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Research Article

Dietary linoleic acid-induced alterations in
pro- and anti-nociceptive lipid autacoids:
Implications for idiopathic pain syndromes?

Christopher E Ramsden, MD1,2, Amit Ringel, BS1,
Sharon F Majchrzak-Hong, MS1, Jun Yang, PhD3,4,
Helene Blanchard, PhD5, Daisy Zamora, PhD6, James D Loewke,
BS1, Stanley I Rapoport, MD4, Joseph R Hibbeln, MD1,
John M Davis, MD6,7, Bruce D Hammock, PhD3,4 and
Ameer Y Taha, PhD5,8

Abstract

Background: Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense.

Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high

amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive

linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3

fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for

15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain

syndromes.

Results: Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives

and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide

derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids

in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues.

Conclusions: The present findings provide biochemical support for the hypothesis that the high linoleic acid content of

modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering

should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain

syndromes.
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Introduction

Idiopathic and poorly understood persistent pain syn-
dromes (Table 1) are major causes of personal suffering,
disability, and societal expense.1,17 The majority of
patients with idiopathic pain in one location report pain
at other body regions.1,18 For example, patients with
migraine headaches have high prevalence of bladder
pain syndrome,19 irritable bowel syndrome,2 vulvody-
nia,20 fibromyalgia,3 and low back pain.21 This overlap-
ping nature suggests that sharedmechanismsmayunderlie
initiation and perpetuation of pain at multiple sites.
However, few biochemical or genetic susceptibility factors
for idiopathic pain syndromes have been identified.

Mechanisms linking n-6 and n-3
fatty acids to nociception

As major components of circulating lipoproteins, and of
skin, muscle, immune, myelin, glial, and neuronal mem-
branes,4,22 n-6 and n-3 fatty acids can be endogenously
converted to autacoids with pro- or anti-nociceptive
properties (e.g., oxidized linoleic acid (LA) metabolites,
prostanoids, and monoepoxides).4,5–8,23–26 With notable
exceptions,27,28 mediators derived from n-6 LA and
arachidonic acid (AA) promote nociception,5–7,23 while
mediators derived from n-3 eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) promote anti-nocicep-
tion.24–26 Thus, an imbalance of mediators derived from
n-6 and n-3 fatty acids is a plausible mechanism contri-
buting to initiation and perpetuation of chronic pain.
As mammals lack the capacity for de novo biosynthesis
of n-6 and n-3 fatty acids, diet is the sole source in mam-
malian tissues.29,30 These observations led us to hypothe-
size that targeted dietary alterations may be able to

reduce pain by favorably influencing the balance of
pro- and anti-nociceptive mediators. 4,9,31

We recently demonstrated proof of principle for this
hypothesis in a randomized trial among 67 patients with
chronic headaches.4 The combination of increasing n-3
fatty acids with concurrent reduction in LA (the H3-L6
intervention) increased anti-nociceptive and reduced pro-
nociceptive mediators in circulation and reduced head-
ache frequency and severity.4,10 Reduction in circulating
LA was closely associated with pain reduction, suggest-
ing that LA lowering was a key component of the
intervention.10

High intake of LA could increase the susceptibility to
chronic pain via several mechanisms (Figure 1). Most
directly, LA is the precursor to pro-nociceptive medi-
ators which induce hyperalgesia and allodynia in
rodents.5,6,23 A fraction of LA is enzymatically converted
to AA,32 the precursor to pro-nociceptive prostanoids7

and endovanilloids,33 as well as several anti-nociceptive
mediators (e.g., lipoxins27 and epoxyeicosatrienoic acid
[EpETrEs]28). High LA intake may reduce the produc-
tion of anti-nociceptive mediators derived from EPA and
DHA.24,30 Thus, we hypothesize that high dietary LA
could predispose to the development of chronic pain.
However, the effects of alterations in dietary LA on
nociceptive autacoids and their precursor fatty acids in
tissues associated with pain conditions are largely
unknown.

As a first step in testing this hypothesis, we investi-
gated the effects of controlled alterations in dietary LA
on nociceptive autacoids and their precursor fatty acids
in rat tissues associated with idiopathic pain syndromes
and in tissues of the peripheral and central nervous
system (CNS).

