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The ability to flexibly, rapidly, and accurately perform novel tasks
is a hallmark of human behavior. In our everyday lives we are
often faced with arbitrary instructions that we must understand
and follow, and we are able to do so with remarkable ease. It has
frequently been argued that this ability relies on symbol process-
ing, which depends critically on the ability to represent variables
and bind them to arbitrary values. Whereas symbol processing is
a fundamental feature of all computer systems, it remains a mystery
whether and how this ability is carried out by the brain. Here, we
provide an example of how the structure and functioning of the
prefrontal cortex/basal ganglia working memory system can sup-
port variable binding, through a form of indirection (akin to a pointer
in computer science). We show how indirection enables the system
to flexibly generalize its behavior substantially beyond its direct
experience (i.e., systematicity). We argue that this provides a bi-
ologically plausible mechanism that approximates a key component
of symbol processing, exhibiting both the flexibility, but also some
of the limitations, that are associated with this ability in humans.

generativity | generalization | computational model

One of the most impressive aspects of human cognition is also
one of its most enduring mysteries: how it can respond in

appropriate ways to novel circumstances. In our everyday lives,
we are constantly confronted with the need to make sense of and
respond appropriately to new situations. Almost always, the in-
dividual constituents of these situations (e.g., the people, places,
and/or actions involved) are things with which we have had prior
experience, and it is the particular combination that is new. A
person may appear in a new context or carry out an action we
have never before witnessed them perform, or a word may be
used in a novel way within a sentence. Nevertheless, we are able
to makes sense of and respond appropriately to such circum-
stances, drawn from a nearly infinite array of possible combi-
nations, despite having had experience with only a limited
number of them. It has frequently been argued that this flexi-
bility, or systematicity, relies on symbol processing, that is, the
ability to represent information in the form of abstract variables
that can be bound to arbitrary values, as is possible in a symbol
system. For example, in trying to understand a sentence, if the
constituent parts can be represented as variables, then any pos-
sible word can be assigned, or “bound,” to each (e.g., in the
sentence “I want to desk you,” “desk” can be understood as the
verb). Such variable binding provides tremendous flexibility and
is fundamental to the power of computer systems. However,
whether and how this ability is implemented in the brain remains
one of the great mysteries of neuroscience. Historically, this
ability has been used as a key argument by those advocating for
symbolic cognitive models, over “associationist” neural network
models (1, 2). In response, some have argued that human symbol
processing ability is limited at best and that many behaviors that
might be construed as evidence of such an ability can be
explained by general-purpose learning algorithms that can infer
statistical regularities of the environment (3–5).
Here, we propose a set of neural mechanisms, involving the

prefrontal cortex (PFC) and basal ganglia (BG), that support a form

of variable binding through the use of indirection (corresponding to
the use of a pointer, in computer science terms). We demon-
strate that these mechanisms can exhibit the kind of system-
aticity in processing novel combinations of stimuli of which people
are capable, typically attributed to a symbol processing system.
However, it does so using standard neural network mechanisms for
both learning and processing. As a consequence, its mechanisms
for indirection and variable binding are limited. It can only assign
pointers to memory locations with which it has had some previous
experience, and those locations can only represent information that
has been learned to be represented. Also, neural pointers cannot
be nested at arbitrary levels of complexity or depth. In this respect,
these neural representations fall short of qualifying as symbols in
the most general sense. Accordingly, the processing capabilities of
this system fall short of the more powerful capabilities of fully
general symbol processing systems found in most computers.
However, human systematicity has its limits (4, 5). These limits may
be explained by the structure of the PFC/BG system, learning based
on standard neural network mechanisms, and the distributed rep-
resentation of information. In other words, although human be-
havior exhibits some of the characteristics of a classic symbol
processing system, the mechanisms upon which this relies may not
implement symbols in the usual sense. By understanding the limi-
tations of the mechanisms our behavior is built upon we may shed
a light on the limitations of human behavior itself.
In the following, we describe a model in which neurons in one

