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Background: Alcohol and tobacco are known teratogens. Historically, more

severe prenatal alcohol exposure (PAE) and prenatal tobacco exposure (PTE) have

been examined as the principal predictor of neurodevelopmental alterations, with

little incorporation of lower doses or ecological contextual factors that can also

impact neurodevelopment, such as socioeconomic resources (SER) or adverse

childhood experiences (ACEs). Here, a novel analytical approach informed by a

socio-ecological perspective was used to examine the associations between SER,

PAE and/or PTE, and ACEs, and their effects on neurodevelopment.

Methods: N = 313 mother-child dyads were recruited from a prospective birth

cohort with maternal report of PAE and PTE, and cross-sectional structural

brain neuroimaging of child acquired via 3T scanner at ages 8–11 years. In

utero SER was measured by maternal education, household income, and home

utility availability. The child’s ACEs were measured by self-report assisted by

the researcher. PAE was grouped into early exposure (<12 weeks), continued

exposure (>=12 weeks), and no exposure controls. PTE was grouped into exposed

and non-exposed controls.

Results: Greater access to SER during pregnancy was associated with fewer

ACEs (maternal education: β = −0.293, p = 0.01; phone access: β =

−0.968, p = 0.05). PTE partially mediated the association between SER
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and ACEs, where greater SER reduced the likelihood of PTE, which was

positively associated with ACEs (β = 1.110, p = 0.01). SER was associated

with alterations in superior frontal (β = −1336.036, q = 0.046), lateral

orbitofrontal (β = −513.865, q = 0.046), caudal anterior cingulate volumes (β =

−222.982, q = 0.046), with access to phone negatively associated with all three

brain volumes. Access to water was positively associated with superior frontal

volume (β = 1569.527, q = 0.013). PTE was associated with smaller volumes of

lateral orbitofrontal (β = −331.000, q = 0.033) and nucleus accumbens regions

(β = −34.800, q = 0.033).

Conclusion: Research on neurodevelopment following community-levels of PAE

and PTE should more regularly consider the ecological context to accelerate

understanding of teratogenic outcomes. Further research is needed to replicate

this novel conceptual approach with varying PAE and PTE patterns, to disentangle

the interplay between dose, community-level and individual-level risk factors on

neurodevelopment.

KEYWORDS

socioeconomic resources, prenatal substance exposure, neurodevelopment, adverse
childhood experiences, prenatal alcohol exposure, prenatal tobacco exposure

1. Introduction

Alcohol and tobacco are established teratogens, as proven in
animal models, and consistent with findings in human pediatric
samples. Numerous studies have shown that prenatal alcohol
exposure (PAE) can lead to alterations in children’s physical,
cognitive, mental, behavioral and neural development (Glass et al.,
2014; Mattson et al., 2019). Since the original recognition of alcohol
as a teratogen in humans (Jones and Smith, 1973), the subsequent
50 years of original brain research on FASD has consistently
demonstrated structural brain alterations (Riley et al., 1995;
Mattson et al., 1996; Archibald et al., 2001; Sowell et al., 2001, 2002,
2008). PAE poses cumulative harm to global health and results in
significant economic burdens. PAE can increase demands on health
care, special education, justice system, morbidity and mortality,
and loss in productivity for both the affected children and their
caregivers (Greenmyer et al., 2018; World Health Organization
[WHO], 2021). Fetal Alcohol Spectrum Disorders (FASD) refer
to a range of diagnoses following PAE. Recent estimates of the
collective prevalence of FASD suggest even higher rates than
historically reported at 3.1–9.9% in the United States (May et al.,
2018). A population-based study conducted in South Africa found
a prevalence of Fetal Alcohol Syndrome (FAS), one of 4 diagnoses
under the FASD umbrella term, to be between 5.9–9.1%, and a
collective FASD prevalence between 13.5–20.7% (May et al., 2013).

Prenatal tobacco exposure (PTE) is a common co-occurring
exposure with PAE (Cornelius and Day, 2009), and has been
associated with alterations in speech processing, attention,
internalizing and externalizing behavior, and brain development
(Cornelius and Day, 2009; El Marroun et al., 2014). Despite our
understanding of the teratogenic effect of these substances, PAE
in conjunction with PTE continue to occur in substance-using
societies and pose significant public health challenges.

Existing literature has attributed brain alterations primarily to
the teratogenic effect of PAE, with limited consistent examination

of other key and often upstream factors that may also shape brain
structural development. Likelihood of prenatal substance exposure
is closely associated with availability of socioeconomic resources at
individual and neighborhood levels (Karriker-Jaffe, 2013; Coleman-
Cowger et al., 2017). In general, socioeconomic resources, PAE
and PTE are associated with hardships in prenatal and postnatal
experiences, which can also alter a child’s developmental trajectory
(Gibson et al., 2009; Lange et al., 2013; Baglivio et al., 2017;
Breen et al., 2018; Kambeitz et al., 2019; Luby et al., 2019).
Limited recent research provides initial evidence that PAE may
interact with low socioeconomic resources (Coles et al., 2019; Uban
et al., 2020) to impact child developmental outcomes. With such
limited knowledge, more understanding of upstream factors that
contribute to teratogenic outcomes on childhood-adolescent brain
outcomes is needed.