Table 1. Persistent pain syndromes with idiopathic or poorly understood etiology.1–16.

Pain syndrome(s) Associated tissue(s) Estimated prevalence

Bladder pain syndrome/Interstitial cystitis Bladder 2–6.5%

Vulvodynia Perineum 7–8% of women

Severe headaches or migraine Skeletal muscle, meninges, trigeminal

nerve, and cranial vessels

14–23%

Fibromyalgia syndrome/chronic

widespread pain

Skeletal muscle 2–8%

Regional myofascial pain Skeletal muscle Unknown, common

Chronic low back or neck pain Skeletal muscle, fascia, intervertebral discs,

and facet joints

10.2%a (low back pain)

2.2%a (neck pain)

Idiopathic orchialgia Testis, epididymis, and perineum 4.8% of men presenting to urology clinics

Irritable bowel syndrome Small intestine 4–6%

Gastroesophageal reflux disease Esophagus 17–18%b

aPercentage of U.S. adults reporting chronic impairing low back or neck pain for >3 months in North Carolina, USA.
bPercentage of U.S. adults with painful reflux in Olmstead County, MN, USA.
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Figure 1. Proposed mechanisms linking high intake of linoleic acid to chronic pain. (a) Dietary LA can be endogenously converted to pro-

nociceptive mediators (e.g. 9-HODE). A small fraction of dietary LA is converted to n-6 AA, the precursor to pro- and anti-nociceptive

mediators. High intakes of dietary LA competitively inhibit hepatic conversion of n-3 ALA into EPA and DHA. (b) In circulation, LA and

HODE are predominantly esterified in cholesteryl esters, triacylglycerol, and phospholipid components of lipoproteins. LA and HODE in

circulating LDL are delivered to peripheral tissues via LDL receptors and scavenger receptors. (c) High intakes of LA produce tissue-

specific increases in LA and AA and reduction in EPA and DHA content of cellular membranes. (d) High intake of dietary LA increases the

production of pro-nociceptive mediators (e.g. 9-HODE and PGE2) and reduces the production of anti-nociceptive lipid autacoids (e.g.

EpDPEs and EpETEs). (e) These alterations in nociceptive lipid mediators modulate receptors (e.g. TRPV1, E-prostanoid) creating a

biochemical susceptibility to develop chronic pain. LA: linoleic acid; ALA: a-linolenic acid; AA: arachidonic acid; EPA: eicosapentaenoic

acid; DHA: docosahexaenoic acid; CE: cholesteryl ester; PL: phospholipid; HODE: hydroxyoctadecadienoic acid; EpDPE: Epoxy-docosa-

pentaenoic acid GPCR, G-protein coupled receptor; TRPV1: transient receptor potential vanilloid, type 1.
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Methods

Animals

The animal protocol was approved by the Animal Care
and Use Committee of the Eunice Kennedy Shriver
National Institute of Child Health and Human
Development and followed the National Institutes of
Health Guide for the Care and Use of Laboratory
Animals (NIH Publication No. 80-23). Male Fischer-
344 (CDF) rat pups (18–21 days old) and their surrogate
mothers were purchased from Charles River
Laboratories (Portage, MI). Upon arrival, the pups
were weaned from their surrogate mothers and randomly
assigned to a very low (n¼ 8), moderate (n¼ 8), or high
LA diet (n¼ 8) for 15 weeks. Animals were housed in an
animal facility having regulated temperature, humidity,
and a 12 h light/dark cycle. In order to maintain equiva-
lency of calories and nutrients, dietary LA was altered in
these three groups via isocaloric replacement with coco-
nut oil, which is rich in saturated fatty acids. The three
study diets were prepared by Dyets Inc. (Bethlehem, PA)
based on the AIN-93 G formulation and contained 10%
fat by weight.34,35 Dietary fatty acids were analyzed by
gas chromatography (GC) as previously reported.36

Briefly, food pellets were crushed with pestle and
mortar, weighed and extracted in chloroform/methanol
(2:1 v/v) by the Folch method.37 A portion of the
extracted lipids was methylated with 1% H2SO4 in
methanol after adding 1,2-diheptadecanoyl-sn-glycero-
3-phosphocholine as an internal standard. The fatty
acid methyl esters were extracted in heptane, reconsti-
tuted in isooctane, and analyzed by gas chromatography
as detailed elsewhere.36 Fatty acid composition of the
three diets is shown in Table 2. Rats had free access to
food and water throughout the study; their food was
replaced every three or four days.

