChIP (4IP) [66] 3

ChIP (10IP) 3

Chip1 3

Chip2 3

Cell free Bio Net [47] 3

AquaFlex-3b † 3

AquaFlex-5a † 3

*interpreted from a bioassay application
†Proprietary designs from Microfluidic Innovations LLC
PCR is listed in the DTU and Duke benchmark suites
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continuous-flow based physical design automation. Because there are many different meth-

ods for converting an application to an architecture [45, 57, 48, 28], each research team has

used a different method of generating the architecture netlists from the application. Some

of these methods do not generate a planar architecture and will require further processing

creating another avenue for the benchmark interpretation to diverge.

Even when there is a desire to use the same benchmarks across groups, there is

no publicly available set of architectural netlists or agreed upon file format for specifying

them. This makes it nearly impossible to compare previously published algorithms against

newer literature in a meaningful way. For example, McDaniel et. al uses Synthetic 1-

5 when reporting results for a Simulated Annealing (SA) based placement method [41].

Wang et. al [64] builds on this work by introducing a negotiation based router and a

placement adjustment system and compares against McDaniel et. al. However, when

making the comparison Wang et. al uses the Duke University benchmark set rather than

the DTU benchmark set used by McDaniel et. al, making a direct comparison of the

two methods impossible. Compounding this issue is the lack of specific information given

for each benchmark. McDaniel et. al gives no additional information on the benchmarks

used, and Wang et. al only provides the number of components each benchmark contains.

Without additional information, it is impossible to know if the method was truly superior,

or simply better suited to that particular set of benchmarks.
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6.2.2 Literature Based Benchmarks

There is a wealth of literature describing microfluidic devices that were designed manually

(e.g., using AutoCAD), fabricated, and then used to perform a variety of biological assays.

Some of these publications provide enough visual information, like the example in Fig. 6.1,

to derive a netlist through visual inspection [61]. In more recent years, microfluidic design

automation researchers have reported experimental results using this approach [48, 59];

however, to the best of our knowledge, these netlists and their corresponding file formats

used in these publications have not been widely disseminated.

Even with this method of benchmark creation, there is a high amount of variability

in interpretation. Because these systems represent components using a bounding box, there

can be variance in the measured size of the component from the source material. Even more,

fundamentally there can be variance in how many and which valves and routes should

be combined to create a single component. There are also differences in the way group

represent their components. For example, Grimmer et. al assumes each component has four

terminals located at each corner, while others assume pins can be located at other locations

on a component’s edge, as illustrated in Figure 6.2 [17]. The granularity of the device

specification can also affect algorithmic performance, with larger granularities requiring less

memory and processing time but generating less precise results. None of these are problems

when generating benchmarks, per se, but without directly disseminating the results they

are nearly impossible to reproduce faithfully.

Since these benchmarks have to be created by hand, they are also limited in the

number of components and overall complexity. Recent work on physical design automation
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has been limited to devices with at most 65 components, including layout problems formu-

lated as boolean satisfiability (SAT) [17] and integer linear programming (ILP) [59], which

will not scale. Subsystems of existing benchmarks are sometimes replicated to create a new

benchmark to test the algorithm’s scalability. In the case of ChIP (4IP) and ChIP (10IP),

which is the same base design with 4 and 10 mixing subsystems respectively. While this

does increase the scale of the benchmark, it also creates a very heterogeneous device which

may be more amenable to certain classes of algorithms.

Figure 6.2: This illustrations in this figure represent how different design automation sys-
tems represent the microfluidic components they use for placement and routing. Different
algorithms assume fixed positions for terminals where the channels can connect (red) on
the components’ boundary (blue). (a-b) Four terminals are assumed either at the corners
of the bounding box or at the center of each bounding box wall [38, 17, 64] (c-d) Two
terminals are assumed for each component existing at the center of two opposing bounding
box edges, with the latter including a single terminal in the component’s center [13, 59].
These variations in the basic component models induce variability in the layouts generated
by the algorithms.
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6.3 Contributions

The main contributions of this work is a standardized format for specifying continuous-flow

microfluidic architectural netlists, a comprehensive set of benchmarks which aim to facili-

tate direct comparison of design automation algorithms, a set of metrics for quantitatively

discussing these and future benchmarks, and a tool for generating new benchmarks meeting

the desired complexity. Here we further describe each of these contributions.