Existing literature demonstrates that lack of socioeconomic
resources is a childhood adversity on its own that leads to
disadvantages in executive functioning, memory, and language
development (Noble et al., 2006, 2012; Noble and Farah,
2013), and is reflected in development of brain structure
(Gonzalez et al., 2020). The Adverse Childhood Experiences
(ACEs) framework incorporates factors such as emotional and
physical abuse, domestic violence toward the mother, household
substance use and mental illness, and household member with
a history of incarceration. Although conceptually limited access
to socioeconomic resources may be an ACE in and of itself,
socioeconomic resources and ACEs have distinct differences. ACEs
have been shown to be associated with greater risk for health
challenges in children, including risk for mental health challenges,
development of chronic medical conditions, and regional brain
development alterations (Teicher et al., 2012, 2016; Kerker et al.,
2015; Luby et al., 2019; Mall et al., 2020; Sevenoaks et al., 2022).

Less is known about how poverty may increase the likelihood
of other ACEs (Melchior et al., 2007; Finkelhor et al., 2013).
The conceptual model developed by Culhane and Elo (2005)
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FIGURE 1

Conceptual model.

hypothesized that socioeconomic resources can influence either
positive or negative individual health behaviors (including
substance use during pregnancy), through the availability of social
services, exposure to stress, and social norms. These individual
health behaviors may partially explain the association between
socioeconomic resources, childhood subsequent ACEs, and child
neurodevelopmental outcomes. In other words, low socioeconomic
resources, presence of PAE and PTE and more ACEs may tend
to cluster together, while each has its own impact on child
neurodevelopment.

Some support for the importance of considering socioeconomic
resources and ACEs in PAE exists within samples including
biological birthing parents. It is established in perinatal literature
that socioeconomic resources are associated with PAE, partly
via differential patterns and profiles of co-exposures. Lower
maternal income is associated with a higher odds ratio of prenatal
exposure to marijuana and tobacco (Coleman-Cowger et al., 2017).
Women with residence in disadvantaged neighborhoods were more
likely to experience substance exposed pregnancies to tobacco
and other drugs in comparison to women living in middle-
class neighborhoods (Karriker-Jaffe, 2013). Social capital of the
country in which women resided was significantly associated with
PTE (Shoff and Yang, 2013). Levels of neighborhood assistance
accounted for significant variances of type of PAE and PTE
after controlling for individual-level characteristics such as race,
age, public assistance, and prenatal care (Finch et al., 2001).
The potential bidirectionality between upstream socioeconomic
resources factors of prevalence of PAE/PTE is not understood well.

In addition to systemic factors, prenatal substance exposure
status may serve as indicators of other adverse circumstances within
the home environment that shape children’s living experiences.
For instance, alcohol use for women has been associated with
higher risk for experiencing intimate partner violence, which may
be associated with an unstable household environment for the
children (O’Connor et al., 2006). Literature shows that maternal
ACEs is associated with increased risk of PTE as well as adverse
experiences of offspring, such as intimate partner violence and child
maltreatment (Pear et al., 2017; Buffarini et al., 2022). It is possible
that maternal cumulative exposure to adversity, including ACEs
and poverty, increases the risk of prenatal tobacco exposure, which
links to a subsequent elevated ACEs in children.

Expanding upon current understanding of how socioeconomic
resources and ACEs contribute to PAE- and PTE-related structural
brain alterations, we applied a novel conceptual model in the
present analyses to examine PAE and PTE as mediators of
socioeconomic resources and postnatal ACEs, and to examine the
effects of socioeconomic resources, PAE/PTE, and ACEs on brain
outcomes. Rather than framing prenatal substance exposure as
primary predictors of brain alterations, this intentional reframing
of prenatal substance exposure as a mediator is warranted,
given the commonly co-occurring of between prenatal substance,
socioeconomic resources (Bingol et al., 1987; McLachlan et al.,
2020) and ACEs (Kambeitz et al., 2019; Andre et al., 2020): all
factors known to individually impact brain development (Rivkin
et al., 2008; Dannlowski et al., 2012; Noble et al., 2012; Luby et al.,
2013; Bick and Nelson, 2016).

For the first aim, we hypothesized that fewer socioeconomic
resources would be associated with more ACEs, and presence or
absence of PAE or PTE would partially mediate this relationship
(Figure 1). The second aim examined whether socioeconomic
resources-related resources, PAE or PTE, or ACEs altered cortical
brain structural development among children and adolescents
(Figure 1). We hypothesized that lower socioeconomic resources,
the presence of PAE or PTE, and higher ACEs would be associated
with smaller cortical volumes.

2. Materials and methods

2.1. Study design and participant
recruitment

The current study involved a subsample of the existing birth
cohort of the Prenatal Alcohol in Sudden Infant Death Syndrome
(SIDs) and Stillbirth (PASS) Network recruited from Cape Town,
South Africa (Dukes et al., 2014). For the original PASS cohort,
pregnant women were recruited during their routine antenatal
care at the Belhar antenatal clinic and Bishop Lavis Midwife
Obstetric Unit between August 2007 and January 2015. Enrollment
of pregnant women started between the 6th week of gestation
and delivery day. Pregnant women within this cohort originated
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from Bishop Lavis and Belhar communities: both low-income
urban suburbs that developed as a direct result of apartheid in
of Cape Town, South Africa. Historically, both communities have
experienced high rates of prenatal alcohol exposure, SIDS and
socioeconomic inequalities (May et al., 2000). A detailed report on
the recruitment methodology of the original PASS study has been
published elsewhere (Dukes et al., 2014).

