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Abstract	

High	resolution	poverty	mapping	supports	evidence-based	policy	and	research,	yet	about	half	of	
countries	lack	the	requisite	survey	data	to	generate	useful	poverty	maps.	To	overcome	this	
challenge,	new	non-traditional	data	sources	and	deep	learning	techniques	are	increasingly	used	
to	create	small-area	estimates	of	poverty	in	low-	and	middle-income	countries	(LMICs).	
Convolutional	Neural	Networks	(CNN)	trained	on	satellite	imagery	are	one	of	the	most	popular	
and	effective	approaches	in	this	literature.	However,	the	spatial	resolution	of	poverty	estimates	
has	remained	quite	coarse,	particularly	in	rural	areas	which	are	critical	for	governments	to	
support.	To	resolve	this,	we	use	an	ensemble	transfer	learning	approach	involving	three	CNN	
models	to	predict	chronic	poverty	at	a	finer	1	km2	scale	in	rural	Sindh,	Pakistan.	We	train	the	
model	with	spatially	noisy	georeferenced	household	survey	containing	poverty	scores	for	1.9	
million	anonymized	households	in	Sindh	Province	using	publicly	available	inputs,	including	
daytime	and	nighttime	satellite	imagery	and	accessibility	data.	Results	from	rigorous	cross-
validation	and	ground	truthing	of	predictions	with	an	original	survey	suggest	the	model	
performs	well	in	identifying	the	chronic	poor	in	both	arid	and	non-arid	regions,	outperforming	
previous	studies	in	key	accuracy	metrics.	Our	inexpensive	and	scalable	approach	could	be	used	
to	improve	poverty	targeting	in	low-	and	middle-income	countries.	

Keywords:	Deep	Learning;	Convolutional	Neural	Network;	Poverty	Mapping;	Low	and	Middle	
Income	Countries;	Pakistan.	
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Introduction	

The	impact	of	Covid-19	on	lives	and	livelihoods	has	accelerated	social	protection	support	efforts	
by	governments	and	non-governmental	organisations	across	the	globe.	High	resolution	poverty	
mapping	supports	evidence-based	policy	and	research	(Yeh	et	al	2020),	yet	an	alarming	half	of	
all	countries	do	not	have	access	to	sufficient	data	produce	such	maps	(Serajuddin	et	al.,	2015).	
Census	data	has	been	the	traditional	source	of	generating	economic	data	about	populations	in	
many	developing	countries.	Yet,	in	addition	to	being	expensive,	census	in	most	countries	are	not	
conducted	frequently	(Lucci	et	al.,	2018;	Onda	et	al.,	2019),	hampering	its	utility	in	rapidly	
evolving	developing	countries.	The	Demographic	and	Health	Surveys	(DHS)	has	emerged	as	a	
popular	source	for	generating	nationally	and	sub-nationally	representative	socio-economic	and	
health	data,	however	it	has	a	small	sample,	and	its	spatial	coverage	is	rather	sparse	in	many	
countries.	Significantly	expanding	the	coverage	of	DHS	data	will	be	costly	and	challenging	for	
most	low	and	middle	income	countries	(Jerven,	2014).		

To	address	these	challenges	researchers	have	explored	alternative	and	less	costly	approaches	to	
estimating	economic	activity	at	subnational	levels.	Early	efforts	used	luminosity	from	nighttime	
lights	(NTL)	as	a	proxy	for	measuring	economic	activity	(Henderson	et	al.,	2012;	Bleakley	and	
Lin,	2012;	Engstrom	et	al.,	2017;	Watmough	et	al.,	2019).	NTL	luminosity	has	been	found	to	
directly	correlate	with	wage	income	(Mellander	et	al.,	2015)	and	asset	wealth	(Noor	et	al.,	2008)	
at	various	spatial	scales.	However,	nighttime	lights	are	highly	limited	in	observing	variations	in	
economic	activity	and	living	standards	in	LMIC	(Chen	et	al.,	2011;	Mellander	et	al.,	2015;	Jean	et	
al.,	2016),	the	areas	in	most	need.	Moreover,	using	commune-level	dataset	from	Vietnam,	
Goldblatt	et	al.	(2020)	found	daytime	satellite	imagery	better	predicts	economic	activities	than	
nighttime	lights.	

