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ABSTRACT OF THE DISSERTATION
Three Essays in Economics
by

Cong Xie
Doctor of Philosophy in Economics
University of California, Los Angeles, 2015
Professor Hugo Andres Hopenhayn, Chair

The mechanism of innovation is an important question in economics. Recent release of the

patent transaction data provides some new insights in understanding the innovation process.

Chapter 1 studies the patent reassignment, which is an important phenomenon in the
United States. This chapter documents some basic facts about patent transactions on which
patents are traded and how they are traded. I also provide evidence on the motive and impact
behind these transactions. There is more strategic knowledge flow across firms associated

with mergers and acquisitions.

Chapter 2 further investigates the information flow among agents in the economy and how
this affects the economic growth. This chapter studies technology diffusion in a heterogeneous
agent environment. Agents can improve through imitation or innovation. The benefits of
imitation was determined by the economy’s distribution which evolutes over the time. I
estimated the model by linking patent citations to imitation process. I provide suggestive
evidence on relative contribution of imitation vs. innovation to the economic growth. I also
explained the non monotone relationship between patent citations and its value documented

recently.

Chapter 2 develops a general method in studying the economic meaning in the cross-
section distribution of economic variables. Chapter 3 applies this method to study the
income wealth distribution in US. I present some evidence on the contribution of the income

process to wealth inequality using a continuous time Aiyagari type model. I then estimate the
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model semi/nonparametrically with the US data. The results suggest that higher moments

of the income process is important in explaining the income wealth distribution.
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CHAPTER 1

Market for firms or market for ideas

1.1 Introduction

Patent reallocation is an important phenomenon in US. Which type of patent is more
often traded? How are they traded? Why might they be traded differently? Using the recent
data on patent reassignment, I try to address these questions and show that the market for
firms provides an alternative to the market for patents in inducing the information flow

between firms.

There is a long research tradition in studying the exchange of ideas between the indi-
vidual and corporations. Many studies in patent literature focused on the role of patent
citations in knowledge flow. For instance, Hall, Jaffe, and Trajtenberg (2001)(HJTO01) of-
fers a general description and treatment. Recently, Galasso and Schankerman (2015)(GS14)

analyzed patent citations to study how patents affect cumulative innovation.

A second strand of the patent literature directly studies the market for patents. Lamore-
aux and Sokoloff (1999)(LS99) examined the assignment of patents in the late 19th century
and early 20th century and found an active patent transfer market. This is in contrast to
the classic view by Schumpeter that knowledge creation should be concentrated within large
corporations. A recent paper by Serrano (2010)(Serl0)) reviewed more summary evidence
of patent transactions in the US using a new data set by US patent and trademark office
(USPTO). Akcigit (2014)(ACG14)) further modeled patent transactions in a macroeconomics
framework where ideas were opportunities to upgrade the technology. Whether a particular
patent is useful or not is random. This mismatch creates an incentive for an active trading

market of patents. Both of them focused on the frequency of the trades or reassignments in
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USPTO.

The objective of this paper is to propose that the market for firms is a third way to induce
information flow between firms and is particularly important for strategic tacit knowledge.
Combining a larger data set, I study how patents were transacted, namely through direct
transfer or through transfer of the firm ownership. The second method, which was labeled
as Mergers and Acquisitions (m&a), is often captured more by certain corporations in the
news. Recent cases like Cisco buying a firm every half year fit in this scenario. This is related
to the long tradition of the discussion of the boundary of firms by Williamson (Will(), and

other extensive discussions starts there.

If a patent is the perfect claim of property rights of a science innovation and its potential
further development, then the direct transfer of the property rights through a market mech-
anism would be sufficient. Alternatively, if there are intangible assets or extra information
that is either difficult to patent or contains strategic information and becomes too sensitive
to patent, then acquiring the entire firm as well as maintaining the former employees would
be important for transferring that intangible or strategic information. This short paper
provides some evidence on the latter by studying the impact of those patent transactions
through different transaction methods. Data suggest that there is more information flow
associated with patents obtained by mergers and acquisitions than from direct transfers.

The market for firms is important.

The empirical work focuses on several aspects. First, I characterize the pattern of the dif-
ferent transaction methods and how this relates to the characteristics of the patents. Different
industries have different degrees of patent protection, and the importance of the intangible

assets may vary. I summarize how patent class affects the method of the transaction.

Second, I compare the differences in the utilization rate of the patent before and after
the transaction. If a firm were purchased through merger and acquisition for its embedded
intangible assets, then the acquiring firm would exploit these intangible assets. This increase

in utilization would be reflected by the change in the (internal) citation rate.

Third, I study the content in the information flow by studying the area of the patents



using a topic clustering method. This measures whether the information is closely related
with the knowledge a firm previously possessed. Information flow from a different speciality
might induce a change in the innovation content of the acquiring firm. Studying the potential

content change then provides evidence for the existence of an information flow.

This paper is also related to the literature on the market for firms, such as the pure asset
purchasing and expansions theory, e.g. the Q theory from Jovanovic (2002)(JR02)), where the
physical assets of the target firm matter more. Rhodes-Kropf and Robinson (2008)(RR0S))
studied a firm dynamic structure where mergers is a method to improve productivity. David
(2012)(Dav12) further studied productivity-enhancing mergers within a general equilibrium
firm dynamic model. My paper provides evidence on where the productivity enhancement

comes from.

This paper is organized as follows: Section describes the construction of the data set
and provides an overview of the data. Section [1.3|examines the differences in the information
flow associated pre- and post-patent transfers and provides some suggestive evidence on the

motives for mergers and acquisitions. concludes.

1.2 Data

The original data were taken from separate sources. USPTO patent assignment data [
were used as the basis to construct the data set. Serrano (2010)(Serl0) and Kogan, Pa-
panikolou and Seru (2011)(KPS12) provides a detailed treatment on how to process the
data. This assignment data contains the assignments from 1976 to 2014, and information
on the subsequent transactions after the initial assignment. The USPTO assignment data
provide information on the transacting parties: assignors, the previous owner of the patent;
assignees, the new owner of the patent; the date of the reassignment and the reason of the
reassignment. Following Akcigit (2014)(ACG14)) I classified the reasons into the following

categories:

LGoogle bulk download



e Initial assignment

e Assignor’s interest which is classified as direct transfer
e Mergers and Acquisitions

e Release

e Lease and lien

e Mortgage

e Liquidation

e Employment agreement

e Surrender and Abandon

e Trade secretes non-compete
e Corporate dissolution

e Court

e Others

Among those transaction reasons, direct transfer and merger and acquisitions were the top
reasons. In the original USPTO data, patents reassigned through mergers and acquisitions
make up about 1.5% of the number of patents reassigned through direct transfers. However,
if we update mergers and acquisitions, the number of patents transferred by mergers and

acquisitions significantly increased.

The next data source is the maintenance fee event of the USPTO. This documents the
application date and some subsequent event of the patent. Most importantly, this contains
the information on expiration date of the patent. The ownership of the patent is terminated
by the expiration of the patent. This data set also provides information on whether the

owner is a big entity or not.



SDC mergers and acquisitions data from Thompson Reuters SDC platinum provided the
records of the transaction of the firms. It contains mé&a data from 1976 to 2014. Inventor

data from Zucker and Darby (2011)(ZDE11) and the Fleming (2011)(LDY11) data set were

used for detecting the same inventor.

The fourth major data source is the citation data, and the classification data from the
USPTO, national bureau of economic research (NBER) pdp project and Comets database.
Information on the citations is used to measure the utilization of the patent and other citation
based dependent variables. Combined with the ownership data, I differentiate the citations
into external citations, internal citations on the externally obtained patents, and internal
citations on the internally developed patents. All externally obtained patents were linked
to their transaction date, ownership duration, and transaction format from the dynamic

ownership data.

1.2.1 Dynamic ownership data

The original USPTO data provide the basis for the transaction record. M&as will give
the acquiring firm of the property rights or at least access to the patents owned by the
target firm. The USPTO did not pick up all those changes. On the other hand, if the target
firm buys and sells patents actively, then the patent portfolio acquired by the acquiring firm
through mergers and acquisitions is quite different from the initial assignment owned by the
target firm. This is why both USPTO reassignment data and SDC mé&a data are necessary
to construct the patent portfolio. Combining these three data sets, I build the dynamic
ownership data. On a patent level, this traces the life cycle and events of a patent. For a

given time I can trace the patent portfolio of a firm.

1.2.2 Summary of the data

There are around 2.7 million patents issued. Although only less than 20% of the patents
have ever been transacted, the reallocation activity is significant. Patents have been traded

multiple times. The reallocation activity also highly correlates with the business cycle (sim-
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ilar to studies found in Serrano (2010)(Ser10)). If we filter the reallocation activity with the
Hodrick-Prescott (hp) filter at a frequency of 100 and compare this to the business cycle
data from Eisfeldt and Rampini (2006)(ER06)), we find a high correlation between the two.

The three peaks reflected the three merger waves.

patent reallocation at business cycle frequency

T T T
1980 1980 2000 2010
year

| — — — asset reallcation (Eisfeldt and Rampini) patent reallocation |

Figure 1.1: Relationship with the business cycleﬂ

Which type of patents that is transacted? Among these transactions chemicals, biology,
and medicine patents account for 32% of these transactions using the Zucker and Darby
scientific classification. The Hall, Jaffe and Trajchenberg measure shows a higher share of

these categories, which is around 74.7%.

HJT-class Percentage ZD-class
Chemical 16.1% Biology, chemistry & medicine 16 %
Computer & communication 27.8% Computing & information technology 16 %
Drugs & medical 6.6%
Electrical & electric 24.2% Semiconductor 5.3%
Mechanical 14.7%
Others 11%

Table 1.1: Decomposition of the transaction by class classification.
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The patent literature often uses citations or some variants of citations as a measure
of importance. More citations mean they are essential in providing guidance for future
technology and patenting behavior. Non-patent referencing was used by many researchers,
such as Roach and Cohen (2012)(RC13), as a measure complementing the patent citation.

Traded patents are more important by these three measures.

Henderson, Jaffe and Trajtchenberg (1998)(HJT98) defined generality and originality,
which measure the spread of citations across the different patent classesﬂ If citations received
are equally spread out, it has a higher generality score. Originality is defined similar using
citations made. It is used by Hall, Jaffe and Trajtchenberg (2001)(HJT0I) and later patent
studies. Traded patents show less generality and higher originality, although the difference
in originality is insignificant. Regression results are listed in Table [I.2] where 70-90 cohort
is an indicator variable that takes 1 if the patent was applied between 1970 and 1990. 91-00

cohort is defined similarly.

3The spread out is measured by one minus the herfindahl index of citations.



1) 2 ®3) 4) ()

Variables Citations received citations made non-patent referencing count  generality originality
Trnsacted 2.126*** 3.852%F* 0.264*** -0.00419%*+* 0.00157
(0.0680) (0.0716) (0.0471) (0.00115)  (0.00115)
citations received 0.0601*** 0.249%** -0.000285***  0.001000***
(0.00172) (0.00105) (2.77e-05)  (2.75e-05)
citations made 0.0539*** 0.0130%** -2.44e-05 4.94e-05%
(0.00155) (0.00107) (2.620-05)  (2.61e-05)
nprcount 0.521%** 0.0304%** 0.000275%**  0.000661***
(0.00221) (0.00250) (4.000-05)  (3.98¢-05)
generality -0.995%** -0.0951 0.458%*** 0.348%**
(0.0966) (0.102) (0.0668) (0.00152)
originality 3.530%** 0.194* 1.115%%* 0.352%**
(0.0970) (0.103) (0.0672) (0.00154)
70-90 cohort -13.89%%* 14.68%** -1.913%** 0.100*** -0.0406%**
(0.138) (0.146) (0.0966) (0.00236)  (0.00235)
91-00 cohort -8.41THF*E 8.785%** -0.445%%% 0.0749%** -0.0234%**
(0.129) (0.136) (0.0897) (0.00219)  (0.00218)
chem -3.454%%* -0.794*** 2.295%%* 0.0247%%* 0.00223
(0.119) (0.125) (0.0820) (0.00201)  (0.00200)
Computer & communication -1.896%** 5.667*F* 1.106%** -0.0577F¥%  -0.0759*F*
(0.112) (0.118) (0.0773) (0.00189)  (0.00188)
Drugs & medical -3.851%F* 4.152%%* 8.837*** -0.0730%**  -0.0371***
(0.129) (0.136) (0.0880) (0.00218)  (0.00217)
Electrical & electric -3.415%%* 2.279%F* 0.654%** -0.0446%** -0.0709%**
(0.114) (0.121) (0.0792) (0.00194)  (0.00192)
Mechanical -1.809%** -0.288** -0.259%%* 0.00528** -0.0140%**
(0.132) (0.139) (0.0912) (0.00223)  (0.00222)
Constant 18.54%%* -0.782%%* 0.681*** 0.316%** 0.402%**
(0.166) (0.178) (0.117) (0.00281)  (0.00276)
Observations 373,920 373,920 373,920 373,920 373,920
R-squared 0.183 0.055 0.186 0.148 0.148

Standard errors in parentheses

K 0,01, ¥* p<0.05, * p<0.1

Table 1.2: Transacted patents.

These results suggest that trade patents are generally more important. Since a patent is

an important certificate of technology, firms want to trade patents to utilize specific produc-

tion technology. Those patents thus might have a narrower scope and a lower generality.

How are they traded? Second, I address the questions on whether patents are traded

differently and are there any differences in the patents using different transaction methods.
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Among all the transactions, patents reallocated by mergers and acquisitions accounts for 80-
90% of the total reallocation, followed by direct transfers, which accounts around 10% of the
total transactions. This is quite different from the view that patents are liquid and transacted
on an individual level for technology-upgrade opportunities as in Akcigit (2014)(ACG14).
Among all the categories, computer & communication, electrical electric patents have a
higher tendency to be traded through mergers and acquisitions. Direct transfer is more
appealing for chemical and drugs & medical patents. Within each class, the subclasses also

show variation in these shares. Figure depicts this within-category difference.

Share of transaction methods

@ et
I RN ST
o ; [ f
L P N i
4 4 I - !
n / oo h ;
@ ; Voo [ e
- ; \‘// ' ya L
LAY
oo
! W
— i
: i
i
@
T T T T
1980 1990 2000 2010
year
| ————— mé&a direct transfer + mé&a |

Figure 1.2: Relative shares of different transaction methods.

HJT-class M&a percentage Direct transfer percentage
Chemical 87.1% 11.7%
Computer & communication 89.8% 9.1%
Drugs & medical 75.2% 22.4%
Electrical & electric 90.8% 8.37%
Mechanical 85% 13.2%
Others 76.6% 20.3%

Table 1.3: Decomposition of the transaction by class classification.
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variation in mergers to direct transfer ratio within category

2
(3]

*

18

merger to dire% transfer ratio
L
* e -

|
-8
*
*
e e e

. "
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o -

chem comp drug elec mech othe
category

Figure 1.3: Variation of mergers to direct trade ratio within category.

