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ABSTRACT OF THE DISSERTATION 

 

High Throughput Image Labeling and Lung/Lobar Segmentation on Chest CT using 

Deep Learning 

 

by 

 

Xiaoyong Wang 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2019 

Professor Alex Anh-Tuan Bui, Co-Chair 

Professor Matthew Sherman Brown, Co-Chair 

 

Chest CT is the most common modality in thoracic imaging, especially for 

diagnosis of diffuse lung disease and lung cancer screening. When mining image data 

from PACS or clinical trials or processing large volumes of data without curation, the 

relevant scans must be identified among irrelevant or redundant data. Only images 

acquired with appropriate technical factors, patient positioning, and physiological 

conditions may be applicable to a particular image processing or machine learning task. 

Following identification of appropriate images for processing, accurate lung and lobar 

segmentation is a pre-requisite for the subsequent quantitative image analysis, e.g. air 

trapping measurement, emphysema scoring, fibrosis scoring, nodule detection, etc. 

Fully automated segmentation on a diverse spectrum of pathological lungs is still a 

challenge in clinical practice. Both the labeling and segmentation steps currently require 
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significant manual intervention by image analysts and are prohibitive for large scale 

processing of big data. The goal of this dissertation is to fully automate the labeling and 

segmentation tasks in chest CT with high accuracy. 

In this dissertation, an image based high throughput labeling pipeline using deep 

learning was proposed,  it aimed to identify anatomical coverage, scan direction, scan 

posture, lung coverage completeness, contrast usage and breath-hold types. They were 

posed as different classification problems and some of them required further 

segmentation and identification of anatomical landmarks. Images of different view 

planes were used depending on the specific classification problem. All of our models 

achieved an accuracy > 99% on their respective test sets across different tasks using a 

research database from multi-center clinical trials. Based on the comprehensive labels 

from deep learning models, an optimal image series at each time point for a given 

patient was selected prior to lung and lobar segmentation. 

Two fully convolutional networks were proposed to sequentially achieve accurate 

lung and lobar segmentation. Firstly, a 2D ResNet-101 based network was used for 

lung segmentation and 575 chest CT scans from multi-center clinical trials were used 

with radiologist approved lung segmentation. Secondly, a 3D DenseNet based network 

is applied to segment the 5 lobes and a total of 1280 different CT scans were used with 

radiologist approved lobar segmentation as ground truth. The dataset included various 

pathological lung diseases and stratified sampling was used to form the training and test 

sets with a ratio of 4:1 to ensure a balanced number and type of abnormality were 

present. Using 5-fold cross validation a mean Dice coefficient of 0.988 ± 0.012 and 

Average Surface Distance of 0.562 ± 0.49 mm were achieved by the proposed 2D CNN 
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on lung segmentation. The 3D DenseNet on lobar segmentation achieved a Dice score 

of 0.959 ± 0.087 and an Average surface distance of 0.873 ± 0.61mm. 
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Chapter 1: Introduction 

1.1 Overview 

High resolution computed tomography (HRCT) has been used extensively as the 

gold standard to diagnose various pulmonary diseases, such as ground glass, 

emphysema, chronic obstructive pulmonary disease (COPD), scleroderma, pulmonary 

nodules, etc. This non-invasive modality is ideal for quantitative analysis since it 

provides volumetric visualization, characterization and quantification of different 

anatomical structures and lung pathologies. Computer-aided systems are necessary to 

assist radiologists in performing such quantitative analysis. Firstly the number of 

radiologists is far less than the increasing number of volumetric datasets produced 

every day. Manual reading and annotating these high resolution scans is extremely 

labor intensive and inter-reader variability is inevitable. More importantly, it is 

challenging for radiologists to provide accurate quantitative measurements due to image 

complexity and heterogeneity. A large number of quantitative research studies have 

been performed involving  chest CT. Kauczor et al.[1] applied multiple neural networks 

to automatically detect and quantify ground glass opacities. Compared to density mask 

based methods, they achieved an improvement of 1.3% in sensitivity and 17.3% in 

specificity. Wang et al.[2] investigated the optimal threshold to quantify emphysema, 

ranging from -850 HU to -1000 HU and they concluded that -950 HU is still the most 

appropriate threshold for density based emphysema quantification although the optimal 

cut-off for individuals varies. Paired inspiratory and expiratory CT scans were used to 

determine the attenuation threshold value for the detection and quantification of air 

trapping and they observed highest correlation with pulmonary function tests (PFTs) 
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using upper threshold of -860 HU[3]. Humphries et al.[4] introduced a CT histogram and 

texture feature based method to detect and measure the amount of fibrosis and their 

automatic lung fibrosis quantification correlated well with visual assessment of 

radiologists. Nakagawa et al.[5] quantified honeycombing on patients diagnosed with 

idiopathic pulmonary fibrosis (IPF) using a multi-threshold based method. Their findings 

correlated with radiologist annotations as well as parameters of PFTs. Accurate lung 

and lobar image segmentation is a precursor to perform almost all of the quantitative 

analyses described above. Another critical factor that is often overlooked is the 

identification of appropriate image series on which to perform quantitative image 

analysis. Image acquisition parameters that are inconsistent with those used during 

algorithm development can lead to erroneous measurements and/or classifications. 

1.2 Motivation 

Image data from clinical trials from different sites or from hospital PACS are 

heterogeneous in terms of acquisition parameters. Even for a single patient, there may 

be multiple anatomical regions imaged and each may have images reconstructed with 

different parameters. Since many of them can be redundant, irrelevant, or unusable, it is 

crucial to select the optimal series for processing that meets standardization 

requirements. Conventionally, the series for processing is manually identified by an 

image analyst who opens and reviews every series. This process is extremely time-

consuming, taking up to 1 hour for patients with multiple time points and is prone to 

error when dealing with a large dataset. Therefore, automatic image labeling would be 

beneficial for large scale data mining in clinical research. DICOM is the standard format 

in medical imaging, and its headers include many acquisition parameters. However, 
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DICOM header tags are often insufficient or unreliable to provide all the necessary 

labels[6–8]. Image based identification is thus essential to solve this problem. In this 

work, we aim to identify the following characteristics of chest CT scans: anatomical 

coverage, scan direction, scan posture, lung coverage completeness, contrast usage 

and patient breath-hold. Identifying anatomical coverage of scans is critical to decide 

the appropriate quantitative analysis task afterwards. For example, lung and lobar 

segmentation are appropriate for scans that cover the chest. Patients can be scanned 

either head-first or feet-first and most chest CT analysis algorithms are developed 

expecting head-first. Also, patients can be scanned either prone or supine. Supine 

imaging is most commonly performed for diagnosis, while prone imaging sometimes 

helps to resolve dependent opacities that resemble pathology on supine images [9–11]. 

Full lung coverage is a basic requirement in thoracic imaging, otherwise the resultant 

measurement, e.g. lung volume, is inaccurate. Contrast CT is often used to provide 

physicians with better delineation of structures with soft tissue attenuation. Intensity 

differences between contrast and non-contrast scans can lead to different quantitative 

results and so labeling in terms of contrast vs non-contrast is important. Finally, patients 

are imaged at suspended full inspiration or expiration and identification of breath-hold 

types is necessary for lung volume and attenuation measurements to be interpreted 

correctly. For example, total lung capacity (TLC) scans are preferred to evaluate most 

pulmonary diseases, including, emphysema, fibrosis and, nodules, while residual 

volume (RV) is ideal for air trapping assessment. Collectively, identifications of all of 

these image labels is a pre-requisite to perform quantitative research on lung CT.  
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Automated lung segmentation has been studied extensively for over 20 years 

and many algorithms have achieved good performance on normal lungs[12–14]. 

However, clinical practice presents a variety of pulmonary diseases, and methods for 

pathological lung segmentation have also been investigated in many studies. For 

example, non-rigid registering normal to pathologic lung to include abnormal regions 

[15]. Anatomical knowledge, such as the curvature of ribs, was also applied to assist the 

inclusion of pathologies in a semantic model[16]. Machine learning approaches based 

on texture features have been introduced to detect abnormal lung regions[17–19]. 

Those methods were only evaluated on a small dataset with limited pathological 

categories and their generalizability and robustness are uncertain when applied to large 

and other cohorts. They are also computational expensive which is not ideal for high 

throughput processing. Lobar segmentation involves detecting or segmenting the 

fissures and then using them to isolate different lobes. The most common approach has 

been to exploit the contrast and physical appearance of fissure by applying ridge 

detection techniques, such as the hessian filter[20–22]. Adjacent anatomical structures, 

e.g. airway trees and vessels, were used to assist the track of fissures in 3D 

volume[23,24]. A derivative of stick (DoS) was proposed to improve the visibility of 

fissures especially when the slice thickness is thin[25]. It defines non-linear derivatives 

with a stick kernel in multiple directions. Nevertheless, these methods tend to be 

unreliable in the presence of a large amount of lung pathology near the fissure, 

especially if the fissure is incomplete.  

To handle big data for research and clinical deployment of quantitative chest CT 

analysis systems, there is still significant manual intervention required by image 
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analysts in both image labeling and lung/lobe segmentation. As such, large scale 

processing is currently not feasible. The goal of this dissertation is to fully automate the 

labeling and segmentation tasks in chest CT with high accuracy. We will develop the 

necessary algorithms and test their accuracy. We expect that since the systems are 

fully automated the image analyst intervention required will be reduced or eliminated, 

but direct confirmation of this is outside the scope of the thesis. 

 

1.3 Deep learning in medical imaging 

Deep learning has been applied extensively in medical imaging and various 

modalities[26–28], including CT[29–33], MRI[34–38], ultrasound[39–43], PET[44–48], 

histopathology[49–53], etc. Specifically for medical image analysis, convolutional neural 

networks (CNN)[54,55] have been successfully and widely used in a variety of areas, 

including classification, detection, segmentation, registration and denoising, and it has 

become the state-of-the-art method due to its powerful feature extraction capability. 

Instead of using hand-crafted features as traditional machine learning methods, the 

extraction of representative features is fused into the subsequent learning stage in a 

CNN, meaning useful features will be learned directly from the data by the network 

itself.  

1.3.1 Classification 

Medical image classification, binary or multiple classes, has improved 

substantially since CNNs were initially developed and applied to differentiate images of 

1000 categories for ImageNet Large Scale Visual Recognition Competition 
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(ILSVRC)[56]. A 5-layer CNN was used to classify anatomical coverages in CT 

including brain, neck, chest, abdomen and pelvis and high accuracy was achieved on a 

test set[57]. A similar study was conducted by comparing the classification performance, 

as well as training efficiency, using AlexNet[58] and GoogleNet[59]. A deep 

convolutional neural network was used to automatically classify tooth types on dental 

cone-beam CT[60]. A transfer learning method[61] was introduced to identify diffuse 

lung diseases, including consolidation, ground-grass opacity (GGO), honeycomb, 

reticular, emphysema and nodular patterns. CNNs trained from scratch were also 

applied to recognize various lung patterns[62] and interstitial lung disease[63] on CT 

images. A CNN based deep learning method was presented to classify different liver 

masses into 5 categories on contrast enhanced CT[64]. Both 2D and 3D CNNs were 

proposed to differentiate Alzheimer’s disease (AD), lesion and normal tissue on brain 

CT images[32]. Neural networks have been used to differentiate pulmonary nodules 

from non-nodules, e.g. vessels, from a large candidate pool [65] and a “massive training 

artificial neural network” (MTANN) was presented to perform the task on low-dose 

CT[66]. Fu et al. used a CNN as a feature extractor and the output was combined with 

hand-crafted features for classification since these manually designed features worked 

well on false positive reduction[67]. A comparison study investigated performance 

differences between a CNN and regular deep neural network (DNN) and the DNN 

surpassed CNN by 0.2% in their experiment[68]. 2D CNNs[69] or multi-views (2.5D) 

CNNs[70] have been proposed to accomplish this task before 3D CNN[71–74] came to 

dominate this research. Not surprisingly, 3D CNN based methods tend to outperform 

earlier 2D and 2.5D CNNs. To overcome the cumbersome manual design of the neural 
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network architecture, a particle swarm optimization (PSO) algorithm[75] was applied to 

optimize CNN’s hyper-parameters automatically for better performance. The most 

commonly used public data set for machine learning involving lung nodules on CT is 

LUNA16[76], a subset of LIDC/IDRI database[77]. This data set is frequently used as 

benchmark to test the superiority of proposed methods. Nodule classification to 

distinguish benign from malignant is another research area where CNNs have been 

widely adopted. Early methods used 2D and 2.5D[31,78] CNNs and then multi-

scale[79,80] and 3D CNN[81–84] based methods were proposed with better 

performance. Some groups trained and tested their model on public datasets from the 

National Cancer Institute (NCI) and Lung Image Database Consortium (LIDC) and some 

used their own in-house datasets that were relatively small. Similar to false positives 

reduction, the performance improvement are commonly from augmenting dimensions of 

input data with more contextual information, deeper and wider network, for example, 

incorporation of residual block learning. Many CNN based classification methods have 

showed promising results, demonstrating comparable or even better performance than 

radiologist in many tasks. 

1.3.2 Detection 

CNN has also been used to detect or localize anatomical organs, landmarks and 

lesions. A deep transfer learning scheme was applied to detect polyps in CT 

colonography, with the transfer of model weights being used to mitigate the lack of a 

large annotated data set, and their preliminary results showed promising sensitivity. 2D 

CNNs using images from orthogonal (axial, coronal and sagittal) planes were proposed 

to detect 3D region of interests (ROIs), including the heart, aortic arch, and descending 
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aorta, with a 3D bounding box and achieved an AUC of 0.988[85]. A similar approach 

was employed to detect lymph nodes in non-contrast CT[86] and localize the landmarks 

on the distal femur surface[87]. Such methods simplified the 3D scan as composition of 

2D images in orthogonal directions which helped to circumvent expensive parsing in 3D 

volume. Regression based localization has also been presented and the authors 

proposed a SpatialConfiguration-Net[88] considering anatomical variations in local 

appearance. They compared their method with both 2D and 3D fully convolutional 

neural networks and showed state-of-the-art detection performance. A few 3D CNN 

based methods were also introduced subsequently. A 3D CNN[89] was trained end-to-

end to detect and localize vertebra on pathological CT scans and the additional 

contextual information helped to improve their detection rate to 96% and computational 

time was less than 3 seconds. An very similar approach was presented that 

incorporated a novel joint learning to enhance detection accuracy, and this J-CNN[90] 

took into account pairwise dependencies between adjacent vertebrae. A two-step 

approach was used to detect the carotid artery bifurcation on a head-neck CT[91]. 

Candidates were first extracted by a shallow network and then were accurately 

classified by a 3D deep network. Separable filter decomposition and network 

sparsification was introduced to prevent over-fitting. A recurrent attention DenseNet 

(RADnet) was applied to detect hemorrhage on CT[92] and demonstrated 81.82% 

prediction accuracy that was better than 3 radiologists. The architecture was based on 

2D CNN but a recurrent neural network was added to provide 3D context from 

neighboring slices. Applications to pulmonary nodule detection have also been 

investigated using 2D and 3D CNNs. A 2D CNN was trained using raw images, as well 
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as pre-processed images by a Frangi filter, as input to reduce the rate of misidentifying 

vascular structures as nodules[93]. A 2D CNN using images from orthogonal planes 

was designed, hoping that coronal and sagittal slice would assist by providing more 

spatial information[70]. Ginneken et al. exploited the popular detection network 

OverFeat[94] to extract deep features also based on multi-planner views and a support 

vector machine (SVM) was ultimately used to detect nodules[95]. Ding et al. first applied 

Faster Region-based CNN (Faster R-CNN) to detect candidate nodules on 2D axial 

slices that were then fed into a 3D CNN for false-positive reduction[96]. 3D fully 

convolutional networks (3D FCNs) were also proposed. Investigators applied them to a 

sub-volume via a sliding window given the large volume of an entire scan[97]. A similar 

3D FCN structure using multiple GPUs and a larger splitting size was proposed to 

speed up the computation[98]. A multi-scale 3D CNN[99] was presented to mitigate 

variations in nodule size and that scheme helped to better detect extremely small 

nodules. In further work, a hybrid-loss function that emphasizes nodule location and 

size was incorporated in training the network[100]. Also, provided only with location of 

one voxel of nodule, a weakly supervised CNN was proposed to alleviate the challenge 

of annotating the entire nodule[71].  

