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Abstract

Cluster-Robust Variance Estimators for Binary Observations in

Heterogeneous Groups and Their Application to Psychometric

Analyses of Repeated Measures

by

Sarah Marquis

This dissertation is composed of a study of estimation methods

in classical and test theories and the elaboration and application

of a cluster-robust variance estimator. Variance estimators derived

from generalized estimating equations are known to be robust to

most covariance structures and are therefore well suited for psycho-

metric analysis of longitudinal test data. However, the approximate

normal distribution of the test statistic for clustered binary experi-

ments breaks down when the variation between cluster variances is

large. The degrees of freedom for the test statistic are smaller than

the number of clusters in unbalanced experiments and closer to an

effective number of clusters, G*, which we estimate as the degrees

of freedom using Satterthwaite approximation. We calculate a bias

bound as a function of G* to improve the coverage percentages of the

test statistic. Simulations generated by a beta-binomial model and

a Markov chain model show that the bias-adjusted cluster-robust

variance estimator improves the test statistic and achieves a cover-

age percentage of at least 94% for highly heteroskedastic settings.
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For conservative confidence intervals in even more unbalanced sit-

uations, t-scores with G* degrees of freedom can be used. When

compared to a quasibinomial generalized linear model and a wild

bootstrap estimator, the bias-adjusted CRVE is closer to the asymp-

totic distribution for low effective numbers of clusters and yields

almost equivalent results to the other two estimators across simu-

lations. Consistency conditions based on cluster heterogeneity are

shown to be sufficient for convergence of a chi-square test for test-

ing multiple probabilities across each cluster. We show that the

chi-square statistic can be used to test for parallel scales, equivalent

items, or time effects in classical test analysis of longitudinal data.

Finally, we discuss the use of generalized estimating equations and

the multivariate cluster-robust variance estimator in Rasch analysis

of repeated measures.
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Preface

The purpose of this thesis is to investigate current estimation meth-

ods in psychometric longitudinal analysis, develop conditions for

asymptotic normality of a cluster-robust test statistic for binary re-

sponses, and explore its potential application in the world of test

theory. We focus on the following statistical problem. Suppose the

goal is to calibrate a test composed of binary questions which aim

to measure the location of individuals on a latent trait of interest

in an invariant way. A set of responses is collected from a sample

of individuals. Considering a population of independent and iden-

tically distributed subjects, each question difficulty on the test can

be estimated by taking the usual sample proportions. While this

can be a reasonable assumption under well-balanced situations with

a large sample size, the estimates depend on the given sample and

are not population-invariant. Separating parameters in a logistic

model with a set of ability parameters for each subject and item

difficulties for each question is a common psychometric approach.

This data has a fixed block structure, but unlike usual block-design

xvi



experiments, only one observation is collected for each cell. That

is, each subject answers each item exactly once. This data is sym-

metric in form, but our interest is only in the item parameters; in

other words, the level of each question, or the probability of “en-

dorsing” each one for an average person. Many current solutions

and papers use hierarchical models and focus on estimating subject

parameters. How do we compare clustered populations? How do we

model covariances? When is specifying covariances not necessary

and potentially detrimental to the analysis? This dissertation aims

to provide some answers to these questions. This thesis is separated

into three parts.

Part I The first part of this dissertation is a literature review that

covers all possible models for binary test data. Each model is ex-

amined, its assumptions and estimation techniques discussed. Two

main branches of measurement theory are discussed, Classical Test

theory (CTT) and Item Response Theory (IRT). As discussed at

the end of Chapter 1, IRT is revealed to be statistically preferable

to CTT and the selection of preferable models is narrowed down to

the family of Rasch models. Its model structure, assumptions, sta-

tistical properties and estimation methods are discussed in Chapter

1. Chapter 2 extends the models discussed in the previous chapter

to model longitudinal studies, which are quite common in education

and pharmaceutical sciences. Many options exist and are currently

xvii



employed in clinical trials. We discuss data manipulation methods

such as stacking, which organize the data in different ways to deal

with potential temporal independence violations. The goal of these

chapters is to give the reader an understanding of 1) the structure

of test data and its particularities 2)ways to model survey responses

and longitudinal extensions of those models, 3) Estimation methods

for each model and 4) pros and cons of each model. Many inter-

ested in this topic come from a measurement-related background

and will have used these models in their research. The programs

they use perform complex estimation techniques, usually involving

iterative numerical solutions, which are somewhat blindly trusted

by many social scientists since they require an extensive statistical

background to comprehend.

Test theories and related models aim to provide a stable framework

for measuring and comparing populations in educational, psycholog-

ical, and pharmaceutical sciences. It is therefore imperative that the

measure itself as well as the handling of measurement errors be sen-

sical and reliable. Following Occam’s razor, the best model would be

one that would explain the data reasonably well, without being over-

complicated. This delicate balance is a central theme throughout

this thesis, and is a fundamental difference between the two main

schools of thought in psychometrics, Classical Test Theory (CTT)

and Item Response Theory (IRT). IRT encompasses a wide range of

xviii



models, including the Rasch model, which is the only model to have

population-independent item estimates. However, the mathemati-

cal rigorousness of IRT models does not translate into blind trust of

the resulting estimates. Psychometricians caution that making bold

conclusions without proper understanding of background mechanics

of IRT, can lead to erroneous conclusions.

Part II The second part of this thesis focuses on a cluster-robust

variance estimator for Bernoulli random variables derived from gen-

eralized estimating equations. The CRVE has been previously es-

tablished, but we develop a measure of cluster heterogeneity and

show that asymptotic convergence and coverage percentages vary

greatly as a function of the effective number of clusters. A bias

based on consistency conditions and the effective number of clusters

is derived and applied. We look into an approximation to the de-

grees of freedom for a potential t-distribution. This cluster-robust

variance estimator is then extended to a multivariate setting to test

multiple probabilities across clustered populations. Much of the

theory translates directly and based on the same consistency condi-

tions, we show that a chi-square test with the multivariate CRVE

has asymptotic coverages of 1 − α for reasonably few clusters, de-

pending on the cluster size imbalance of the experiment. Simulation

results from beta-binomial simulation help us verify our theory.

xix



Part III The third and final part of this dissertation applies the

cluster-robust variance estimator and corresponding chi-square tests

to survey calibration problems. Estimates of item difficulties in lon-

gitudinal datasets involve possibly correlated binary or categorical

random variables, rendering the estimating process even more com-

plicated and delicate than it already is for IRT models. The adjusted

cluster-robust variance estimator is extended for multivariate results

in Chapter 6. Chapter 8 finally applies the MCRVE to longitudi-

nal test data and its application to the Rasch model is discussed.

The final chapter of this dissertation is a discussion on the results

and takeaways from this study into psychometric analysis and new

statistical approaches to longitudinal test data.

xx



Part I

Psychometric and

Statistical Solutions to Item

Estimation in Longitudinal

Test Data

1



“Science must be understood as a social phenomenon, a gusty

human enterprise, not the work of robots programmed to collect pure

information. ” Mismeasure of Man, S.J.Gould

2



Chapter 1

Psychometric Models for

Item Estimation

Psychometrics, the science of measurement of psychological quali-

ties, aims to properly quantify a latent trait of interest on a subject

or population with the help of an instrument, also called measure.

When assessing a physical trait such as length, weight or tempera-

ture, the instrument is a ruler, scale, or thermometer, measuring a

tangible quantity with a standardized unit. These tools provide a

stable framework for comparing measurements across different ex-

periments and subjects.

Psychological traits cannot be measured in the same explicit

manner. Instead of observing an ability of interest directly, the

instrument, or ruler, is a series of questions, or items, most often

with binary or categorical responses. The concept that mental abil-

3



ities or feelings like discomfort can be measured with a metric of

some sort through the use of questionnaires, in a way akin to that

of physical traits, is at the foundation of psychometrics. Instru-

ments that measure these latent traits must be modeled in a way

that provides a frame of reference that should be as robust as for

the measurement of physical traits. These instruments composed of

questions, often referred to as items, are used to place subjects on an

ordered scale, similar to the rulers used for physical measurements.

The traits being quantified are inherently fluid and subjective. In-

telligence or happiness, for example, cannot simply be measured

by asking the subject where they are located on the ruler; “How

intelligent are you?” or“How happy are you?” are interpreted differ-

ently from person to person. Designing a test that objectively and

consistently measures the latent ability can therefore be quite and

elaborate task.

Test theory was first developed by psychologists and educators

(F. M. Lord, 1952) (Hambleton & Jones, 1993) and connected to

probability measures mainly by (Zimmerman, 1975) and (F. Lord

& Novick, 1968). Logistic models were introduced into the field of

psychometrics about a decade later under the form of the Rasch

model and item response theory (IRT), bringing with them the the-

ory of linear regression and identifying separate parameters for the

subject and the item. We now delve into the mathematical back-

ground of classical test theory and discuss measures of reliability.

4



1.1 Classical Test Theory

Classical Test Theory is governed by a simple set of rules and

assumptions which have roots in probability theory. In CTT, the

probability distribution of the response of a subject is test-wise.

Correspondingly, subjects are compared by their overall test scores

and item difficulties, which were derived mostly to be compared to

IRT estimates, are determined by the total number of subjects who

endorsed them. A test is then validated by checking the correlation

between items and the overall test correlation with a reliability co-

efficient such as Cronbach’s alpha. Validity is not discussed in this

dissertation as the focus is the theoretical properties of test models

and their resulting estimates and standard errors.

Test data is modeled with the simple formulation of three con-

cepts: a true theoretical score, a test score (observed), and an error

score. The true score of a person is their observed total score T on

a test, with an additive independent mean zero error: X = T + E.

The statistical assumptions were formulated by (F. Lord & Novick,

1968) and (Zimmerman, 1975):

1. test and error scores are uncorrelated,

2. the average error of this population is zero, and

3. error scores on parallel tests are uncorrelated.

Although greatly simplified, these properties stem from axioms

5



regarding conditional expectations as linear operators in Hilbert

spaces. Formally defined by Zimmerman, a test procedure is a 5-

tuple

T = (Ω,U , P, f,X),

in which Ω is the usual set of all possible observable outcomes, f :

Ω→ Φ is an assignment of individuals or experimental objects, and

X : Ω ⇒ R is an assignment of scores (a realization of the test),

such that (Ω,U , P ) is a probability space, f is a random point, and

X is a random variable. In this way, every test procedure denotes

a set of conditional random variables {X|f = α}, α ∈ f(Ω), which

can be regarded as assignments of scores given particular subjects.

The true score is the expected values of the conditional random

variable {X|f = α}, t = E(X|f). Although Zimmerman’s notation

suppresses the α here, it is actually inherent in this theory that

t is a function of α (which is the subject). In other words, the

expected value of the test depends on the subject. In fact, the

errors are defined as the distance between the random variable and

its conditional expectation

eα = [X|f = α]− t(α).

This enables the use of probability theory of projections on Hilbert

spaces and therefore gives the desired assumption of uncorrelated,

6



mean zero errors:

E(eα) = 0

and for two conditionally independent random variables X1|α and

X2|α,

E(e(1)α e(2)α ) = 0.

The random variables Xi described above are always assumed

to be uncorrelated, but not necessarily identically distributed. Two

realizations of a test which are conditionally independent and identi-

cally distributed are called parallel tests. Two test procedures T1 and

T2 are equivalent if (f1, X1) and (f2, X2) are identically distributed,

that is, the probability measure induced is the same:

PX1|f1 = PX2|f2

For more details on the application of probability spaces and Hilbert

spaces to classical test theory, see (Zimmerman, 1975).

The fact that classical test theory is “test-”based rather than

item based is perhaps why nowhere in the literature review did I

find an explicit statement that equated parallel dichotomous tests

to a binomial distribution. Two tests scores may have the same

probability distribution, but that does not explicitly mean that the

7



questions making up the test all have the same difficulty level. In-

dependence is however inherently assumed across items so that the

probability of a response vector for multiple items is the product of

their individual probabilities, all given a constant ability α:

P(X11 = x11, . . . , X1k = x1k) =
K∏
i=1

P x1i
1i,αQ

1−x1i
1i,α

Items with the same difficulty level are often assumed in blocks, so

that their probability of success is equal for all items keeping the

ability constant. With this assumption, the number of endorsed

items given ability α follows a binomial distribution.

Although this thesis is concerned with estimation of variances in

particular, it is worth taking the time to understand a little bit

about what reliability means in classical test theory, because it is

used as a mathematical stamp of approval to show that a test will

produce the same results under different circumstances; and the only

quantity used to demonstrate this is, under some form or another,

the reliability coefficient.

1.1.1 Reliability and Validity

Tests are evaluated based on two concepts, reliability and valid-

ity. Reliability addresses the re-test capabilities of a questionnaires,

whereas validity focuses on whether the test is measuring what it

intends to. Validity is a more philosophical question which we will
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not address here. Reliability, however, is evaluated using statistics

such as Cronbach’s alpha:

( K

K − 1

)(
1−

∑
S2
i

S2
X

)
the Spearman-Brown Formula, or the Kuder-Richardson 20 or 21.

The KR-21 assumes all items have the same difficulty:

( K

K − 1

)(
1− M ∗ (n−M)

nVar(X)

)
where M is the mean score for the test, and n is the sample size.

Statisticians will recognize the standard error of a sample proportion

from a binomial experiment.

All are based on the reliability coefficient of a test procedure,

defined as the ratio VarMx/VarX, where Mx = E(X|f). If a test

is taken multiple times, so that X1, X2, . . . are parallel, then the

reliability coefficient is given by the correlation between the two,

ρ(X1, X2). As Zimmerman states, equivalent test procedures have

the same reliability coefficient. A measure of reliability for a test

which was taken two or more times is therefore to compare the

reliability coefficient across test realizations.

It should be noted that reliability is a function of test length, so

that adding questions to a test will increase its reliability.
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1.1.2 Hypothesis Tests

Suppose a researcher assigned the same test to a placebo and a

treatment group. A researcher interested in testing for treatment ef-

fect would simply assume two independent populations with normal

distributions on the total test scores and do a t-test:

X̄ − Ȳ√
S2
X + S2

Y

> tα

The same would be assumed if the researcher wanted to test for

a potential time change in a subject’s score across two different

time points. Again, any assumptions that would be verified prior

to conducting these hypothesis tests would involve the reliability or

validity of the questionnaire.

As noted above, there is often an assumption of parallel tests or

block of equivalent items. Reliability is then checked using the KR-

21. In the third part of this dissertation, we propose a chi-square

test for these assumptions which deals with potential correlation

between time points or subjects.

1.1.3 Criticisms of CTT

CTT is a long implemented straight-forward way to model and

compare test scores. Its praised benefits include simplicity and in-

tuitive analytical interpretation; however, it has been widely recog-
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nized to have multiple shortcomings for multiple decades (Hambleton

& Jones, 1993; Fischer & Molenaar, 1995; Borsboom, 2006; Magno,

2009; Sébille et al., 2010; Petrillo, Cano, McLeod, & Coon, 2015;

Maul, 2017). As stated earlier, a stable frame of reference is key

when creating a measure which will be used to compare popula-

tions, otherwise comparison is meaningless. CTT fails to provide

such a robust measure due to the symmetric dependency of its es-

timates; more specifically, there are no person or item parameters,

simply sum scores and correlations. As a result, any estimation of

the difficulty level of the test will be dependent on its population

and therefore a biased estimate of the item difficulty itself. This will

become apparent with the parameterization in item response models

in the next section.The dependency between test scores and popu-

lation samples has been discussed repeatedly (Petrillo et al., 2015;

Magno, 2009; Hambleton & Jones, 1993). This idea of relationship

between the question and the subject was probably first stated by

Frederic Lord , who realized that given the same population sample,

the estimated sample distribution of the ability was different given

two different tests, as he showed with this simple graph(F. M. Lord,

1952):
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Figure 1.1: Scale dependence of ability estimates

Another shortcoming of CTT is its simplistic assumption that the

distribution of the error scores is constant across all subjects, no

matter their location on the latent trait. As noted in (Petrillo et

al., 2015), there is more precision in the middle of the scale, and it

therefore is “counterintuitive that patients’ scores at the extremes

of the scale (floor and ceiling) have the same level of precision as

those in the middle of the scale”.

Finally, it seems nearly impossible to find an example of a test

which would be deemed unreliable. (Maul, 2017) demonstrate this

when they create nonsense items which, by CTT standard, pass all

the checks to show that the result is a reliable, valid measure. Maul

attributes this nonsensical conclusion and observed high correlation

to the potential tendency of any test taker to behave consistently

in his or her way of answering the questions. This therefore begs

the reader to wonder what an unreliable test would look like, and

whether reliability is not an inherent part of a unidimensional test,

which should be regarded as a default quality rather than evidence
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of a reliable measure.

Despite these shortcomings, classical test theory is still a lead-

ing method of analyzing test data and creating test which are used

as standardized measures of health in today’s social sciences (ex:

PROMIS Depression Scale). Many testing programs remain firmly

rooted in classical measurement models and methods.(Hambleton &

Jones, 1993). Somewhat surprisingly, there has been a statistically

superior alternative to CTT since the 1960s.

In 1952, Lord brought forth the idea that observed scores and

true scores from a test are not synonymous with ability parame-

ters, which are more fundamental because they are test indepen-

dent, whereas observed scores and true scores are test dependent.

This led psychometricians to discuss models that might lead to de-

scriptions of examinees that would be independent of the particular

choice of items or assessment tasks that were used in a test as well

as item estimates which were independent of the sample from which

they were calculated. Item Response Theory came as a response to

CTT. Logistic test models were introduced by Allen Birnbaum in

technical papers published in 1957 and 1958. George Rasch pub-

lished his work on the 1-parameter logistic test model in 1960 and

presented a solution to sample-free item estimates by conditioning

on the sufficient statistics for the subject parameters.
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1.2 Item Response Theory

This section introduces the one, two, and three-parameter logistic

test models. Item Response Theory was developed as an alternative

to the classical approach, in hopes of item parameter estimates in-

dependent of subjects abilities. As stated by (Fischer & Molenaar,

1995), “ IRT can do the same things better and can do more things,

when it comes to modeling existing tests, constructing new ones,

applying tests in non-standard settings, and above all interpreting

the results of measurement”. In contrast with CTT, IRT simul-

taneously estimates subject ability and item difficulty. For binary

responses, this takes the form of a generalized linear models with the

canonical link (logit) for the Bernoulli distribution. The systematic

component is a linear combination of one or more item parameters,

along with a latent subject ability. Many models belong to the IRT

class, the Rasch model being the simplest (meaning it has the least

parameters). It is also referred to as the 1 Parameter Logistic Model

(1PL) because the difficulty of an item is represented by one param-

eter only. The 2-paremeter and 3-parameter models are also widely

used in education (ex: standardized tests like the SATs) and health

and are therefore discussed briefly below.

The general probability of success of an IRT model can be written
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in the following way (De Boeck & Wilson, 2004):

P(Y = 1|αi, δi, ci, θj) = ci + (1− ci)
eαi(θj−δi)

1 + eαi(θj−δi)
(1.1)

where

• δi is the item difficulty level

• αi is the item discrimination parameter - this regulates the

slope of the systematic component, ie of the probability of cor-

rectly answering an item as a function of subject ability, given

item difficulty.

• ci is the guessing parameter for the ith item.

• θj is the subject ability level.

3 Parameter Logistic Model The 3PL is the only of the three IRT

models we study which incorporates a guessing parameter. This

model is an example of how a solution can quickly become over-

parametrized and lose identifiability. For a set of N × L binary

observations with only one response per subject per item, 3L + N

parameters must be estimated. (Maris & Bechger, 2009) discuss

identifiability issues in the 3 PL .