Similarly if we examine citation-based measures, patents traded through mergers and
acquisitions tend to have more citations received (by 83%), citations made (by 17%) and
significantly lower generality and lower originality than patents trade through direct transfer.
This is supported with a level of significance at 1%. The non-patent referencing did not show

significant differences. Results are presented in Table

10



1 (2) ®3) (4) ()

Variables citations received citations made non patent referencing count  generality originality
merger 2.193%** 3.TTEHHK 0.256%** -0.0105%** -0.00321%*
(0.0742) (0.0782) (0.0513) (0.00126)  (0.00125)
direct trade 1.208%** 3.225%%* 0.194%* 0.0152%** 0.0151%**
(0.120) (0.127) (0.0829) (0.00203)  (0.00202)
citations received 0.0601%** 0.249%** -0.000283***  0.00100***
(0.00172) (0.00105) (2.77e:05)  (2.75e-05)
citations made 0.0539%** 0.0130%** -2.34e-05 4.96e-05*
(0.00155) (0.00107) (2.620:05)  (2.61e-05)
non patent referencing count 0.521%** 0.0304*** 0.000275***  0.000661***
(0.00221) (0.00250) (4.00e-05)  (3.98¢-05)
generality -0.986*** -0.0912 0.459%** 0.347%**
(0.0966) (0.102) (0.0668) (0.00152)
originality 3.538%** 0.195% 1.115%** (0.352%%*
(0.0970) (0.103) (0.0672) (0.00154)
70-90 cohort -13.88%** 14.67+%* -1.914%%* 0.0998*** -0.0407%**
(0.138) (0.146) (0.0966) (0.00236)  (0.00235)
91-00 cohort -8.406*** 8.7TH¥** -0.446%** 0.0745%** -0.0236%**
(0.129) (0.136) (0.0897) (0.00219)  (0.00218)
Chemical -3.478%F* -0.815%** 2.293%** 0.0252*** 0.00258
(0.119) (0.125) (0.0821) (0.00201)  (0.00200)
Computer & communication -1.925%** 5.640%** 1.104%** -0.0569%** -0.0754%**
(0.112) (0.118) (0.0773) (0.00189)  (0.00188)
Drugs & medical -3.857HF* 4.136%** 8.836*** -0.0731%F*%  0.0372%**
(0.129) (0.136) (0.0880) (0.00218)  (0.00217)
Electrical & electric -3.444%F* 2.263%** 0.652%** -0.0438%** -0.0702%**
(0.115) (0.121) (0.0793) (0.00194)  (0.00193)
Mechanic -1.826%** -0.305%* -0.260%** 0.00558** -0.0138%**
(0.132) (0.139) (0.0912) (0.00223)  (0.00222)
Constant 18.57*%* -0.733%** 0.686%** 0.316%** 0.402%**
(0.166) (0.178) (0.117) (0.00281)  (0.00276)
Observations 373,927 373,927 373,927 373,927 373,927
R-squared 0.183 0.056 0.186 0.149 0.148

Standard errors in parentheses

% 50,01, ** p<0.05, * p<0.1

Table 1.4: Difference between patents according to different transaction methods.

The average age of a patent at transaction is about 8.43 years after the application and
6.07 years after the grant. There is a significant number of the transactions took place
between the application and grant period, accounting for 9.32% of the total transactions.

Figure plots the distribution of the patent age at the transaction. The age distribution
11



of patents transacted in the mergers and acquisitions has a fatter tail.

Distribution of patent age since grant at direct transfer Distribution of patent age since grant at m&a
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Figure 1.4: Patent age since grant. Up: Direct transfer. Down: M&a.

These results are consistent with the view that patents transacted with mergers and
acquisitions are more important and have a more specific purpose. Transaction of patents
transfers the tangible asset such as the production technology, as well as the intangible
asset, such as the tacit knowledge. Transfer of the intangible asset has been studied by
many researchers in the patent literature. However intangible assets embedded partially in
the patent. If it were not, we would not observe a significant share of patent reallocation
that takes place through mergers and acquisitions. For instance, there might be crucial
information on replicating the patent or possibilities for further extensions and improvements.
This information is not contained in the patent, which is a vague certificate or manual for a
product or a production technology in the state as it is. From the contract theory point of
view, this related tacit knowledge is not contractable. A Change of ownership or boundary
of the firm is a natural tool to trade this non contractable resourcesf] This partially explains
why we observe such a high rate of patents transferred with mergers and acquisitions. This
is true particularly in areas like chemical, computers and electrical & electric areas, where
the degree of complexity is high and it becomes easier to develop tacit knowledge about the
technology or the innovation. It also takes longer to develop tacit knowledge, resulting in an

average patent age that is higher with mergers and acquisitions. To support this hypothesis,

4Series works by Williamson (Will0) and Grossman and Hart (1986)(GHS6) have related discussions.
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in the following section I show there is a strong(er) knowledge flow associated with mergers

and acquisitions.

There is a caveat that in certain cases patents are not the purpose of mergers and ac-
quisitions, while the intangible asset is. Nevertheless, studying information on the patents
associated with mergers and acquisitions provides a scope to examine the information flows

and transfer of tacit knowledge associated with mergers and acquisitions.

1.3 Analysis of the knowledge flow

Patent citations have been used by many authors to study knowledge flows geographically
as in Jaffe, et al. (1993)(JTH93), and within sector as in Gittelman and Kogut (2003)(GK03)),
and also to study the information flow between firms, as in Singh and Agrawal (2011)(SA11l).
In subsection[1.3.1] I follow Singh and Agrawal (2011)(SATI]) to examine the change of the in-
ternal citation rate of the patent pre- and post- transactions using a Difference-in-Differences
approach. Change in the internal citation rate using different transaction methods was com-
pared to each other and to the non-traded patents. A higher change in the internal citation
rate suggests a higher utilization of the patent and is more associated with knowledge flows
between firms. While citations measure the amount of information flow, I introduce the
topic modeling to further study the content of the information flows in subsection [1.3.2]
Results from both subsections support the hypothesis that there is a strong information flow

associated with patent transactions, particularly with mergers and acquisitions.

1.3.1 Amount of knowledge flow

Citations and the citation rate are natural measures for patent usage as well as the
information flow within or between firms. Less usage would suggest fewer internal citations,

which is defined by the citations made within the same organization.
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This leads to the following regression equation

CitBSit == f(thB + Dth + 51 + ]industry + 6it)> (11)

where the dependent variable cites;t is the number of total internal citations received by
patent 7 in year t (created by seller before the transaction, created by buyer after the trans-
action). The right hand side control variable X; contains firm-level controls (previous patent
size, previous patent size of the same class), patent age and whether the owner is a large
entity. DD, is a set of dummies, including: indicators of whether the patent is post-merger,
post-direct-trade, or post any transactions and years after the type of the transaction. If there
is an information flow associated with the patent transfer and as this information becomes
more useful, we should observe higher coefficients for post-transaction period compared to
the pre-transaction period. 9; is the patent random effect. I also control the sector by having
a two-digit sic sector dummy. f(.) is chosen to be the negative binomial distribution for the
count data to accommodate over dispersion in the data. This negative binomial kernel has
been widely used in count-related data analysis. Cameron and Trivedi (2014)(CT14) provide

a more detailed treatment. The regression results are presented in table (|L.5]).
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Variables Clitesy

year, industry dummies omitted

age 0.0174%**
(0.0016)
age square -0.0014***

(0.0000758)

selling firm’s patent size -6.88 107

(1.38 -10°7)

buying firm’s patent size in the same class ~ 1.66-107°%**

(4.79-10°%)

big entity 0.0108***
(0.0031)

transacted -0.1319%**
(0.0326)

through m&a 0.1969***
(0.0334)

post mergers year 1 0.1284***
(0.0089)

post mergers year 2 0.1533%**
(0.0090)

post mergers year 3 0.1338%**
(0.0091)

post mergers year 4 0.1049%**
(0.0095)

post mergers year 5 0.0448%**
(0.0103)

post mergers year 6 0.0461%**
(0.0114)
through direct transfer 0.0794**

(0.0355)

post direct transfer year 1 0.0539%*
(0.0172)
post direct transfer year 2 0.0638***
(0.0183)
post direct transfer year 3 0.0989***
(0.0187)

post direct transfer year 4 -0.0067
(0.0201)

post direct transfer year 5 0.0195
(0.0217)

post direct transfer year 6 -0.0096
(0.0243)

constant 1.9544

(0.0447)

Standard errors in parentheses

*E p<0.01, ¥* p<0.05, * p<0.1

Table 1.5: Citation rate changes.

After the transaction the citation rate drops significantly (captured by the negative co-

efficient before transacted ). This is because the transaction pooled all different methods of
15



transactions. However if the patent is obtained through mergers and acquisitions, then the
citation rate is significantly increased and the effect peaks around 2 years after the trans-
action. If the patent is obtained by direct transfer, then the citation rate barely increases
(summing all the coefficients before transacted and direct transfer and years after direct
transfer). Both the previous patent size and patents within the same class of the buyer show
negative results since the more (similar) patents already owned by the buyer, the more sub-
stitutes the buyer has. The age effect shows a hump-shape on citation rates, which captures
the diffusion curve. Chapter 2 of the dissertation is dedicated to modeling and estimating

this diffusion curve.

To further examine the channel on how this intangible asset or the information is trans-
ferred, I examined the internal citations that were involved with the same original inven-
tor. This could identify the channel where knowledge diffusion occurred. Zucker et al.
(1998)(ZDB98) illustrated that star scientists from universities are important in shaping the
US biotechnology firms. Singh and Agrawal (2011)(SA11]) examined the effect of the inven-
tor’s flow in general. If the information is highly intangible, keeping the same inventors is
a crucial part of the transaction to guarantee the successful transfer of the intangible asset.
Those inventors will continue to stay after the mergers and acquisitions. This suggests the
newly created citations will involve the same original inventors. This is called acquire hire

in many industries.

Consider the following regression:

Selfcz'tesit = Xltﬁ + Dth + 52 + Iindustry + €it, (12)

where the dependent variable selfcites is the total number of internal citations involved with
the same inventor received by patent ¢ in year t. DD, is the set of dummies, including:
indicators of whether the citation is post merger, post any transactions and also years post
the type of the transaction and sizes. If there is acquire higher behavior, we should observe

positive self-citations in the internal citations after the mergers.
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Variable Sel fcitesy

age -0.04552%**
(0.0005)

age square 0.0018***

(0.0000322)

selling firm’s patent size -2.53 (10 6H**

(6.56 -107%)

buying firm’s patent size in the same class  1.19-1074¥%¥*

(2.51-1079)

big entity -0.0136%***
(0.0014)

transacted -0.0888***
(0.0156)

through mé&a 0.0488***
(0.0160)

post mergers year 1 -0.1085%**
(0.0044)

post mergers year 2 -0.0880%***
(0.0044)

post mergers year 3 -0.0638%***
(0.0045)

post mergers year 4 -0.0506%**
(0.0047)

post mergers year 5 -0.0388%***
(0.0050)

post mergers year 6 -0.0390%**
(0.0055)

constant 0.5248***
(0.0238)

Table 1.6: Self-citations.

Table [1.6| presents the regression results. After the mé&sa, the number of the self citations
drops significantly. This is in line with some previous findings about the high inventors’
turnover rate after the merger as in Seru (2014)(Ser14). However, this rate did not drop to
zero immediately. There are inventors who are kept after the mergers and acquisitions and
who continue with the R&D process. Meanwhile, the self-citation rate is also different from

1. This suggests there are researchers in the acquiring firm who join the research team and
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work on the continuing R&D projects. The intangible assets or knowledge diffuse through

this team work.

1.3.2 Content of the knowledge flow

In the previous subsection I showed there is an information flow associated with the
transfer of the firms. In this subsection I study how this information flow is reflected in
the change of the innovation direction. If the acquiring firms acquire the target firm to
gain access to a specific technology or to extend their scope, they will gain new information
outside their previous expertise. The newly acquired expertise will divert and broaden their
research directions. The acquiring firm’s patenting behavior reflects this change. Examining
the change in the patenting direction identifies the existence of this information flow. The
post-merger patenting direction should deviate from the pre-merger patents and be closer to
the patents acquired in the mergers and acquisitions. I adopt the tool of topic modeling to

quantify the patenting direction.

The topic modeling has been an important tool to understand the clustering of the
text content. It has recently been used in empirical corporate finance, as in Hoberg and
Phillips (2010) (HP10) in analyzing the SEC filings of public firms to quantify their product

differentiation.

I use the non-negative matrix factorization method to cluster the content in patent title,
abstract and descriptions. A detailed description of the algorithm can found in Xu et al.
(2003)(XLGO3). The non-negative matrix factorization has all weights being non-negative
and thus avoids the difficulties in the interpretation of the negative weights of the articles in

other clustering algorithms. The basic idea is the following: consider the fitting equation
Y =UV, (1.3)

where Y is the text information in the file, U is an m x k matrix representing the k topics
where each topic has m key words. V' is a k x n matrix where n is the number of files in Y.
V represents the share of each file in the k different topics. (Vi, becomes the coordinates of

each file in the k-dimensional space.) V is constrained to be non-negative. The similarity
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between any two files could be defined by the cosine metric between the two coordinates

< Viiy Vij >

1.4
Vil Vi) (14)

p(i,j) =

Because the coordinates are positive, the cosine value will be in [0, 1]. The higher the cosine
value, the higher the similarity p(i, j). p(4,j) will be in [0, 1].

Introducing a text-based distance metric is better than the traditional patent metric
based on similarities of the patent classes used Hall, Jaffe and Tratjenberg (1998) (HJT98)
and Akcigit (2014)(ACG14). However many of the mergers and acquisitions in the high-tech
fields happens between firms in the same industry or even in a similar area of research. The
patents between the acquiring firms and target firms have significant overlap or belong to
the same class. Topic modeling can break a class into subtopics and study the detailed
R&D direction by its informational content. Secondly, traditional classification only shows
whether a patent belongs a class or a subclass. Text-based distance metric shows how much

a patent belongs to a topic and generates more variation in patent-level distances.

I focus on the Nano field (US class 977) because of its importance and high degree of tacit
knowledge. To generate the topic clusters, I use the information from patent title, claim and
abstract of the patents. There are 50 topics generated, and these are listed in Figure

[A.6l The weight matrix is then used to calculate the cosine similarity as described above.

Figure plots the distribution of the pairwise similarities within a firm of two internally
developed patents. The red solid line represents the firm without any external acquisitions
of patents of any form. The blue dotted line represents the case for firms with mé&as. The
green dashed line represents the case for firms with external direct purchase only. In the last
two cases, the mé&a or direct external purchase of the patents happened between the two

internally developed patents.
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Distribution of the similarity

|_r_distance

----------- with m&a
without acquiring external patents

————— with external direct purchase only

kernel = epanechnikov, bandwidth = 0.0330

Figure 1.5: Overall similarity.