1.3.3 Segmentation 

Segmentation is another area where deep learning dominates in medical 

imaging. Almost all approaches have used fully convolutional networks (FCN)[101]. U-

Net[102], one of the earliest and most successful architectures applied to biomedical 

image segmentation, has been widely used in many different applications. For example, 

brain tumor segmentation in MRI[103], cartilage and meniscus segmentation on knee 
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MR[104], and iris segmentation[105] .The symmetric architecture with same number of 

convolutional layers and deconvolutional layers, as well as the skip connections 

between down-sampling and up-sampling stages, are the 2 main contributions of this 

approach. To deal with target size variability or a relatively small object in multi-class 

segmentation, multi-scale U-nets and derivates[106,107] were proposed to segment 

brain tumors[108,109] and different glands on histological images[110]. The 3D U-

net[111] and V-net[112]  extended original 2D to 3D image segmentation and they were 

first applied to segment the prostate and kidneys in MRI. Due to the success of 

ResNet[113], residual blocks were incorporated into many architectures to improve the 

network’s feature extraction capability[114]. For example, VoxResNet[115] for brain and 

prostate[116] segmentation on MR, FusionNet[117] for cell membrane segmentation on 

electron microscopy image, and retinal layer pathology on OCT images[118]. Similarly, 

DenseNet[119] was converted from its original classification architecture to a 

segmentation network[120]. Graphical model Markov Random field (MRF)[121] and 

conditional random field (CRF)[122] have also been used for post-processing in a few 

studies to improve CNN segmentation and groups directly embedded the CRF in their 

end-to-end training for 2D retinal vessel segmentation[123,124], 2D cervical nuclei 

segmentation[125] and 3D brain lesion segmentation on MR[126,127]. Similar methods 

using 2D[128] and 3D FCNs[129–131] for pulmonary nodule segmentation were also 

reported. Recurrent neural networks (RNNs) have also been studied for segmentation. 

Xie et al. proposed using a RNN on perimysium segmentation in histopathology images. 

Prior information for a given row and column were preserved when classifying the 

current patch as reference[132]. A multi-dimensional GRU based RNN was presented 
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to segment white and gray matters in brain MR[133]. Overall, CNN based methods have 

tended to achieve better performance than RNNs. 

Generative adversarial network (GAN)[134] based methods have been presented 

in medical image segmentation as well, and may help the model by introducing extra 

adversarial loss from discriminators. SegAn[135] was proposed for brain lesion 

segmentation. The generator has an FCN responsible for generating mask image and a 

discriminator with a multi-scale L1 loss was used to challenge the mask to provide 

feedback. So the generator and discriminator were trained against one another in a min-

max game. A combination of ACGAN[136] and pix2pix[137] was applied to segment 

different cells on fluorescent microscopy images[138]. Qin et al. developed a conditional 

GAN to synthesize CT images with nodules to augment the size of training sets and 

diversify the variations for the second step of nodule segmentation by 3D FCN. 

1.4 Contributions 

To solve the problems discussed in Section 1.2, deep learning based methods have 

been proposed in this dissertation to accelerate and leverage quantitative lung CT 

analysis in clinical practice. Two major contributions of this work include:  

1. Development of a fully automated image labeling pipeline to replace current manual 

curation for large chest CT data sets. CNNs using orthogonal image planes were built to 

detect anatomical coverages, scan direction, scan postures, lung coverage 

completeness, contrast usage and patient breath-holds. The method was able to 

achieve high automated accuracy (> 95%) and is thereby expected to improve the 

efficiency of curating large data sets.  
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2. Development of a fully automated lung and lobar segmentation method on a broad 

spectrum of pathological lungs. A 2D ResNet-101 based fully convolutional network was 

first developed to accurately segment lung. Then, a 3D DenseNet based network was 

applied to achieve lobar segmentation based on this lung segmentation. The 3D CNN 

was able to exploit spatial context to separate individual lobes, even when fissures are 

incomplete or absent. The collective lung/lobar segmentation takes less than 10 

seconds for a typical high resolution scan. 

Overall, these labeling and segmentation models showed reliable performance and are 

applicable to a variety of chest CTs in clinical practice, including adult and pediatric 

scans, high and low resolutions scans, and diagnostic and low-dose scans. 

 

1.5 Organization of this dissertation 

Chapter 2 introduces the development of deep learning models for automated 

image labeling, including identification of anatomical coverage, scan direction, scan 

posture, lung coverage completeness, contrast usage and patient breath-holds.  

Chapter 3 describes the development of automated lung and lobar segmentation 

using 2D ResNet and 3D DenseNet based fully convolutional networks, including whole 

lung segmentation, left and right lung separation, and lobar segmentation. 

Chapter 4 summarizes the overall research, limitations of the work and discusses 

potential future extensions. 
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Chapter 2: Automated image labeling on chest CT 

Image data curation, involving identification and labeling of relevant types of scans with 

consistent acquisition parameters, is important for machine learning with big data. 

Labeling of images meeting standardization requirements is vital in obtaining reliable 

research findings from multi-center clinical trials [139–142] since images collected from 

different sites are often heterogeneous and variable in terms of the types of scan 

acquired. For example, each patient may include image series from multiple time points 

and each time point could have multiple series that can be redundant, irrelevant or 

unusable. The traditional approach is to manually assign the labels by reviewing each 

image series and selecting the best series to process that meets standardization 

requirements. It is very time-consuming and prone to human errors. As such, an 

efficient automatic image labeling method would be beneficial for large scale clinical 

research. DICOM is the standard format in medical imaging and it contains a variety of 

scan parameters and other metadata. DICOM headers, e.g. series description, are 

extensively used to extract information for labeling. Nevertheless, DICOM tags are often 

insufficient or unreliable due to manual entry or vendor discrepancies[6–8,143,144]. To 

overcome this limitation, image based identification is imperative. In this work, we aimed 

to identify anatomical coverage, scan direction, scan posture, lung coverage 

completeness, contrast usage, and patient breath-hold level. These labeling tasks were 

posed as classification problems. To our knowledge, there is no related work on this 

specific problem of classification for comprehensive scan labeling. Although these 

labels seem basic for chest CT, they are labor intensive to assign for large data sets, 
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and efficiently and correctly extracting them is crucial for data curation in clinical 

research.  

In this chapter, we present a fully automated high throughput labeling method 

using deep learning to create classification models for each label. Our hypothesis was 

that each classifier can achieve >95% accuracy individually in assigning its label. 

2.1 Anatomical coverage 

2.1.1 Introduction 

Computed Tomography (CT) has been one of the most popular imaging modality 

since 1970s and widely used for imaging various anatomies, such as brain, chest, 

abdomen, pelvis, legs, etc. Image data collected from hospitals and clinical trials from 

different sites sometimes contains series of different anatomic coverages and it is a pre-

requisite to identify the anatomy included before they can be used for image processing 

and machine learning. Clinically, the four most common anatomical coverages are 

brain, chest, abdomen-pelvis and chest-abdomen-pelvis (CAP). Identifying scans 

containing appropriate anatomy is critical to trigger a specific image analysis pipeline. 

For example, an identified chest or CAP scan can be processed by lung and lobar 

segmentation, as we will discuss in Chapter 3. Brain scans can be used for detection of 

aneurysm, stroke and tumors[145,146]. Abdomen-pelvis scans can be used to detect 

diseases of internal organs, such as lesion in the liver or spleen, and polyps in 

colons[147–149]. DICOM tags, e.g. ‘SeriesDescription’ may or may not include a 

statement of the imaged anatomy. Another tag ‘BodyPartExamined’ is very unreliable 

and may also be blank. Some anatomic classification methods have been introduced. 
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Fenchel et al.[150] and Shimizu et al.[151] proposed atlas based methods in which a 

single atlas from a representative training set was built. Unseen (test) scans were non-

rigidly registered to the atlas and anatomical labels from the atlas were propagated to 

them. The accuracy of this approach was limited by intra- and inter-subject variability in 

organ location and size, such as topological changes in organ boundary due to disease. 

A multi-atlas approach[152] was introduced to lessen the influence of data variability. 

However, non-rigid registration to multiple atlases leads to a significant increase of 

computation time. A regression forest method[153] was presented to detect anatomical 

structures, e.g. lung, heart, liver on CT scans. All voxels in the CT volume contribute 

with varying confidence to estimate the position of bounding box of organs and they 

aimed to learn the non-linear mapping from voxels directly to organ position and size 

with training focusing on maximizing the confidence of output predictions. As a result, 

landmarks for a specific organ were identified for localization. A support vector machine 

(SVM) based machine learning method[154] was proposed to identify anatomic 

coverage in 3D. Each scan was split into k × k × k (k = 3, 5, 7, 9, 11) non-overlapping 

blocks and they were represented by their individual mean intensities.  The resultant 1 × 

k3 feature vector of each scan was used to train a SVM classifier. Although it achieved 

high accuracy, the down-sampling processing is not efficient to form the final feature 

vector for classification. Roth et al. proposed a 5-layer CNN to classify the anatomical 

region in CT images, including brain, neck, chest, abdomen and pelvis[57]. A similar 

approach, but using AlexNet and GoogleNet, was then introduced with varied training 

time and accuracies[155]. Yan et al. used a multi-stage deep learning framework to 

recognize 12 different body parts by approximating a bounding box of local 
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patches[156]. A CNN was first used to extract the most discriminative local patches and 

these patches were then used to identify body parts. Images from orthogonal planes 

(axial, sagittal and coronal) were used to build 3 independent CNNs and results were 

combined to produce a 3D bounding box for each organ, such as heart, lung, kidney, 

liver[85,157].  

In this work, we proposed a CNN using coronal slices to identify brain, chest, 

abdomen-pelvis, and CAP scans. 

2.1.2 Methods 

The conventional approach is to identify the anatomy on each axial slice 

sequentially and then determine the whole coverage depending on the anatomy present 

in each slice. One big challenge is the annotation of a large number of axial images for 

training. Alternatively, coronal images visualize the coverage completely and only a 

single scan-level annotation is required. Additionally, the identification is more efficient 

since it only requires one coronal slice instead of recognizing every axial slice.  

 

 

 

 

 

VGGNet[158] won the localization task of the ILSVRC (Imagenet Large Scale 

Visual Recognition Competition) and 2rd place in the classification task in 2014. It is still 

widely used in many areas. In our work, VGG-16 was used as the classification 

architecture to identify 4 different anatomic regions. It consists of 13 convolution layers 
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Figure 2.1: Architecture of VGG-16 used for classification. 
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plus 2 fully connected layers with 4 classes in last classification layer using ‘softmax’ as 

activation since it is a multi-class classification problem. The architecture is shown in 

Figure 2.1 

Real-time data augmentation was applied, meaning the CPU generated 

transformed images with specified augmentation parameters while the GPU was 

responsible for training the model. Augmentation included horizontal and vertical 

flipping, zoom in/out of [0.8, 1.2], horizontal shift of [0.1, 0.1] and vertical shift of [0.05, 

0.05]. At each iteration, an image will be randomly flipped by x-axis and y-axis (50% by 

chance), rescaled by a factor between 0.8 and 1.2 of original image size, randomly 

shifted to left or right by up to 10% of image width, randomly shifted up or down by up to 

5% of image height. Vertical flipping helped to make the model insensitive to scan 

directions (head-first or feet-first). Zoom in/out helped consolidate the mode facing 

different body size (adult vs. pediatric). The relatively small vertical shift was applied to 

ensure the transformed images still preserved the original anatomic coverage, while still 

allowing some tolerance of variation in coverage. For example, it may lead to a cutoff at 

lung apex/base on the original chest scans and thus diversify the training set by 

incorporating cases with incomplete lung coverage. 

As a result, the generated image at each iteration should be unique since it is a 

combination of different transformations each and every time. Traditional augmentation 

pre-generates those images before training and the augmented data will be used over 

and over through a number of iterations. Real-time augmentation contributes to 

enhancing independence of individual training samples and greatly saving 

computational time and storage space compared to conventional approaches.  
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The same augmentation technique was used in all the following problems but 

transformation options varied depending on the specific application. Instead of transfer 

learning, we trained our network from scratch using single channel images. The model 

was trained on a NVIDIA TITAN X with GPU memory of 12 GB, using the Adam 

optimizer, and a learning rate of 0.001 with a decay rate of 1e-4.  

2.1.3 Materials 

Example coronal images of 4 anatomical coverages are shown in Figure 2.2.  

 

 

 

 

 

 

 

1,000 scans each of the brain, chest, abdomen-pelvis and CAP were used. They 

were from a collection of 17 clinical trials, including 2 renal cell carcinoma trials, 1 

hepatocellular carcinoma trial, 1 prostate cancer trial, 2 lymphoma trials, 1 advanced 

solid tumor trial, 4 IPF trials, 3 COPD trials, 1 tuberculosis (TB) trial, 1 non-small cell 

lung cancer (NSCLC) trial, and 1 lung cancer screening trial. Scanners from 4 

manufacturers were included, from SIEMENS, GE, PHILIPS and TOSHIBA. Images 

were reconstructed with smooth, medium and sharp kernels with slice thickness and 

spacing range of [0.6 mm, 3.0 mm]. From each category, 800 scans were used as a 

training set and 200 as a test set and the 4 classes were balanced in both sets. The 

Figure 2.2: Example anatomical coverage in this task. Left to right: brain, chest, 
abdomen-pelvis and chest-abdomen-pelvis (CAP) 
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label for each scan was from a trained image analyst. For each scan, the middle coronal 

slice, plus 2 adjacent slices 10 pixels apart were extracted as representative images. 

For generalizability, chest scans in the training set included cases with various lung 

pathologies and different lung coverages. Figure 2.3 shows two examples with 

incomplete coverage at the lung apex and lung base, respectively.  

 

 

 

 

The most significant difference between abdomen-pelvis and CAP scan is the 

inclusion of the chest anatomy. In clinical practice, the abdomen-pelvis scan does also 

Figure 2.3: Incomplete lung examples included in training set 

Figure 2.4: CAP scan variations in the training set 
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include a very small portion of the chest to ensure the entire abdomen is covered. For a 

CAP scan, it should contain complete chest, abdomen and pelvis and sometimes may 

also cover more superior anatomy, i.e. brain, neck or more inferior coverage, i.e. 

legs/feet. Figure 2.4 shows two CAP scans that include the brain and legs, respectively.   

Pre-processing including image down-sampling and normalization were applied and the 

same method was used in all sub-tasks in this work in both classification and 

segmentation. For the 2D image based CNN, the image was resized to 256 × 256. For 

the 3D image based CNN, the image was resized to 128 × 128 × 128. 

Table 2.1. Summary of Hounsfield units (HU) of different tissue on CT.  
 

Hounsfield units Tissue 

>1000 Bone, calcium, metal 

100 to 600 Iodinated CT contrast 

30 to 500 Punctate calcification 

60 to 100 Intracranial hemorrhage 

35 Gray matter 

25 White matter 

20 to 40 Muscle, soft tissue 

0 Water 

-30 to-70 Fat 

< -1000 Air 

 

As shown in Table 2.1 above, the general intensity range of different tissues on a 

CT scan are: [-3000HU, 3000HU] and clinically relevant tissues in thoracic imaging are 
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usually within [-1000HU, 1000HU]. Therefore, prior to input to the CNN the image 

intensity was linearly remapped to the range [-1000 HU, 1000 HU] and then normalized 

to [0, 1.0].  

2.1.4 Results 

Both training and validation accuracy were over 99.99% after 7 epochs and the 

inference time was < 10 ms per case using the machine described previously. 5-fold 

cross validation was used during evaluation and the model achieved an accuracy of 

100%. Figure 2.5 shows two chest scans from the public LObe and Lung Analysis 2011 

(LOLA 11) dataset[159]: one with only a partial right lung and the other has only the 

right lung. Although no similar cases were included in the training set, the trained model 

still successfully identified them as chest scans. 

 

 

Some chest CT scans are acquired “incrementally”, i.e., with thin slice thickness 

(e.g., 1 mm), but large slice spacing > 10 mm. As such, an additional 100 incremental 

chest scans were used in testing and 100% accuracy was achieved by the model on 

those cases. Figure 2.6 contains three examples with spacing of 20 mm. They were all 

Figure 2.5: Example predictions by the CNN on two cases from LOLA11. 
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correctly identified as chest scans even though the model was trained only using scans 

with slice spacing less than 3 mm. It should be noted that resized coronal images (256 × 

256) were fed into the model.  

 

 

2.1.5 Discussion 

Rather than conventional identification of anatomic regions using axial images, 

our method demonstrated the feasibility of employing coronal slices to accomplish this 

task. Large scale manual annotation has been a big challenge, especially in medical 

imaging, and the proposed method only requires a scan level label. Furthermore, it is 

computationally more efficient. For example, a scan with 500 axial slices will take 500 

times longer using axial images than using a coronal image. 

The sensitivity or susceptibility of deep learning models to seemingly minor 

variations is a common weakness even if there are state-of-the-art in their 

fields[67,160]. For example, Figure 2.7 is well-known picture[161] showing that adding 

Figure 2.6: Example predictions by CNN on three cases with large spacing of 20 
mm. 
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imperceptible perturbation by human eyes to the image can sometimes change the 

label predicted by the model. 