For the study reported here, birth parent/legal guardian
and their child were recruited from the PASS birth cohort
among those with surviving children 8–12 years later. This age
range was selected for the dynamic pubertal maturation that
occurs during the transition from childhood to early adolescence.
This period was hypothesized to be more opportunistic for
observing lasting brain alternations following prenatal conditions.
Further, the neuroimaging protocols were adapted from the
Adolescent Brain and Cognitive Development Study, designed
for collecting MRI data at this age range. Female birth parents
and their children were approached for neuroimaging and
other neuropsychological measures in the townships around
Cape Town, South Africa. This current analysis includes a
sample of 313 birth parent/legal guardian–child participant
dyads. The demographics of the study sample is presented in
Table 1.

Inclusion criteria for the birth parents were (1) at least 16 years
of age and (2) spoke either English or Afrikaans. Children were
between 8 and 11 years of age at the acquisition of the MRI brain
scan. Exclusion criteria were (1) history of traumatic brain injury,
(2) presence of major medical or central nervous system disorders,
and (3) MRI contraindications, such as orthodontic braces and
ferromagnetic metal implants.

2.2. Measurements

2.2.1. Structural magnetic resonance imaging
data acquisition

A 3-Tesla Siemens Skyra scanner at the Cape Universities
Imaging Center (CUBIC) was used to acquire whole-brain T1-
weighted images for all participants. The total acquisition time was
around 45 min, and only data from the structural scan was analyzed
for the current study. The image was acquired through a multi-echo
T1w MPRAGE sequence, with acquisition parameters as following:
1 × 1 × 1 mm voxel size, 176 slices, slice thickness 1.00 mm,
FOV 256 × 256, TR = 2,530 ms, TE = (1.61; 3.44, 5.27; 7.1 ms),
TI = 1,240 ms, flip angle = 7 degrees.

2.2.2. Image processing
FreeSurfer’S v5.3 recon-all pipeline was utilized as metrics for

volumetric segmentation. Briefly, the FreeSurfer pipeline includes
motion correction (Reuter et al., 2010), non-uniform intensity
normalization (Sled et al., 1998), skull-strip (Ségonne et al., 2004),
Talairach transformation and volumetric labeling of cortical and
subcortical regions (Fischl et al., 2002; Fischl, 2004), tessellation
of gray/white matter boundaries for topology correction and
cortical surface construction (Fischl et al., 2002; Fischl, 2004),
parcellation of white and gray matter and derivation of cortical
and subcortical matrices. A detailed description of all steps can
be found elsewhere: https://surfer.nmr.mgh.harvard.edu/fswiki/

FreeSurferMethodsCitation. The structural MRI sequence was
adapted from the US-based ABCD Study © that was designed
to optimize pediatric neuroimaging for similar age ranges (9.0–
10.99 years old): covering both late childhood and early adolescence
matching the age range and pubertal maturation of participants in
the present study.

2.2.3. ROIs
The overlapping cortical and subcortical regions that have been

historically shown to be impacted by PAE and PTE, socioeconomic
resources, and ACEs were selected as Regions of interests (ROIs)
(Cortical: superior frontal, medial and lateral orbitofrontal, rostral,
and caudal anterior cingulate regions; Subcortical: hippocampus,
thalamus, amygdala, caudate, nucleus accumbens, and putamen).
Volumes of ROIs were analyzed bilaterally across left and
right hemispheres.

2.2.4. Socioeconomic resources measures
Socioeconomic resources measures included monthly

household income in South African rand (ZAR), the number
of school grades completed by the birth parent, dichotomous
(yes/no) utility variables that recorded the availability of electricity,
phone (landline and/or mobile phone), flushing toilet, and
running water in the household (Myer et al., 2008). Socioeconomic
resources measures were included individually in the analysis (e.g.,
household income, utility availability, and maternal education).

2.2.5. Prenatal substance exposure measures
The PASS study collected prospective information on PAE

and PTE using a modified Timeline Follow-Back (TLFB) during
pregnancy. The TLFB measure was modified to be administered
in the participant’s language of choice (Afrikaans in the current
analytical sample), and prompts to the researchers were inserted to
facilitate precision of administration among participants and across
repeated time points within participants during pregnancy (Dukes
et al., 2014).

Data on PAE and PTE was collected up to three times during
pregnancy (20–24, 28–32, and 34+ gestational weeks) and 1 month
post-delivery using the TLFB. Detailed information to accurately
measure the total grams of alcohol consumed on a drinking day
were collected. Standard drinks were calculated based on the type
of alcohol consumed, whether the drinks contained ice, if drinks
were shared amongst others, and the volume potentially consumed
as measured by the size of container.

Timing data for PAE was grouped into three PAE categories:
(1) early PAE, (2) extended PAE, and (3) no PAE. The no PAE
group included children whose birth mothers reported consuming
no alcohol in all three trimesters. The early PAE group included
children whose mother reported having one or more drinks during
the first trimester (<12 weeks into pregnancy) but not in the second
or the third trimesters, while the extended PAE group included
children whose mother reported consuming one or more drinks
in two or all trimesters of their pregnancy. Available PTE data was
grouped dichotomously into (1) PTE at any time in utero or (2) no
PTE exposure throughout in utero development.