The firms without any external purchase show high persistence in their patenting di-
rection. More mass is concentrated at the high similarity region. Firms associated with
mergers and acquisitions have more distant patenting directions. However this does not
show whether the new direction is related to the mergers and acquisitions behavior. I fur-
ther break the similarity into the similarity between the internally developed patents before
the mergers and acquisitions to the patents obtained through mergers and acquisitions, and
the similarity between the internally developed patents post the mergers and acquisitions to

the patents obtained through mergers and acquisitions.

Figure plots the distribution of the similarities of the pre-merger internally developed
patents to the patents acquired through mergers and acquisitions. The dashed line rep-
resents the similarities between the pre-merger internally developed patents and the post-
merger internally developed patents. The dotted line represents the similarities between
the post-merger internally developed patents and the patents acquired through mergers and
acquisitions. The solid line represents the similarities between the pre-merger internally
developed patents and the patents acquired through mergers and acquisitions. In all three
cases, the similarity is low. This seems to be not supporting the hypothesis that the infor-

mation flow associated with the mergers and acquisitions would bring the future patenting
20



direction closer to the patents acquired in the mergers and acquisitions.

Distribution of similarity

similarity

----------- mé&a to future
————— past to future
pastto m&a

kernel = epanechnikov, bandwidth = 0.0231

Figure 1.6: Similarity for mergers for all time periods.

However, knowledge diffusion takes time. Integrating the new information requires re-

searchers at the acquiring firm to learn from the acquire hires and conduct experiments.

This diffusion process normally takes roughly 3 to 5 years by examining the citation peaks.

Taking this into consideration, Figure plots the similarities with the internally developed

patents at least 3 years post the merger.
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Distribution of the similarity

similarity

----------- mé&a to long future
— — — past to future
past to m&a

kernel = epanechnikov, bandwidth = 0.0292

Figure 1.7: Similarity for mergers with long run effect.

Then we find that the long run similarity between post-merger internally developed
patents and the patents acquired through mergers and acquisitions increases significantly.
The similarity between post-merger patents and the pre-merger patents are still low. This
confirms the role of mergers and acquisitions in changing the research direction and inducing

information flow between firms.

One limitation of the current analysis is that I only show the existence of the information
flow without showing the causality of this information flow. It is likely that acquiring firm
decided to change their R&D direction before acquiring the target firm. This could be
captured by scientific article citations and common coauthor-ships ahead of mergers and

acquisitions could provide evidence, which renders future studies.

1.4 Conclusion

Patent reallocation is an important phenomenon. This paper summarizes some basic
findings in which patents are transacted and how they are transacted. By examining the
differences between different transaction methods, I show there is an information flow as-

sociated through mergers and acquisitions. Transacting firms is an alternative to inducing
22



information flow between firms besides patent transactions or citations. More formal eco-

nomic modeling renders further consideration.
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CHAPTER 2

Innovation or learning

2.1 Introduction

Innovation and learning are two important forces that drive economic growth. Patent
policies might encourage innovation but impede learning. R&D subsidies might promote
innovation at a high social cost if innovation is less important than learning. It is impor-
tant to distinguish the relative influence of these two forces before introducing any targeted
policy interventions to promote economic growth. Their relative contributions hinge on in-
dividual choices, which depend on the cost of innovation and the environment in which the
learning takes place. Since knowledge flows from the person with more to the person with
less, the option value of learning thus depends on one’s current knowledge level and the
entire distribution of others from whom he might learn from. This dependence will affect
the innovation choices of the agents. On the other hand innovation choices will affect the
evolution of this distribution. Identifying the cost structure and the learning environment
become difficult since we have to take the dependence and feedback structure into account.
With the recent seminal paper by Lucas and Moll (2014)(LM14) and developments in mean
field game theory, these interactions can be traced explicitly. Using this framework we can

separate innovation and learning and assess their relative contributions.

In our model, growth is generated by the accumulation of individuals’” knowledge through
learning or innovation. On the one hand, agents learn through interacting with other persons,
which is modeled as random meetings at a constant rate. As each person meets others,
knowledge flows from the person with more to the person with less. On the other hand,

innovation is a process through which agents accumulate knowledge through costly research
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and development activity. The state of the economy is fully summarized by the distribution
of the knowledge. An agent’s choice of R&D spending will be related to this distribution
because the option value of meeting others affects the marginal payoff of innovation. The
agents’ R&D intensities and the rate at which they meet will determine the evolution of the

knowledge distribution.

We first characterize the solution of the problem and then estimate the model by linking
the learning process to the patent citation data. There are two equilibrium conditions: 1)
the Bellman equation in which each agent chooses the R&D intensity with the knowledge
distribution as given and 2) the law of motion equation, which describes the evolution of
the knowledge distribution, given the meeting rate and the equilibrium R&D choices of each

agent. We will focus on the balanced growth path.

The identification and estimation procedure consists of two steps. The key, and first
step, is to study the inverse problem of the law of motion equation: given the distribution
of knowledge, reconstruct the equilibrium R&D choices of the individual agents. An insight
from Ait-Sahalia (1996)(Ait96]) applies: given the observed distribution one can recover
elements in the law of motion equation. Based on random walk approximation, the discrete
Markov transition matrix can be replaced with the local first and second moments in the
continuous time law of motion equation. Given the observed distribution, the law of motion
equation pins down the relationship between these two moments. From knowledge of one,
the other one can be reconstructed non-parametrically. If there is a monotonic relationship
between this reconstructed moment and the equilibrium R&D choice, then the equilibrium
R&D choice is identified. Using this method, we recover the equilibrium R&D choices from
the distribution of knowledge, which is estimated from the patent citation data. Citations
reflect the relative knowledge level embedded in the patent and therefore provide a source

to estimate the distribution of the knowledge.

The second step involves an inverse optimal control problem: given the equilibrium R&D
choices, reconstruct the parameters of cost functions in the Bellman equation. This second

step has been studied in the context of dynamic discrete choice problems in the empirical
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IO literature, although most of these studies estimated equilibrium choices directly from

micro-level decision data.

Finally, we discuss how this two-step algorithm provides direct inference for a class
of continuous time macroeconomic models such as the recent models in Lucas and Moll
(2014)(LM14) and Luttmer (2007)(Lut07) and many other related continuous time (dynamic

game) models[]

Our main results suggest the cost of innovation shows non-convexity in an agent’s knowl-
edge level. We find that the relative contribution of innovation to economic growth is more
than 99 percent. Our result also explains the inverted-U shape relationship between the

patent citations and the patent value documented recently in Abrams et al. (2014)(AAP14).
Related literature

My research contributes to two main research areas. In relation to the growth literature,
we provide the first empirical strategy for a class of models studying the interactive effects
in the technology diffusion. Our model is closely related to Lucas and Moll (2014)(LM14]),
Lutter (2013)(Lutl3) and Jovanovic and Rob (1986)(JR86). In those models, technology
diffuses through a random meeting process. Perla and Tonetti (2014)(PT14) had a similar
framework to Lucas and Moll (2014)(LM14)), but in their model learning only depends on the
distribution in the economy and is independent of agent’s knowledge level. We introduce an
innovation choice to this class of model. This modeling environment has also been applied to
the trade literature as in Alvarez et al. (2013)(ABR13) and Waugh et al. (2013)(WTP13).
However there is no discussion of the empirical estimation. We provide the estimation

strategy and it further allows for non-parametric identification.

Secondly, in relation to the empirical 10 literature, we extend the standard two-step
estimator in dynamic discrete choice models such as the seminal work in Bajari et al.
(2007)(BBLOT) or Pakes et al. (2007)(POBO07) to continuous time. In these studies, the
policy function is estimated from the micro-level data. By contrast we explore the impli-

cations from the macro density in the first step estimation. In this class of models we are

! Achdou et al. (2014)(ABLI14) has a summary.
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studying, since the number of the agents is large, the law of motion of the macro distribution
of the states coincides with the law of motion of the probabilities of each agent’s states. Then
we can recover the individual choice from an inversion to the macro distribution. The second
step is different from the conditional choice probability (CCP) estimators where an inversion
from the choice probability to the value function based on the error structure is used to
identify the value functions. In continuous time continuous states environment, derivative of
the value function could be solved directly from a differential equation of recovered optimal
choice. This two-step algorithm can be extended to a class of continuous time macroeco-
nomic models or continuous time dynamic game models to study entry/exit, reallocation
inefficiency, and other related topics. It also bridges a link between macroeconomic litera-
ture and the empirical 1O literature through studying the dynamic choice problem. We will

revisit this point in the conclusion.

Our study is also related to the study by Eeckhout and Jovanovic (2002)(EJ02) on the
technology diffusion and the capital investment decision. They inferred the learning tech-
nology from the firm size distribution and compared results with the patent citation data
in Caballero and Jaffe(1993)(CJ93). These studies assumed away the unobserved individual
heterogeneity in the patent citation data. In our study, this heterogeneity is a means of
identifying the knowledge distribution. In addition, by linking the patent citation data to
the learning process we can also explain an inverted-U shape relationship between the patent
citations and the patent value observed recently in Abrams et al.(2014)(AAP14). Apart from
adding to the broad empirical literature on the estimation of the R&D cost, this paper also
contributes to the literature on estimating the values in the patents. Among those studies,
Pakes (1986)(Pak86) used the stopping time approach to infer the patent value from the
maintenance fee events. Kogan et al. (2012)(KPS12) used a stock market valuation method.

We explore a channel based on the dynamic change of the citations.

The paper proceeds as follows: Section 2 introduces the environment. In Section 3, we
solve the equilibrium. Identification and estimation are addressed in Section 4. Results are

discussed in Section 5. We conclude in Section 6.
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2.2 Environment

The economy consists of a unit measure of infinitely lived agents. The population is

defined by a cumulative distribution function:
F(z,t) = Pr{s < z at date t}.

s, x is an index of knowledge level. f(z,t) is the p.d.f function.

In each period the agent has a profit inflow of 7 (x,t), which depends on the current level
of knowledge x. He has limited amount of total effort. The agent chooses to spend e of the
efforts on R&D with some disutility C(e,t). The R&D effort accumulates the knowledge the
agent has deterministically.

Conditional on his state is z at time ¢, agent maximizes the expected discounted flow of

the profit stream

V(z,t) = Et{/too e PE V[ (24, k) — Cleg, k)|dk|z, =z},

where p is the discount factor.

The evolution of the distribution F(x,t) was determined by two forces. Learning by
random meeting: with probability «, he will meet another person 2’ in dt period and adopt
the max(x, 2"). Innovation: an agent can increase his knowledge by an amount of u(e(z),t)dt
in the dt period by the R&D effort. To simplify the discussion, we allow the agent to directly
choose the growth drift pu(z,t) with a transformed cost function W(u(.)). p(z,t) is less than

or equal to some constraint K (z,t) due to the limited amount of total effort.

The change in agent’s knowledge between ¢ and ¢ + dt could then be represented by

de = p(z, t)dt + Ay(x)dN;.

The first term represents the drift chosen by the innovation effort. The second term N,

is a Poisson jump process of size Ay(x). It represents the effect by learning.
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The value function could be rewritten as

pV(x,t) = max  w(z) — W(u(z,t)) + 0,V (z, t)u(z,t) + 0V (x,t) (2.1)

{p(z,t)<K(zt)}

+oz/[V(s,t) — V(z,t)]f(s,t)ds.

The first two term represent the flow profit and cost. The last term on the right reflects
the option value of learning. Since agent can only learn from other agents with more advanced

knowledge, the lower bound of the integral is x. « is the meeting rate.

As number of agents goes to infinity, the law of motion of f(z,t) in the economy could

be summarized through Kolmogorov forward equationﬂ as

of (x,t) o0
ol _ —af(z,t) / £(s)ds

(2.2)

+af(z,t) /Ox f(s)ds

out mn

=0 (pu(, 1) f (2, 1))

R&D

This characterization of the law of motion is a key feature in Mean field games related
models. In these models, since the agents are symmetric and the probability of each individ-
ual states coincides with the macro distribution due to law of large number. Then we can

only trace the evolution of the macro distribution.

Its c.d.f form is

OF (z,t)

o~ (@)1 - Fa.t)) — @, ) f(z,1) : (2.3)

learning innovation

We will use this c.d. f representation of the law of motion equation through out the paper.
The left hand side is the total change in the population below = at time ¢t. At any time ¢,
there are two ways to exit the pool of the agents below x. The first is meeting with another
agent that is higher than x. This happens with probability a(1 — F(x,t)) and explains the
first term on the right. The second term is exit by innovation. In infinitesimal time, only

the marginal agents p(z,t)f(z,t) can exit.

2Details are in Appendix
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2.3 Solution and equilibrium

An equilibrium, given the initial distribution f(z,0), is a triple (f(), x(), V'()) of functions
on R% such that (i) given u(x,t), f(z,t) satisfies the law of motion equation (2.2)) for all
(x,t); (ii) given f(xz,t), V(z,t) satisfies the Bellman equation; and (iii) V' (z,t) attains its

maximum at pu(z,t).

A balanced growth path is a rate A and functions (F(), (), i(),7(), ¥()) on R such that

Fz,t) = F(ze™),

Vi, t) = eMo(ze ™),

pla,t) = eMp(ze™),

m(z,t) = eMa(ze ™M),
U(u(z, 1) =MV(u(ze™)),

and for all (z,t), (f(), (), V() is an equilibrium given the initial condition: F(z,0) = F(x).

Define z = ze=* and relabel

v(2) is the rescaled value function. F(z) is the cumulative distribution of the knowledge on
the balanced growth path. fi(z) is the rescaled optimal choice. W(ji(2)) is the rescaled cost
function. Now the Bellman equation ({2.1) becomes

(p=Ao(z) = max @(z) = U(a(2)) + (a(z) — A2)v'(2) + a /[U(Z') —o(2)]f(£)dz. (24)

i(z)<K(2) 2
The law of motion equation (2.2)) becomes a first-order nonlinear ordinary differential

equation of F(z),

aF(2)(1 = F(2)) = (A2 = i(2)) f (2). (2.5)
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The left-hand side of equation is the outflow of the agents below level z through
learning. The right-hand side is the inflow of the agents that fall back to levels below z. In
equilibrium, the two are balancedﬂ In the model we will impose the upper limit of the R&D
effort K(2) = Az and U(K(z)) = oo. This is in accordance with the non negativity of the

right hand side of equation (|2.5)).

— —

Proposition 1. If u(z) = Xz — ji(z) in which u(z) € [0,\z], satisfies the condition:
limg o0 f;% = +00, e.g. ,t;(\/z) ~ O(2%) and d < 1, then the solution to equation
u(z

is F(z) = m where M(z) = — [~ ﬁds —InC and F(Z) = HLC

Proof: See Appendix

To guarantee the existence of balanced growth rate A, we provide a sufficient condition:

2(1-F(2)'

TR - Y < 0 and the equilibrium

Lemma 1. If the initial distribution satisfies lim,_, o

satisfies lim,_, o & (ZZ) =1, then there exists a balanced growth path rate A = 2 +n.