Tissue sampling rationale

The tissue sampling strategy was designed to provide
insight into the hypothesis that diet can alter local syn-
thesis of nociceptive lipid autacoids in peripheral tissues

associated with idiopathic pain syndromes. To limit
lipid autacoid degradation, peripheral tissues that
could be quickly collected and frozen were selected
including: perineum (vulvodynia), bladder (bladder
pain syndrome/interstitial cystitis), epididymis (idio-
pathic orchialgia), esophagus (gastroesophageal reflux
disease), duodenum (irritable bowel syndrome), and tra-
pezius muscle. Trapezius, which is commonly associated
with regional myofascial pain38 and may be involved in
fibromyalgia syndrome,39 was selected as representative
and readily accessible skeletal muscle. Additional tis-
sues—including blood and nervous system tissues—that
could be quickly harvested were selected to provide an
opportunity to broadly compare whether similar diet-
induced changes occurred in peripheral tissues, nervous
system tissues, and in circulation.

Rat tissue collection and fatty acid analyses

The rats were killed by CO2 overdose. Tissue samples
were immediately collected, frozen on dry-ice chilled iso-
butane, and stored at �80�C. Tissue fatty acids were
analyzed as previously described.40 Briefly, samples
were thawed, weighed, and homogenized in butylated
hydroxytoluene (BHT)/methanol for fatty acid extrac-
tion according to the method of Folch et al.37 BHT
was added in the methanol to reduce lipid oxidation
during the procedures. The internal standard methyl tri-
cosanoate (23:0) was added to each sample. This was
followed by methylation with 14% BF3/methanol. The
hexane extracts were concentrated to a small volume
with a stream of nitrogen and transferred to microvials
for GC analysis. Fatty acid methyl esters were analyzed
with an HP-7890A gas chromatograph equipped with a
flame ionization detector (Hewlett-Packard, Palo Alto,
CA) and a fused silica capillary column (DB-FFAP,
15m� 0.100mm i.d.� 0.10 mm film thickness, J & W
Scientific, Folsom, CA). The detector and injector tem-
peratures were set to 250�C. The oven temperature pro-
gram began at 150�C for 0.25min and increased to
200�C at the rate of 10�C/min, then at the rate of
3.5�C/min to 225�C for 0.5min, and finally increased

Table 2. Fatty acid and macronutrient compositions of study diets.

LA (%E) ALA (%E) MUFA (%E) SFAa (%E) Total fat (%E) Protein (%E) Carbohydrate (%E)

Diet group

0.4 %E LA 0.4 0.9 1.1 12.1 22.0 19.5 58.5

5 %E LA 5.2 0.9 1.5 9.8 22.0 19.5 58.5

10 %E LA 10.5 0.9 2.8 6.0 22.0 19.5 58.5

aTotal SFA energy content listed here does not include the contribution from short chain fatty acids (8:0, 6:0, and 4:0) present in coconut oil. These fatty

acids were not quantifiable with our extraction and analytical method. Diets did not contain AA, EPA, and DHA.

LA: linoleic acid; ALA: alpha-linolenic acid; AA: arachidonic acid; MUFA: monounsaturated fatty acid; SFA: saturated fatty acid; EPA: eicosapentaenoic acid;

DHA: docosahexaenoic acid.
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at the rate of 40�C/min to 245�C, with a final hold for
15min. Hydrogen was used as carrier gas at a linear
velocity of 50 cm/s. A custom mixed, 30-component,
quantitative methyl ester standard containing 10–24 car-
bons and 0–6 double bonds was used for assignment of
retention times and to ensure accurate quantification
(Nu Chek Prep 462, Elysian, MN). Fatty acid data
were expressed as % of total peak area, which corres-
ponded to weight% to within 5%, as demonstrated by
quantitative standard mixtures. Internal standards were
used to calculate tissue fatty acid concentrations. Fatty
acid data were expressed as a percentage of total fatty
acids (%FA) and are also provided as a concentration
in micrograms per gram of tissue (mg/g) in the
Supplementary materials.