2 Parameter Logistic Model The 2PL, also called the Birnbaum

model, is probably the most commonly used IRT model (for the
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moment), because of its accommodating discrimination parameter.

The guessing parameter is set to zero (ci = 0 for each i) . Item

discrimination is still modeled, but it is assumed that the proportion

of guessed answers is negligible. Just like the 3PL, this model has

identifiability issues (Fischer & Molenaar, 1995).

The log-likelihoods of the 2PL and 1PL are very similar, and since

we derive it for the 1-Parameter model in the next section, we simply

give the formula here to prove our point: item discrimination (αi)

and item difficulty parameters (δi) cannot be separated and hence

neither are identifiable:

`(β, δ|Y) =
N∑
j=1

L∑
i=1

[
αi(βj − δi)yij − ln(1 + eαi(βj−δi))

]
=

N∑
j=1

L∑
i=1

αiβjyij −
L∑
i=1

αiδiyi. −
N∑
j=1

L∑
i=1

ln(1 + eαi(βj−δi))

(1.2)

1 Parameter Logistic Model The 1PL arises from setting both ci =

0 and αi = 1 in Equation 1.1 for each item, eliminating both of those

parameter vectors. As a result, we will see that this is the only

model to have sufficient statistics for its parameters. Subjects’ sys-

tematic components have parallel slopes on the same item and can

therefore be compared. The 1PL is more commonly referred to as

the Rasch model, which we heavily focus on in this literature review.
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1.3 Rasch Model

The Rasch model is a specific type of generalized linear model

for Bernoulli data. There are no informing covariates and no re-

peated observations, since test data consists of items answered once

by each subject. This is similar to a complete block design set up

with crossed effects. The standard Rasch model has one ability

parameter for each subject, and one difficulty parameter for each

question, both fixed. A common alternative is to consider a random

distribution on the person ability, greatly reducing the number of

parameters needed to estimate. This is equivalent to a generalized

mixed effects model with a balanced design. Having a random distri-

bution on a latent variable introduces a specific dependent structure

within subject response vectors which is often difficult to evaluate

given that this is not simply a linear model. There are three ma-

jor estimation techniques for the Rasch model: joint, conditional,

and marginal maximum likelihood. Although they have been shown

to yield similar estimates (Linacre, 2004), all three have problem-

atic pitfalls, which we discuss more below. However, only CML

retains sufficiency and uses it to get consistent estimates by con-

ditioning out the subject abilities. The Rasch model is presented

in the same manner as David Andrich in Rasch Models for Mea-
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surement (Andrich, 1988), rather than from a GLM perspective,

to highlight the importance of conditional estimation in obtaining

consistent estimates.

1.3.1 Structure of the model

Consider an individual answering L binary items on a test or sur-

vey. The Rasch model assumes an innate ability B, and a fixed

difficulty level Di, i = 1, · · · , L for each item. Assuming that a

higher ability leads to a higher probability of scoring 1 on more dif-

ficult items, the following ratio is set as the odds of scoring 1 (vs 0)

on item i. In other words, we assume that the log-odds of the prob-

ability of success is a linear function of item difficulty and subject

ability:

P(Xi = 1)

P(Xi = 0)
=

B

Di

= eβ−δi

where eβ = B, eδi = Di.

This is just a general linear model for a Bernoulli distribution

with the canonical logit link. (We briefly describe the structure of

GLMs in section 3.) We can therefore rewrite the probability of

response of a subject on item i as

P(Xi = xi) =
eθixi

1 + eθi
=

e(β−δi)xi

1 + eβ−δi
(1.3)

Equation 1.3 above is the standard form for the Rasch model.
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Independence is a key assumption of this model: a person’s an-

swers to different items are independent, and different subjects’ re-

sponses to the same item are independent, given β1, · · · , βN , and

δ1, · · · , δL. Let Y1, Y2, · · · , YN represent the (L×1) response vectors

for each of N subjects. The observed data

Y =
[
Y1 Y2 . . . YN

]T
has joint probability mass function

P(Y = y|β, δ) =
N∏
j=1

L∏
i=1

e(βj−δi)yij

1 + eβj−δi
(1.4)

In exponential family form:

P(Y = y|β, δ) =
N∏
j=1

L∏
i=1

exp [θiyij + c(θi)]

= exp
[ N∑
j=1

L∑
i=1

(
θiyij + c(θi)

)] (1.5)

From this, we obtain the complete log-likelihood:

`(β, δ|Y) =
N∑
j=1

L∑
i=1

[
(βj − δi)yij − ln(1 + eβj−δi)

]
=

N∑
j=1

βjy.j −
L∑
i=1

δiyi. −
N∑
j=1

L∑
i=1

ln(1 + eβj−δi)

(1.6)

Sufficiency : Expression 1.6 shows by direct consequence of the Fac-
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torization Theorem that (y.1, · · · , y.N , y1., · · · , yL.) are jointly min-

imally sufficient for the parameters (β1, · · · , βN , δ1, · · · , δL). We

make the important distinction that yi. is a sufficient statistic for

δi on its own when subjects are partitioned into groups according

to their raw score y.j. As described below, conditional maximum

likelihood (CML) uses these sufficient statistics to obtain a score

function independent of person ability parameters. We first discuss

joint maximum likelihood.

1.3.2 Estimation Methods

Joint Maximum Likelihood (JML)

Maximizing Equation 1.6 gives the solution to the score function:

y.j =
L∑
i=1

eβj−δi

1 + eβj−δi
, yi. =

N∑
j=1

eβj−δi

1 + eβj−δi
(1.7)

The estimates which solve these equations are referred to as joint

maximum likelihood estimates to differentiate them from the condi-

tional and marginal estimates, described below. The JML estimates

are therefore the “usual” MLE’s which solve Equation 1.7. When

both subject and item parameters are unknown, Fischer scoring is

used to find a solution.
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Ideally, and theoretically, an instrument created should be cen-

tered and scaled with respect to person ability. This means no item

should be too easy or too difficult for everyone, and no subject

should pass or fail every item. Going back to the example of an

entire class getting an A on a test: This indicates that the location

of the items is lower than the average person ability, and therefore,

the measure is not centered on its target population. Understand-

ably, problems with estimation occur if these situations arise: if an

item was failed by everyone, then it seems reasonable, though im-

practical, that its estimate should be infinite. JML gives ±∞ as a

solution for any item or subject with a null or perfect score. Since

this is not a practical value, it is practice to say that, for example,

if an item was failed by all subjects, it is more difficult than all of

the subject abilities, but its exact difficulty level is not estimable.

Andersen (Andersen, 1973) showed that when L remains fixed,

JML estimates are not consistent as N goes to infinity, which also

implies that the estimator is inconsistent. JML estimates are al-

most twice as over-dispersed as CML estimates (Andersen, 1973),

(Linacre, 2004). Consistency for JML can only be established when

N → ∞, L → ∞, and N/L → ∞. This is a major shortcoming

since in any applicable situation, the number of test questions is

fixed.; often a researcher would like to apply this model to smaller

tests and groups. Therefore, adding additional subjects will not help
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in obtaining more precise estimates (Fischer & Molenaar, 1995).

Marginal Maximum Likelihood (MML)

For a large sample of subjects, it seems reasonable to suppose

that each person’s ability is drawn from a random probability dis-

tribution, normal distribution being the most common choice. This

method is considered when item parameters are of interest, which

is the case when attempting to create a measure: item calibration.

This leads to a mixed generalized linear model- or GLMM. We dis-

cuss estimation methods in the GLMM section of this literature

review.

Conditional Maximum Likelihood (CML)

In this scenario, the researcher is interested in item calibration.

Subject abilities are therefore first regarded as nuisance parameters.

Because a subject’s total score Y.j is minimally sufficient for βj,

conditioning on that subject’s total score results in a distribution

independent of βj (by definition of a sufficient statistic). Andersen

(Andersen, 1971) proved that for a two parameter model, under a set

of reasonable assumptions, consistent estimators could be obtained

by conditioning on sufficient statistics for one parameter. That is,

he showed the consistency of the conditional maximum likelihood

estimator for the Rasch model.
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Consider an individual answering two items. His total score Y.j ∈

{0, 1, 2} is only helpful in differentiating δ1 from δ2 if it is 1. If he

answered both incorrectly, or both correctly, then his score contains

no information as to which item might be more difficult. The fol-

lowing shows that the probability of scoring on the first item given

that the total score is 1 does not depend on subject ability:

P(Y1 = 1, Y2 = 0|Y. = 1) =
B

B+D1

D2

B+D2

B
B+D1

D2

B+D2
+ D1

B+D1

B
B+D2

=
BD2

BD2 +D1B
=

D2

D1 +D2

=
eδ2

eδ1 + eδ2
=

1

1 + eδ1−δ2

We can obtain P(Y1 = 0, Y2 = 1|Y. = 1) similarly so that

P(Y1 = y1, Y2 = y2|Y. = 1) =
D1y2 +D2y1
D1 +D2

.

Recall that Di = eδi , Bj = eβj , and therefore:

P(Y1 = y1, Y2 = y2|Y. = 1) =
y1e

δ2 + y2e
δ1

eδ1 + eδ2
=
e−(y1δ1+y2δ2)

e−δ1 + e−δ2
,

where the last part is rewritten for convenience. We can therefore

obtain a likelihood independent of the β’s by conditioning on the
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independent subjects who scored 1:

L(δ1, δ2|Y.1 = 1, Y.2 = 1, · · · , Y.N = 1) =
N∏
j=1

P(Y1j = y1j, Y2j = y2j|Y.j = 1)

=
N∏
j=1

e−(y1jδ1+y2jδ2)

e−δ1 + e−δ2

The log-likelihood:

`(δ1, δ2|Y) =
N∑
j=1

−y1jδ1 − y2jδ2 − ln (e−δ1 + e−δ2)

= −y1.δ1 − y2.δ2 −N ln (e−δ1 + e−δ2)

(1.8)

The resulting maximum likelihood equations for δ1 and δ2 are:

y1./N = π̂1 y2./N = π̂2 (1.9)

where πi = P(Yi = 1|Y1 + Y2 = 1) = e−δi
e−δ1+e−δ2

, i = 1, 2. Note

that this is just a binomial distribution on a subset of the sample,

where each independent subject either scored on item 1, or did not

(and therefore scored on item 2). Therefore the sample proportions

are the best estimators for π1 and π2. δi − δj can be retrieved by

taking the logit of πi and numerical solutions are found thanks to

the imposed constraint
∑
δi = 0. This is similar to a sign-test,

where only observations that differ in the two categories are used.
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The possible combinations that make up an individual’s total score

increase faster as the number of items grows. Extending this theory

to L items, we partition the subjects according to their individual

total scores. Subjects with scores of 0 or L will not help in esti-

mating item difficulties. For each total score R = 1, 2, · · · , L − 1,

let nR be the number of subjects with that score. For instance, for

three items, excluding 0 and perfect scores, the remaining ones are

partitioned into two groups, R = 1; {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and

R = 2; {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Focusing on the group with

success on 2 items out of 3, the conditional PMF is:

P(Y1j = y1, Y2j = y2, Y3j = y3|Y.j = R = 2) =
e−(y1δ1+y2δ2+y3δ3)

e−δ1−δ2 + e−δ1−δ3 + e−δ2−δ3

(1.10)

For L items, we obtain a maximum likelihood equation for each

of the observed acceptable (R 6= L, 0) total scores , with a maximum

of
(
L
1

)
+ · · · +

(
L
L−1

)
= 2L−1 possible combinations. This partitions

the subject population according to total score. Since there are no

repetitions, responses are still independent. For one given score, the
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likelihood is:

L(δ1, · · · , δL|Y, R = r) =
nr∏
j=1

P(Y1j = y1j, · · · , YLj = yLJ |y.j = r), yij ∈ {0, 1}

=
nr∏
j=1

e
−

L∑
i=1

yijδi

K∑
(y)|r,k=1

γrk

=
e
−

L∑
i=1

yi.δi(
K∑

(y)|r,k=1

γrk

)nr .
(1.11)

where the γrk = e−δ
∗
1−···−δ∗r correspond to the k = 1, · · · , K =

(
L
r

)
possible combinations, and the δ∗’s represent the items answered

correctly for that kth possible combination. These are the elemen-

tary symmetric functions of order r. To obtain the final conditional

likelihood, we use the fact that we have partitioned the subject pool

into independent groups by raw score and combine them:

L(δ|Y, R) =
L−1∏
r=1

L(δ1, · · · , δL|Y, R = r) =
e
−

L∑
i=1

yi.δi

L−1∏
r=1

(
K∑

(y)|r,k=1

γrk

)nr .
(1.12)

Let πri = P(Yi = 1|Y. = r). Then Equation 1.13 is a general so-

lution equation to differentiating Equation 1.12 and setting it equal
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to zero.

yi. =
L−1∑
r=1

nrπ̂ri, i = 1, · · · , L. (1.13)

These equations must be solved with numerical iterations un-

der the constraint that
L∑
i=1

δi = 0. The solution algorithm, dubbed

“CON procedure”, has been implemented in R and is used over

JML methods despite its complexity, because of the consistency of

the estimators (Andrich, 1988).

In his review of estimation methods for Rasch models, (Linacre,

2004) cautions against CML for small samples, pointing out that

JML estimates can in some cases have less bias than their CML

counterparts. This is due to the fact that the likelihood in CML

is computed using only non-extreme scores, and for a low number

of items, this eliminates many possible response vectors. For more

concrete examples, see (Linacre, 2004).

Pairwise estimation All pairs of items are collected into a data

matrix, with the (i, j)th entry representing the number of subjects

who answered item i correctly and item j incorrectly. Condition-

ing on the total score being equal to 1 for each pair, a pseudo-

likelihood (Eq. 1.14) is then evaluated and shown to be consis-

tent at some cost of efficiency. It is not the likelihood of the data

because clearly, the pairs are not independent. This approach is
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similar to the generalized estimating equations, discussed later in

this review in that it uses the “wrong” likelihood to obtain consis-

tent estimates. The standard errors, however, are estimated using

JML, which leaves room for improvement since estimation methods

for the mean and variances estimates have entirely different solu-

tion algorithms. Taking the Rasch model as in Equation 1.3, let

fij = eδi

eδi+eδj
= P(Yi = 1, Yj = 0|Yi + Yj = 1). Then the pseudo-

likelihood is simply:

`(δ) =
N∑
j=1

L∑
i<j

yij(1− yij) log(fij) + (1− yij) log(1− fij) (1.14)

(Andrich, 1988; Zwinderman, 1995)

Comparing Estimation Methods

Joint, marginal and conditional maximum likelihood methods all

lead to complicated algorithms. JML, which uses Newton-Raphson

to maximize the joint likelihood, has been shown to have consis-

tency problems; in other words, its estimates are not guaranteed to

converge to their true values for small samples or small subject-item

ratios. CML uses sufficient statistics to obtain consistent estimators

of the item difficulties and is therefore the only method which yields

population-independent estimates. Conditioning and partitioning

by total score however yields multiple estimates for the same pa-

rameter, and the number of estimates only grows with the number
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of items on a test. Pairwise estimation greatly simplifies calculations

by using a pseudo-likelihood between all item pairs, treating them

as independent. However, the methods with which standard errors

for CML estimates are being estimated in current software do not

match the estimation method for the parameters, which seems ad

hoc at best.

Both joint and conditional maximum likelihood methods first ex-

clude all null and perfect scores from the set of observations, reduc-

ing the sample size, since they result in no information for CML and

infinite parameter estimates for JML. This burden is not shared by

marginal maximum likelihood estimation. Computing methods are

also different in MML since the likelihood is a Gaussian integral.

The downfall of marginal maximum likelihood estimation is that of

a a generalized linear mixed model. The estimates of the fixed ef-

fects have been shown to not be robust to misspecification of the

random effect component (Greene, 2002; Hubbard et al., 2010). In

their discussion on estimation methods (Fischer & Molenaar, 1995)

recommend using CML estimates: “MML requires to estimate or

postulate a distribution for the latent trait, and if this is wrongly

estimated or postulated, the MML estimates may be inferior. More-

over, CML stays closer to the concept of person-free item assess-

ment.” Although current software like R have implemented CML,

MML seems more common, and pairwise CML is only available in

the Rasch software RUMM.
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1.3.3 Subject parameter estimation

Once items have been estimated, the test can be administered

to new subjects to evaluate their ability in this particular trait,

considering the items parameters to be known. Various estimators

exist for person ability in this case: the usual MLE, Bayes model

estimator (BME), weighted likelihood estimator (WLE), and Bayes

expected a posteriori (EAP) (Fischer & Molenaar, 1995). We list

these methods but do not plan on focusing on them. Rather, we

focus on item parameter estimation and look at IRT in a GLMM

context, with cluster-robust methods in mind.

The models discussed in this chapter model the application of one

measure to a sample of individuals exactly once, but longitudinal

studies and repeated measures are a frequent occurrence in social

psychometric sciences. How should psychometricians deal with lon-

gitudinal data? On one hand, repeated measures imply a larger

sample size. On the other hand, there is very good reason to ex-

pect some sort of dependence between time points within subject

responses, and treating observations as independent will lead to un-

derestimated standard errors in the presence of positive correlation.

The next chapter explores these questions.
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Chapter 2

Psychometric Approaches

to Longitudinal Data and

Repeated Measures

This chapter extends the literature review in Chapter 1 to a search

for longitudinal adaptations or approaches to model repeated mea-

sures. We first discuss solutions practiced in classical test theory.
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2.1 Classical Test Theory and Mixed Models

In order to explain the evolution of scores, an approach in CTT

is to use a mixed effects model directly on the score:

Si = Xβ + ei,

Var(ei) = Σ,

Si ∼ Nni(Xβ,Σ),

(2.1)

where Si is the score on the ith individual and S
(t)
i =

∑
j

y
(t)
ij . Possible

covariance structures include 1) unstructured, 2) AR(1), assuming

correlation decreases over time but variance is constant, 3) ARH(1),

for modeling correlations that decrease over time but constant vari-

ances, and 4) CSH, which assumes heterogeneous variances are not

equal but constant correlation over time. AIC can be used to chose

best covariance structure, as for a common linear regression prob-

lem.

Hypothesis Test for Time Effect

The following F-test can be used to detect any potential time effect.

µ(t) = (µ1, µ2, µ3)
′ = Xβ

H0 : µ1 = µ2 = · · · = µ⇔ Lβ = 0, L =

1 −1 0

1 0 −1


H1 : not H0
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FL =
(
Lβ̂
)
′
(
LV̂βL′

)−1(
Lβ̂
)
/rank(L)

H0
appr∼ Fr,df .

In a comparison of current psychometric approaches for analysis of

longitudinal data, (Blanchin et al., 2011) compare different methods,

including fitting a mixed effects model directly onto the scores as

well as using a Rasch model extension. The results show that the

CTT and IRT methods have comparable Type I errors and power

overall.(Blanchin et al., 2011) In the last part of this dissertation, we

apply a multivariate cluster-robust variance estimator to this test.

2.2 Nonparametric Solutions Using the Rasch

Model

This section is mostly an overview of the existing methods which

extend the Rasch model to a longitudinal setting. For reasons of

parameter identifiability, and because of its properties, the Rasch

model will be the only IRT model of interest from now on.