part of the PFC (area A) encode and maintain a pattern of
neural activity that represents the location (or address) of in-
formation maintained in another part of the PFC (area B).
Furthermore, representations in area A can regulate the use of
information in area B by way of the BG: Representations in area
A project to, and are decoded by, a region of the BG associated
with area B, which in turn can regulate efferent projections from
area B to more posterior neocortical areas responsible for con-
trolling behavior. Thus, area A of the PFC encodes a pointer to area
B and, by way of the BG, can regulate the influence of information
stored in area B on behavior. With reasonable assumptions about
the connectivity between the PFC and BG, area A can point to
a wide range of areas (i.e., not just B), providing considerable
flexibility in processing.
This use of indirection to implement variable binding extends

a more traditional view of neural representation, in which a given
population of neurons is assumed to encode a particular type of
information, and different patterns of activity over that pop-
ulation correspond to different possible contents of each type.
For example, in the case of sentence processing, there might be
separate populations for encoding the various constituents, or
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roles, within a sentence (e.g., agent, verb, or patient). The pat-
tern of activity within each of these populations would then
represent the current value, or filler, of that role. With a suffi-
cient number of different populations (e.g., to represent the
different possible roles), each with a sufficient number of neu-
rons (e.g., to represent the possible fillers of each role), rich
combinations of information can be expressed (e.g., sentences
can be formed). This traditional strategy can support the learn-
ing of compositional representations when the range of training
experiences spans the space of possible combinations of con-
stituents (6), but three fundamental problems arise as the space
of possible representations gets very large. First, this approach
risks extensive duplication of resources. A second related, but
more important, problem is that this scheme cannot benefit from
generalization resulting from similarity of representation without
the inclusion of additional mechanisms. This is because the rep-
resentation learned for fillers in one role are specific to the neural
population used to represent that role and isolated from the
representation of the same fillers in other roles. For example, any
similarity that boys and girls share in the role of agent will not
generalize to their roles as patient, because agents and patients are
represented over separate populations of neurons. Finally, learn-
ing from a limited number of experiences can shape neural rep-
resentations based on accidental correlations (or anticorrelations)
in the sampled set of experiences (7, 8). For example, if “girl” had
never been experienced in the role of agent, then the population of
neurons for the agent role would have no opportunity to learn to
represent the “girl” filler in that role. Because of these problems,
some researchers have proposed that compositional representation
schemes in the brain are not learned but arise from specialized
neural binding circuits that combine role and filler repre-
sentations using a fixed method, such as the tensor product (9)
or circular convolution (10). The resulting representations can
seem identical to traditional ones involving the association of
roles to isolated populations of neurons, but many of the
problems involving generalization are avoided by making the
binding operation nonadaptive and insensitive to experience.
Avoiding the learning of compositional representations, in this
way, makes it difficult to account for ways in which human behavior
departs from pure systematicity (4, 5), however. Perhaps more
importantly, although fixed binding operations of this kind have
been formally implemented in simulated neural circuits (11), there
is little anatomical or physiological evidence for such specialized
circuitry in the brain.
Introducing a mechanism for indirection can avert the prob-

lems described above while still allowing compositional repre-
sentations to be learned from experience. For example, this can
be used to separate the representation of roles and fillers. Role
populations can be used to represent pointers (e.g., in the PFC
area A of our example above), which in turn can be assigned to
reference fillers represented elsewhere (e.g., area B). This allows
each filler to be represented only once rather than separately for
each role. Furthermore, any role that points to that filler can ex-
ploit the similarity that filler shares with other fillers represented in
that population, allowing what is learned about the relationship
between fillers in one role to generalize to others. This separation
between form and content is central to the classic symbol pro-
cessing model (1). Using the model described below, we dem-
onstrate that under certain architectural assumptions—that are
consistent with the known anatomy of the PFC and BG systems—
the relationship between representations of pointers and their
referents (e.g., between roles and fillers) can be learned. How-
ever, although this mechanism exhibits considerable flexibility, its
performance is constrained by its learning experiences—a feature
that seems consistent with human performance.
We begin by providing a brief review of the neurobiological

mechanisms that we propose support variable binding in the
brain, followed by a computational model that embodies these
properties. We then use the model to simulate a simple sentence

processing task that requires variable binding. We demonstrate
that, through trial-and-error learning, the model can learn to
bind words (fillers) to their appropriate roles in the sentence and,
critically, can do so for words that it has never seen in a partic-
ular role. We evaluate this by testing the model on several
benchmark tests of generalization and by comparing it to others,
including neural network architectures that have been used in
previous work to model variable binding.