Lipid autacoid analyses

Lipid autacoids were analyzed as free oxylipins and after
saponification to determine the sum of both free and
esterified oxylipins as previously described.16 Ice-cold
methanol (400–800 ml) containing 0.1% acetic acid and
0.1% BHT was added to approximately 0.1 g of frozen
tissue, following the addition of 10 ml antioxidant mix
and 20 ml surrogate standard. The antioxidant solution
contained three antioxidants mixed at a 1:1:1 ratio
(v/v/v) consisting of 6.9mg/ml ethylenediaminetetraace-
tic acid in water, 1.12mg/ml BHT in methanol, and
0.4mg/ml triphenylphosphine in water. The antioxidant
solution was passed through a Millipore filter to remove
solid particles. The 20 ml surrogate standard contained
200 nmol of d11-11(12)-EpETrE, d11-14,15-DiHETrE,
d4-6-keto-PGF1a, d4-9-hydroxyoctadecadienoic acid
(HODE), d4-LTB4, d4-PGE2, d4-TXB2, d6-20-HETE,
and d8-5-HETE dissolved in methanol (abbreviations for
oxylipins are in Supplementary Materials Table S1). The
sample containing the extraction solvent, antioxidant
mix, and surrogate standards was cooled in �80�C free-
zer for 30min and then homogenized for 5 to 10min at
30 vibrations per second using a bead homogenizer. A
Polytron was used to further homogenize the tissue for
approximately 30 s on dry ice if large tissue particles were
observed. The homogenized samples were stored over-
night at �80�C freezer, following which they were
centrifuged at high speed in a 5145R microcentrifuge
(Eppendorf) for 10min. Approximately half of the super-
natant was subjected to direct solid phase extraction to
extract free oxylipins. The remaining supernatant was
hydrolyzed in equal volumes of 0.5 M sodium carbonate
solution (26.5mg per ml of 1:1 v/v methanol/water) at
60�C for 30min under constant shaking. Following neu-
tralization with 25 or 50 ml acetic acid and 1575 or
3150 ml water, depending on whether the volume of the
supernatant extract was 200 or 400 ml, the hydrolyzed
oxylipins were also subjected to solid phase extraction.

Oxylipins were quantified by liquid chromatography-
electrospray ionization tandem mass spectrometry as
previously described.16

Data analysis and graphical representation

Nonparametric analyses were employed due to the pres-
ence of non-normal distributions. A Kruskal–Wallis test
was used for between-group comparisons. Oxylipin
values that were below the detection or quantitation
limit were imputed as one half the limit of quantitation.
Diet-induced changes in selected pro- and anti-nocicep-
tive variables and their precursor n-3 and n-6 fatty acids
were graphed using boxplots with medians and inter-
quartile ranges.

Results

Body weights in the three diet groups did not differ
(median weights in grams were 373, 390, and 350 for
0.4, 5, and 10%E diets, respectively; p¼ 0.53).

Dietary LA-induced alterations in tissue
n-6 and n-3 fatty acids

Tissue-specific alterations in LA, 18:2n-6. Increasing dietary
LA produced marked increases in the LA content of
several peripheral tissues associated with idiopathic
pain syndromes (Tables S2 and S3). The most pro-
nounced increases were observed in perineum, epididy-
mis, esophagus, muscle, duodenum, and bladder
(Figure 2). Increases in dietary LA also produced statis-
tically significant, but comparatively modest increases in
the LA content of CNS tissues including cervical cord,
brainstem, and cerebellum (Figure 3).

Tissue-specific alterations in AA, 20:4n-6. Increasing dietary
LA produced marked increases in the AA content of
certain peripheral tissues associated with idiopathic
pain syndromes (e.g., bladder, muscle, and duodenum)
but had comparatively minor effects on several other
peripheral tissues (e.g., perineum, esophagus, and epi-
didymis; Figure 2 and Table S2). Increases in dietary
LA also produced statistically significant and substantial
increases in the AA content of nervous system tissues
including sciatic nerve, cervical cord, brainstem, and
cerebellum.