Proof: See Appendix

If lim, o z(ll:TF((j)))l = —w < 0, then by the Karamata theorem ((Fel71)), 1 — F(z) has a

regular varying component 2“l(z), where [(z) is a slowly varying function. This means F(z)

has a fat tail with tail index w.

3 Several variants of this equation have been studied in Lucas and Moll (2014)(LMI4), Alvarez et al.
(2008)(ABLO8) and Luttmer (2013)(Lutl3).
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Figure 2.1: Calibrated value function.
The equilibrium density is similar to a Pareto distribution. Growth rate A = 0.02, a = 0.3, tail
index w = 2, C' = 0.001
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Figure 2.2: Calibrated innovation choice.

)

The equilibrium choice of the drift. Innovation rate is defined as =

2.4 Empirical strategy

The essential goal is to recover the cost function W¥(.).
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2.4.1 Two-step algorithm and identification

In the first step, we recover the equilibrium R&D choices fi(z) from the balanced growth
path distribution of the knowledge F\(z). If F(z) was observed and the growth rate A and
the meeting rate a were known, then the optimal R&D choice fi(z) could be identified and
estimated from equation directly by

() = LA -FE)

f(2)
The insight is similar to the result of Ait-Sahalia (1996)(Ait96)). Given the observed

distribution, one can reconstruct the element in the continuous time law of motion equation.
Here we abstract from Brownian motion and the inversion is analytical. In the appendix,

we include more examples of inversion to different types of law of motion equations. E|

In a second step, with the empirical knowledge of ji(z) and F(z), v(z) could be derived
from up to a specification of 7(z) through an inverse optimal control problem. Bellman
(1970)(Bel70)) and Casti (1980)(Cas80) provided the general solution to this problem in a
non-stochastic case. Chang (1988)(Cha88)) studied the stochastic case in a growth applica-
tion. If we take the derivative of the Bellman equation ([2.4) with respect to z one more time

and substitute in the envelope condition,

(p = Nv'(2) = T'(2) + (A(2) = A" (2) = M'(2) — a(l = F(2))v'(2).

By rearranging the terms and substituting in the first-order condition we have:

(p+a(l=F())'(z)  =7"(2)+ (i(z) = Az)"(2), (2.6)

(p+a(l = F())¥'(a(=) (2.7)

S~—
I
)
—~
N
N—
+
I

=i
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We provide the solution to equation and by solving these ordinary differential
equations. Denote L(s) = %}Légs)), then becomes
m'(2)
Az —i(z)’
4The idea of reconstructing coefficients in differential equations applies to many inverse problems.
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Its solution is
_ = [ L(s)ds fTL(S s ( ) A
( ) e / N — ( ) T+ Cl
By the first-order condition ¥ (fi(2)) = v'(2),

W(p(2) - | () (s)ds + Ca.

If fi(z) and F(2), \, o are recovered v(z), and W(fi(z)) are recovered up to normalizations
(4, Cy and the specification of m(z) . In Appendix |A.2.12, we provide a numerical method

based on the finite difference method.

Alternatively, one can proceed and use forward simulations to simulate v(z) given some
parametric assumptions 6 of the cost function W(i(2);#). Then one finds optimal parame-
ters through the minimum distance estimator, 6y, which minimizes the fitting difference in
either or . This resembles the strategy of the two-step estimator in Bajari et al.
(2007)(BBLOT)(B.B.L.).

This algorithm extends the two-step estimator in dynamic discrete choice models to
the continuous state and continuous time environment. In a standard two-step estimator,
the first step will recover the policy function from the micro-level decision data. In this
continuous time setup, the moments need to be recovered are greatly reduced because of the
random walk structure. Secondly, since the number of the agents is large enough, the law of
motion equation of the macro distribution of the states coincides with the state probability
of each agent. Then, an inversion to the macro distribution is the same as to the individual

state probability.

2.4.2 Identification of F(z2)

There are relatively few studies trying to directly estimate F (z), the distribution of
knowledge within the diffusion framework, except for Eeckhout and Jovanovic (2002)(EJ02).
They link F(z) to the empirical distribution of book values of the firms by assuming firm size

is proportional to the knowledge embedded in them. They then compared the inferred learn-
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ing technology with the aggregate patent citation data in Caballero and Jaffe (1993)(CJ93]).
This is similar to inferring the meeting rate a from the empirical knowledge of F(z) in our
environment (equation ) Whether knowledge is proportional to size depends on the as-
sumptions on 7(z). We will infer F(z), o, A and the constant C' that regulate the boundary

mass directly from the patent citations data without this proportional assumption.

2.4.2.1 Assumptions

To estimate the unobserved F(z), we link it to the patent citations by the following

assumptions:

Assumption 1. When agents learn from others’ knowledge, they make citations to the
earlier knowledge from their original level. For instance, when agent x meets agent x', where

x < ', he will adopt x' and cite all the patents between x and x'.
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Figure 2.3: Citation creation process.

When z meets 2/, x creates a citation to patents between x and z’ (not to ones below ).

Assumption 2. The citation counts follow a Poisson process.

According to guidelines from the United States Patent and Trademark Office (USPTO),

a patent is only granted for sufficient improvements. Citations serve as a record of the
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knowledge levels it went through. This suggests the citations received by a patent with
level z; followed a Poisson process with a rate proportional to aF(ze )(1 — F(ze ).

The reason is that in each period ¢, there are F(ze ™)

agents below z;. With probability
a1 — F(ze™™)), they surpass level z; by meeting with agents who have better knowledge
than 2z, The product aF(ze )(1 — F(ze ™) f(z,t) is the total citations created for the
level z; patents. There are f(z;,t) patents of technology z;. The average citations received

is total citations created divided by total citations at that level.ﬂ

Assumption 3. There is no correlation between z; and other observed covariates.

In each period, the citation rate of a patent is determined soley by its relative knowledge
level in the economy. This is assumed for technical reasons to show identification. A similar

assumption has been made in Gurmu et al. (1998)(GRS9g)).
Assumption 4. Assume C > 0.

Assumption 5. The initial distribution of the knowledge in the patents coincides with the

wniatial distribution of the knowledge in the economy.

Assumption 6. Patents are static. In the following period, relative knowledge level in a

patent with level z; becomes ze Y deterministically. ﬁ

We make this assumption because a patent reflects the knowledge an agent has at time ¢.
Agents evolve by learning or innovation, but the knowledge in that particular patent stays

the same in the absolute level.

2.4.3 Identification steps

Through these assumptions, patent quality is reflected in the time-series behavior of its

citations. The cross-sectional data of these different qualities will identify the distribution

° A similar assumption has been made in Griliches (1957)(Grib7)’s earlier studies and in Bertran
(2006) (B0G), where he assumed all the past patents would be studied and cited by an agent through a
binomial process.

6In Appendix we have a slightly different formulation.
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of the knowledge. These assumptions suggest we might gradually observe that some patents
are with upward slopping shape, some will be hump-shaped and others are with downward
slopping shape. The longer the upward slopping period is, the higher the quality. This is
due to the difficulty of learning and making contribution to the advanced knowledge. We

then can rank the patents accordingly and get the distribution F (2).

Proposition 2. Meeting rate o, lower bound constant C, rate of obsolescence \, c.d.f F(z)

are identified under assumptions[1{6

To identify F(z), a, A, C, we have two main steps: i) the identification of the Poisson
rates in the model; ii) the identification of F(z) from the assumption of the function form of
the Poisson rate (single peaking that holds overall for the empirical observation). We show
the identification strategy by identifying: «, F (0), the Poisson rate m;;, an interim object
Ry, and F(z) and \.

2.4.3.1 Identifying meeting rate o and C' (F(z) = <)

Lemma 2. a and C' are identified.

Under assumption 2, data follows Poisson process. The empirical characteristic function

¢ (s) for data in period 0 satisfies

= [ alaF()1 - F@).s)dF (),
where ¢ (aF'(2)(1 — F(2)), s) is the characteristic function for poisson random variable with
rate aF'(z)(1 — F(2)). It takes the form ¢y (aF(2)(1 — F(2)),s) = e ~DaF()1=F()  Then

we have

e’ 71)

Te T (erf(A/aver — 1)) —erf(3(2:5% — DVaver — 1))

2\/av/ers — 1
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The third line changes the variable from F(z) to w. The lower bound of the integrand
is F(z) = HLC and the upper bound is F(co) = 1. erf(.) is the error function where
erf(z) = \% Iy e~7dl. On the right hand side there are two unknowns: the meeting rate «
and the lower bound HLC This is an over identified system.

2.4.3.2 Identifying the Poisson rates m,;; and an interim object R;

The possible Poisson rate {m} and its probability I'(dm) in the economy are identified.
The proof was adopted from Rao (1992)(Ra092) p214 and is listed in Appendix [A.2.6] The
procedure is similar to the steps of identifying @ showed earlier but replacing oF (2)(1 —
F(2)) with m and F(z) with ['(dm). Then the mixture of the characteristic function could
be transformed to the Laplace transform of I'(dm). The identification follows from the

uniqueness of the Laplace transformation.

The joint Poisson rates mg, my, ..my and the joint density I'(mg, m1,..mr) and the condi-
tional probabilities are identified following Teicher (1967)(Tei67), which says if the marginals
of the mixture are identified separately then the joint density of the mixture is identified.
The details are listed in Appendix [A.2.7 It is worth mentioning, each m; is a vector of the

possible rates my, in period t.

Define a path ¢ in mg, my,..mg by a T'+ 1 tuple of (mg;, m1;,..mr;) where my; is a rate

picked from m;. By assumption [2] for fixed z;, the poisson rate function is
aF(zie™™)(1 = F(zie ™)) = my.. (2.9)

This rate function is symmetric and single-peaked in F (zie=*). On a path ¢ varying ¢, m,;

can be one of the three possible shapes: upward sloping, a hump shape or downward sloping.

Along the path, upward trends are associated with F (zie™) > % and downward trends are

associated with F(ze ) < % These different shapes allow us to separate F'(ze ) from

Tt -

)

14y /1-470t 1—y/1-47kt .
Define R}, = ———= and R;, = —Y——2—. These are the two roots to the equation

2 2
for F(.).
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If my; is upward sloping, i.e. T'(myy1; > my;lmy;) > 0 for all ¢, then Ry = R}}.
If my; is downward sloping, i.e. I'(myt1,; < mye;lmye,;) > 0 for all ¢, then R, = R,.

If there exists a turning point n such that before the turning point, m,; increases with ¢
and after the turning point m;; decreases with ¢, then R;; = Rjt for t before n and R; = R,

for t after n .

Then we identified F/(ze ) = Rit.
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Figure 2.4: Identification of R;.
If we observe A — B — D, then we can identify F'(z;e~*) correctly along the path by finding

Rit.

2.4.3.3 Identifying F(z) and rate os obsolescence \

Lemma 3. If there is some identified interim object Ry such that Ry = F(ze ™M)

and o 1s

known, then F(z), X are identified.

In period 0, F'(z;) = Ry. The density of Ry coincides with f(z) and F(2) is identified.

For ¢ > 0 we use the inverse of F and take log

log(z;) — At = log(ﬁ_l(Rit)) (2.10)

"We assume dt is small enough in the data.
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A is identified.

Essentially this is a nonseparable mixture model and a classic strategy could be found in
Matzkin (2003)(Mat03]). The intuition is that with an adequate choice of normalization, for
some fixed ¢ the variation in R ; will be the variation of z;, and then both the distribution

of z; and F(.) are identified.

This completes the identification steps.

2.4.4 Construction of the likelihood in the first step

For each period j, if the observed received citation for patent i is y;; and its knowledge
level is z;, then this probability is

(P (e (1—F (e [A(F(zi7)) (1 = F((zie™V))]¥
yij!

Pij(yijlz) = e

. For the entire history of the T" observation periods, we get ngOTPij (yij]2:). However, we

don’t observe z;, this knowledge level is the object we try to infer. By our assumption ,
the distribution of z is the same as f(z). Then the probability of the observations for i

becomes

P(y;) = / =T Py (yig]2) F(2)dz, (2.11)

and the log likelihood function is

P(y) = Zlog(P(yz-j)) (2.12)

We find ji(2), &, C and \ to maximize the log likelihood function 1) We use method of

1
14 L e/ ERZoBihp () 7ds

sieves (hermite polynomials) to approximate % = [222 Bl (2)]% F(z) =
(.

and use the information criterion to determine the order of k. The use of orthogonal basis

polynomials as sieves was introduced in Gallant and Nychka (1987)(GNS8T7) as a sieve esti-

mator f Under some mild conditions on the local boundedness of the gradient function of

8Chen (2007)(Che07) summarizes the major methods and applications.
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the likelihood, the likelihood function and the score function are continuous in the estima-
tors. Then the maximum likelihood estimator is consistent. We use delta methods to give

confidence intervals. Chen et al.(2014)(CLS14) and Chen and Liao (2014)(CLI14)) provide

the analysis for the asymptotics of the plug-in sieve estimators.

Cmeraon and Johansson (2004)(CJ04) and Gurmu et al. (1998)(GRS98) applied a similar
technique in a Poisson mixture setup. In those flexible models, they used a candidate density

and adjusted it with quadratic polynomial basis functions to semiparametrically estimate the

Poisson mixture. In our setup, the density form is parametric up to the knowledge of A(IJ) .
n(z

2.4.5 The second step estimation

We plug the estimates of i(z) into the second step by equations (2.6) and (2.7)). We use

the delta method to calculate the confidence interval.

If there are no explicit solutions to the inverse optimal control equation, we can express
the derivative of the value function by sieve estimates. Then the second step and the first step
could be jointly estimated through Generalized Method of the Moments with two moment
conditions: the inverse optimal control equation (2.6)) and the law of motion equation (|2.5)).
The sieve parameters of the equilibrium choice will be treated as first stage parameters and
the value function parameters will be the second stage parameters (see Ackerberg et al.

(2012)(ACHI2)). The estimator has asymptotic normality.

2.5 Results

2.5.1 Summary of the data

In this section, the data is briefly introduced. The main data source used is the NBER
Patent Data Project (PDP) dataset. It provides the patent data and the patent citation
data from 1976 to 2006. We use the citations received (forward citations) as the dependent
variable y;;. There were approximately three million patents issued during this time period.
We estimate the model by fixing a year cohort (year 1985). There were 67,405 granted
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patents that received citations in this period. They are classified into six categories.

Category Total patents Avg citations  std.
Chemical (excluding drugs) 13,502 10.32 1.1888
Computers & Communications 6,954 17.92 1.8194
Drugs & Medical 5,334 19.50 2.6461
Electrical & Electronics 11,868 11.68 1.3085
Mechanical 15,007 9.17 0.9866
Others 14,740 10.33 1.1216

Table 2.1: Patents data in summary.

yolafility over time
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Figure 2.5: Citations received over time.

There is a significant amount of heterogeneity in citations received across patents. Table
(2.1)) summarizes the average total citations received and the standard deviation within each

category. Patent citations in each category show a 5-10 % variation.