PFC, BG, and Indirection
Our model focuses on functional specializations within the BG
that we have previously proposed implement a dynamic, adaptive
gating mechanism for regulating the updating, maintenance, and
output of information in the PFC (12–14) (Figs. 1 A and B and 2
A and B). Importantly, the model assumes that separate path-
ways through the BG can independently regulate different sub-
regions of the PFC. This is consistent with the anatomy of both
the PFC and BG. Within the PFC, relatively isolated stripe-like
patches of neurons have been observed, each of which exhibits
dense within-stripe interconnectivity and sparse (largely inhibitory)
between-stripe connectivity (15, 16). Furthermore, these stripes
project to distinct regions within the BG which, in turn, project
back to different stripes within the PFC (17). In previous modeling
work, we have shown that this anatomy and physiology can support
a system of control in which gating signals from the BG regulate
when a given stripe within the PFC will either (i) update to encode
new information, (ii) continue to robustly maintain information in
an active state (through sustained neural firing), or (iii) output the
information it is currently encoding to drive information process-
ing elsewhere in the brain (18). That is, it provides a separation of
function that allows different signals to control when and where
information is encoded or used (BG) compared with the signals
that encode the information content itself (PFC) (14). Further-
more, we have shown that if the output of one PFC stripe controls
the BG gating signal that regulates a different stripe, this archi-
tecture can support a system of hierarchically nested control (19).
This, in turn, can be used to separate the representation of vari-
ables and their values, upon which a mechanism for indirection
can be built.
Consider the sentence processing example introduced above

(and illustrated in Fig. 1). Imagine there are different PFC
stripes dedicated to representing the different roles of a sentence
(e.g., agent, verb, and patient). In the simplest case, the pattern
of activity in a given role-specific stripe would represent the
current filler for that role. However, now consider that the pat-
tern of activity within each role-specific stripe, instead of rep-
resenting any particular filler, represents the address of another
PFC stripe that represents that filler (Figs. 1 and 2C). There
could then be a large number of different such filler stripes,
organized in useful ways (e.g., according to semantic relation-
ships among the fillers). The BG system can then be used to
update the address information in the role-specific stripes as new
sentences are presented and new fillers need to be assigned to
a given role, whereas the role-specific stripe, when queried, can
signal the BG to trigger the output of information from the filler
stripe to which it currently points, permitting a read-out of the
current filler for that role. Below, we show not only that such
a system can self-organize through learning, but also that, with
only a modicum of such learning, it can accurately process
a wide range of role-filler combinations to which it has never
been exposed.

Methods
Generalization Tests. To test these ideas, we used a simple sentence encoding
and decoding task. Each sentence was composed of three roles: an agent,
verb, and patient. Each role could be filled with words drawn from a set of 10
words, and each word could be used in any role, resulting in 1,000 possible
sentences. The network was trained on only a small subset (20%) of the 1,000
possible sentences and then tested on sentences it had not previously seen, to
evaluate its ability to generalize. On each trial, the network was presented
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with a sentence, word by word (Fig. 1A), requiring the maintenance of each
word (filler) and its assigned role. The network was then tested by presenting
each of the three roles as input, one at a time, to which it had to respond by
generating the corresponding filler (Fig. 1B). The large majority (80%) of
these were sentences it had not seen before, involving not only novel com-
binations of role-filler pairs, but also fillers in novel roles (i.e., novel role-filler
pairs). The network’s ability to generalize was indexed by its ability to process
these and other types of novel sentences.