Tissue-specific alterations in docosatetraenoic acid

(22:4n-6). Docosatetraenoic acid (DTA) tended to be
less abundant than LA and AA, accounting for 0.01 to
5.3% of total fatty acids. Increasing dietary LA produced
substantial increases in the DTA content of several tissues
associated with idiopathic pain syndromes (e.g., bladder
and duodenum), as well as several CNS tissues (Figure 3).

Ramsden et al. 5



Tissue-specific alterations in EPA, 20:5n-3. The 5 and 10%E
groups both had very low EPA content (less than 0.3%
of total fatty acids) in tissues associated with idiopathic
pain syndromes and nervous system tissues. Lowering
dietary LA from 5 to 0.4%E significantly increased the
EPA content of several tissues (e.g., duodenum, bladder,
and muscle); however, EPA remained less than 3.4% of
total fatty acids in all tissues (Table S2).

Tissue-specific alterations in DHA, 22:6n-3. Increasing dietary
LA significantly decreased the DHA content of cerebellum,
duodenum, epididymis, and testis but did not alter theDHA
content of bladder, muscle, or sciatic nerve (Table S2).

Tissue-specific alterations in oleic acid (18:1n-9) and palmitic

acid (16:0). Increasing dietary LA significantly decreased
the oleic acid content of certain peripheral tissues including
duodenum, epididymis, and muscle and modestly reduced
the oleic acid content of cervical cord, brainstem, and cere-
bellum. Dietary LA had a comparatively minor impact on
the palmitic acid content of most tissues. Notable excep-
tions include sciatic nerve and epididymis (Table S2).

Dietary LA-induced alterations in lipid autacoids
derived from n-3 and n-6 fatty acids

Dose-dependent increases in oxidized LA metabolites. Increasing
dietary LA as a controlled variable from 0.4 to 5 to 10%E

markedly increased the concentrations of several oxidized
LA metabolite (OXLAM) species with putative pro-noci-
ceptive properties5,6,23 in perineum, bladder, and cervical
cord (Figures 4 and 5 and Tables S4–S6). While both total
and free OXLAMs tended to increase with higher LA
intakes, changes in specific regioisomers (e.g., 9- and 13-
HODE, 9(10)- and 12(13)-epoxyoctadecamonoenoic acid
(EpOME), and 9(10)- and 12(13)-DiHOME) occurred in a
tissue-specific manner.

Alterations in pro- and anti-nociceptive oxylipin derivatives of n-6

AA. Increasing dietary LA had comparatively minor
effects on AA-derived oxylipins in perineum, bladder,
and cervical cord. Exceptions include significant
increases in TXB2 in perineum and free PGE2 and free
11,12,15-TriHETrE (hepoxilin inactivation product) in
cervical cord, as well as a significant reduction in
LXA4 in bladder.

Reductions in oxylipin derivatives of EPA and DHA. Increasing
dietary LA reduced the concentrations of anti-nocicep-
tive EPA-derived (e.g. epoxyeicosateteaenoic acids
[EpETEs]) and DHA-derived (e.g. epoxydocosapentae-
noic acids [EpDPEs]) n-3 monoepoxides in bladder,
perineum, and cervical cord. Reductions in n-3 monoep-
oxides were most pronounced when increasing dietary
LA from 0.4%E to 5%E, with only minor differences
observed between 5 and 10%E.

Figure 2. Dietary LA-induced changes in the fatty acid content of peripheral tissues associated with idiopathic pain syndromes. Note that

the Y-axis scales differ in these graphs. X-axis % values refer to percentage of food energy. Box plots include medians and interquartile

ranges with end whiskers set to minimum and maximum values. Number of samples for each tissue (perineum n¼ 21, epididymis n¼ 21,

skeletal muscle n¼ 24, bladder n¼ 21, duodenum n¼ 21, and esophagus n¼ 20). LA: linoleic acid; AA: arachidonic acid; EPA: eicosa-

pentaenoic acid; DHA: docosahexaenoic acid.
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Discussion