The Rasch model assumes a two-dimensional structure between

persons and items where each person answers each item exactly

once. There are many instances where one would like to measure

the evolution of a trait in a longitudinal study. However, this means

repeated observations, which violates the independence assumption

of the Rasch model since two observations from the same person
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are usually not independent: with reason, we can assume that per-

sonal traits are consistent and carried throughout an individual’s

responses over a given time period. Current solutions for this are to

ignore the correlation, add a third dimension to the systematic com-

ponent of the model, or parameterize items and subjects according

to time. We argue that item parameters should be fixed over sub-

jects and time, and that therefore only subject parameters should

vary over time. This also allows us to measure personal changes over

time, which is often the main goal of longitudinal studies. The focus

throughout the published literature seems largely on the estimation

of subject parameters. Item parameter analysis is often overlooked,

even though it occurs first in the estimation process (Blanchin et

al., 2011).

The most common solutions for applying the Rasch model to lon-

gitudinal studies are to ignore the potential dependence between

observations and proceed with the usual estimation methods after

some data manipulation. These solutions are called “anchoring”,

“stacking”, and the Mallinson Approach (Mallinson, 2011).

Anchoring

Anchoring is the process of estimating item difficulties with a sin-

gle time point and using those estimates for person parameter es-

timation on all time points. Theoretically, if item levels have been
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fixed as with this method, subjects’ change over time should be re-

flected in their ability estimates. One potential problem with this is

if there is a dramatic time effect. The item range might be appro-

priate for the first time point but will be off-center by the end of the

study, creating floor and ceiling effects. If there are only two time

points, there is no way to choose a middle ground. Additionally, this

method greatly reduces the number of observed responses. Data in

longitudinal health studies on rare diseases may already be scarce;

in that case, anchoring is probably not the method of choice.

Stacking

Stacking ignores possible dependence between observations com-

ing from one subject. Each subject-item value is the sum of the

observed responses. Estimation is then done in the usual manner,

treating the observations as fully independent. Assuming positive

correlations within subject response vectors, this will result in un-

derestimation of the variance - which translates to over-restrictive

confidence intervals.

Mallinson Approach

In the Mallinson approach, a random sample of patients is gath-

ered at each time point so that each subject is used only once for

across time points in the estimation of the items. This removes po-

tential local dependence within subject responses. Once items are
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calibrated in this way, subject parameters can be estimated through-

out the time points. This approach seems impractical because it

requires a large number of subjects: If there are two time points,

twice as many patients are required as in a single time-point study.

If the longitudinal study is done over say, seven time points, then

seven times as many patients will be required.

Comments

Contrary to longitudinal models discussed later in this literature

review,anchoring, stacking and the Mallinson approach all use fixed

effects on subject parameters. This allows for estimation of actual

subject abilities rather than an overall population mean and vari-

ance. The models considered below all use a normal distribution on

latent population ability, as it reduces the number of parameters to

a single mean and variance for the whole population.

2.3 Extended Rasch Models

2.3.1 Discrete Mixture Distributions

For clustered data, mixture distributions are considered. Often

called mixture Rasch models, these are not to be confused with

GLMMs. Here it is assumed that there are latent subpopulations,

and within each, the simplest form of the Rasch model holds for

the measure in question. Ability parameters are estimated sepa-
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rately within each class. In addition, one must estimate or guess

the number of classes, or subpopulations, as well as the probabili-

ties of membership to each of the classes. However, it is assumed

that every person in a subpopulation will have the same ability es-

timate, at least reducing the number of subject ability parameters.

The overall probability of a response vector is:

P (x) =
C∑
c=1

πcP (x|c, βc, δ) =
C∑
c=1

πc

L∏
i=1

e(xiβc−δi)

1 + e(βc−δi)
(2.2)

Since class membership and frequency are unknown, the EM algo-

rithm is used to solve the estimation problem (Fischer & Molenaar,

1995). Within each Maximization step, Newton-Raphson proce-

dure is used. More details can be found in the computing methods

section. (Willse, 2011) studies JML methods for a multinomial-

response Mixture Rasch Model using the EM algorithm in this way

.

As with normal Rasch analysis, once a model has been specified,

there can be multiple choices for a parameter estimate. The lon-

gitudinal Rasch model parameterizes subject abilities according to

time. In the estimation process, one must choose whether to place

a random distribution on those values (in which case MML is used)

or to keep the values fixed and link time effects using some sort of

latent linear model (in which case CML is used). When a random

effect is assumed on subjects, the estimate is the mean of the pos-
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terior distribution (EAP) which does not seem ideal if the goal is to

measure any change in the sample group or in individuals: the EAP

is a shrinkage estimator used in conjunction with the latent random

effect and assigns every subject the same estimate.

2.3.2 Rasch Poisson Count model

The Rasch Poisson Counts Model (Jansen, 1997) application to

longitudinal studies: consider repeated observations on the same

item, or multiple items of the same difficulty - each item is a column,

each subject is a row, and each cell is the count of (un)successful

responses. The probability of a response matrix for a test with n

time-points or repeated measurements is then:

P(Xij = xij) =
e−nλij

(
nλij

)xij
xij!

, λij > 0,

where

λij = θjδi,

Both parameter vectors are constrained to positive numbers since

the rate of a Poisson RV is positive. Item difficulties (δi’s) are as-

sumed to be fixed and constrained to sum to 1 to avoid indetermi-

nacy. Subject abilities (θj’s) are given a Gamma distribution as it is

conjugate to Poisson random variables. Introducing a random effect
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on subject abilities allows the model to account for overdispersion,

since the unconditional variance of the raw scores will be greater

than their means. Concerns regarding this model include

1. Poisson distribution is supposed to have infinite domain. Is

this approach justifiable for when the number of repeated ob-

servations is small?

2. Poisson distribution is the limiting distribution of a binomial

with large N and small p, as N → ∞. It is not representative

of the underlying distribution when p is not close to 0 or 1, or

when N is small.

3. Poisson distribution can be used for longitudinal settings when

the items are dichotomous but this might not extend well to

items with categorical answers. Andrich’s approach of treat-

ing each threshold as a empirically independent binary random

variables in a conditioned space and taking values in {0, 1}

could be extended to a longitudinal setting. However in or-

der to obtain any sort of sensible estimate for the item thresh-

olds, the assumption that item threshold distances are constant

throughout items and subjects would have be to made, and that

is a strong assumption.
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2.3.3 Time as a Third Dimension - Multi-Facet Rasch

Model

Time is incorporated into the model structure as its own separate

effect. This is similar to incorporating a school or grader effect. In

these models, we assume that the time, school or grader effect is

constant across subjects and items. See (Farindon, 2007) for more

details.

P(Yijt = y|θj; δi;λt) =
ey(θj−δi+λt)

1 + e(θj−δi+λt)
y ∈ {0, 1} (2.3)

This model makes the rather stringent assumption that time ef-

fects for each subject and item are the same. λt is the average time

effect on the model across all items, all subjects. This seems inap-

propriate for any longitudinal study where subjects do not evolve

in a parallel manner and does not lend well to longitudinal stud-

ies, since a primary interest in these cases is to use calibrated tests

to measure individual changes. Rather than estimating an average

time effect, a model which parameterizes time into subject abilities

might be preferable.

2.3.4 Andersen’s Dichotomous Longitudinal Rasch Model

Andersen’s Longitudinal Rasch model transforms item difficulties

and subject abilities from a single value into vectors indexed through

time. Suppose we want to measure over T time points. Each subject
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is the following ability vector: (θj)t,t=1,...,T .The probability of success

for item i, subject j at time t is then:

P(Y
(t)
ij = y(t)|θj; δi) =

ey
(t)(θ

(t)
j −δi)

1 + e(θ
(t)
j −δi)

(2.4)

Marginal Maximum Likelihood

A multivariate normal distribution is usually assigned to subject

abilities. The marginal likelihood for this model is

L(δ, µ,Σ|y) =
N∏
j=1

∫
RT

T∏
t=1

L∏
i=1

G(θ/µ,Σ)dθ (2.5)

where G(./µ,Σ) is the multivariate distribution function with mean

vector µ = (µ1, . . . , µT )′ and covariance matrix Σ. Usually we take

µ1 = 0.this implies that µ̂t represents the deviation from 0, ie the

differences in time d̂1t, t = 1, . . . T .

2.4 Hierarchical Logistic Test Model

LetXvit denote response given by subject v, on item i, at time t. The

Linear Logistic Test Model considers a RM where items are allowed

to vary over time, while subject abilities are considered constant

over time. This does not seem like a good representation of the

data, as items are inherently static, while individuals may fluctuate

over time.
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Item parameters are sometimes also modeled as linear combina-

tions of both fixed and random parameters. A third dimension is

added and interpreted as a school effect. Let pijm be the probability

that person j from school m answers item i correctly. Then the

systematic component of a GLM with k predictor variables is

ηijm = β0jm + β1jmX1ijm + β0jmX2ijm + · · ·+ β0jmX(k−1)ijm

where i = 1, . . . , k − 1, j = 1, . . . , n, m = 1, . . . , r and Xqijm

is the qth dummy variable for the corresponding item, student and

school (or other third dimension)(Kamata, 2001). This articles uses

set-to-0 identifiability constraint (rather than sum-to-0) so that the

first item is the “referencing” item.

β0jm = γ00m + u0jm

β1jm = γ10m

...

β(k−1)jm = γ(k−1)0m

, u0jm ∼ N(r00m, τ{γ})

where γ00m is the overall effect of the referencing item in school

m. To test variation across school, one could model
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

γ00m = π000 + r00m

γ10m = π100

...

γ(k−1)0m = π(k−1)00

, r00m ∼ N(0, τπ)

Here the π’s are fixed. r00m is the random effect associated with

school m and can be interpreted as average ability of students in

school m. A small variance τm would of course imply that there is

not great variation between schools. u0jm is a person- and school-

specific ability and indicates how much that student deviates from

the average ability of students in school m. Note that this can

be extended to a latent regression model with person characteristic

variables (Olsbjerg & Christensen, 2015).

2.5 Concluding Thoughts

Psychometric analyses of longitudinal data were assessed by study-

ing research papers which applied different methods and empirically

compared their statistical properties. Some researchers use ran-

dom effects generalized linear models, but because interest in these

experiments is usually to measure individual progressions though

time, other options are usually considered as well. Antoine Barbieri
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published a number of articles comparing different ways to model

longitudinal data, and had some pertinent concluding thoughts re-

garding CTT methods. In particular, he highlights that ordinal

data is bounded and not always symmetrical- while normal distri-

bution (assumed in a linear mixed model) assumes a continuous,

unbounded symmetric relationship. As we will see in simulation

output, floor and ceiling effects can heavily bias the item difficulty

estimates; confirming a concern mentioned by (Barbieri, Tami, et

al., 2017; Barbieri, Peyhardi, et al., 2017; Barbieri et al., 2015). On

the other hand, he notes that IRT models are used in development

and validation of questionnaires but rarely for longitudinal analysis

of HRQoL in clinical trials (Anota et al., 2014).

This literature review encompasses the different approaches taken

in CTT and IRT. As the reader may have noted, almost all use a

random effect, which means that any determined covariance struc-

ture will not be robust to misspecification and will affect estimation

of item parameters.

We now turn to statistical approaches for correlated binary se-

quences. Generalizes linear models clearly overlap here and will be

discussed quite briefly in the next chapter, as we have spend time

on more specified versions of them here.
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Chapter 3

Models for Correlated

Binary Data

Dichotomous test data is nothing other than sequences of poten-

tially correlated binary responses. While the popularization of IRT

bridged the gap between psychometrics and probability theory of

generalized linear models, not all statistical options have been ex-

plored. In this chapter we focus on statistical approaches to corre-

lated binary data. We look at varying degrees of parameterization

and ask ourselves when modeling complicated underlying structures

with unverifiable assumptions is worth the complication and the

computing effort, especially if resulting estimates are not robust to

misspecified covariance structures. Sensible interpretation of the

results is a key component of the analysis as these are applied in so-

cial sciences and used to make decisive statements to back research
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hypotheses.

These the

3.1 Generalized Linear Mixed Models

Generalized linear models are a common way to analyze data which

does not have a continuous distribution with additive error. Instead

of modeling the outcome of each observation, we model a function

of the parameters. The model consists of three components:

1. The random component encompasses all of the variation of the

model. It describes the distribution of the observed data.

2. The systematic component is a linear function of possibly un-

known parameters/predictors. In mixed GLMs, these variables

can be fixed or random.

3. The link function establishes a relationship between the ran-

dom and systematic component. Instead of modeling observa-

tions directly like in linear models, a function (the link function)

of the mean is assumed to be a linear combination of the pre-

dictors. The most common links for the binomial distribution

are logit and probit.

While hierarchical and random effects generalized mixed mod-

els have already been somewhat discussed, the computing methods

behind the models are rarely discussed and even less understood
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by psychometricians. The binomial distribution has the following

likelihood score function:

∂l

∂β
= XTW


(y1 − µ1)g

′(µ1)

...

(yn − µn)g′(µn)

 = 0.

where

W =


m1 (1− µ1)

. . .

µn(1− µn)

 .

For logit link, g′(µi) = 1
µi(1−µi) .

We briefly come back to the Rasch model. Assuming a crossed,

balanced design with fixed effects (δ for item level and β for person

ability) leads to a normal GLM. The score function takes the form

of Equation 1.7. Having considered the issues with this estimation

method and the complexity of the CML, we turn to a normal dis-

tribution on the subject ability parameter. This is logical for data

with large samples, especially if marginal techniques are used, since

at first subject abilities are considered nuisance parameters.
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3.1.1 Probit-Normal Model

The probit link is the most common alternative to the logit link.

They have been compared and have been shown to give comparable

values, especially around a probability of one half, since both func-

tions are locally linear. While the logit link arises naturally from

exponential families and the log odds ratio is an interpretable func-

tion of the parameter of interest p, a probit link does not lend to

such a nice interpretation. We discuss this more in the context of

a model for rat litter survival data comparing a control and treat-

ment group as analyzed by McCulloch, Searle, & Neuhaus, 2001.

The structure is a GLMM with the probit link and a normal distri-

bution on a latent trait. Only a sum of indicators, Wi, i = 1, 2 is

observed: the survival of rats in each litter. A continuous distribu-

tion is assumed on the probit of the survival probability, with litter

as the random effect. Survival rate is calculated in both control and

treatment groups by taking the ratio of survival from day 21 of the

treatment to day 4. McCulloch introduces the data in the following

way:

Yij = µi+uij; Wijk =


1, w.p. P(Yij < 0)

0, w.p 1− P(Yij < 0)

, uij ∼ N(0, τ 2)
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for i = 1, 2 (group), j = 1, · · · , 16 (litter), k = 1, · · ·nj (rat), where

Φ−1(pi|uij) = µi + uij ⇔ pi|uij = P(Z < µi + uij).

does not depend on j, so the Wijk’s are independent within each

group i = 1, 2. Therefore, we have Yij
indep∼ N(µi, τ

2), Wijk
indep∼

Ber(pij) and Wi :=
16∑
j=1

nj∑
k=1

Wijk ∼ Bin(
∑
nj, pi), where Wi repre-

sents the number of rats who survived in group i, i = 1, 2.

E(Yij|Wij = w) =

∞∫
−∞

yf(y|w)dy

Let Ψ be the conditional density, as follows:

Ψ(y;w, n, µ, τ) =
Φ(yτ + µ)w(1− Φ(yτ + µ))(n−w)φ(y)

∞∫
−∞

Φ(yτ + µ)w(1− Φ(yτ + µ))(n−w)φ(y)dy

And so, we get the conditional expectation of the complete data

given observed values W:

E(Y |W ) =

∞∫
−∞

αΨ(α;w, n, µ, τ)dα

E(Y 2|W ) =

∞∫
−∞

α2Ψ(α;w, n, µ, τ)dα
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From these, we obtain estimates the mean and variance of the

unobserved continuous random variable.

3.1.2 Computing Methods

The unobserved nature of general linear models and Generalized

mixed linear models makes estimation procedures often quite com-

putationally heavy, and some iterative algorithm is required to con-

verge to a solution. We studied each of these methods and included

some computational details in the appendix, section 9.5.1. However

the next chapter looks at a CRVE which avoids latent specification

of a random effect, so we will not be using these computational tools.

GLMMs are not robust to misspecification of the random effect

Many researchers caution using random effects models without care-

ful consideration first: “Introducing random effects into the mod-

els affects estimation of the fixed effects when the distributions of

the random effects are misspecified” (Hubbard et al., 2010), in-

troduces bias into the fixed effect parameter (Greene, 2002), has

interpretability issues and ”leads to nonsensical inference ” with

“misleadingly arrow confidence intervals, large t-statistics and low

p-values” (Freedman, 2006; Hubbard et al., 2010; Cameron & Miller,

2015). An important observation which was also noted in the sim-

ulation is that the need to control such within-cluster correlation

only increases with the number of observations within a cluster.
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When the covariance structure between clustered observations is an

estimation hurdle rather than the parameter of interest, a popula-

tion average model which is robust to variance misspecifications is

therefore a sensible alternative to mixed effects models.

3.2 Beta-Binomial Distributions

The beta-binomial distribution is a hierarchical GLM often used to

model overdispersion in binomial experiments. The probability of

success for each cluster is drawn from a beta distribution, and the

number of successes per cluster, denoted Yg, is such that

Yg|pg ∼ Bin(ng, pg)

A common parametrization for the beta distribution on the clus-

ter probabilities uses two shape parameters α, β > 0. Throughout

the rest of this document, the mean parameter p and “correlation”

parameter (as we will call it) γ will be used, where

E(pg) =
α

α + β
:= p, Var(pg) =

αβ

(α + β)2(α + β + 1)
:= γp(1−p)

(3.1)

The unconditional mean of the binary sums Yg is unchanged due

to the tower property, while the variance is at least as great as the

variance of a binomial model:
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E(Yg) = ngp, Var(Yg) = p(1− p)
[
(1− γ)ng + γn2

g

]
Simulations in later chapters will use the γ ∈ [0, 1] as a tuning

parameter for the amount of variance in each cluster. The variance

of Yg is equal to that of a binomial when γ = 0 and is of order n2
g

when γ = 1.

This model has many advantages. First, it places the random

effect directly on the probability of success rather than through a

link function. This allows for more direct interpretation.

Second, the beta distribution can have a skewed, bimodal or bell-

shaped curve depending on the value of its parameters. It is there-

fore a great candidate for simulating data with clustered binary

values. For a discussion on the relation between the underlying

probability and correlated binary data, see section 3.3.

Third, this model limits the covariance between any two obser-

vations to the non-negative range. Compared to some latent probit

models, this means that the correlation bounds cannot be violated,

since this only occurs when the random variables are negatively cor-

related.

Finally, the beta-binomial distribution is a way to generate clus-

tered binary data with a constant intra-cluster covariance between

two observations. In many situations, researchers have reason to
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expect some sort of decaying or local covariance structure, like an

autoregressive process. Modeling with a beta-binomial model intro-

duces a stronger correlation than a time series process would, and

therefore any estimator robust to a beta-binomial clustered struc-

ture would also be robust to weaker structures.

3.3 Generalized Estimation Equations

When the research goal is to estimate the level of items on a test,

the dependence within longitudinal person vectors is not of interest;

however it can greatly affect the standard error of the item estimates

and should therefore be taken into account. GLMMs model overdis-

persion with random effects, adding a latent distribution on each

subject. However, as seen in the previous sections, latent covari-

ance structures have complicated estimates which are not robust to

misspecification (Hubbard et al., 2010), and there is no way around

them. Estimating equations provide a more straightforward alter-

native by avoiding specification of the dependence structure. (Liang

& Zeger, 1986) describe estimating equations and provide consistent

robust variance estimator.

Let R(δ) be a n × n symmetric correlation matrix, and let δ be

and s× 1 vector which fully characterizes R(δ).