6.3.1 Standard Interchange Format

A standard notation for describing a continuous-flow microfluidic device architecture is nec-

essary to allow for multiple groups to be able to describe new benchmarks in a replicable

manner and effectively evaluate new algorithms against existing ones. To this end, the

ParchMint standard interchange format is introduced as an architectural netlist description

standard. These netlists take the form of a JSON file, which has become a well-known

standard in recent years for structured data and can be parsed easily in almost any pro-

graming language. To create a concrete and verifiable interchange standard, we have also

provided a JSON-Schema file on the benchmark website 1 that is used to describe the fields

necessary in a JSON netlist [50]. Through this, new JSON architectural netlists can be

verified easily against the schema for correctness. Here we present a brief description of

some of the different fields in the interchange format and their usage in current and future

benchmarks.

1parchmint.org
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The architecture netlist is primarily described through three top-level object lists:

layers, components, and connections as shown in Figure 6.3. Every object within the system

has a name and id field, which represent a human readable label and a unique id that can

be referenced by other objects, respectively. The layers list can contain any number of layer

objects. While the current benchmark suite and the majority of devices fabricated today

contain only a flow or a flow and control layer, due to emerging methods of manufacturing

there is growing interest in allowing for additional layers either to allow multi-layer routing

through vias or to integrate sensors and electronic layers into the design automation process.

The component objects contain a layer field representing the layers it should be present on,

the x- and y-span fields which collectively describe the bounding box associated with the

component and a list of ports. Each port contains an x and y location value which represents

that ports location on the edge of the component bounding box and a unique label. The

connection objects also contain a layer list, as well as a single source and a list of sinks.

Both the source and the sink contain a component field which references the id of the

source/sink component(s) that that connection routes between as well as a port field that

references which port the connection should use on the specific component. Multiple sinks

can be supplied to allow for multinet-style connections that start from a single source and

branches to end at multiple sinks.

This standard is required, at its core, to represent the architectural netlist of a mi-

crofluidic device. To make comparisons between different placement and routing strategies

easier, the standard presented here is also capable of containing placement and routing in-

formation allowing for easy external evaluation and validation. The standard has the added
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benefit of allowing groups using the standard to publish their placed or routed netlists which

can be used by other groups to implement new routers or post-processing steps without the

need to re-implement the original algorithm. The features object list at the top level is

used to describe the concrete placement and routing information of the abstract compo-

nents and connections to support additional post-processing and design rule checking steps.

This list can contain two types of objects, component features and connection features. The

component features contain location information for a component, and only one component

feature can exist for each component object in the component list. The connection feature

contains a beginning and ending point for a straight line segment of a connection and allows

multiple straight line segments that constitute a single connection object in the connection

list.

As the interchange format is stored in JSON, it allows researchers to store ad-

ditional information in the form of custom fields and params fields as seen in Figure 6.3.

We foresee researchers utilizing this extensible format to store additional information re-

garding the device like emerging layout constraints, custom design rules [26], specialized

component/connection physical design information, and protocol/assay descriptions [65, 71]

necessary for specialized algorithms. In addition to parameters for emerging design require-

ments, the custom fields and params fields should also encode any values necessary for the

correct processing or validation of a netlist. Any design algorithms that require external

values to generate a specific result netlist should encode those values within the params

field so that future designers can easily reuse and validate those results.
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Figure 6.3: This new standard interchange format has collections of components, connections
and layers that represent the abstract information about the benchmark. The features
collection represents the detailed device layout once it is placed and routed by a design
algorithm and finally the ability to add additional data that is specific to different design
automation algorithms.

6.3.2 Comprehensive Benchmark Suite

The benchmark suite presented here has been developed to be agnostic existing physical

design algorithms. We have attempted to create a representative set of benchmarks that

exhibit the attributes that are commonly seen in biological experiments and shown in exist-

ing real-world designs. The majority of benchmarks currently being used in physical design

automation publications consist of fewer than 100 components. As a claim of mVLSI is

that you can fit thousands of valves onto a single device, however, the current benchmarks

do not represent devices of this scale. Here we present benchmarks based on real-world
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devices that scale up to over 400 components and present a method for generating much

larger benchmarks in Section 6.3.3. All these benchmarks have been made available online

2 in the JSON interchange format and represent planar undirected multigraphs. Here we

introduce each benchmark subset and briefly describe their origins:

Assay Inspired Benchmarks

These benchmarks were created by examining images from a previous microfluidic device

publication for performing a complete biological assay. The netlists were created using the

extracted component and connection graph from the device images and applying a general

set of component descriptions across the entire architecture.