 

 

In our testing we also applied our model to much noisier low and ultra-low-dose 

scans to investigate its robustness. A total of 30 chest scans with raw projection data 

from lung cancer screening were used with an original (100%) dose level around 2 

mGy. A CT reconstruction pipeline[162] available in our group was used to simulate 

images with 1 mm slice thickness and spacing, a medium kernel and dose levels at 

10%, 25%, 50% and 100% of the original dose. Weighted filtered back projection 

(wFBP) was used as the reconstruction algorithm. Our model achieved 100% accuracy 

on identifying them as chest scans across different dose levels.  

 
Figure 2.8: Anatomical model inference on ultra-low-dose scans. 

Figure 2.7: Vulnerability of CNN with perturbation of noise. 
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Figure 2.8 shows two examples with dose level of 0.2 mGy (~1/75 of training set 

dose). Although the model was trained using diagnostic scans only (~15 mGy), it 

remained accurate when applied to low and ultra-low-dose scans without any additional 

training or post-processing. In addition, the model that was trained only on adult scans 

was also applied to pediatric patients as shown in Figure 2.9 and they were successfully 

identified as chest scans.  

 

 

One concern with deep learning methods is that they obscure the decision 

method and are considered “black box”. Although a deep learning model may give an 

accurate prediction, humans are unable to fully understand what kind of features are 

used by the network for classification and the process of how the decision is being 

made. One popular approach in attempting to understand CNNs is to visualize various 

feature maps at different layers and generating artificial representative images of 

different classes by computing the gradient with respect to them[163]. A successful 

neural net usually includes hundreds of thousands of filters and thus one drawback of 

this approach is the difficulty of selecting the most representative filters from an 

enormous pool. On the other hand, image specific saliency maps help interpret the 

network using a single back-propagation pass through entire classification process[164]. 

Figure 2.9: Anatomical model inference on pediatric scans. 
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Saliency refers to the most visually important elements or patterns to the network when 

it is exposed to an image[165] and the saliency map is a collection reflecting their 

topographical representation. 

 

 

Saliency maps of four classes at the last classification layer are shown in Figure 

2.10. The first and third row are the input images to the network and second and fourth 

row are the corresponding saliency maps of that class.  

 

Figure 2.10: Saliency maps of four classes at the last classification layer of the 
anatomical coverage identification model. 
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For brain scans, the skull with a semi-circular shape is used by the network as a 

characteristic of a brain scan. Similarly, the network exploits the boundaries and content 

within the lung to identify it as a chest scan. In the case of an abdomen-pelvis scan, the 

lung as well as bones and other issue on the two lateral sides are extracted as 

deterministic features. Lastly, pixels within lung are highly activated on the CAP scan 

and the skull is another significant feature used by the CNN. In comparison with the 

chest scan, the lung size is much smaller and the location is near either the top or 

bottom of the image. To sum up, these features extracted by the network to differentiate 

the four classes are human interpretable and probably consistent with our own thought 

process. To understand deep learning models better in the future will require more 

multidisciplinary collaboration including neuro science, computer science, mathematics, 

etc.  

2.1.6 Conclusion 

The presented model demonstrated high performance in identifying four different 

anatomical coverages based coronal images and was shown to be generalizable to 

scans of high and low resolutions, diagnostic and low CT doses, and adult and pediatric 

patients in clinical practice. 

 

2.2 Scan direction 

2.2.1 Introduction 

Patients can be scanned head-first or feet-first. Most chest CT analysis 

algorithms are developed expecting head-first ordering of images. Incorrect image 
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orientation could cause wrong-side surgery[166,167] or treatment[168,169], e.g., in 

radiation therapy. For incremental chest scans (with large slice spacing, e.g. >=10mm), 

they are not suitable for precise lobar segmentation and one commonly used approach 

is to divide the whole lung into 3 zones: upper, middle, lower zones[170–172] for 

subsequent analysis. Obviously, correctly identifying the scan direction is critical to 

determine the proper ordering of the 3 zones. There is a DICOM tag named 

‘PatientPosition’ with values of ‘HFX’ or ‘FFX’ where the first 2 characters indicate 

whether the scan is head-first or feet-first. However, this tag is very unreliable. A survey 

of 300 chest scans in our database reported an error rate > 50% using this tag. This 

could be due to manual entry by the CT technologist or flipping of the image during 

image reconstruction. Therefore, image based scan direction labeling was considered 

preferable and deep learning the deep learning method described was employed.  

2.2.2 Materials and Methods 

Similar to the problem of anatomical coverage detection, previous studies have 

used axial slices to identify different anatomies, including brain, shoulder, chest, 

abdomen and pelvis and thus scan direction was inferred by the aggregated anatomical 

order. To alleviate the workload of annotating every axial slice, representative coronal 

slices were again used to recognize the orientation. 1,000 chest scans of different 

subjects were used to build the classification model. They were a collection from a 

research database comprising 6 clinical trials (2 IPF, 2 COPD, 1 scleroderma, and 1 

lung cancer screening) using scanners from SIEMENS, GE, PHILIPS and TOSHIBA. 

Slice thickness and spacing fell within [0.6 mm, 3.0 mm] and smooth to sharp 

reconstruction kernels were included. For each scan, a middle coronal slice plus 2 
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adjacent slices 10 pixels apart were selected as representative images. They were all 

head-first scans confirmed manually and corresponding feet-first scans were generated 

by vertically flipping the original scans to form balanced classes. As such, each scan 

generated 6 samples with 3 coronal images for each class. In total, 6,000 slices were 

used and they were split into training and test sets with a ratio of 4:1. Examples of head-

first and feet-first coronal images are shown in Figure 2.11. 

                

 

VGG-16 was again employed in this classification task and the architecture is same 

shown for anatomical coverage identification except that the last classification layer is 2 

classes.  

Data augmentation was used, including horizontal flipping, zoom in/out of [0.8, 

1.2], horizontal shift of [0.1, 0.1] and vertical shift of [0.2, 0.2]. Vertical flipping was 

dropped in this case. The model was trained from scratch on a NVIDIA TITAN X with 

GPU memory of 12 GB, using the Adam optimizer, and a learning rate of 0.001 with 

decay rate of 1e-4.  

Figure 2.11: Examples of head first and feet first scans in coronal view. 
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2.2.3 Results 

Both training and validation accuracy were over 99.99% after 5 epochs and 

inference time was less than 10 ms per case using the GPU mentioned above. 5-fold 

cross validation was applied during evaluation and the model achieved an accuracy of 

100% on the test set. The model worked even when the lung coverage was incomplete, 

and Figure 2.12 shows two examples from LOLA 11: one with partial right lung and the 

other has only the right lung and they were successfully identified as feet-first by the 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) CNN: feet-first (b) CNN: feet-first 

# of slice = 32 

CNN: head-first  

# of slice = 36 

CNN: feet-first  

# of slice = 14 

CNN: head-first 

Figure 2.12: CNN predictions of scan direction on two cases from LOLA11. 

Figure 2.13: CNN predictions of scan direction on three low resolution scans. 
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The model was also assessed on the extremely low resolution dataset with large 

slice spacing (5-20 mm) and 100% accuracy was achieved on a total of 100 scans. 

Figure 2.13 shows three examples with varying numbers of slices with slice spacing of 

20 mm. These coronal images displayed were resized to 256 x 256 before being fed 

into the model for scan direction inference. 

 

2.2.4 Discussion 

Using a coronal slice instead of axial images helped to alleviate the burden of 

annotating a large amount of axial slices and allowed very efficient inferencing. 

Although the model was trained using only high resolution scans, it demonstrated 

reliable performance when applied to incremental scans.  

 

 

 

 

 

 

 

  

 

We also applied the scan direction model to the same low dose data set from lung 

cancer screening and achieved 100% accuracy. Two examples are shown in Figure 

2.14. The model again showed robustness in handling various levels of noise. 

CNN: head-first CNN: head-first 

Figure 2.14: Scan direction model inference on ultra-low-dose scans. 
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Moreover, applications to pediatric scans are also present in Figure 2.15 with the first 

two cases correctly classified as head-first and last one as feet-first. 

 

 

 

 

 

Figure 2.16: Saliency maps at last classification layer of scan direction model 
with respect to head-first and feet-first images. 

Figure 2.15: Scan direction model inference on pediatric scans. 
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Figure 2.16 shows the saliency maps of the last classification layer with respect to the 

input images. The saliency maps show that the boundaries of the lung parenchyma, 

especially areas near the apices are used by the scan direction model. 

2.2.5 Conclusion 

The scan direction model was successfully applied to identify the image 

orientation and was robust to a broad range of chest CT scans, including high or low 

resolution, diagnostic or ultra-low-dose, and adult and pediatric patients. 

 

 

2.3 Scan posture 

2.3.1 Introduction 

Scan posture, face up (supine) or face down (prone), is dependent on placement 

of the patient in the scanner. Supine imaging is most commonly performed, for example 

in lung cancer screening, however, prone imaging is often performed in evaluating 

interstitial lung disease (ILD)[173–175]. On supine images, there are sometimes 

opacities due to lung collapse or atelectasis observed in the dependent portions of the 

lungs[9–11,176]. These dependent opacities may resolve during prone imaging while 

true opacities resulting from lung disease will not[177][178]. As these opacities may be 

mistaken as ILD, it is recommended in practice to also perform imaging in the prone 

position. Also, the posture may be adjusted for patient comfort or in cases of disability. 

Frequently the DICOM tag “SeriesDescription” does not include any information 

regarding the position. Another tag “PatientPosition” formatted as ‘XXP’ or ‘XXS’ if a 
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scan is prone or supine, respectively. Although this tag is relatively reliable, it is not 

always available and it is occasionally inaccurate. A sagittal image based deep learning 

method was proposed to detect the scan position.  

2.3.2 Materials and Methods 

Both axial and sagittal images can be used to determine if a scan is prone or 

supine by checking the location of the table relative to the subject’s body. Sagittal 

images were preferred since they clearly depict the relationship between the entire 

spine and the table. Example prone and supine scans are shown in Figure 2.17 with the 

vertical lines representing the scanner table. The middle sagittal slice gives an overall 

representation of the relevant image features and two other sagittal slices at ¼ and ¾ 

way through the body in the sagittal direction were also used in case the table was not 

present in the image center. Figure 2.18 is an example showing the absence of table at 

the middle sagittal slice and presence on slices at ¼ and ¾. 

 

 

In total, 5,000 scans (15,000 slices) from 5,000 different subjects were used to 

form training and testing sets with a ratio of 4:1. They were collected from a research 

database comprising of 16 clinical trials (5 IPF, 4 scleroderma, 3 COPD, 2 lung cancer 

Figure 2.17: Example prone and supine scans. 
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screening, 1 tuberculosis, 1 lymphangioleiomyomatosis) using scanners from 

SIEMENS, GE, PHILIPS and TOSHIBA. Slice thickness and spacing were within [0.5 

mm, 3.0 mm]. The number of prone and supine scans were balanced in both sets and 

the reference was from manual labeling.  

 

 

The training set also included a relatively small number of cases without the table 

present, likely caused by an inappropriate field of view (FOV) during image 

reconstruction. Figure 2.19 shows two such cases that were labeled as supine by the 

image analyst. Although it is challenging to confirm the scan posture, the assigned label 

is likely correct since the spine is much closer to image boundary and the thin curved 

streak in the image are probably clothing. 

 

 

 

 

 

 

 

Figure 2.18: Example scans with presence of table at ¼ and ¾ but not middle 
sagittal slice. 

Figure 2.19: Example training samples (supine) with absence of table. 
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VGG-16 was also employed in this classification task and the architecture was 

the same as used for anatomical coverage classification except that the last layer has 2 

classes. Data augmentation was used, including horizontal and vertical flipping, zoom 

in/out of [0.8, 1.2], and vertical shift of [0.2, 0.2]. Both horizontal and vertical flipping 

were applied since the spatial relationship between the spine and table is preserved. 

Similarly, a vertical shift up to 20% of image height still preserves the original label 

correctness. However, the position of table varies across different scans in terms of 

closeness to image boundary. Accordingly, horizontal shift was not applied to avoid 

table disappearance after translation. The model was trained from scratch on a NVIDIA 

TITAN X with GPU memory of 12 GB, using the Adam optimizer, with a learning rate of 

0.001 and decay rate of 1e-4.  

2.3.3 Results 

Both training and validation accuracy were over 99.99% after 12 epochs and 

inference time was less than 10 ms per case. 5-fold cross validation was applied during 

evaluation and the scan posture model achieved 99.3% accuracy on the test set. Figure 

2.20 below shows two example cases where the CNN correctly identified the posture 

even though the information in the DICOM header tag was incorrect. The DICOM tag 

“PatientPosition” labeled the left image as prone and the right image as supine which is 

wrong when the images are flipped. Since horizontal and vertical flipping were applied 

in data augmentation while training the network, the model could consistently recognize 

the posture despite changing the table location within the image.  
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Figure 2.21 shows two unusual cases with intermittent blank slices. The model is still 

able to correctly identify the posture since these missing slices do not obscure the 

overall spine-table relationship for the model in the sagittal plane. If axial images were 

used in building the model errors would be more likely, this represents the advantage of 

using sagittal images over axial images to identify the scan posture.  

         

 

DICOM: prone 
CNN: supine 

DICOM: supine 
CNN: prone 

Figure 2.20: Example cases showing conflicting label from DICOM and our model. 

Figure 2.21: Example cases with intermediate blank slices. 
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The scan posture model was also evaluated on the dataset of low resolution chest CT 

and achieved 100% accuracy on the test set of 100 scans (5-20 mm slice spacing). 

Figure 2.22 shows the application of the model to three scans with slice spacing of 20 

mm. Although those sagittal images are not as visually clear as high resolutions scans, 

their positions were still successfully detected by the model. Corresponding axial 

images are also provided in the second row to confirm the CNN inference. 

2.3.4 Discussion 

The scan posture model made use of sagittal images instead of axial to improve 

the inference efficacy and efficiency. The model was also assessed on the same low 

dose dataset from lung cancer screening and achieved 100% accuracy. Example 

predictions on ultra-low-dose scans by the CNN are shown in Figure 2.23. 

Figure 2.22: Application of scan posture model to low resolution scans. 
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Figure 2.23: Scan posture inference on ultra-low-dose scans (~0.2 mGy). 

Figure 2.24: Scan posture inference on pediatric scans. 
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Figure 2.24 shows application of the model to pediatric scans. The first row shows axial 

images and the second row contains the corresponding sagittal images. They could 

easily be mistaken for prone scans since there is a table like object above the body, 

especially from the axial images. Nevertheless, the location of the actual table was 

confirmed to be behind the body as indicated by the red arrow in the sagittal images. 

This is another scenario demonstrating the superiority of sagittal images in this 

application. 

Saliency maps from the final classification layer are shown in Figure 2.25. The 

first two columns are prone scans with the table on different sides. The last two columns 

correspond to supine scans with table on different sides. Regardless of the location of 

the table and subject, the most activated pixels are primarily from table and back of the 

body, including the spine (spinous process more specifically) and muscle/skin. 

Therefore, the network successfully extracted discriminative features as we anticipated 

in all possible scenarios to identify the scan posture. 

 

Figure 2.25: Saliency maps of prone and supine scan at last classification layer. 
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2.3.5 Conclusion 

The proposed sagittal image based CNN achieved high accuracy on the test set 

and demonstrated robustness on both high and low resolutions scans, and regular and 

ultra-low-dose scans.  

 

2.4 Lung coverage completeness 

2.4.1 Introduction 

A chest scan can be defined as full lung coverage if it includes the lung apex, 

intermediate lung and lung base. Although full lung coverage was requested in the 

National Lung Screening Trial (NLST) protocol[179,180], there are reported imaging 

defects due to incomplete lung coverage[181,182]. Real world data, e.g., images from 

PACS or clinical trials, are often a mix of various types, scout scans, biopsy scans, 

diagnostic scans, etc. The incomplete coverage may result from a specific diagnostic 

purpose or errors by the CT technologist. As such, it is necessary to screen out partial 

lung coverage scans since they are not appropriate for many subsequent quantitative 

analysis, such as lobar segmentation. No DICOM tags, such as “SeriesDescription”, 

include information regarding lung coverage. A CNN based on axial images was 

developed to accomplish this task. 

2.4.2 Materials and methods 

A representative coronal image, such as the middle coronal slice, could be used 

to check lung coverage. However, for scans where the longitudinal coverage is only 

slightly incomplete a few coronal slices may appear complete. Sometimes, the lung 
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cutoff is not observed until the coronal slice is very close to the anterior or posterior of 

the scan. As such, we chose a more reliable approach using axial images. Firstly, we 

trained a deep learning model to identify whether each axial slice in a scan contained 

lung or not. After that, the method aggregates individual slice labels to infer whole scan 

label. A complete lung coverage scan should begin and end with “no-lung” slices and 

have “lung” slices in the middle, whereas the most superior and/or inferior slices are 

classified as “lung” for an incomplete lung coverage scan regardless of scan direction 

(head or feet first).  