The	use	of	satellite	imagery	to	map	poverty	and	economic	activity	has	grown	in	the	past	decade	
alongside	improvements	in	machine	learning	and	computer	vision.	Many	of	these	approaches	
make	use	of	deep	learning	techniques	such	as	Convolutional	Neural	Networks	(CNN).	For	
example,	Yeh	at	al.	(2020)	used	CNN	to	map	wealth	across	20,000	villages	in	Africa;	Chi	et	al	
(2022)	used	CNN	with	boosted	regression	trees	to	predict	asset	wealth	in	LMICs;	Jean	et	al.	
(2016)	combined	CNN	with	ridge	regression	to	measure	consumption	expenditure	in	five	
African	countries;	Sung	et	al.	(2020)	used	the	approach	to	estimate	GDP	in	US	counties;	and	Xie	
et	al	(2016)	mapped	poverty	in	Uganda	with	the	combination	of	CNN	and	logistic	regression.	In	
addition	to	generating	good	results,	most	of	these	CNN	models	have	been	deployed	in	data-
challenged	regions,	mainly	in	LMICs	(see	Chi	et	al.,	2022;	Head	et	al.,	2017;	Babenko	et	al.,	2017;	
Persello	and	Stein,	2017;	Wang	et	al.,	2019).	In	addition,	most	models	are	trained	on	publicly	
available	satellite	imageries	as	inputs,	including	Landsat	(Perez	et	al.,	2017),	Google	Static	Maps	
(Jean	et	al.,	2016),	DMSP	and	VIIRS	(Chi	et	al.,	2022),	making	them	not	only	scalable	but	also	
inexpensive	to	apply	in	the	real	world.	

Many	of	these	CNN	models	were	used	to	generate	estimates	in	both	urban	and	rural	areas.	Yet	
there	are	strong	a	priori	reasons	to	expect	substantial	differences	in	the	types	of	visual	
information	required	to	accurately	predict	variation	in	economic	activity	or	living	standards	
between	and	within	rural	and	urban	areas.	For	example,	technologies	of	production	vary	widely	
between	agricultural	and	non-agricultural	contexts,	as	do	indicators	of	consumption	(such	as	
dwelling	size).		While	broad	variations	in	economic	activity	or	welfare	between	urban	and	rural	
areas	may	be	visible	from	the	sky,	it	is	more	difficult	to	observe	differences	within	either	context	
from	the	above.	Urban	areas	tend	to	be	more	socio-economically	heterogeneous,	with	building	
features	as	well	as	morphology	generally	reflecting	socio-economic	characteristics	of	
households	(Kuffer	and	Barros,	2011;	Tapiador	et	al.,	2011;	Wurm	and	Taubenböck,	2018).	
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Rural	exhibit	less	architectural	and	morphological	variation,	although	may	have	greater	
variation	in	landscapes	that	contain	information	on	household	living	conditions.	It	is	therefore	
unlikely	that	a	single	model	applied	to	satellite	imagery	could	reflect	intra-urban	and	intra-
urban	variation	in	household	welfare	at	a	high	spatial	resolution.	Put	differently,	it	is	not	
terribly	difficult	to	make	broadly	accurate	spatial	estimates	of	relative	living	standards	between	
urban	and	rural	areas	with	satellite	imagery	given	their	distinct	economic	characteristics.	By	
contrast,	it	is	challenging	to	generate	accurate	spatial	estimates	at	a	high	resolution	within	each	
of	these	contexts.			

Yet	there	has	been	some	progress	in	this	area,	notably	the	mapping	of	asset	wealth	across	
20,000	villages	in	Africa	(Yeh	et	al.,	2020).	However,	the	spatial	resolution	of	Yeh	et	al’s	work,	as	
with	other	studies	using	CNN,	is	coarse—especially	in	rural	contexts	(see	Head	et	al.,	2017;	Xie	
et	al.,	2016;	Sung	et	al.,	2020).	The	resolution	of	Yeh	et	al.	(2020)	CNN	model	is	6.72km	*	
6.72km,	which	in	the	context	of	most	developing	countries	will	reflect	an	estimate	for	many	
rural	settlements.	Even	though	the	‘micro-estimates’	of	wealth	(Chi	et	al.,	2022)	is	presented	at	
2.4km	resolution,	the	underlying	DHS	data,	the	target	layer	or	label	for	the	CNN	model,	was	
aggregated	to	4.8km	grid	cells	in	urban	areas	and	9.6km	grid	cells	in	rural	areas.	The	coarseness	
of	the	existing	deep	learning	models	is	largely	influenced	by	the	sources	of	the	economic	data	
used	for	training	the	networks.	Data	from	the	DHS,	the	dominant	source,	is	spatially	distorted	
up	to	2km	in	urban	areas	and	5km	in	rural	areas	to	preserve	the	anonymity	of	households.	
Similarly,	the	geographical	coordinates	of	the	Living	Standard	Measurement	Study	(LSMS)	
contain	up	to	5km	noise.	Existing	models	therefore	resort	to	coarser	spatial	resolutions	to	
reduce	their	sensitivity	to	this	small-scale	locational	noise.		

