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ABSTRACT OF THE DISSERTATION

Causal Inference with Longitudinal Data:

Moving Beyond Difference-in-Difference

by

Landon Manzano Gibson

Doctor of Philosophy in Health Policy and Management

University of California, Los Angeles, 2020

Professor Frederick Zimmerman, Chair

Difference-in-Difference is a widely used method in health policy and health services research

for estimating a causal effect. Unfortunately, the validity of difference-in-difference is difficult

to evaluate without a tool to directly assess the parallel trends assumption. For example,

existing tools indirectly examine the parallel trends assumption using pre-treatment obser-

vations. Developments in the methodological literature have given rise to an alternative class

of estimators – Synthetic Controls – that do not make the parallel trends assumption and

to sensitivity analysis tools that provide a novel approach for directly evaluating the parallel

trends assumption

The first chapter of this dissertation develops guidelines for the use of synthetic control

methods alongside difference-in-difference. Synthetic control methods are a valuable tool

because they don’t assume parallel trends; however, they are not without assumptions of their

own. This chapter provides guidance for the utilization of synthetic controls and difference-

in-difference, and proposes several post-estimation validity analyses to further evaluate the

assumptions made by each method.

ii



The second chapter examines the effect of Medicaid Expansion on State Medicaid spend-

ing. The analysis is done using a subset of states among which the parallel trends assumptions

is tenuous. Using a kernel-balanced synthetic control, and the post-estimation analyses in-

troduced in the first chapter, this paper shows no evidence for Medicaid Expansion increasing

or decreasing State Medicaid spending over a three-year period.

The third chapter extends a suite of sensitivity tools for estimating the sensitivity of

difference-in-difference to unobserved time-varying confounders – parallel trends violations.

The tools utilize the explanatory power of observed covariates to estimate how strong unob-

served confounders must be to change the conclusions. They not only relax the strict binary

nature of classic indirect parallel trends tests, but also utilize the post-period outcome data

to directly examine the parallel trends assumption.
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CHAPTER 1

Difference-in-Difference and Synthetic Control

Methods for Causal Inference: Implementation and

Evaluation

1.1 Introduction

An important aspect of health policy research is the evaluation of the effect of a program,

policy, or project on an outcome of interest. The gold standard for evaluation of programs

and policies is the randomized control trial (RCT); however, an RCT is often infeasible due

to either ethical or practical limitations. When a program, policy, or project — hereafter

referred to as a treatment — is non-random, researchers utilize a variety of techniques,

depending on the structure of the data and context of the treatment, to estimate the causal

effect of treatment on an outcome of interest. In this paper we will focus on a specific data

structure where: treatment occurs uniformly in time across one or many treated units and

there is at least one observation of the outcome of interest in both the pre- and post-treatment

periods. The data structure described gives rise to panel data, or time-series cross-sectional

data, where the treatment occurs at an aggregate level such as the county or state and data

on each state or county is observed for two or more time periods.

Motivated by recent developments in the methodological literature and the widespread

utilization of panel data estimators in the health policy literature, we review three meth-

ods: difference-in-difference, mean-balanced synthetic control, and kernel-balanced synthetic
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control. Difference-in-Difference is widely utilized within health policy to estimate causal

effects in longitudinal data structures (Ryan et al., 2015). Mean-balanced synthetic control

– developed by Abadie et al. (2010) – is a quasi-experimental method with complimentary

properties to difference-in-difference, but has seen limited adoption in the health policy lit-

erature (Bouttell et al., 2018). Kernel-balanced synthetic control, is a recent extension of

the mean-balanced synthetic control developed by Hazlett and Xu (2018a). This paper 1)

provides pre-estimation guidelines for when each method is most appropriate, 2) proposes

strategies for deciding between methods when multiple methods may be appropriate, and 3)

provides post-estimation guidelines for evaluating the validity of mean and kernel-balanced

synthetic control models.

This paper is structured as follows. Section 1.2 provides notation, introduces the under-

lying causal framework, and presents the methods. Section 1.3 presents a decision tree to aid

researchers in implementing and evaluating difference-in-difference alongside the synthetic

control methods. Section 1.4 proposes strategies that assist with deciding between methods

when multiple methods are appropriate. Section 1.5 details guidelines for evaluating the

validity of results from each method. Section 1.6 and 1.7 discuss future research directions

and concludes.

1.2 Background

1.2.1 Notation

Throughout this paper i represents units and t represents time periods. In typical policy

studies, i often represents states or counties and t represents years or months. Yit is the

outcome for unit (state, county, city, country) i in time t, Dit is a binary time varying

treatment indicator that is zero for all units in the pre-treatment period and zero for only

the control units in the post-treatment period, Xit is a matrix of time varying covariates,

and τ is the treatment effect.
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This paper also utilizes potential outcomes notation, a causal framework which motivates

many methods, including those discussed in this paper. Under the potential outcomes frame-

work, every unit has two potential outcomes – an outcome with treatment and an outcome

without treatment. We represent the potential outcomes of unit i in time t as {Y 1
it , Y

0
it}

where Y 1
it is the outcome under treatment, such as California expanding Medicaid in 2014,

and Y 0
it is the outcome under the control scenario, California doesn’t expand Medicaid in

2014. Once treatment occurs only one of the two potential outcomes is observed, which

means we can observe Y 1
it for California – because it expanded Medicaid in 2014 – but we

are unable to observe Y 0
it for California.

Hypothetically, the treatment effect, τ , for unit i is estimated as the difference in the po-

tential outcomes, τ = Y 1
it−Y 0

it , but only one potential outcome is ever observed. Researchers

use methods such as randomized control trials to impute the unobserved potential outcome

for unit i by exchanging the unobserved counterfactual for the observed control outcome.

Quasi-experimental methods such as difference-in-difference and synthetic controls also ex-

change the counterfactual for an observed outcome but make additional assumptions in order

to do so.

1.2.2 Difference-in-Difference

Difference-in-Difference estimates the treatment effect, τ , by taking the difference in the

outcome pre- and post-treatment by treatment status and a second difference between the

treated and control units. For two time-periods or more, difference-in-difference is estimated

as:

Yit = b0 + τDit + b1λi + b2Zt + εit (1.1)

where λi are unit fixed effects and Zt are time fixed effects.

Note that Equation 1.1 does not include covariates, other than treatment status, because

difference-in-difference is structured such that time-invariant covariates (sex, race, educa-
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tion) do not bias the estimates as long as their effect on the outcome is constant over time

or the means are balanced between the treated and control units. Time-varying covariates,

however, require that their effect on the outcome is constant over time and the means are

balanced between the treated and control groups (Zeldow and Hatfield, 2019). When one

of the aforementioned conditions is not met, for time-varying covariates, then the covariate

is a confounder and can bias the results. Differences-in-difference assumes that the condi-

tions for time-varying covariates are met, which is commonly known as the Parallel Trends

assumption.

Put another way, parallel trends assumes that the evolution of the control group’s out-

come – over the post-treatment period(s) – is the same as the treated group’s unobserved

post-treatment outcomes under the control scenario, or counterfactual. For example, if state

per-capita income is an unobserved time-varying confounder, parallel trends says that the

change over time in the post-treatment period is the same for both the treated counter-

factual and the control units. The assumption of parallel trends is a crucial assumption

for the validity of causal inferences from difference-in-difference models. Yet, the published

literature includes many examples of inadequate – or even non-existent – evaluation of this

assumption. Section 1.4 below offers suggestions for appropriate evaluation of the parallel

trends assumption.

1.2.3 Mean-Balanced Synthetic Control

An alternative method to difference-in-difference is the mean-balanced synthetic control

method developed by Abadie et al. (2010). Synthetic control methods are motivated by the

idea that a weighted combination of multiple control units can serve as a better compar-

ison group than any individual control unit. For example, under the potential outcomes

framework the researcher’s goal is to estimate the counterfactual, Y 0
it , for the treated unit for

which only Y 1
it is observed. Difference-in-Difference estimates Y 0

it using one or many control

units without adjustment. The mean-balanced synthetic control method instead imputes
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the unobserved counterfactual of the non-treatment outcome for the treated group, Y 0
it , as a

weighted average of observed control units where the weights are estimated to minimize the

difference between the synthetic control and the treated unit’s outcome in the pre-treatment

period. Notably, synthetic control methods do not make the parallel trends assumption in

order to estimate an unbiased effect.

The mean-balanced synthetic control does, however, assume that the potential outcomes

are independent of the treatment assignment conditional on a linear combination of past

outcomes - known as the linearity in prior outcomes (LPO) assumption. That is, by balancing

on prior outcomes the treatment is no longer related to the potential outcomes and the

synthetic control can be used as a substitute for the unobserved treatment counterfactual.

The LPO assumption fails if the potential outcomes are a linear function of more than just

the first moment, or their interactions, of the outcome data.

A visual comparison is provided below to help instill intuition. In Figure 1.1 the solid

black line describes the treated unit’s outcome over time, the dashed black line describes the

control group’s simple average outcome over time, the grey lines are the individual control

units, and the red line is the weighted combination of control units, or Synthetic Control.

Note, treatment begins after 2013 but due to there being one observation per year it seems

as though treatment begins having an effect between 2013 and 2014.
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Figure 1.1: Synthetic Control and Observed Control

The control unit created by the Synthetic Control method, the red line, is nearly identical

to the treated unit through the last pre-treatment period in 2013. In order to impute the

counterfactual, the weights are applied to the control units in the post-treatment period.

The treatment effect is then estimated by taking the difference between the treated unit’s

outcome and the synthetic control outcome in each post-treatment period – 2014 through

2017 – and averaging them to obtain the ATT for the treatment period.

The Synthetic Control method can be implemented in Stata, R, or MatLab using the

Synth package, which was developed by Abadie et al. (2011).

1.2.4 Kernel-Balanced Synthetic Control

The kernel-balanced synthetic control is an extension of the mean-balanced synthetic control

that modifies the balancing procedure used to estimate the weights (Hazlett and Xu, 2018a).
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Conveniently, the intuition is the same as the mean-balanced synthetic control, but the key

difference in the balancing procedure. The kernel-balanced synthetic control uses a procedure

that tries to balance on more than just the mean structure such as the variance of the kurtosis

of the outcome data.

As discussed in the previous section, the objective of synthetic control methods is to

find a weighted combination of observed control units to generate a counterfactual that is

nearly identical to the treated unit’s mean outcome over time, in the pre-treatment period

(Figure 1.1). Kernel-balanced synthetic control has a similar objective, but it approximately

balances on not just the mean structure but also higher moments of the data in order to

minimize the distance between the treated and control units, on those moments, given some

constraints. By balancing on higher order moments of the data, kernel-balancing relaxes the

LPO assumption because it models a more flexible linear combination of the prior outcomes

(Hazlett and Xu, 2018b).

The kernel-balanced synthetic control relaxes the assumptions of the mean-balanced syn-

thetic control because it is a more flexible model, but that flexibility comes at a cost. The

increased flexibility means that the kernel-balanced synthetic control is less efficient than the

mean-balanced synthetic control and, in some cases, may not have a feasible combination

of weights that improve balance. The feasibility limits occur because the kernel-balanced

synthetic control is asking much more from the available data by matching on higher order

moments, which when combined with the weight constraints, can result in a synthetic control

that marginally improves balance beyond the unweighted control units.

When weights that improve balance are infeasible, the kernel-balanced synthetic control

can be modified using a demeaning procedure. The demeaning procedure first subtracts the

average pre-treatment outcome, by treatment status, from the treated and control groups

pre-period data and then estimates the kernel-balanced synthetic control. The benefit of first

demeaning the data is that it reduces the chance that weights cannot be found due to feasi-

bility constraints by making the treated and control outcomes more similar. The downside,
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however, is that the demeaning procedure induces a parallel trends assumption (Hazlett and

Xu, 2018a). While both the demeaned kernel-balanced synthetic control and difference-in-

difference assume parallel trends they differ in that the demeaned kernel-balanced synthetic

control still tries to balance time-varying confounders by balancing pre-treatment outcomes.

Difference-in-Difference, however, makes a stronger parallel trends assumption that both

observed and unobserved time-varying covariates are not confounders.

The kernel-balanced synthetic control method can be implemented in R using the Tra-

jectory Balancing package, Tjbal1.

1.3 Decision Tree for Implementation and Evaluation

This section provides a decision tree to assist researchers in deciding between difference-in-

difference and synthetic control methods, and in determining whether a mean-balanced or

kernel-balanced synthetic control is most suited to their data. The decision tree begins by

considering the number of pre-periods and asks the researcher to subset their data to include

only the pre-period; the purpose of which is to reduce the chance a researcher simply selects

a method based on the ATT. Second, it contains an estimation step that is followed by a

set of specification analyses. If the specification analyses are positive, the tree reaches a

terminal node but if they are negative the tree moves onto the method that makes more

restrictive assumptions. The decision tree repeats until either the specification analyses

return results in support of the model or it reaches difference-in-difference. In the decision

tree, we shorthand the names of the methods to DiD for Difference-in-Difference, MB for

mean-balanced synthetic control, and KB for kernel-balanced synthetic control.

The number of pre-treatment periods is important because the unbiasedness of both

synthetic control methods is related to the number of pre-treatment periods. Abadie et al.

1For more information on how to install and use the package please visit the maintainer’s website:
http://yiqingxu.org/software.html
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(2010) suggest that researchers utilize the mean-balanced synthetic control when the number

of pre-treatment periods is large, but without further defining large. Work by Ferman (2020)

reiterates the necessity of having a large number of pre-treatment periods and add that the

ratio of the number of pre-periods to control units is important; however, he also avoids

committing to a specific cut-off. For example, if there are few control units than more

pre-treatment periods are required compared to when there are a wealth of control units.

Keeping with previous work, we also refrain from suggesting specific pre-period thresholds

for when to utilize synthetic control methods. Ultimately, specification analyses for both the

fit of the synthetic control and pre/post balance on confounders will be critical for deciding

whether or not there are enough pre-periods, which is reflected in the decision tree.

The specification analyses are a critical step in the decision tree because the results help

to inform the researcher if they should estimate the ATT or utilize a different method that

makes more stringent assumptions. The decision tree emphasizes two specification analyses:

the fit of the synthetic control to the pre-treatment outcome for the average treated unit and

the pre/post balance on confounders. The purpose of the specification analyses is to inspect

a critical assumption that by finding weights that balance the pre-treatment outcome data

also balance confounders (observed and unobserved) (Abadie et al., 2010).

Comparing the fit of the synthetic control with the average treated outcome is the first

part of the aforementioned assumption. While exact balance is not often achieved in real

world data the specification analysis still looks for a good match that is preferably nearly

exact. In addition, checking pre/post-weighting balance on observed confounders is informa-

tive for evaluating if the weights balance observed confounders, and by extension, unobserved

confounders. Note, this is an opportunity for the researcher to incorporate their contextual

knowledge by making an argument that the included confounders are important. Later, we

will introduce two validity analyses that can be implemented after a method is settled upon.

The reason for not using the validity analyses until after the ATT is estimated is because

there is a risk of overfitting to the pre-period data - discussed later in Section 1.5.2.
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If the specification analyses return negative results, there is a decision point that evaluates

the number of treated units. The number of treated units matters because the mean-balanced

synthetic control is designed for data structures with only one treated unit; whereas, the

kernel-balanced synthetic control and difference-in-difference can easily accommodate one or

many treated units. There exist modifications of the mean-balanced synthetic control that

allow for the use of multiple treated units, but there are technical issues that complicate the

procedure by which the weights are estimated (Alberto Abadie and Jérémy L’Hour, 2019).