Define

Vi = D
1
2
i R(δ)D

1
2
i /φ
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The generalized estimating equations are

K∑
i

DT
i V
−1
i Si = 0,

where Di = d{a′i(θ)}/dβ, Si = Yi − µi

Essentially, GEE’s use likelihood equations from an independent

model for dependent data. Suppose we have many clusters (ex:

schools) independent from each other but with a dependent inner-

cluster structure. Let G be the number of clusters, and suppose

we are interested in comparing a control and treatment group. the

GEE equations (3.3) are used to obtain p̂1, p̂0 and the cluster robust

estimator, first used by Shah, Holt and Folsom (1977), is a function

of within-cluster correlation and uses observed residuals ûg:

V̂ = (XTX)−1
G∑
g=1

XT
g ûgû

T
gXg(X

TX)−1 (3.2)

where g is the number of clusters.

Let Yjg be the number of successes in cluster g, g = 1, · · · , Gj of

group j, j = 0, 1. Then

Yj. =

Gj∑
g=1

Yjg ∼ Binomial(nj, pj), j = 1, 2.
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And therefore, the Liang and Zeger estimators for this model are:

p̂j =
Yj.
nj
, V̂j =

1

nj

∑
(Yjg − njgp̂j)2 (3.3)

For a mixed GLM for binary data with a logit link, the ML equa-

tions give unbiased estimating equations:

X ′y = X ′E(y)

The large sample variance of the estimator has been shown to be

consistent (Fischer & Molenaar, 1995).

Discussion about correlation in binary random variables Potentially

correlated binary sequences have such broad applications that it

is worth taking the time to investigate what a dependent binary

sequence actually looks like. Bernoulli random variables can be

strongly positively dependent and still have a relatively low cor-

relation coefficient (“ChagantyGEEefficiency”, n.d.). For example,

reliability in CTT is measured directly via correlation of binary or

categorical variables. Repeated measures from longitudinal studies

also pose the problem of potentially dependent binary sequences,

and methods like stacking in IRT disregard these without investi-

gating the consequences. For continuous observations, correlated

data is easy to visualize. Dependence between binary sequences,

however, looks much different. It is important to note that to model
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dependence between a sequence of Bernoulli random variables, some

sort of function is placed on the mean parameter p. The probability

of success for sequential outcomes or outcomes in the same cluster

is then determined by a probability structure. For example, correla-

tion can be modeled as a Markov chain, where the previous success

or failure affects the probability of the current one. It can also be

thought of as originating from an auto-regressive time series process,

which would alter the probability of success over time with a geo-

metrically decaying covariance structure. Finally, the beta-binomial

model introduces positive covariance between observations by draw-

ing probability values from a beta distribution. All three of these

methods model the probability of a success in three different ways

so that it is a function of time, state space or simply has a beta

distribution; then observations are drawn with the probability of

success in that cluster/state/at that time point.

Simulating dependent sequences of Bernoulli variables using these

methods does not exhaust the list of all covariance structures social

scientists may encounter in practice. If a patient is very low on

the latent scale that is being measured by a test, then it might be

more realistic to say that he will fail all items whose difficulty level

is below a certain threshold. Markov chains with absorbing states

might be a way to closely replicate this sort of scenario.

If items on a test are positively correlated, then we would ex-

pect similar answers on these items. In other words, given that one
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item was answered successfully, we would expect a successful answer

on the other items with a higher probability than if the first item

was an observed “failure”. Therefore, highly correlated items would

yield constant sequences of mostly successes (or mostly failures).

But how is such a positively correlated sequence distinguished from

independent items which all have a high (or low) probability of be-

ing endorsed, especially when only a few observations are recorded?

This problem extends to items with small numbers of ordinal cate-

gories as well and is inevitably tied to a downfall of Cronbach’s al-

pha, which is that a test is rarely deemed unreliable. Indeed (Maul,

2017) show that a test composed of nonsensical lorem ipsum or even

blank items is deemed reliable due to the positive correlation of the

items. This discussion is kept in mind when looking at simulation

results in the coming chapters which use a beta-binomial model and

briefly Markov chains to generate the data.
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Part II

Cluster-Robust Variance

Estimator
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“Of two equivalent theories or explanations, all other things being

equal, the simpler one is to be preferred”. - William of Ockham
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Chapter 4

Cluster-Robust Variance

Estimator

Introduction The last chapter concluded with general estimating

equations (GEE) as a way to obtain consistent mean estimates

while avoiding model over-specification in correlated binary mod-

els. In this chapter, we look at a cluster-robust sandwich estimator

which uses GEEs to obtain an asymptotically normal test statistic,

and apply it to binary response data. Because the within-cluster

correlation is unspecified, this estimator is robust to a wide range

of covariance structures. The following theory was developed in

conjunction with (Carter, Marquis, & Steigerwald, 2020), who de-

velop consistency conditions based on cluster variances. We refer

the reader to that paper, which will from now on be referred to

as the CMS paper, for proofs developed prior to this dissertation.
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The cluster-robust variance estimator (CRVE) is presented in sec-

tion 1 along with the aforementioned consistency conditions. CMS

show that heteroscedasticity across clusters or variation in cluster

sizes lead to increased inaccuracy in the normal approximation, and

therefore a large number of clusters might not be a good enough

criteria for valid inference. They develop an effective number of

clusters G∗ which measures the degrees of freedom in test statistic

and calculate a bias as a function of G∗. The GEE variance es-

timator is known to have downward bias. Section 2 presents this

exact bias and the aforementioned consistency conditions are used

to develop a conservative multiplicative bound. In Section 3, we

discuss a Student’ t approximation in small-sample situations with

possibly unaccounted variation and derive the degrees of freedom for

an approximate chi-square distribution for the variance estimator as

proposed by (Satterthwaite, 1946a). The two-sample test statistic

and its approximate degrees of freedom for testing treatment effects

in clustered groups are given in Section 4. The next chapter will

explore the bias adjustments and t-distribution and compare the

results with other possible estimators using a simulation study of

coverage percentages.
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4.1 Cluster-Robust Variance Estimator

Many publications have proposed cluster-robust variance estima-

tors in heteroscedastic experiments. White (1984, Thm 6.3, p.136)

establish two results for clusters of equal size: First, that the cluster-

robust t statistic has a Gaussian asymptotic null distribution, and

second, the variance component is consistently estimated through

use of a cluster-robust variance estimator. Consistency of the vari-

ance estimator is established by Hansen (2007), but is not robust

to cluster heterogeneity. (Carter, Schnepel, & Steigerwald, 2017)

use cluster-robust modified variance estimators with a set of re-

laxed sufficient conditions for asymptotic normality for linear mod-

els with continuous outcomes. However, Carter et al. rely on a

fourth-order moment condition that binary errors do not generally

satisfy. Other papers rely on bounding the largest cluster size (

(Djogbenou, MacKinnon, & Nielsen, 2018; Hansen & Lee, 2018)).

The proof of the asymptotic normality of the test statistic depends

on the variance of V̂ being negligible relative to the size of the true

variance V ; that is; no cluster is contributing to the estimator in

a disproportionately large way. CMS give sufficient conditions for

normal approximation which control individual variances. We show

through theory and simulation that cluster sizes and differences in

cluster variances lead to non-normality of the test statistic, and sug-

gest a reasonable effective number of clusters which guarantees the
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size of the test to be at most the desired α.

We begin by stating the test statistic of interest:

t =
p̂− p√
V̂

(4.1)

where p is an unknown proportion common to a clustered popula-

tion. Observations are comprised of data clustered into G indepen-

dent groups with unspecified intra-cluster variations which are, for

the purpose of this research question, considered a nuisance to the

estimation process, since the parameter of interest is the mean. For

each cluster g, denote (Yg)g=1,...,G as the sum of binary observations

Yig ∈ {0, 1}, i = 1, . . . ng where ng are the corresponding cluster

sizes. A binomial assumption would be erroneous at this point, be-

cause of possible correlation within each cluster which affect the

cluster variances. Although ignoring it does not bias the estimate

of the mean, its variance becomes grossly underestimated, as simu-

lations in the next chapter confirm (Figures 5.11). The estimate of

p is the sample average of all binary observations

p̂ =

G∑
g=1

Yg

G∑
g=1

ng

=
Y

N
, where Y =

G∑
g=1

Yg, N =
G∑
g=1

ng.

We now give the cluster robust variance estimator (CRVE) which
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is an estimate of V = Var(p̂):

V̂ =
1

N2

G∑
g=1

(Y − ngp̂)2 (4.2)

This sandwich estimator measures residuals over clusters rather

than each binary observation.

We now list four sufficient conditions for asymptotic normality,

derived in CMS.

Condition 4.1.1. The number of clusters Gj → ∞ for j = 0 and

1.

While this condition is not necessary for consistency of p̂, it is

crucial for consistency of the cluster-robust variance estimators in

4.2. Because the cluster-robust variance estimator depends on the

outcomes only through the cluster-level sums Yjg, the other condi-

tions restrict the distribution of the Yjg. Condition 2 bounds the

kurtosis. Condition 3 bounds the variation in cluster sizes. Condi-

tion 4 is a stronger condition which bounds the fourth moment of

the cluster sums.

Condition 4.1.2. The kurtosis of each Yjg is bounded

Var
(
[Yjg − njgpj]2

)
≤ κ [Var(Yjg)]

2

for all g, j = 0 and 1, and a constant κ.
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Condition 4.1.3. The empirical coefficient of variation of the ng’s

is negligible as G→∞

G∑
g=1

(
ng
N
− 1

G

)2

→ 0.

Condition 4.1.4.

G∑
g=1

(
Var(Yg)

N2V
− 1

G

)2

→ 0,

If the variances of the Yg are identical, then this relation holds

exactly. When the model is nearly binomial, meaning that the vari-

ance of each cluster is close to ngp(1 − p), then Condition 4.1.4

follows immediately from Condition 4.1.3. This might occur in ex-

periments with time measurements where the cluster correlations

decay geometrically. Condition 4.1.4 is needed in case the model

has a stronger correlation structure.

These conditions are more than sufficient to have asymptotic nor-

mality when the population variance is known; the proof of the

following lemma is therefore omitted.

Lemma 4.1.1. If Conditions 4.1.1–4.1.4 are satisfied,

p̂− p√
V

appr∼ N (0, 1).
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The main result of CMS is that the test statistic with the variance

estimate is also approximately normally distributed for a relatively

large effective number a clusters. The proof to show this convergence

in distribution uses Slutsky’s theorem and demonstrates consistency

of the CRVE by showing that V̂
V

P→ 1. The details of the proof are

available in the appendix of CMS. This main result is now stated:

Theorem 4.1.1. If Conditions 4.1.1–4.1.4 are satisfied then

t =
p̂− p√
V̂

appr∼ N (0, 1).

Asymptotic normality has been established. What does this mean

for a practitioner? The rest of this chapter examines the behavior of

the test statistic under different experimental settings and aims to

provide helpful guidelines. The GEE cluster-robust estimator has

been known to underestimate the variance. The conditions above

aim to control the difference in the variances of the Yg (Condition

4.1.4) and the variation in cluster sizes (Condition 4.1.3), because

those are directly related to the their variances. When heterogeneity

between groups is significant and the quantities in 4.1.3 and 4.1.4

are relatively large, the test statistic may not follow an approximate

normal distribution. In fact, simulations in Chapter 6 reveal a slight

bimodal density in situations where one cluster holds more than half

of the observations (Figure 5.29). An effective number of clusters is

developed as a function of the variation of cluster variances, which
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represents a more accurate measure of the degrees of freedom in the

experiment.

4.2 Effective number of clusters

The effective number of clusters is defined as

G∗ = G
(

1 +
1

G

G∑
g=1

[Var(Yg)− V̄ ]2

V̄ 2

)−1
, (4.3)

where V̄ = V · N2/G. This quantity attempts to measure clus-

ter homogeneity, in that smaller values indicate variation between

cluster variances, and G∗ → G as the clusters become more ho-

mogeneous. Note that this is a multiplicative measure, so that

1 ≤ G∗ ≤ G. As theoretical results backed by simulation results

will show, G∗ can be used as a measure of the consistency of the

variance estimator and consequent asymptotic normality of the test

statistic. In fact, G∗ → ∞ is sufficient for convergence of the test

statistic. Simulations in the next chapter will show that even a G∗

which is small compared to G suffices for the test statistic to have

at least 94% coverage.

The quantity in (4.3) is based on the unknown cluster variances.

This allows for some flexibility in calculating a G∗ based on the

presumed underlying model. We chose to use the beta-binomial dis-

tribution as it provides a matching structure of independent groups

while allowing for the cluster variances to have different magnitudes.
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This is a common way to account for overdispersion in generalized

linear models (see Section 3.2). The number of successes in each

cluster can have a variance as small as an independent binomial

model, np(1−p), and reach an order of n2p(1−p) when γ is close to

one, which is a larger variance than in many other clustered models

(CMS):

Var(Yg) = (1− γ) · ngp(1− p) + γ · n2
gp(1− p) (4.4)

Plugging γ = 1 into 4.4 to give the largest possible variance, p

cancels out of the equation and the resulting G∗ is then only a

function of cluster size variances:

G∗ = G

[
1+

1

G

G∑
g=1

(n2
g − ν
ν

)2]−1
(beta-binomial assumption, γ = 1)

(4.5)

where ν =
∑
n2
g

G
. See section 3.2 for details on parameterization

for the beta-binomial distribution.

The value in 4.5 provides a conservative effective number of clus-

ters that can be used in practice. It is a more sensitive measurement

of the variation between the cluster variances. An example of a low

effective number of clusters is one in which one cluster contains most

of the observations. The variance of that cluster is proportionate to

its size. In other words, if this cluster offers a poor estimate of the
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mean, then it will add significant error to the sample average, be-

cause p̂ is calculated by weighing each binary observation equally. It

would therefore be preferable to have observations distributed evenly

throughout the clusters, so that no one cluster dominates the sample

average estimate. This is precisely what G∗ is attempting to mea-

sure. A low effective number of clusters results in a more significant

downward bias, calculated next. In Section 4.4, Satterthwaithe ap-

proximation is used to show that under varying cluster sizes and

smaller samples, the test statistic is closer to a t-distribution with

approximately G∗ degrees of freedom.

4.3 Bias Calculation and Bound

The bias b(V̂ ) = E(V̂ )− V , stated here, is calculated in detail in

the appendix 9.1.

b(V̂ ) = V
G∑
g=1

(ng
N

)2
− 2

N3

G∑
g=1

ng Var(Yg) (4.6)

For homogeneous clusters the bias simplifies down to −( 1
G

)V. This

is the same bias that the sample variance s2 has for σ2 in a regu-

lar identically distributed and independent setting. The form in

Equation (4.6) is not very intuitive. We therefore rewrite the bias

to show that its magnitude increases directly as a function of clus-

ter size variation by making a comparison to the homogeneous case
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where ng = N/G:

b(V̂ ) = V

[
− 1

G
+ Γ2 − 2

N2V

∑
g

σ2
g

(
ng
N
− 1

G

)]

(4.7)

where Γ2 is the variation in cluster sizes

Γ2 =
∑
g

[
ng
N
− 1

G

]2
(4.8)

The form (4.7) shows that the bias of the CRVE is at best −1/G

when G = G∗, and is inversely proportional to the effective number

of clusters. Figure 4.3 provides a good visualization of this relation-

ship.

A bound is now derived using one of the consistency conditions

on the cluster variances.

`2 bound

The last term in the bias in 4.7 involves fourth moments of the

distribution and can be bounded using consistency Condition 4.1.4.

[
1

G

∑
g

σ2
g

(
ng
N
− 1

G

)]2
≤

[
1

G

∑
g

σ4
g

][
1

G

∑
g

(
ng
N
− 1

G

)2
]

(4.9)

The first factor in 9.4 can be related to G∗ and bounded using beta-

binomial moments with γ = 1. The bias bound, derived as a func-
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tion of Γ (4.8), simplifies to

b(V̂ ) ≥ V

[
− 1

G
− 1

G∗
+
(

Γ−G∗−
1
2

)2 ]
(4.10)

and is used to obtain a bias-adjusted variance estimate V̂ BC :

V̂ BC = V̂ ·
[
1− 1

G
− 1

G∗
+
(

Γ−G∗−
1
2

)2 ]−1
Naturally, this bias correction is effective when compared to the

theoretical variance of a beta-binomial model, as seen in Figure 4.3,

since we assumed a beta-binomial fourth moment when using Con-

dition 4. The bias is directly proportional to G∗; erratic cluster

variances result in a low effective number of clusters, and there-

fore a more important bias. Again, using a bound based on the

beta-binomial variance with γ = 1 in a way ensures that we have ac-

counted for the “worst-case” scenario (cluster variances order of n2
g).

In Chapter 6 we explore the possibility of substituting in a smaller

γ for a finer bound, based on the discussion of beta-distributions in

(3.2).
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Figure 4.1: Variance Bias Corrections

Figure 4.1 shows the theoretical variance under a beta-binomial

model (black line), along with the original GEE estimate and the

bias-adjusted ones as a function of the effective number of clusters.

The “Simple Bias Adjustment” refers to the standard G
G−1 unbiased

estimator for homogeneous clusters.

4.4 t Distribution with G∗ degrees of freedom

The asymptotic coverage of the test statistic in Eq(4.1) depends

heavily on the effective number of clusters. For small values of G∗,

the empirical densities of the resulting standardized scores is closer

to a Gamma distribution. Empirical densities plotted in Figure 5.29

show a bi-modal density for high values of γ and low values of G∗.
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This is likely due to the effect of the very large cluster carrying most

of the weight in p̂, and occasionally having a very large residual.

This increased non-normality suggests that perhaps a t distribution

would be more appropriate.

4.4.1 Satterthwaite Approximation

If we have G clusters, the CRVE can be written as a linear function

of terms like

Ug =
(Yg − ngp̂)2

Vg
≈ χ2

1

where Vg = Var(Yg). The exact distribution is complex since the

terms are not independent, so we use the approach taken in (Satterthwaite,

1946a), which approximates the distribution by matching moments

with those of a χ2 variable. The degrees of freedom for the chi-square

distribution are then

2α∗ = G

[
1 +

1

G

∑
g

(V̂g − ˆ̄V )2

ˆ̄V 2

]−1
= G

[
1 +

1

G

∑
g

(n2
g − v)2

v2

]−1
= G∗

When the number of clusters is undermined by a large difference

in cluster variances, the test statistic 4.1 is closer to a t distribu-

tion. We reasoned above that V̂ ≈ χ2
G∗ , so that the degrees of

freedom for the t distribution are equal to the effective number of

clusters. Simulations will show the effect of this approximation on
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coverage percentages. The approximation can also be applied to

the bias-corrected estimate V̂ BC , however simulations show that for

G∗ < 2, (which is an extremely unbalanced situation), both bias and

t-distribution overcompensate and result in oversized confidence in-

tervals.

4.5 Two-sample problem

The CRVE and its adjustments are now applied to a treatment-

effect problem. If the control and treatment groups are clustered,

the variance of the difference in proportions can be tested using the

bias-adjusted cluster-robust estimators. The statistic for testing if

two samples have the same population proportions is

t =
p̂1 − p̂0√
V̂0 + V̂1

, (4.11)

where p̂j, V̂j are the sample proportions and CRVE estimators

as in (4.2), respectively, for the control and treatment groups. The

bound in (4.6) can be used on each V̂j to obtain bias-adjusted esti-

mates.