2.2.6. ACEs measure
Because no prior ACE questionnaires existed that were

validated for youth in the Cape Town Flats, validated ACEs
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TABLE 1 Demographic information.

NoAlc (N = 98) EarlyAlc (N = 58) ContinuedAlc
(N = 113)

Total (N = 269) p-value

PTE <0.001

NoTob 55 (56.1%) 23 (39.7%) 32 (28.3%) 110 (40.9%)

Tob 43 (43.9%) 35 (60.3%) 81 (71.7%) 159 (59.1%)

Sex 0.403

Male 53 (54.1%) 27 (46.6%) 51 (45.1%) 131 (48.7%)

Female 45 (45.9%) 31 (53.4%) 62 (54.9%) 138 (51.3%)

Age in years 0.988

Mean (SD) 9.92 (1.27) 9.90 (1.33) 9.93 (1.28) 9.92 (1.28)

Range 8.00–12.00 8.00–12.00 8.00–12.00 8.00–12.00

Electricity 0.231

No 0 (0.0%) 0 (0.0%) 2 (2.0%) 2 (0.8%)

Yes 95 (100.0%) 49 (100.0%) 97 (98.0%) 241 (99.2%)

Phone 0.022

No 7 (7.4%) 9 (18.4%) 21 (21.2%) 37 (15.2%)

Yes 88 (92.6%) 40 (81.6%) 78 (78.8%) 206 (84.8%)

Water 0.612

No 17 (17.9%) 9 (18.4%) 23 (23.2%) 49 (20.2%)

Yes 78 (82.1%) 40 (81.6%) 76 (76.8%) 194 (79.8%)

Toilet 0.387

No 31 (32.6%) 21 (42.9%) 40 (40.4%) 92 (37.9%)

Yes 64 (67.4%) 28 (57.1%) 59 (59.6%) 151 (62.1%)

Maternal education 0.077

Mean (SD) 10.03 (1.76) 10.38 (1.46) 9.73 (1.69) 9.98 (1.68)

Range 5.00–13.00 7.00–13.00 4.00–13.00 4.00–13.00

Household income in South African Rand (ZAR) 0.023

Mean (SD) 932.98 (590.83) 856.47 (617.28) 689.77 (443.20) 817.12 (547.94)

Range 142.86–3000.00 100.00–3000.00 50.00–1666.67 50.00–3000.00

ACE total score 0.003

Mean (SD) 3.39 (2.14) 3.36 (2.61) 4.37 (2.30) 3.80 (2.36)

Range 0.00–10.00 0.00–12.00 0.00–10.00 0.00–12.00

Parent-reported pubertal development 0.705

Pre 54 (71.1%) 27 (61.4%) 62 (68.1%) 143 (67.8%)

Early 14 (18.4%) 9 (20.5%) 18 (19.8%) 41 (19.4%)

Mid 7 (9.2%) 5 (11.4%) 9 (9.9%) 21 (10.0%)

Late 1 (1.3%) 3 (6.8%) 2 (2.2%) 6 (2.8%)

Child-reported pubertal development 0.352

Pre 60 (69.8%) 26 (59.1%) 63 (65.6%) 149 (65.9%)

Early 18 (20.9%) 9 (20.5%) 20 (20.8%) 47 (20.8%)

Mid 4 (4.7%) 8 (18.2%) 9 (9.4%) 21 (9.3%)

Late 4 (4.7%) 1 (2.3%) 4 (4.2%) 9 (4.0%)

Birth weight 0.446

Mean (SD) 3031.11 (500.18) 2955.40 (413.57) 2948.57 (495.20) 2981.97 (481.42)

Range 1120.00–4905.00 2000.00–3940.00 1400.00–4200.00 1120.00–4905.00

(Continued)
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TABLE 1 (Continued)

NoAlc (N = 98) EarlyAlc (N = 58) ContinuedAlc
(N = 113)

Total (N = 269) p-value

Prenatal Meth 0.041

Yes 96 (97.0%) 47 (87.0%) 94 (94.9%) 237 (94.0%)

No 3 (3.0%) 7 (13.0%) 5 (5.1%) 15 (6.0%)

Prenatal marijuana 0.256

Yes 94 (94.9%) 48 (88.9%) 89 (89.0%) 231 (91.3%)

No 5 (5.1%) 6 (11.1%) 11 (11.0%) 22 (8.7%)

Classification of pubertal development follows Cheng et al. (2021).

items from existing literature were compiled across several
questionnaires. Individual ACE items were selected in close
consultation with research staff in Cape Town to determine
which items were: (1) relevant to the lived experiences of the
youth participants in their culture; (2) did not require mandatory
reporting if endorsed to avoid harming rapport between researchers
and the community members within the Cape Town Flats;
and (3) retained original meaning after being translated and
back-translated into Afrikaans, as determined by the US and
South African researchers.

The final ACE questionnaire consisted of 14 dichotomous
questions (Supplementary Table 1). The children were asked
questions which related to whether they had witnessed sexual abuse,
or had experienced emotional and physical, neglect and parental
separation, substance use, incarceration and mental illness within
the household, homelessness or violence, and loss of a loved one.
Child participants completed the questionnaire with the research
assistant in their preferred language of either English or Afrikaans.
A summary score was calculated by counting the total number of
questions that the child endorsed.