One simple workaround is to estimate an individual synthetic control for each treated unit

and then aggregate the effect estimates but it is not clear how to estimate uncertainty. These

extensions are not the focus of this paper and we refer readers to a more detailed review in

Abadie (2019).

Figure 1.2: Estimation Decision Tree for Difference-in-Difference (DiD), Mean-balanced

(MB) and Kernel-balanced (KB) Synthetic Control Methods.

When the number of pre-treatment periods is large then a kernel-balanced synthetic
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control is the recommended starting point. The primary reason is that the kernel-balanced

synthetic control makes fewer assumptions than the mean-balanced synthetic control (Section

1.2). The specification analyses then follow to assert how well the synthetic control fits the

outcome data and whether or not balance was improved for observed confounders. When

the specification analyses return positive results - discussed further in Section 1.5.2 - the

kernel-balanced synthetic control can be used to estimate the ATT.

When the specification checks for the kernel-balanced synthetic control return poor re-

sults, because the fit was poor and balance was not improved on observed confounders, then

a mean-balanced synthetic control is recommended, if there is only one treated unit. If the

specification analyses are positive for the mean-balanced synthetic control then it can be

used to estimate the ATT. Alternatively, if there are multiple treated units then it is rec-

ommended that the demeaned kernel-balanced synthetic control is estimated instead of a

mean-balanced synthetic control.

When the three models above have been exhausted - mean, kernel, and demeaned kernel-

balanced synthetic controls - then difference-in-difference is the recommended model to im-

plement. Difference-in-difference is the last model to be recommended because it makes the

strongest assumptions out of all the methods on the decision tree. For example, while the

demeaned kernel-balanced synthetic control does assume parallel trends, it also attempts to

obtain balance on time-varying confounders - observed and unobserved - by constructing

a weighted combination of control units to be similar to the treated units. Difference-in-

Difference, however, simply assumes parallel trends without adjusting imbalances on time-

varying confounders further; unless they are included as covariates in the model. Therefore,

we strongly recommend the use of sensitivity analysis tools to evaluate the sensitivity of the

estimates to hypothetical unobserved time-varying confounders, which can be implemented

using the sensemakR package in R or Stata for more information see Cinelli and Hazlett

(2020).
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1.4 Post-Estimation Analyses to Decide Between Methods

The purpose of this section is to discuss ways to evaluate the assumptions of each method,

post-estimation, and how to use that information to identify possible sources of bias for each

of the methods.

Difference-in-Difference vs. Synthetic Control Methods

A key distinction between difference-in-difference and both mean-balanced and kernel-

balanced synthetic controls is the parallel trends assumption. If the parallel trends assump-

tion holds, difference-in-difference is an unbiased estimator of the counterfactual, but when

the parallel trends assumption doesn’t hold, difference-in-difference is biased, and either the

mean or kernel-balanced synthetic controls should be used, assuming the data structure is

appropriate.

The conclusions drawn from a biased difference-in-difference estimator, however, may or

may not change depending on the sensitivity of the results to unobserved confounding with

strength similar to observed confounders. For example, if the treatment effect estimated by

difference-in-difference is large and positive the researcher would conclude that the treatment

had a positive impact. One could then imagine an unobserved confounder, or group of

unobserved confounders, that have a non-zero relationship with the outcome, which would

bias the treatment effect estimate. However, if the hypothetical unobserved confounders

have a weak relationship with the outcome, the conclusion that the impact of treatment was

positive is unlikely to change despite the point estimate changing. Considering the sensitivity

of the conclusions on a continuum based on hypothetical confounding is known as sensitivity

analysis.

We propose the use of sensitivity analysis to assert how strong a violation of the par-

allel trends assumption is required to change the conclusions drawn from difference-in-

difference. Sensitivity analysis considers hypothetical unobserved confounders one or many
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times stronger than an observed confounder, which was argued to be the most important

confounder by the researcher, and calculates how the hypothetical confounder changes the

results. For example, if the conclusions of the study only change when an unobserved con-

founder is ten times stronger than the observed confounder, argued as being the most impor-

tant confounder by the researcher, the results are likely not very sensitive to unobserved con-

founding because it would take an unrealistically strong hypothetical confounder to change

the conclusions. However, when the results are sensitive such that a plausibly strong unob-

served confounder can change the conclusions of the study, either synthetic control method

is a more appropriate estimator because they do not assume parallel trends.

Mean vs. Kernel-balanced Synthetic Control

A key difference between the mean and kernel-balanced synthetic control is the Linear-

ity in Prior Outcomes (LPO) assumption. The mean-balanced synthetic control strictly

assumes that the treated unit’s counterfactual outcome is a linear function of the prior

outcomes, whereas the kernel-balanced synthetic control relaxes the LPO assumption and

thereby makes fewer and less restrictive assumptions compared to the mean-balanced syn-

thetic control (Hazlett and Xu, 2018a). Unfortunately, it is not possible to examine empiri-

cally whether or not the LPO assumption holds.

An alternative way to investigate which method is most appropriate is to determine

which model best fits the pre-treatment outcomes. A problem with this approach is that the

kernel-balanced synthetic control is balancing on multiple moments of the outcome – eg. the

mean, variance, kurtosis, etc – (Hazlett, 2020) while the mean-balanced synthetic control

is balancing on only the first moment of the outcome. As a result, The kernel-balanced

synthetic control may be less biased than the mean-balanced synthetic control but obtain

worse balance on the outcome mean because the mean is not the only element in the objective

function that it minimizes.

A complementary way to compare the two synthetic control methods is to estimate
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the amount by which balance – by treatment status – improves on observed covariates pre

vs. post-weighting. Balance on covariates is crucial because synthetic control methods are

unbiased if the weights that balance the outcome also balance observed and unobserved co-

variates (Abadie et al., 2010). Implementation of this analysis requires that covariates are

not included in the balancing procedure, otherwise weights will be found that balance the

covariates regardless. Other literature has suggested including covariates in the balancing

procedure, but recent work has pointed to issues with that technique that can lead to re-

searcher induced bias. Therefore, exclusion of the covariates has the advantage of reducing

researcher bias and providing an excellent analysis with which to evaluate the validity of the

synthetic control. Furthermore, balance checks are an excellent tool because it incorporates

the researcher’s content expertise by relying on the researcher’s ability to identify, justify,

and assess the relative importance of potential confounders.

In summary, the decision for whether to implement a mean or kernel-balanced synthetic

control relies on the researcher conducting post-estimation analyses – pre-treatment outcome

balance and pre-treatment covariate balance – and making a decision based on the entirety of

the results. The mean-balanced synthetic control is preferred over the kernel-balanced syn-

thetic control if the kernel-balanced synthetic control fails to improve balance on covariates,

whereas the mean-balanced synthetic control does. In the scenario that both methods per-

form equally well on the above analyses we recommend the utilization of the kernel-balanced

synthetic control because it makes fewer and less restrictive assumptions compared to the

mean-balanced synthetic control.

1.5 Evaluating the Validity of the Results

The purpose of this section is to detail an analysis plan for evaluating the validity of causal

effects estimated from the methods of interest. The section is broken into two parts: a

brief section reviewing diagnostic analyses for difference-in-difference (Section 1.5.1), and a
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section presenting an analysis plan for evaluation of causal effects from the synthetic control

methods (Section 1.5.2).

1.5.1 Difference-in-Difference

Indirect Analyses of Parallel Trends

Parallel trends analyses are commonly utilized to evaluate whether or not the assumptions

holds in the pre-treatment period; however, the parallel trends assumption is specific to the

post-treatment period. Therefore, parallel trends analyses are not directly examining the

parallel trends assumption because such analyses lack data on the relevant period. Therefore,

we will further refer to parallel trends analyses as indirect evaluations of the parallel trends

assumption. Related to this limitation of parallel trends analyses is that they are not viable

when the number of pre-treatment periods is equal to one because they compare the trends,

again, only between two pre-treatment periods.

Indirect evaluation of the parallel trends assumption is often done informally via visu-

alization and formally with a hypothesis test. Note, these analyses are limited to using

pre-treatment data and therefore do not directly examine the parallel trends assumption.

Instead, they examine whether or not trends are parallel in the pre-treatment period. A

graphical examination of the trends of the outcome by treatment status is a common way

for researchers to begin examining common trends in the pre-treatment period. It is often

easy for researchers to identify non-parallel pre-treatment trends. Another analysis for par-

allel pre-treatment trends is to estimate a modified difference-in-difference model that allows

for group-specific linear time trends (Bilinski and Hatfield, 2018).

Yit = b0 + b1Gi + b2λi + b3Zt +
T∑
t=1

btGiZt + εit (1.2)

where λi and Zt are unit and time fixed effects, respectively, T represents the total number

of time periods, and Gi is a time-invariant treatment indicator.

The above model estimates a coefficient for each time period (bt) that describes the
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difference in trend between the treated and control group. Each coefficient also has a p-

value based on the null hypothesis that the trends between the treated and control groups

are similar (bt = 0)2. One must be careful when interpreting the results of this analysis for

two reasons. First, a failure to reject the null hypothesis is not a confirmation that parallel

trends holds because one can only find evidence against the null hypothesis, not accept

the null hypothesis. This appears to be a common problem in the literature. Second, the

hypothesis test is only examining parallel trends in the pre-treatment period but the parallel

trends assumption involves post-treatment trends. Therefore, the analysis does not directly

examine the parallel trends assumption unless one makes strong, untestable, assumptions as

to how the trends develop in the post-treatment period.

Sensitivity Analysis

An alternative procedure considers how strong unobserved time-varying confounding

would have to be to change the estimated effect. Sensitivity metrics – developed by Cinelli

and Hazlett (2020) and extended in the third chapter of this dissertation – may be anchored

to observed time-varying confounders to understand how strong unobserved confounders

would need to be, relative to observed confounders, to change the conclusions of the study.

This approach has a number of advantages over the hypothesis tests described above: 1)

Sensitivity analysis is a direct investigation of the parallel trends assumption rather an in-

direct examination of parallel trends in the pre-treatment period and 2) Sensitivity analysis

can be conducted even when there is only one pre-treatment period. A full presentation of

these techniques is beyond the scope of this paper. Interested readers are referred to Cinelli

and Hazlett (2020) and the third chapter of this dissertation for more information.

2The null hypothesis is reversed in this scenario, it should be structured such that the alternative hy-
pothesis contains the quantity we wish to prove (bt = 0). The consequence of this reversal is that the chance
we fail to reject the null despite the null being false (incorrectly conclude that parallel trends hold) is not
fixed at 5%. For more information please refer to (Bilinski and Hatfield, 2018)
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1.5.2 Mean and Kernel-Balanced Synthetic Controls

Below we discuss the specification analyses introduced in the decision tree and introduce

validity analyses of both mean and kernel-balanced synthetic controls. The purpose of these

analyses is to examine the assumptions underlying both methods. Some of these methods

were covered in Section 1.4 but are discussed here with more detail.

Pre-Treatment Outcome Balance: An important, and simple, specification analysis

is to determine how well the counterfactual constructed by either synthetic control method

fit the pre-treatment means and variance of the treated unit(s) outcome (Abadie et al., 2010;

Abadie, 2019). For the mean-balanced synthetic control, this amounts to a visual inspection

of the estimated counterfactual outcome trend against the treated units outcome trend, as

in Figure 1. Alternatively, one can generate a balance table which reports the pre-treatment

outcomes over time for the average treated unit, the unweighted average of the control units,

and the synthetic control. A positive result would be for the difference between the synthetic

control and treated unit(s) outcome to be near zero in all pre-treatment periods, or that the

synthetic control is a near exact match to the average treated unit. For the mean-balanced

synthetic control a good fit is a synthetic control that is as close to the average treated unit

in the pre-treatment period as possible. Comparison of the kernel-balanced synthetic control

to the average treated unit, however, is more complicated.

The kernel-balanced synthetic control balances the outcome across many moments of

the data and therefore imbalances on the raw outcome data are not dispositive. One may

inspect the fit of the estimated synthetic control to the mean structure and the variance, but

keeping in mind that the kernel-balanced synthetic control may be balancing on higher order

moments as well. Therefore, any large gaps between the synthetic control and the average

treated unit could be because the kernel-balancing procedure is matching on higher order

moments of the data or because it has difficulty finding weights to match. A mean-balanced

synthetic control can be utilized to investigate whether or not there is a feasibility issue -
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weights don’t exist to obtain balance - because the mean-balanced synthetic control only tries

to balance the means and therefore eliminates the possibility that visible imbalances are due

to priority on higher order balances. For example, if the mean-balanced synthetic control

fits near exact with the average treated unit then it can be concluded that feasibility is not

of concern and instead kernel-balancing is prioritizing balance on higher order moments.

Confounder Balance Checks: A complementary specification analysis to evaluate

pre-treatment outcome balance - for either the mean or kernel-balanced synthetic control -

is to examine balance on what the researcher deems to be important confounders. Balance

checks are crucial because both methods assume that the weights balance the pre-treatment

outcomes, and observed confounders, then unobserved confounders are also likely to be

balanced (Abadie, 2019). However, the confidence that balance checks give towards the

methods is related to the importance of the confounders on which balance is checked. For

example, obtaining balance on confounders that are only weakly related with the outcome

is much less important than obtaining balancing on confounders with a strong relationship

with the outcome and treatment. Therefore, it is critical that the researcher incorporates

their content knowledge to argue that the confounders they include in the balance check

are important. Balance checks on covariates can be implemented by simply comparing the

difference in means between the treated and control units pre- and post-weighting. It is

expected that the difference in means will be near zero post-weighting.

Validity Check - Placebo Treatment Period: Placebo treatment periods are useful

for evaluating the ability of either synthetic control method to estimate an accurate coun-

terfactual given the number of pre-periods available. The placebo treatment period analysis

works by sub-setting the data to just the pre-treatment periods, making the final period(s) a

false treatment window, estimating the synthetic control method of choice, and reporting the

ATT for the false treatment window. The analysis assumes that there is no treatment effect

in the pre-treatment periods, and as a result we would expect the ATT returned by this

analysis to be zero for all pre-treatment periods. When the ATT is non-zero than we must
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question other events that occurred during the pre-treatment period. In the absence of alter-

native explanations than the validity of the synthetic control to estimate the counterfactual

is of concern.

Robustness - Pre-Treatment Period Length: Robustness of the synthetic control

can be explored by iteratively reducing the pre-treatment period by one period and estimat-

ing the ATT each time. For example, if the pre-treatment period consists of ten pre-periods

the check is implemented by removing the period furthest from treatment, estimating the

ATT, and repeating removing the next period furthest from treatment. A robust synthetic

control would report ATTs similar to the main effect even as the pre-treatment period

decreases; whereas a less robust synthetic control will have varying results with shorter pre-

treatment periods. Further work is needed to investigate analyses for evaluating whether or

not the difference in the ATTs for fewer pre-periods is similar or not to the main effect.

1.6 Discussion

Mean and kernel-balanced synthetic control methods are valuable additions to the applied

researcher’s toolkit that complement existing methods. Both synthetic control methods

are complementary to difference-in-difference because they don’t make the parallel trends

assumption, and as a result, are very useful for making causal inferences in the presence

of unobserved time-varying confounding. To be clear, synthetic controls are not an end-all

solution to unobserved confounding and still require post-estimation analyses to evaluate the

validity of the results as detailed in Section 1.4. Furthermore, alternative post-estimation

analyses relating to the weights or that utilize other characteristics of the data, such as a

placebo analysis that uses units that experience treatment at a later date, are also viable

and we expect there to be significant creativity with creation of additional analyses.