Here, we showed that increasing dietary n-6 LA as a con-
trolled variable in rats markedly increased the LA content
of several peripheral tissues associated with idiopathic
pain syndromes, with the most pronounced increases in
perineum (vulvodynia), epididymis (idiopathic orchial-
gia), skeletal muscle (fibromyalgia syndrome and regional
myofascial pain syndrome), esophagus (gastroesophageal
reflux disease), duodenum (irritable bowel syndrome),
and bladder (bladder pain syndrome/interstitial cystitis).
Moreover, these diet-induced increases in tissue LA were
accompanied by increased concentrations of (total and

free) OXLAMs in perineum, bladder, and cervical cord.
Importantly, OXLAMs have been shown to have
pro-nociceptive properties in rodent pain behavioral
models.5,6,23 For example, HODE-mediated allodynia
and peripheral inflammatory pain in rodents were attenu-
ated by immunological neutralization of HODEs using
antibodies23 or by indirect inhibition of HODE biosyn-
thesis using the broad spectrum cytochrome P450 inhibi-
tor ketoconazole.41 OXLAMs have been implicated in the
hyperalgesia that accompanies thermal burn injury,5

Achilles tendinopathy-related pain,42 and the persistent
nociception triggered by peripheral or central injection
of nerve growth factor.11

Figure 3. Dietary LA-induced changes in fatty acids in central nervous system tissues. Note that the Y-axis scales differ in these graphs.

X-axis % values refer to percentage of food energy. Box plots include medians and interquartile ranges with end whiskers set to minimum

and maximum values. Number of samples for each tissue (cervical cord n¼ 23, brainstem n¼ 24, and cerebellum n¼ 24). LA: linoleic acid;

AA: arachidonic acid; DTA: docosatetraenoic acid; DHA: docosahexaenoic acid.

Ramsden et al. 7



Previous findings in rodents and humans indicate
that dietary LA can alter the amounts of LA43 and
its bioactive oxidation products in certain tissues.44

For example, we previously demonstrated in humans
that dietary LA lowering from about 7 to 2.5%E for

12 weeks significantly reduced the abundance of LA in
circulating phospholipids, triglycerides, and cholesteryl
esters, as well as the concentrations of 9- and 13-
HODEs and oxo-ODEs in plasma.44 Johnson et al.
reported that a fourfold increase in dietary LA

Figure 4. Diet-induced changes in total (sum of free and esterified) n-3 and n-6 derived oxylipins in tissues associated with idiopathic pain

syndromes. Note that the Y-axis scales differ in these graphs. Note that the Y-axis scales differ in these graphs. Box plots include medians

and interquartile ranges with end whiskers set to 1.5 times interquartile values. Number of samples for each tissue (bladder n¼ 20,

perineum n¼ 18, and cervical cord n¼ 21). HODE: hydroxyoctadecadienoic acid; EpOME: epoxyoctadecamonoenoic acid; EpETrE:

epoxyeicosateteaenoic acid; EpDPE: epoxydocosapentaenoic acid.
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produced a fivefold increase in the 9- and 13-HODE
content of mammary tissue in female mice.45

Importantly, however, the present study is the first to
show that increasing dietary LA markedly increases
the abundance of LA and OXLAMs in tissues asso-
ciated with idiopathic pain syndromes. This finding

supports the hypothesis that high n-6 LA intakes
could contribute to the initiation and/or perpetuation
of chronic pain via the straightforward mechanism of
increasing pro-nociceptive lipid autacoids in peripheral
tissues that supply such mediators to peripheral sen-
sory nerve terminals (Figure 1).

Figure 5. Diet-induced changes in free (unesterified) n-3 and n-6 derived oxylipins in tissues associated with idiopathic pain syndromes.

Note that the Y-axis scales differ in these graphs. Box plots include medians and interquartile ranges with end whiskers set to 1.5 times

interquartile values. Number of samples for each tissue (bladder n¼ 20, perineum n¼ 18, and cervical cord n¼ 21). HODE: hydro-

xyoctadecadienoic acid; EpOME: epoxyoctadecamonoenoic acid; PG: prostaglandin; EpETE: epoxyeicosateteaenoic acid; EpDPE:

epoxydocosapentaenoic acid.