To further characterize generalization in the model, we used three var-
iants of the basic learning and testing procedures described above. These
tested for standard generalization, spurious correlations, and full combina-
toric generalization, as described below. In addition to the full indirection
model, we trained and tested two other variants as well as a standard neural
network architecture that has been used extensively to model sequential
processes, including language. A strict performance criterion of 95% correct
was used to determine the amount of experience each network received
during the training phase, requiring that every network performed nearly
perfectly on the training sentences. Each network was trained and tested
using each of the protocols listed below.
Standard generalization. After training on a random selection of 200 out of the
1,000 different sentences, 100 novel sentences were selected randomly from
the remaining 800 to be used as the testing set. These sentences had not been
experienced by the network during training. However, the training set was
constrained so as to ensure that every individual word was presented as
a filler in each of the different roles during training. This generalization
protocol tested the ability of the network to encode and decode arbitrary
combinations of role-filler pairs, but not its ability to process novel role-
filler pairs.
Spurious anticorrelations. An anticorrelation occurs whenever one member of
a pair of words is never seen in the same sentence as the other during
training. The anticorrelation is spurious if there is no valid reasonwhy the two
words should not appear together. Such anticorrelations are pervasive in
natural environments, in which there are large numbers of possible combi-
nations of stimuli, all of which are plausible but few of which have been
experienced. Learning such anticorrelations can be maladaptive, because the
anticorrelated pairs could occur in the future. Many artificial neural network
learning mechanisms show susceptibility to such spurious anticorrelations,
which interferes with their ability to generalize to novel combinations of
stimuli (7, 8). To evaluate the response to such anticorrelations, sentences in
the training set were selected so that certain words never occurred together
during learning (e.g., the words “knife” and “tire” were never part of the
same sentence). Then, at test, networks were evaluated on their ability to
process sentences that contained the anticorrelated words.

Full combinatorial generalization. This tested the network’s ability to generalize
not only to novel combinations of role-filler pairs, but also to novel role-filler
pairs themselves. To do so, 2 words out of the 10 possible were selected and
never used in the role of patient in sentences during training. Networks
were then evaluated on their ability to process sentences containing those
words as patients in the test set. This is an extremely difficult task for systems
that learn from experience about the structure of the world.

Models. Fig. 2 shows the networks that we simulated to determine which
architectural and processing features were critical to performance on each
of the three generalization tests (Supporting Information). This includes
three progressively elaborated variants of the PFC/BG working memory
(PBWM) model (13, 14, 20). The first variant (PBWM Maintenance Only, Fig.
2A) was the simplest version of the PBWM model, in which each of the three
words in a sentence was encoded and maintained in a separate PFC stripe.
The identity of the PFC stripes that stored each word was determined by
a learning process in the gating system (BG). The filler structure was learned
randomly but included an additional assumption that if a PFC stripe recently
gated in new information (e.g., a new word), then it was unlikely to do so
again immediately. The specific “role” inputs were provided to the BG,
allowing the network to learn a policy that specialized different PFC stripes
to the different sentential roles. A response was generated by projections
from the PFC and a sentential role input layer to a hidden (association) layer
that, in turn, activated a representation of the filler for the specified role
over the output units. The sentential role input layer was used during
encoding to tell the network what the current role of a word should be
(agent, patient, etc.) and, during recall, to identity the role of the filler to be
retrieved (e.g., “What was the agent in the sentence you just saw?”). A total
of 15 PFC/BG stripes were used in the maintenance-only version. This number
was determined by use of a grid search procedure, optimizing the perfor-
mance of the network across tasks. The other PBWM networks also used 15
stripes to store the “filler” information based on the grid search performed in
the maintenance-only version. In other words, we optimized the number of
stripes based on the performance of the simplest of the PBWM networks—to
give that network the greatest advantage—and used that number for the
other PBWM variants.