The literature on synthetic control methods is rapidly expanding as researchers develop

extensions and furthering the theoretical underpinnings. Extensions have been proposed
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that extend synthetic control methods to allow for multiple treated units and reduce bias

when the pre-treatment fit is poor. Furthermore, there are a number of related methods

such as the Generalized Synthetic Control and Matrix Completion (Xu, 2017; Athey et al.,

2018). An overview of extensions and related methods is available in Abadie (2019).

The literature for difference-in-difference is also rapidly growing with extensions being de-

veloped for more specific and complex data structures. For example, difference-in-difference

has been extended to cases with: small numbers of treated groups, variation in treatment

timing, multiple time periods, or sharp and fuzzy treatments. There have also been advance-

ments in quantifying the validity of difference-in-difference estimates. Concerns have been

raised with the current indirect parallel trends analysis paradigm and as such has lead to

the growth of sensitivity analysis as an alternative (Bilinski and Hatfield, 2018; Roth, 2018).

Future research for causal inference with panel data is an exciting area with an abundance

of innovation in the areas of estimation and validity analysis. Future work should continue

to develop post-estimation tests to determine which method -– mean or kernel-balanced

synthetic control -– is more appropriate. For example, one may develop balance checks that

compare densities rather than moments. Other developments may focus on determining how

much imbalance is acceptable by utilizing sensitivity techniques based on the strength of

relationship between a covariate, treatment, and the outcome.

This paper builds upon prior work by Samartsidis et al. (2019) in a number of ways.

First, this paper develops a decision tree to aid applied researchers with implementation

of difference-in-difference, mean-balanced synthetic control, and kernel-balanced synthetic

control. Second, this paper highlights the utility of the kernel-balanced synthetic control

because it relaxes the assumptions of the mean-balanced synthetic control. Third, this

paper provides detailed guidelines for evaluating the validity of synthetic control methods

and references a novel sensitivity tool for evaluating the validity of difference-in-difference.

Fourth, we generalize our implementation guidelines to scenarios with one or many treated

units and one or many pre-treatment periods.
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1.7 Conclusion

Quasi-experimental designs such as difference-in-difference and synthetic controls are useful

for learning causal relationships when treatment is non-randomly assigned. Because data in

health policy is often collected overtime quasi-experimental designs that exploit the nature of

panel data are valuable tools for an applied researcher. However, these tools are not end-all

solutions to the problem of unobserved confounding by way of non-randomized treatment

assignment. Care must be taken to determine both pre and post-estimation which design is

appropriate and whether or not the assumptions underlying a given design hold.
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CHAPTER 2

The Effect of Medicaid Expansion on State Medicaid

Spending

2.1 Introduction

In 2014 the landmark Affordable Care Act (ACA) began nationwide implementation. In-

cluded in the ACA was an important provision to expand eligibility for Medicaid to all adults

with incomes up to 138% of the federal poverty line (FPL). This was a significant expansion

in two ways. First, Medicaid had previously been limited to children and their custodial

parents (Herz et al., 2016). Second, Medicaid eligibility was contingent on very low-income

thresholds in many states; with a median income limit for working parents of only 68% of

the federal poverty line (Heberlein et al., 2012). Doubling this income limit would therefore

bring large numbers of people into eligibility (Mitchell, 2018).

To address concerns of cost increases, the federal government committed to paying 100%

of the costs for newly eligible individuals in the first two-years with an increasing state share

in the subsequent years. Many policy-makers, especially Republicans, voiced concern about

the costs of such an expansion on their state budgets (Alonso-Zaldivar, 2014). They argued

that expanding Medicaid eligibility would increase state costs because it would raise the

profile of Medicaid; and therefore, induce more previously eligible people to sign up than

had previously done so. This effect of raising the uptake rate of those previously eligible was

termed “the woodwork effect” (Frean et al., 2016; Kenney et al., 2016). Understanding the

fiscal effects of Medicaid expansion is important due to concern about the financial impacts
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on states as Medicaid enrollment grows; the current study seeks to explore this concern.

Unlike the ACA, which was implemented nationally, the decision whether or not to ex-

pand Medicaid eligibility was to be made at the state-level, which lead to only some states

adopting the new eligibility limits. Because the expansion of Medicaid to low-income adults

below 138% of the FPL did not occur uniformly across all states, a natural experiment was

established with some states selecting into treatment and others selecting out of treatment.

Medicaid expansion has been studied extensively since its implementation, using the afore-

mentioned natural experiment, with researchers looking at a number of outcomes such as:

access to care, health and quality of care, cost of care, and hospital financial performance

(Mazurenko et al., 2018). Researchers have also studied the impacts of Medicaid expansion

on state budgets, with a number of detailed studies on the fiscal impacts of Medicaid Expan-

sion at the national, multi-state, and individual state level. A meta-review of studies on the

effects of the Medicaid expansion under the ACA found that expansion states experienced

budget savings, revenue gains, and economic growth (Antonisse and Garfield, 2018). To our

knowledge, however, there has only been one study that has looked at the effect of Medicaid

Expansion on state budgets across multiple states by utilizing a quasi-experimental method-

ology. The study utilized a difference-in-difference design to analyze the effect of Medicaid

expansion on total state spending and state spending on Medicaid using data on all states

through FY 2015 (Sommers and Gruber, 2017).

This paper makes four additions to earlier work by adding new data, improving treatment

and control definitions of states following Medicaid expansion, and making two important

methodological improvements. As a first contribution, this study expands prior work to

include an extended post-treatment period from fiscal year 2015 to fiscal year 2017, which

allows for an investigation into whether or not Medicaid expansion had an impact on state

spending on Medicaid that persisted over time. A longer time horizon is motivated by

descriptive evidence that enrollment continued to increase in the two years following Medicaid

expansion (Rudowitz et al., 2016). Therefore, this paper analyzes the hypothesis that the
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woodwork effect was larger in later years than in the first fiscal year following expansion.

The second contribution is to revisit and improve the treatment and control definitions

that have been utilized by prior work (Sommers and Gruber, 2017; Garrett and Kaestner,

2015; Hu et al., 2016). The improvements are made by considering the Medicaid eligibility

criteria of states as of December 2009. December 2009 was an important date because it

dictates, under the ACA, which Medicaid expenses qualify for the special Medicaid match

rate and which do not. For example, states that had already expanded Medicaid to childless

adults – and as a result would have no newly eligible enrollees – would receive a special

match rate that would become equivalent to the enhanced match rate in 2020. The present

study utilizes variation in the Medicaid eligibility criteria as of December 2009 to create

groupings of states and assign them to three categories: treated, control, and excluded.

The third and fourth contributions are methodological advancements. The first method-

ological advancement is related to the concern, not fully addressed in prior work, of a violation

of the parallel-trends assumption due to uncontrolled time-varying confounders. When the

assumption of parallel trends is not warranted, difference-in-difference estimation provides

biased estimates of the causal effect of the policy change. To address this issue, this study

utilizes a kernel-balanced synthetic control which is apart of the trajectory balancing frame-

work (Hazlett and Xu, 2018a). Kernel-balanced synthetic control imputes the counterfac-

tual by weighting the control units, much like the mean-balanced synthetic control method

(Abadie et al., 2010). A kernel-balanced synthetic control has two main advantages over

the mean-balanced synthetic control and difference-in-difference: 1) The kernel-balanced

synthetic control does not assume parallel trends; and 2) it relaxes the linearity in prior

outcomes (LPO) assumption made by the mean-balanced synthetic control. Therefore, the

kernel-balanced synthetic control requires the fewest assumptions in order to be unbiased,

compared to the mean-balanced synthetic control and difference-in-difference.

The second methodological contribution is the introduction and application of several

validity analyses for the kernel-balanced synthetic control. In this paper we utilize four
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different validity checks: visualizing the fit of the synthetic control to the average treated

outcome in the pre-treatment period, analyzing the assumption that balance is found on

important confounders, investigating the credibility of the synthetic control by backdating

the treatment timing into the pre-treatment period, and a robustness analyses examining

the sensitivity of the results to the number of pre-periods.

2.2 Methods

2.2.1 Data

The primary data source for this analysis came from the National Association of State Budget

Officers (NASBO) annual reports. The data provides state-level information related to total

spending by category which is then broken down by source: general fund, other state funds,

bonds, and federal funds. The data is available from State Fiscal Year (FY) 1991 through

2017; fiscal years begin July 1st and end June 30th, and they are denoted by the year in

which the period ends. Furthermore, all years of data were not utilized because there were

six missing data points: four in Nevada, one in Mississippi, and one in New Mexico. The

missing data points for Nevada, New Mexico, and Mississippi, were also missing from the

NASBO reports for the associated year. Therefore, it was likely that the aforementioned

states did not submit data for those years. There was a missing data point for Wyoming in

FY 1999 but the data was imputed using data in the online report for FY 1999.

2.2.2 Measurement

The primary outcome of interest was Medicaid spending by source. The sources available in

the NASBO data are: federal funds, general funds, other funds, and bond funds. General

funds, Other funds, and bond funds are spending sources for the state government, but

only general and other Funds are related to Medicaid spending. General funds, according to
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NASBO’s definition, consist of revenues from broad state taxes, and are the primary financing

mechanism for Medicaid by the state. Other funds are specific taxes that are restricted for

specific activities or governmental functions. For Medicaid, Other funds include provider

taxes, fees, donations, assessments, and local funds. To capture total state spending on

Medicaid, we combine the spending from the general and other funds.

After constructing the state spending on Medicaid outcome as the combination of general

and other state funds, the total state spending on Medicaid by the state population within

each year - using National Institutes of Health Surveillance, Epidemiology, and End Re-

sults (SEER) data - was normalized to obtain per-capita spending. Therefore, the primary

outcome was the per-capita state spending on Medicaid.

In addition to the primary outcome of interest there were three time-varying confounders

in the sensitivity analysis: unemployment rate, state per-capita revenue, and the labor force

participation rate. Unemployment rate data are annualized unemployment rates at the state

level reported by the Bureau for Labor and Statistics. The data is available for all years

used in the analysis (FY 1998 – FY 2017). State per-capita revenue was generated by

combining revenue data from NASBO with SEER population data. The revenue data is

included in the NASBO dataset used for the primary outcome. The labor force participation

rate is available for all years at the monthly level. Annual labor force participation rate is

calculated by averaging seasonally adjusted monthly data from the St. Louis Federal Reserve

Economic Data (FRED).

2.2.3 Treatment Assignment

Treatment was the adoption of the full Medicaid expansion by a state in 2014. Treatment

assignments are based on prior studies that examined the effect of Medicaid expansion, but

are slightly different. (Garrett and Kaestner, 2015; Hu et al., 2016; Sommers and Gruber,

2017). This analysis focused on the nine states that had no partial Medicaid expansions

prior to 2014. The more narrow treatment group was selected because their pre-treatment
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spending on Medicaid was different from the other treated states. Prior work, however,

included states with prior partial Medicaid expansions for parents and/or childless adults

before they fully expanded Medicaid under the ACA in 2014 in the treatment group (Table

2.1).

Table 2.1: Treated States

Expansion in 2014 and No Prior Expansion

for Parents or Childless Adults

Arkansas New Hampshire*

Kentucky New Mexico

Michigan* North Dakota

Nevada Ohio

West Virginia

*: Expanded in 2014 but later than Q1 2014

Control states were states (Table 2.2) that did not expand Medicaid in 2014 or after 2014

under the ACA. States that did not expand Medicaid in or after 2014 exhibit two policy

behaviors. First, the majority of control states (N = 16) did not expand Medicaid in or after

2014 and they had no prior partial expansions for parents and/or childless adults. Second, a

smaller number of control states (N = 3) did not expand Medicaid in or after 2014 but they

did have a partial expansion for parents and/or childless adults. For example, Wisconsin

expanded Medicaid eligibility to all adults under 100% FPL, but was not included as a

treated state because they did not expand Medicaid enough to receive the federal funding

benefits the treated states did. The distinction between the types of expansions was because

any expansion short of 138% FPL was not granted the federal funding benefits associated

with Medicaid expansion under the ACA.
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Table 2.2: Control States

No Expansion in 2014 and

No Prior Expansion

No Expansion in 2014 but

Limited Prior Expansion for

Parents and/or Childless Adults

Alabama North Carolina Maine

Florida Oklahoma Tennessee

Georgia South Carolina Wisconsin

Idaho South Dakota

Kansas Texas

Mississippi Utah*

Missouri Virginia*

Nebraska Wyoming

*: Expanding Medicaid under the ACA in 2019

Excluded from the analysis were a total of 23 states that were divided into three categories

(Table 2.3. The first category contains states that expanded Medicaid between 2015 and 2017

(N = 5). States expanding after 2014 were excluded because the treatment being examined

was specific to Medicaid expansion in 2014 and the post-treatment period of interest was from

2015 through 2017. The second category were states that expanded Medicaid but had prior

partial expansions for parents and/or childless adults after 2010 (N = 13). The decision

to remove these states from the treated group was a divergence from previous literature.

The states with prior partial expansions were excluded because they had large increases in

spending between 2010 and 2014, which led to a large decrease in 2014 when the enhanced

federal match rate began. The third category are states that had prior full expansions for

parents and childless adults which then expanded under the ACA in 2014 (N = 5). The five

states with full prior expansions of Medicaid have been used as control units in prior work

(Garrett and Kaestner, 2015). Using states with full prior expansions as control units in
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this study, however, would be inappropriate as they were expected to have high per-capita

spending that decreases, less dramatically than states with prior partial expansions, after

2014, when they accessed the special match rate. (Kaiser Family Foundation, 2013).

Table 2.3: Excluded States

Expansion Post-2014

Expansion in 2014 Plus

Prior Full Expansions

for Parents and

Childless Adults

Expansion in 2014 Plus

Prior Partial Expansions

for Parents and/or

Childless Adults

Pennsylvania (1/1/2015) Delaware Arizona Iowa

Indiana (2/1/2015) Washington, D.C. California Maryland

Alaska (9/1/2015) Massachusetts Connecticut Minnesota

Montana (1/1/2016) New York Colorado New Jersey

Louisiana (7/1/2016) Vermont Hawaii Oregon

Illinois Rhode Island

Washington

2.3 Statistical Methods

The pre-period was from FY 1998 through FY 2013 and the post-period was from FY 2015

through FY 2017. The analysis did not include FY 2014 because FY 2014 contains six months

of pre-treatment data and six months of post-treatment data that were non-separable. The

analytical approach was a kernel-balanced synthetic control from the Trajectory Balancing

framework (Hazlett and Xu, 2018a). Estimation of the kernel-balanced synthetic control

was done using the tjbal package in R. A more thorough discussion of trajectory balancing

is below.
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2.3.1 Notation

Gi is a time-invariant indicator of treatment status for a state i with NG=1 treated states

and NG=0 control states. Yit is the outcome variable of interest which in this case is the

per-capita state spending on Medicaid for a state i in year t. A total of T years of the

outcome variable are observed for all states and the year prior to treatment is denoted as T0.

2.3.2 Identification Assumption: Conditional Ignorability on Past Outcomes

Identification of the ATTt relies on the conditional ignorability assumption where, in this

instance, the non-treatment potential outcome (Y 0
it ) is independent of treatment conditioning

on a large feature expansion (φ()) of the pre-treatment outcomes.

Y 0
it ⊥⊥ Gi|φ(Yit) (2.1)

where Y is a N × T0 matrix of observed pre-treatment outcomes and φ is a large feature

expansion of Yit which we explain in more depth below.

The identification strategy also assumed that there exist weights such that the pre-

treatment trends of the synthetic control are similar to the treated unit which then balances

observed and unobserved confounders (Abadie et al., 2010).