2.3. Statistical analysis

CRAN R v.4.1 was used to perform statistical analyses (Bates
et al., 2015; Kuznetsova et al., 2017; R Development Core Team,
2019; Wickham et al., 2019, 2022; Heinzen et al., 2021).

2.3.1. Mediation analysis
To test whether PAE or PTE were mediators between

socioeconomic resources and ACEs, we applied the Baron and
Kenny criteria for mediation analysis (Baron and Kenny, 1986).
The analytic flow is shown in Figure 1. For the first step,
we examined the association between socioeconomic resources
variables and ACE total score. A generalized linear model
(GLM) was fitted with ACE total score as the outcome variable
and household income, maternal education, phone, water, and
electricity availability as the explanatory variable with a link
function for the Gaussian distribution. For the second step,
we tested the association between the explanatory variable and
the mediator. A GLM was fitted with the same socioeconomic
resources variables as the explanatory variables, and PAE or
PTE as the outcome variable, with a link function for the
binomial distribution. If PAE or PTE was significantly associated
with socioeconomic resources variables, it was then included

in the last step of the analysis. For the third and last step of
the mediation analysis, we examined the direct effect between
socioeconomic resources and ACE total score by adjusting for
the potential mediator. The condition for a partial mediation
was met if (1) the main outcome variable, ACE total score, and
the mediator, PAE or PTE, were significantly associated with
socioeconomic resources variables; (2) the mediator was significant
in the third step analysis; (3) the absolute values of the estimate
of the explanatory variables were reduced when the mediator was
included.

2.3.2. sMRI analysis
To examine whether PAE/PTE, socioeconomic resources, or

ACE were associated with brain volume alterations in the prefrontal
and striatum areas, we applied a linear mixed-effects model
using the lme4 package in R (Bates et al., 2015; Kuznetsova
et al., 2017). Because PAE/PTE, socioeconomic resources and ACE
were significantly associated with each other, we examined the
effect of PAE/PTE, socioeconomic resources, and ACE on the
ROI volumes separately. Hemisphere was included as a within-
subject variable. Our models were constructed as follows: first, we
constructed a reduced model with only the primary relationship;
then, we built up from the reduced model by adjusting for
covariates, including child age and sex. In the case of PAE
and PTE, we constructed a third model with an interaction
term between PTE and PAE and the covariates. We used AIC
comparison and log likelihood ratio test to determine whether
including the covariates provided a better fit to the model and
whether an interaction was appropriate. Lastly, a false discovery
rate (FDR) correction was applied to all individual explanatory
variables across the 11 ROIs. The results were considered significant
if the q-value, the FDR analog of the p-value, was less than
0.05.

2.4. Ethics

The data collection was approved by the Human Research
Ethics Committee of the Faculty of Health Sciences of University
of Cape Town (HREC UCT REF 248/2014). The Human Research
Ethics Committee of the Faculty of Health Sciences of Stellenbosch
University gave their ethical approval (REF 248/2014). The
Institutional Review Board (IRB) at Children’s Hospital in Los
Angeles approved the processing of de-identified neuroimaging
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TABLE 2 Coefficients and 95% confidence intervals of mediation models.

ACE total score PTE PAE

1 2 3 4

Monthly household income −0.001 −0.0004 −0.001** −0.001

(−0.001, 0.00001) (−0.001, 0.0002) (−0.002,−0.0003) (−0.001, 0.00003)

Maternal education −0.293** −0.235* −0.248* 0.085

(−0.492,−0.093) (−0.434,−0.037) (−0.449,−0.047) (−0.100, 0.270)

Phone access −0.968* −0.852 −0.523 −1.213*

(−1.913,−0.023) (−1.778, 0.074) (−1.487, 0.441) (−2.270,−0.156)

Water access 0.174 0.304 −0.581 −0.062

(−0.797, 1.144) (−0.648, 1.255) (−1.539, 0.377) (−0.995, 0.870)

Toilet access −0.218 −0.274 0.271 −0.39

(−1.051, 0.615) (−1.089, 0.540) (−0.533, 1.075) (−1.175, 0.396)

Prenatal tobacco exposure 1.108**

(0.403, 1.814)

Akaike inf. crit. 826.371 818.773 234.663 242.572

*p < 0.05, **p < 0.01.

data (CHLA-19-00228). The IRB at University of California, Irvine
approved the analysis of de-identified data (UCI #212354).

3. Results

Detailed demographic information is presented in Table 1.
Of the 313 enrollees, 229 participants (mean age: 9.91 years; 131
(48.7%) male) had available PAE and PTE data. Among them,
50 had early PAE (exposure during the 1st trimester), 100 had
extended PAE, and 95 had no PAE. A 110 had no PTE and 159 had
PTE. Fifty-five had only PAE, 43 had only PTE, and 116 had both
PAE (early or extended) and PTE. On average, the total number
of ACEs endorsed was 3.8. The average maternal education was
9.98 years, while the mean monthly household income was 817.12
ZAR (equivalent to $45.55 US dollars). Age, sex, parent-reported
and child-reported pubertal development scale did not differ by
PAE status (p > 0.05). Birth weight also did not differ by PTE and
PAE (p > 0.05).