In the second variant (PBWM Output Gating, Fig. 2B), an output gating
mechanism was added to the network that selectively decided when
information maintained in the PFC stripes should be output, to drive
responding. This allowed multiple items to be actively maintained in
working memory while allowing only one to be selected to influence the
response. A total of 15 PFC/BG stripes were used in the output gating

A

B

Fig. 1. Simple sentence encoding task demon-
strating indirection in the PFC/BG working memory
system. Three-word sentences are encoded one
word at time along with a sentential role. After
encoding, the network is probed for each word
using the associated roles. Green indicates currently
active inputs; orange represents actively main-
tained information. (A) One step of the encoding
process for the sentence “Bob ate steak.” “Ate” is
presented along with its current role (verb) and the
instruction to store, or encode, this information. In
this example, the word “ate” is stored in Stripe2
of PFC filler stripes (Left). The identity/location of
Stripe2 is subsequently stored in the verb stripe of
PFC role stripes (Right). This process repeats for each
of the other two words in the sentence. (B) One
step of the recall process. A role (Patient in the
example) and the instruction Recall are presented
as input. This drives output gating of the address
information stored that role stripe (highlighted by
purple arrow), driving the BG units corresponding
to that address to output gate the corresponding
filler stripe, thus outputting the contents of that
stripe (Steak).
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network (based on the same optimization procedure used for the
maintenance-only version of the model).

The third variant (PBWM Indirection, Fig. 2C) implemented the full model.
This possessed two complete and distinct PBWM networks as well as output
gating. One PBWM network (filler-specific) learned to store each word in
a set of different filler stripes. Each filler stripe learned to represent multiple
fillers, and each filler was represented across multiple stripes. In the results
discussed below, the PBWM “role-specific” network contained three sets of
three PFC/BG stripes (nine in total), each set dedicated to a different role.
Nine stripes were sufficient for satisfactory performance in the indirection
network and, unlike the filler-specific network, this parameter was not op-
timized across models, because it is unique to the indirection network. The
“pointer” that specified the location of the appropriate content in the filler-
specific portion of the network was maintained until an output gating signal
allowed a particular stripe’s contents to influence the response. Output
gating of the filler-specific network was tightly coupled with the role-specific
PBWM network. For each word, the role-specific network learned to store the
location of the stripe in the filler-specific network that represented that
word. At test, presentation of a given role as input to the network generated
an ouptut gating signal in the BG for the stripe corresponding to that role in
the role-specific network. The address information stored in the role-spe-
cific stripe then generated, in the BG, an output gating signal for the stripe
in the filler-specific network corresponding to that address. Output gating
of the filler stripe then drove a response, via the hidden layer, corresponding
to the word in the probed role. Note that the sentential role information was
always explicitly provided in the input, instead of requiring the network to
learn to recognize the role based on syntactic or other cues.

Finally, we tested a simple recurrent network (SRN) (Fig. 2D). SRNs have been
used successfully to model a diverse set of complex behavioral phenomena
associated with sequence processing, including early language acquisition,
patterns of implicit learning, and routine task performance (21–23). Impor-
tantly, SRNs have been shown to exhibit behavior that seems componential

and structured, using distributed representations without any explicit com-
ponential or hierarchical structure (23). This makes SRNs a useful comparison
with our networks, which include structural elements to support compo-
nential and hierarchical relationships.

Results
The generalization results for each network are shown in Fig. 3.
The SRN struggled to generalize successfully on all three tasks,
indicating that it could not represent each of the sentence ele-
ments in a way that supported generalization to novel sentences.
Based on prior models, it may require training on a larger por-
tion of all possible sentences (23–25).
The PBWM maintenance-only network performed well on the

standard generalization task. This is because it was able to store
each word as the filler of the appropriate role in dedicated, in-
dependently updatable PFC stripes for each role. As long as it
experienced each word in each role, it could process sentences
involving novel combinations of these pairs. This was confirmed
by examination of the network, which revealed that the PFC
stripes learned to encode words for a specific sentential role (e.g.,
all of the verbs). This replicates findings from both other PBWM
models and other models of representation learning in the
PFC (26). However, this network failed to generalize in both
the anticorrelation and full combinatorial generalization tasks,
for reasons that are clarified by examination of the other two
PBWM networks.
The PBWM output gating network did well on both the

standard and anticorrelation generalization tasks, but not on the
full combinatorial task. Its performance on the anticorrelation
task sheds light on why the basic PBWMmodel performed poorly