• Chromatin Immunoprecipitation (chip): an automated DNA-protein interaction

device [66]

• General Purpose Microfluidic Device (gpmfd): a device for performing multiple

mixing and storage operations [61]

• Molecular Gradient Generator (mgg): a device for generating five concentration

levels of a two-sample molecular mixture [52].

• HIV Immunoassay (hiv): a bead-based HIV1 p24 sandwich immunoassay device

[34].

• auqaflex-3b & aquaflex-5a: mVLSI lab-on-a-chip netlists provided by Microfluidic

Innovations, LLC based on the work of Amin et. al [1]

2parchmint.org
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Application-converted Benchmarks

These benchmarks are a set of generated architectures, synthetic N (1-7), based on the

DTU electrowetting-based digital microfluidic bioassays [44] and converted to netlists using

an architectural synthesis method based on the one introduced by Minhass et. al [45]. Some

of the netlists that were generated using this method were non-planar, which was corrected

by manually removed valves and connections until the netlist was planar.

Biologically Inspired Benchmarks

This set includes benchmarks taken from Ref [26]. These designs are inspired by devices

which were used in synthetic biology experiments and were reviewed by Huang et. al [27].

• flow focus: a chip that can produce water droplets in a continuous flow of oil

• grad cells: a chip that can separate inputs into spatial gradients

• hasty: a chip that uses a grid of cell traps to create a visually readable sensing array

out of engineered bacteria

• logic04: a multi-input chip that facilitates the long-term monitoring and control of

fluids between cell traps

• multi input: a chip that takes multiple input fluids, mixes subsets of them, and

traps cells in a central cell trap for culturing

• net mux: a chip which uses pressure control lines to multiplex inputs and selectively

mix chosen inputs and used in oligo-nucleotide synthesis
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• rotary16: a rotary pump with 16 inputs and 16 outputs

• rotary cells: a rotary pump which takes one input from a 4× 1 mux and directs the

contents to one of four cell traps

• simple: a chip which allows selection of one of two inputs to direct to a cell trap

• tdroplet: a cell trap which switches between two t-configuration droplet generators

Grid Benchmarks

This benchmark set includes designs grid N (2-12) which contain generic N ×N grids of

cell-traps with valves that allow for the selection of either horizontal or vertical rows.

6.3.3 Scribe

Even with the Grid benchmarks nearing 500 components, larger benchmarks will be needed

to keep up with the evolving demands of microfluidic designers and to stress test physical

design automation algorithms. To address this issue, we introduce Scribe, an algorithm

which allows the user to set desired parameters such as the number of components, average

connectivity, and area utilization which will be used to generate designs exhibiting the

characteristics observed in the benchmark suite or as input by the user. These designs can

be generated to be arbitrarily large but with a known solution, allowing existing algorithms

to be tested for scalability. Pseudocode for the Scribe algorithm is presented in Figure 6.4

with full code available on the benchmarking website 3.

3parchmint.org
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Scribe first takes scans of all component definitions available to it from a large and

expandable set and calculates the average available component size. The average available

component size (CAvg), the number of components (N), the target utilization (U) are then

used to set the size of the device (line 3). When N components are added to the device,

it will approximate the utilization U (if set). The placement loop (lines 4 – 7) places a

new component ci (from the available entity set) at a valid random (x, y) coordinate, where

a valid (x, y) is any coordinate that has no component cj 6= ci intersecting the bounding

box: ([x, x + ci.w], [y, y + ci.h]). The routing loop (lines 9 – 16) routes connections until

the average connectivity is met (d < DAvgN) or no new routes can be generated. The max

degree DMax constraint is never violated (if set). Since Scribe is capable of generating a

huge range of designs, and designs of interest would likely be untenable for current methods,

we have omitted reporting results for generated benchmarks.

6.3.4 Benchmark Space

ParchMint is an actively-developed benchmark suite; as the field progresses, we expect to

include additional benchmarks with increased size and complexity and which represent new

and emerging trends in microfluidic design. To accommodate future advances in microflu-

idics and their applications, it is necessary to be able to characterize the complexity of

benchmarks quantitatively. This will allow the benchmark suite to evolve to best mimic the

types of devices that are of interest to microfluidic designers.