2.3.3 The Kernel-balanced Synthetic Control

Synthetic control methods (mean or kernel-balanced) are motivated by the underlying idea

that the data can be used to construct a control unit which is a better counterfactual than the

average of the observed control units. For example, a difference-in-difference approach would

utilize all control units equally to estimate the ATT. Synthetic control methods, however,

construct a new control unit from the observed controls. If the above identifying assumptions

hold, the ATT can then be estimated using the constructed, or synthetic, control unit.

The synthetic control unit is constructed as a weighted combination of the observed

30



control units. For example, a study may be conducted with one treated unit and several

control units. A synthetic control method will assign weights – that are non-negative and

sum to one – to the control units such that one control unit may receive a weight of 0.5,

another a weight of 0.1, and so on. The methodology for estimating the weights is described

in more detail below. Once the weights have been estimated the counterfactual in the

post-treatment period is imputed as the weighted combination of the observed control units

outcome in the post-period. The ATT can be estimated as the difference between the average

treated outcome and the synthetic control.

The ATTt is given by:

ÂTTt =
1

NG=1

∑
Gi=1

Yit −
∑
Gi=0

wiYit,∀t > T0 (2.2)

where wi are time-invariant weights estimated by an approximate balancing procedure and

the ATT can be estimated in each post-period as the difference between the observed treated

outcome and the kernel-balanced synthetic control.

The kernel-balanced synthetic control utilizes a kernel balancing procedure in order to

estimate weights (Hazlett, 2020). The balancing procedure begins with the outcome data,

Y, which is a matrix with N rows – one for each unit – and T columns – one for each

time period. Therefore, Yi is a vector of length T for unit i. The outcome data is then

transformed using a feature map that maps Yi
φ−→ φ(Yi) where φ(Yi) is an expanded feature

set that may included second-order polynomials and other higher order expansions of Yi.

Ideally, we would like to obtain balance on φ(Yi), but it is difficult to know what feature

map should be used.

The kernel-balancing procedure uses a Gaussian kernel to implicitly construct φ(Yi) (Ha-

zlett, 2020). The gaussian kernel maps Y to a kernel matrix K:

Kij = k(Yi, Yj) = exp(
− ‖ Yi − Yj ‖2

2σ2
) (2.3)

where K is an (N × N) matrix, Yi is a (T × 1) vector of outcomes for unit i, Yj is also a

(T × 1) vector of outcomes for unit j 6= i.
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Ideally the balancing procedure would try to find balance on the columns of the kernel

matrix between the treated and control units. Unfortunately, finding exact balance on all

N -dimensions of K is often infeasible, especially when N is large.

As a solution, the kernel balancing procedure finds approximate balance by minimizing a

worst-case bias bound:

min
w0

‖ (wT1 V1 − wT0 V0)A
1/2 ‖2 (2.4)

where w0 are the weights for the control units that minimize the bias bound and w1 are fixed

weights for the treated units that are equal to one, V is an N × R matrix of eigenvectors

which is subdivided by treatment status into V0, an NG=0×R matrix, and V1, an NG=1×R

matrix, A is an R×R matrix with the eigenvalues on the diagonals.

The weights for the control units, w0, are chosen using an iterative procedure. The

procedure begins by ordering the columns of A in descending order such that the first

column contains the largest eigenvalue; the associated columns in V are also reordered. The

procedure then iteratively includes an increasing number of columns, estimates the weights to

balance the subset V, and calculates the bias bound for each iteration. The procedure ends

when either the bias bound achieves a minimum or all R columns are utilized. For example,

the procedure begins with the first column of A and V, estimates weights to balance the

first column of V between the control units and the average treated unit, and calculates the

bias bound. The procedure repeats using the first two columns of A and V, then the first

three, and so on until either the bias bound achieves a minimum or all columns of A and V

are utilized.

With each iteration of the aforementioned procedure the weights are estimated to achieve

exact or near exact balance between the control units V0 and the average treated unit

1
NG=1

∑
V1. The weights are found using entropy balancing which maximizes the entropy

measure
∑

iwilog(wi) (Hainmueller, 2012). Trajectory balancing has other options for esti-

mating the weights, but the analysis in this paper utilizes the entropy balancing approach.
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In this paper, a kernel-balanced synthetic control is used to estimate the average ATT

from FY 2015 through FY 2017 as well as the ATT in each year. The ATT is interpreted

as the average treatment effect on the treated of Medicaid expansion on the per-capita state

spending on Medicaid. Inference is performed using a bootstrap procedure.

2.3.4 Validity Analyses

In addition the main analyses, five additional validity analyses were conducted to explore the

underlying assumptions of the kernel-balanced synthetic control, the validity of the synthetic

control, and the robustness of the results.

The first two validity analyses examined the assumption that by finding a near exact fit

of the synthetic control with the treated outcome, in the pre-treatment period, confounders

will be balanced (Abadie et al., 2010). The first validity analysis visualized the fit of the syn-

thetic control to the observed treated outcome, which is the first part of the aforementioned

assumption. Ideally, the synthetic control will be a near exact match with the observed out-

come trajectory for the treated unit. A limitation of this analysis, however, is that it doesn’t

take into account the fact that the kernel-balancing procedure balances across different mo-

ments of the data, and not just the means. As a result, the mean balance examined in this

analysis may be poor but that could be because the higher order moments take priority when

minimizing the bias bound. In this paper we propose estimating a mean-balanced synthetic

control and visualizing how well it fits the treated outcome data. The logic is such: if the

mean-balanced synthetic control is able to achieve a good fit then it is likely that trajectory

balancing is prioritizing other moments of the data and is therefore not a feasibility issue.

The second validity analysis examined the second piece of the assumption discussed in the

prior paragraph – that balance is achieved on both observed and unobserved confounders.

The balance check was implemented by comparing the absolute mean difference between

the treated and control groups on observed confounders before and after weighting. The

assumption would be supported if the absolute mean difference shifted towards zero, post-
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weighting. The analysis is limited, however, because balance on unobserved confounders

cannot be investigated; but it can still be useful if balance is achieved on what are considered,

by expert content knowledge, to be the most important confounders.

The third validity analysis is known as backdating and is similar to an analysis proposed

in other work (Abadie, 2019). Backdating works by iteratively moving the treatment period

back in time – into the pre-treatment period – and estimating the synthetic control with the

reduced pre-period. In this paper the backdated treatment period is a three-year window

and doesn’t include the post-treatment period. Backdating analyzes the credibility of the

synthetic control to accurately model the treated units outcome trajectory by comparing

the synthetic control to a ground truth, the observed treated outcome. For example, if the

backdated synthetic control estimates an ATT of zero for the three-year treatment window

– in the pre-treatment period – then the synthetic control is able to accurately predict the

treated units pre-period trajectory. However, if the synthetic control is unable to accurately

predict the treated units pre-period trajectory then we would be concerned about the ability

of the synthetic control to model the counterfactual

Fourth, the effect of using all pre-periods in the data was examined by reproducing the

main analysis but with an incremental reduction in the number of pre-periods, in chronolog-

ical order. The purpose for incrementally reducing the number of pre-periods was to provide

transparency around the decision to utilize all of the pre-periods. The ATT was reported for

each incremental reduction in the number of pre-periods to reduce any concern of researcher

bias.

2.4 Results

2.4.1 Descriptive Analysis

The data in Figure 2.1 visualize the trends in annual per-capita spending from the state’s

general and other funds on the Medicaid program. The per-capita state spending on Medicaid
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was relatively similar starting in FY 1996 and slowly began to diverge through FY 2017.

The blue colors highlight the treated states and the color changes from light to dark blue

when they enter the treatment period in FY 2014. The treated states, aside from Ohio

which was not included in the analysis, are similar in magnitude to the control states. Ohio

was an outlier because they passed federal funding for Medicaid through their general fund

(Potamianos et al., 2018). For some fiscal years the amount of federal funding passed through

the general fund is reported to NASBO, however, for other years it was not reported. As a

result, this analysis did not include Ohio because it was not possible to separate federal and

state funding for Medicaid.

Figure 2.1: Trends in Per-Capita General & Other Fund Spending on Medicaid by State

The trends in per-capita state spending on Medicaid were mostly increasing across all

states over time, but there was a noticeable dip that occurs between 2008 and 2012 across

almost all states in the sample. A possible explanation for the decrease in per-capita state

spending on Medicaid was the American Recovery and Reinvestment Act (ARRA). ARRA

provided federal funding to state Medicaid programs to assist with increases in Medicaid

expenditures following the recession. The ARRA relief lasted from October 2008 to June

2011 (FY 2009 through FY 2011) (Kaiser Family Foundation, 2011).
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Figure 2.2: Trends in Unweighted Average State Per-Capita Spending from General & Other

Funds on Medicaid by Expansion Status

In Figure 2.2, the control and treated groups average per-capita combined general and

other fund spending on Medicaid were relatively similar in magnitude and trend. There

were instances where the trends diverged such as just prior to treatment. Furthermore,

the magnitude of per-capita state spending on Medicaid has nearly doubled, on average,

since 1995 and continues to rise. The treated group’s average per-capita state spending on

Medicaid from FY 2015 to 2017 was $490.92 with a high of $512.25 in FY 2017. The control

group’s average per-capita state spending on Medicaid from FY 2015 to 2017 was $508.70

with a high of $514.55 in FY 2017.

2.4.2 Main Results: The Effect of Medicaid Expansion on State Medicaid

Spending

Treatment effects were estimated using a kernel-balanced synthetic control and confidence

intervals were estimated using the bootstrap method. The top five weighted states were:

Nebraska, Utah, Kansas, Florida, and South Dakota. The ATT over the entire treatment

period (FY 2015 to FY 2017) was a decrease of -$12.31, or -%2.50, decrease in per-capita
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spending from state funds on Medicaid. The year-by-year ATT ranged from -$20.42 in FY

2016 to $0.66 in FY 2017 (Table 2.4). Although the year-by-year results show a sudden

increase in the treatment effect in FY 2017 (perhaps reflecting the increasing state share of

newly eligible costs), they are also statistically insignificant. The results do not providence

evidence in support of the hypothesis that Medicaid expansion increased per-capita State

spending on Medicaid.

Table 2.4: Effect of Medicaid Expansion on Per-Capita State Spending on Medicaid

Fiscal Year ATT Confidence Interval

2015 -$17.78 -$82.60, $48.25

2016 -$20.42 -$74.67, $33.83

2017 $0.66 -$56.66, $58.98

Figure 2.3: Combined General Fund & Other Fund Spending on Medicaid – Average Treat-

ment Effect on the Treated by Year
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Figure 2.4: Kernel-Balanced Synthetic Control Fit Compared to Treated Group

2.4.3 Validity Analyses

Five distinct validity, robustness, and sensitivity checks were conducted to evaluate the

validity and credibility of the synthetic control.

2.4.3.1 Validity of the Synthetic Control - Main Effect

Important to the validity of the kernel-balanced synthetic control is the quality of the esti-

mated synthetic control. Figure 2.4 displays the mean per-capita state spending on Medicaid

for the treated units compared to the synthetic control estimated by the kernel-balanced syn-

thetic control. The beginning of the treatment period is denoted by a vertical line. Perfect

balance — rarely attainable with real-world data — would align the synthetic control and

the observed data exactly for each period prior to the grey line.

In these data, the kernel-balancing procedure was not able to find a set of weights such

that the synthetic control exactly matches the treated group’s outcome trajectory over the

pre-period. Overall, The magnitude of the gaps between the synthetic control and treated

groups mean is of some concern, especially when considered relative to the ATT. The average
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distance between the treated group and the synthetic control group’s means, in the pre-

period, was -$7.22 and the maximum absolute distance was $43.99, which occurred in FY

2005. The largest gaps between the synthetic control and the treated group means occur at

the beginning and the mid-point of the pre-treatment period in FY 1998, 1999, and between

2003 and 2009. As the pre-period approaches the treatment period the difference between

the two groups becomes small.

Further analysis compared the fit of the kernel-balanced synthetic control with a mean-

balanced synthetic control to evaluate whether or not weights exist that balance the mean

structure – a feasibility analysis. Because a mean-balanced synthetic control is solely focused

on finding mean balance it provides a check on the feasibility of the weights for the mean

structure. The fit of the mean-balanced synthetic control in Figure 2.5 supports the validity

of the kernel-balanced synthetic control because the mean-balanced synthetic control fit

better to the periods that were difficult. Therefore, it is likely the case that the kernel-

balanced synthetic control is prioritizing other moments of the data and sacrificing mean

balance as a result.

Figure 2.5: Mean-Balanced Synthetic Control Fit Compared to Treated Group
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2.4.3.2 Post-Weighting Confounder Balance Checks

Important to synthetic control identification strategy is improved balance among time-

varying confounders between the treated and weighted control units compared to the un-

weighted control units (Abadie et al., 2010). Therefore, a validity analysis is to compare

balance of observed time-varying confounders before and after weighting. Figure 2.6 com-

pares balance on time-varying confounders with and without the weights estimated by the

kernel-balancing procedure; it also includes 95% confidence intervals. The confounders exam-

ined were the unemployment rate, state revenue per-capita, and the labor force participation

rate (Sommers and Gruber, 2017).

In Figure 2.6, the results of the balance checks - for the main analysis - provide little

support for the validity of the synthetic control. For example, prior to weighting the un-

employment rate and state income per-capita had absolute mean differences, by treatment

status, near zero. Labor force participation rate, however, was very different from zero with

an absolute mean difference of 0.47. After weighting. balance improved slightly for both

the unemployment rate but state income per-capita became slightly worse. Balance on labor

force participation improved the most post-weighting such that the point estimate was closer

to zero but it was still not inline with the absolute mean differences for unemployment rate

and state income per capita.
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Figure 2.6: Time-Varying Confounder Balance Before and After Weighting with Confidence

Intervals

2.4.3.3 Backdated Treatment Period

The backdated treatment period analysis reproduced the main analysis but changed the

definition of the treatment period. The actual treatment period (FY 2015 - FY 2017) was

removed from the data such that the data consisted only of the pre-treatment period. The

treatment period was then reassigned to a three-year period within pre-period. For example,

the full pre-period was from FY 1998 through FY 2013. The treatment period was first

assigned to FY 2011 through FY 2013, a three-year window similar to the actual treatment

period. The three-year post-treatment window was iteratively shifted back in time by one

pre-period such that it runs from FY 2010 through FY 2012, FY 2009 through FY 2011,

and so on. The three-year window was utilized because the actual post-treatment period

was a three-year window. Therefore, we are interested in understanding how well the kernel-

balanced synthetic control predicts the observed treated outcome over a placebo treatment

period of length equal to the true treatment period.

The average of the ATTs over the backdated post-periods, reported in Table 2.5, were
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mixed because the periods near the true treatment period returned results that support the

credibility of the synthetic control, but results for earlier periods generally did not. The

results just prior to treatment returned small, near zero ATTs, which support the ability

of the kernel-balanced synthetic control to correctly model the treated unit. However, as

the placebo treatment window moved back in time the ATT became large and for placebo

treatment windows between FY 2005 - 2007 and FY 2007 - 2009 the ATT is on average

-$52.63, which is large especially when compared to the main ATT.

The results raise some concern over the ability of trajectory balancing to correctly model

the average treated unit between FY 2005 and FY 2010. However, these concerns are

somewhat assuaged by the near zero ATTs just prior to the true treatment period, which

indicates that while the kernel-balanced synthetic control is having difficulties with FY 2005

through FY 2010 it is seemingly able to correctly model the treated unit for periods after

FY 2010.