A

B

C

D

Fig. 2. Model architectures. Green indicates cur-
rently active inputs; orange represents actively
maintained information. The inputs to all net-
works include the sentential role, the content
word (filler), and a signal indicating whether this
is an encoding (Store) or retrieval (Recall) trial.
Please note that the actual number of PFC stripes
used is greater than what is presented here for
reasons of clarity. (A) PBWM maintenance-only
network that implements the key components of
the PBWM architecture. (B) PBWM output gating
network, which separates active maintenance of
representations in PFC from the driving a re-
sponse. (C) Full PBWM indirection network. A
word is presented as input and is gated into the
filler-specific network on the left; its stripe ad-
dress is propagated to gating units for the role-
specific network on the right, which then gate
that information into a role-specific PFC stripe. At
recall, presentation of the role, together with the
recall instruction, activates the output gating unit
for that role-specific stripe. That stripe is storing
the address of the corresponding filler-specific
stripe, which activates the output gating unit for
that stripe in the filler-specific network. (D) The
simple recurrent network.
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on this task. Including an output gating mechanism restricted the
influence of the items maintained across the various stripes of the
PFC, encouraging a componential item-by-item influence on
downstream cortical processing (e.g., in the hidden to response
output pathway). Thus, the hidden layer only had to process
a single, relevant, active representation from the output PFC
stripes, instead of the entire set of active information across all
of the PFC stripes, as in both the SRN and basic PBWM. This
protected it from learning anticorrelations. For example, it would
selectively allow the verb item to be processed by the response
pathway, without any “contamination” from the maintained agent
and patient role items. This is consistent with and replicates
previous findings concerning the generalization benefits of output
gating within the PBWM framework (27). However, the output
gating network failed on the full combinatorial task because it
had not been exposed to (many of) the role-filler pairings in the
test set, and therefore did not learn filler representations for
those roles.
Finally, the PBWM indirection network was able to generalize

effectively in all of the tasks. This was due to its ability to encode
fillers in roles as pointers to filler-specific stripes, rather than
directly within the role-specific stripes themselves. So long as the
network had experienced encoding a given stripe address where
a filler was being maintained, it could then process anything
stored at that location, allowing it to generalize to novel role-
filler pairs. The network learned these joint content and location
representations across the two sets of interconnected PFC/
BG networks.

Discussion
We have described a unique neural network architecture that
implements arbitrary variable binding using biologically plausible
mechanisms and demonstrated its ability to generalize, from
limited experience, to a rich combinatorial domain. Using a
simple sentence processing task, we demonstrated the model’s
ability to generalize not only to novel combinations of role-filler
pairs, but also to novel assignments of fillers to roles. This level
of generalization was accomplished only by the full PBWM in-
direction mode, and could not be achieved by models without
a mechanism for indirection.
The design of the architecture of the PBWM indirection net-

work was motivated in part by the computational demands of full

combinatorial generalization that require a mechanism for vari-
able binding. However, it was also inspired by, and is consistent
with, a growing body of neuroscientific evidence concerning the
anatomy and physiology of the PFC and BG. There is long-
standing evidence of an asymmetric “spiral” pattern of projec-
tions between the PFC and BG, in which the PFC projects to
areas of the BG that project to a nearby but distinct area of the
PFC (17). Such evidence continues to accrue, suggesting that
projections from the PFC to striatum exhibit a rostral-to-caudal
bias (28, 29); similar spiraling patterns of connectivity are seen
within the striatum proper (30). Gradients of function have also
been proposed within the PFC. For example, some neuroimaging
studies have suggested a dorsal–ventral organization according to
content (31–35). This has also been suggested by previous mod-
eling work using the PBWM, in which more dorsal areas have been
proposed to represent higher-level information (e.g., dimensional
or category information and task specifications), whereas more
ventral areas represent more specific information (e.g., featural)
(18, 35). Another proposal suggests that there is an anterior–
posterior functional hierarchy in the frontal cortex (36, 37), in
which anterior areas represent more abstract information (e.g.,
high-level goals), whereas more posterior areas represent more
concrete information (e.g., motor plans). The separation of sub-
networks within the PFC and the pattern of projections between
the PFC and BG in the PBWM indirection network are broadly
consistent with these proposals. Importantly, it provides a more
specific characterization of the function of distinct PFC regions
that it should be possible to test empirically.
A critical finding from the current simulations is that a neural