Here we present some design attributes which were determined by qualitatively

examining the structure of the benchmarks and identifying the properties associated with
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Require: N : Number of components,
Target utilization U as a %,
D : (Avg,Max)

Ensure: Architecture A
1: u← 0, current utilization
2: Let Cavg: Average entity size
3: W,H ← Cavg.w ∗N/U,Cavg.h ∗N/U
4: while n < N do
5: A← ci =newcomponent(x, y)
6: Place at valid(x, y)
7: end while
8: d← 0
9: while Degree d < DAvg ∗N do

10: Select component ci such that ci.d < DMax

11: if ri = Route(ci) successful then
12: A← ri
13: ci.d← ci.d+ 1
14: d← d+ 1
15: end if
16: end while
17: return A

Figure 6.4: Scribe pseudocode for generating custom benchmarks similar to real-world
benchmarks.

the various benchmark netlists. Since a microfluidic architectural netlist can be viewed

as a graph, with nodes representing components and edges representing connections, it

is often useful to use graph theory terms when describing netlist properties. Therefore,

these properties were then converted into quantitative attributes that are typical for graph

networks, and categorized into either component attributes or connection attributes.
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(a) (b)

(c) (d)

Figure 6.5: The above graphs visualize various component/connection attributes, heuristics
(marker radius) of all the benchmark sets. (a) Helps visualize the variation in the connec-
tion complexity and the scale. The figure also shows how most of the assay inspired and
application converted benchmarks occupy the same complexity space. (b) Helps visualize
the variation in physical dimensions of the components. As it can be seen the Biologically
Inspired and the Grid benchmarks have far larger components with large variations in the
dimensions of the components. (c) Shows how the variation in the connection density per
component. (d) Shows how the connection complexity show in (a) and (c) can be effectively
reduced when we look at the netlist connectivity. We can see that the benchmarks with the
highest connections to a component can reduced drastically indicating buses.

Component Attributes

• Total Components: the total number of components that are present in the netlist.

It is one of the main metrics for describing benchmark complexity.
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• Average/Minimum/Maximum Component Area: the average/minimum/maximum

area take up by (a) component(s) in the netlist. It shows the variance between com-

ponents, and if the design has homogeneous or heterogeneous component sizes.

• Total Biconnected: the number of components in the system that have exactly

two connections. Biconnected components can imply a pipeline stage or connection

between device subsystems that are relatively independent.

Connection Attributes

• Total Connections: the total number of connections that are present in the netlist.

This combined with the number of components is currently the largest factors when

considering benchmark complexity.

• Average/Minimum/Maximum Connectivity: equivalent to the vertex degree

in graph theory, this is the average/minimum/maximum number of channels con-

nected to a component in the netlist. It illustrates whether connections are distributed

through the system or aggregated in a small number of components.

• Reduced Connections: the number of connections, reduced by treating groups of

channels that connect the same two components as a single bus. This value would be

much lower than the total number of connections in a device with components that

are highly interconnected, suggesting that some of the complexity can be reduced

effectively.

These benchmark characterization attributes will give researchers a common vo-

cabulary to quantify where their algorithms succeed and where they are limited. It will also
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allow for the creation and comparison of new benchmarks that stress on different combina-

tions of attributes in the continuous-flow microfluidic benchmark space. For instance, the

benchmarks presented here have a wide range in the number of components, average con-

nectivity, biconnectivity, and average component dimensions as illustrated in Figure 6.5a,

Figure 6.5b, Figure 6.5c. However, there is lower variance in maximum component degree,

and reduced connections as illustrated in Figure 6.5d. These metrics provide a quantitative

means for the targeted creation of new benchmarks in the future that are substantively

different from the current set.

6.4 Case Study

6.4.1 Physical Design Flow

Current continuous-flow microfluidic devices can be viewed logically as having two layers; a

flow layer with components and channels through which the reagents used in the experiment

move, and the control layer which is used to actuate the valves and manipulate the movement

of fluids. The device shown in Figure 6.1 is an example of one such microfluidic device that

was intended for high throughput drug screening. The two logical layers, flow, and control

is colored in blue (the flow layer colored in blue and green in the polydimethylsiloxane

(PDMS) device) and red respectively in the figure. The majority of current physical design

automation tools and algorithms automate the placement and routing of the flow layer,

control layer, or the co-design of both. The benchmarks presented here were all processed

using two different algorithms, each of which is outlined here:
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Figure 6.6: Both the benchmarks presented here and those generated by Scribe use the
JSON standard interchange format, which can be easily read and parsed for metric in-
formation and quantitative analysis. Individual teams systems can read this format, and
the data processed through flow layer and control layer generation allowing the researcher
to capture and share the information at any step. This makes it an excellent format for
not only describing benchmarks but describing the current state of a partially processed
microfluidic design.