 

 

To build the model recognizing lung presence in the axial image, 20,000 axial 

slices from 210 different scans/patients were used with equal number of lung and non-

lung slices. They were collected from 4 clinical trials (2 IPF, 2 COPD) using scanners 

from SIEMENS, GE, PHILIPS and TOSHIBA. Slice thickness and spacing ranged 

between [0.6 mm, 3.0 mm] and reconstruction kernels included smooth to sharp. All 

scans had radiologist approved lung segmentations that were used to determine the 

individual slice label. Training and test sets were formed with a ratio of 4:1. Figure 2.26 

Figure 2.26: Example scans with full lung coverage and missing lung apex or 
base. 
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shows examples of complete and incomplete lung scans. The 2nd image lacks the lung 

apex and 3rd image lacks the lung base. 

Figure 2.27 contains example slices with and without lung from superior to inferior. The 

first row shows typical slices with lung and the second row shows slices without lung at 

different positions. The lungs on axial images differ in shape and size through the chest. 

When approaching the lung base, bowel gas that resemble lung may appear and it is 

critical to differentiate them from the lungs. For example, both images in the last column 

have bowel gas present but the one in the first row has a small portion of posterior lung 

near the spine. 

 

 

The VGG-16 CNN architecture was also employed in this classification task and is the 

same as for anatomical coverage identification except that the last layer has two 

classes. Data augmentation was used, including rotation of [45°, 45°], horizontal 

flipping, vertical flipping, zoom in/out of [0.8, 1.2], horizontal and vertical shift of [0.2, 

0.2]. Random rotation was used in this case since the presence of lung will not be 

affected by it. At each iteration, the image was be rotated clockwise or counter 

Figure 2.27: Axial slices with (1st row) and without lung (2nd row). 
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clockwise by a random degree between 0 and 45°. Similarly, limited translation and 

flipping of the image does not change the original label. The model was trained from 

scratch on a NVIDIA TITAN X with GPU memory of 12 GB, using the Adam optimizer, 

and learning rate of 0.001 with a decay rate of 1e-4.  

2.4.3 Results 

Both training and validation accuracies were over 99.5% after 15 epochs and 

about the computation time is around 3 seconds for a scan of 300 slices. The lung 

coverage detection model achieved 99.1% accuracy on identifying lung presence per 

axial slice and 100% accuracy on lung completeness recognition at the case level. 

Figure 2.28 shows two cases with incomplete lung coverage. The first row is an 

example with an incomplete lung apex (the most superior axial slice contains lung) and 

the second row corresponds to a case with an incomplete lung base (the most inferior 

axial slice contains lung). The model was able to correctly classify slices as “no lung” 

containing only bowel gas rather than lung (see the central image of the first row). 

Additionally, it was able to correctly identify slices as “lung” with only a small amount of 

basal lung (see the central image of the second row). The last column shows relevant 

coronal slices that demonstrating the lung cutoff. In particular, for the case in the second 

row, the missing right lung base cannot be observed at the very back of body. As 

indicated by the coronal view in the last column, using representative coronal slices, 

e.g. middle coronal slice, could miss a scan that is slightly incomplete.  
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The model was also evaluated on the incremental dataset (100 scans) to identify 

lung coverage completeness and 100% accuracy was achieved. Figure 2.29 is an 

example with slice spacing of 20 mm and 14 slices in total. The last slice was caught by 

the model with lung presence and the coronal view is displayed for reference. 

Figure 2.28: Typical incomplete lung cases with missing apex or base. 

Figure 2.29: An incremental scan identified as incomplete lung coverage by the 
proposed method. 
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The lung presence axial image classification did not achieve 100% accuracy and some 

mis-classified slices from the lung apex and lung base are shown in Figure 2.30. All of 

them were identified as being without lung presence by the model, which is incorrect as 

indicated by the red circle in each case. Their slice thickness and spacing are 0.625 

mm. 

2.4.4 Discussion 

To avoid the risks inherent in using representative coronal slices, every axial 

slice of a scan was used to identify the presence of lung. For cases with incomplete 

lung coverage, the scan direction model was used to further ascertain whether the 

missing lung is from the apex or base. For the axial lung presence detection model, mis-

Figure 2.30: Examples of mis-classified slices from lung apex and base by CNN. 
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classification sometimes occurs near lung apex or base on high resolution scans. As 

shown in Figure 2.30, it is very challenging on slices containing just a few pixels of lung. 

The inference of the overall lung coverage label from the stack of individual slice labels 

is rarely affected by one or two slice labels unless it happens to start or end with that 

very slice at lung apex or base. In practice, even such cases of very minor 

incompleteness were classified as complete lung coverage, it will not affect the following 

quantitative image analyses, e.g. lung segmentation, emphysema quantification. One 

potential way to improve performance is by augmenting the training set with more slices 

from the lung apex and base.  

The model was also assessed on the same ultra-low-dose dataset (dose ~0.2 mGy) 

from lung cancer screening and achieved 100% accuracy in lung coverage 

completeness. Figure 2.31 is an example of full lung coverage identified by the model. 

Similar to what was observed in our previous models, the lung presence detection 

model demonstrated robustness to noise as well. 

 

 

The model was also applied to pediatric patients and an example missing the lung base 

is shown in Figure 2.32, the model successfully detected the last slice as having lung 

Figure 2.31: Complete lung coverage of an ultra-low-dose scan successfully 
detected by the model. 
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presence. The corresponding coronal image, shown rightmost, demonstrates the 

incompleteness of the left lung. 

 

 

Saliency maps of lung and non-lung slices at the last classification layer are 

shown in Figure 2.33 with respect to the input images from superior to inferior. The first 

row is the input raw slice and the second row is the corresponding maps. 

 

 Figure 2.33: Saliency maps of slices with various degrees of lung presence. 

Figure 2.32: A pediatric scan detected with missing lung base by the model. 
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For the first column, there is no lung in the images and pixels in high intensity regions, 

i.e. bone, are highly activated. The model may be using those features to identify ‘no 

lung’ slices. For the second, third and fourth columns, lung regions of different sizes are 

present and only pixels within lung are activated by the network. It is interesting that 

regions with similar intensity of lung (on the 2nd and 4th images), such as trachea, are 

not activated by the feature extraction. As indicated by these results, the model is able 

to differentiate real lung from misleading regions, e.g., bowel gas.  

 

2.4.5 Conclusion 

Lung coverage completeness classification was achieved by aggregating individual 

axial slice labels sequentially, and the recognition of lung presence on each slice was 

accomplished by a deep convolutional neural network. This strategy has been 

successfully applied to scans of high and low resolution, diagnostic and low-dose, and 

adult and pediatric patients. 

 

 

 

2.5 Contrast usage 

2.5.1 Introduction 

CT can be ordered either with or without contrast. Contrast CT is able to enhance 

the intensity of target tissue, e.g. blood vessel, tumor, etc. and assist physicians by 

providing better structural and functional information. In routine practice, contrast CT is 
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usually applied to evaluate suspicious masses in neck, chest and abdomen[183–186]. 

Specifically, both malignant masses could potentially develop into adenopathy, 

lymphoma, sarcoidosis, etc.[187–190]. Pulmonary embolism is one of most common 

cause of acute cardiovascular disease[191–195] and contrast CT, especially CT 

Angiography (CTA), is the favored method of diagnosis [196–199]. Intravenous contrast 

is used to assess vascular related disease, such as aneurysm, clots, and 

vasculitis[200–202]. Lastly, contrast CT is also applied to lung nodules [203–206].  

The presence of enhancement has a considerable impact on the subsequent 

image analysis results and different strategies can be used to take this into account. For 

example, case dependent normalization may be required for generalizable analysis. As 

such, it is crucial to differentiate between contrast and non-contrast scans. 

Unfortunately, DICOM header tags, such as “SeriesDescription”, often have no relevant 

information. Accordingly, an image-based deep learning method was proposed for this 

classification problem. 

 

2.5.2 Methods 

In theory, the CNN could be directly applied to raw image assuming the network 

was able to automatically extract discriminative features from areas with enhancement 

to differentiate between contrast and non-contrast images. However, there are also 

other tissues with high HU intensity (bone, calcification, implanted devices, etc.) that 

may confuse the network. Furthermore, given the network is a “black-box” determining 

whether this erroneous learning has occurred may be difficult to determine. However, it 

is observed that enhancement in the aorta is consistently present in contrast-enhanced 
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chest CT scans since intravenous (IV) contrast is most commonly used. Figure 2.34 

shows examples of both contrast and non-contrast scans.  

 

 

For contrast scans, the intensity within the aorta is over 90 Hounsfield Units 

(HU), whereas it is less than 50 HU on non-contrast scans[207,208]. Therefore, the 

aorta is an ideal anatomic landmark in this scenario and the contrast detection task can 

be reformatted as aorta detection and segmentation. Overall, the contrast detection 

algorithm can be broken down into: 1. Aorta segmentation; 2. Computing the average 

intensity within aorta; 3. Determining the presence or absence of contrast using a 

threshold, e.g., 80 HU. Provided the aorta is segmented accurately, the identification of 

contrast usage is straightforward. The aorta consists of the aortic arch, ascending and 

descending aorta. The ascending aorta starts at the aortic root and extends up until the 

aortic arch. The descending aorta starts at the aortic arch, goes through chest and 

continues down into abdomen[209,210]. The descending aorta preserves a relatively 

consistent circular shape and thus it is preferred as our segmentation target. Traditional 

Figure 2.34: Comparison of non-contrast (1st row) and contrast scans (2nd row). 
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aorta segmentation methods on chest CT usually apply the Hough transform to detect 

and track the circular shape because of the tubular structure and treat the whole 3D 

aorta as cylinders. Usually a seed point needs to be set, either manually[211] or 

automatically[212], and the segmentation is challenging especially on non-contrast 

scans using this method. A similar approach using Kalman filtering has also been 

proposed[213]. 3D level set[214] and graph cut[215] algorithm were applied to further 

refine the tubular surface based on the previously detected centerline of aorta. 

Computation efficiency is a big issue when using such algorithms. Dynamic 

programming was also used to localize aorta and search for the aortic boundaries. Atlas 

and deformable atlas-based methods have also been presented[216,217] and the aortic 

boundaries are determined by relying on high contrast edges in these methods. 

Deformable mesh adaptations was used to match the tubular structure of the aorta[218]. 

Results of multiple atlases were fused by registration to improve compatibility with 

aortas of varying sizes[219]. To summarize, conventional methods are not generalizable 

to images with high variability in the aorta. Further, the segmentation is time-consuming. 

Most importantly, they are mostly evaluated on contrast enhanced scans and 

performance markedly declines when applied to non-contrast scans. Recently, a fully 

convolutional network based on a dilated CNN[220] was applied to segment the aorta 

on low-dose CT[221] and it is same approach as Google’s deeplab[222]. Three CNNs 

using images at axial, coronal, sagittal planes were trained individually and the final 3D 

segmentation results derived by averaging the three probability maps. Only 10 chest CT 

scans were used in training and testing respectively and achieved a Dice score of 

0.88±0.05 on descending aorta segmentation. 
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To segment the aorta accurately and efficiently, we applied a fully convolutional 

neural network and we extended the previous VGG-16 classification architecture to a 

segmentation network by adding a decoder section to recover the original image 

resolution. As shown in Figure 2.35, the left encoder is exactly same as original 

classification network but without fully connected layers.  

 

 

All the convolutional kernel sizes are 3 × 3 with padding size of 1 × 1 to keep the 

size intact. Down-sampling was performed by max-pooling with a size of 2 × 2. Overall, 

the original input image was progressively scaled down 4 times (256 × 256 to 16 × 16). 

Figure 2.35: VGG-16 based architecture for aorta segmentation. 
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The right decoder has a corresponding 4 times up-sampling (size of 2 × 2) using 

transposed convolution[223] (16 × 16 back to 256 × 256). Similar to the strategy of the 

U-Net, the number of feature maps in the de-convolutional layer matches the number in 

the corresponding convolutional layer to achieve a symmetric architecture. Also, skip-

connections were used in the up-sampling process to incorporate finer details from the 

lower layers as well as abstract and sematic information from higher layers. After 

achieving the target resolution, a final 3 by 3 instead of 1 by 1 convolution was applied 

on the aggregated hyper-columns to achieve pixel-wise classification. This allows 

incorporation of neighboring information in the class inference for a specific pixel. The 

final output of the network is a probability map with the same resolution as the input that 

gives the probability of each pixel belonging to the aorta. The last step is to generate a 

binary mask by thresholding the probability map at 0.5 and up-sample it to the original 

image size. 

Since the size of the aorta is much smaller than the background, i.e. the number 

of positive pixels and negative pixels are extremely unbalanced, the regular loss 

function using cross-entropy would lead to biased model. To solve this class unbalance 

problem, weighted cross-entropy was used as the cost function during training with a 

ratio of 150:1 to compensate for the aorta size. Data augmentation was applied in 

training the segmentation model, including rotation with the range of [90°, 90°], 

horizontal and vertical shift of [0.2, 0.2], zoom in/out of [0.8, 1.2], horizontal and vertical 

flipping. The model was trained from scratch on a NVIDIA TITAN X with GPU memory 

of 12 GB, using the Adam optimizer, and learning rate of 0.001 with a decay rate of 1e-
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4. The augmentation was very helpful since the dataset used was not very big as 

described in materials section below. 

2.5.3 Materials 

116 chest CT scans from 70 different subjects from a lung cancer trial were used 

in this study. 70 of them were non-contrast scans and 46 were contrast scans. Because 

the aorta segmentation is more difficult on scans without enhancement, slightly more 

non-contrast scans were used. Scanners from two manufacturers, SIEMENS and GE 

were used and they were reconstructed with smooth to sharp kernels with slice 

thickness and spacing ranging between [1 mm, 3.0 mm]. In total, 8,447 slices were 

used having manual segmentation of the aorta. Since it is a relatively small data set and 

our goal is contrast usage detection, 500 slices (half from contrast scans and half from 

non-contrast scans) were saved as a test set for the aorta segmentation evaluation and 

the rest were used in training the segmentation model. An additional independent set of 

500 scans with only a scan level label (contrast or not) were used for contrast detection 

evaluation, and contrast/non-contrast scans accounted for 250 each in this set. They 

were collected from 5 clinical trials (2 IPF, 2 COPD, 1 scleroderma). 

Because our goal is contrast detection only, the reference segmentation of the training 

set done by image analysts did not cover the whole thoracic descending aorta. An 

example of aorta segmentation in training set is shown in Figure 2.36. 
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2.5.4 Results 

The model was trained for 15 epochs, and after that there was no significant 

performance improvement on the training or validation sets. It takes about 5 seconds to 

segment the aorta on a chest scan with 300 slices using the machine mentioned 

previously. Since our ground truth does not cover the whole aorta, we evaluated the 

aorta segmentation based on 500 selected slices and achieved a dice coefficient of 

0.932±0.14. In terms of contrast detection, the system achieved an accuracy of 100% 

on the test set of 500 scans using 80 HU as a threshold. Examples of aorta 

segmentation on contrast and non-contrast scans are shown in Figure 2.37 and Figure 

2.38. Figure 2.39 is a non-contrast scan from the public LObe and Lung Analysis 2011 

(LOLA11)[159] data set with a warped aorta that was successfully segmented by the 

model. 

Figure 2.36: Reference segmentation of aorta from training set. 
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Figure 2.37: Example segmentation on a contrast scan by the model. 

Figure 2.38: Example segmentation on a non-contrast scan by the model. 
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Since we do not have a reference segmentation for this LOLA11 data set, no 

quantitative assessment regarding the aorta segmentation was performed. 

2.5.5 Discussion 

The aorta segmentation is an intermediate step to detect contrast usage and 

under/over-segmentation of a few pixels is unlikely to affect the final result. Therefore, it 

is not necessary to achieve perfect aorta segmentation in this problem. However, the 

model did achieve high performance compared to other published methods. 

Furthermore, there are some existing chest CT analysis algorithms dependent on image 

denoising using standard deviation within aorta and thus our method could automate 

that process without manual intervention.  

 Because the proposed CNN is 2D axial slice based, it is applicable to 

incremental scans as well. In the example from LOLA 11 in the results section, the 2D 

Figure 2.39: Segmentation on a non-contrast scan from LOLA11 with a warped 
aorta by the model. 
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CNN would probably outperform 3D CNN since the target descending aorta is not the 

typical straight tubular structure. Compared to traditional approaches, our method works 

on both contrast and non-contrast scans and the computation speed is good for high 

throughput processing in clinical practice. The segmentation model was built only using 

diagnostic scans but was also evaluated on ultra-low-dose scans from lung cancer 

screening. Figure 2.40 is an example scan reconstructed with a medium kernel and 

slice thickness/spacing of 1 mm and the dose level is only 10% of the original screening 

scan and 1/75 of a diagnostic scan. Since we do not have ground truth segmentation on 

this ultra-low-dose scan, a quantitative evaluation such as dice score was not 

performed. 