We focus on the chemical patents, which is the largest category. In Figure 2.5 we plot

the average citation of the chemical patents over time, which is represented by the blue bar
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charts. The red dashed line is the standard deviation of the citations. The average citations
received show a hump-shaped change over time, which motivates the diffusion curve type
regression in Caballero and Jaffe (1993)(CJ93)) at an aggregate level. The time pattern of
the standard deviations among citations received also shows a hump shape over time. This
pattern suggests that the differences in the levels of knowledge in patents are reflected over

time. Thus the panel data provides a source to estimate the distribution of knowledge.

2.5.2 Results

Parameters | Value Standard deviation Huber robust standard deviation

a 0.3954 0.0054 0.0043
C 0.9007 0.1516 0.5451
A 0.1286 0.0084 0.0043

Table 2.2: Estimation Results.

Table summarizes the major estimation results for the meeting intensity «, constant
C, and discount rate X\. A smaller value of C' means the degenerate mass at the lower bound
is smaller. The estimated rate of obsolescence A is about 12% per year. This is within the
range of findings from Caballero and Jaffe (1993)(CJ93), which is around 8% to 16% per
year. Similar to their framework, creative destruction in our model is related to the profit
size. When the profit margin is larger, the incentive to innovate is stronger and the speed
of obsolescence is faster. In contrast to their framework in which learning only affects the
innovation technology, learning in our model contributes to the creative destruction directly
in our environment. A stronger learning process increases the replacement effect. A second
difference from their framework is that we study the heterogeneity of individual knowledge
levels while they studied the aggregate pattern of the data. Some individual heterogeneity
might be attributed to the rate of obsolescence in the macro data in their environment.
This estimated rate of obsolescence is higher than the result of 2% from the Lucas and Moll

(2014)(LM14) calibration exercise, in which they link the rate to the GDP growth rate of
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major OECD countries (including the U.S.).

95% confidence inverval for estimated density
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Estimated density f(z) is illustrated by the solid blue line and the 95% confidence interval by
the red dotted line.

Figure 2.6: Estimated density.

Percentile Value
5 lower bound
25 lower bound
50 1.0339
75 1.4788
mean 1.7156
95 2.64

Table 2.3: Dispersion of z.

The distribution of knowledge is similar to a Pareto distribution. There is over dispersion

and the mean/median ratio for the knowledge level is 1.66. This dispersion is lower than

some earlier empirical findings from Serrano (2010)(Serl0), Pakes (1986)(Pak86]) or Bessen

(2008) (Bes08) that suggest a mean/median ratio between 4 to 11. In these findings, the

mean,/median ratio is in patents’ value. If we enrich the environment and the curvature of
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profit 7/(z) is steep, then the dispersion of v(z) will be much larger than the dispersion in

z.(See Appendix [A.2.12))

2.5.3 Growth decomposition

We define the following growth decomposition by dividing both sides of the law of motion

equation (2.5)) by z and rearranging terms

Integrating over entire z, we have

A= a/ F) - F(Z))dz+/@f(z)dz

z

If we define £ (ZZ) as the innovation rate, then the first term on the right represents the
contribution to growth by learning, and the second term is the contribution by innovation.
The estimated growth rate A on the left is 12.86%, and the second term on the right is around
12.75%. This means the direct contribution of innovation to growth is 99%. However, there is
an indirect channel that is ignored in this direct calculation: learning opportunities affect the
value function through a [, [v(2") — v(2)]f(2')dz and provide extra incentives to innovation.

The size of this indirect channel depends on the specification of the profit function. In the

current setting in which #/(z) = 235, this indirect effect is about 0.7% of economic growth.
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95% confidence inverval for estimated innovation rate
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Figure 2.7: Innovation rate.

Estimated innovation rate @ is illustrated by the solid blue line and the 95% confidence

interval by the red dotted line.

2.5.4 Inferred equilibrium cost of innovation and value function

We fix 7(z) = z§|§| and plug the estimated fi(z) to the second step algorithm through
equations ([2.6) and (2.7). The second-order derivatives change sign. There is non-concavity

in the value function and non-convexity in the cost function in the agent’s level of knowledge.

9When we adjust 7/(z), the result for other #’(z) shows revenue function might become flatter, but the
qualitative result holds. One might use other data source to quantify the shape of the 7'(2)
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Figure 2.8: First-order derivatives of the cost of innovation and the value function.
Estimated derivative of the cost function W(fi(z)) and value function v(z) is illustrated by the

solid blue line and the 95% confidence interval by the red dotted line.

However, this result is sensitive to the initial value of v(0) and ¥/(j2(0)). When v'(0) is

larger, we have v(z) is concave in z.
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Figure 2.9: First-order derivatives of the cost function and the value function when v'(0) is

larger.
Estimated derivative of the cost function W(fi(z)) and value function v(z) is illustrated by the

solid blue line and the 95% confidence interval by the red dotted line.

If one needs to identity the entire cost function, one might impose extra exclusion re-
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striction and then plug the equilibrium ji(z) into the second step of the standard two-step

estimator such as B.B.L..

2.5.5 Citations over time

In Abrams et al. (2014)(AAP14), the researchers documented that there is an inverted-U
shape relationship between the lifelong patent citations and the patent value. They explained
this fact by a non-monotone relationship between the patent value and the knowledge (qual-
ity) level in the patent. A higher level patent has more lifelong citations but not necessarily
more value. There are two reasons why a patent would have a higher value. First a patent
opens a new research area and secondly, a patent significantly increases competitors’ entry

costs. The first effect receives more citations while the second effect decreases the citations.

We explore another mechanism in which this non-monotone relationship could be ex-
plained by a non-monotone relationship between patent quality and patent citations over
time. It allows for a monotone relationship between patent quality and value. When a
technology is relatively advanced, it can inspire many followers. It is also true that for these
followers it is harder to make "real and significant" improvement beyond this technology and
create citations. As the economy moves forward, the relative knowledge level in the patent
shrinks due to creative destruction. The citation rate my; will move along the citation rate
curve to the left (my = aF(ze ) (1 — F(ze ™)) over time (in Figure . There are
less followers but the probability of making improvement is higher. For patents with higher
knowledge levels, this process shows the hump-shaped marginal diffusion rate presumed in
the empirical patent literature. In this environment, the cross sectional pattern is the same
as the time series pattern. The lifelong citations of a patent also shows a hump-shape in
its knowledge level. This holds in our environment especially for a smaller C'. For instance,
in Figure , we plotted the cross section citation rate curve in year 2 (thin line), year 5
(dash line) and year 8 (thick line). For patents with level of 3.3, the expected citation rate
first increases in year 5 (solid arrow) and decreases in year 8 (dashed arrow). For patents

with level of 2.1, the expected citation rate decreases monotonically.
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Figure 2.10: Estimated citation rate.

Estimated citation rate in blue solid line, 95% confidence interval in red dash line.
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Figure 2.11: Citations received over time.
The citation rate increases first and then decreases for some quality range (z = 3.3) over time.

For lower level (z = 2.1), the citation rate decreases over time.
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Figure 2.12: Lifelong citations received over time.

The inverted-U shaped lifelong citations for a smaller C.

2.6 Conclusion

Before we drew the conclusion, it worths mentioning the limitation of using patent citation
data. There is disincentive for generating patent citations due to financial reasons and non
patent referencing such as articles might offer better measurement for learning as argued in
Roach and Cohen (2013)(RC13). The role of learning might be underestimated. It would

be interesting to compare the results using non patent references in future.

In this paper, we identified and estimated the cost of innovation in an endogenous growth
framework with technology diffusion. We also provided suggestive evidence on the relative

contributions to growth by learning and innovation.

The two-step algorithm presented in this paper is the first estimator of this class of
continuous time macroeconomic models that has recently emerged. This class of models
has been used to study the interactions among heterogeneous agents, consumers and firms.
They have addressed some important cross-sectional questions regarding wealth distribution

across households, capital and employment reallocation across firms and knowledge diffusion
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among agents in an economy. Analytical results from these models make comparative statics

more tractable.

These models consist of a value function of individual choice (Hamiltonian-Jacobian-
Bellman Equation as equation (2.1))) and a law of motion equation (Boltzman, Fokker-planck,
Fisher-KPP equation as equation ([2.2))), which describes the evolution of the distribution
of the state variables. Achdou et al. (2014)(ABL14) has a more detailed review of the
standard setups. By studying the inverse problem of each equation, one can identify and
estimate deep parameters such as cost function or utility function from the observed macro
distribution or reconstruct them non-parametrically. In the appendix, we show similar steps
can be applied to the Luttmer (2007)(Lut07) firm dynamic model, the original Lucas and
Moll (2014)(LM1I14) knowledge diffusion model, and an extension of the current model with

Brownian motion. Applications to the continuous time finance literature is another area to
exploreET]

The advantage of this approach is the direct identification through reconstruction. It
exploits the optimality condition and the relationship between individual choice and the
macro distribution. This approach avoids the traditional simulation of the agents to match
certain moments in the economy. We show how to reconstruct the objects of interest directly
from the data non-parametrically. This allows for a better fitting of the data as well as a
flexible structure to accommodate heterogeneity. One of the limitations of this approach is
the strong assumption of the large population interaction and the random walk structure.
If there is enough micro-level data, direct estimation of the individual policy function can
validate the results. A second limitation is the small number of the choice variables that
can be reconstructed. With a one dimensional law of motion equation and some further
conditions, two elements could be reconstructed in some cases. With a high dimensional law
of motion equation, it is relatively easier to reconstruct more elements. A third limitation
is that we only consider the distribution and the value function on the balanced growth

path. This reduces the partial differential equations to ordinary differential equations. The

OFEntry and exit can be modeled as a separate source term in the law of motion equation of the macro
distribution.
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uniqueness and existence of the inverse reconstruction is easier to show. The case of the
partial differential equation requires more advanced treatments to reconstruct the element.

This is an interesting direction for future research.

One important piece of the heterogeneous models in macroeconomics is the dynamic
choice problem of the agents where they differ by their states. Those models are often cal-
ibrated against macro level data. On the other hand, the identification and estimation of
single agent dynamic choice problem have been well studied in empirical IO literature. The
difference between the macroeconomic version and the empirical 10 version is that in macro
models, the distribution of the heterogeneity is an equilibrium object that affects the indi-
vidual choice, while in empirical 1O this information is often discarded by the availability of
micro level data. This paper studies the mapping between the individual choice at the micro
level and its distribution at the macro level. Under certain conditions this mapping is invert-
ible meaning that one can recover the individual choice from the macro distribution. Then
estimation method in empirical IO could be naturally extended to macroeconomic frame-
works. This could provide semiparametric or nonparametric identification and inference to
heterogeneities in macroeconomic models. Given its similarity to the dynamic discrete choice
models, we expect that more insights from empirical 10 literature could be utilized in this

class of models.
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CHAPTER 3

Income and wealth distribution

3.1 Introduction

What drives wealth inequality? Wealth distribution and its dynamics have been a central
topic in economics. In this paper, I present a simple framework where the wealth distribu-
tion is driven by the precautionary savings of the agents in the incomplete financial market.
With some degree of abstraction, this captures the basic features of the consumption saving
tradeoff. This is driven by two forces,namely a risky income process and the consumption
smoothing motive in the incomplete financial market. Within this framework, I examine
which features of the income process and utility function contribute more to the precaution-

ary saving decision and drive the income wealth distribution.

If agents exhibit much heterogeneity in their underlying income processes, the aggregate
wealth distribution will be affected. Imagine that the higher income agents have better
access to social resources and continue to have a high income profile with relatively higher
variances and if the marginal utility of wealth does not fall fast enough, their wealth will
continue to grow due to precautionary saving. Thus inequality gap becomes larger. However,
if the income process has a strong mean reverting effect and the income uncertainties faced
by agents are similar, together with a flat marginal utility function, the wealth inequality will
shrink. It is clear from this example that three things matter: the degree of autocorrelation
of the income process, the uncertainty associated with the income process, and the relative
level and curvature of the utility function. My paper will address these three factors and

their empirical importance.

The model will be a continuous time version of Aiyagari (1994)(Aiy94)’s model consisting
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of heterogeneous agents with different wealth and income levels. They have access to one
risk free asset, namely saving. Saving pays interest at a constant rate. Following ATt-
Sahalia (1996)(Ait96)’s approach, the distribution function plus estimation of first moments
of the saving and income from the panel data will provide the estimates of implied local
variance of the income process. In a second step the utility function could be recovered semi-
nonparametrically. The recovered local volatility shows large variations between different

wealth and income percentiles.

In the extended model, I also compare it with other formulations of the income process
and consider the impact from higher moments. If the income uncertainty is significantly
different from the log normal distribution, then incorporating higher moments would be

important to better characterize the income process.

The results show that the income process is deviates substantially from the traditional
log normal assumption and information up to first three moments of the income process is
important in explaining the cross-sectional differences in the saving rate. Risk aversion is

not constant and varies across wealth level and consumption.

Previous research has provided some evidence concerning the income process and most
recently Guvenen et al (2015)(GKO15) provided a thorough examination of the income
process from US social security data and revealed rich heterogeneity of the income process.
This is important in understanding the heterogeneity in the saving process. In the paper
they examined the life-cycle property and the conditional skewness and kurtosis from the
panel structure. They discovered the asymmetric shift of the skewness of the labor income in
the business cycles. My paper focuses on how these moments affect the joint wealth income
distribution. Using similar data, Schimdt (2014)(Sch15) proposed an affine model in relating
the income risk and some other indexes. My work is closely related in the sense that I will

examine the income process and their moments implications for the precautionary saving.

In the incomplete financial market, saving is a primary tool to hedge against income and
other sources of shocks. Wealth consequently correlates closely with the income process.

Bewley (1977)(Bew77), Hugget (1993)(Hug93) and Aiyagari (1994)(Aiy94) models started
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this line of research. Castanieda, Diaz-Giménez and Rios-Rull (2003)(CDR03) calibrate a
detailed model using a similar dataset and target the Lorenz curve of income and wealth
distribution. Rather than targeting the percentiles, I will show how the income process might
contribute to the cross sectional wealth difference through savings using the income wealth
distribution as input. The continuous time modeling was adopted from the continuous time
macroeconomics frameworks initiated by Lucas and Moll (2014)(LM1I14)) and Lions and Larsy

(2006)(GLL). [ It allows sharper characterization of the transitional process.

It is worth mentioning that several other forces have been proposed to explain both the
inequality and its trend. Among them, entrepreneurship is influential. Business owners have
different incomes than employees. They can utilize the ownership as a saving tool. Cagetti
and De Nardi (2005)(CD05) studied the career choice and income distribution of workers and
firm owners. Quadrini (2000)(Qua00))’s survey paper and recently Buera’s (2009)(Bue09)
survey paper provided summaries along this direction. These authors also suggest that
high saving is associated with entrepreneurship behavior, either by initial investment or as
collateral due to borrowing constraints. Meanwhile, some of the risks might be shared by

the employees as well. (Zhang’s (2014)(Zhal4) provides an illustration).