Asymptotic normality of (4.11) is preserved if the Conditions

listed in Section 4.1 are true for both populations. For the degrees of

freedom, the magnitude of the variance estimates must be taken into

account, as would be done in an unequal variance two-sample t-test.
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Unlike in the one-sample problem, the approximate degrees of free-

dom for comparing two clustered populations are sample-dependent,

meaning that they depend on the variance estimate:

D =

( V̂1

V̂0 + V̂1

)2
1

G∗0
+

(
V̂1

V̂0 + V̂1

)2
1

G∗1

−1 , (4.12)
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Chapter 5

Simulation Results

The experiment described in Chapter 5 involves many variables:

number of clusters and effective clusters, cluster size, overall proba-

bility of success, and within-cluster variances. The theory described

in the previous chapter is asymptotic, and the conditions depend on

quantities like the number of clusters growing to infinity. Other than

reinforcing the already-known truth that larger samples yield better

results, this requirement is somewhat useless to a practitioner. In

this chapter we study the behavior of the CRVE under different sit-

uations, discuss the effect of the bias adjustment and Satterthwaithe

degrees of freedom approximation, and compare the asymptotic cov-

erage percentages to other commonly used estimators, like a GLM

or quasibinomial model. Simulations help us check asymptotic nor-

mality of the test statistics under conditions spanning the spectrum

of possible parameter values. More specifically, we show that the
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effective number of clusters is a good measure for cluster homogene-

ity and that asymptotic convergence breaks down when G∗ is very

low (less than 2). Our simulations show that the test statistic given

in 4.1 is very close to a standard normal distribution for as little as

30 or 50 clusters, depending on the intra-group variance structure.

The beta-binomial distribution, described in section 3.2, is used to

generate clustered binary values. To check the distribution of the

test statistic, its value is repeatedly calculated over thousands of

simulations, and 95% coverage percentages are estimated by tak-

ing the number of resulting p-values which fall within the standard

normal confidence interval:

Estimated coverage percentage =
#{Z-scores ∈ (−1.96, 1.96)}

nsim

The exact details of the simulation process are available in the

appendix (9.4). CMS show that the CRVE (4.2) has an approxi-

mate normal distribution when the effective number of clusters is

large; when cluster variances are vary greatly, the test statistic may

not have a normal distribution. To demonstrate this, we calculate

coverage percentages of the test statistic over a range of cluster dis-

tributions. Cluster variances are largely a function of cluster sizes,

and the γ parameter from the beta distribution:

For each graph presented in this chapter, the simulation process

evaluates coverage percentages over a range of cluster sizes, starting
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with one dominant cluster holding over 40% of the responses and

gradually homogenizing cluster sizes. Each graph represents a differ-

ent value of p and γ. We present many situations to see how extreme

values of p affect test statistics, and discuss a sensible range of values

for γ. The effective number of clusters G∗ is used as a measure of

heterogeneity. We focus in particular on situations when the effec-

tive number of cluster is small. Coverage probabilities are evaluated

for the different variance estimators. We then consider other esti-

mators which are used in practice: the regular proportion estimator

which assumes independent and identically distributed observations,

and will be called iid throughout this chapter; the generalized lin-

ear model (GLM) using quasi-likelihood to deal with overdispersion,

and a Wild bootstrap estimator. The results show that the adjusted

CRVE is comparable or superior to the other options for highly het-

erogeneous cases. It is also the only conservative one, in that it

overestimates the variance. We then extend this estimator to the

treatment-control problem described in 4.5 and look at some situa-

tions where the effective number of clusters in each the populations

are highly unequal. In addition, we are aware that the effective

number of clusters and bias correction are based on a beta-binomial

model with the largest possible variance, and that therefore the ad-

justed CRVE will estimate data simulated under this model best.

We therefore consider a second simulation method with a Markov-

chain model that mimics any sort of geometric decay in correlation.
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In all simulations, one aspect seems to remain constant: the iid

assumption is erroneous and sensitive to any amount of overdisper-

sion, with coverage percentage that drop below 50%. The GLM and

CRVE estimators are comparable in all situations, and are robust to

overdispersion. In general, the bias-adjusted CRVE is a percentage

point or two above the quasi-binomial estimate, and both have a

slight under-coverage for G = 50. This is remedied as the numbers

of clusters grows. The use of G∗ degrees of freedom in a t- distribu-

tion results in conservative coverage for G∗ < 10 but then drops to

meet the other estimators. It therefore has a significant effect when

there is a lot of cluster heterogeneity, which was indeed the goal.

However, we will discuss whether or not it is overcompensating, and

how useful the resulting confidence intervals will be.

5.1 CRVE vs Independence Assumption

The first steps in our simulations were to compare the CRVE to the

binomial test statistic which assumes a cluster-free population. This

estimator is explicitly stated in the appendix, Section 9.4. These

simulations confirm that the effective number of clusters G∗ can be

used as a measure of cluster heterogeneity and therefore coverage

percentage. Simulations span multiple values of p and γ for both

the CRVE and the test statistic resulting from an independence
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assumption.

Figure 5.1: Coverage percentages for the CRVE test statistic and “iid” estima-
tor, independent model.

We start with a nearly independent model, with γ = 0.001,

and obtain a somewhat expected result (Figure 5.1). 50 clusters

is perhaps too low for normal approximation to be accurate enough,

which is why both statistics have a slight under-coverage of about

94%. The “iid” test statistic performs slightly better than the un-

adjusted CRVE in this situation. However, increasing the value of γ

only slightly results in clusters with more unequal variances which

are larger than p(1 − p)/n and therefore the “iid” estimator per-

forms poorly, and clearly does not follow a normal distribution and

underestimates the variances greatly, as can be seen in Figures 5.2,

5.3, and 5.4.
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Figure 5.2: Coverage percentages for the CRVE test statistic and “iid” estima-
tor, slight overdispersion.

Figure 5.3: Coverage percentages for the CRVE test statistic and “iid” estima-
tor, overdispersion.
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Figure 5.4: Coverage percentages for the CRVE test statistic and “iid” estima-
tor, heavy overdispersion.

These figures show that the test statistic (4.1) is indeed robust to

variation in cluster variances, and accounts for any overdispersion.

Assuming independence in these situations is obviously a serious

mistake which will lead to invalid inference. The CRVE is known to

have a slight downward bias, as was observed in these graphs. In the

next section we therefore inspect the effect of the bias adjustment

and compare z-scores with tG∗-scores.

5.2 CRVE Adjustments: Bias Bound and tG∗

Distribution

We now use simulations to compare the original CRVE with its

bias-adjusted estimator, and apply the Satterthwaite approxima-
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tion to the degrees of freedom for both of the resulting test statis-

tics (G∗ degrees of freedom). Our simulations revealed that while

both the bias correction and the use of G∗ degrees of freedom in

a t-distribution helped individually, together they might overcom-

pensate in extremely unbalanced cases. This is quite a low effec-

tive number of clusters and would occur in an extreme situation

with very unbalanced groups. We look at simulation results which

demonstrate this occurrence. The adjustments are evaluated at dif-

ferent values of p and γ to bring out any patterns or issues in cases

of low p or large γ.

Figure 5.5: Bias and t-df adjustments on the CRVE
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Figure 5.6: Bias and t-df adjustments on the CRVE for 30 clusters.

Figure 5.7: Bias and t-df adjustments on the CRVE for 100 clusters.
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Figure 5.8: Bias and t-df adjustments on the CRVE for 50 clusters with
widespread distribution of cluster means.

These plots were simulated over three different probabilities and

values of γ, but they all consistently reveal the same result: Al-

though the bias adjustment estimates the theoretical variance quite

accurately, the bias-corrected CRVE still results in a slight under-

coverage (> 94%) for small numbers of clusters. Even with cluster

homogeneity at G = 50, the coverage percentage is slightly below

the desired 95%. We remind the reader that the distribution is

asymptotic and depends on the effective number of clusters getting

large, and the effective number of clusters is at most G. As the

number of clusters grows, the coverage percentage approaches its

theoretical size. We ran a simulation with 100 clusters and the re-

sulting coverage percentages at G∗ = 100 were within .2% of 95 for
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all of the adjusted test statistics (Figure 5.7).

Figure 5.9: Bias and t-df adjustments on the CRVE with some cluster means
set to zero.

Figure 5.10: Bias and t-df adjustments on the CRVE with very low probabilities
of success for all cluster means.
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The last simulations in this section (Figures 5.9 and 5.10) test

the CRVE for very small values of p. The CRVE seems to be more

sensitive to floor and ceiling values of p than to correlation, but

only slightly. Coverage percentages in Figure 5.10 still remain above

92% when the overall probability of success is p = 0.05. In these

situations, even a small value of γ can result in cluster means set to

0.

We conclude from this part of the simulation study that bias ad-

justment improves coverage percentages for unbalanced clusters. In

very unbalanced experiments, a researcher who wishes to be conser-

vative might consider t scores with G∗ degrees of freedom.

5.3 CRVE and Other Methods

This section compares the bias-adjusted CRVE with Z and tg∗ scores

with a quasi-binomial generalized linear model and a wild bootstrap.

The simulation method remains the same; details on other estima-

tors can be found in the appendix, Section 9.4. For a probability

of p = 0.6 and slight overdispersion of γ = 0.1, we can see that

for effective number of clusters less than twenty, the quasibinomial

estimator fails to capture the underlying variance in the model and

has slightly small confidence intervals (Figure 5.11). The wild boot-

strap seems to match the bias-adjusted CRVE quite closely, but has

a slight downward bias for the homogeneous case of 50 observations
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per each of the 50 clusters.

Figure 5.11: Comparing cluster-robust test statistics, slight overdispersion

Unlike the binomial model, all of these methods are clearly robust

to overdispersion, as can be seen in Figure 5.12 where γ is set to

0.25. The CRVE with a t distribution and G∗ degrees of freedom

is the only one to yield a conservative test statistic with confidence

intervals that are at least as large as the desired coverage percentage

for all levels of cluster heterogeneity. However, some investigation

into the width of the resulting confidence intervals for about G∗ < 10

remains to be done.
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Figure 5.12

The next few graphs give coverage percentages at an underlying

probability of success of 10%. We vary the value of γ but keep it

rather small to avoid too many cluster means set to 0.
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Figure 5.13: Comparing cluster-robust test statistics, slight overdispersion with
a probability of success of 10%.
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Figure 5.14: Comparing cluster-robust test statistics, slight overdispersion with
a probability of success of 10%.
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Figure 5.15: Comparing cluster-robust test statistics, heavy overdispersion with
a probability of success of 10%.
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Figure 5.16: Comparing cluster-robust test statistics for p = 0.05.

We see that in cases of floor and ceiling probabilities of success

and larger overdispersion (Figures 5.15, 5.16, and 5.17), the boot-

strap and quasibinomial compensate slightly better than the CRVE

statistics.
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Figure 5.17: Comparing cluster-robust test statistics for p = 9.

5.4 Comparing Two Samples

We then performed the same simulation study on the difference of

two proportions. In this case, the test statistic was the one given

in (4.11).These simulations show that the difference in proportion

is better captured by the CRVE statistic than by quasibinomial

estimator. Because the bootstrap estimator was quite time-costly,

we look at it separately in the next section.

Somewhat surprisingly, we see in these next few graphs that the
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CRVE test statistic for difference in proportions performs better

than in the one sample problem for very small values of p, and is

superior to the quasibinomial GLM in the treatment-control prob-

lem.

Figure 5.18: Treatment-control experiment with p = 0.1, γ = 0.1.
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Figure 5.19: Treatment-control experiment with p = 0.1, γ = 0.25.

Figure 5.20: Very small values of p will cause the GLM to break down, while
the CRVE for difference in proportions is robust.
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Figure 5.21: Coverage percentages for cluster-robust statistics for difference in
proportions, p = 0.1.

5.4.1 Bootstrap Estimator

Because we are already running a high number of simulations,

computing a bootstrap estimate at each point resulted in much

longer computing times, so the comparisons were done separately.

We are using the wild bootstrap, described in the Appendix. This

estimator has been known to perform well in cases where the corre-

lation is high, so we show two simulation results, both at critically

low values of p, one with almost independent observations, and the

other with γ = 1
2
. We note that the correlation bounds imposed by

the parameters of the binomial distribution are not be violated here

since the beta-binomial model only introduces positive correlation
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between observations from the same group. The GEE estimator is

shown to be robust to extreme cases. Consider p = 0.1, γ = 0.5,

as for the coverage percentages shown in Figure 5.22. Such a large

variance in the beta part of the model generates over a quarter of

all cluster probabilities as zero. While the quasibinomial loses a few

percentage points, the CRVE remains right around 95% coverage

with the wild bootstrap.

Figure 5.22: Comparison of GEE estimators with wild bootstrap estimator with
p = .1, γ = 0.5

The bootstrap estimator, while effective, can yield values outside

the range of the pseudo-binomials when a cluster residual is large.

For example, consider a cluster with 50 observations which had Yg =
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28 successes, but the overall estimate was p̂ = 0.8. Then the residual

for this cluster is rg = −12 so that Yg(boot) is equally likely to be

equal to 28 or 52. Yg only has 50 observations, so the range of the

bootstrapped observations is larger than that of the distribution it

is replicating.

5.5 Markov Chain Model Simulation

The calculations for the bias and effective number of clusters are

functions of unknown cluster variances, for which we substituted

a beta-binomial variance with the largest magnitude possible. Be-

cause the beta-binomial model is so flexible, this substitution should

preserve the robust attributes of the estimator. We decided to ver-

ify this by running the coverage percentage simulations with another

underlying model. These models will consider different correlation

structures.

A two-state Markov Chain model is such a way to create a cor-

related set of binary values. Although the overall probability of a

success (which is represented by the stationary distribution of the

Markov chain) is fixed, it is assumed that the previous observa-

tion affects the current probability of a success. Suppose (X)n,

Xi ∈ {0, 1} represents a path on a two-state Markov chain with
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transition probability matrix

pi,j =

 1− γp γp

γ(1− p) 1− γ(1− p)

 (5.1)

as first introduced by (Sponsler, 1957). In this equation, p is

the parameter of interest and γ is an arbitrary value such that the

correlation between sequential observations is

ρ = 1− γ

This parameter plays an important role in the rate of convergence

of the test statistic. For example, a value of γ > 1 would imply a

negative correlation. If such an anticorrelation factor is significant,

binary vectors will have strong alternating tendencies (1010101...).

A value of γ close to 0 will lead to positive correlation between

observations, increasing cluster variances. The relationship between

p and γ is also intricate and discussed in detail in (?, ?), who state

admissible bounds for the correlation as a function of p. These are

stated later and briefly discussed. The nth step transition probability

can be written as

p
(n)
i,j =

(1− p) p

(1− p) p

+ ρn

 p −p

−(1− p) (1− p)

 (5.2)

The correlation disappears as n → ∞ for |ρ| < 1 . In other
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words, observations far apart are almost independent. The nth step

transition matrix in (5.2) converges to its stationary distribution,

which by design is the desired probability of success:(1− p) p

(1− p) p


Variance in the model The variance of the pseudo-binomial Y =
n∑
i=1

Xi, calculated in (Sponsler, 1957) using recurrence times, is

Var(Y ) = np(1− p)
[1 + ρ

1− ρ

]
(5.3)

which for ρ = 0 is the variance of a binomial random variable.

We note that the variance explodes as ρ → 1. Simulations show

that coverage percentages drop as p and γ approach 1. This is

because it is possible for the variance of this model to be greater

than n2p(1− p), when

ρ >
n− 1

n+ 1
.
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Figure 5.23: Coverage Percentages for Markov chain two-state model with p =
0.6 and ρ = 0.3.

Figure 5.24: Coverage Percentages for Markov chain two-state model with p =
0.6 and ρ = 0.7.
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Importance of the initial distribution. Although the stationary dis-

tribution is independent of the initial distribution, cluster sizes in

this particular application are often not large enough for this in-

dependence to take effect; so for chains of length 50, the initial

distribution can greatly influence the path taken and therefore the

sample proportions. The initial distribution for the simulations was

therefore chosen to be the underlying distribution of the chain:

p0 = (1− p, p)

Simulation results show how much all of the sample proportions

can be affected by the initial distribution. The probability of success

and the correlation coefficient can interact in a way that yields a

Markov chain which will stay in the state it was initially placed

in. This occurs near the boundaries of p. We demonstrate with

the following example: If p = .9 and the correlation is very high,

ρ = .9, then while the stationary distribution is [.1 .9], the one-step

transition probability matrix is.91 .09

.01 .99


If the initial distribution places the chain in state 0, then it will

most likely stay there, and the estimate from this cluster will grossly

underestimate p (Figure 5.26). This obviously creates a bad esti-
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mate. If p is the probability of correctly answering an item on a

test, we argue that this example will most likely not occur in prac-

tice. In terms of test measurement theory, it would imply first that

an individual’s ability is almost outside the range of the test, mean-

ing that this is a bad test for this particular student, and second,

that this individual gets ”stuck” in a state and never changes their

answer. Using the stationary distribution as the initial distribution

balances out this issue (Figure 5.26) whereas

Figure 5.25 is the result of the initial distribution being equal to

the stationary distribution.

Figure 5.25: Coverage Percentages for Markov chain two-state model with p =
0.9 and ρ = 0.1. The initial distribution here is p0 = (1− p, p).
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Figure 5.26

Coverage Percentages for the Markov chain two-state model with

p = 0.9 and ρ = 0.9 are shown in 5.26. The large value of the corre-

lation coefficient causes binary vectors to repeat their initial value

and get stuck in a loop (111..., or 000...). In this case we see that

all estimators are affected; there is no robust coverage percentage to

this sorts of patters with such severe correlation .

5.6 Empirical Densities

The empirical density of the variances estimator and the resulting

test statistic were also collected and revealed a right-skewed variance

estimator for low effective number of clusters. The corresponding

t-statistic shows a bimodal density in these same cases. Otherwise

the empirical densities of the test statistic appear to match a normal

distribution.
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Figure 5.27: Empirical density of the variance estimator for p = .2 and γ = .1
over the distribution of cluster sizes given in Table 9.1
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Figure 5.28: Empirical Densities of variance estimator for p = .6 and γ = .2
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Figure 5.29: Empirical Densities of test statistic for p = .6 and γ = .5

108



5.7 Discussion

These simulations enabled us to confirm many hypotheses as well

as highlight interesting aspects of the CRVE. GEE Empirical Den-

sities show a right-skewed distribution of the CRVE. Our guess is

that the estimator slightly overestimates a little bit most of the time,

and on occasion will underestimate greatly due to one large cluster

with a marginal probability that is substantially different from the

mean. The empirical densities of the test statistic look symmetric

and almost normal for homogeneous clusters, but develop a bimodal

tendency as cluster heterogeneity increases.

We also investigated the effect of the bias bound correction and

the Sattherthwaite approximation to the degrees of freedom. The

bias adjustment improves the estimator marginally, but the variance

is still underestimated for small number of effective clusters. Using

a t-distribution with G∗ degrees of freedom provides the only con-

servative interval out of all of the options. These adjustments seem

to be invariant to the value of the beta distribution parameters p

and γ.

We compared the bias-adjusted CRVE with other variance es-

timators commonly applied to this sort of data, and concluded,

with no surprise, that assuming an independent and identically dis-

tributed distribution is definitely not the answer. The variance of p̂

is grossly underestimated and gets worse as probabilities near 0 and
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1 or as the correlation parameter γ increases. The quasibinomial

estimator, which should model correlation, behaved in a somewhat

parallel manner to the CRVE. We attempted a wild bootstrap esti-

mator which seemed to be on par with the CRVE, only much more

computationally intensive. All estimators appear to be affected by

low probabilities. the GLM tends to be more robust to large differ-

ences between cluster variances. The iid estimator is highly incom-

petent for any model which has correlation within the clusters. The

bootstrap and GEE estimator are robust in the same ways.