 

 

Application of the aorta segmentation model to pediatric scans was performed as well, 

and an example is shown in Figure 2.41 with slice thickness of 0.48 mm and slice 

spacing of 1.25 mm.  

Figure 2.40: Aorta segmentation on an ultra-low-dose scan by the model. 
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 Figure 2.42: Detection of calcification within aorta using HU=400 as threshold. 

Figure 2.41: Example of aorta segmentation on a pediatric scan. 
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Since the model segments the aorta accurately, other vessel related disease analysis 

could be performed. For example, one application is measurement of calcification within 

the vessel. Calcification has an intensity range from 200 to 800 HU and we can 

compute the amount of calcification within aorta using a simple threshold. Figure 2.42 is 

an example using 400 HU as threshold to detect calcification. Moreover, the descending 

aorta that is closer to the left lung, could be utilized as anatomical landmarks for 

automatic quality control (QC) to verify the location of left and right lungs. 

Compared to the dilated CNN presented on low-dose CT[224], we differ in the 

following aspects: 1. the goal of the study is slightly different and our model may not 

segment the entire descending aorta, especially the aortic arch and the abdominal 

aorta; 2. their network is actually 2.5D using images from 3 planes whereas we only 

used 2D axial images and our model has higher complexity in terms of depth and width; 

3. we used a much bigger training and test set with more diversity including both 

contrast and non-contrast scans; 4. their network was trained using low-dose scans and 

our model was trained using diagnostic scans, but it demonstrated robustness when 

applied to low-dose and even ultra-low-dose scans. 

Saliency maps at the final convolutional layer of the network with respect to 

contrast and non-contrast images are shown in Figure 2.43. Pixels at the circumference 

of descending aorta are highly activated in both cases and the ascending aorta is also 

mildly visible on the maps. Since the network is able to differentiate ascending and 

descending aorta on a 2D slice, those lateral bright regions near the boundaries or 

corner of the image are possibly used to determine their locations.  
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The current model was only trained to segment the descending aorta and the 

next step is to expand the model to include the ascending aorta and potentially employ 

a 3D CNN if we are able to collect better training data in the future.  

 

2.5.6 Conclusion 

We formulated the contrast detection problem as one involving aorta 

segmentation. The proposed CNN was able to accurately segment the descending 

aorta on both contrast and non-contrast scans and thus enable reliable detection of 

contrast. It demonstrated strong performance on low dose scans and pediatric scans. 

 

Figure 2.43: Saliency maps of non-contrast and contrast scan from the proposed 
aorta segmentation model. 
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2.6 Breath-hold types 

2.6.1 Introduction 

Patients undergoing CT scans are usually asked to hold their breath during 

scanning at full inspiration, i.e., at total lung capacity (TLC), or at full expiration, i.e., at 

residual volume (RV). Typically, inspiratory chest CT scans are the preferred imaging 

method in patients with pulmonary disease, whereas expiratory scans are sometimes 

used to demonstrate pathophysiological alterations such as air trapping. For example, 

TLC scans are commonly used in evaluation of most diffuse lung diseases, including 

fibrosis, chronic obstructive pulmonary disease (COPD), etc.[225–228]. RV scan has 

been used to reveal air trapping in patients with airway related diseases, such as 

bronchiectasis, sarcoidosis, and asthma[229–231]. In some studies, the subject is 

imaged at both breath-holds [232–234]. For example, measurement of lung density and 

air trapping on patients with cystic fibrosis[235]. Due to the large air volume difference 

within the lung after full exhalation or inhalation, resulting computations, e.g. lung 

density, volume, will be quite different. It is essential to correctly identify and consider 

the patient breath-hold when drawing conclusions based on quantitative lung analyses. 

The DICOM tag “SeriesDescription” often fails to provide any information regarding 

breath-hold and may be incorrectly entered if there is. As such, it is necessary to identify 

the breath-hold types using the images and a deep learning method was proposed. 

2.6.2 Methods 

Lung volume alone is not sufficient to differentiate between TLC and RV scans 

since it is impacted by a variety of factors, such as gender, age, pulmonary disease, etc. 
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Clinically, the compression of the trachea is often used by radiologists to identify RV 

scans. It is characterized by the collapse of carina and the posterior wall of trachea 

bows forward[62–66]. In contrast, the shape of the carina is quite circular on TLC scans. 

Some examples of TLC and RV axial images are shown in Figure 2.44 and the carina 

shapes are noticeably different. Therefore, the breath-hold identification can be divided 

into three steps: 1. segmentation of the trachea, 2. Identification of the carina, 3. 

Identification of RV or TLC based on the shape of the carina.  

 

 

Threshold-based region growing methods are most commonly used for airway 

segmentation on chest CT[241–243]. A seed point is placed manually or 

automatically[244] and the algorithm starts growing by adding neighboring voxels within 

a pre-defined intensity range. The biggest issue with these approaches is leakage out of 

the airways during the growing phase. For example, noise pixels or lung can be 

mistaken as airway if they share similar intensity in the image. Several methods have 

been proposed to solve the leakage problem. Morphological operators for 3D filtering 

and leakage removal were applied to improve the segmentation of peripheral 

branches[245–247]. A fuzzy connectivity region growing[248] was proposed to prevent 

leakage by taking advantage of the cylindrical shape of different airway branches. The 

Figure 2.44: Example RV and TLC scans demonstrating differences in carina 
shape. 
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centerline of the trachea was extracted to track and guide the propagation path of 

growing[249–251]. A volume of interest (VOI) was introduced by dividing a lung 

segment into sub-regions and apply topology of airway tree based on the previous VOI 

to avoid leakage[252,253]. Machine learning methods were also proposed to classify 

voxels into air and surrounding tissues[254]. Lo et al.[255] presented an appearance 

model for airway pixel classification and adjacent vessels were segmented to measure 

their orientation similarity to the candidate airway. To help minimize the cost of fast 

marching, a multi-scale wellness measure to detect the bronchial wall was used to 

compute a probability model of the airway[256]. A ConvNet[257] was proposed to detect 

and remove leakage and prune the segmentation after applying a similar approach as 

Lo et al.[255]. A 2.5D convolutional neural network[258] using axial, coronal and sagittal 

slices was applied to classify pixels at branches after initial airway segmentation by 

region growing. A 3D U-Net like network was trained to segment the whole airway 

tree[259]. A sliding window with a stride of 104 pixels along z-axis was applied to extract 

a small path or chunk from the original scan to achieve consistent size input to the 

network. Probability maps were aggregated to reconstruct the full size airway 

segmentation. It was trained with 12 chest scans and tested on 6 images and achieved 

an average Dice coefficient of 0.8. 

The VGG-16 based segmentation architecture used in the aorta segmentation 

was also applied in this task. Because the size of the trachea is much smaller in 

comparison with background, the same weighted cross-entropy loss function (with ratio 

of 150:1) introduced in the aorta segmentation was again used. The same data 
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augmentation techniques were applied. A connected component analysis was 

performed to extract the largest mask and eliminate small isolated artifacts.  

After trachea segmentation, the carina was identified by searching slice by slice 

until bifurcation. Using the previous model for scan direction detection, the search 

direction was corrected if a scan was feet-first. To train the carina-based breath-hold 

classification, multiple slices above the bifurcation were selected as carina slices and 

majority voting was used during the inference stage to generate the final output. 

 

 

 

 

 

 

 

 

 

Figure 2.45 shows two special TLC scans where the anterior membrane collapse is 

backward and the spine is up. Such a carina shape could potentially confuse the 

classification model compared to real RV scans as shown in Figure 2.46. The first row is 

the raw slice with the related carina segmentation of a TLC scan where the spine is up. 

The second row is the raw slice with carina segmentation of a RV scan where the spine 

is down. 

Figure 2.45: TLC scans with the anterior membrane of the carina collapse 
backward. 
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In order to exploit the shape feature of the carina, it is vital to identify the spine 

location to confirm the posterior wall is down in the image before employing them in 

breath-hold classification.  

 

 

 

 

 

 

 

Since we have built a scan posture model, we could infer an image is spine down 

(if it is supine) or spine up (if it is prone). Unfortunately, the assumption of correlation 

Figure 2.46: Potential confusion caused by uncertainty of spine location. 

Figure 2.47: Inconsistence between scan posture and spine location. 
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between scan posture and spine location is not always true. Figure 2.47 is an example 

showing exceptions in both cases. The left one is a prone scan but the spine is down 

and the right one is a supine scan but the spine is up. 

Therefore, the previous scan posture classifier cannot be used to determine the 

spine location and an independent CNN was proposed to accomplish this using axial 

images. Different from the prone vs. supine classification, this model is supposed to 

target only on the position of spine instead of table location.  

 

 

The last step is to build the breath-hold recognition model based on the shape of 

the carina. Since we have performed trachea segmentation, mask images of the carina 

will be used to simplify the complexity of network. Figure 2.48 shows two mask images 

of the carina from RV and TLC scans, respectively. 

To build classifiers differentiating between spine up and down as well as RV and 

TLC, the VGG-16 network was used again. Data augmentation was applied in training 

the segmentation model, including rotation range of [90°, 90°], horizontal and vertical 

shift of [0.2, 0.2], zoom in/out of [0.8, 1.2], horizontal flipping and vertical flipping for the 

spine detection model. The models were trained from scratch on a NVIDIA TITAN X 

Figure 2.48: Example masks of carina on RV and TLC scan. 
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with GPU memory of 12 GB, using the Adam optimizer, and a learning rate of 0.001 

with a decay rate of 1e-4. Similar data augmentation was used in training the spine 

detection model and the breath-hold recognition model. 

2.6.3 Materials 

356 scans (32,298 slices) of 92 patients from multi-center clinical trials were used 

to build the trachea segmentation model. 176 were RV scans and 180 were TLC scans. 

Scanners from two manufacturers, SIEMENS and GE, were used and images were 

reconstructed with smooth to sharp kernels with slice thickness and spacing ranging 

from [0.6 mm, 1.5 mm]. An independent 1,000 slices were used for trachea 

segmentation evaluation. The reference segmentation of the training set was done by 

thresholding plus manual editing, covering the trachea and left/right bronchi beyond the 

bifurcation. Because the goal of the trachea segmentation was to find the carina, it was 

not necessary to segment the whole airway tree which alleviated the annotation 

workload for the image analysts. An example of the manual segmentation is shown in 

Figure 2.49.  

 

 

 

 

 

 

To build the model for detecting the spine location, 40 scans from different 

patients were used from 1 IPF trial and 1 COPD trial. In total, 21,804 axial slices were 

Figure 2.49: Reference segmentation of trachea on training set. 
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used and they were split into training and test sets in a 4:1 ratio. The number of spine 

up and down slices were balanced in both sets and labels were from image analysts.  

To build the model differentiating RV and TLC breath-holds, 1,633 scans from 

495 patients were used, including 11,948 RV slices and 11,953 TLC slices and the test 

set accounts for 20% of the cases. They were collected from 11 clinical trials (4 IPF, 3 

COPD, 1 scleroderma, 1 NSCLC, 1 lung cancer screening, 1 tuberculosis). The two 

classes were balanced in both sets. Their labels were manually confirmed. Lastly, the 

training and test sets were independent of the dataset used in scan direction 

classification and spine localization.   

 

2.6.4 Results 

The trachea segmentation model was trained for 21 epochs, beyond that there 

was no significant improvement in either the training or validation sets. The algorithm 

takes about 5 seconds to segment a scan with 300 slices. 1,000 slices were used in the 

trachea segmentation evaluation and the dice coefficient was 0.941±0.06. Figure 2.50 

shows an example of the trachea segmentation on a scan with slice thickness of 1 mm. 

Figure 2.51 shows the result from the model on a scan with an unusual chest shape 

from LOLA11. 
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Figure 2.50: Example trachea segmentation by CNN. 

Figure 2.51: Trachea segmentation on a scan with tilted chest by the model. 
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After trachea segmentation, the second step was to localize the carina. Figure 2.52 

demonstrates the search process for the carina slice based on the 3D trachea 

segmentation on a scan with a slice spacing of 1.5 mm. 

 

 

For the spine localization model, both the training and validation accuracy were over 

99.99% after 3 epochs, and the system achieved 100% accuracy on test set under 5-

fold cross validation.  

 

 

Figure 2.52: Identification of carina slice by searching bifurcation. 

Figure 2.53: Example of spine up and down scans detected by the CNN. 
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Some examples of spine up and spine down images detected by the CNN are shown in 

Figure 2.53. First column has 2 spine down cases with the top one being supine and 

bottom one prone. The second column has 2 spine up cases, with top one being supine 

and the bottom one prone. 

In practice, multiple carina slices were used in breath-hold classification to make 

the inference more robust, and the model achieved an average accuracy of 99.3% on 

the test set under 5-fold cross validation. An example mask image of a carina classified 

as RV and one classified as TLC are shown in Figure 2.54. The first row are 3 RV cases 

with variations in the curvature of the posterior wall, and the second row are 3 TLC 

cases with differing degrees of circularity of carina shape. 

   

 Figure 2.54: Mask images classified as RV (first row) and TLC (second row) by the 
model. 
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2.6.5 Discussion 

In clinical practice, we noticed that the shape of carina alone sometimes failed to 

identify the breath-hold. Two unsuccessful cases are shown in Figure 2.55.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first row is a pair of RV and TLC scans from the same patient. The shape of the 

carina on both the RV and TLC scans appear circular and the CNN identified both as 

TLC. We can probably determine which one is more likely to be RV or TLC by 

comparing the lung volumes or attenuation within the lungs if both scans were present 

Truth: TLC vs. CNN: RV 

Truth: RV vs. CNN: TLC Truth & CNN: TLC 

Truth & CNN: RV 

Figure 2.55: Difficult RV and TLC cases without the usual characteristic carina 
shapes. 
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side by side. However, there is no guarantee that both breath-holds of a given patient 

will be available and our goal is to identify the breath-hold on a single image rather than 

an image pair. The second row is an opposite example where the CNN mis-classified 

the TLC scan as RV. The posterior membrane of the carina is flat (like a letter ‘D’) on 

both the RV and TLC scans. Unless both breath-holds of the same patient are provided, 

it is very challenging to make a correct or appropriate decision on a single image. On 

the other hand, it is possible that the patients did not take full breaths in/out during 

scanning as reflected by their carina shapes. This could be caused by a patient’s 

inability to completely exhale or inhale or because they did not effectively follow the 

instructions given by the CT technologist. We tried to augment the input to the network 

by adding one axial slice and coronal slice at the center of carina, hoping that the CNN 

could extract additional features, such as lung volume, density, position of diaphragm, 

etc. as supplements. However, the network still struggled when confronted with these 

challenging cases.  

Our goal in this project was to identify the breath-hold, which is slightly different 

from most studies aimed at accurate airway segmentation. We still endeavored to 

accurately segment the trachea since the classification outcome relies on the shape of 

carina. Because of this limited application, we only segmented the main bronchi and left 

and right bronchus beyond bifurcation instead of the whole airway tree. Segmentation of 

the entire airway tree on high resolution CT remains very challenging.  

The segmentation model was also applied to the same low-dose and ultra-low-

dose dataset used in robustness assessment of previous classification models. Figure 
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2.56 is an example of the trachea segmentation on an ultra-low-dose scan from lung 

cancer screening with a dose level around 0.2 mGy (1/75 of regular diagnostic). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.56: Trachea segmentation on an ultra-low-dose scan by the model. 

Figure 2.57: Additional use of trachea segmentation. 
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The shape of the trachea could be a biomarker of airway related diseases. The left of 

Figure 2.57 is an example with posterior and lateral irregularities of the carina that could 

imply stenosis with a lesion protruding into the tracheal lumen[260–262]. The image on 

the right of Figure 2.57 is an example showing a decreased tracheal index (TI), i.e. the 

ratio between transverse diameter and anteroposterior diameter, a characteristic of 

COPD patients[263,264].  

 

 

The model was applied to pediatric patients as well and an example is shown in Figure 

2.58. Although the trachea of a child is much smaller and the model was trained using 

only adult scans, it was still able to segment it. The diversity in the training set and the 

image rescaling applied in data augmentation probably contributed to the model 

reliability in both adult and pediatric patients.  

Figure 2.58: Trachea segmentation on a pediatric scan. 
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Saliency maps at the last convolutional layer of the trachea segmentation model is 

shown in Figure 2.59. The boundaries of the trachea were most activated by the 

network and all other pixels are suppressed.  

           

 

Saliency maps from the last classification layer of the spine detection model are shown 

in Figure 2.60. As anticipated, features exploited by the network for spine up/down 

classification are primarily from the spine and pixels belonging to the table are not 

activated. Image pairs with an absence of table in the second column are more intuitive 

regarding this observation. This is in contrast to the activation maps from scan posture 

(prone or supine) classification model where pixels from both spine and table were 

activated.  