Ramsden et al. 9



Given the low abundance of LA in cervical cord
(<1% of fatty acids), the findings that OXLAMs were
relatively abundant (median ranges for total HODEs
146–399 and EpOMEs 377-642 pmol/g), and markedly
increased with high LA intakes in cervical cord, were
unexpected. While the reason for this discrepancy
between LA and its bioactive products in CNS tissues
is not entirely clear, it suggests that the mechanism(s)
that limit accumulation of LA may not extend to LA
oxidation products. Alternatively, the small amount of
LA in CNS tissues may be preferentially metabolized to
bioactive autacoids. Consistent with this suggestion,
Demar et al.46 found that radiolabeled unesterified LA
infused into rats readily crossed the blood–brain barrier
and was metabolized into unidentified polar compounds.
While it is possible that these unidentified compounds
are OXLAMs (e.g. HODEs and EpOMEs), this requires
confirmation.

Dietary LA-induced reductions in n-3 monoepoxides

Dietary LA decreased n-3 DHA and EPA, and their n-3
monoepoxide derivatives EpDPE and EpETrE, in per-
ipheral tissues associated with idiopathic pain syn-
dromes, and in cervical cord. Morriseau et al.24

demonstrated in rat carrageenan inflammatory pain
model that injection of EpDPE or EpETrE peripherally
(intraplantar) or centrally (intrathecal) resulted in signifi-
cant antihyperalgesic activity. Notably, 13(14)-EpDPE
and 16(17)-EpDPE are intermediates (pathway precur-
sors) for the biosynthesis of maresin-126 and protectins,12

which have demonstrated anti-nociceptive properties in
preclinical models.25,47 Hence, increased concentrations
of EPA and DHA-derived autacoids in both peripheral
and central tissues could contribute to the anti-nocicep-
tive properties of low-LA diets.

Dietary LA had modest effects on AA-derived
lipid autacoids

Increasing dietary LA increased the abundance of n-6
AA in several tissues associated with idiopathic pain syn-
dromes, as well as CNS tissues (Figures 2 and 3). As
certain AA-derived oxylipins (e.g. PGE2 and hepoxilins)
have widely recognized pro-nociceptive properties,7 and
others (e.g. EpETrEs and lipoxins) have anti-nociceptive
properties,27,28 diet-induced increases in these AA-deri-
vatives could have important implications for pain.
Unexpectedly, however, despite producing major
increases in tissue AA, increasing dietary LA in the pre-
sent study translated to inconsistent and comparatively
minor effects on AA-derived oxylipins. However, the few
changes that did occur—increases in PGE2 and the
hepoxilin pathway marker (11,12,15-TriHETrE) in cer-
vical cord and the paradoxical reduction in the

anti-nociceptive AA-derivative LXA4 in bladder—would
be expected to promote nociception.7,33 Thus, it is pos-
sible that dietary LA-induced changes in AA-derived
mediators could enhance nociception in certain tissues.
However, as observed for LA and OXLAMs, the
observed discrepancies between changes in tissue AA
and AA-derived lipid autacoids indicate that measuring
the fatty acid composition alone provides an incomplete
representation of the biochemical milieu of tissues.

Collective findings from the present study suggest that
low-LA diets could potentially have anti-nociceptive
properties due to a combination of reductions in
OXLAMs and increases in n-3 monoepoxides.
Consistent with these rodent findings, diet-induced
reductions in plasma LA and increases in EPA and
DHA were closely correlated with decreased headache
frequency and severity4 in 67 patients with chronic
daily headaches; diet-induced reductions in n-6 AA
were not associated with pain reduction.10

Potential implications of modern high-LA diets

If the hypothesis that high intake of dietary LA produces
a biochemical susceptibility to develop chronic pain is
correct, the tripling of U.S. per capita average dietary
LA from about 2%E to 7%E during the 20th century48

(Figure 6) may contribute to the pervasive nature of idio-
pathic pain syndromes in the U.S. population. Notably,
approximately 80% of Americans currently consume
55%E as LA and 18% consume 510%E.49 Thus,
doses selected for the present study fall within ranges
commonly consumed by the U.S. population.