Our conclusion from these simulations is that the bias-adjusted

CRVE is comparable to the bootstrap, yet much simpler computa-

tionally than both the quasi-binomial and the bootstrap methods.

Any inference assuming independence within clusters will be near

useless. The CRVE seemed to be more robust to other cluster depen-

dence structures than the GLM. The bias bound correction rectified

the underestimation of the CRVE but seems to over-correct for effec-

tive numbers of clusters less than 2. These are extreme situations,

in which researchers should perhaps be aware that they are using

conservative confidence intervals. Any concern we had about the

slight under-coverage (94%) was remedied when we increased the

total number of clusters G to 100, where we observed 95% coverage

for homogeneous clusters, even with large covariance present in the

model. We therefore conclude that this bias-adjusted CRVE offers a
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compelling alternative to variance estimates from generalized mixed

effects models and should be considered when the primary research

interest is the mean parameter in an unevenly clustered population.
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Chapter 6

Multivariate

Cluster-Robust Variance

Estimator

Conditions of consistency and asymptotic normality are now ex-

tended to a multivariate experiment where multiple probabilities

are of interest across clustered populations. This natural extension

from a one-dimensional problem to L dimensions mainly involves

work around the covariance estimates. A chi-square test is devel-

oped to test for equal probabilities, and more generally for a set of

contrasts of elements of the probability vector. We begin by setting

up the experiment in question.

112



6.1 Multivariate Clustered Binomial Experiments

A researcher may find himself in a situation where more than one

proportion is of interest across a clustered population. We assume

the same cluster structure as for the CRVE, with any within-cluster

dependence unspecified. Suppose we are interested in a vector of

probabilities:

p =
(
p1, . . . , pL

)
A single observation from a cluster is now a vector of binary val-

ues of length L. As in the univariate case, we collect ng of these

observations from each independent cluster and write the sums as

Yg = (Yg1, . . . , YgL)

where Ygl is equal to a sum of binary values which may not be

independent or identically distributed; we therefore do not make

the assumptions that these have a marginal binomial distribution.

In the one-dimensional problem we argued that consistency of the

variance estimator was dependent on a reasonable level of cluster size

homogeneity, captured by the effective number of clusters G∗ (4.3).

This notion extends naturally to the multivariate case because of

the aforementioned structure of the data, in which the cluster sizes

are unchanged: a vector of binary values is collected at each point
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rather than a single value, but the number of points inside each

cluster remains the same. This will later be applied to longitudinal

test data, in which we consider the clusters to be individuals. Each

subject answers a full test, repeatedly over time. The size of each

cluster is how many times each subject has taken the test. Note

that this structure allows for differently sized-clusters. Let n =
G∑
g=1

ng, where (n1, . . . , nG) are the cluster sizes. Each probability is

estimated using its overall sample proportion:

p̂i =
G∑
g=1

Ygi/n, p̂ =
1

n
Y 1G

Each individual probability estimate can be shown to have the

same properties as in Chapter 4. That is, marginally,

p̂i − p√
V̂i

appr∼ N (0, 1), for reasonable G∗

We are still using cluster-robust estimators, so that the covariance

between two binary observations within any cluster is not specified.

However, the covariance of any two sample proportions p̂i and p̂j

should be modeled, since this is a covariance across clusters that can

be specified in the same way as the cluster-robust variance estimator.

Covariance Estimate

Although each cluster is independent, the within-cluster correla-

tion structure is not specified. As a result, the estimates p̂1, . . . , p̂L
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may not be independent. Any covariance between p̂i and p̂j would

come from dependence between two observations within the same

cluster, Ygi and Ygh. Since we will apply this to a situation in which

clusters are subjects, it makes sense to think that two observations

taken from the same person might be correlated.

We denote the potential covariance between two probability es-

timates as

γij = Cov(p̂i, p̂j)

for i 6= j. Because clusters are independent, any covariance will

come from intra-cluster associations:

γij =
1

n2

G∑
g

γgij

(
Cov(Ygi, Yg′j) = 0 ∀i, j, g 6= g′

)
where γgij is the unspecified covariance for an individual’s responses

to items i and j. Similarly to the cluster-robust variance estimate,

we estimate cluster-wide covariances (rather than on the binary

level). The extension of the cluster-robust variance estimator is

then given by the matrix Σ̂:

Σ̂ =
1

n2

G∑
g=1

(
Yg − ngp̂

)(
Yg − ngp̂

)>
(6.1)

As for the cluster-robust variance estimator, the covariance estima-
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tor

γ̂ij =
1

n2

G∑
g=1

(Ygj − ngp̂j)(Ygi − ngp̂i) (6.2)

is unbiased estimator for homogeneous clusters with the simple

correction G
G−1 γ̂ij . For bias calculations of the covariance estimate,

see appendix section 9.2.3. If the underlying covariance matrix is

diagonal, then γij = 0 and the multiplicative bias of the covariance

estimate disappears.

6.2 Asymptotic Chi-Square Test

In this chapter we show that the variance-covariance estimator V̂

can be used to obtain a chi-squared test under similar conditions

to those stated by the CMS paper. The following lemma is an

established multivariate result.

Lemma 6.2.1. Suppose that for N large,

p̂− p appr∼ N(0,Σ)

Then

(
p̂− p

)>
Σ−1

(
p̂− p

)
; χ2

L.
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The main result of this chapter is the fact that the same result

applies when the cluster-robust estimate of the covariance matrix of

Y is used. This estimator will be labeled Σ̂ and is the L-dimensional

version of the CRVE defined in Eq.4.2.

This result is shown easily enough when the variance-covariance

matrix is known to be diagonal as the quadratic form can be written

as a sum of independent terms:

p̂>Σ−1p̂ = p̂>
(
Σ̂−1Σ̂

)
Σ−1p̂

= p̂>


1/V̂1 0 . . .

0 1/V̂2 . . .

0 . . . 1/V̂k



V̂1/V1 0 . . .

0 V̂2/V2 . . .

0 . . . V̂k/Vk

 p̂

=
L−1∑
j=1

( p̂2j
V̂j

)
·
( V̂j
Vj

)
(6.3)

Here we can use the univariate proof. We have established that

V̂j
Vj

P→ 1 and therefore

√
p̂2j

V̂j
=

p̂j√
V̂j

has an asymptotic standard

normal distribution. Therefore
p̂2j

V̂j
; χ2

1 from the univariate proof

and a diagonal matrix implies that the p̂k’s are independent, so that

L−1∑
j=1

p̂2j

V̂j
; χ2

L−1
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By an application of Slutsky’s theorem we therefore obtain the

following lemma

Lemma 6.2.2. For a set of estimates p̂ that are known to be inde-

pendent,

(
p̂− p

)>
Σ̂−1

(
p̂− p

)
; χ2

L.

Without loss of generality, we can assume that our covariance

matrix is diagonal, as long as covariances are still estimated. Indeed,

in many situations, the elements of (6.9) may not be independent.

For any set of such estimates, we argue that an equivalent set of

independent estimates can be generated by a rotation of the data.

Therefore, the theory for underlying diagonal covariance matrices

can be extended to any covariance matrix due to the equivariant

property of the variance estimator. We now state the main result.

Theorem 6.2.1 (Asymptotic Chi-Square Test). Suppose the entries

of p̂ are all independent but this is unknown to the researcher. That

is, each covariance term γij = 0 but is estimated using Eq.(6.2).

Then

(
p̂− p

)>
Σ̂−1

(
p̂− p

)
; χ2

L. (6.4)
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We prove the chi-square approximation result for a more general

setting in the following manner: Let z = Σ−1/2
(
p̂−p

)
. p̂ is an unbi-

ased estimator so that for large sample sizes, z has an approximate

multivariate standard normal distribution. That is, the covariance

matrix of z is diagonal and close to the identity matrix.

Per Lemma 6.2.1, z>z follows an approximate chi-square distri-

bution. We will use K degrees of freedom from here on out for the

sake of generality. The quadratic term with the estimated covariance

matrix can be expressed in the following way:

(
p̂− p

)>
Σ̂−1

(
p̂− p

)
= z>z + z>Bz, (6.5)

where the matrix B is equal to I − Σ1/2Σ̂−1Σ1/2. Therefore it is

clear that convergence of (6.5) to a chi-square distribution depends

on z>Bz becoming negligible in probability. To prove this, we will

show that both the expectation and variance of this term converge

to zero in probability.

By a geometric series argument (see appendix, Section 9.2.2), it

is sufficient to show that

zTΣ−1/2
(
I− Σ−1/2Σ̂Σ−1/2

)
Σ−1/2z

P→ 0

for convergence of z>Bz to zero. Since the zi (i = 1, . . . , K) are
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uncorrelated with mean 0 and variance 1,

E
(
z>Bz

)
=
∑
i

biiz
2
i = tr(B) = K − tr(Σ̂Σ−1)

and

Var(z>Bz) = 2 tr(B2) = 2
(
K − 2 tr(Σ̂Σ−1) + tr(Σ̂2Σ−2)

)
Suppose the underlying matrix is diagonal, but we estimate co-

variances anyway. That is, Σ = Diag(Vj)j=1,...K and

Σ̂ =


V̂1 γ̂12 . . .

γ̂12 V̂2 . . .

. . . γ̂jk V̂K



Then tr(Σ̂Σ−1) =
K∑
j=1

V̂j
Vj

and

tr(Σ̂2Σ−2) =
K∑
j=1

( V̂j
Vj

)2
+

K∑
j=1

(∑
i 6=j γ̂

2
ij

V 2
j

)
The last term involving the correlation can be rearranged to give

K∑
j=1

∑
i>j

( γ̂ij
ViVj

)2[
V 2
i + V 2

j

]
(6.6)

where we know V 2
i and V 2

j to be OP (1). Plugging everything back

into the expectation and variance of the quadratic term then shows
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that

E
(
z>Bz

)
= K −

K∑
j=1

V̂j
Vj

P→ 0,

and

Var(z>Bz) = 2
(
K − 2

K∑
j=1

V̂j
Vj

+
K∑
j=1

( V̂j
Vj

)2
︸ ︷︷ ︸

P→0

+
K∑
j=1

∑
i>j

( γ̂ij
ViVj

)2[
V 2
i + V 2

j︸ ︷︷ ︸
P→1

])

The implied convergences above result from the already-proven

fact that
V̂j
Vj

P→ 1 for each j. Sufficient conditions for convergence

should therefore ensure that (6.6) becomes negligible in probability.

In order to show this, we inspect the covariance estimates.

All that remains is to show that (6.6) is negligible in probability

for large samples. Define

γ̃A =
1

n2

G∑
g=1

(Ygj − ngpj)(Ygi − ngpi) =:
1

n2

G∑
g=1

γ̃Ag

γ̃B =
1

n2

G∑
g=1

n2
g(p̂i − pi)(p̂j − pj)

(6.7)

Using Cauchy-Schwarz inequality on each term γ̃Ag, the first term

can be bounded by the fourth central moments of the individual
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subject-item responses. Assuming γgij = 0,

Var(γ̃A/ViVj) ≤
1

n4

G∑
g=1

[
E(Ygi − ngpi)4

] 1
2

Vi
·

[
E(Ygj − ngpj)4

] 1
2

Vj

Each of these summands is bounded and goes to zero by Con-

ditions 1, 2 and 4. For details, see the proof of Lemma 1 in CMS.

Similarly, the second term γ̃B is bounded by the fourth central mo-

ments of p̂i and p̂j:

Var(γ̃B/ViVj) ≤

[
E(p̂i − pi)4

] 1
2

Vi
·

[
E(p̂j − pj)4

] 1
2

Vj
·

G∑
g=1

(ng
n

)4 (6.8)

Because we have already shown asymptotic normality of
(
p̂i −

pi
)
/
√
Vi for each category or item i, each expectation in the bound

of (6.8) is like the second moment of a chi-square random variable

with one degree of freedom, which is equal to 3. Therefore, (6.8) goes

to zero with Condition 4.1.3 and γ̃A/ViVj and γ̃B/ViVj are negligible

in probability as G → ∞. Their cross product is therefore also

negligible, and the desired result is proven. �
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6.2.1 Contrasts

Suppose we are interested in an arbitrary contrast α, which is

taken to be a linear combination of the elements of p depending on

the hypothesis of interest. For example, one might wish to test if all

items have the same approximate difficulty level. Such a question

could be answered with a chi-square test and a contrast of the form

α =
[
p1 − p2 . . . p1 − pi . . . p1 − pL

]
. (6.9)

We will denote V̂α̂ as the cluster-robust variance-covariance esti-

mator of the contrasts estimate α̂, given by the matrix A:

V̂α̂ =
1

n2
(W − T α̂)>(W − T α̂) =

1

n2
A>Σ̂A (6.10)

In the case of (6.9),

AL×(L−1) =


1 1 . . . 1

−1 0 . . . . . .

0 −1 0 . . .

 (6.11)

As we have already established a chi-square distribution under

the aforementioned conditions, 6.4 can be naturally extended to the

contrasted data so that
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Lemma 6.2.3.

α̂>V̂ −1α̂
appr∼ χ2

L−1.

The next chapter extends beta-binomial simulations from the CRVE

to test for a hypothesis of equal probabilities, as with the contrast

matrix 6.11. Coverage percentages confirm the asymptotic distribu-

tion of this test statistic for Eq. (6.5).
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Chapter 7

Simulation for Coverage

Percentages of the

Chi-Square Tests

7.1 Comparing with Other Estimators

Simulations for this chapter were run in a similar manner to the

CRVE. To test coverage percentages of our chi-square statistic, we

simulated data under the null hypothesis that all items had the

same difficulty, as per the contrast defined in 6.9. Results were sim-

ilar to the univariate CRVE coverage percentages, with a possibly

faster convergence (under the null hypothesis, each question had

the same difficulty, essentially multiplying the sample size by the

number of probabilities being estimated across the clustered popu-

125



lations). Graphs were plotted as a function G∗ or logG∗ to better

inspect ranges of fast convergence. The MVCRVE chi-square tests

had 95% coverage regardless of the probability values under the null

hypothesis and were robust to large values of the correlation tuning

parameter for the beta distribution, γ. To test for robustness to

dependent observations, time trends were added within clusters so

that the probability of success changed according to a simple lin-

ear function across the clusters. While the MVCRVE was robust

to these time trends, the estimator modeling every observation as

independent was greatly affected and had much lower coverage per-

centages. We tested both chi-square and F statistics and noticed

a slight increase of about one percentage point for the F-statistics.

Overall, the simulations confirm that the multivariate cluster-robust

variance estimator yields a quadratic term which can be well approx-

imated by a chi-square distribution with as little as 10 clusters, even

in an unbalanced cluster distribution 7.2.
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Figure 7.1: Coverage Percentages under null hypothesis and independent model

The “iid” test statistic. Suppose all clustering was disregarded and

each binary observation was treated as independent. Suppose fur-

ther that we treat every binary outcome within a vector as also

independent.That is, Ygli ∈ {0, 1}, and Ygli ⊥ Yg′l′i′ , for all values

of g′, l′, and i′. In a longitudinal testing study where clusters are

individuals, this would imply that any person’s answer to two ques-

tions on the same testing instance would not be correlated. The

covariance matrix is then diagonal and we only estimate variances

V̂i, i = 1, . . . , L. This estimator was plotted agai nst the MVCRVE

under both an independent and identically distributed setting (Fig-

ure 7.1) Such an assumption is not robust to time effects, as can be

seen in Figure 7.2.
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Figure 7.2: Coverage percentages for MVCRVE when each cluster’s probability
fluctuates slightly and randomly over time.

As with the univariate case, there is still a slight under-coverage

even for equally-sized clusters. However, this gap is remedied as the

number of clusters, or subjects, increases. For G=100 clusters with

an average of 20 observations each (for a total of 2,000 binary obser-

vations), the coverage percentage at G∗ = G is 0.9497. It is already

a widely accepted result that ignoring potential correlation results

in underestimating the variance, and this fact is confirmed in these

simulations, where we see coverage percentages drop significantly,

even for large numbers of clusters.
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Figure 7.3: Coverage Percentages get closer to 95% for the MVCRVE statistics
as the number of clusters increases.

7.2 Effect of Cluster Sizes on the binomial model

estimate

It was noted in part 1 that increasing cluster sizes only made any

measurement error from unmodeled correlations worse (Barbieri et

al., 2015). That is, increasing the total number of observations

(rather than the effective number of clusters) actually makes the

iid. estimator worse, as seen in Figures 7.2 and 7.2, which both have

400 total observations. Having 20 clusters with 20 observations each

resulted in coverage percentages of between 85% and 90% for the

statistic assuming independence, while 10 clusters of 40 observations

129



yielded a much worse coverage percentages (lessened by at least

15%).

Figure 7.4: Coverage Percentages with 400 observations, 10 clusters
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Figure 7.5: Coverage Percentages with 400 observations, 20 clusters

131



Part III

Application of

Cluster-Robust Variance

Estimators to Longitudinal

Test Data
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Chapter 8

Cluster-Robust Variance

Estimators for

Psychometric Analysis of

Longitudinal Datasets

Longitudinal data collected from a group of individuals being ad-

ministered the same test over a period of time matches a clustered

population, where individuals are independent, but their repeated

answers to the same items may be correlated. The current practices

for repeated measures data in classical test theory and IRT models

are discussed discussed in Chapter 2. The cluster-robust variance

estimator measures the variance of p̂ whether it be univariate or

multivariate quantity, which means it inherently belongs to classi-
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cal test analysis. A cluster-robust variance estimator was derived

by (Feddag, Grama, & Mesbah, 2003) for the item parameters of

the Rasch model and will be briefly discussed in the next section,

partially to illustrate why we chose not to derive the CRVE for the

item difficulty logistic parameters δi.

8.1 Cluster-Robust Variance Estimators and Clas-

sical Test Theory

8.1.1 Testing for Parallel Tests

We present a simple hypothesis test of the time effects using the

cluster-robust variance estimator, which can be used to check for

parallel tests in CTT, a common test assumption. As defined in

Chapter 1, parallel tests have questions of identical difficulty and

therefore the sum score has a binomial distribution (under the null

hypothesis that the tests are parallel. We now set up this test.

Suppose data is collected from a longitudinal trial with G individu-

als who are administered the same test repeatedly over a period of

time. It is often the case in longitudinal studies, that patients have

uneven number of visits, because, for instance, some patients drop

out. Let Y be the data matrix described in 6.1, of dimension G×L

where G is the number of subjects in the experiment, and L is the

number of questions on the test. Under the null hypothesis, each

binary value has the same probability of success, however we may
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still have correlation within subject responses to the same questions

over time. We therefore should not assume a binomial distribution

on cluster sums, and proceed with the sample proportion estimate

and cluster-robust variance estimates 6.10. Let α and A be the

quantities defined in Section 6.2.1. Then

α̂>V̂ −1α̂
appr∼ χ2

L−1

The strength of the bias-adjusted CRVE can be useful in these

situations where it is possible to have a very large number of pa-

tients at the baseline visit, with a few patients with that come back

repeatedly. Therefore the clusters might be quite unbalanced and

the effective number of clusters G∗ can provide a good measure of

how stable their test statistic and resulting inference will be.