Figure 2.59: Saliency maps from the trachea segmentation model. 
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Figure 2.60: Saliency maps from the spine detection model. 

Figure 2.61: Saliency maps of RV and TLC classification from the breath-hold 
detection model. 
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The last saliency maps from the breath-hold detection model are shown in Figure 

2.61, including cases of RV and TLC respectively. Pixels near the posterior wall of the 

carina are highly activated by the classification model, which is what we expect the 

network to focus on.  

 

2.6.6 Conclusion 

We proposed a method to accomplish breath-hold classification by three steps: 

1. trachea segmentation; 2. carina localization; 3. breath-hold classification between RV 

and TLC based on the shape of the carina. Our deep learning models demonstrated 

high performance and robustness on trachea segmentation and subsequent breath-hold 

classification. 
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Chapter 3: Lung and lobar segmentation on chest CT 

3.1 Lung segmentation 

3.1.1 Introduction 

Lung segmentation is often performed in chest Computed Tomography (CT) as a 

precursor to quantitative image analysis of the lung parenchyma[265], nodule 

detection[266], emphysema and fibrosis scoring[267–270], and particularly lobar 

functional analysis[23]. Extensive research has been devoted to automated lung 

segmentation on chest CT[271–274], with many methods demonstrating accurate 

segmentation in normal lungs[12,14,275,276]. However, traditional segmentation 

methods, including threshold-based and shape-model-based methods, often fail to 

accurately segment lungs with dense pathologies[15,17,277]. More specifically, in lungs 

with severe Idiopathic Pulmonary Fibrosis (IPF)[278,279], peripheral regions with 

increased CT attenuation tend to be excluded due to inadequate contrast between the 

lung and surrounding tissues. Given that the majority of chest CT scans acquired in a 

clinical setting will contain some abnormalities, improving segmentation accuracy of 

lungs with pathology will be crucial in increasing throughput and translating quantitative 

lung imaging to routine clinical practice. 

A number of studies have investigated segmentation of pathologic lungs. A 

segmentation-by-registration scheme was introduced in which a normal lung was 

elastically registered to a pathologic lung followed by k-nearest neighbor voxel 

classification[15]. Voxel classification using local texture features has also been applied 

to segment abnormal lung regions[17–19]. Applying anatomical model constraints was 
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another strategy to address the challenge of pathological lung segmentation[280,281]. 

For example, curvature of the ribs[16] was used to assist the selection of optimal 

thresholds to segment the lung. A graph search algorithm[282,283] was proposed to 

detect the lung surface by solving a maximum flow problem. Similarly, a graph cut 

based method modeled the foreground and background objects in the image as a 

Gaussian mixture model and optimized the probability of foreground using expectation 

maximization[284]. A modified convex hull algorithm[285] was introduced to extract the 

coarse lung region containing diffuse lung disease followed by morphological analysis. 

Most of these were evaluated on relatively small datasets (<50 scans). Since these 

unsupervised learning methods usually involve empirical determination of algorithm 

parameters, it is very challenging to make them generalizable and applicable to a wide 

spectrum of abnormal lungs. Additionally, segmentation efficiency is required for high 

throughput processing of chest CT images.  

Deep learning methods have been successfully applied to various image 

classification and recognition tasks in medical imaging. In the past few years, the 

methods have shown superiority in the image segmentation field. A fully convolutional 

neural network[101] was proposed for segmentation including precise pixel-wise 

prediction. It outperformed many traditional state-of-the-art segmentation methods. With 

a similar idea, the hypercolumn at each pixel was defined as the vector of activations of 

all CNN units for object segmentation and localization[286]. The U-Net[102] architecture 

demonstrated success in many biomedical image segmentation problems, including cell 

segmentation in microscopic images, vertebral level localization for lumbar surgery and 

glandular structure segmentation on colon histopathology images. SegNet[287,288] 
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which is a deep Encoder-Decoder neural network showed promising results for lung 

segmentation in chest radiographs. Volumetric image based methods were then 

introduced, including 3D U-Net[111] and V-Net[112] to segment the prostate and 

kidneys in MR images. For deep learning application to lung segmentation on chest CT, 

a progressive and multi-path holistically nested network (P-HNN)[289] was proposed 

and claimed to merge more outputs from different network stages to generate masks 

with finer details. SegCaps[290] was proposed more recently and is an extension of the 

original capsule network[291] by adding de-convolutional capsules for segmentation. 

Generative models were also used in lung segmentation by introducing adversarial loss. 

Based on a fully convolutional network, Zhao et al. proposed to add multi-instance and 

conditional adversary loss to tackle moderate and severe pathological conditions[292]. 

An improved Wasserstein GAN[293] was applied to enhance learning stability by 

employing Earth Mover (EM)[294] as the loss function[295].  

Residual Network (ResNet)[113] has been the state-of-the-art image recognition 

architecture and won first place in the ILSVRC-2015 classification task. Due to its much 

deeper network with residual learning unit, it demonstrated exceptional ability in feature 

extraction, surpassing previous models such as VGG[158] and GoogleNet[296]. In our 

work, a ResNet-101 based 2D fully convolutional neural network was proposed for 

pathological lung segmentation on chest.  

 

 

 



 

83 
 

3.1.2 Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 3.1, the convolution section or feature extraction is the same 

as the original ResNet-101 but without fully connected layers and a final classification 

layer. All of the convolutional filter sizes were 3 × 3 with padding of 1 × 1 and stride of 1 

x 1 to keep the image size intact. Downsizing was performed by convolution with a size 

of 2 × 2 at each stage. Overall, the original input image was progressively scaled down 

5 times (from 256 × 256 to 8 × 8). In the deconvolution section, a corresponding 5 times 

up-sampling (size of 2 × 2) with transposed convolution was used to recover the 
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Down-sampling 

stage 2 (64×64) 

Conv, stride of 2, ELU 

Down-sampling 

stage 3 (32×32) 

Conv, stride of 2, ELU 

Down-sampling 

stage 4 (16×16) 

Conv, stride of 2, ELU 

Down-sampling 

stage 5 (8×8) 

  

Up-sampling stage 1 

(16×16) 

Up-sampling stage 2 

(32×32) 

Up-sampling stage 3 

(64×64) 

Up-sampling stage 4 

(128×128) 

Up-sampling stage 5 

(256×256) 

Output image 

(256×256) 

Transpose_conv, 

conv, ELU, merge 

Transpose_conv, 

conv, ELU, merge 

Transpose_conv, 

conv, ELU, merge 

Transpose_conv, 
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Figure 3.1: Resnet-101 based lung segmentation architecture. 
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resolution of the input image (from 8 × 8 back to 256 × 256). Following the same 

strategy as suggested by Szegedy et al.[59], the number of feature maps in the de-

convolutional layer was cut by half every time the image size doubled. In addition, skip-

connections were used in the up-sampling process to incorporate finer details from the 

lower layers as well as abstract and sematic information from higher layers. After 

achieving the target resolution, a final 3 by 3 instead of 1 by 1 convolution was applied 

on the aggregated hyper-columns to achieve pixel-wise classification. 

One concern of using a 2D slice based CNN is the lesser spatial context 

available compared to a 3D CNN. To investigate the necessity of spatial information, a 

3D CNN was also built for performance comparison. Due to computer hardware 

limitations, it is not feasible to build a comparable Resnet-101 based 3D CNN. Instead, 

a 3D U-Net architecture was used with an input image size of 128 × 128 x 128. 

However, it only involved 3 times down-sampling (from 128 to 16) in the convolution 

section and 3 times up-sampling (from 16 to 128) in the deconvolution section. 

Moreover, the number of feature maps used in each layer was also much smaller 

compared to the 2D model aforementioned. It is evident that the ResNet-101 based 2D 

model is much more complex in terms of the depth and width of the network. 

Data augmentation was applied in training, including rotation of [45°, 45°], 

horizontal and vertical shift of [0.2, 0.2], horizontal and vertical flipping, zoom in/out of 

[0.8, 1.2]. Dice loss (1-Dice coefficient) was used as the cost function since it has been 

shown to be robust in segmentation tasks[297]. It also explicitly reflects segmentation 

accuracy at a specific iteration instead of just a declining trend of training/validation loss. 
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The model was trained from scratch on a NVIDIA TITAN X with GPU memory of 12 GB, 

using the Adam optimizer, and learning rate of 0.01 with a decay rate of 1e-4.  

To compare the CNN segmentation against the ground truth the Dice Similarity 

Coefficient (DSC) and Average Surface Distance (ASD) were used. The Dice 

Coefficient is defined as:  

  

Where P is the segmentation predicted by the model and T is the ground truth.  

Average Surface Distance is defined as: 

 

where d is the average of all point-to-point distances from the two surfaces. S is the 

surface of the automatic segmentation and S’ is reference. 

A paired t-test was used to test the significance of the Dice score difference between 

the CNN based and a previous threshold-based anatomical model method. 

 

3.1.3 Materials 

Chest CT images used in this study were collected retrospectively from 6 multi-

center clinical trials. Image acquisition at different sites provided variability in CT 

acquisition parameters, such as slice thickness, reconstruction kernel, etc. The slice 

thickness range was [0.625 mm, 3 mm], in-plane (x-y) spacing range was [0.467 mm, 

1mm], tube current range was [80 mA, 644 mA], and reconstruction kernels ranged from 
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smooth to sharp. In total, 575 chest CT scans from different subjects were used, each 

with a radiologist-approved lung segmentation. 143 scans were from subjects enrolled 

in Chronic Obstructive Pulmonary Disease (COPD) clinical trials and 432 were from 

interstitial pulmonary fibrosis (IPF) trials. These cases contained common lung 

parenchymal abnormalities including emphysema, ground glass, fibrosis, nodules, and 

honeycombing. Sample axial images from these disease patterns are shown in Figure 

3.2. 

 

 

The ground truth lung segmentations of these scans were derived using an 

independent semi-automated segmentation. Specifically, the scans were segmented 

using a threshold-based anatomical model technique[298,299], followed by manual 

editing by an image analyst. Finally, radiologists reviewed and edited as needed, and 

approved the final segmentation. Two thoracic radiologists were involved, and both of 

them have more than 20 years’ experience.  

Balanced sampling, rather than random sampling, was used to form training and 

test sets that were balanced in terms of the number and type of abnormalities present. 

The whole image set was sorted based on the mean Hounsfield Unit (HU) within the 

lung in ascending order. Scans with lower and higher mean lung intensity likely 

Figure 3.2: Sample axial slice of chest CT of cases with different lung diseases in 
our dataset, including (a) emphysema, (b) ground glass, (c) honeycomb, (d) 
fibrosis 
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correspond to cases with emphysema and IPF, respectively. Every 5 scans in the 

ordered image set were split into training and test sets with a ratio of 4:1. 5-fold cross 

validation with balanced distribution was used and each scan was used for testing 

exactly once. At each fold, the training set consisted of 460 scans, and the test set of 

115 scans. Using this approach, similar to stratified cross validation[300], the 

composition distributions of training and test sets were similar to the original dataset. 

For a specific scan, only slices (axial images) with lung segmentation (i.e., containing 

lung) were used. 

 

 

 

 

 

 

 

 

 

 

 

 

In the evaluation stage, we also applied the model to low and ultra-low-dose 

scans from lung cancer screening. In total, 40 scans from different subjects with 

corresponding raw CT projection data were used and they were divided into two groups. 

100% 
 

50% 
 

25% 
 

10% 
 

Figure 3.3: Example ultra-low-dose scan from lung cancer screening. 
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Cohort 1 included 30 scans from lung cancer screening and the original dose level at 

100% was around 2 mGy. Cohort 2 comprised 10 scans from diffuse disease trials and 

the original dose level at 100% was around 15 mGy. A CT reconstruction pipeline in our 

group was applied to simulate images with 1 mm slice thickness and spacing, medium 

kernel and dose levels of 10%, 25%, 50% and 100%, and weighted filtered back 

projection (wFBP)[301] was used as the reconstruction algorithm. Some example 

images from the two cohorts at different dose levels are shown in Figure 3.3 and Figure 

3.4. 
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Figure 3.4: Example low-dose scan from diffuse lung disease trials. 
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3.1.4 Results 

5-fold cross validation was performed with 460 training and 115 test scans in 

each fold. In testing, the whole scan was fed into the segmentation network to generate 

a volumetric lung segmentation (of all slices) for both the 2D and 3D CNN models. We 

trained the ResNet-101 based model for 16 epochs and the 3D CNN for 100 epochs, 

beyond which there was no significant improvement indicated by the loss function. 

Using the hardware described above, the entire 5-fold cross validation took about 1 

week to complete. For a single test scan with 300 slices, it took about 5 seconds to 

segment the whole lung with the trained model. 

Table 3.1 illustrates the segmentation results by the proposed 2D CNN model, 

3D CNN model and also the previous threshold based anatomical model method 

developed by our group. Only 3 out of the total 575 scans from 2D CNN segmentation 

and 9 scans from 3D CNN segmentation had a Dice coefficient below 0.95. On the 

contrary, there are 111 cases with Dice score below 0.95 for our previous method. A 

paired t-test yielded a significant difference in Dice Coefficient with p < 0.001 when 

comparing the previous threshold based method against either the 2D or 3D CNN 

based methods. The 2D CNN outperformed the 3D CNN model, but not significantly. 

Table 3.1 Segmentation results comparison between the CNN based and previous 
threshold and anatomical model based methods, including mean and standard 
deviation of Dice coefficient and Average Surface Distance. 
 

 Dice coefficient ASD (mm) 

2D CNN based 0.988 ± 0.012 0.562 ± 0.49 

3D CNN based 0.980 ± 0.017 0.581 ± 0.52 

Threshold and anatomical 

model 

0.965 ± 0.023 0.599 ± 0.47 
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Figure 3.5 shows three example segmentations with different amounts of fibrosis 

present (from mild to severe) by the proposed 2D based CNN, 3D based CNN and 

previous threshold based anatomical model methods.  

 

 Figure 3.5: Comparison of different segmentation methods on fibrotic lungs. 
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Second row corresponds to Dice scores of (0.954, 0.931, 0.847) and ASD of 

(0.575mm, 1.689mm, 4.51mm) by the threshold and anatomical model based method.  

The 2D CNN achieved Dice scores of (0.989, 0.980, 0.976) and ASD of (0.36 mm, 

0.505 mm, 1.18mm). The 3D CNN achieved Dice scores of (0.979, 0.969, 0.970) and 

ASD of (0.484 mm, 0.677 mm, 1.653 mm). The CNN based methods achieved much 

better segmentation when the attenuation of the lung was changed significantly due to 

disease. More specifically, the boundary areas near the chest wall and other soft tissues 

were under-segmented by the threshold based anatomical method, while CNN based 

method still identified them as part of the lungs. 

Figure 3.6 shows example segmentations of emphysema, ground glass and 

honeycombing (from 1st to 3rd column) by the proposed the CNN methods as well as our 

previous threshold-based anatomical model method for comparison. In these examples, 

there are no major attenuation changes in the lung and all three methods were able to 

achieve good segmentation relative to the ground truth. The Dice scores of these three 

cases (from left to right) are (0.992, 0.973, 0.974) by the threshold based anatomical 

model method, (0.991, 0.984, 0.976) by 2D CNN, and (0.989, 0.981, 0.972) by 3D CNN. 

Comparable ASDs were achieved by the three segmentation methods: (0.355mm, 

0.55mm, 0.503mm) vs. (0.352mm, 0.327mm, 0.479) vs. (0.356 mm, 0.374 mm, 0.488 

mm). One further difference is the successful exclusion of central airways by the CNN in 

this honeycomb case. 
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Most pulmonary nodule detection algorithms require accurate lung segmentation 

to constrain the search space. Since our lung segmentation model was built using 

mostly diffuse lung disease data, blood vessels and large nodules are excluded. To 

Figure 3.6: Comparison of different segmentation methods on cases with 
emphysema, ground glass and honeycombing. 
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compensate CNN segmentation for nodule detection, 3D binary closing can be applied 

to incorporate possible missed nodules.  Figure 3.7 is example of applying binary 

closing with an ellipsoid of size (3, 3, 3) after lung segmentation by the CNN.  

 

 

 

Figure 3.7: Comparison of CNN lung segmentations before and after applying 3D 
binary closing. 
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The second row (overlay shown in red) shows the excluded vessels and some nodules 

by the CNN and the third row (overlay shown in green) is the result after 3D hole filling. 

The last row shows an overlay of two masks to compare the difference indicated by light 

green. 

The CNN lung segmentation model was also assessed on low and ultra-low-dose 

scans. Table 3.2 shows the average Dice score and ASD compared to the reference 

segmentation. The reference segmentation was obtained using a threshold based 

anatomical model method followed by manual editing. Table 3.3 gives a comparison of 

the CNN segmentation on the 100% dose scan as reference. In fact, the latter scenario 

is more straightforward to investigate the impact of dose variations since they were 

segmented using the same method. 