Different levels of wealth may also mean different capability in acquiring financial assets
for hedging or investment purposes. Wealthier families might benefit from more complicated
asset portfolios and have much lower total risks. My paper does not address career choice
or access to financial market directly, but the the process and distribution will be dependent

on the wealth level. Finally, bequest motive is also beyond the discussion of this paper.

The paper is organized as follows: In section [3.2] I will present the simple baseline model
and the estimation procedure. Section provides a summary of the data and estimates
the baseline model, while section describes some extensions. Section estimates the
utility. Section calculates the risk premium. Section concludes.

!see Achdou et al. (2014)(ABLI14) for a detailed description.
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3.2 A saving problem

3.2.1 Model

I adopt the continuous time framework for its convenience in exhibition. I start with the
baseline model where income is log normal. In continuous time, this means that the income
follows geometric Brownian motion. This log normality assumption has been adopted in

many previous analysis for its tractability.

Agents receive salaries at rate wz; where w is the economy-wide wage rate and z; is the
productivity (efficient labor unit) of the agent in the period. Since w would be normalize to

1, z also represents the labor income. The income evolves according to:
dZt = ,u(at, Zt)tht + U(CLt, Zt)thWt, (31)

where p(ay, z)2; is the drift of the productivity changes and o(ay, 2¢)z; is the standard error
of the volatility experienced by the agent with wealth level a; and income level z;. This
models that each agent will experience some shocks to productivity and resulting changes
to income flow. It is important here that the drift term and the volatility term both depend
on the net wealth level. In Buera (2009)(Buc09) and Cagetti and De Nardi (2005)(CDO05),
they examined the channel where wealth affects the entrepreneurship choice through the
borrowing constraint. Then different career implies different income level. Although I did
not take the career choice into direct consideration, this formulation potentially captures

how different wealth levels might affect income opportunities.

Agents can only save their income at rate r given by the market. The saving/net wealth
a; thus follows:

dCLt = (tht +ray — Ct)dt7 (32)

where z; + ra; — ¢; represents the labor income and interest earned minus consumption. We

define s(ay, z) = (24 + ra; — ¢;).

If we denote the ~ variables as the log transform of the original variables, then, for example
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2 =log(z) and @ = log(a) ] With a bit abuse of the notation, u(.,.) and o(.,.) will represent

the log case as the following :

1

dz  =[ua,2) — 502((1, 2))dt + o (a, 2)dW (3.3)

P CLIPy (3.4)
exp(a)

Agents are ex ante identical except for their wealth and income levels. They maximize
their expected utility function E fooo e P*u(cs)ds by choosing the consumption and saving
given the income and net wealth, where v is the flow utility and p is the discount factor.
Using Ito’s lemma, the Hamiltonian-Jacobian-Bellman (H.J.B.) equation equation of the

value function becomes

~

pv(a, z) = max  u(c;) + dgv(a, 2)s(a, 2) + 0,v(a, 2)[p(a, 2) — %a(d, 2)?] (3.5)

Using the framework of Meanfield games by Lasry and Lions (2006)(GLL) and Lucas
and Moll (2014)(LM14) the law of motion equation could be summarized by the Kolmogorov

forward equations as

0=~ ig(a: <p(>)] — o0 0@, 2) — 0% @] + 5 aglol DG, (36)

where ¢g(., .) is the joint distribution. In the stationary case, the left hand side is the derivative

to the time change and would be 0.

Before introducing the equilibrium, I will explain the meaning of this law of motion
equation. The change in the density consists of two parts, as follows: the change in wealth
through saving (the first term) and the stochastic change in the income (the last two terms).

These should cancel out in the stationary case. In the discrete case, one encounter the law

2There were not many agents with negative netwealth in the data and thus they were dropped; we can
set the borrowing constraint at a positive number very close to 0.
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of motion equation in the form ¢,.1 = Tg;, where subscript ¢ denotes the time period. T is
the transitional matrix. Intuitively, one can expand g; to the second order using g;11 as the

base. This results in the law of motion equation (3.6)
The first order condition with ¢ becomes:

;8(11](@15, z})@cs(dt, ét) (37)

wle) = = (@)

In discrete case the F.O.C. would not bind for some low net wealth (a) agents, since they

become borrowing constrained. In the continuous type case, the F.O.C. always holds.

3.2.2 Equilibrium

Equilibrium definition: A stationary equilibrium is defined by r, a, and the distribution

g*(a, 2), and optimal saving rule s*(a, 2).

Given r, a, and z, s*(a, 2) maximizes the utility function, and given the optimal s*(a, 2):

r=0xF(K,1), (3.8)

where -
K:/ / exp(a)g*(dg, ), (3.9)

and the joint density ¢*(.,.), satisfies the Kolmogorov forward equation ({3.6)).

3.2.3 Estimation procedure for the baseline model

The estimation goal is to assess the features of the income process that are important
in explaining the joint income wealth distribution. In the baseline model, the key features
of the income process are the conditional mean and conditional volatility. I will recover the
volatility suggested by using the empirical conditional mean and empirical joint income

wealth distribution. Then, this recovered volatility will be compared with the empirical

3 One might intend to expand g;;1 to the second order using g; as base. However, if time runs forward,
future states are unknown and today’s states are known. Thus, one would expand today’s distribution rather
than tomorrow’s distribution. Details can be found in section
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conditional volatility in the data. If the recovered volatility is in line with the data, then the
income wealth distribution can be explained by heterogeneity in the income process in this

simple environment.

This method was proposed by Ait-Sahalia (1996)(Ait96) to estimate the option volatility
and option prices. In his paper, he used the panel data to estimate the drift. Estimated drift
and marginal distribution were used in the law of motion equation to recover the implied
volatility. In the current macroeconomics setting, this approach can single out the variance
term directly without fully solving the model. This method also uses the entire distribution
from the data rather than first or second moment only. In addition this inverting process

will reveal dependence structure between the income process and wealth.

Suppose we have s(a, 2), g(a, 2), and p(a, 2); then we can solve for o(a, 2) by integrat-
ing both sides of once with 2. It then becomes a first order differential equation of
g(a, 2)o*(a, 2) for fixed a. Then, dividing the result by g(a, 2) will give us o2(a, 2).

In Ait-Sahalia’s original approach, he fits the parametric assumption on the drift pu(a, 2)

and then plug the estimates into (3.6]). Instead, I will estimate those elements nonparamet-

rically to capture richer dependence structures in the data.

The idea behind this different approach was proposed in the seminal paper of Johannes
(2003) (Joh04) (or see Gihkman and Skorohod (1972)(GS72)) in estimating the interest rate.
A

1 1
ZE(délé, z)  =uplaz) - 502(&, z), (3.10)
1 . s(a, z)
—E(d = 11
A E(dala, 2) c1p(a) (3.11)

1 2

KE((ds)ﬂa,z) =X (dz|a, 2)* + o*(a, 2). (3.12)

The left handside expectations could be replaced by their empirical counterparts with

4The first term on the right hand side of the last equation is different from that in the original paper
because the data have a longer horizon; thus dZ could not be ignored. This could be derived through a
Taylor expansion or using Dynkin’s formula.
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local nonparametric regression equationsﬂ I will plug the nonparametric estimates
and back into and calculate the recovered local volatility o2, (d,2) and then
compare it with the nonparametric estimates in . If the two correlate well, then the
model provides a reasonable framework in understanding in the income process and income

wealth joint dynamics.

3.3 Data and estimation

3.3.1 Data description

The data comes from the Survey of Consumer Finance (SCF). One of the recent survey,
includes a panel data structure from 2007 to 2009. I will extract the income (z), saving/
net wealth (a) then form the joint density g(a, 2) of the net wealth and income. The total
income is defined as the sum of primary earnings plus secondary earnings. The difference
between total assets and debts is defined as the net wealth, where total assets includes liquid
assets, home assets, business assets, lending, vehicles, IRA , life insurance, misc assets and

Pensionl. Total debts includes credits, loans and mortgage.

There are around 12,000 observations with sampling weights after imputation. I use the

nonparametric method to estimate the densities. The nonparametric kernel density estimator

of the marginal density of m for m = a, 2 is defined as g(m) = > Suﬁgw_)K(m;x") where K

is the gaussian kernel, h is the bandwith, and x; is the data. The bandwith is chosen by
1

the rule of thumb gganfﬁ and r = 3 prepared for later calculations. The joint density is

similarly defined using the product kernel.

The estimated results are as shown in Figure [3.1] and Figure [3.2]

®Bandi and Phillips (2003)(BP03) and Bandi and Nguyen (2003)(BN03) provides more detailed treat-
ments using local time approach which provides similar estimation methods based on ergodicity.
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3.3.2 Labor income
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Figure 3.1: Income distribution.

Name log earnings
Mean 9.158
Standard deviation 2.752
Skewness -1.068
Kurtosis 3.276

Table 3.1: Statistics of the log total income.
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percentile | Log income | Income
10 5.64 280
25 7.244 1,400
50 10.404 32,991
75 11.082 64,991
90 11.6 10,910
95 11.931 15,190
99 12.96 425,070

Table 3.2: Percentiles of the log total income, income level in parentheses.

3.3.3 Net wealth
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Figure 3.2: Net wealth distribution.
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Name Log net wealth
Mean 11.644
Standard deviation 1.985
Skewness -0.3940
Kurtosis 3.345

Table 3.3: Statistics of the log net wealth.

Percentile | Log net wealth | Net wealth
10 8.853 7,000
25 10.404 33,000
50 11.926 151,100
75 12.938 415,800
90 13.825 1,009,500
95 14.602 2,195,700
99 16.032 9,175,100

Table 3.4: Percentiles of the log net wealth, income level in parentheses.

In both graphs, data are in the blue line. The green line represents the normal distribution
with the same mean and variance. Both log income and log net wealth skewed to the right.
The log net wealth shows a fat tail. Both log earnings and log net wealth shows a negative
skewness and a kurtosis greater than 3. This negative skewness and excess kurtosis have
been documented in the Guvenen et al. (2015)(GKO15). Castaneda, Diaz-Giménez and
Rios-Rull (2003)(CDR03) also used a stochastic efficiency labor framework to capture income
volatility. In their calibration, there were four levels of efficiency namely 1, 3.15, 9.78, 1,061,
and the distribution decreased monotonically. In their calibration, the skewness was 1.0536
and kurtosis was 3.312 E] The skewness in their finding was positive, which contrasted with
recent findings. This might have occurred their calibration target is the inequality Gini

coefficient and four quartiles rather than the transitional probability.

6See Table 4 and Table 5 of their paper and transform to log efficiency labor unit.
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3.3.4 Estimation of the income process and saving rate

We start from the baseline model where income z follows a Geometric Brownian motion.

Then, we will enrich the process and show how this translates into saving behavior.

As mentioned previously, I will estimate the conditional first and second moments of dz,

and the conditional first moment of da, and implied variance o2, (a, 2).

We define the saving rate by savings denominated by the net wealth (e.g., ;Ei’(?)), which
is the first moment of the change in log net wealth estimated in (3.11f). The results are listed
in Figure 3.3 Overall, the saving rate is very low for most of the agents. It decreases with
the wealth level. However, during 2007-2009, most of the agents experienced the financial
crisis, lost assets and reduced their savings. Within the wealth percentiles, the higher-income

agents tend to save more.
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saving rate from the data
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Figure 3.3: Saving rates in the data.

In Figure [3.4] I plot the estimated first moment of dZ, and the change in the log in-
come. Comparing to the calibration results in Castaneda, Diaz-Giménez and Rios-Rull
(2003)(CDRO3))(in the right panel), where their income process only conditions on past in-
come level, my estimates show a similar pattern up to around 50th percentile income level.

Their calibrates show a different pattern for the high income agents.
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First moment of log income from data
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Figure 3.4: First moment of dZ.

Figure depicts the drift term u(a, 2). For income levels below 13,360 there is very high
heterogeneity. The 95th percentile wealth agents have a higher income growth. For higher

income agents the mean reverting force is weaker and there is diverging income inequality.
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(@, 2) of change in log income from data
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Figure 3.5: p(a, 2).

In the following panels of Figures|3.653.7], I plot the implied volatility o;,,(a, 2) (green dot)

derived from the Kolmogorov equation, data (red line), and constant parametric estimation
(blue dot).

Before showing these figures, what should be expected? If income process and its volatil-
ity could be fully captured by the first and second moments, then the recovered volatility
calculated by (3.6 should be very close to the second moments of dz: o2(a, 2).
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Recovered second moment 25 percentile netwealth
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Figure 3.6: Second moment of dZ and implied volatility part 1.
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Recovered second moment 75 percentile netwealth
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Figure 3.7: Second moment of dZ and implied volatility part 2.
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As shown in the graphs, the constant volatility estimation tends to capture the case
for mid income agents. It overestimates the income volatility of high income agents and

underestimate that of lower income agents.

The baseline model is able to reproduce the variance of the log income for relatively
lower wealth and higher wealth agents. It follows the data closely for the 25th and 90th
percentile wealth agents and is reasonably close for 75th percentile wealth agents. For the
super wealthy agents, the baseline model does not produce enough volatility compared to
the data. Since the normal distribution does not have strong fat tail, it might have poor

prediction power to the rich high income agents.

Castaneda, Diaz-Giménez and Rios-Rull (2003)(CDRO03) obtained an increasing condi-
tional standard deviation, which supports the reasoning that high income agents have more
volatility and save more. The nonparametric estimates, however, show a decreasing volatil-
ity. Similarly, if we examine the conditional skewness of the income, the level is roughly
consistent for the highest efficiency level agent, though the cross sectional trend is different
from the data. The Guvenen et al. (2015)(GKO15) estimates also show a decreasing trend

for the standard deviation.

Comparison to Castaneda, Diaz-Gimenez and Rios-Rull, Guvenen

- - — - Castaneda, Diaz-Gimenez and Rios-Rull
\‘\ ———- 25th percentile wealth agent
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o
®
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percentiles of log income

Figure 3.8: Comparison with previous studies.

70



3.4 Implication of higher moments

As shown in the previous section, the local log normal distribution neglected to capture
some features of volatility in the income process. In particular, it did not generate enough
volatility for high income rich agents and created too much volatility for the mid wealth
agents. This led to the consideration of relaxing the log normal structure and incorporating
higher moments. If large income shocks occur with a greater probability, this will be captured

by the higher moments.

Recently, many authors in the literature have suggested that the distribution of log income
changes has nonnormality feature that affects the skewness and kurtosis of the income process
significantly. Guvenen et al. (2015)(GKO15) and Schimdt (2014)(Sch15) both studied this
effect using the Social security data. Although the SCF data has a shorter panel with a

lower frequency, it still generates some of these features.

0.5
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Figure 3.9: Transitional density of dz

If we examine the unconditional transitional density of the change in log income (shown
in Figure and compare it to a normal distribution with the same mean and variance, we
find sharp differences between the two. The change in log income shows a much fatter tail in
both tails. It also generates higher kurtosis than a normal distribution. In Appendix [A.3.T]

I present the comparison with estimates from Guvenen et al. (2015)(GKO15) on skewness
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and kurtosis.