Flow Layer Generation

The first step in the physical design process is to take the components in the netlist and to

lay them out on a 2D plane with no two component bounding boxes overlapping. McDaniel

et. al [41] and Huang [26] used SA to place the components and evaluated different objective

functions to optimize. BU has implemented a SA method based on these works to evaluate

this class of algorithms. It should be noted this method is differs from the SA method
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introduced in Chapter 2. Additionally, we use the Planar Placement method introduced in

Chapter 2 to evaluate these Planar Embedding classes of algorithms.

Next, we need to route the connections between components. Since these channels

carry fluid, any intersections would cause the fluids they contain to contaminate each other,

thus nullifying the results of the experiment and necessitates the planarity requirement.

Huang [26] implemented a routing method based on Hadlock’s algorithm which increases

the cost of creating intersections to avoid them. BU implemented a similar Hadlocks method

and paired it with SA for the presented results. The Network-flow based routing approach

introduced in Chapter 2 to route the flow layer which made multiple rip, re-order and

re-route attempts if routes intersected is paired with Planar Embedding for the presented

results. Both methods mark the routing as a failure if intersections are found.

Control Layer Generation

Previous algorithms have been designed for control-flow co-design [59], control optimization

[46], and control routing [71]. Control layer generation is performed by routing each valve

on the device to its pressure source pin. However, to perform control optimization and

allow valves to share pressure source pins, an application file must be mapped onto the

architecture. The reason being that valves can only share a pressure source when they

share an actuation sequence, and this can be determined only from the application. Since

we are not addressing the problem of application mapping here, not providing applications

to be mapped, and since all benchmarks do not contain control layers we have chosen to

exclude methods that perform control optimization [59] or base the layout on the control

layer [71] to generate the physical design to avoid creating an unfair comparison.
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Fabrication

The last step in any design automation framework is the fabrication. The majority of

microfluidic devices in literature are currently fabricated in PDMS or glass using soft-

lithography [51], a process where a photo-resist and mask are applied to a substrate and

developed to create inverse channels. Additionally, multiple valve technologies have been

developed each of which requires different parameters based on their type, desired actuation

pressure, and substrate material [62, 19]. Design parameters for fabrication are out of

scope for this work because of the significant variance between technologies, materials, and

individual fabricators.

All of the benchmarks mentioned in Table 6.1 were designed to target soft lithog-

raphy as a manufacturing method. However, the majority of the benchmarks have not

been fabricated. Since this manufacturing process does not allow the device to have ver-

tical vias between layers, all the devices manufactured using this process are required to

be planar. This fundamental feature of microfluidic device architectures has been exploited

in the design of various algorithms used in literature. This does not reflect newer manu-

facturing trends such as computer numeric controlled (CNC) milling [32], 3D printing [16],

and laser cutting [63]. These methods have support for the fabrication of vias to varying

degrees and introduce the viability of non-planar architectures. While both the Hadlocks

and Network-flow routing algorithms target a planar design, the benchmarks list of layers

allows for additional layers and vias between them to be introduced in future algorithms.
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6.4.2 Metrics

There are several standard metrics currently used to evaluate the effectiveness of a physical

design algorithm. Total area is a primary metric for reporting the total square area that the

device consumes. Utilized area measures the amount of the total space that is used by the

component and connection and dividing that by the total area to show it as a percentage.

Total channel length measures the total length of all channels for all connections in the

system and average channel length, therefore, is the total channel length divided by the

number of connections.

6.5 Results

The flow layers of the benchmarks presented here were run through two distinct physical de-

sign automation frameworks, and the metrics from Section 6.4.2 are presented in Tables 6.2

and 6.3. Here we discuss some of the issues that were found when performing this work

which should help to illustrate why a benchmark suite with a high amount of scale and

feature variance is necessary to evaluate current and future design automation algorithms

properly.

In all cases, both systems were capable of generating valid placements, but those

placements were not always capable of yielding a valid routing. The SA and the Hadlocks

system was unable to find routable layouts for the benchmark sets Assay Inspired and

Application-converted even when the number of iterations was double of that used to place

and route Biologically Inspired.
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The Planar Embedding and Network-Flow algorithm only failed on the net mux

benchmark in the Biologically Inspired Benchmarks set. net mux contains two components

with very high connectivity, 19 connections in each case as seen in Figure 6.5d. The presence

of a large number of connections to a single component created areas of high routing density

which became difficult to solve. The problem is exasperated in the case of planar embedding

since it does not consider a rotation step while performing placement. Since one of the high

connectivity components only has the majority of its ports on one of its sides, if that

component’s ports faced away from the majority of its connected components then it will

become even more difficult to find a valid routing.