Table 3.2 CNN segmentation results on cases simulated at 4 dose levels from 
lung cancer screening. 
 

 DSC ASD (mm) 

100% 0.987 ± 0.009 0.826 ± 0.671 

50% 0.985 ± 0.013 0.917 ± 0.884 

25% 0.982 ± 0.012 1.059 ± 0.947 

10% 0.978 ± 0.017 1.218 ± 1.145 

 

Table 3.3 CNN segmentation results on cases simulated at 4 dose levels from 
lung cancer screening using CNN segmentation on 100% dose scan as reference. 
 

 DSC ASD (mm) 

50% 0.994 ± 0.0022 0.262 ± 0.115 

25% 0.992 ± 0.0028 0.394 ± 0.158 

10% 0.989 ± 0.0037 0.534 ± 0.195 

 

Figure 3.8 shows lung segmentation by the model on a case from lung cancer 

screening at dose levels of 100%, 50%, 25% and 10%. 

 



 

95 
 

  

 
Figure 3.8: CNN segmentation on a cohort from lung cancer screening at different 
dose levels. 
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Figure 3.9: CNN segmentation on a cohort from diffuse lung disease trials at 
different dose levels. 
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Figure 3.9 shows CNN segmentation results on a case from a diffuse lung disease trial 

at dose levels of 100%, 50%, 25% and 10%. Table 3.4 shows the average Dice score 

and ASD compared to the reference segmentation. Table 3.5 is a comparison using the 

CNN segmentation on the 100% dose scan as reference.  

Table 3.4 CNN segmentation results on cases simulated at 4 dose levels from 
diffuse lung disease trials. 

 DSC ASD (mm) 

100% 0.978 ± 0.011 0.842 ± 0.624 

50% 0.973 ± 0.015 0.926 ± 0.597 

25% 0.969 ± 0.012 1.083 ± 0.739 

10% 0.961 ± 0.017 1.242 ± 1.075 

 

Table 3.5 CNN segmentation results on cases simulated at 4 dose levels from 
diffuse lung disease trials using CNN segmentation on 100% dose scan as 
reference. 

 DSC ASD (mm) 

50% 0.994 ± 0.0014 0.162 ± 0.030 

25% 0.990 ± 0.0025 0.275 ± 0.063 

10% 0.985 ± 0.0038 0.416 ± 0.138 

 

3.1.5 Discussion 

The CNN based method achieved highly accurate lung segmentation based on 

Dice score and Average surface distance. The 2D CNN model has been successfully 

applied to segment over 5,000 chest CT scans in clinical practice. In cases of 

emphysema lung, which have been major applications for lung quantitation, 

conventional methods are able to segment the lung accurately and our 2D or 3D based 

CNN segmentation method achieved comparable performance. However, the method 

showed substantial advantages when extensive lung fibrosis was present, especially in 

peripheral areas close to other soft tissue. Fibrosis increases the attenuation of the lung 

and previous segmentation techniques based on thresholding and region growing do 
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not perform as well. Another strength of the CNN based method was its ability to 

consistently exclude airway trees regardless of the disease pattern and other methods 

occasionally require post-processing or manual editing. Smoothness constraints on the 

segmentation could be applied between 2D slices but we obtained accurate results on 

thin section CT scans without them. The segmentation improvements we achieved are 

important for quantitative scoring of IPF[302–304] and in applying quantitative imaging 

in routine clinical practice where a variety of lung parenchymal abnormalities are 

present.  

The ground truth segmentation was derived by manual editing of the threshold 

based anatomical model method that was used in the comparison, whereas the CNN 

method was completely independent of the ground truth. Therefore, there may be some 

bias in favor of the threshold-based technique in our evaluation comparison. Despite 

this, the CNN still significantly improved segmentation performance. 

There has been very little published research to date on pathologic lung 

segmentation using convolutional neural networks, and thus this work represents a 

significant contribution. One similar CNN based approach is P-HNN[305] by 

investigators at the NIH, and they also showed promising results on pathological lung 

segmentation. Our work differs in terms of using a radiologist edited and approved 

reference segmentation for training and testing. Secondly, they applied different 

window-levels to form a 3-channel input image for each slice while we used a simpler 

single-channel architecture (trained from scratch) without post-processing (such as 3D 

hole filling) and thus achieved computational efficiency advantages. The most recent 

SegCaps[290] seems to be a more advanced network over CNN and claimed that a 
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regular CNN based segmentation model was unable to exclude airway completely after 

comparing with results from U-net. However, it is contradicted by the results in our 

experiments and our qualitative experience in clinical practice. Besides, they did not 

prove their model robustness on different kinds of pathological lungs.  

Using current datasets and hardware, the 2D slice based CNN slightly 

outperformed the 3D volume based CNN. Although the 3D model was able to 

incorporate more contextual information, this is actually not surprising considering the 

following. Firstly, the variation of slice spacing along the z direction is much larger than 

in the x-y plane. One strategy would be to resample all the scans to the same resolution 

but this is computationally expensive. Secondly, the number of training samples is also 

much smaller when a 3D scan is used instead of individual 2D slices. As such, the 2D 

model was built with a larger and more diverse dataset. Thirdly, the depth and width of 

the 3D architecture and number of feature maps used is far less compared to the 

ResNet-101 based 2D model. Lastly, the image was down-sampled more aggressively 

in the 3D CNN (512 to 128 vs. 512 to 256). This caused more information loss, 

especially of fine details near the lung boundary and this was also observed in work by 

IBM research[306]. However, we believe that 3D volume based segmentation could 

further improve segmentation if we can build a deeper network with larger input image 

size and sufficient feature maps at various layers comparable to the 2D counterpart. 

The most valuable merit of our model is its generalizability and robustness when 

applied to diverse chest CT images in clinical practice. The 2D CNN model can be 

applied not only to high resolution volumetric scans but also incremental scans with 

large spacing and this is an advantage of the 2D slice model over the 3D volume model. 
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Additionally, the model is compatible with different lung sizes, e.g. adult or pediatric, RV 

or TLC. Lastly, the CNN model demonstrated strong performance when applied to low 

and ultra-low-dose scans.  

If necessary, additional types of lung abnormalities or acquisition parameters 

could be added to the training set to further improve robustness of the lung 

segmentation in clinical practice. In addition, the RestNet-101 based segmentation 

architecture is general and could potentially be applied to other object localization and 

segmentation tasks in medical images. 

3.1.6 Conclusion 

The proposed 2D ResNet-101 based segmentation method was successfully 

applied to a variety of pathological lungs and achieved high accuracy without the need 

for any additional post processing. 

 

 

 

3.2 Left and right lung separation 

3.2.1 Introduction 

The CNN segmentation introduced above results in a whole lung mask and the 

next step was to separate left and right lungs precisely. It is not as trivial as using a 

straight line or plane to separate them in 2D or 3D since the two lungs are often closely 

connected. Figure 3.10 exhibited some example images with very small junctions 

between left and right lungs at anterior and posterior lung respectively.  
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The simplest way is to apply morphological operations[12,307], e.g. erosion 

followed by dilation to isolate the two lungs. However, it is challenging to find an optimal 

kernel size and number of iterations for a broad spectrum of images, and excessive 

erosion could severely deteriorate the original shapes. Lee et al.[308] added Hessian 

matrix analysis to limit the iterations of 3D erosion and a surface-fitting algorithm was 

used to optimize the separating planes. A region-growing based method[309] was also 

used that assumed that the growing from two seeds from left and right lung would meet 

each other at the correct locations, whereas it was not robust in case with thin junctions 

or cases with pulmonary diseases. The most common way is first to identify suspicious 

Figure 3.10: Scans with thin junctions at anterior and posterior lungs. 
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connecting areas and then find the best separating lines between two lungs using 

minimum path strategies[275,310]. Brown et al.[298] segmented the mediastinum using 

an anatomic knowledge in a semantic model and determined the separating curve by 

dynamic programming. Leader et al.[311] applied a heuristic method to detect the 

narrowest junction regions in the anteroposterior direction and then locate the 

separating line by finding the brightest pixels in the junctions. To overcome the 

uncertainty in separating lungs on a single 2D slice, a volumetric scan based method 

was introduced incorporating sequential information under the assumption that the 

change between slices is very small on high resolution CT[308]. Although contextual 

information from adjacent slices were used, the separating line was still identified in a 

slice by slice fashion and was unsuccessful if there were two junctions at the anterior 

and posterior regions of the lung on the same slice. In summary, a few drawbacks 

included: 1. additional segmentation of other landmarks to find suspicious connecting 

junctions and dependency of scan orientation to search the best lines; 2. the separating 

line is identified slice by slice regardless of whether the CT is volumetric or not; 3. most 

of the methods were computationally expensive, especially the dynamic programming 

algorithm since it tends to find all potential pathways; 4. they are not really generalizable 

when confronted with a variety of pathological lungs or incremental scans (large slice 

spacing) since many of them have empirical parameter settings, e.g. lung volume.  

It is challenging to separate the left and right lungs based on 2D axial images 

since not all context is available. Considering its spatial relationship with surrounding 

anatomies, such as the aorta, liver, and spleen, it should be feasible to perform the 

separation in 3D. Moreover, performing separation in 3D space (instead of slice by slice 
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as in previous approaches) would allow resolution of multiple junction slices in parallel 

and significantly improve the computation efficiency. As such, a 3D CNN for whole lung 

segmentation before was proposed in this work, with output of separated left and right 

lung masks.   

 

3.2.2 Methods and materials 

The same normalization was applied and the input image was resized to 128 × 

128 × 128 to address memory limitations. As mentioned in the discussion of the whole 

lung segmentation in chapter 3.1.5, the resultant lung segmentation was sometimes 

under-segmented near the boundaries due to the aggressive down-sampling, especially 

in the z axis. The down-sized image may lose useful details in junction areas and the 

resulting separation may not be as good as using the original resolutions. Alternatively, 

the watershed algorithm[312–314] is widely used to separate adjacent objects in many 

segmentation problems. Presumably, it should be able to correct the overflow if the 3D 

left and right lung separation is not perfect from the 3D CNN. As for the under-

segmentation problem, watersheds could also contribute by exploiting the previous 

whole lung segmentation to supplement. To sum up, the watershed algorithm was used 

to take the left and right lungs from the 3D CNN as seed points or chunks while using 

previous accurate whole lung segmentation as a mask to fill initially under-segmented 

pixels. The flood filling of these areas is fast by the watershed algorithm since the 

majority of pixels (> 99%) have been covered in the original left and right lung mask 

from the 3D CNN. 
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The architecture to segment and separate the left and right lungs is shown in 

Figure 3.11. The input s a raw scan and output is an isolated 3D segmentation of the 

left and right lungs. Dice loss was used as the cost function. Data augmentation was 

applied in training, including rotation up to 30 degrees within the x-y, y-z and z-x planes, 

random flipping along each axis. Accordingly, the trained model was designed to be 

robust to scans of different orientations, e.g. A-P or P-A, L-R or R-L, S-I or I-S. The 

model was trained from scratch on a NVIDIA TITAN X with GPU memory of 12 GB, 

using the Adam optimizer, and learning rate of 0.001 with a decay rate of 1e-4.  
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Figure 3.11: 3D CNN architecture to segment the whole lung with output of left 
and right lung simultaneously. 
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The same data set used for the whole lung segmentation was used again for the 

3D left and right segmentation. The same data sampling and splitting strategy was 

applied. In the test set, an additional 100 low resolution scans with slice spacing of 5 

mm to 20 mm were used to evaluate the left and right lung identification. 

3.2.3 Results 

Table 3.6 lists results of the left and right lung separation by 3D CNN plus watershed. 

To exclude the impact of using different lung segmentation methods on the Dice score, 

watershed was performed based on the whole lung mask from the reference instead of 

the CNN segmentation introduced in Chapter 2.  

Table 3.6 Results of left and right lung separation using 3D CNN and watershed. 
 Dice score of left lung  Dice score of right lung 

High resolution scans 

(115 scans) 

99.96% 99.97% 

Low resolution scans 

(100 scans) 

99.99% 99.99% 

 

9 
Figure 3.12: An example from LOLA11 with multiple small junctions at both 
anterior and posterior of lung.  
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Figure 3.12 shows a case from LOLA 11 with a tilted chest. It is a challenging case with 

multiple left and right lung junctions both anteriorly and posteriorly. The proposed 

method was able to separate the left and right lungs precisely. 

One concern was the application of the 3D model to incremental scans (slice 

spacing > 10 mm) since the model was trained using only high resolution scans (0.6-3 

mm). Figure 3.13 contains an example scan with slice spacing of 20 mm and 14 slices 

in total. The proposed method successfully achieved accurate left and right lung 

separation.  

 

 

The robustness was also tested on pediatric patients, and Figure 3.14 is an example 

with slice thickness and spacing of 1.25 mm. The previous 2D ResNet contributed to 

accurate whole lung segmentation and the proposed separation approach was able to 

isolate the two lungs precisely. 

 

Figure 3.13: Left and right lung separation on an ultra-low resolution scan 
segmented by the 3D CNN and watershed algorithm. 
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3.2.4 Conclusion 

The proposed 3D CNN plus watershed supplement was successfully applied to 

separate left and right lung from the whole lung segmentation of chest CT and it is 

compatible with both high and low resolution scans, and adult and pediatric patients. 

 

 

3.3 Lobar segmentation 

3.3.1 Introduction 

The entire human lung usually consists of five pulmonary lobes and they can to 

some extent be treated as individual functional units since both bronchial and vascular 

systems are mostly separated without many connections across the different lobes. As 

shown in Figure 3.15 [315], the left lung is usually divided into the left upper lobe (LUL) 

Figure 3.14: Left and right lung segmentation on a pediatric scan by the proposed 
method. 
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and left lower lobe (LLL) by the left major fissure (or left oblique fissure). The right lung 

contains three lobes, namely the right upper lobe (RUL), right middle lobe (RML), and 

right lower lobe (RLL), separated by two pulmonary fissures. The right minor fissure, 

also known as right horizontal fissure, separates the right upper lobe from the right 

middle lobe, and the right major fissure, a.k.a right oblique fissure, subdivides the right 

middle lobe and right lower lobe. Lobar segmentation is of great clinical significance to 

perform local or regional quantitative analysis. For example, idiopathic pulmonary 

fibrosis is more likely to affect the lower lobes[316], while emphysema, tuberculosis and 

pulmonary nodule are preferentially related to the upper lobes[317–320]. Furthermore, 

lobar segmentation on CT can be mapped to other imaging modalities, e.g. MRI[321], 

where inter-lobar boundaries are not visually apparent. 

 

 

 

Laborious manual segmentation of the five lobes is not feasible in clinical 

practice since it is extremely time-consuming (>1 hour per case) to outline the lobar 

Figure 3.15: Typical anatomy of lung and three fissures to separate left lung into 
two lobes and right lung into three lobes. 
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boundaries. As such, automated lobar segmentation is essential for high throughput 

quantitative analysis on chest CT. Many automated lobar segmentation methods have 

been proposed and most of them aim to detect or segment the three fissures to 

separate the lobes. Early approaches focused on the physical appearance of fissures 

and more recent algorithms adopted further anatomical structure and semantic 

knowledge as supplements. For example, the spatial relationships of the lungs, airway 

tree, and vessels at different levels were utilized. A 3D geometry mesh based 

method[23] was developed using Laplacian smoothing, and marching cubes to boost 

the surface shape contrast within the lung, and radial basis function based surface 

fitting was applied to segment the lobes. A similar approach using B-spline fitting was 

also proposed[24]. This type of method struggles to differentiate planes caused by lung 

pathologies from real fissures. Hessian matrix based filtering was used to extract 

candidate fissure points in several studies[20,21]. A similar method[22] by machine 

learning was also introduced and features from multi-scale Gaussian filters were 

incorporated besides the Hessian matrix. It achieved better performance at the cost of 

computational complexity. Zhou et al.[322] proposed to search for fissures by exploiting 

blood vessels connected within the lobes, and segmented vessels were designated to 

different lobes following the extension of the airway tree. Another approach also using 

vessel assistance applied watershed segmentation to a distance transformed search 

image and marker points generated from the airway were used to segment lobes. A 

derivative of stick (DoS) filter[25] was introduced to enhance fissure visibility by defining 

non-linear derivatives with a stick kernel in multiple directions. Post-processing including 

cascading plane integration with 3D surface shape tuning.  
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Overall, those traditional methods are not generalizable when applied to a wide 

range of lungs with various diseases, especially when the fissures are incomplete. 