3.1. Mediation analysis

In the first-step mediation analysis, we examined the primary
relationship between specific socioeconomic resources-related
resources and total ACE scores. Lower maternal education (β =

−0.293, p = 0.01) and no phone access (β = −0.968, p = 0.05)

were both associated with higher ACE total scores. For the second-
step analysis, socioeconomic resources was regressed against the
two potential mediators, PAE and PTE. Lower household income
(β = −0.001, p = 0.01) and lower maternal education (β =

−0.248, p = 0.05) were associated with PTE, while no phone
access only (β = −1.210, p = 0.05) was associated with PAE
(i.e., early PAE, extended PAE, no PAE). In the third step of
mediation analysis, PTE (i.e., yes PTE, no PTE) and PAE were
included, respectively in the primary association models to test the

direct association between socioeconomic resources and ACE after
adjusting for the mediators. PAE was not a significant explanatory
variable when the model included socioeconomic resources
variables, and therefore PAE did not fulfill the criteria as a mediator.
PTE remained significant when added to the socioeconomic
resources-ACE model

(
β = 1.110, p = 0.01

)
, where the presence

of PTE was associated with higher ACE total scores. Moreover,
the absolute value of the effect estimates of household income and
maternal education were reduced after PTE was included in the
model (Table 2). Therefore, PTE fulfilled the criteria as a partial
mediator between socioeconomic resources and ACE, while PAE
did not fulfill the criteria as a partial mediator.

3.2. sMRI analysis

All models were adjusted for age (months) and biological
sex (at birth), as the covariates significantly improved model
fit as evident in log likelihood ratio tests (p < 0.05). The
PAE and PTE models did not include the interaction term
between PTE and PAE, as in all cases the interaction term did
not significantly improve model fit. After FDR correction, PTE
was significantly associated with the lower volumes of lateral
orbitofrontal region (β = −331.000, q = 0.033) and accumbens
areas (β = −34.800, q = 0.033) (Figure 2A). PAE was associated
with increased thalamus, accumbens area and caudate before
the FDR correction (p < 0.05), but these associations did
not carry on with the FDR correction (q > 0.05). ACE total
score was not significantly associated with the volumes of any
of the 11 brain ROIs. Phone access was associated with the
smaller volumes of superior frontal (β = −1336.036, q = 0.046),
lateral orbitofrontal (β = −513.865, q = 0.046), and the caudal
anterior cingulate (β = −222.982, q = 0.046) (Figure 2B).
Water access was associated with larger volumes of the superior
frontal region (β = 1569.527, q = 0.013) (Figure 2C).
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FIGURE 2

Scatter plots showing significant regions post FDR correction. Error bars show 95% confidence interval. (A) Significant associations between prenatal
tobacco exposure and brain volume. (B) Significant associations between phone access and brain volume. (C) Significant associations between
water access and brain volume.

Uncorrected p-values and full model estimates are presented in
Supplementary Table 2.

4. Discussion

The present analyses examined a novel reframing of PAE
and PTE as mediators for the association between socioeconomic
resources and postnatal ACEs on cortical brain volumes. Within
a very low socioeconomic resources context, and with prospective
community-levels of prenatal substance exposure, we found that
PTE, but not PAE, partially mediated the association between less
in utero socioeconomic resources and subsequent more postnatal
ACEs for the youth. Lower socioeconomic resources during
pregnancy were associated with higher likelihood of PTE, and in

turn PTE was associated with higher total number of endorsed
ACEs. Both socioeconomic resources and PTE were associated
with smaller volumes in prefrontal and striatum regions. Lower
socioeconomic resources during pregnancy were associated with
increased likelihood of subsequent PAE. However, given null brain
findings with community-levels of PAE in this cohort, whether PAE
plays a similar mediating role between socioeconomic resources,
ACEs and brain outcomes as PTE does remains unknown,
particularly for populations experiencing higher PAE known to
cause clinical FASD, or within higher resourced contexts.

Our results demonstrate that PTE, but not PAE, was
associated with lower cortical volume in the lateral orbitofrontal
region and nucleus accumbens. While lateral orbitofrontal
has been consistently associated with processing of rewards
and punishments, as well as emotional and social regulations
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(Kringelbach and Rolls, 2004), nucleus accumbens serves to
integrate information from frontal and temporal regions and
facilitate action (Floresco, 2015). These functional correlates of
lateral orbitofrontal cortex and nucleus accumbens are consistent
with the negative association between PTE and global cognition
in children between 9 to 12 years old found in the current
literature, suggesting a potential brain-behavior relationship (Fried
et al., 1998; Gonzalez et al., 2023). Our results are consistent with
prior studies from this same birth cohort representing community
patterns of PAE and PTE, showing more widespread cortical and
subcortical brain alterations with PTE compared to PAE at ages
6 years old (Uban et al., 2023) and ages 8–12 years (Marshall
et al., 2022). Compared to alcohol, tobacco use is less likely to be
cut back during pregnancy and more likely to be associated with
tobacco exposure after pregnancy (Leech et al., 1999; Cornelius
and Day, 2000). Even among women who reduce their tobacco
use or quit spontaneously during pregnancy, postpartum relapse is
common (Crume, 2019). It is likely that children who had PTE were
also exposed to prolonged second-hand smoke perinatally [from
birth parent and/or others smoking around child (Paavola et al.,
1996; Scherrer et al., 2012)], which has been known to increase
the risk of poorer neurodevelopmental outcomes in children (Chen
et al., 2013). Therefore, it is possible that the structural brain
development differences observed in our analysis were the result
of accumulated tobacco exposure via maternal systems from both
maternal use as well as use from others via second-hand smoke
exposure during perinatal development. The potential for PTE
from others’ use may be a mechanism for reaching higher doses
of exposure, and/or longer durations of exposure across postnatal
developmental stages, unlike PAE. Together, these mechanisms
for PTE that are unique from those of PAE may explain the
more widespread effects on brain development at ages 6 (Uban
et al., 2023) and 8–11 years as seen here and in Marshall et al.
(2022). Interestingly, PTE dose-response relationships did not
show significant results after corrections for multiple comparisons
(Marshall et al., 2022), suggesting that PTE exposure from the
postnatal period, or relating to perinatal tobacco exposure from
others around the pregnant person or baby may be driving
PTE outcomes more than maternal use in pregnancy alone.
Data on the existence of postnatal tobacco exposure was not
collected in our sample, which limited our ability to disentangle
prenatal from postnatal tobacco exposure. Future research may
investigate whether there is a dose-response relationship between
prenatal and postnatal tobacco exposure and structural brain
development.