I introduce two formulations to incorporate the effects of higher moments. The first adds
more moments into the transitional process. In the Brownian motion setup, the Kolmogorov
forward equation only contains the first and second moment of the income process. In the
non-normal case more moments could be incorporated into the Kolmogorov forward equation

and examined for their effects on the saving. Details are discussed in section |3.4.1]

The second alternative is the jump process. Income sometimes experiences larger devia-
tions at a much lower frequency. This increases moment values at the tail and generates a

greater impact on the saving rate because the change in marginal utility is bigger.

3.4.1 Higher-order effects

In this section, I provide an alternative framework which utilizes the moment conditions

E((d2)"a, z). The probability density g(x) follows:
g(x,t+ At) = /T(x, t+ Atlz' t)g(2',t), (3.13)

T is a transitional density from z{]at ¢ to = at t + At. If we have all the moment conditions
of the transitional density, then we can use inverse Laplace (Fourier) transform to derive the

transitional density. With some manipulation ] we have:

a%_(;:) = (_nl!)n aa:n (M (2, t)g()], (3.14)

where M, (z,t) stands for the conditional moments for the transitional densities and is defined
by M, (z,t) = [(x—a2')"T(z,t+7|a’,t)dz’. The law of motion equation used in section (3.2)

is a special case of this expansion only up to two moments.

Setting the stationary condition Bga_(tx) = 0 and substitute in the moment conditions for

"Here z is a vector containing log net wealth and log income.
8see Risken (1978)(Ris78) for details
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changes in log income, we have:

g0 ) = 0 S () ) ) (3,19

To illustrate this effect, we can integrate both sides with respect to a and calculate the

contribution of each term:

n' ozm

- [ Smaer s e, 2l gta. ). (3.16)

This shows how higher-order moments affect the saving rate. Since we truncate the infinite
expansion using finite terms, we introduce the fitting coefficients f,(a). a is fixed at 25th

percentile:

s(@.) (@ O+Zﬁn @ / O (B33, )9, 2)d7 Jg(a ) (3.17)

exp(a) exp Q ! ozn

First, I will present the results using only the first two moments without adjusting the

coefficients.
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Figure 3.10: Implied saving rate using the first two moments without fitting part 1.
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Figure 3.11: Implied saving rate using the first two moments without fitting part 2.

Shown in the above two panels, the blue line is the difference in the saving rate between
the target percentile net wealth agent and saving rate of the 25th percentile agents. The
green dotted line is that suggested by the model using only two moments, without the fitting
coefficients. The figures clearly shows that only two moments E| are not sufficient to explain

the cross-sectional difference in the saving rate.

In Figure [3.1213.13] I present the results of fitting in higher moments to predict the

difference in the saving rate. The blue line is the saving rate data, and the light blue dotted

%if the model contains only two moments like the log normal baseline, then there should be no fitting
coeflicients.
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line represents using only first moments. The green dotted line represents using first two
moments. The red dotted line represents using first three moments, and yellow dotted line

represents using the first four moments.
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Figure 3.12: Comparison different percentile net wealth agent part 1.
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agents, where the fourth moment became important.
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Figure 3.13: Comparison different percentile net wealth agent part 2.

In Figure |3.613.7, we found that implied variance was far off for the 50th and 75th per-
centile net wealth agents. It is clear that the first two moments did not fully capture the
income process for these agents. Adding in higher moments, especially the third moment,
significantly improve the fitting. Overall, the first three moments captured important fea-

tures of the income process to reproduce the saving rate, except for 75th percentile net wealth

Indirect evidence could be obtained by regressing the saving rate on the empirical mo-
ments directly. In Table [3.5 I provide the regression results on the moments. This result
is based on the pooled five imputes. Although significant in the pooled data, the second



moment becomes insignificant in some replicas.

Variable Coefficient

(t stat in parenthesis)

d 0.142
(8.87)
[d3)? 0.026
(3)
[d2]? -0.016
(-5.83)
[d2]* -0.005
(-4.51)
[d3]° 0.001
(5.53)
[d3]° 0.0002
(5.07)
[d2]7 -0.000015
(-5.67)
[d4]8 —3.07-10
(-5.25)
[d2]° 9.46 - 1078
(6.06)
[d2]10 1.64-10°8
(5.37)
Tntercept -0.198
(-18.77)
Table 3.5: Dependent variable: saving rate ;EZ(Z))

3.4.2 A jump diffusion formulation

In this section, I will estimate the income process using the jump diffusion structure.

The jump follows a poisson process at rate A(a, Z), where jump sizes £ satisfies the double
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exponential distribution :

pime™ Lo+ (1 — p1)nee ™1,50.

This contains two asymmetric parts. If jumps upward, it follows exponential distribution
with intensity parameter (1;). 1 — P; is the probability of jumping upwards. Similarly 7,

and p; is the parameters for jump down. Here, those parameters depend on a, 2.

The identification method is the same as the previous section where local conditional

moments were used:

LB(d)a,2) = p(a,2) — 50%(8,2) + M@, 2)B(E)
LE((d2)8,2) = nB((d2) a2l ) + 50%(@,2))

202D (a2 =2la, 2)0%(a. 2

+A(@, 2)(E(dz + &)" — E(E)")

EE") = pkN =1 n"+ (1 — py)kln*

Jump intensity and variance of jump sizes could be recovered using these relationships.

This distribution has been used previously by Kou (2002)(Kou02) and a similar version
with the double Pareto distribution was proposed in Moll, Kaplan and Violante (2015)
(MKV15). The double exponential distribution will generate a sharp shape in the middle
part of transitional density. The asymmetric setup allows for different intensities for different

jump directions.

Figure 3.16 illustrates the decomposition of the estimated second moment of the
income into diffusion risk and jump risk. The red dotted line represents the jump risk

Aa, 2)Var(€). The blue line is the second moment which is the sum o2(a, 2) + A(a, 2)Var(§).
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Figure 3.14: Volatility decomposition part 1.
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Figure 3.15: Volatility decomposition part 2.
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Figure 3.16: Volatility decomposition part 3.

Jump risk accounts for 5% to 15% of the volatility for the less wealthy agents and around
20% of the volatility for the 50-90th percentile wealth agents. For the wealthy agents,
the share of the jump risk is relatively small. This suggests that for most agents larger, less
frequent deviations in the income process represents an important component in their income
process. This type of risk is also harder to hedge. This is in line with the finding in the
baseline log normal environment where the less wealthy and wealthy have more consistency
between the recovered volatility and the data. If the jump component was misspecified as
the variance in the log normal case, then the estimated variance in the log normal case

was required to be large to account for these rare large jumps. Then overestimation of the
82



variances in the log normal case would be expected.

3.5 Utility estimation

The last important element in this simple environment that affects the saving dynamics
is the utility function. In this simple environment saving is driven by precautionary motives
by agents facing income volatility. Fixing the income process, the level of marginal utility
and the degree of risk aversion (the curvature of the utility) function determine the saving
behavior. A more risk averse agent would be more sensitive to income volatility by saving
more. This translates more income inequality to wealth inequality. I discussed important
features of the income process in previous sections. This section will estimate the utility

functions that are consistent with the saving behaviors observed.

Traditionally, saving decision could be rationalized through the Euler equation for the

H.J.B. equation derived by substituting the F.O.C. condition into the following condition:

1
(p - T)Ué(da 2) = aéév(da 2)(#(&7 2) - 50(&7 2)2)
A A~ . l A A~ 2
(a2 208:2) ~ §o(@,2))
Oa
(i, 2) 2y 4 Lo e 2)0(a, 2
aa bl equ(d) 2 zza ) o )
1 N 2)\2
+50::0(@ z)"(‘g;) :
and becomes the Euler equation:
a AS) AS + l A87 AS 2
val@,3) = —E, / e~ 5[0, (a,, 2,) 2 %) . 19045 %)), ) (3.18)
1 AS AS 2
—E, / e—<ﬂ—r>8[§aﬁv(as,28)—"(“8’;) Jds.

The marginal utility of an extra amount of consumption would affect the wealth today as

well as the future income process. The two forces will balance in the equilibrium.

If we only consider up to two moments then we can solve v(a)(a, 2) for the observed
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income process and saving behavior. In the higher moments case, the H.J.B. equation will

be different.

V(a,2) = Ulc(a, 2) + E / e[V (s, 25)|, 5]ds (3.19)

The identification becomes more involved. Recently, Schrimpf (2012)(Sch10) discussed
several identification requirements. However, the standard method in B.B.L. type two-step
estimator still applies if discount factor and interest rate are known. See appendix for

more details. We have

Vi 2) = B / P (g, 2)], £]ds (3.20)

The equilibrium expectation operator E (transitional matrix) is estimated from the data.

The simulation takes following steps:

e First semi-parametrize U(c(as, 25)).

e Simulate sequences of @, Z and calculate V'(a, 2) according to (3.5)). Taking the average

will give us V(a, 2).
e Substitute V into the F.O.C. equation

—0aV(dt, z})@cs(dt, ZAt)

e Find the parameters such that the difference in the F.O.C. is minimized.

To measure the curvature of the utility function, I adopt the standard relative risk aver-

sion measure —gl,/—((cc))c. I will let U(.,.) satisfy U(c,a) = R(£)a'. T also impose the shape

restrictions U.(c,a) > 0 and Ue.(c,a) < 0 as in Beresteanu (2007)(Ber04). Finally p is set to

be 0.05 as most previous literature . r is set to be 0.03 to match the 2007-2009 interest rate.

To make the comparison, I also estimate the utility function with a constant relative risk

aversion (CRRA) utility function: U(c) = ‘311:; for v # 1 and In(c) when v = 1. v is the

degree of risk aversion. The estimated v = 0.6254. This is lower than the range 1 —4 used in
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many studies. However, it is highly similar to the Hansen singleton’s (1983)(Lar82)’s point
estimate of 0.68-0.9[

Figure plots the estimated results of the degree of relative risk aversion. The non-
parametric estimates show strong non-monotonicity. It is lower than the Hansen Singleton
estimates except for the case when the consumption wealth ratio is close to 1 and extremely
large values(>3). This is in line with the range in Hansen and Singleton’s (1983)(Lar82) but

lower than most calibration choices.
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Figure 3.17: Risk aversion

3.6 Risk premium

We have already shown that higher moments are important in explaining saving. How
much do these higher moments account for the risk premium? I use the Lucas (1987)(Luc87)’s
certainty equivalence definition, which specifies the percentage of the consumption an agent is

willing to sacrifice to perfectly smooth the consumption. Following Guvenen et al. (2015)(GKO15):

Ulc(1 =) = E(U(c(1 +9))),

0The confidence range is around 0-2 in Hansen and Singleton’s (1983)(Lar82) result.
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where 7 is defined as premium, & is the local shock for the consumption, and o2 is the

variance of §. After Taylor expansion we have

1U"(c,a)e , 1U®(c,a)c? ;s 1 UW(c,a)c? o
—§m0 — Emskewness 0o — ﬂmkurtoszs * g (321)

m =

The last two terms represent the contribution of the higher moment risk. In the constant

relative risk aversion case % = —v,UZ,((CC’Z))CQ = (y+1)y and % =—(y+2)(v+1)y.

I also plug in the semi-nonparametric estimates of the utility function. dinc ~ da if we
consider saving rate is roughly constant through perturbation and the conditional variance,
skewness, and kurtosis of the percentage change of consumption will be similar to that of

the log net wealth a. The o2 will be the local variance of a .

Figure 7?7{3.19| presents the estimated results. Solid lines show the risk premium from
the second moment. Dash-plus lines stand for the risk premium from the second and the
third moment. The dash-dot lines are the risk premium from the second, the third moment
and the fourth moment. The blue lines represent the semi-nonparametric utility estimates

while green ones represent the CRRA utility function.
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87



Risk premium

Risk premium

Risk premium

Risk premium for 75th wealth agent

T T T T
second moment
— —+ - three moments
— ==~ fourmoments
crra second moment
crra three moments
crra four moments
0.1+ q
0.05 A
0 L
7 12 13
log income
Risk premium for 90th wealth agent
T T T T
second moment
— —+ - three moments
— =~ - fourmoments
crra second moment
crra three moments
crra four moments
01+ -
0.05 B
B S
0 I I
7 8 9 10 " 12 13
log income
Risk premium for 95th wealth agent
T T T T T
second moment
——+~three moments
———~fourmoments
01l crra second moment i
’ crra three moments
crra four moments
0.05F N 4
0 I I I I !
7 8 9 10 " 12 13

log income

Figure 3.19: Risk premium part 2.

88



The second moment, which is the traditional risk aversion contributes most to the risk
premium. The contribution from the higher moments is highly sensitive to the curvature of

the utility function. This could be understood from equation (|3.21]). %a" decreases very

Uln)(c)en—1

rapidly. If the curvature term —; ©

increases very rapidly and balances the previous
term, then the higher moment is important as a source for the risk premium. The risk
premium coming from the third moment is around 0.01% to 2%,contribution from the forth
moment is around 0.2% to 0.5%[1;1-] in the nonparametric case .In the CRRA case, the degree
of risk aversion is higher than the nonparametric estimate, resulting a higher risk premium
and a larger effect. 0.1 % to 0.6% from the third moment and 0.2 % to 2.5% from the
forth moment. Since a and 2 are correlated, the higher-order moments of log income process
contributes to the risk premiums. This contribution is larger for the less wealthy agent,

which confirms the earlier finding that non-normality feature is stronger for the less wealthy

agent.

In Guvenen et al. (2015)(GKO15) o is fixed to be 0.1 and skewness is -2 to 0 , kurtosis
is 3 to 30, which is from the income process. The utility function is chosen to be CRRA
with degree of risk aversion of 10. Their result implies 400% increase in risk premium by
incorporating the higher moments. This large increment is very sensitive to the high risk

aversion. If the risk aversion is 0.6245 as in the SCF data, this increment reduces to 23%.

3.7 Conclusion

Income wealth dynamics is important in understanding inequalities in society. This paper
addressed the basic forces that affects the saving choice, which in turn influences the income
wealth joint distribution, namely the income process and marginal utility. I showed that
higher moments of the income process are important in explaining cross-sectional saving
behavior and income wealth joint distribution. Higher moments also provide extra source

for risk premium.

To illustrate the main forces, production, firm ownership, and financial market were

Hexcept for some extreme region the premium is around 10 %
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excluded in this simple environment. It would be interesting to incorporate these factors

and examine their effects with richer data and a richer framework in future.
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APPENDIX A

Appendix

A.1 Appendix for chapter 1
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Figure A.1: Keywords of the topics, part 1.
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A.2 Appendix for chapter 2

A.2.1 Properties of the equilibrium

It is worth mentioning that among these papers the equilibrium distribution of the het-
erogeneity usually has a fat tail. The origin and properties of fat tail distribution has been
a important topic in economics, network, computer science, and many other subjects. We

show the conditions when the equilibrium distribution will have a fat tail.

Corollary 1. If ji(z) = bz then the cdf becomes ————=— which is the log logistic distri-

1+4(2) %

bution, the solution to (LM1}).