The Planar Embedding and Network-flow method are only capable of routing the

first benchmark, grid 2, of the Grid Benchmarks suite. Once again, the Planar Embedding

algorithm was capable of creating a valid placement for the components; however, that

placement is inferior at supporting a grid-like architecture structure. The reason for this

lies with the underlying embedding method that is used to create the initial placement.

The Chrobak-Payne straight line planar embedding algorithm [8] functions by using trian-

gulation to place its points within a 2D plane. With the grid Benchmarks, it tends to place

them along the diagonal of the plane and within sub-triangles within the system. This

arrangement leads to congestion when routing along/across the diagonal and a high rate of

routing failure. The grid 2 benchmark is the largest benchmark that can be routed before

the congestion is high enough to cause routing failures in this type of layout.

While the Planar Embedding algorithm was successful in generating the layout for

all of the Assay Inspired and the Application Converted benchmarks it was observed that the
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SA and Hadlocks algorithm performed very poorly on these benchmark sets. The simulated

annealing algorithm [26] minimizes a cost function that based on total connection length

and the total area of the chip. After extensive testing, it was found that the algorithm

often optimized for the most compact layout which was unroutable (non-planar). The

combination of factors where (1) the small component sizes (Figure 6.5b) (2) the sparse

connectivity (Figure 6.5a) 3) non-inclusion of routability as a factor in the objective function

consistently pushed the algorithm to generate non-planar layouts.

Some amount of difference in benchmark metrics stems from the amount of buffer

space that is reserved around components and connections for routing. This difference is ob-

served in the simple and flow focus benchmarks from the Biologically Inspired Benchmarks

set, where the relatively large amount of buffer space reserved in the Hadlocks routing

method coupled with the small component sizes means that there is a significant amount

of wasted space. On the other hand, the Network-flow method reserves a relatively small

amount of buffer space but may be required to make more rip, re-order, and re-route itera-

tions before it can find a valid route. These buffer spaces reserved for routing can also make

the exchange between teams of the standard interchange format between physical design

steps difficult, as placements using one method may not meet the buffer routing require-

ments of another. This type of variability between methods necessitates the inclusion of

the params field within the standard interchange format.

Since both the routers evaluated here are grid-based routers, the memory con-

straints can become a critical issue. Benchmarks with placements that use a large area

and utilize a high precision required more memory than what was available to build a full
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routing grid. Both the Hadlocks router and the Network-flow router can utilize a 1µm,

10µm, or 100µm precision routing grid through a pre-processing method that scales the en-

tire architecture netlist down by a factor before the placement step. The scaling decreases

the accuracy of the results by a small amount but allows for the processing of much larger

benchmarks. Many of the benchmarks presented here were processed with a 10µm routing

grid, including those processed with the Hadlocks router, and are annotated in Tables 6.2

and 6.3.

Additionally, issues arose during the routing phase because of the different methods

that each router used to determining a starting and ending port. While some components

can function with its connections routed to arbitrary ports, others require specific ports to be

utilized by a specific connection. The Network-flow algorithm assumes that it can perform

its port assignments, while the Hadlocks router requires all ports to be pre-assigned before

it can perform routing. Because of this discrepancy, ports were assigned to all connections

in the benchmarks, even when the component may not require a specific port assignment.

6.6 Conclusion

ParchMint started as an attempt to standardize benchmarks individually developed at

BU CIDAR lab and UCR to enable more robust testing of the two institutions’ respective

algorithmic toolchains. This effort was subsequently expanded to create the benchmark suite

that we present here, which represents the beginning of a longer-term project to establish a

more standard and sophisticated nomenclature to specify microfluidic device architectures

and design algorithms. In the future, we hope to incorporate input from domain experts
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and design researchers to complement current efforts, which were primarily carried out

by experts in design automation. We hope to ensure that the benchmark suite continues

to grow in size and that it incorporates that latest advances in microfluidic techniques

and technology. We expect this effort to encompass all levels of the microfluidic design

toolchain, including similar standards, benchmarks, and analysis for component entities,

control systems, and device functionality and hope that other groups will join in this ongoing

effort.
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Table 6.2: ParchMint benchmark results for the Planar Embedding & Network-flow method