While we are aware of the teratogenic effects of exposure to
substances in utero, there exist other mechanistic pathways by
way of hypoxia that might affect brain development, including
the presence of obstetric complications. Obstetric complications,
including preeclampsia, eclampsia, and gestational diabetes, can
affect brain volumes (Rätsep et al., 2016; Luo et al., 2022). Our
analyses are potentially limited by not accounting for obstetric
complications that may affect brain morphology in utero with
continuing effects seen in the growth trajectory of the developing
brain through adolescence. Additionally, PTE has been shown to be
associated with lower birth weight, smaller head circumference, and
shorter length in newborns (Cornelius and Day, 2000). Specifically
in our sample, birth weight did not differ by PTE or PAE
status, again suggesting that prospective data most likely reflects

community-level patterns of exposure and not necessarily high
doses that are commonly seen in clinical FASD research samples.

Our analysis showed that phone access (landline and/or
mobile phone) and running water access in utero were associated
with volumes of the frontal regions in our sample of children
between 8 to 11 years old in Cape Town, South Africa.
Most of the existing literature on the impact of socioeconomic
resources on child brain development have included samples
from United States. How socioeconomic resources influence child
development may be substantially different in a community
where access to basic needs is inconsistent. Phone access is not
universal in Cape Town, South Africa, because the necessary
hardware to support phone service is expensive due to importation
and little domestic manufacturing, and cellular data prices are
exorbitantly high for lower resourced communities (Walton
and Donner, 2012). Running water access for the Cape Town
participants in this study is also negatively impacted by the
legacy of racial inequality, where restricted access to clean and
consistent water supply remains common (Enqvist and Ziervogel,
2019). Therefore, phone and water are likely proxies of the
physical environment, such as access to governmental supports
for maintaining utilities or exposure to environmental toxins or
nutrition. Together, these physical environmental factors may
impact child brain development and are potentially associated
with housing amenity-based factors impacting ventilation of
cooking, sanitation, and neighborhood safety. Given that our
sample was derived from a low-resource community, it is also
possible that the associations between utility access and structural
brain volume may not generalize to communities in developed
countries with more resources and infrastructure. Additionally,
access to socioeconomic resources has been intertwined with
cross-generational race/ethnicity-based oppression. Thus, the brain
alterations we found as a function of socioeconomic resources in
this sample may also reflect the impact of experienced racism,
in addition to environmental exposures and poverty. Further
research is needed to assess the interaction between racism,
environmental exposure and poverty, and their collective impact
on brain development.

Socioeconomic resources, but not ACEs, were related to
lower cortical volumes, and less socioeconomic resources were
associated increased likelihood of PTE and PAE. The presence of
PAE/PTE may be a symptom of existing socioeconomic inequities,
which may continue to independently and/or interactively impact
the postnatal experience of the child. It is possible that, in
this sample of participants, PTE and PAE are symptoms of
less access to resources. Substances, including tobacco and
alcohol, are commonly used to cope with stressors, including
those relating to additional economic and low resourced living
conditions (O’Connor et al., 2011; Peer et al., 2014; Watt et al.,
2014). PTE may be reflective of additional needs to cope with
stressors in a lower socioeconomic resources context in our
study. Indeed, tobacco use among women in low resourced
communities around Cape Town has been associated with poverty
and more psychosocial stress (Peer et al., 2014). Previously, more
adverse life events and a perception of lack of control over
one’s environment were found to be associated with an increased
risk of tobacco use among this population (Peer et al., 2014).
Thus, the present study provides evidence to extend established
socioeconomic resources and PTE associations to the period of
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pregnancy, and subsequent ACEs endorsed by their children.
With intentional incorporation of these factors in PAE brain
research, more can be understood about the complex interplay
between co-occurring contributing factors with PAE/PTE on brain
structure development. It is possible that teratogenic potential
of PAE/PTE may differ as a function of many factors, including
co-occurring exposures, socioeconomic resources, and variable
postnatal experiences.