8.1.2 Testing for a Time Effect

Suppose a test is repeatedly administered to the same group of

patients over the course of a longitudinal study, as with the exper-

iment described in Section 2.1. In this case, we can also apply the

MVCRVE to test for an overall time effect on the overall probabil-

ity of success. Under the null hypothesis, the “level” of the test, to

speak in CTT terms, should remain stable throughout time.
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8.2 Cluster-Robust Variance Estimators and the

Rasch Model

As discussed in Part I of this dissertation, the family of Rasch

models has desirable estimation properties which make it one of the

most commonly used models for psychometric evaluation and test

item calibration. Non-parametric approaches to repeated measures

using the Rasch model essentially ignore any correlation (stacking),

greatly reduce the sample size to have only independent observa-

tions (anchoring), or perform data manipulation to reduce correla-

tion between repeated observations (Mallinson approach). Paramet-

ric approaches are mostly mixed effects models with a hierarchical

structure and usually a normal distribution on the subjects. Most

of these models do not belong to the family of Rasch models, and

therefore their estimates do not have the same sufficiency or consis-

tency properties or may not be as robust under model specification.

We apply the MCRVE to longitudinal data and estimate the co-

variance matrix for the stacked item estimates. The stacking method

2.2 is a way for a practitioner to obtain item estimates using the pair-

wise CML method used in the Rasch program RUMM. Repeated

measures from one individual are treated as independent observa-

tions. Here we specify a slightly different structure for the data,

allowing for potential time correlation.
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8.2.1 GEEs and the Mixed Rasch Model

The application of GEEs to longitudinal data has already been ex-

plored in (Feddag et al., 2003). The process is quite intricate due to

the fact that a hierarchical logit-normal model does not have closed

forms for the first and second moments; these must be estimated

using numerical integration. Since one of our goals is to avoid mod-

eling a random latent effect, we refer the reader to the cited text for

details on this estimation process.

8.2.2 Estimates of p vs. estimates of δ

The variance estimator discussed in Chapter 4 is robust precisely

because it avoids specifying too many assumptions. Many publica-

tions compare CTT estimates to IRT estimates (Petrillo et al., 2015;

Blanchin et al., 2011; Magno, 2009; Hambleton & Jones, 1993; Bar-

bieri, Peyhardi, et al., 2017). However, no publication was found

that drew the mathematical connection between a CTT estimate

and the item difficulty of an IRT estimate. This seems natural,

since the models are fundamentally different. However we can still

compare them for a subject with ”average” difficulty. CTT only

works if items are centered on population anyway. By the Delta

method,

g(p̂)− g(p) ; N (0, g′(p)2V )
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Therefore we have

log
( p̂

1− p̂

)
− δ appr∼ N

(
(0,

1(
p(1− p)

)2V )
In other words, the CRVE test statistic will provide valid in-

ference if the items are on target with the population of interest,

because in the case the average value of the ability parameter will

be zero.

8.2.3 Testing the relationship between bias and range of

item parameters

A quick preliminary simulation was run to see how much the range

of the deltas would affect the bias of the CRVE. For each case, 10,000

sets of G cluster means using beta-binomial are generated, sample

means and CRVE calculated. Of course, the results depend on the

variance of the ability parameters as well - a higher variance will

overshadow the effects of the δ parameters.
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Figure 8.1: Coverage Percentages of the CRVE for sample populations with
different variances.

Figure 8.2.3 indicates a positive correlation between the coverage

percentage and the variance of the βg coefficients. Intuitively, this

makes sense: the randomness of the ability coefficients cancels out

the item levels. Greater values of γ induce a variation that is too

large - in this example, p = 0.75 and γ ≥ 0.4 (roughly) results in

probabilities close to or equal to 1.

Perhaps around p = 1
2

a greater variation can be beneficial to the

Z-estimate, resulting in even better confidence intervals.

8.2.4 Simulations Results of Rasch Estimates

The goal of the set of graphs below is to compare standard errors

from the Rasch Anchoring and Stacking methods using CML with
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the CRVE. As previously stated, CTT yields unbiased estimators

of the probability of an average subject answering a given question

- that is, fluctuation in the data due to different individuals being

tested is modeled by an additive error to the observed score. These

errors are usually assumed to be normally distributed, even though

they are clearly not since the data is categorical or binary and there

is usually not enough subjects to have a reasonable law of large

numbers take place.

That the CTT estimates a biased estimate of the δ parameters

when the population is not centered around 0 should therefore be

obvious; this is just visualizing the widely accepted result that CTT

estimates are sample-dependent. The evidence of the statistical suf-

ficiency of the Rasch CML estimates is obvious in these graphs as

well. However the focus should be on the top right graphs, which

depict the standard errors, which have been placed on the same scale

using the delta method.
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Figure 8.2: Example of a set of items that is centered on the target population

The Rasch anchoring and stacking estimates obtained from con-

ditional maximum likelihood are the only ones to be consistent and

robust (in the way that they do not specify a latent distribution on

the subjects, therefore it cannot be misspecified). Yet it is known

that the anchoring methods yields much larger standard errors due

to its sample size reduction, while stacking is known to underesti-

mate the standard errors of the item estimates because it does not

account for any potential time dependence. By putting the prob-

ability estimates from CTT on the same scale as the Rasch item

estimates, we were able to compare them and their standard errors

through simulated longitudinal test data. While it may not make

much sense to compare these on the edges of the scale, the center
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of a scale provides a good opportunity for side-by-side comparison.

(Barbieri, Peyhardi, et al., 2017) warns of negative consequences of

floor or ceiling effects. When the test is well centered on the sam-

ple subject population and has the appropriate spread, however, no

question will be too easy or too difficult for everyone; that is, no

ceiling or floor effects would be observed. In this scenario, each

question has a probability of success that is close to one-half. In

generalized linear models and the Rasch model, this means that the

population and the items are distributed somewhat nicely around 0.

Figure 8.3: Example of a set of items slightly below the target population

142



Figure 8.4: Example of a set of items above the target population

143



Chapter 9

Discussion

This dissertation was a statistical investigation into the potential

use of a cluster-robust variance estimator in current test analysis

methods and particularly their handling of longitudinal or repeated

measures data. We discerned classical test theory, item response

theory and Rasch measurement theory as the three branches of psy-

chometric models. After an extensive literature review, we iden-

tified limitations of simple methods like CTT as well as potential

risks of IRT over-parameterized mixed effects models. As stated

in a comparative study, “selection of a psychometric method de-

pends on intended audience and should be justified. For more high-

stakes situations, more thorough models like IRT and RMT should

be used.”(Petrillo et al., 2015). It was concluded that the Rasch

model is the only probability model with sufficiency and therefore

sample-independent item estimates. Yet important national corpo-
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rations like the FDA still use CTT to endorse important question-

naires. The reliability measures calculated to calibrate and validate

scales have been criticized extensively and “the issue of test bias is

in acute need of scientific scrutiny” when using CTT (Borsboom,

2006). On the other hand, the intricacy of a mixed effect general-

ized linear model is beyond the mathematical reach of many social

scientists and is prone to being blindly interpreted and trusted: “ it

is essential to understand these differences for researchers deciding

which approach to adopt, as well as to know that they each require a

complex advanced level of mathematical understanding and unique

software. [...] blind application of these methods can result in erro-

neous conclusions” (Petrillo et al., 2015). Additionally, a covariance

structure must be specified when a random effect is placed on the

population of interest, and ensuing computing techniques tend to

not be robust to structural errors and on occasion even fail to con-

verge. Although numerical methods and fast computing times have

made these models more accessible, the tendency in an effort to im-

prove measures is often to add more parameters into the model so

that everything in the model is explained, and the issue of parameter

identifiability is entirely overlooked.

The underlying covariance structure of longitudinal data is not

of interest when the goal is item calibration of a rating scale; rather

it is a nuisance that should be addressed so that proper inference

can be carried out. A population-average estimator robust to var-
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ious covariance designs therefore seems like a sensible idea. We

elaborated on the cluster-robust variance estimator based on GEEs

for sums of dependent binary values and showed that the behav-

ior of the test statistic is largely controlled by imbalance in cluster

variances. Simulations using a beta-binomial model and controlling

for the effective number of clusters enabled us to visualize coverage

percentages as a function of cluster homogeneity. We derived a bias

bound based on the CMS conditions which significantly improved

coverage percentages for low effective numbers of clusters, and ar-

gued that the test statistic might be close to a t-distribution with

the effective number of clusters as the degrees of freedom. While

both the bias and Satterthwaite approximation improved the down-

ward bias, both seem to be an over-correction and research remains

to be done on how to better control the test statistic in extreme sit-

uations with very unbalanced clusters. Conditions were developed

to ensure the convergence of hypothesis tests for multidimensional

binary data. Under some straightforward conditions, we proved con-

vergence of the chi-square statistic and showed its potential use for

testing various assumptions of equivalence, independence or parallel

tests in CTT. These simulations of longitudinal Rasch model data

confirmed the certification that if a test is well-designed, then it will

be on target for the population it is attempting to measure, and

CTT estimates will perform reasonably well. In other words, if we

assume a symmetric population sample, the average of the ability
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parameters is close to zero, which means that the probability of suc-

cess for an average person on any of the items is simply the inverse

logit the Rasch item level parameter. Consequently, theory and

tests derived for the sample proportions CRVEs can be translated

to apply to the Rasch item estimates for a subject whose ability is

equal to 0. In this case, the CTT estimates are almost identical to

the Rasch model ones, and it would seem that doing all of the extra

work that goes behind conditional maximum likelihood estimation

is not worth it. Again, this is only when we have a nice picture with

a set of items and population that are evenly stacked. However, as

is now widely recognized, sample proportions as item estimates are

sample-dependent and suffer a large bias error whenever the test is

not “on target” for its population of interest. The cluster-robust

variance estimator, which is an estimator of p and not δ, suffers in

the same manner. Despite the abundant criticism of CTT, it still

presents a simple, interpretable model which at its best offers results

comparable to IRT. It seems therefore that with a simple hypoth-

esis test of parallel items or insignificant time effects, reasonable

inference is still in reach and may be a suitable option for simple

inference. More work remains to be done on a CRVE which keeps

its simplicity yet provides a consistent estimator of the variance of

stacked item estimates, which would also be independent of ability

estimates.
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Appendix

9.1 CRVE Bias Calculations

The detailed calculations for the bias in Eq.(4.6) and bias re-write

Eq.(4.7) are now given. Recall that V = Var(p̂) = 1
N2

G∑
g=1

Var(Yg)

and its estimate V̂ is the CRVE from Chapter 4, Equation (4.2).

Calculating the Bias

Let σ2
g = Var(Yg).

b(V̂ ) = E(V̂ − V )

= E(
1

N2

G∑
g=1

(Yg − ngp̂)2)−
1

N2

G∑
g=1

σ2
g

=
1

N2

G∑
g=1

(
E(Yg − ngp̂)2 − σ2

g

)

=
1

N2

G∑
g=1

(
n2
gV + (1− 2ng/N)σ2

g − σ2
g

)

=
1

N2

G∑
g=1

(
n2
gV −

2

N
ngσ

2
g

)
=

G∑
g=1

n2
g

N2
· V − 2

N2

G∑
g=1

ngσ
2
g

N

(9.1)
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Rewriting the bias as a function of G∗

For homogeneous clusters, the bias simplifies down to −( 1
G

)V . We
bound the bias by making a comparison to the homogeneous case
where all of the ng are the same: ng = N/G. These terms in the
bias are re-written:∑

g

ngσ
2
g

N
=

1

G

∑
g

σ2
g +

∑
g

σ2
g

(
ng
N
− 1

G

)
=
N2

G
V +

1

N

∑
g

σ2
g(ng −N/G) (9.2)

and ∑
g

n2
g

N2
=
∑
g

[
ng
N
− 1

G

]2
+

1

G
.

Plugging this into the last equation of (9.1),

b(V̂ ) = V

(∑
g

[
ng
N
− 1

G

]2
+

1

G

)
− 2

N2

(
N2

G
V+

1

N

∑
g

σ2
g(ng−N/G)

)

= V

[∑
g

[
ng
N
− 1

G

]2
+

1

G
− 2

G

]
− 2

N2

∑
g

σ2
g

(ng
N
− 1

G

)
= V

[
− 1

G
+ Γ2 − 2

N2V

∑
g

σ2
g

(
ng
N
− 1

G

)]
(9.3)

where Γ2 is the variation in cluster sizes:

Γ2 =
∑
g

[
ng
N
− 1

G

]2
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Calculating a bound

Looking at the last term in the bias, we use the following bound:[
1

G

∑
g

σ2
g

(
ng
N
− 1

G

)]2
≤

[
1

G

∑
g

σ4
g

][
1

G

∑
g

(
ng
N
− 1

G

)2
]

(9.4)

The second factor here is known, and it will generally be smaller
than the maximum. The first factor is similar to one of our effective
number of clusters terms.

1

G

∑
g

σ4
g =

n4

G2
V 2 +

1

G

∑
g

(
σ2
g −

n2

G
V

)2

(9.5)

The fourth condition of the CMS paper (4.1.4) and plugging in a
beta-binomial model with γ = 1 (for the largest possible variance)
yields the bound

∑
g

(
σ2
g

n2V
− 1

G

)2

≤
∑
g

(
n2
g∑
n2
g

− 1

G

)2

(9.6)

implying

1

N2V

∑
g

σ2
g

(
ng
N
− 1

G

)
≤

[
1 +

1

G

∑
g

(
n2
g∑
n2
g/G
− 1

)2
]1/2 [

1

G

∑
g

(
ng
N
− 1

G

)2
]1/2

.

(9.7)

Therefore, the bound on the bias is

b(V̂ ) ≥ V

1− 1

G
− 2

[
1 +

1

G

∑
g

(
n2
g∑
n2
g/G
− 1

)2
]1/2 [

1

G

∑
g

(
ng
N
− 1

G

)2
]1/2

+

+
∑
g

[
ng
N
− 1

G

]2]
(9.8)
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Relating this to Γ and our effective number of clusters

G

G∗
= 1 +

1

G

∑
g

(
n2
g∑
n2
g/G
− 1

)2

we obtain the bias bound

b(V̂ ) ≥ V

[
1− 1

G
− 1

G∗
+
(
Γ−G∗−1/2

)2 ]
and use it to obtain a bias-corrected variance estimate:

V̂ ∗ = V̂ ∗ 1

b(V̂ )

9.2 Details on the MVCRVE

9.2.1 Dimensions for Multivariate Extension

Dimensions for mcrve

• Y = G× L

• p = 1× L

• T = G× 1

• A = L× L− 1

• p̂ = 1
n
1> · Y = 1× L

• C = (Y − T p̂)> = L×G

• Σ̂p̂ = 1
n2CC

> = L× L

• α = pA = 1× L− 1

• α̂ = p̂A = 1× L− 1

• W = Y A = G× L− 1

• Σ̂α̂ = 1
n2 (W − T α̂)>(W − T α̂) = L− 1× L− 1

• α̂Σ̂−1α̂ α̂> = 1× 1
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Dropping the subscript for the covariance matrix of the con-
trasted data, we aim to show consistency in the following way: Let
z = Σ−

1
2 α̂>. We know that z>z = α̂Σ−1α̂> ; χ2

L−1. Therefore,

α̂Σ̂−1α̂> = z>Σ
1
2 Σ̂−1Σ

1
2 z (9.9)

and consistency of the variance covariance estimator is equivalent
to

‖Σ
1
2 Σ̂−1Σ

1
2 − I‖ → 0

One way to do this is to use the decomposition into two matrices,
as in the univariate proof of the variance estimator:

The estimate Σ̂ can be decomposed in the following way. Let

C> = Y − T p̂, n2
G =

G∑
g=1

T 2
g . Then Σ̂ = CC>/n2

G, and

C> = (Y − Tp)− (T p̂− Tp)

⇒ Σ̂ =
1

n2
(Y − Tp)>(Y − Tp) +

T>T

n2
(p̂− p)>(p̂− p)−R

(9.10)

Let

Σ̃1 =
1

n2
(Y − Tp)>(Y − Tp)

and

Σ̃2 =
T>T

n2
(p̂− p)>(p̂− p)

1. Σ−
1
2 Σ̃1Σ

− 1
2

P→ I

E(Σ̃1) = Σ,

Var(Σ̃1) =
1

n2
Var((Y − Tp)>(Y − Tp))

Therefore the convergence relies on the fourth moment of the
Ys?

2. ‖Σ− 1
2 Σ̃2Σ

− 1
2‖ P→ 0
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3. 1. and 2. ⇒ Σ̃1 + Σ̃2
P→ Σ, provided that we have the multi-

variate equivalent of the following theorem:

Lemma 9.2.1. Assuming that Xni and Yni are triangular ar-
rays with i = 1, . . . , n and∑

X2
ni

P→ c;
∑

Y 2
ni

P→ 0.

Then

n∑
i=1

(Xni + Yni)
2 P→ c. (9.11)

9.2.2 Geometric Series for Matrices for proof of chi-squared
test

I−A = A
∞∑
k=1

(I−A)k

=⇒ I−A−1 = −
∞∑
k=1

(I−A)k

This implies that(
I− Σ1/2Σ̂−1Σ1/2

)
= −

∞∑
k=1

(
I− Σ−1/2Σ̂Σ−1/2

)k
A geometric sequence argument implies that as long as the first

term converges to 0, the entire sequence will converge to 0. In other
words,

zT
(
I− Σ−1/2Σ̂Σ−1/2

)
z

P→ 0 (9.12)

=⇒ zT
∞∑
k=1

(
I− Σ−1/2Σ̂Σ−1/2

)k
z

P→ 0. (9.13)

The proof of convergence of the chi-square test therefore focuses
on showing that (9.12) is true. This geometric argument allows us to

bypass having to invert Σ̂ by inverting the known covariance matrix
Σ instead.

153



9.2.3 Bias of the covariance estimate

We calculate the expectation, where the sum is implicitly over g:∑
E(Ygi − ngp̂i)(Ygj − ngp̂j) =

∑
E(YgiYgj)− ng[E(p̂iYgj) + E(p̂jYgi)] + n2

gE(p̂ip̂j)

=
G∑
g=1

γg + (E(p̂ip̂j)− pipj)
∑

n2
g + 2pipj

∑
n2
g −

∑
ng[E(p̂iYgj) + E(p̂jYgi)]

The boxed quantity is the bias. It can be simplified. The first
term becomes:

(E(p̂ip̂j)− pipj)
∑

n2
g = Cov(p̂i, p̂j)

∑
n2
g =

∑
γg

∑
n2
g

N2

For the rest of the bias, note that

Cov(p̂i, Ygj) = Cov(p̂j, Ygi) =
1

N

G∑
=1

Cov(Yli, Ygj) =
1

N
Cov(Ygi, Ygj)

so that

E(p̂iYgj) = Cov(p̂i, Ygj)+ngpipj =
1

N
Cov(YgiYgj)+ngpipj (9.14)

The final term is symmetric with respect to i and j, so that
E(p̂iYgj) is the same as (9.14).

Plugging this into the rest of the bias term:

2pipj
∑

n2
g −

∑
ng[E(p̂iYgj) + E(p̂jYgi)]

= 2pipj
∑

n2
g − 2

∑
ng[

1

N
Cov(YgiYgj) + ngpipj]

= − 2

N

∑
ngγg

Therefore, the bias of the covariance estimate γ̂ = 1
N2

G∑
g=1

(Ygi −
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ngp̂i)(Ygj − ngp̂j) is

bCov(p̂i,p̂j) =
1

N2

(∑
E(Ygi − ngp̂i)(Ygj − ngp̂j)−

∑
γg

)
=

∑
n2
g

N2

∑
γg −

2

N

∑
ngγg

=

∑
n2
g

N2

∑
γg

(
1− 2N

ng∑
n2
g

) (9.15)

For homogeneous clusters, this simplifies down to a similar form

bγ̂ =

∑
(N/G)2

N2

∑
γg −

2

N

∑
(N/G)γg

=
−1

G

G∑
g=1

γg

(9.16)

Therefore, γ̂ = 1
N2

G∑
g=1

(Ygi−ngp̂i)(Ygj−ngp̂j) becomes an unbiased

estimator with the simple multiplicative correction G
G−1 :

E((
G

G− 1
)γ̂) =

G

G− 1

1

N2

( G∑
g=1

γg −
1

G

G∑
g=1

γ̂g

)
= γ

9.3 Satterthwaite Approximation

(Satterthwaite, 1946b) proposed an approximation of a linear com-
bination of χ2 random variables.