Table 2.5: Placebo Treatment Period Average Effects on the Treated

Placebo Treatment Years (FY) ATT Confidence Interval

2011 - 2013 $0.91 -$34.38, $36.2

2010 - 2012 -$4.24 -$61.24, $52.77

2009 - 2011 -$28.48 -$45.93, $8.96

2008 - 2010 -$0.28 -$67.05, $66.48

2007 - 2009 -$42.80 -$96.70, $11.10

2006 - 2008 -$66.08 -$170.51, $38.36

2005 - 2007 -$49.02 -$114.27, $16.23

2004 - 2006 -$21.35 -$76.87, $34.16

2003 - 2005 -$27.46 -$69.96, $15.03

2002 - 2004 -$16.74 -$57.11, $23.62

2001 - 2003 -$7.58 -$35.19, $20.03
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Despite the null results, of some concern is the strong ATT for placebo treatment years FY

2005 through FY 2010. A possible explanation is the American Recovery and Reinvestment

Act (ARRA), which is described in the exploratory analysis (Figure 2.1). There may have

been a differential impact of ARRA between treated and control groups due to the way

ARRA was implemented. ARRA was implemented as a flat percentage point decrease in

every state’s share of Medicaid expenses of 6.5 percentage points. For example, a state that

pays half of their Medicaid costs would experience a 12% decrease while a state that pays

25% of their Medicaid costs would have experienced an 24% decrease in the amount they

paid. However, the average share of Medicaid costs for the treated states in FY 2012 was

36.00% and for control states it was 37.36%.

2.4.3.4 Robustness to Different Pre-Period Lengths

The purpose of this validity analysis was to provide transparency as to the decision to utilize

all available pre-periods, and examine the robustness of the synthetic control to different

pre-period lengths. The ATT was used to evaluate the robustness of the results to different

pre-period lengths.

The results in Table 2.6 support the conclusion that the synthetic control is robust to

the number of pre-treatment periods. The first row is the same as the main results and the

second row begins in FY 1999 instead of FY 1998. The average ATT across all post-periods

varied as the number of pre-periods decreased. The average effect ranged from a low of

-$10.42 to a high of $26.64 with an average of -$0.63. Despite the variation in the average

ATT, the confidence intervals all included zero and lead to the same conclusion as the main

results.
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Table 2.6: Average ATT of Medicaid Expansion on State Spending on Medicaid with De-

creasing Number of Pre-Periods (Main analysis in Bold)

Pre-Period Start (FY) Average ATT Confidence Interval

1998 -$4.21 -$57.96, $49.54

1999 -$6.66 -$57.61, $44.29

2000 -$8.85 -$42.68, $24.98

2001 -$8.08 -$57.98, $41.82

2002 -$7.87 -$57.68, $41.93

2003 -$10.42 -$55.52, $34.68

2004 -$9.10 -$55.17, $36.98

2005 $1.97 -$24.86, $28.81

2006 $23.05 -$18.92, $65.01

2007 $1.69 -$34.45, $37.83

2008 -$4.04 -$64.46, $56.38

2009 -$0.26 -$61.21, $60.69

2010 -$2.69 -$53.86, $48.48

2011 $26.64 -$8.05, $61.33

2.5 Discussion

The main results do not provide evidence that Medicaid Expansion lead to an increase in

state spending on Medicaid. States that expanded Medicaid under the ACA with no prior

expansions had, on average, a non-significant decrease of -$12.31 or -2.50% in per-capita

state spending on Medicaid between FY 2015 and 2017. The overall effect was estimated

over the three fiscal years following the policy change, which builds upon prior work using

only one fiscal year post-treatment. The ATT in FY 2017 suggests that the policy effect

grew stronger over time – relative to the ATT in FY 2015 and FY 2016 – and was estimated
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here at $0.66 or 0.13% increase in per-capita state spending on Medicaid in FY 2017, but it

also overlaps with the decrease in the federal match rate for the newly eligible population

from 100% to 95%.

Other quasi-experimental work on this topic was limited to one prior study which the

findings in the current paper are consistent with. For example, prior work found that state

spending increased by a small, non-significant amount of 2.4% in FY 2015 (Sommers and

Gruber, 2017). Similarly, this paper found a small non-significant change in state-spending,

but the effect was of the opposite sign as it was a decrease of -3.70% over the same time-

period. However, direct comparison of this paper to prior work requires caution due to

differences in treatment assignments. For example, prior work utilized all 50 states in their

quasi-experimental analysis, whereas the current study utilized only 27 states.

While this paper was not the first quasi-experimental paper to study the effects of Medi-

caid expansion on state Medicaid spending, it was the first to utilize an alternative method-

ology - a kernel-balanced synthetic control - that does not assume parallel trends. By not

assuming parallel trends the kernel-balanced synthetic control method provides the oppor-

tunity to make causal inferences in cases where the parallel trends assumption is unlikely

to hold. The kernel-balanced synthetic control does, however, make the assumption that

by finding good balance on the outcome confounders - observed and unobserved - are bal-

anced. This paper presented a process for analyzing the assumptions of trajectory balancing

through a series of validity checks on the fit of the synthetic control and the degree to which

balance was achieved on observed confounders.

The additional analyses contributed some evidence in support of the model used for the

main analysis. For example, there were small improvements in balance on some time-varying

confounders (Figure 2.6). Balance on time-varying confounders post-weighting is important

for identification with synthetic control methods and the improvements for the state income

per-capita, and minimal change for the unemployment rate contributed to the validity of

the synthetic control but the balance for the labor force participation rate was still poor.
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What is more supportive is that the kernel-balanced synthetic control matched the treated

outcome well in most of the pre-periods and for the periods that it matched poorly on a

mean-balanced synthetic control was able to match well. Therefore, the kernel-balanced

synthetic control was likely prioritizing higher order moments over mean balance for some

pre-periods.

Limitations

There are three limitations of note to this study. First, the data was voluntarily reported

by the states to the National Association of State Budget Officers (NASBO). The danger

of using voluntarily reported data is that the labeling of aggregate funding and revenue

streams may not be done consistently across states. States, however, had the option of in-

cluding footnotes to explain any unusual state budget practices, exceptions, or when data

was unavailable. A review of the footnotes for FY 1998 through FY 2017 was conducted and

identified two states with unusual funding reports (Ohio and Connecticut) as well as other

reporting errors that had already been corrected within the data. Despite these concerns,

the NASBO data has been used for descriptive analysis by policymakers, government orga-

nizations, and commissions such as the CBO, GAO, and MACPAC (Congressional Budget

Office, 2007; Government Accountability Office, 2012; MACPAC, 2017).

Second, this paper estimated a group average effect among a collection of states rather

than a state specific effect. For example, there was variation across states in Medicaid

programmatic structure related to not only eligibility rules, but enrollment and renewal

procedures, and cost sharing practices as well (Heberlein et al., 2012). The effect estimated in

this paper did not illuminate how the aforementioned programmatic designs directly influence

state spending. Rather, the effect contributes to understanding whether or not there was, on

average, an increase in state spending on Medicaid following a Medicaid expansion for adults

with incomes up to 138% of FPL in 2014. Therefore, the results are limited to answer the

posed question and do not provide further insight to whether or not specific programmatic

46



decisions reduced state spending on Medicaid. Furthermore, the results do not lay claim

that all states in the treated group experienced a small, non-significant change in per-capita

state spending on Medicaid. Rather, the results speak to the average change in per-capita

state spending on Medicaid among the treated group.

Third, there are differences in the time-cycle of state budgets. For example, in 2011 there

were four states with biennial sessions of which 3 are included in this analysis (Nevada, North

Dakota, and Texas). In addition, Arkansas and Oregon switched from a biennial session to

an annual session in 2009 and 2011, respectively. Oregon, however, is not included in this

analysis. Analysis without states with biennial budgets results in estimates closer to null and

an analysis without Arkansas results in similar estimates to the main effects in this paper.

2.6 Conclusion

Medicaid expansion and its surrounding media attention led to concerns that there would be a

sudden increase in previously eligible individuals newly enrolling in Medicaid, the woodwork

effect. These concerns led to the hypothesis that Medicaid expansion will increase state

spending on Medicaid, notwithstanding the generous federal match for expansion. Concerns

of a woodwork effect were used to justify non-expansion in many states (Alonso-Zaldivar,

2014).

The current work contributes to the methodological literature by expanding the role

of the kernel-balanced synthetic control (Hazlett and Xu, 2018a), a type of synthetic con-

trol method, in the health policy literature. The method is an alternative to difference-

in-difference that does not assume parallel trends, which makes it a valuable estimator for

the empirical health policy researcher. The current paper presented four ways to assert the

validity of the estimator and we stress the importance of validity analysis with any synthetic

control methodology. A kernel-balanced synthetic control can be easily implemented in R

using the tjbal package.
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This paper contributes to a subset of the expansive Medicaid expansion literature fo-

cused on estimating the financial impacts of Medicaid expansion to local, state, and federal

governments. The results of this study suggest that Medicaid expansion did not greatly

increase state spending on Medicaid from FY 2015 through FY 2017. States that expanded

Medicaid eligibility had an average decrease of -$19.10 or 3.86% in per-capita spending on

Medicaid from FY 2015 through FY 2016. The rationale for failing to expand Medicaid does

not withstand empirical scrutiny in this analysis.
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Appendix A

Additional Tables and Figures

Figure A.1: Missingness by State and Treatment Status for States in Analytic Dataset

Figure A.2, below, details the weights assigned by trajectory balancing in the main analysis.

The states in dark blue are treated states and the control states are on a gradient of light blue

that becomes darker as the weight becomes greater. The five states with the largest weights

are (in descending order): Tennessee, South Carolina, Nebraska, Florida, and Alabama.
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Figure A.2: Map of Weights Assigned by the Kernel-Balanced Synthetic Control
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Table A.1: Percent Change in Enrollment (Average of July to Sep 2013) vs. Sep 2014 –

Control States

State Percent Change: Pre-ACA to Sep 2014

Alabama 9%

Florida 9%

Georgia 16%

Idaho 20%

Kansas 6%

Maine N/A

Mississippi 10%

Missouri -2%

Nebraska -1%

North Carolina 9%

Oklahoma 2%

South Carolina 0%

South Dakota 0%

Tennessee 11%

Texas 6%

Utah 0%

Virginia 3%

Wisconsin 5%

Wyoming 5%
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Appendix B

Visualizing Trends in State Medicaid Eligibility Rules

This section provides additional material that visualizes the Medicaid eligibility rules prior

to Medicaid expansion and for a short period after, which has important implications to how

the definition of treatment and control groups. Medicaid eligibility rules, based on income,

can be broken into four groups: Pregnant women, Parents, Children, and Other Adults

(Non-disabled and Non-seniors). The four graphics below visualize the eligibility rules based

on data from Kaiser Family Foundation: Trends in Medicaid Expansion, for each of the

aforementioned groups.

Figure D1 displays the trends in Medicaid eligibility limits for other adults from 2011

to 2019. Other adults were largely not covered prior to Medicaid expansion except for a

handful of states: Delaware, Massachusetts, New York, and Vermont. Note, in the graphic

below Massachusetts does not appear to cover childless adults, but this was because they

covered childless adults through an alternative program known as Commonwealth Care.

Furthermore, the majority of control states who did not provide coverage to other adults did

not change their coverage policies following Medicaid expansion in 2014. States that provided

coverage prior to Medicaid expansion continued to provide stable coverage following Medicaid

expansion.
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Figure B.1: Medicaid Income Eligibility Limits for Other Non-Disabled Adults, 2011 to 2017

Figure D2, below, visualizes trends in Medicaid eligibility for parents from 2009 to 2017.

Notably, many states provided coverage for parents to varying degrees prior to Medicaid
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expansion, and following it. Among the control states there was significant variation in

the eligibility limits for parents, but it remained largely stable overtime within states. The

treated states exhibited minor variation prior to Medicaid expansion, but following Medicaid

expansion covered parents up to 138% of the FPL.
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Figure B.2: Medicaid Income Eligibility Limits for Parents, 2009 to 2017

Figure D3, below, visualizes the trends in Medicaid eligibility limits for pregnant women

from 2006 to 2017. Overall, pregnant women received much better coverage, prior to the
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ACA, compared to other adults and parents. The range of eligibility limits, however, was

much larger and ranges from 133% FPL up to 300% FPL, in some years. Interestingly,

nearly all states increased the eligibility limit in 2014 such that the median eligibility limit

between the treated and control groups were nearly identical (200% FPL and 201% FPL).
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Figure B.3: Medicaid Income Eligibility Limits for Pregnant Women, 2006 to 2017

Children, who were primarily funding through CHIP, received the most generous eligi-

bility limits across all states. Figure D4, below, visualizes trends in Medicaid and CHIP
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eligibility limits from 2009 to 2017. Overall, the eligibility limits vary from state to state

within both the control and the treated groups.

Figure B.4: Medicaid and CHIP Income Eligibility Limits for Children, 2009 to 2017
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In addition to visualizing the trends we can summarize the average eligibility for preg-

nant women and parents as of December 1st, 2009. December 2009 was an important date

because the eligibility limits, as of that date, were utilized for determining the thresholds for

traditional matching under the FMAP and newly eligible enhanced federal matching. Table

B.1, below, summarizes the average Medicaid income eligibility limits as of December 2009

for the states in the treated group.

The results in table B.1 describes large variation in Medicaid eligibility limits across

states for both pregnant women, parents, and in the averages across both categories. For

example, the average Medicaid eligibility limits among the treated states in December 2009

had a maximum of 151% in New Mexico and a minimum of 92% in West Virginia.

Table B.1: Medicaid Income Eligibility Limits as of December 2009

State Pregnant Women Parents Average

Arkansas 200% 17% 109%

Kentucky 185% 62% 124%

Michigan 185% 64% 125%

Nevada 185% 88% 137%

New Hampshire 185% 49% 117%

New Mexico 235% 67% 151%

North Dakota 133% 59% 96%

West Virginia 150% 33% 92%
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Appendix C

Supplemental Analysis 1

The supplemental analysis below replicates the main analysis but removes Florida from the

pool of control states. Florida was removed from the pool of control states because in 2011

Florida began including Medicaid administrative expenses in the overall state funds reported

to NASBO. As a result, the state funds spent on Medicaid increased from 2010 to 2011.

The results of the supplemental analysis are below in Table C.1. The overall ATT was

slightly smaller than the ATT from the main analysis (-10.75 vs -12.31), and the year-by-year

ATTs follow the same trend as the main results, but are slightly smaller.

Table C.1: Effect of Medicaid Expansion on Per-Capita State Spending on Medicaid - No

Florida

Fiscal Year ATT Confidence Interval

2015 $-14.06 -$74.06, $45.94

2016 $-19.91 -$67.12, $27.80

2017 $1.72 -$48.92, $52.35
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Appendix D

Supplemental Analysis 2

The supplemental analysis below replicates the main analysis but removes Michigan and

New Hampshire from the pool of treated states. Michigan and New Hampshire are removed

because they expanded much later in 2014. Thus, the below estimates are for states that

expanded in January 2014.

The results of the supplemental analysis are below in Table D.1. The overall ATT was

larger than the ATT from the main analysis (16.86 vs -12.31), and the year-by-year ATTs

followed a different trend from the main analysis.

Table D.1: Effect of Medicaid Expansion on Per-Capita State Spending on Medicaid - No

Michigan or New Hampshire

Fiscal Year ATT Confidence Interval

2015 $18.78 -$20.16, $57.71

2016 $7.86 -$30.96, $46.68

2017 $23.93 -$19.07, $66.94
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Appendix E

Revisiting Sommers & Gruber

Despite being able to replicate Exhibit 2 from Sommers & Gruber, this paper was unable

to replicate their model results. In their paper, Sommers & Gruber state that they used

a two-way fixed effects difference-in-difference model that controlled for the annual unem-

ployment rate and the per-capita income. The replication controls for both yet estimated a

negative effect and statistically significant effect that is different from Sommers & Gruber

who estimated a small, non-significant, positive effect.