Benchmark
Planar Embedding & Network-flow

Area Route Length
Name NV NE DIM Size (WxH) % Total Avg.

chip 33 32 6318 2181x2181 4.8 19933 622.91
gpmfd 13 12 3469 701x701 9.93 3695 307.92
mgg 30 38 16090 3258x3258 5.02 50305 1323.82
hiv 13 12 3700 761x761 8.9 3416 284.67
aquaflex-3b 14 13 3464 802x802 8.24 4489 345.31
aquaflex-5a 17 16 2905 915x915 6.69 6606 412.88

synthetic 1 21 21 8409 1699x1899 6.21 13449 640.43
synthetic 2 12 11 15483 1410x1610 8.33 3306 300.55
synthetic 3 34 33 15067 3702x3902 3.73 26963 817.06
synthetic 4 34 33 15058 3692x3892 3.81 35074 1062.85
synthetic 5 46 45 15869 5224x5524 2.81 81353 1807.84
synthetic 6 62 64 11611 5700x5850 2.31 50512 789.25
synthetic 7 62 61 14727 6720x7170 2.34 212130 3477.54

flow focus 4 3 7220000 3252x5172 85.88 5876 1958.67
grad cells 9 17 13697658 28870x1525† 24.36† 129980† 18568.57†
hasty 10 23 4418032 12934x12258 27.9 50253 5583.67
logic04 9 41 13697658 15860x38740† 32.39† 49260† 9852.0†
multi input 16 16 2663087 22600x18890† 10.12† 85490† 9498.89†
net mux 61 87 1297976 # # # #
rotary16 11 55 36640000 81630x20470† 19.49† 50910† 12727.5†
rotary cells 13 28 8915763 21180x20250† 14.35† 42800† 7133.33†
simple 9 6 55000 1063x1513 22.14 1156 289
tdroplet 9 8 4316044 14030x15750† 17.76† 48950† 8158.30†
grid 2 14 14 1283328 3320x4512 18.36 22982 2298.2
grid 3 27 35 1146513 § § § §
grid 4 46 62 924875 § § § §
grid 5 71 97 851863 § § § §
grid 6 102 140 726669 § § § §
grid 7 139 191 633513 § § § §
grid 8 182 250 562067 § § § §
grid 9 231 317 557066 § § § §
grid 10 286 392 506888 § § § §
grid 11 347 475 465583 § § § §
grid 12 414 566 431027 § § § §

Key
# : High Density Component † : Scaled by 1/10 § : Poor Embedding

NV : # Components NE : # Connections DIM : Avg. Area % : Utilization
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Table 6.3: ParchMint benchmark results for the Simulated Annealing & Hadlocks method

Benchmark
Simulated Annealing & Hadlocks †

Area Route Length
Name NV NE DIM Size (WxH) % Total Avg.

chip 33 32 6318 ∗ ∗ ∗ ∗
gpmfd 13 12 3469 ∗ ∗ ∗ ∗
mgg 30 38 16090 ∗ ∗ ∗ ∗
hiv 13 12 3700 ∗ ∗ ∗ ∗
aquaflex-3b 14 13 3464 ∗ ∗ ∗ ∗
aquaflex-5a 17 16 2905 ∗ ∗ ∗ ∗
synthetic 1 21 21 8409 ∗ ∗ ∗ ∗
synthetic 2 12 11 15483 ∗ ∗ ∗ ∗
synthetic 3 34 33 15067 ∗ ∗ ∗ ∗
synthetic 4 34 33 15058 ∗ ∗ ∗ ∗
synthetic 5 46 45 15869 ∗ ∗ ∗ ∗
synthetic 6 62 64 11611 ∗ ∗ ∗ ∗
synthetic 7 62 61 14727 ∗ ∗ ∗ ∗
flow focus 4 3 7220000 5200x6620 41.95 2580 860
grad cells 9 17 13697658 36240x8500 34.73 26790 1786
hasty 10 23 4418032 20690x6000 36.90 48990 2041.25
logic04 9 41 13697658 26080x20400 38.63 75120 5365.71
multi input 16 16 2663087 22320x10270 18.76 34580 2161.25
net mux 61 87 1297976 17470x22440 20.32 95020 1727.64
rotary16 11 55 36640000 29320x25980 43.79 349020 7932.27
rotary cells 13 28 8915763 30480x11340 18.13 32120 1889.41
simple 9 6 55000 8060x6370 0.67 177750 22218.75
tdroplet 9 8 4316044 12670x14040 22.08 16140 1614