Strengths and limitations

The present study had several important strengths. The
use of controlled alterations in dietary LA with otherwise
equivalent micronutrient and macronutrient contents
minimized potential confounding effects of other dietary
constituents. Quantitation of both free and total (sum of
free and esterified) oxylipins provided a more complete
picture of lipid autacoid-related biochemical milieu of
tissues. While free oxylipins represent the pool of
bioactive autacoids at any given moment, a substantial
portion of certain oxylipins (e.g. hydroxy fatty acids) are
esterified in phospholipids and other complex
lipids.13–16,51 Since this preformed pool of esterified oxy-
lipins can be mobilized to influence pathophysiology,
both measures provide useful information.16

This study also had several important limitations. The
present findings are biochemical in nature only and do
not demonstrate hyper-excitation of the peripheral or
CNS tissues. Additional experiments are required to
determine whether the observed diet-induced changes
in lipid autacoids are accompanied by changes in pain
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phenotype in inflammatory, neuropathic, or widespread
pain models. Present findings are limited to biochemical
results using only three doses of dietary LA. We do not
yet know whether doses higher than 10%E produce even
more marked alterations in OXLAMs, or the effects of
graded reduction in dietary LA (between 5%E and
0.4%E) on EPA and DHA monoepoxide concentrations.
The oxylipins measured in the present study do not
reflect all possibly formed lipid autacoids, because of
limited coverage of the analytical method used.
Because of the saponification used to assess total (sum
of free and esterified) oxylipins, certain lipid mediators,
e.g. prostanoids, were degraded making it impossible to
compare the total levels of these oxylipins. In addition,
rats were not subjected to microwave fixation,52 which
has been shown to reduce postmortem release of several
lipid mediators in brain.53 To our knowledge, the effects
of microwave fixation have not been examined in the
peripheral tissues studied here. An additional consider-
ation is that the specific molecular mechanisms (e.g. bio-
synthetic enzymes and receptors) linking lipid autacoids
to behavioral and clinical pain outcomes are incom-
pletely understood.

Future research should be directed toward (a) assess-
ing the behavioral and clinical effects of controlled alter-
ations in dietary LA and other dietary constituents in
rodent models of pain and human pain conditions,
respectively; (b) delineating the biochemical effects of
altering dietary LA above 10%E and at finer gradients
between 0.4 and 5%E; (c) identifying and characterizing

the specific autacoids, including regio- and stereoiso-
mers, that are most responsible for pain reduction in
each tissue; and (d) characterizing the specific molecular
pathways utilized for biosynthesis, transport, signaling,
and inactivation of each lipid mediator in peripheral and
CNS tissues. Findings in rats are not necessarily gener-
alizable to humans. However, the demonstration that
dietary LA strongly influences circulating levels of noci-
ceptive autacoids in patients with chronic headaches sug-
gests that this finding may be relevant for humans.4,10

Randomized controlled trials altering n-6 LA and n-3
EPA and DHA as controlled variables are underway in
several human populations with idiopathic chronic
pain syndromes (e.g. Clinicaltrials.gov NCT02012790,
NCT02272010). The clinical and biochemical findings
from these human trials, combined with biochemical data
reportedhere, are intended toprovidekey insights needed to
move this line of inquiry forward. Ultimately, these efforts
could lead to the development of complementary and inte-
grative approaches for preventing and treating pain.

Conclusions

In summary, the present study demonstrates that dietary
LA dose dependently increases the abundance of LA and
its pro-nociceptive lipid derivatives, and reduces the
abundance of EPA and DHA and several of their
anti-nociceptive mediators, in tissues associated with
common idiopathic pain syndromes. These findings
provide biochemical support for the hypothesis that

Figure 6. Linoleic acid content of study diets compared to current and historical intakes.
1Distribution of LA intakes in U.S. adults.49

2Dose of LA needed to prevent deficiency symptoms.43

3Calculated from USDA economic disappearance data.48

4Modeled from hunter-gatherer diets.50
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high-LA diets could contribute to the initiation and/or
perpetuation of persistent pain. Dietary LA lowering
should be further investigated as part of an integrative
strategy for the prevention and management of idio-
pathic pain syndromes.
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