Raasch et al.[323] reported 40% and 46% of fissures as incomplete for the upper and 

lower left major fissures. As for the right lung, the incomplete rate is 70% for the upper 

major fissures, 47% for the lower major fissures and 94% for the minor fissures. Deep 

learning methods have also been used for fissure detection. Gerard et al. proposed 

FissureNet[324], a coarse-to-fine cascade of two convolutional neural networks to 

extract and classify fissures, and it mitigates the challenge of directly segmenting thin 

structures in a 3D volume. George et al.[305] presented a progressive and multi-path 

holistically nested 2D network (P-HNN) method for lobar segmentation using 2D axial 

slices in which a crude CNN segmentation was followed by a 3D random walker to 

refine it. The lobar segmentation from the 2D CNN was often inaccurate and they were 

used as seed points or patches for further post-processing. Presumably, it is 

challenging to consistently segment different lobes based on 2D slices without spatial 

context, especially on slices containing misleading pathologies.  

In our work, we proposed a 3D DenseNet[119] neural network to directly 

segment the five lobes, skipping fissure detection as a prerequisite.   
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3.3.2 Methods 

 

 

The 3D DenseNet is shown in Figure 3.16. The input and output sizes are 128 × 

128 × 128. The down-sampling path includes 4 Transitions Down and 4 Dense Blocks. 

The corresponding up-sampling path includes 4 Transitions Up and 4 Dense Blocks. 

The transitions Down modules include [Convolution3D, Dropout and Max-pooling]. The 

transitions Up modules include [Transposed Convolution3D, Convlution3D, and 

Figure 3.16: 3D DenseNet based lobar segmentation architecture. 
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Dropout]. The Dense Block includes 4 densely connected layers, meaning each layer 

has access to all previous layers.  

 

 

 

 

 

 

 

To mitigate memory constraints, we performed lobar segmentation on the left 

and right lung separately. A chest CT scan always contains a small portion of the 

shoulder above the lung, and the abdomen below, that are not necessary for lobar 

segmentation. To allow the network to focus on the lungs with better receptive fields, 

each scan is cropped based on the lung segmentation as shown in Figure 3.17. After 

cropping, each scan along with the corresponding lung segmentation was resized to 

128 × 128 × 128. The input to the network is a 2-channel 3D image, composed of the 

raw image plus the lung mask acquired from CNN lung segmentation introduced before. 

The lung mask is expected to help save the network from performing lung segmentation 

again and pay more attention to regional features within the lung.  

Data augmentation was applied in training, including rotation up to 15 degrees 

based on x-y, y-z and z-x planes, random flipping along x, y, z-axis. This helps to make 

the model robust to scans with a variety of orientations. The model was trained from 

scratch on a NVIDIA TITAN X with GPU memory of 12 GB, using the Adam optimizer, 

Figure 3.17: Cropping the scan based on lung segmentation. 
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and a learning rate of 0.001 with a decay rate of 1e-4. Initially, regular dice loss was 

used as the loss function and it was noticed that the right middle lobe tend to be under-

segmented. It was not too surprising since the right middle lobe is relatively small 

compared to others. As such, a weighted dice loss using [1.20 1.2, 1.5, 4, 1.5] for [LUL, 

LLL, RUL, RML, RLL] was applied to reward loss on smaller lobes.  

 

3.3.3 Materials 

A total number of 1,280 scans from different patients were used in building the 

model, all with radiologist approved lobar segmentations as ground truth. The data was 

from 12 multi-center clinical trials, using scanners from GE, SIEMENS, PHILIPS, and 

TOSHIBA. 515 scans were from COPD trials and 765 scans were from IPF trials. The 

slice thickness range was [0.6 mm, 3 mm] and reconstruction kernels were from smooth 

to sharp. The resolution (z spacing) limit was <= 3mm since our method is 3D volume 

based and larger spacing is not feasible for lobar segmentation.  

Similar to the dataset used in lung segmentation, it also included different types 

of common lung abnormalities, e.g. emphysema, ground glass, fibrosis, etc. The same 

data sampling and splitting strategy was used to form training and test sets with a 4:1 

ratio, and 5-fold cross validation was applied during evaluation. In terms of breath-hold, 

1,193 scans were acquired at Total Lung Capacity (TLC) and 87 at Residual Volume 

(RV). Figure 3.18 shows two emphysema cases with the left lung in the first column and 

right lung in the second column. The case in the first row has a clear fissure in the 

presence of emphysema. However, fissures are barely visible on the case in the second 

row. 
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Figure 3.19 are two examples of IPF scans. The one in the first row shows discernible 

fissures on both the left and right lung despite the presence of fibrosis. The case in the 

Figure 3.18: Emphysema cases with and without visible fissures from training set. 

Figure 3.19: Fibrotic cases with and without visible fissures from training set. 
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second row contains with more intense pathology and it is difficult to distinguish the 

fissures.  

3.3.4 Results 

5-fold cross validation was used during evaluation. The overall Dice score across 

the 5 lobes was 0.959 ± 0.087 and the average surface distance was 0.873 ± 0.61 mm. 

More specific performance on each lobe is shown in Table 3.7.  

Table 3.7 Segmentation results of 5 different lobes by 3D DenseNet.  
 Dice coefficient ASD (mm) 

RUL 0.971 ± 0.078 0.699 ± 0.432 

RML 0.923 ± 0.114 1.542 ± 1.164 

RLL 0.970 ± 0.126 0.783 ± 0.372 

LUL 0.972 ± 0.083 0.807 ± 0.594 

LLL 0.962 ± 0.105 0.861 ± 0.753 

 

 
Figure 3.20: Lobar segmentation on an emphysema case at TLC by CNN. 
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Figure 3.20 shows a lobar segmentation example in the sagittal plane: an emphysema 

case at TLC and results for each lobe are [LUL: 0.983 and 0.514 mm, LLL: 0.981 and 

0.570 mm, RUL: 0.981 and 0.561 mm, RML: 0.970 and 0.673 mm, RLL: 0.977 and 

0.635 mm].  

 

 

Figure 3.21 shows lobar segmentation in a fibrosis case at TLC [LUL: 0.978 and 0.427 

mm, LLL: 0.960 and 0.538 mm, RUL: 0.975 and 0.496 mm, RML: 0.967 and 0.585 mm, 

RLL: 0.965 and 0.583 mm]. Figure 3.22 is segmentation on a scleroderma case at RV 

[LUL: 0.977 and 0.453mm, LLL: 0.973 and 0.544mm, RUL: 0.979 and 0.444mm, RML: 

0.947 and 0.584mm, RLL: 0.974 and 0.496mm].  

 

Figure 3.21: Lobar segmentation on a fibrosis case at TLC by CNN. 
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3.3.5 Discussion 

Using the initial lung segmentation from the ResNet-101, the 3D DenseNet 

model achieved good lobar segmentation performance on various pathological lungs. 

Conventional fissure detection based methods often fail when the fissures are 

incomplete or impacted by lung abnormalities, such as emphysema and fibrosis. 

However, our 3D CNN model demonstrated robustness in those challenging cases. One 

deficiency of the current model is the assumption that five lobes are present, which may 

not be true when one or more lobes collapse. In cases with atelectasis[325], potential 

solutions using current models can be applied depending on the situation. For the left 

Figure 3.22: Lobar segmentation on a scleroderma case at RV by CNN. 
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lung, lobar segmentation is actually not necessary if there is one collapsed lobe and 

similarly in the right lung if there are 2 collapsed lobes. Therefore, the most difficult 

scenario is when there is one collapsed lobe in the right lung. In fact, the task becomes 

dividing the right lung into two lobes as in the left lung. Figure 3.23 is an example of 

applying the left lobar segmentation model to the right lung with a collapsed right middle 

lobe and performance is as follows: [LUL: 0.981 and 0.343mm, LLL: 0.987 and 

0.375mm, RUL: 0.977 and 0.344mm, RLL: 0.975 and 0.412mm]. 

 

 

 

 

Figure 3.23: Left and right lung (no RML) segmented by the same left lobar 
segmentation model. 
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Recently we augmented the training set to 4,000 cases and also diversified it 

with about 70 cases with atelectasis either on left or right lung. However, there is no 

significant improvement on cases with collapsed lobes. The atelectasis cohort is 

probably too small compared to the total number of training samples and one concern is 

that the network may be confused between cases without visible fissures and those with 

collapsed lobes.  

The lobar segmentation model was also evaluated on low-dose and ultra-low-

dose dataset. Figure 3.24 shows an example of lobar segmentation on an ultra-low-

dose lung cancer screening scan with a dose level of 0.2 mGy (1/75 of training set 

dose). The CNN demonstrated impressive robustness in segmenting the lobes as 

indicated by the previous proposed deep learning based classification and other 

segmentation methods (aorta, trachea, lung). Quantitative results, such as the Dice 

score and ASD, are not presented since no reference segmentation is available.  

 

 
Figure 3.24: Lobar segmentation on an ultra-low-dose scan from lung cancer 
screening by 3D CNN. 
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Figure 3.25 is example of segmentation on a low-dose scan from a diffuse lung disease 

trial. Similarly, no quantitative evaluation was performed since we do not have reference 

segmentations. This model resilience will be highly beneficial since low-dose scans are 

used extensively in lung cancer screening. 

 

 

 

 

 

Figure 3.25: Lobar segmentation on a low-dose scan from diffuse lung disease 
trial by 3D CNN. 

Figure 3.26: Lobar segmentation on a pediatric scan by the model. 
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The lobar segmentation model was also applied to pediatric patients in clinical practice 

and Figure 3.26 shows a fibrosis case at TLC.  

The current lobar segmentation scheme operates on the left and right lung 

separately, primarily due to memory constraints. If better machines are available in the 

future, it will be preferable to segment the five lobes directly from the whole lung 

segmentation with higher or even original image resolutions. The left and right lung 

separation could be undertaken simultaneously replacing the sequential workflow 

described above.   

3.3.6 Conclusion 

The proposed 3D DenseNet achieved high accuracy in lobar segmentation of 

various pathological lungs and has been successfully applied to both adult and pediatric 

subjects, different breath-holds, and diagnostic and low-dose scans. 
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Chapter 4: Summary and Discussion 

4.1 Summary 

Image series from clinical trials and PACS are heterogeneous, and it is critical to 

automatically select the optimal series that meet requirements for processing among 

other irrelevant or redundant ones. This dissertation addresses the need for techniques 

to enable quantitative analysis on chest CT for big data mining. Fully automated image 

labeling and segmentation methods were developed to improve accuracy and efficiency 

of data curation in the setting of large scale clinical research. The specific contributions 

of this dissertation are as follows:  

1. A fully automated high throughput image labeling pipeline for chest CT to 

speed up processing image series of clinical trials. The comprehensive labeling system 

was able to detect anatomical coverage, scan direction, scan posture, lung coverage 

completeness, contrast usage and patient breath-hold. 

2. A fully automated lung and lobar segmentation approach to accurately and 

efficiently segment a wide spectrum of pathological lungs and individual lobes.  

Both the labeling and segmentation pipelines are currently being used in clinical 

practice and they substantially reduce the effort and time required from image analysts 

compared to previous workflows. Each sub-task is accomplished by deep learning using 

a large volume of data from multi-center clinical trials. Rigorous cross validation was 

performed during evaluation to ensure generalizability for clinical deployment. Mining 

with such a large number of images in training and test is not often seen in medical 

imaging and thus these models demonstrated impressive generalizability and 

robustness when applied to different types of real world cases: adult and pediatric, high 
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and low resolutions, diagnostic and low dose, and various lung pathologies. For lung 

segmentation, the proposed model was able to include areas with increased attenuation 

caused by fibrosis and consistently exclude central airways without post-processing. For 

lobar segmentation, our methods alleviate the challenge of fissure detection and the 

separate lobes directly, which has benefits since fissures are sometimes incomplete 

and the presence of various lung pathologies can be misleading when attempting to 

detect the fissures. Furthermore, these deep learning based models enable high 

throughput processing of chest CT that is important for big data mining of clinical trials.  

4.2 Limitation and Future work 

Multiple CNNs were proposed to solve individual problems and other alternative 

methods, e.g. traditional machine learning approaches, were also studied. For example, 

our previous 3D scan down-sampling and SVM based method[154] was applied to 

identify anatomical coverages and contrast usage. Each scan was evenly split into k × k 

× k (k = 3, 5, 7, 9, 11) blocks in which average intensity was computed as a feature, i.e. 

similar to average-pooling used in deep learning, for classification. It achieved an 

accuracy over 95% for anatomic coverage identification and 80% on contrast detection. 

Given a relatively small dataset without annotated aorta segmentation, such 

conventional methods could also be an option with some compromise of accuracy. In 

addition, it may be feasible to apply a CNN directly to identify enhancement on the 

image, i.e. skipping aorta segmentation as an intermediate step. If successful, saliency 

maps can be used to reveal where the distinctive features are extracted.   

In terms of comparing different deep learning networks, other representative and 

up-to-date innovative architectures were also investigated. For example, ResNet, 
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GoogleNet, DenseNet, MobileNet[326], NASNet[327] as well as their variants with 

squeeze and excitation (SE)[328] modules embedded, have all been applied to the 

classification tasks mentioned in Chapter 2 and they all achieved comparable 

performance as VGG-16. One big advantage of those more recent networks is the 

smaller model size, which would be beneficial for deployment on a CPU or on a mobile 

device. Similarly, other well-known segmentation networks, e.g. deeplabv3[222], were 

also tested for lung segmentation and no significant difference was observed. For lobar 

segmentation, a 3D SE block was integrated with the DenseNet based segmentation 

network but there was no discernible performance gain. These experiments show that 

the neural network architecture to build a successful model on a specific problem is not 

unique and probably they all have some parameter redundancy. A shallower network 

with just a few convolutional layers may be sufficient to accomplish tasks such as scan 

direction recognition. The exploration of the best or most economical architecture, while 

maintaining strong performance, is beyond the scope of this dissertation and is a 

possible extension in future research. 

For model evaluation, accuracy in a test set was used as the primary metric. 

However, accuracy is not very helpful, or even misleading, in many real world problems 

when the dataset is highly unbalanced, e.g. classification of pulmonary nodule and non-

nodules. In such scenarios, other metrics, such as sensitivity, specificity, or F1 score 

may be more appropriate to assess the models. Analysis of individual false positive or 

negative cases could help to uncover deficiencies of the model in specific cohorts. 

Similarly, Dice coefficient and ASD were used for segmentation evaluation and it is 

worth exploring other metrics which may reveal more regional results besides overall 
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performance. All models were built with large datasets from multiple clinical trials and 5-

fold cross validation was applied for robustness evaluation. In practice, the collection of 

large datasets is challenging, especially in medical imaging and it is necessary to 

investigate the best fold to perform cross validation. The aim of this work was 

development of fully automated image labeling and segmentation to eliminate time-

consuming manual intervention. In this work, the computation time was roughly 

measured on individual models rather than in the setting of a comprehensive pipeline 

for quantitative chest CT analysis. It would be desirable to measure the exact time 

saved for the image analysts using these deep learning models.  

Although both the classification and segmentation models were built using only 

diagnostic dose scans, they demonstrated remarkable robustness when applied to low 

and ultra-low-dose scans. We could incorporate low dose data in training to make the 

model even more robust using the CT reconstruction pipeline in our group. The current 

lung segmentation model is trained using data from diffuse lung disease trials and the 

data set could be expanding by including cohorts with other lung abnormalities, such as 

nodules, tuberculosis, effusion, etc. Additionally, generative models could be used to 

produce more diverse images with different combinations of pathologies. 

For lobar segmentation, the current model is unable to detect if there is lobar collapse, 

and this could possibly be resolved by collecting more atelectasis cases. Furthermore, 

we could perform lobar segmentation using images at the original image resolution if 

better hardware was available. Similarly, lung and lobar segmentation could potentially 

be coupled seamlessly without explicit left and right lung separation using higher 

resolution images. Lastly, all the classification and segmentation tasks introduced in 
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Chapter 2 and Chapter 3 are based on supervised learning, whereas annotation of large 

dataset is extremely expensive in medical imaging. As such, it is worth investigating 

unsupervised (no annotation) or weakly supervised (using little annotation) approaches 

to further improve and enable deep learning applications in medical imaging. 

To sum up, the availability of large high quality datasets plays a central role in 

developing successful models and collection of such data sets requires multidisciplinary 

collaboration, including radiologists, computer scientists, image analysts, etc. Another 

extension of this dissertation could be to apply deep leaning techniques to subsequent 

quantitative image analyses on chest CT, e.g. pulmonary nodule detection and 

segmentation, quantification of emphysema, ground glass opacity detection and fibrosis 

scoring to facilitate the diagnosis and treatment of patients. The ideal pipeline using 

deep learning techniques would include: 1. image labeling; 2. lung and lobar 

segmentation; 3. quantitative analysis of pulmonary diseases; and 4. clinical reporting 

for physicians. This dissertation has laid the foundation for building such a high 

throughput system for quantitative image analysis on chest CT. 
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