Remark Logistic type distribution and diffusion process has been used frequently in em-
pirical technology spill over studies. Apart from this popular class, when uf(\x/) ~ a(Em)tte
the density F (z) approaches Fréchet distribution. These two classes of distributions were
widely studied in finance, macro and international trade literature. (Gab09)) surveyed related

applications of fat tail distribution in economics and finance.

A.2.2 Law of motion equation

This third term is approximated in the following sense: in each time period the inflow due
to the drifting agents is + [ h(d, 2 —§,t) f(x — 9, ¢)dd and the outflow is — [ h(4,z,¢) f(x,t)dd.
h(§, z,t) is some instantaneous rate function of moving from z to § away at time t. Combining
the two we have [[h(d,2—6,t) f(x—09,t)—h(d,z,t)f(z,t)]dd and Taylor expand the first term
with respect to x — ¢ at x in the integrand up to second order and exchange differentiation

and integration we have [[h(d,z,t)f(z,t) — 62 (h(5, z,t)f(x,t)) + %g—;(h(é, x,t)f(x,t)) —

(6, ,t) (2, 8)]d6 = — 2 ([ Sh(S, x,t) f (2, 8)dS) + 52 ([ Sh(S, z,t) f(x,t)do).

[ 0h(8,2,t)ds = p(x,t) and [ £ h(s, z,t)ds = 0
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A.2.3 Proof of proposition I

Proof: Let us denote ®(z) = 1 — F(x) and slightly abuse the notation and let 7 stands for the
equilibrium level of R&D.

The equation in equilibrium takes the form:
Az¢(z) = —a®(z)(1 — ®(2)) + fi(2)#(2) (A1)

The evolution could be solved as follows

B a B e! 9
Denote 7 = P(z) Then the equation becomes ¢(z) = P(2)®(z) — P(2)®(2)2.
Let ®(z) = ﬁ we would have y(z) = [e/= "®)%]-1(C 4 N P(s)elz PO gy,
Then
®(z) =) T C+ / P(s)elz P01 gg =1
B ej; P(s)ds -
- C+ ef; P(s)ds

We need to check F(z) is indeed a distribution function. Since P(s) < 0, then ez P(s)ds=inC 4o 4 (0,1),

and F(z) is between (0,1). When z goes to infinity M (z) goes to negative infinity by condition u(.) ~ z¢

and d < 1. lim, o F(2) — 1

We next check the monotonicity. By assumption: 0,M(z) = P(z) < 0, F(z) is increasing with z.

Remark There is a degenerate mass at the lower bound of size HLC In (BPT14) there
is a similar result. In their paper, imitation is strong enough that relative difference shrinks
for the lower technology owner while the technology leader keep their growth rate through
R&D. The population with sufficient high technology level preserves the initial dispersion.

In our environment this degenerate mass was determined by initial condition.

A.2.4 Proof of lemma 1

We can rewrite (2.5) and denote ®(z) = 1 — F(x) as the tail probability. Slightly abuse
the notation and let fi(z) stands for the equilibrium level of R&D. Further divide both side
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by ®(z) :

2®'(z) f(z) z®'(2)
=—a(l—9%
5 U0
This should hold in the limit as z goes to infinity then we have
() () 29(2)
Al =— 1 A2
I S o (4.2)

A.2.5 A second empirical approach

In this case, we assume only meeting leaves a trace, self R&D happened after the meeting.
The transitional probability 7;(.|.) is not time invariant. When we consider the invariant
distribution along the balance growth path this will become T'(ae™**V|be=), and T'(.|.)

would be time invariant. Particularly
T(ae D lbe™) = aL,opfi(a) = alspe O fi (e 040)

, fl() is the invariant distribution. This result follows the assumption that patent only
records the meeting process. In a random meeting environment, the probability of meeting
a target with a specific type is the probability share of the target type multiply by the meet

intensity a which becomes af;(a)

We will assume any potential upgrade or downgrade in the R&D process p(.) will happen

after the meeting. Then the likelihood function could be rewritten as

f(yhyz):// Pa(y2]22)e @ fi (206X py (y1]21) fi(21)d21d 2 (A.3)

A.2.6 Identification of Poisson Mixture

The following proof was adopted from (Rac92) p214. When we have t=0, the mixture

takes the form of
H(y) = [ Ply.m)T(am)
H(.) is the cdf of y, I'(.) is the cdf of the possible poisson rates Then the characteristic

function satisfies

bu(t) = / op(t, m)T (dm)
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since poisson distribution belongs to the additive group so ¢p(t,m) = ¢p(t,1)™

Let ¢r(l) = [{¥dl'(k). For any two candidates Fi(.), F5(.) we have vr, (1) = ¢r,(l)
furthermore replace [ with pe®. In particular it holds for [ = pe where p € (0,1) Applying

the dominated convergence theorem, which holds for p =1

We have for any two distributions

/ e ary (m) = / ™ dly(m)

for any t,which suggests that I" is identified by uniqueness of Laplace transformation.

There are two circumstances when we discretize m and calculate I'(dm)

1. support of m is known

2. support of m is unknown

When support of m is known we need to calculate the I'(dm) through EM algorithm or
NPMLE. I'(dm) is between 0, 1 when they are in discrete form, the domain is then convex.

The likelihood attains a maximum in its convex hull.

When we don’t know the support of m, according to (Lin95)), there are half of the elements
in m we could identify comparing to the first case. Then we can perform the same procedure.
A heuristic understanding is that both I'(m;) and m; are unknowns, there are N moments
equations from the data and one regularity condition » I'(dm;) = 1. There are 2*#{m}

N+1

unknowns and N+1 equations as long as #{m} is less or equal to =5~ we can identify the

support and its weight.

Other periods apply this same idea similarlyE]

A.2.7 The joint density of poisson rates m; are identified

The proof is adopted from (Tei67). If the marginals are identified, then the joint are
identified. It suffices to show the joint distribution with one more dimension is identified. In

previous section we showed that poisson mixture is identified.

IThis is similar to multivariate structure. When marginals are identified the joint are identified.
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Denote P(x;«) as the c.d.f for poisson distribution of rate «, P(x;«) be the c.d.f for
poisson distribution of rate 3, and G(., .) be the joint distribution. Gz() denotes the marginal
distribution. P(z;«) is identified. We need to show G(.,.) is identified.

A

/ P(a:0) Ply; B)dC (e B) = / Pla; ) Ply: B)dC(a, B)
o, B

This could be rewritten as Pl

[ P e = [ Pss)Aacyo), (A4)
H@wp) = [ PG, (A5)
@) = [ Plraycls) (A.6)
This could be re-expressed as
[ Posarars) = [ Pa)i(s) (A7)

/ H(x;7v)dGa(y), (A.8)
J(B) / H(z;7)dGy(7).
Since the Poisson mixture is identified in previous section, we have

/ H(z:7)dGCa( / (2 )dCo () (A9)

and let x — oo we have from equation (A.4)) that
[ PlysaiGa(s) = [ Plu: 5)aGa().
B B

Applying the identifiability of the Poisson mixture model again, we have

Then from equation (A.9)
H(x; 8) = H(z; §)

2This requires the joint density could be expressed in the product space, see (Nev65)) page 75 for details
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then this says

Then the joint distribution

A.2.8 Assumption of patent distribution

The assumptions that the distribution of the patents follows f (z) is an extra assumption

~M) with normal-

we used for simplicity. In (Mat03), as long as we have identified F(ze
izations, both the distribution of z and function F(.) could be identified. By choosing the
right normalization and fix ¢ then the observed density of F(;{) is the density of z. Then

substitute back the identified density, the functional of F(.) could be identified.

A.2.9 Extension when there is constant Brownian motion

Bellman equation becomes
(p—Mu(z) = ma§<7‘r(2) — U(fi(2)) + (A(z) = A2)v'(2) +

+a /[v(z’) —v(2)]f(#)dz'

z

Integrate the law of motion equation ([2.2)) with respect to x and rescale we have the law
of motion equation of the cumulative distribution. It is a third order nonlinear ordinary

differential equation of F(2):

~ 2 ~

aF(2)(1 = F(2)) = (A2 = B(=)f(2) + 50.1(2) (A1)
aF(2)(1 = F(2) , 0*0.f(2)
i(z) 2 J)

If o is identified in some pre-step, the same proof logic applies.

A(z) = Az — (A.12)
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A.2.10 The original Lucas and Moll (2014)(LM14)

The law of motion equation is the following:
—o(x)y — ¢ (x)yz = ¢(x) /Ox a(y)o(y)dy — afz)(z)[1 — O(z)]. (A.13)

Given ¢(z) this is an integral equation of a(x) we can perform the standard inversion

operator K* that K*a(x) = [ a(y)o(y)dy

—o(z)y — ¢'(x)yr = () [K*(z) — (1 — (z))]a(x)

and

a(z) = [D(2)K* = d(2)(1 — @(2))] * [p(2) K* — ¢(x)(1 — @(2))]
[(2) K™ = ¢(z)(1 = ®(2))]7(=9(7) — ¢'(2)x)

Specifically we express a(z) with orthornomal basis function hy(x). a(x) = W

For given ¢(x) and v we can find Sgs that minimize the law of motion equation.

Then we can go back to the first step. The inverse optimal control equation is
(p+a(z)(1 = Fy))n'(z) =1 —a ' (z) - yzv"(z). (A.14)

If o) is specified and is monotone, then we can apply the same method to recover v'(z).

A.2.11 The original Luttmer (2007)(Lut07) model with choice of drift

To fix the idea consider the following example based on Luttmer (2007)(Lut07) firm

dynamic model:

Rewrite everything denominated by fixed cost, denote s: firm size relative to fixed
costs(Luttmer (2007) (Lut07) for details). With some assumptions it follows a brownian

motion. a is age, m(p(s)) is the flow profit. Firm can choose their optimal drift u(s) costly:

ds = p(s)da + odWyq, (A.15)
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where W/, is a white noise. We focus on a stationary environment and assume o is constant.

Value of a firm would be

V(s) = max E[/OT e " m(u(s))dal (A.16)

T

It has a cutoff rule , if s > b firm remains open and the Hamiltonin-Jacobi-Bellman
equation is

TVS)=7du@»-FV%ﬂu@)+%V”®ﬁ9 (A.17)

With value matching and smooth pasting conditions V' (b) = 0,V’(b) = 0. The measure
of firms of age a and size s at time t satisfies f(a,s,t) = m(a,s) and da = dt. The law of

motion in the economy follows Kolmogorov forward equation
om(a, s) 0 190%. ,

90— psdsImlas)]+ 5550 mla, 5)] (A.18)

Equation (A.17)), Equation (A.18) and the boundary conditions describe the economy/

First step: m(a,s) has an empirical counter part, techniques similar to Ait-Sahalia

(1996) (Ait96)) could be applied, integrate equation (A.18]) to s :

/S Wdl + p(s)m(a, s) = %[azm(a, s)]

If the Brownian term o is estimated in separately, we can reconstruct the drift u(s) from

this equation. The identification comes from the uniqueness of the reconstruction.

Second step: plug the equilibrium p(s) and o into (A.17). V(s) and 7(u(s)) are recon-
structed through inverse optimal control problem. We have rV’(s) = V"(s)u(s)+3V"(s)o>.

In an alternative parametric setup we could use forward simulations to simulate V' (s, 8) =
E[[] e "n(s,0)da] given . Then find # through minimum distance estimator: 0y = argming|(r)V (s, 0)—
[7(s,0)+V'(s,0)(s)+ V" (s,60)0%]|. This could be jointly estimated with the law of motion

equation in one step GMM.

3 In this simple environment H.J.B. didn’t depend on the macro distribution.
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A.2.12 Recovering value function

We have
pv(x) =7 (x) — U(i(z)) + ia(z)v'(x) + do(x) — Aev'(x) + aS(x) (A.19)
S) = [oly) —o(@)]f(y)dy (A.20)
Fl) = SN (A.21)

1 + 67 fE As—pu(s)

Notice we empirically recovered p(z) and F'(z) The optimality condition requires
V'(fi(x)) = v'(x) (A.22)
which leads to the result
U(pa(x)) = /U'(x)ﬁ'(x)dx =v'(z)i(x) — /ﬁ(x)dv'(x)
up to a scaler shift.

If there is information on the value function like market value through stock market, ¥(.)

could be inferred from here.

If v(.) is unknown, with a specification of 7(.) and substitute this back into equation

(A.19) we have
(p—Nv(x) =7(z)+ /u(m)dv'(m) — Az (z) + aS(z) (A.23)

With a specification of 7(.) and empirical knowledge F'(.), 7(x) we can calculate v(.) by

combining ({A.23)) and (A.20)

(p—Nv(x) = 7(z) + Z ()" () Az — Az’ (x)
+a [Zv(i)f(i)Az’ — (@)1 - F(2))].

Now define the following:

Uj — Uj,1
Ax
Vj1 — 2V + Vi

(Az)?

V()

Q

UH<I> ~
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rearrange equation we have

J
B _ _ Vi1 — 20 + v Vj — Vi1
(p—ANv; = 7(z) + ;:1 i AL — )\QI—AJ?

1

+a | Y v(i) f(0)Ai —vi(1 - F(x)] .

i=j
which is
Az AT
(p= A+ +all = F@)y — via
i i i I
_§;Z§WH+2%;Zim—2;Z§W1—a%;MQﬂQAx—W@)

Ayt ="  A=B—E+2F — G- C and b= 7(z) we are going to iterate and use

%(vn-&-l o ?Jn) + Avn—l—l =?

Since the specification of 7(.) is fixed and p, F' are empirically estimated, we should have

Av="band v = A"'b.
For inference purposes, var(v) could be inferred from continuous mapping theorem.

To see this linearity structure we can differentiate equation(A.19)) and

[p+ a(l = F(z)]V'(z) = 7'(z) + [A(x) — Aa] " (2) (A.24)
This is a first order ordinary equation. One can use a two step parametric estimator to

provide a confidence interval.

A.3 Appendix for chapter 3

A.3.1 Comparison

In this section I compare the estimates of conditional skewness and kurtosis to the Gu-

venen et al. (GKO15)’s result.
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Figure A.7: Conditional skewness and kurtosis

The conditional skewness is smaller than Guvenen et al. (2015)(GKO15)’s estimates and

show a hump shape than U shape. The conditional kurtosis is also smaller than Guvenen

et al. (2015)(GKO15)’s estimates but show a similar shape. Since SCF 07-09 is a shorter

panel and experiences the financial crisis, this sub sample might show different features.

A.3.2 Recovering utility function in higher-order moments case

First order approach:
In the section [3.4.1] we introduced the so called Kramer-Moyal expansion of the transi-
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tional matrix for the law of motion equation. Similarly we have the Kramer-Moyal backward

expansion of the transitional matrix in the utility function.

V(a,2) =U(c(a, 2)) + Y BM,(mla, z)l o V(a,2)

Since consumption choice only affect the first moment of @ so the first order condition

becomes u'(¢;) = —mﬁav(dt, 2)0eS(ay,y Zt).
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