network architecture can learn to implement indirection and
thus achieve the capacity for variable binding required for full
combinatorial generalization. This required a particular pre-
determined macroarchitecture (e.g., the pattern of projections
between the PFC and BG) and set of physiological functions
(e.g., the learning algorithm, input and output gating). However,
the microarchitecture of the model (e.g., the representations
within the filler subnetwork) and its information-processing
functions (e.g., the conditions under which individual stripes
were gated) were not prespecified. These were learned through
experience. It should be noted, however, that the pointer repre-
sentations were specified as a localist map of the possible filler
stripe locations. Although there is evidence of topographic con-
nections throughout the cortex, it seems plausible that these
could be learned through an extended developmental process.
Thus, the model can be characterized as a hybrid, in which gen-
eral characteristics of anatomy and physiology are predetermined
(presumably by genetics) but the functional characteristics are
learned by exposure to the environment. This included the ca-
pacity for indirection, and thereby variable binding. This was
made possible by the separate, but anatomically related, sets of
PFC/BG subnetworks, allowing the system to segregate function
(role) from content (filler). As a consequence, the role-specific
stripes needed only to concern themselves with learning, at a high
level, where to look for content when the time was appropriate.
This greatly reduced the representational burden of these stripes,
relieving them of the burden of encoding all possible fillers that
may ever be needed in a particular role.
Although the model we described focused on a simple sen-

tence processing task, the principles of function can be readily
generalized. The role-specific subnetwork can be thought of as
representing elements of task context and the filler-specific
network as representing stimuli and/or actions that are appro-
priate in that particular context. Thus, the model could also be
used to simulate not only the interpretation of novel sequences
of inputs, but also the production of novel, appropriately struc-
tured sequences of actions. In this regard, it can be considered as
providing the functionality necessary not only for generalization but
also generativity (the ability to generate meaningful novel behav-
ior). In this respect, it offers a middle ground in the long-standing
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debate between symbolic and subsymbolic models of cognition
(1, 38). Advocates of symbolic models have long pointed to the
kind of combinatorial generalization we have tested here and,
critically, capacity for generativity as support for the claim that
human cognitive function relies on symbol processing and that
this cannot be accomplished by associationist (neural network)
architectures. In contrast, advocates of subsymbolic models have
argued that the evident limitations on human symbolic reasoning
(39, 40) suggest that actual everyday human cognition is better
characterized by subsymbolic processing. Our model suggests that
both approaches may be partially correct: The architecture of the
brain supports a form of indirection and thereby variable binding,
but it is limited. In particular, it relies on extensive learning, and
the representations it develops are embedded, and distributed—
the representations our indirection model learned were dis-
tributed across multiple stripes, which worked together to
represent the information. This characterization also differs
significantly from other biologically based attempts to account
for symbolic processing abilities. These accounts build in au-
tomatic low-level variable binding mechanisms (11, 41–45),
which currently lack an explanation for how these systems can
be learned from experience and at the extreme may suggest

that this symbolic capacity is present even at the lowest levels
of processing, without any learning necessary. Furthermore,
we expect that the subsymbolic foundation of our indirection
model, and its grounding in neural learning mechanisms, will
render it more robust and powerful than purely symbolic models,
which are often brittle.
The computational architecture we have described could be

used to explore the development of specific systems of content
(filler) and pointer (role) representations in a range of different
cognitive processing domains. This holds promise for generating
predictions about the stages of cognitive flexibility and system-
aticity as a function of learning experience that can be compared
with available human developmental data to further test and
inform the model.
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