Below are the results from a model with the same treated and control groups as Sommers

& Gruber, a model without Ohio, a model without Connecticut, and then a model without

either Ohio or Connecticut. The ATT was estimated for FY 2014 and FY 2015. The percent

ATT was calculated by exponentiating the raw log ATT and then taking the difference from

one. In addition, one of the models utilized a more general economic indicator - labor force

participation rate - that was annualized in line with the fiscal year data. For example, the

unemployment rate was annual running from Jan 1st through the end of the year, but the

labor force participation rate was calculated to be annual July 1st through June 30th.
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Table E.1: Replicating Sommers & Gruber - Effect Sensitivity to Ohio and Connecticut

Model Raw Log ATT P-Value Percent ATT

Replicated Estimate -0.079 0.041 -7.62%

No Ohio -0.0859 0.028 -8.23%

No Connecticut -0.053 0.073 -5.14%

Neither -0.059 0.046 -5.72%

LFP - Neither -0.069 0.018 -6.67%
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CHAPTER 3

Measures for Quantifying the Sensitivity of

Difference-in-Difference Estimates to Parallel Trends

Violations

3.1 Introduction

One of the primary challenges of estimating a causal effect, when treatment assignment is

not random, is controlling for all confounders. Confounders pose a threat to the unbiased

estimation of a causal effect because of their relationship with both treatment assignment

and the outcome, which could lead to a spurious result. A spurious result exists when the

effect of an unobserved confounder acting on the treatment and the outcome was incorrectly

determined to be the effect of treatment. For example, the decision of a state to expand

Medicaid under the Affordable Care Act (ACA) in 2014, was likely driven by multiple vari-

ables such as economic conditions, political landscape, and state finances; which also may

influence outcomes of interest such as state spending on Medicaid. In addition, longitudinal

data is often used to estimate the causal effects of policies and programs. Causal analysis

of longitudinal data is subject to confounding from both time-invariant and time-varying

confounders. Therefore, to estimate a causal effect one needs to control for confounding

from both sources.

Difference-in-difference is a commonly utilized methodology to estimate a causal effect

in longitudinal data, especially in health policy (Ryan et al., 2015). To identify a causal
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effect difference-in-difference removes time-invariant confounding by differencing (estimating

a difference between) pre- and post-treatment periods. A second difference is then taken

between the treated difference and the control difference in order to remove time-varying

confounding. The second difference, however, assumes that the control unit(s) experience

all of the same time-varying confounders as the treated unit(s).

The assumption that the control unit experiences the same magnitude and type of time-

varying confounding as the treated unit is known as the parallel trends assumption. If the

underlying trends between treatment and control units are not in fact parallel, then the

impact of unobserved confounders would be erroneously attributed to the treatment effect.

Therefore, the identification of a causal effect estimated by difference-in-difference relies on

the validity of the parallel trends assumption. For parallel trends to hold perfectly, the

control group must experience the same magnitude and type of time-varying confounding as

the treatment group.

Hypothesis tests are frequently used to indirectly evaluate the validity of the parallel

trends assumption. Examples of indirect parallel trends tests include interrupted time-series,

interactions of time dummies and a time-invariant treatment indicator, and comparison

to a difference-in-difference-in-difference estimator (Courtemanche et al., 2017; Sommers

and Gruber, 2017; Yue et al., 2018). A key concern with the indirect tests is that they

only examine whether or not the parallel trends assumption is valid in the pre-period. For

example, it is common for researchers to interact a time-invariant treatment indicator with

time dummies and evaluate the significance of the coefficient for periods prior to treatment.

This is problematic because there is no guarantee that if parallel trends holds in the periods

just prior to treatment, it will hold through the post-treatment period.

An alternative approach to indirectly evaluating the parallel trends assumption is to esti-

mate how strong the unobserved time-varying confounders need to be to send the estimated

effects to zero, a type of sensitivity analysis. Sensitivity analysis estimates the magnitude

of bias, due to hypothetical unobserved time-varying confounders, that would be required
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to change the conclusions of the study. For example, sensitivity analysis may find that the

bias induced by a hypothetical unobserved confounder is minimal, and while it may change

the effect estimate the conclusions drawn from estimate are not meaningfully changed. For

example, if the effect estimate is a 10% increase then for the conclusions to change the

effect estimate would need to be zero or negative. Conversely, an indirect hypothesis test

of parallel trends may return a significant result and the authors would conclude that the

parallel trends assumption, in the pre-period, is violated and the results are biased without

further consideration as to how strong of a parallel trends violation is required to change the

conclusion drawn from the results.

A suite of sensitivity analysis tools developed by Cinelli & Hazlett (2020), further re-

ferred to as CH, focuses on expanding the utility and implementation of sensitivity analysis

for standard linear regression analyses(Cinelli and Hazlett, 2020). The authors sought to en-

courage a more nuanced discussion of how biased an estimated effect may be through the use

of sensitivity analysis tools. Traditionally, discussions focus on whether or not unobserved

confounders exist and place emphasis on the researcher controlling for all confounders. In

much empirical work, however, it is challenging to control for all confounders, which is prob-

lematic when research is being evaluated on the presence of unobserved confounding. The

tools developed by CH are intended to supplement the conversation of whether or not un-

observed confounders exist by quantifying how strong hypothetical unobserved confounders

need to be in order to change the conclusions drawn from a study. In other words, the

sensitivity analysis tools are a way to judge the bias of an estimate in scenarios where it is

difficult or impossible to control for all unobserved confounders.

In the motivating example used by CH, the authors were interested in the effect of violence

on one’s perspectives of peace and war. The study consisted of individuals who experienced

violence at some point in the past and identified the causal effect under the strategy that

allocation of violence was random, conditional on village and gender. A reviewer may critique

the analysis under the hypothesis that an individual’s distance to the center of the village
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was a critical unobserved confounder because individuals closer to the edge of the village had

less time to react to an attack and therefore faced violence at a higher rate than those nearer

the center. CH utilized their sensitivity tools to estimate the strength of a hypothetical

unobserved confounder, or any combination of hypothetical confounders, required to send

the estimated effect to zero and thereby change the conclusions of the study. The authors

found that proximity to the center of the village would need to have a relationship with

the treatment four times stronger than that of gender, an important observed confounder,

to send the estimated effect to zero. Using the results from the sensitivity analysis, the

discussion of the validity of the results focused on whether or not content experts think

that the strength of location, or some other unobserved confounder, was four times that

of gender. The approach encourages thoughtful contextual discussion that is assisted by

sensitivity analysis.

The current paper contributes to the rapidly expanding difference-in-difference literature

by extending the sensitivity tools developed by CH to the specific use case of difference-in-

difference. In the context of difference-in-difference the sensitivity tools assert the validity

of the parallel trends assumption by estimating how sensitive the results are to unobserved

time-varying confounders. The tools have three valuable characteristics. First, the tools uti-

lize the post-period data as well as pre-period data. For example, rather than only focusing

on the pre-period, the sensitivity tools also use data in the transition from the pre-period to

the post-period, which means the metrics can be estimated when there is only one pre-period.

Second, the tools promote discussion, based on expert content knowledge, of the plausibility

that a time-varying unobserved confounder(s) of a given strength, exist. Third, the method

can be used to estimate how much stronger the unobserved time-varying confounder(s) need

to be, relative to an observed time-varying confounder, to meaningfully change the conclu-

sions of the study. Calculating the sensitivity of the results to an observed confounder of

significant importance is valuable for contextualizing discussion of how hypothetical unob-

served confounders may change the conclusions.

67



Section 3.2 reviews the Omitted Variable Bias (OVB) framework, discusses how CH utilize

a reparamterization of OVB to develop their sensitivity analysis tools, and how we extend

their tools to difference-in-difference. Section 3.3 discusses the methodology for simulating

data with which to explore the characteristics and properties of the tools. Section 3.3.3

explores the properties and performance of the proposed sensitivity tools via simulation.

Section 3.4 provides three applied examples of the sensitivity tools. Sections 3.5 and 3.6

provide discussion and conclude.

3.2 Background

The method of inquiry utilized by CH builds upon prior literature on omitted variable bias

(OVB) as a tool for sensitivity analysis. The classical omitted variable bias framework begins

with the following regression for the true data generating process:

Y = τ̂D + β̂X + γ̂Z + ε̂full (3.1)

where Y is the outcome, τ̂ is the ATT, D is a treatment indicator, X is an observed covariate,

and Z is an unobserved covariate. However, because Z is unobserved the regression that is

estimated is:

Y = τ̂resD + β̂resX + ε̂res (3.2)

where τ̂res, β̂res, and ε̂res are the coefficient estimates when Z is not included in the regression.

The question is, how does τ̂res compare to τ̂? The classical OVB solution answers this as:

τ̂res = τ̂ + γ̂δ̂ (3.3)

Where γ̂ - broadly speaking - describes how the unobserved confounder Z impacts the

the outcome, and δ̂ describes how imbalanced the treatment and control groups are on Z.
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When γ̂ is equal to zero - Z has no relationship with the outcome - then τ̂res = τ̂ ; and

the same holds when δ̂ is zero. However, when γ̂ and δ̂ are non-zero then τ̂res is a biased

estimator of τ̂ (Cinelli and Hazlett, 2020). Therefore, OVB estimates bias due to unobserved

confounders as the product of the imbalance, with respect to treatment, and the impact on

the outcome.

In econometrics the OVB framework is used to evaluate the bias that may be induced by

unobserved confounders by using the hypothesized directionality of the partial correlation

of the confounder with the outcome (impact or γ̂) as well as with treatment (imbalance

or δ̂). The classical OVB framework, however, has a number of limitations that reduce its

functionality to simple scenarios with a single binary confounder. The main shortcoming is

the difficulty of generalizing classical OVB to multiple confounders. For example, if there

are confounders Z1, Z2, and Z3, combining their partial correlations with the outcome and

with treatment becomes difficult because of the many ways in which these confounders

may combine. Motivated by the issues with classical OVB, CH reformulate it using an R2

parameterization to obtain (Cinelli and Hazlett, 2020):

| ˆbias| = se(τ̂res)

√√√√R2
Y∼Z|D,XR

2
D∼Z|X

1−R2
D∼Z|X

(df) (3.4)

Where R2
Y∼Z|D,X is the variance of Y that would be explained by a confounder Z after

accounting for D, a binary indicator of treatment status, as well as all of the observed

confounders, X. R2
D∼Z|X is the variance of D that would be explained by a confounder Z

after accounting for X. se(τ̂res) is the standard error of the estimated treatment effect from

the observed – or restricted – model, and df is the degrees of freedom of the observed model.

The core idea in the R2 parameteriziation remains the same: there exists some confounder

– that has an effect on the outcome and on treatment take-up – and the interest is to

understand how strong that confounder needs to be related with both treatment status and
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the outcome in order to make an observed treatment effect zero. The advantage of using

an R2 measure is that it is scale-free, easily interpretable, and doesn’t require distributional

assumptions on how to combine multiple confounders. Using Equation 3.4, CH proposed

several values for sensitivity analysis with an emphasis on two: the robustness value (RV)

and the extreme scenario value (EV).

3.2.1 The Robustness Value

The robustness value, which ranges from zero to one, tells the researcher the minimum

association – as measured by variance explained – of a hypothetical unobserved confounder

with the outcome and with treatment in order to make the estimated treatment effect zero.

A robustness value near zero suggests that the estimated effect could be eliminated by

confounders that explain a small percentage of the remaining variance in the treatment and

the outcome. Conversely, a robustness value near one suggests that the estimated effect could

be completely eliminated - relative to a threshold set my the researchers - by unobserved

confounders that explain a large amount of the remaining variance in treatment and the

outcome. As an example, consider the aforementioned bias = imbalance × importance

formula; the robustness value is the scenario where imbalance = importance. The robustness

value can be estimated by:

RVq =
1

2

√
f 4
q + 4f 2

q − f 2
q (3.5)

Where fq = q|fY∼D|X | = q|τ̂res|
se(τ̂res)

√
df

is the partial Cohen’s f and q is a proportion reduction

in the treatment effect, of some value, which would be problematic to the conclusions drawn

from the study. The value q that is most often of interest is when the estimated treatment

effect is reduced by 100% or q = 1. Equation 3.5 is obtained by considering the scenario

where unobserved confounders explain the same amount of the remaining variance in both

the outcome and treatment status (R2
Y∼Z|D,X = R2

D∼Z|X = RVq) and then solving Equation

3.4 for RVq (Cinelli and Hazlett, 2020).

70



3.2.2 The Extreme Scenario Value

The extreme scenario value considers the case where a hypothetical unobserved confounder(s)

explain all of the remaining variance in the outcome (R2
Y∼Z|D,X = 1), and estimates how

much of the remaining variance in treatment status (R2
D∼Z|X) they need to explain to send

the estimated effect to zero. The extreme scenario value fixes the amount of remaining

variance in the outcome explained by a confounder and seeks to determine what value of

R2
D∼Z|X is required to send the estimated treatment effect to zero. The extreme scenario

value can be obtained by first considering an alternative version of the bias formula derived

by CH:

q|fY∼D|X | = |RY∼Z|D,X × fD∼Z|X | (3.6)

The above formula is obtained by substituting f 2
D∼Z|X =

R2
D∼Z|X

1−R2
D∼Z|X

into the bias formula

and simplifying. When R2
Y∼Z|D,X = 1 and q = 1 the above equation simplifies to f 2

Y∼D|X =

f 2
D∼Z|X . A confounder that explains all of the remaining variance in the outcome would need

to satisfy f 2
Y∼D|X = f 2

D∼Z|X which implies that R2
Y∼D|X = R2

D∼Z|X . Therefore, the amount

of variance in the outcome explained by the treatment after accounting for the covariates,

R2
Y∼D|X , is the extreme scenario value.

3.2.3 The Relative Confounding Strength Value

Equation 3.4 also lends itself to a useful tool, the relative confounding strength (RCS) value.

The RCS value considers how the estimated effect would change if there were unobserved

confounders K times stronger than an observed covariate, of the researchers choosing. The

RCS value begins by calculating how strongly related an observed confounder is with the

outcome and with the treatment, and those values are then used as hypothetical stand-ins for

an unobserved confounder. For example, a researcher may argue that they have controlled

for one of the most important confounders, Z, and using the RCS value they estimate how

the observed effect sized changes if a hypothetical unobserved confounder that is K times
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stronger than Z was included in the model. The researcher can report how the estimated

effect changes for different K and may find that when K = k the estimated effect is reduced

to a point such that the conclusions drawn from the study change.

3.2.4 Extending Cinelli & Hazlett to Difference-in-Difference

The sensitivity tools developed by CH are a suite of general tools for regression. This paper

is interested in utilizing them for the specific use case of assessing the presence of time-

varying confounding in difference-in-difference. To calculate the robustness and extreme

scenario values requires the effect estimate, the standard error, and the degrees of freedom.

Utilization of the tools, however, is complicated by the common use of cluster-adjusted

standard errors in difference-in-difference models because the bias formula (Equation 3.4)

derived by CH utilizes the unadjusted standard error. The proposed solution is to utilize a

first-difference model such that cluster-adjusted standard errors are no longer required.