U =
r∑
i=1

aiUi
νi

where the Ui are independent χ2 random variables with νi degrees
of freedom.

The E(U) =
∑

i ai.

Var(U) =
∑
i

a2i Var(Ui)

ν2i
= 2

∑
i

a2i
νi
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We are hoping that U has approximately a Gamma distribution.
We can choose α and β to match the first two moments of this
distribution.

α∗β∗ =
∑
i

ai

α∗β
2
∗ =

∑
i

2
a2i
νi

=⇒ β∗ =
2
∑

i
a2i
νi∑

i ai

=⇒ α∗ =
[
∑

i ai]
2

2
∑

i
a2i
νi

where typically this is expressed as a re-scaled χ2 with 2α∗ degrees
of freedom.

9.3.1 Binomial Version

If we have G clusters, the variance estimator can be written as a
linear function of terms like

Ug =
(Yg − ngp̂)2

Vg
≈ χ2

1

where Vg = Var(Yg). Therefore, in the previous calculation, the
ag = Vg/n

2, and we’re assuming that p̂ is very close to p.

α∗ =
1/n4

(∑
g Vg

)2
2
∑

g V
2
g /n

4

=
G

2

[
1 +

1

G

G∑
g=1

(Vg − V̄ )2

V̄ 2

]−1
where the average value of the variances is V̄ = n2V/G. This
matches with our Effective Number of Clusters calculations and in-
dicates that we end up with a χ2 distribution with approximately
G∗ degrees of freedom.

If we multiply our estimate by any arbitrary constant (possibly
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to fix the bias), then the β changes but not the shape parameter α.

9.3.2 Two Sample Problem

Suppose that we have a control and a treatment group, we will
presume that even if the parameter is the same in each model, it is
likely that the variances will not be the same due to different cluster
sizes.

The variance of our test statistic Var(p̂1−p̂0) = V0+V1. Thus, we
need to compute the distribution of the sum of estimators. From the
previous section, we argued that V̂j is approximately a Gamma dis-
tributed random variable with shape α∗ = G∗/2 and β∗ = 2Vj/G

∗.
The sum of two such random variables will still be approximately
Gamma, but with

αcombined =
G∗0G

∗
1 (V0 + V1)

2

2V 2
0 G
∗
1 + 2V 2

1 G
∗
0

.

This would imply that we can use our unbiased estimates of the
variance V̂0 and V̂1 to suggest the degrees of freedom to use in our t
critical values

df =
G∗0G

∗
1

(
V̂0 + V̂1

)2
V̂ 2
0 G
∗
1 + V̂ 2

1 G
∗
0

=

( V̂0

V̂0 + V̂1

)2
1

G∗0
+

(
V̂1

V̂0 + V̂1

)2
1

G∗1

−1 .
9.4 Simulation

To simulate clustered data, a beta-binomial model is used: For
a fixed number of clusters G, means p1, . . . , pG are independently
drawn from a known beta distribution. These values, which we refer
to as cluster means, are then used to generate binomial random vari-
ables with sizes proportional to each cluster. As previously shown,
consistency of the variance estimator depends on cluster homogene-
ity, which can be quantified by the effective number of clusters G∗.
To show this relationship, 95% confidence intervals are estimated
over a range of G∗ rather than G. Values of G∗ are generated by
holding the total number of observations in the experiment fixed
and gradually assigning more observations to one cluster, until it
contains over 40% of the sample size.
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In practice, the number of clusters is not always large enough to
support asymptotic theory. We chose G = 50 with U.S. state data
in mind. Assuming 50 observations per cluster in a homogeneous
setting, we end up with N = 2, 500 total binary observations for one
population. We later look at two populations and keep the same G
and N for each population, so that the total sample size for the
two-sample problem is N = 5, 000.

Coverage percentages are calculated using Z-estimators:

Z =
p̂− p√
V

The unbiased estimate p̂ =
G∑
g=1

Yg/N is used for each Z-score.

These variance estimators are compared:

1. Binomial Distribution Assuming i.i.d observations, Y ∼ Bin(p,N).
The known variance estimate of a sample proportion for a bi-
nomial experiment is then:

V̂i.i.d =
1

N

G∑
g=1

ng∑
i=1

(Yig − p̂)2 =
p̂(1− p̂)

N

2. Quasi-binomial Generalized Linear Model. In cases of overdis-
persion, a quasi-binomial model can be used to model the extra-
variation by specifying a mean-variance relationship. This is
well documented in statistical literature (McCullach & Nelder,
1898)

V̂Quasi.Bin. =

3. Generalized Estimating Equation Sandwich Estimator ( (Liang
& Zeger, 1986), (Carter et al., 2020))

V̂GEE =
1

N2

G∑
g=1

(Yg − ngp̂)2
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4. Adjusted GEE Estimator. V̂GEE is known to be biased (Rogers
& Stoner, 2015; Mancl & A. DeRouen, 2001). The exact bias is
calculated in section 3.2. We propose the following adjustment
based on a multiplicative `2 lower bound:

V̂GEE∗ = (1/bias`2) ∗ VGEE, bias`2 = 1− G+G∗

GG∗

where G∗ is the effective number of clusters derived by Carter
and Steigerwald (2018).

In our simulation, we generate such Z-scores over varying values of
G∗ to study the performance of each variance estimator. High cov-
erage percentages indicate that the variance is being overestimated,
while under-coverage corresponds to underestimating the variance.
The simulation process is now explained step by step for both the
one-sample and two-sample problem.

9.4.1 One Proportion

1. Fix number of cluster G, and beta parameters p and γ.

2. Generate vectors of cluster sizes. Start with a leading cluster
which makes up over 40% of all the observations. Observations
are gradually distributed from the large cluster to all other
equally sized clusters, increasing homogeneity until all clusters
have the same size (in which case G∗ = G). G∗ is calculated at
each point. The distribution of clusters is below. Since G = 50
in all simulations, there are 49 small clusters:
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Table 9.1: Cluster Size Distribution and Effective Number of Clusters

Small clusters Large cluster G∗

1 40.00 540.00 1.61
2 41.00 491.00 1.80
3 42.00 442.00 2.07
4 43.00 393.00 2.50
5 44.00 344.00 3.20
6 45.00 295.00 4.46
7 46.00 246.00 6.95
8 47.00 197.00 12.39
9 48.00 148.00 24.56

10 49.00 99.00 42.91
11 50.00 50.00 50.00
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3. For each row of the table above, nsim simulations are run in
the following way: for j in 1 to nsim:

(a) Draw G cluster means from the beta distribution.

p1, . . . , pG ∼ beta(p, γ) E(pg) = p, Var(pg) = p(1−p)γ

(b) Draw G binomial random variables with mean and size
corresponding to each cluster size:

Yg|pg ∼ Bin(ng, pg)

(c) Calculate p̂ and all variance estimates and corresponding
Z-scores. Store Z-scores.

4. Count percentage of resulting Z-scores within (-1.96, 1.96). For
one of our estimates, we use a t-distribution with G.star degrees
of freedom: (qt(.025, G.star[i]), qt(.975, G.star[i])).

Estimated coverage percentage =
#{Z-scores ∈ (−1.96, 1.96)}

nsim

5. Plot the resulting coverage percentages as a function of G∗.
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9.4.2 Treatment & Control Problem

Coverage percentages are estimated across different levels of ho-
mogeneity, measured by G∗. We are interested in the performance
of this estimator when the effective number of clusters varies greatly
between the two groups. To that end, the control group is kept ho-
mogeneous, while the treatment group follows the same cluster size
distribution as for the one-sample problem.

The simulation works as follows:

1. Fix number of clusters for each group Gi and beta distribution
parameters pi and γi, where i = 0 corresponds to the control
group, and i = 1 to the treatment group. For the moment,
we assume that G0 = G1 = G, and that the underlying dis-
tribution is the same for both control and treatment group, ie
p0 = p1, γ0 = γ1.

2. Cluster size distribution is homogeneous for the control group,
with 50 observations per cluster. The treatment group starts
with one very large cluster making up over 40% of all the obser-
vations and becomes gradually more evenly distributed, until it
is homogeneous (in which case G∗ = G). The effective number
of cluster G∗ is compared for the control and treatment group
below. The size of the large cluster for the treatment group is
also given.

Table 9.2: Effective Number of Clusters

Control Treatment Large Cluster Size (T)
50.00 1.61 540
50.00 1.80 491
50.00 2.07 442
50.00 2.50 393
50.00 3.20 344
50.00 4.46 295
50.00 6.95 246
50.00 12.39 197
50.00 24.56 148
50.00 42.91 99
50.00 50.00 50

3. For each row of the table above, nsim simulations are run in
the following way: for j in 1 to nsim:
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(a) Draw Gi cluster means from the beta distribution for each
population i = 0, 1.

p1i , . . . , pGi ∼ beta(pi, γi) E(pgi) = pi, Var(pgi) = pi(1−pi)γi

(b) Draw Gi binomial random variables with mean and size
corresponding to each cluster size for both control (i=0)
and treatment (i=1) groups:

Ygi |pgi ∼ Bin(ngi , pgi)

(c) Calculate p̂i, all variance estimates separately in both pop-
ulations, and corresponding Z-scores. The form of the pro-
posed estimator is:

Zj =
p̂0 − p̂1√
V̂0 + V̂1

where V̂i is the bias-corrected GEE estimate for population
i.

(d) Store Z-scores.

(e) Wild Bootstrap. Collect vector of deviations rgi = Ygi −
ngi p̂.

i. GenerateK < 2G bootstrap samples of 2G observations
each by randomly adding or subtracting the residuals
from the empirical pooled expectation :

{Y ∗i }r, Y ∗gi = ngi p̂ ± rgi

ii. For each k = 1, . . . , K, calculate (p̂∗1 − p̂∗0)k
iii. Calculate 2.5% and 97.5% quantiles of {(p̂∗1 − p̂∗0)}(K)

4. Count percentage of resulting Z-scores within (-1.96, 1.96). For
one of our estimates, we use a t-distribution with G∗ degrees
of freedom.

Estimated coverage percentage =
#{Z-scores ∈ (−1.96, 1.96)}

nsim

5. Count percentage of bootstrap intervals that include 0 in the
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interval.

6. Plot the resulting coverage percentages as a function of G∗1.
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9.4.3 Longitudinal Rasch Model

We generate person abilities according to a beta distribution and
incorporate difficulty levels using the logistic function. Note that
the logistic function returns values roughly in (−4, 4) for realistic
values of p, therefore item levels must have a limited range as to not
overpower the ability levels.

1. Specify number of subjects (G), items (L), and a mean (p) and
variance (γ) for the overall probability of success.

2. δi’s: subject to constraint
L∑
δi = 0. Chosen to be spaced

symmetrically about zero with unit range. For example, if L =
5, δ = (−0.4,−0.2, 0, 0.2, 0.4). A negative δ corresponds to an
item which is easier to endorse than the norm, whereas positive
δ values imply more difficult questions.

3. Begin simulation. For each iteration, generate the following:

• pg’s: Generate subject ability levels using beta distribution
with mean and variance as previously specified. Create βg’s
by taking the log-odds of the pg’s:

βg = log
( pg

1− pg
)

• For longitudinal data, add time trend to subject param-
eters (as per the longitudinal dichotomous Rasch model)
which is a strictly increasing sequence. Then multiply that
sequence by -1, 0 or 1 randomly for each subject. Trend
varies for each subject, not for each item

• Systematic Component: Calculate Xθ with parameter vec-
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tor θ = (β1, · · · , βG, δ1, · · · , δL) and design matrix X:

X =



1 0 . . . 0 −1 0 . . . 0
1 0 . . . 0 0 −1 . . . 0
...

...
...

...
. . .

...
1 0 . . . 0 0 . . . . . . −1
0 1 . . . 0 −1 0 . . . 0
...

... 0
. . .

...
0 1 . . . 0 . . . . . . −1
...

...
...

...
0 . . . 0 1 0 . . . 0 −1


• Take the inverse log-odds to obtain a probability matrix

prob.mat = eXθ

1+eXθ

• Y : Generate independent Bernoulli random variables using
probability matrix.

• Estimate overall probability of success p̂ and its variance

V̂ using cluster-robust estimator.

• Calculate Z statistic.

4. Store all Z-statistics. Calculate percentage which are within
the 95% normal confidence interval [−1.96, 1.96].

5. Repeat for different values of G and L.

6. Make a pretty plot

9.4.4 Discussing the logit link

As seen in the plot below, taking the log-odds of a percentage point
(ie, a value between 0 and 1) returns values mostly within (-4, 4):
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Function.png

In practice, it is very unlikely that we observe a value less than
.01 or greater than .99. This roughly corresponds to values in the
interval (-4.6, 4.6) for the logistic function. Therefore any value of
the systematic component outside of this range will return proba-
bilities of 0 or 1.
For the Rasch model, this implies that differences between subject
ability and item difficulty should be within that interval. Hence in
simulation, both sets of parameters should be calibrated in a way
that probabilities very close to 0 or 1 are rare.

9.5 Computational Details

All calculations and simulations were done using R 3.6.0. Base
functions were used to calculate the quasi-binomial estimate, as well
as to generate time-series data. The following R packages were con-
sidered:

1. expm - facilitates matrix algebra

2. eRm - extended Rasch models

3. glmm- for Poisson and Binomial data, with normally distributed
random effect and most common link functions used in re-
search. We used the logit link.

4. TAM - Solves estimates for complex logistic structures. Rasch
model included.
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5. SimMultCor - A package for simulating correlated binary ob-
servations by specifying the marginal means and covariance
structures.

After reviewing the statistical methods behind the various pack-
ages, the eRm package was selected because it was was of the only
ones to use conditional maximum likelihood for item estimation in
the Rasch model, meaning consistent estimates whose distributions
are independent of the ability parameters.

9.5.1 Computing Methods for GLMMs

1. Newton-Raphson- root-finding algorithm which uses Taylor ex-
pansion to, in this case, find maximum likelihood estimates. We
wish to solve

∂f(θ)

θ
= 0,

Expanding about an initial estimate θ0,

∂f(θ)

θ
= f ′(θ) ≈ f ′(θ0) + f ′′(θ0)(θ − θ0)

Set the previous equation to zero to find maximum values.
Solving for θ, we get the Newton -Raphson algorithm:

θ(m+1) = θ(m) − f ′(θ(m))

f ′′(θ(m))

2. EM Algorithm-

For mixed models, the random effect is often considered to be
the missing data. Once estimates are given by EM algorithm,
the values can be treated as known and fixed values which
simplifies the problem.
EM Iteration Steps for the Logit-Normal Rasch Model
Recall:

yij|βj
indep.∼ Bernoulli(πij =

1

1 + e−δi−βj
)

E(yij|βj) = πij
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g(πij) = ln
πij

1− πij
= δi + βj

βj ∼ N(0, τ 2)

(a) Let the complete data be w′ = (y′, β′)

(b) Set m=0. Choose starting values for β(0) and τ (0).

(c) Calculate:

• β(m+1) and τ (m+1) to maximize E[ln f(y|βj, τ 2)]
(d) (c) until convergence.

EM Iteration Steps for the Probit-Normal Model
Since this is a nested design, µ1 and µ2 are estimated separately,
and the variances are not assumed to be equal. Focusing on

the treatment group, let Y =
n∑
j=1

= Y1j. The subscript i will

be omitted from now on:

(a) Set µ(0) = 0, τ (0) = 1. Set m=0.

(b) E Step - Calculate E(Y |W,µ(m), τ (m)) and E(Y 2|W,µ(m), τ (m))

(c) M Step - Set

µ(m+1) = E(Y |W,µ(m), τ (m)) τ (m+1) = E(Y 2|W,µ(m), τ (m))−(µ(m))2

3. Gaussian Quadrature for GLMM - Hierarchical models with a
random latent trait use marginal maximum likelihood to inte-
grate out the possible values of that random effect. Most often
the normal distribution is used, resulting in Gaussian expecta-
tions as likelihoods. Gauss-Hermite Quadrature is then used
to evaluate the marginal likelihood. This method uses clev-
erly chosen weights wk and corresponding evaluation points xk
from Hermite polynomials to approximate integrals with infi-
nite bounds. The sum will be exact when the function whose
expectation is being calculated (h) can be expressed as a poly-
nomial of degree up to 2d−1, where d is the number of evalua-
tion points. For MML estimation, “practical experience shows
that quadrature with less than 10 points often gives inaccurate
answers, while 20 is usually enough for a good approximation”
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(McCulloch, 1994; McCulloch et al., 2001). Integrals with re-
spect to the normal density can be approximated as

∞∫
−∞

h(x)
e−x

2/2σ2

√
2πσ2

dx
.

=
d∑

k=1

h(
√

2σxk)wk/
√
π. (9.17)

9.5.2 Correlation bounds for binary random variables

These correlation bounds are a direct consequence of Frechet bounds
and are respected by the beta-binomial distribution:

max
j 6=k

{
−
√
pjpk
qjqk

,−
√
qjqk
pjpk

}
≤ ρ ≤ min

j 6=k

{√
pjqk
qjpk

,

√
qjpk
pjqk

}
These are studied by (Chaganty & Joe, 2004) in the context of

GEE’s. They show that the correlation matrix derived by Liang
and Zeger (Liang & Zeger, 1986) can disregard these bounds when
the matrix is misspecified in current GEE software and give a set
of simple rules for choosing a correlation matrix. Observations in a
beta-binomial model also stay within these bounds since the covari-
ance is always positive.

9.6 Miscellaneous

9.6.1 Useful Inequalities

• Jensen E(g(X)) ≥ g(E(X)) for g convex; reverse if g is con-
cave; both true when E|X| and E|g(X)| are finite.

• Minkowski for p ≥ 1,
{E(|X + Y |p)}1/p ≤ {E(|X|p)}1/p + {E(|Y |p)}1/p

• Minkowski, p = 2 : E(|X + Y |2) ≤
(√

E(X2) +
√
E(Y 2)

)2
• Holder Let p, q > 1 and p−1 + q−1 = 1. Then
E|XY | ≤ {E(|X|p)}1/p{E(|Y |q)}1/q. Set p = q = 2 to obtain
CS:

• Cauchy-Schwarz E(XY )2 ≤ E(X2)E(Y 2)
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9.6.2 Exponential Parameterization of Outcome Vectors
for Longitudinal Data

Suppose we have series of response vectors Yj all of length L. Follow-
ing the notation from (Liang & Zeger, 1986), suppose the number
of successful answers to one item i for one subject

f(yit) = exp
[
{yitθit − a(θit) + b(θit)}φ

]
(9.18)

9.6.3 Kronecker Products

The Kronecker product of two matrices A = {aij} and B = {bij} is

A⊗B = {aijB} (9.19)

Examples for design matrices:

12 ⊗ I3 =


1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1



I2 ⊗ 13 =


1 0
1 0
1 0
0 1
0 1
0 1


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