grid 2 14 14 1283328 7500x11410 3.70 10050 1005
grid 3 27 35 1146513 8700x16740 6.35 20980 1049
grid 4 46 62 924875 9900x15780 8.72 31210 917.94
grid 5 71 97 851863 11100x20950 10.61 50650 974.04
grid 6 102 140 726669 12300x22400 11.23 98930 1236.63
grid 7 139 191 633513 13500x23750 11.67 125290 1160.09
grid 8 182 250 562067 15410x25340 11.28 136890 1053
grid 9 231 317 557066 15930x28100 14.18 474210 1992.48
grid 10 286 392 506888 17110x27240 15.45 342090 1413.60
grid 11 347 475 465583 18310x31060 14.19 404210 1255.31
grid 12 414 566 431027 19520x32630 14.0 460050 1185.0

Key
∗ : Illegal Layout

NV : # Components NE : # Connections DIM : Avg. Area % : Utilization
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Chapter 7

Conclusions

Here we’ve presented a number of different techniques that make up the placement,

routing, and post-processing core of a microfluidic design toolchain for passive devices.

While the primary focus of this work was on the flow layer, all the techniques presented

here are amenable to the inclusion of a control layer with the post-processing techniques

considering it explicitly.

We began with tools for the automated placement and routing of the flow layer.

The planar-embedding based Planar Placement methods, made up primarily of the baseline

expansion and Diagonal Component Expansion (DICE) methods presented in Chapter 2,

create layouts that are highly routable in practice over a number of scales and topologies

as illustrated in Chapter 6. With these placement methods we also introduce a Network-

flow based routing method in Chapter 2, which is highly capable of finding a set of valid

routes for a number of different placement algorithms while not introducing any additional

intersections. This planar routing method is important since the introduction of any in-
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tersections, requiring the insertion of a switch to correct, makes it impossible for use in

designing passive devices. We then present directed placement in Chapter 3, which gener-

ate much better designs similar to those created by domain experts, but tuned to a smaller

subset of topologies.

In addition to these automated design methods, we also introduce the first post

processing algorithms for microfluidic devices that are designed to process both automated

methods as well as designed created by domain experts. The seam carving post processing

method introduced in Chapter 4 is capable of finding area and channel connection reductions

in non-optimal device designs while considering both the flow and control layers and without

the intervention of the device designer. The automated arraying method in Chapter 5 allows

designers to take a previously designed and tested device and array a subsection of it. This

can be used to increase a devices throughput, created redundancy for a process, or add

fluidic memory. This is accomplished through a simple area selection by the designer,

automating a time consuming and error prone task without circumventing their expertise

in designing the original device. It is our hope that these algorithms will represent the

beginning of a movement toward design acceleration, the idea that algorithms should help

augment steps of the design process in addition to automated them.

Finally, we introduce the benchmarking suite ParchMint in Chapter 6. This work

represents the first step in a long-term project between University of California Riverside

(UCR) and Boston University (BU) that was developed through discussions with other

design automation researchers, tool designers, and microfluidic device designers. Through

these interactions, we came to the conclusion that the current state of microfluidic design
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automation and acceleration analysis needed to be improved in order to better evaluate if the

algorithms being created were capable of creating valid device designs over the entirety of

the highly diverse and scalable world of continuous-flow microfluidic devices. The standard,

benchmark netlists, generators, benchmark and result metrics, and algorithmic results we

present are the first step in trying to improve the discussion around design automation

and acceleration algorithms in this space. We hope to expand this benchmark suite going

forward to include similar benchmarks and analysis for component entities, control systems,

and device functionality. Our hope is that this work into benchmarks and standards will

help accelerate the design automation and acceleration space to move beyond theoretical

discussions about device layouts and into fabrication and device execution as validation

steps.

The field of continuous-flow microfluidic design automation and acceleration is a

rapidly evolving one. New fabrication techniques, device components, surface treatments,

and external systems are constantly being developed. This changes not only the capabil-

ities of microfluidic devices, but also the requirements that need to be considered when

creating tools to support designers. This constant evolutions makes the process of creating

new algorithms, methods, and tools a moving target. Because of this, design automation

developers will increasingly need to work directly with device designers and domain experts

to better understand their needs and be able adapt to changing technologies.
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