The first-difference model is estimated as:

∆yit = α0 + τ∆Dit + ∆εit, t = 2, 3, ..., T (3.7)

Where ∆Di is the change in a time-varying treatment status and τ is the effect of in-

terest. A first-difference estimator is used because if the error term εit follows a random

walk then the usual standard errors are asymptotically valid (Wooldridge, 2003). With the

usual OLS standard errors in hand, the robustness and extreme scenario values are easily

estimated either through an online tool or the R or Stata package, sensemakr. Alternatively,

if the cluster-robust standard errors are similar to the usual OLS standard errors then the

sensitivity tools are also estimable without further modification to the regression.
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3.3 Simulation

The purpose of the simulation analysis is to quantify the functionality of the sensitivity

tools with respect to parallel trends, the violation of which will be referred to as time-

varying confounding. Specifically, how do the sensitivity tools developed by CH, behave

when time-varying confounding is present compared to when it is not present, and as the

magnitude of the time-varying confounding, with respect to the outcome, varies.

The behavior of the sensitivity tools under varying parameters was explored using sim-

ulated data. The simulation consisted of two parts: an outcome model and a confounded

treatment assignment model. Confounding was induced by using the same covariate in both

the outcome and treatment assignment models.

3.3.1 Data Generating Process

Data was generated based on the following directed acyclic graph (DAG) with treatment

occurring at time t = T :

Figure 3.1: Graphical Data Generating Process

D

yT

xT−1 xT. . .

yT−1

Which was implemented using the following structural causal model:
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Di = Binom(π =
1

(1 + exp(−2xi,T−1))
) (3.8)

Yit = βXit + 10I(Di = 1, t = T ) + εit (3.9)

where i represents each unit, t is an indicator of the time period with T denoting the

time-period just prior to treatment, D is a time-invariant indicator of treatment, and Y is

the outcome. Di is drawn from a binomial distribution where the probability for unit i is a

log-link function of xi,T−1 - the X values just prior to treatment - with X being drawn from

a multivariate standard normal distribution with serial correlation of 0.6,0.4,0.2,0.1. Yit is a

function of the confounder Xit and its coefficient β, a treatment effect - fixed at 10 - and an

indicator of whether or not a unit is treated and in the post-period, and random noise. For

the Monte Carlo simulation β takes the values of 0,5,10,20,40.

3.3.2 Estimation

After simulating the data, a first-difference model was estimated following Equation 3.10,

and the results were used to estimate the robustness value and the extreme scenario value.

∆Yi = τ∆Di + ∆εi (3.10)

With the model fit, the sensemakr R package – developed by Cinelli and Hazlett (2020)

– was used to estimate the robustness value and the extreme scenario value. Sensemakr

estimates the robustness value according to Equation 3.5 which requires calculation of the

partial Cohen’s f (f = |tres|√
df

) for the treatment effect. Similar to the robustness value,

sensemakr estimates the extreme scenario value as the ratio of the squared t-statistic to

the squared t-statistic plus the degrees of freedom. The results were recorded and then the

models were re-estimated for the next set of parameters. The process was repeated 1000

times for each parameter set.
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3.3.3 Simulation Results

Table 3.1 reports the robustness value and extreme scenario value with varying strength of an

unobserved time-varying confounder and by two instances of treatment assignment: random

(confounding strength equals zero) and time-varying confounded. The results below are

only for illustrative purposes and not to create a rule comparing the strength of unobserved

confounding and the RV and EV estimates.

The robustness value for the point estimate is interpreted as follows: an unobserved

confounder or confounders explaining at least RV% of the residual variance of both the

treatment and the outcome would be enough to decrease the effect size by Q percent. Here

Q is a value, determined by the researcher, at which the estimated effect is negligible. For

example, Q is often set to 100% but in some context, such as clinical measures, a non-zero

value may be regarded as being a negligible effect.

The EV value is interpreted as follows: if a confounder or set of confounders explained

100% of the residual variance of the outcome, they would need to explain EV% of the

residual variance of treatment to reduce the estimated effect by Q percent. For example,

after estimating a regression model if there exists some confounder or set of confounders Z,

that explains 100% of the remaining variance in the outcome, then Z would have to explain

EV% of the remaining variance in treatment to send the estimated effect to the negligible

value, Q.
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Table 3.1: Sensitivity Analysis Tool Results for Increasing Values of Confounding

Confounding Strength
Robustness Value

(RV)

Extreme Scenario Value

(EV)

0 86% 84%

5 54% 40%

10 37% 19%

20 25% 8%

40 18% 5%

Note: Results based on a simple structural causal model with a treatment, D, an outcome, Y , and a single confounder, Z. The reported

results are from 1000 simulations using the aforementioned model.

For increasing magnitudes of the parallel trends violation, RV and EV decreased rapidly

but at differential rates. In this example, when the strength of the unobserved confounder

with the outcome was 20, or double the treatment effect, the robustness value reported

that there would need to be an unobserved confounder that explains at least 25% of the

residual variance of both the treatment and the outcome to send the estimated effect to

zero. The extreme scenario value reported that if there was an unobserved confounder or set

of confounders that explained 100% of the remaining variance of the outcome it would need

to explain only 8% of the remaining variance of treatment to reduce the estimated effect to

zero. Interestingly, the RV and EV values did not achieve values of 100% even when the

confounding strength was equal to zero. This is due to the inclusion of random error in the

data generating process. As the random error goes to zero we expect the RV and EV values

to increase - assuming no confounding - because the observed covariates would explain all of

the variance in the outcome.

The difference between the robustness value and extreme scenario value for increasing

confounding strength in Table 3.1 was expected and is explainable by considering a more

general form of what the two values are estimating. Recall the general bias formula, bias =

imbalance × impact, where if one were to fix the bias and increase impact, the imbalance
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would have to decrease. Keeping said relationship in mind, the robustness value is the

scenario where the imbalance is equivalent to the impact. Then, holding the bias fixed, the

impact is increased to some maximum and as a result the imbalance required to achieve the

set amount of bias must decrease, which is the extreme scenario value. To put it into the

same language utilized in this paper, if we fix the bias to be the amount required to send the

estimated effect to zero then as we increase the impact (association between the confounder

and the outcome) it is required for the imbalance (association between the confounder and

the treatment) to decrease.

3.4 Sensitivity Tools in Practice

Further exploration of the proposed sensitivity tools was done using examples from academic

papers. Papers by Buchmueller and Carey (2018) and by Sommers and Gruber (2017) are

used as examples to demonstrate how to use the tools in practice and the reanalyses are not

intended to contest or challenge the authors or their conclusions. The first two examples

reanalyze prior work on the effects of Prescription Drug Management Databases on Opioid

related outcomes and on the effects of Medicaid expansion on State Medicaid spending.

3.4.1 Prescription Drug Monitoring Programs

Recent work by Buchmueller and Carey (2018) examined the effect of Prescription Drug Mon-

itoring Programs (PDMP) on several opioid and adverse health related outcomes stratified

by whether or not healthcare providers are required to access the PDMP prior to prescribing

opioids. To identify the effect, they used a difference-in-difference framework where states

without a PDMP were controls. Therefore, the authors assumed that the outcome trends

through the post-treatment period for the control group are parallel to the unobserved coun-

terfactual for the treated group, or that the time-varying confounding experienced by the

treated units is experienced equally by the control units.
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The results of the authors analysis are sensitive to time-varying confounding or the degree

to which the parallel trends assumption holds, which the authors evaluated using an event

study paradigm. From the binary interpretation standpoint, the tests concluded that the

parallel trends assumption, for the pre-period, could not be rejected. However, sensitivity

analysis provides a more nuanced approach to understanding how strong of a parallel trends

violation the estimates can handle before the conclusions change. Therefore, the analysis is

an excellent example of a scenario where the sensitivity analyses proposed in this paper are

useful.

The purpose of this example is to estimate the sensitivity of the estimates of the effect

of PDMP with “Must Access” provisions on a number of opioid outcomes. The sensitivity

estimates in this paper are not for the original effect sizes but for effect sizes using updated

treatment timings. The updated treatment timings are from recent work by Horwitz et al.

(2018) that developed new treatment timings based on a detailed comparison of legislated

policy implementation dates with the reported date PDMPs were usable. After estimating

the effect sizes with updated treatment timings the R package sensemakr was used to cal-

culate the RV and EV metrics proposed in this paper using the estimated effect, standard

error, and degrees of freedom.

The outcomes analyzed were measures of opioid use and misuse constructed by Buch-

mueller and Carey (2018) from Medicare Part D claims data. There were a total of eight

outcomes grouped into three general categories: quantity-based outcomes, ”shopping” out-

comes, and medical service outcomes. The quantity-based outcomes included the share of

individuals taking any opioids (P(Taking Opiods), the share of individuals who received more

than a 211 day supply of opioids (211+ Daily Supply), the mean daily morphine equivalence

dose (120+ MED), and the share of individuals with multiple concurrent prescriptions for the

same opioid drug (overlapping claims). The ”shopping” outcomes included the proportion of

individuals who received an opioid prescription from five or more providers and the propor-

tion of individuals who filled a prescription at five or more pharmacies. The medical service
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outcomes - Excess Out-of-State (OOS) Pharmacies and Excess OOS Providers - compared,

for a given individual, the proportion of opioid prescriptions either filled or received out of

state with their non-opioid prescriptions either filled or received out of state. Each outcome

was modeled using a two-way fixed effects model with no covariates, similar to Buchmueller

and Carey (2018):

Yit = µi + λt + τDit + εit (3.11)

Table 3.2 summarizes the results from the additional sensitivity analysis of the effects of

the must-issue PDMP laws (using the estimation technique of the authors but with updated

timing) to unobserved time-varying confounders by reporting the RV and EV estimates.

Table 3.2: Sensitivity Results for the Must-Issue PDMP Laws

Outcome RV EV

Taking Opiods 6.76% 0.49%

211 Days Supply 5.76% 0.35%

120+ Daily Med 2.14% 0.05%

Overlapping Claims 12.30% 1.70%

5+ Prescribers 7.70% 0.64%

5+ Pharmacies 13.21% 1.97%

Excess OOS Prescribers 7.39% 0.59%

Excess OOS Pharmacies 1.55% 0.02%

The robustness values (RV) ranged between 1.55% and 13.21% and are interpreted as the

minimum percent of remaining variance that needs to be explained for both the treatment

and outcome to send the estimated effect to zero. For example, the RV for overlapping

claims is 12.30%, which is interpreted as: unobserved confounders that explain at least

12.23% of the remaining variance of both treatment and the outcome reduce the effect size

to zero. The extreme value estimates (EV) vary slightly between 0.02% and 1.97%. The

EV is interpreted as follows: if an unobserved confounder(s) explained all of the remaining
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variance of the ”120+ Daily Med” outcome, they would only need to explain 0.05% of the

remaining variance in treatment. Therefore, the EV metric considers the extreme scenario

where if a confounder or confounders explained all the remaining variance in the outcome

how much variance in the treatment would they need to explain, after accounting for the

observed covariates.

The EV and RV measures for the PDMP model, which had no control variables, reflect

the values they take when there is a large amount of unobserved confounding. The PDMP

model was likely confounded by time-varying characteristics such as state financial resources,

state ideology, and the perceived severity of the problem. For example, a state with limited

resources may be unwilling to take-up treatment and be unable to commit resources to

alternative programs that tackle opioid related issues.

The RV and EV measures were very small which indicates the effect estimates were

very sensitive to time-varying confounding. A more intuitive way of interpreting the RV

and EV estimates is to anchor them relative to observed confounders. Contextualizing

the results with regards to observed confounders, however, is difficult because the data

used by Buchmueller and Carey (2018) did not include time-varying confounders. The next

example does observe two time-varying confounders and provides an example of how to

utilize observed confounders to better understand the RV and EV estimates and presents

the RCS estimate.

3.4.2 Effect of Medicaid Expansion on State Spending on Medicaid

A 2017 paper assessed the impact of Medicaid expansion on state Medicaid spending among

states who expanded between FY 2014 and 2015 (Sommers and Gruber, 2017). To identify

the effect, they utilized difference-in-difference controlling for the unemployment rate and

state per-capita revenue. They tested the parallel trends assumption, in the pre-period, and

found generally non-significant results which were used to support the validity of difference-

in-difference. The paper concluded that Medicaid expansion had no effect on state Medicaid
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spending when they did not find significant results.

In this example, the sensitivity tools – robustness value, extreme scenario value, and

relative confounding strength – are applied to the analysis by the authors for the total state

Medicaid spending outcome. The example reanalyzed the original data and then estimated

the sensitivity analysis tools. Following reanalysis, the example made a number of adjust-

ments to the model and estimated the sensitivity analysis tools for each adjustment.

The original model was a two-way fixed effects model controlling for the unemployment

rate and per-capita income. Table 3.3 reanalyzes the original model and makes three ad-

ditional adjustments. The first adjustment was to remove Ohio and Connecticut from the

data because of reporting issues (Potamianos et al., 2018). Second, the annual unemploy-

ment rate was replaced with the labor force participation rate (LFP). The LFP is a more

holistic view of the job market because it includes discouraged workers who have given up

looking for a job, whereas the unemployment rate only considers those who are employed or

actively searching for a job. Third, a measure of state ideology was added to the model be-

cause Medicaid expansion was a divisive political issue and the states political ideology likely

influenced both the decision to expand Medicaid as well as how the state allocates funds to

the Medicaid program. Following each modification, the sensitivity metrics proposed in this

paper are estimated using the sensemakr R package.

Table 3.3: Modification & Sensitivity Analysis of Sommers & Gruber (2018)

Model Effect P-Value RV EV

Original -7.33% 0.0384 12.52% 1.76%

No Ohio or Connecticut -5.59% 0.0427 12.51% 1.76%

LFP + No Ohio or Connecticut -6.56% 0.0169 14.60% 2.43%

LFP + Ideology + No OH or CT -6.58% 0.0147 14.92% 2.55%

Table 3.3 reports the treatment effect (percent change), the p-value, and the sensitivity
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tools. The sensitivity tools were calculated using the estimated effect, standard error, and

degrees of freedom from the two-way fixed effects model because the standard errors with

clustering adjustment were similar to the unadjusted standard errors. The robustness values

increased from 12.52% to 14.92%, and the extreme scenario values increased from 1.76%

to 2.55%. These results can be contextualized by comparing them to the partial-R2 of an

important observed confounder such as the LFP. The partial-R2 of the LFP with the outcome

is 0.059 or 5.9%, and the partial-R2 of state ideology with the outcome is 0.021 or 2.1%. If

a partial-R2 of 5.9% is typical for the kinds of state-level confounders that cause concern

about the validity of difference-in-difference analysis of policy effects, then the concern may

be assuaged. Of course, other contextual confounders may have very different partial-R2

values, but this exercise at least helps to anchor expectations.

When the model controls for confounders the relative confounding strength (RCS) value

can be estimated, which calculates how much the effect changes if there were an unobserved

confounder K times stronger than a chosen observed confounder. For example, say that we

believe the LFP is the confounder with the strongest relationship with the outcome and with

treatment. The sensitivity framework developed by CH can be used to estimate how much

the effect would change if an unobserved confounder existed that was K times stronger than

the LFP. The estimation can be repeated across multiple values of K to understand the rate

at which the effect changes as the strength of hypothetical confounder(s) increases relative

to an observed confounder.
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Table 3.4: Strength of Unobserved Confounder(s) Relative to Labor Force Participation Rate

and Effect on Estimates

Strength of Unobserved

Time-Varying Confounder(s)
Adjusted Estimate Adjusted SE Adjusted T Adjusted P-Value

2x Labor Force Participation Rate -5.60% 0.026 -2.2188 0.014

4x Labor Force Participation Rate -4.49% 0.024 -1.9075 0.029

6x Labor Force Participation Rate -3.34% 0.0219 -1.5524 0.061

8x Labor Force Participation Rate -2.19% 0.0196 -1.1325 0.130

10x Labor Force Participation Rate -1.01% 0.0168 -0.6051 0.272

12x Labor Force Participation Rate 0.19% 0.0135 0.1395 0.445

Table 3.4 reports the RCS estimates on how the estimated treatment effect, standard

error, and t-value change as the strength of a hypothetical unobserved time-varying con-

founder(s) increases, relative to the LFP. For example, when the strength of a hypothetical

unobserved time-varying confounder(s) was four times stronger than the LFP the estimated

effect was no longer significant at the 0.05 level and decreased from the original value of -

6.70% to -4.49%. Furthermore, when the strength of unobserved time-varying confounder(s)

was 12 times stronger than the LFP the estimated effect was near zero as it decreased to

0.19%.