We did not find an association between the total number of
ACEs and brain volume in the prefrontal and striatum regions.
While the 14-point ACE scoring system captures the grouped
experience of the adverse events, the cumulative score is not
specific to the three domains of neglect, abuse, and household
challenges scored on the ACE scale. Moreover, the scoring of
events such as this on a linear scale deprives us of the sensitivity
to the chronicity and intensity of the events. The screening
of ACEs may not fully capture the breadth of adverse events
experienced by children living in post-apartheid South Africa
and perhaps better serves as preliminary data on ACEs for the
PASS birth cohort. There are cultural differences in how people
experience, and express abuse, neglect, and household challenges
compared to the U.S. population with whom these ACE items
were first developed. We attempted to minimize the cultural
effects through forward- and back-translation, but there may be
persisted issues of cultural validity with the measure. In addition,
children may not remember adverse events that happened when
they were very young and therefore might not report these events
accurately, if at all. Given that early childhood is an especially
sensitive developmental period, the limitation of the child self-
report may also have contributed to our lack of findings. ACEs
requiring mandatory reporting were not assessed and may have
artificially created a ceiling effect on total ACE scores. Lastly,
resilience is known to be important as an interacting force to
ACEs and warrants further investigation to understand how it
relates to PAE and/or PTE, socioeconomic resources and ACEs for
these brain outcomes.

Although not directly tested, known mechanisms implicate
stress systems for underlying, in part, the impact of socioeconomic
resources and ACEs on brain development. The toxic stress
model hypothesizes that poverty and maltreatment influence
levels of adversity, which contribute to toxic stress and allostatic
load and thus affect brain and cognitive development (McEwen
and McEwen, 2017). In this model, toxic stress activates the
hypothalamic-pituitary-adrenal (HPA) axis and thereby alters brain
structures involved in neuroendocrine functioning, such as the
limbic system and the prefrontal cortex (McEwen and McEwen,
2017). Indeed, a substantial body of literature has demonstrated
associations between child maltreatment and altered structural and
functional connectivity of the fronto-limbic regions (Hanson et al.,
2010; Teicher et al., 2012; McLaughlin et al., 2014, 2016; Herzberg
and Gunnar, 2020). Similar HPA and brain alterations have been
found to associate with PAE. Animal models of implicate HPA-
dysregulation as a key mechanism of lasting harm of PAE on brain
structural alterations in prefrontal and the limbic regions (Uban
et al., 2010, 2013). Few studies to date have examined PAE, PTE,
socioeconomic resources, and HPA-function and warrant future
investigation.

Additional contextual characteristics of the present study
should be noted. Firstly, in the US, the majority of participants in

historical PAE brain literature have been recruited from clinical
FASD populations and almost always raised as adoptees, outside
of their racial/ethnic/culture of origin (Uban et al., 2020). Here,
the birth cohort from South Africa was comprised of child and
adolescent participants raised by the biological mother, effectively
eliminating cultural mismatch or not being raised by the biological
mother as drivers of brain alterations observed with PAE. Second,
given the prospective nature, PAE and PTE patterns reflected
community-level patterns of PAE. The majority of PAE-focused
published work identified participants with established facial
dysmorphology or severe patterns of PAE, commonly associated
with diagnoses such as fetal alcohol syndrome (FAS) or partial
FAS (pFAS) (Coles et al., 2020). Community-patterns of PAE with
consideration of PTE may better capture FASD-related diagnoses
that have been historically underrepresented in FASD clinical brain
research, such as alcohol related neurodevelopmental disorder
(ARND).

The birth cohort data leveraged in this study is from a
low-resource community in Cape Town, South Africa, which
has experienced cross-generational stressors through displacement
and race/ethnicity-based oppression through historical apartheid.
Specific to the Cape Town Flats region where the study participants
reside, the physical environment is limited by lasting infrastructure
challenges, in part due to the legacy of Apartheid (Henri and
Grunebaum, 2005; O’Connell, 2018). Black communities were
displaced from the Cape Town city area and rendered to the
peripheral where basic infrastructure is lacking even today (Henri
and Grunebaum, 2005; O’Connell, 2018). Systemic race-based
oppression spanning generations combined with lack of resources
have often led to experiences of toxic stress and substance use (Watt
et al., 2014). This community has historically been labeled as having
high FASD prevalence in research (Croxford and Viljoen, 1999;
May et al., 2000; Olivier et al., 2016). Our study is contextualized
with this consideration of poverty and systemic race-based
oppression. Future research may further examine specific pathways
through which poverty and psychosocial stress during pregnancy,
as well as PAE/PTE, become associated with ACEs endorsed by
children, and whether interventions and community services may
disrupt the intergenerational transmission of adversity in this
population.

In summary, our findings support the hypothesis that
contextual factors, such as access to socioeconomic resources,
may impact brain development through multiple pathways,
including a direct pathway through the availability of certain
resources and an indirect pathway through increasing the risk
of teratogenic exposure (e.g., tobacco). These socioeconomic
resources are entangled with cross-generational race/ethnicity-
based oppression and poverty stemming from the legacy of
the Apartheid. Therefore, our findings may not necessarily
reflect differences in brain development due solely to poverty.
Future studies may conceptualize the teratogen exposure as
one factor embedded within a web of contextual factors that
also influence brain development. Intentional incorporation of
contextual factors that can also drive differences in brain
development are needed to expand future teratogenic research,
and to help destigmatize birth parents. Understanding varying
patterns of PAE and PTE in the context of broader socioeconomic
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resources influences and their connections with postnatal ACEs
can present novel policy-level and community-level interventions.
This broader understanding of PAE and PTE outcomes may lead
to support and awareness for affected individuals that is consistent
with current recommendations to address social determinants
of substance use.
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