With these estimates in hand a more nuanced discussion can unfold regarding the presence

of time-varying confounders. A reviewer may critique the paper for leaving out confounder

Z. In the past, the author is limited in their ability to respond to the reviewer and must rely

on arguments for why the unobserved confounder is likely of little import. With the RV, EV,

and RCS estimates, however, the researcher can allow for confounder Z to be a plausible

confounder and instead focus on whether or not confounder Z is likely strong enough to

change the conclusions of the study. For the above example say that a reviewer posits the

state immigration rate as an unobserved time-varying confounder. With the RV, EV, and

RCS estimates the researcher can respond by saying that state immigration rate would have

to be ten times stronger than the LFP to change the conclusions of the study. Furthermore,
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the state immigration rate would need to have a partial-R2 of at least 14.92% with both the

outcome and the treatment to send the effect to zero, which seems unlikely given that LFP

has the highest observed partial-R2 of 5.69%.

3.4.3 Effect of Medicaid Expansion on Medicaid Enrollment

In 2014 the Affordable Care Act gave states the option of expanding Medicaid coverage

to childless adults with incomes below 138% of the Federal Poverty Line (FPL). Following

expansion of Medicaid, a number of studies were published investigating the effect of Med-

icaid expansion on Medicaid enrollment among low-income adults. Despite variation in the

data used to answer the aforementioned inquiry, each of the studies utilized difference-in-

difference as the identification strategy to estimate the effect of interest. In order to justify

the unbiasedness of difference-in-difference the studies visualized and tested for the presence

of parallel trends in the pre-period and found evidence in favor of the parallel trends in the

pre-period.

For this example, we conducted an analysis similar to prior work but used American

Community Survey data on adults with incomes below 150% of FPL (Kaestner et al., 2017;

Wherry and Miller, 2016). A first-difference model was used to estimate the effect and the

sensitivity of the results to a parallel trends violation, or time-varying confounding, were

explored using the robustness value and the extreme scenario value.

Table 3.5: Robustness and Extreme Scenario Values for Effect of Medicaid Expansion on

Medicaid Enrollment

Model Effect P-Value RV EV

Naive 7.64 < 0.001 55.34% 40.68%

Naive + LFP 7.69 < 0.001 55.12% 40.37%

Naive + LFP + Ideology 7.70 < 0.001 57.45% 43.69%
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The analysis found an effect of 7.64 percentage points with no control variables, which

is in line with prior work by Wherry and Miller (2016) and Decker et al. (2017), who found

percentage point increases of 10.5 and 7.3. The robustness and extreme scenario values for

the analysis were 55.34% and 40.68% (Table 3.5). The initial analysis, however, was naive

in that it ignored confounders such as labor force participation (LFP) and state political

ideology. Thus, it is plausible that the observed effect is partially due to changes in LFP

and state ideology over time. Controlling for the labor force participation rate changed the

effect estimate to 7.69 percentage points, slightly increased the robustness value to 55.12%

and the extreme scenario value to 40.37% (Table 3.5). Controlling for state ideology slightly

changed the effect estimate to 7.70 percentage points and increased the RV and EV values

to 57.45% and 43.69%.

Table 3.6: Strength of Unobserved Confounder(s) Relative to Labor Force Participation Rate

and Effect on Estimates

Strength of Unobserved

Time-Varying Confounder(s)
Adjusted Estimate Adjusted SE Adjusted T

1x State Ideology 7.49 0.627 11.948

2x State Ideology 7.29 0.600 12.154

5x State Ideology 6.67 0.506 13.175

10x State Ideology 5.61 0.273 20.543

In table 3.6 we estimate the RCS for an hypothetical unobserved confounder that is 1,

2, 5, and 10 times stronger than state ideology and find that the effect is robust because it

remains significant despite hypothetical unobserved confounders of increasing strength. In-

terestingly, the treatment effect becomes more significant as the strength of the hypothetical

confounder increases. The increasing precision of the effect is because state ideology has a

very large partial-R2 with the treatment and a small partial-R2 with the outcome. There-

fore, controlling for a hypothetical unobserved confounder that is strongly related to the
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treatment and negligibly related to the outcome would simultaneously increase the precision

of the estimate and reduce the strength of the estimate.

A researcher might consider both state ideology and the LFP to be very important

confounders that should be analyzed using the RCS values. The sensemakr package provides

plots that are useful for summarizing the RCS values of multiple confounders. An example

is provided below that visualizes the RCS values for both state ideology and the LFP 3.2

Figure 3.2: Visualizing Relative Confounding Strength

In the above contour plot each line represents the estimated effect for different values of

hypothetical confounding, as measured by partial-R2. The critical value, when the effect is

zero, is denoted by the dashed red line. The observed effect size is denoted by the black

triangle in the bottom left corner when the hypothetical confounder(s) has zero relationship

with either the outcome or treatment. The key elements of the plot are the red diamonds

which represent the effect size given a hypothetical unobserved confounder K times stronger

than the listed observed confounder. For example, when considering a confounder five times

stronger than the LFP the estimated effect is 7.28, and when the hypothetical confounder is
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ten times stronger than the LFP the estimated effect is 6.82.

We argue that this application may provide an approximation for the real world upper

limit of EV and RV because confounding is minimal. Plausible confounders are state finances,

the labor force participation rate, and state ideology. State finances, however, likely have

little influence on treatment uptake because the federal government covered 100% of the

new costs for the first two years and 90% of the costs after. Labor force participation does

influence enrollment and states may consider labor force participation prior to expanding

Medicaid. State ideology is likely strongly related to the decision to expand Medicaid due to

the political decisiveness surrounding the topic, but is questionably related to the outcome.

3.5 Discussion

The range of examples discussed above provide a starting point for evaluating the contin-

uum of values the EV and RV measures may take. The Medicaid expansion example (RV

= 57%, EV = 44%) likely provides us with a feasible upper limit for the robustness and

extreme scenario values in real-world applications. The PDMP example (RV 5%, EV 1%)

captures the range of values for which we would be seriously concerned about in a real-world

application. The second example represents results from a study where interpretation of the

EV and RV is difficult, but presents the RCS values and partial R2 for observed confounders

as ways to contextualize the results.

For the examples with control variables, the RCS values were a very useful tool because

they were readily interpreted within the context of the study by anchoring the sensitivity

measures against a known confounder. In the state Medicaid spending example it was esti-

mated that a hypothetical unobserved confounder(s) 12 times stronger than the labor force

participation rate would send the estimated effect to near zero. In the Medicaid enrollment

example a hypothetical unobserved confounder(s) would need to be more than ten times

stronger than either state ideology or LFP to change the conclusions of the study.
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We recommend that the sensitivity metrics are used to evaluate the strength of the

evidence, on a continuum, for the conclusions drawn from a difference-in-difference model.

While one may be tempted to create a threshold for the EV, RV, or RCS measures, doing

so would defeat the purpose and intent of the sensitivity tools. The sensitivity tools should

be used to understand how robust the effect estimate is to unobserved confounding and to

promote discussion as to whether or not confounder(s) exist with enough strength to change

the conclusions of the study.

The best utilization of the tools will come from reporting all three and thoroughly dis-

cussing whether or not unobserved confounders are strong enough to change the conclusions

of the study. To this end, it may be helpful to report the partial-R2 for each observed

confounder to contextualize the results. For example the labor force participation rate in

example two had the highest partial-R2 at 5.89%. The other observed confounders in the

model had much smaller partial-R2s compared to the labor force participation rate. There-

fore, it would need to be argued that the unobserved confounders would not only have to

be more important than the majority of observed confounders, but also be 12 times more

important than the confounder with the highest partial-R2.

We also strongly recommend against using the tools as a measure on which to select

different models. Using the proposed tools for variable selection would likely result in a biased

effect because the tools are not identifying confounders and controlling for them; expert

content knowledge is required to properly identify confounders. Models should be selected

based on an identification strategy that seeks to make treatment assignment independent

of the outcome. In the second example, we did not select our model based on the EV and

RV, but instead sought to highlight how the EV and RV change as we make purposeful

modifications to the model based on a causal structure.

When the results from the EV, RV, and RCS measures are ambiguous and the partial-R2s

from observed covariates are similar, interpretation can be difficult. An interesting compan-

ion to the proposed sensitivity tools is to estimate a synthetic control counterfactual and
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compare it with the difference-in-difference counterfactual. Then, a visual comparison of

a synthetic control with difference-in-difference may be insightful for further evaluation of

the validity of difference-in-difference. For example, the synthetic control may align with

the difference-in-difference counterfactual, and the validity of difference-in-difference is sup-

ported. This approach requires further research but may be another useful sensitivity tool.

3.6 Conclusion

Difference-in-difference relies on the assumption that no time-varying confounding remains

in order for the causal effect to be identified, known as the parallel trends assumption.

Unfortunately, in health policy it is often infeasible to measure every confounder. Traditional

methods for evaluating the feasibility of the parallel trends assumption are limited because

they only evaluate whether or not parallel trends holds in the periods prior to treatment and

make an additional assumption that the pre-period trends continue into the post-treatment

period. In addition, indirect parallel trends tests result in binary conclusions that ignore the

relationship between the magnitude of a parallel trends violation and the estimated effect.

This paper contributes to the difference-in-difference literature by proposing a sensitivity

analysis toolkit that analyzes how sensitive a causal estimate from difference-in-difference is

to unobserved time-varying confounding, or parallel trends violations, on a continuum.

The sensitivity tools are a valuable addition to the social scientist’s toolbox when making

causal inferences with difference-in-difference. The toolkit can be easily implemented in

R or Stata using the sensemakR package. The robustness, extreme scenario, and relative

confounding values can be easily estimated by using the estimated effect, standard error, and

degrees of freedom from the model. The tools quantify how much hypothetical unobserved

confounding the estimated effect can handle before the conclusions drawn from the estimate

change, and contextualize the sensitivity values based on observed confounders. Combined

with expert content knowledge, we hope the sensitivity toolkit can create a more nuanced
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discussion between researchers about how unobserved confounding impacts causal results by

providing quantitative guidelines for how sensitive causal effects from difference-in-difference

are to unobserved confounding.
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Appendix F
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Utilization of the Tools - A Flow Chart
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Appendix G

Example: Sensitivity Tools and Two-Way Fixed Effects

Model Using R Software

# Model

fit1 = lm(log(mcaid_gfof) ~ Post + lfp + pc_inc + inst6017_nom + state +

as.factor(year), data = d[d$year <= 2015 & !(d$state %in%

c("Ohio","Connecticut")),])

# Record Standard Error for Treatment Effect

se = summary(fit1)[[4]][2,2]

# Estimate & Record Cluster Robust Standard Errors

fit1a = coeftest(fit1, vcov = vcovHC(fit1))

se.robust = fit1a[2,2]

# Compare, Find that they are similar. Estimate RV, EV, and RCS.

se; se.robust

# Estimate Sensitivity Tools

sens.fit1 = sensemakr(fit1 ,treatment = "Post",

benchmark_covariates = "lfp",

kd = c(2,4,6,8,10,12),)

summary(sens.fit1)
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# Changing Bound Labels for Plot

sens.fit1$bounds$bound_label = c("2x LFP","4x LFP","6x LFP","8x LFP","10x

LFP","12x LFP")

# Contour Plot of Relative Confounding Values

plot(sens.fit1)
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Appendix H

Example: Sensitivity Tools and First Differenced

Model Using R Software

# Manually Create First-Differenced Dataset using plm Package

# d is a long dataset with State-Year rows

# Defining P-Series

d = pdata.frame(d,index = c("State","Year"))

# Lagging Variables

d$lag.outcome = plm::lag(d$outcome,k = 1,shift="time")

d$lag.Post = plm::lag(d$Post,k = 1,shift="time")

d$lag.LFP = plm::lag(d$LFP,k = 1,shift="time")

# Calculating First-Difference

d = d[complete.cases(d),]

d$fd.outcome = d$outcome - d$lag.outcome

d$fd.Post = d$Post - d$lag.Post

d$fd.LFP = d$LFP - d$lag.LFP

# Modeling

fit1 = lm(fd.outcome ~ fd.Post + fd.LFP, data = d)

# Sensitivity Analysis
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fit1.s = sensemakr(model = fit1, treatment = "fd.Post", benchmark_covariates

= "fd.LFP",kd = c(1,2,5,10))

# Contour Plot

fit1.s$bounds$bounds_label = c("1x LFP","2x LFP","5x LFP","10x LFP")

plot(fit1.s
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Appendix I

Indirect Parallel Trends Tests & Statistical Power

Table I.1 presents the results of the Monte Carlo simulation that explored the ability of

the indirect parallel trends test to correctly identify a parallel trends violation in the pre-

period. It reports the proportion of times the indirect parallel trends test identified non-

parallel trends in the pre-treatment period for a given sample size and pre-period year. For

example, the columns indicate whether or not the parallel trends assumption held in the data

generating process and the pre-period year, prior to treatment. The rows indicate the sample

size being used for the given simulation run. The elements within the table were calculated

as the percent of simulations where the classical indirect parallel trends test rejected the null

hypothesis. Therefore, a value of 40% would be interpreted as follows: For a given sample,

when parallel trends doesn’t hold in a given pre-period, the test rejects the null hypothesis

40 percent of the time.

Table I.1: Probability of Rejecting Null Hypothesis - Classic Parallel Trends Testing

Sample Size Not Confounded Confounded

Year: T-3 Year: T-2 Year: T-1 Year: T-3 Year: T-2 Year: T-1

20 4% 6% 14% 2% 3% 7%

50 2% 10% 15% 6% 23% 53%

100 2% 9% 15% 9% 41% 47%

200 2% 8% 12% 43% 84% 80%

Table I.1 shows that as the sample size increases the probability of correctly rejecting
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the null hypothesis when parallel trends doesn’t hold in the pre-period increases. This result

was expected given the structure of the hypothesis test. The hypothesis test is structured

such that the power of the test to reject the null hypothesis governs the probability with

which we incorrectly conclude that parallel trends holds in the pre-period, rather than the

alpha value. As a result, the probability of correctly rejecting the null hypothesis, parallel

trends holds in the pre-period, increased with the sample size.

For comparison, the results of the sensitivity analysis tools were estimated and presented

alongside the classical indirect parallel trends test in Table I.2. The sensitivity analysis tools

were generally invariant to the sample size because sample size is not directly included in

the metrics. Instead, the sensitivity tools are more responsive to changes in the precision of

the estimate as well as the magnitude of the estimated treatment effect.

Table I.2: Sensitivity Analysis Tool Results for Increasing Sample Size

Sample Size Not Confounded Confounded

RV EV RV EV

20 45% 28% 46% 29%

50 40% 22% 41% 23%

100 43% 25% 46% 28%

200 42% 24% 45% 26%
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