Policy	makers	in	LMICs	seeking	to	target	livelihood	interventions	in	rural	areas	at	a	much	finer	
scale	will	have	major	challenges	relying	on	existing	measurements	of	economic	well-being.	
Pakistan	is	one	of	such	cases.	Pakistan’s	Sindh	Province,	home	to	an	estimated	48	million	
people,	has	established	a	Strategic	Social	Protection	Unit	(SPSU)	and	assigned	it	resources	to	
develop	a	targeting	strategy.	The	SPSU	has	also	been	tasked	with	identifying	eligible	households	
in	rural	Sindh	for	cash	relief	in	response	to	shocks,	such	as	Covid-19	and	monsoon	floods.	

Building	on	existing	efforts,	we	develop	and	train	an	ensemble	CNN	model	to	generate	small-
area	estimates	(1km2)	of	poverty	in	rural	Sindh	to	support	such	targeting.	We	utilize	an	
extensive	georeferenced	household	survey	containing	data	on	assets	and	poverty	scores	for	1.9	
million	anonymized	households	in	Sindh	province.	Asset	based	poverty	and	wealth	indices	are	
generally	seen	as	less	noisy	and	more	stable,	especially	in	the	long	term,	than	those	based	on	
consumption	(Sahn	and	Stifel,	2003;	Filmer	and	Scott,	2012).	Whilst	the	survey	is	
comprehensive,	it	has	significant	spatial	distortions	making	our	task	comparable	to	past	studies	
that	used	noisy	datasets	like	the	DHS.	Making	predictions	at	finer	resolutions	such	as	1km2	is	
challenging,	but	results	show	the	model	is	promising:	it	compares	well	with	past	studies	and	has	
decent	performance	in	a	random	benchmark	test.	

	

Defining	and	measuring	rural	poverty	in	Pakistan	

While	definition	and	measurement	of	poverty	remains	contested	(Fletchner,	2021),	we	use	a	
poverty	measure	based	on	household	assets,	which	is	both	conceptually	robust	and	practical.	
This	approach	builds	on	the	‘basic	needs'	concept	that	constitutes	the	primary	framework	for	
defining	national	poverty	lines	(Atkinson,	2019).	Historically,	the	use	of	a	basic	needs	approach	
measure	poverty	was	limited	to	rich	countries.	From	the	1980s,	the	institutionalization	of	the	
Living	Standards	Measurement	Surveys	(LSMS),	promoted	by	the	World	Bank,	regularly	
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provided	the	data	necessary	for	poverty	line	measurement	in	developing	countries	as	well	
(Deaton	2003).	However,	these	surveys	are	financially	and	technically	demanding	and	provide	
data	at	very	course	resolution.	As	Covid-19	recently	demonstrated,	many	policy	makers	in	
developing	countries	require	high	resolution	measures	of	poverty	that	can	be	collected	quickly,	
accurately	and	cost	effectively.	

“Quick	and	dirty”	measures	of	poverty	(Chambers,	1981),	have	therefore	developed	alongside	
the	“long	and	clean”	measures	based	on	large	household	surveys.	Participatory	Poverty	
Assessments,	for	example,	became	very	popular	among	NGOs	after	the	1970s.	Based	on	the	
principles	of	‘optimal	ignorance’	(importance	of	knowing	what	is	not	worth	knowing)	and	
proportionate	accuracy	(much	survey	data	has	a	degree	of	accuracy	that	is	unnecessary),	these	
measures	provided	a	shortcut,	avoiding	more	expensive	direct	and	time-consuming	
investigations	(Chambers,	1979).	Since	then,	participatory	poverty	assessments	have	been	
conducted	in	many	countries	in	East	and	South	Asia,	Africa	and	Latin	America	(See	references	in	
Aczona	(2009),	Eden	et	al	(2019)	and	Gow	(2019).			

This	kind	of	data	can	then	be	used	to	improve	targeting	by	providing	information	on	relative	
need	through	a	‘proxy	means	test’	(PMT)	to	predict	whether	a	household	is	poor	(i.e.	in	need	of	
government	support)	or	not.	This	approach	is	particularly	valuable	in	LMICs	with	limited	
household	data	(Grosh	and	Baker,	1995).	The	World	Bank,	in	particular,	uses	detailed	
household	surveys	(e.g.	LSMS)	to	establish	PMT	models	for	individual	countries	(e.g.	Sebastian	
et	al	2018),	which	can	then	be	used	to	produce	household-level	estimates	of	poverty	with	‘quick	
and	dirty’	data	collected	at	higher	frequency	and	lower	cost.		 

One	of	the	most	popular	rapid	data	collection	methodologies	is	the	Simple	Poverty	Score	(SPS)	
developed	by	Schreiner	(2006)	with	support	from	the	Ford	Foundation	and	Grameen	
Foundation,	which	has	now	been	used	in	63	countries	(Skoufias	et	al	2020).		The	SPS	is	similar	
in	approach	to	the	USAID’s	Poverty	Assessment	Tool	in	method	but	claims	a	greater	degree	of	
transparency	and	ease	of	use	(Schreiner,	2014).	It	uses	a	10-question	survey	and	weights	
estimated	from	nationally	representative	surveys	using	logistic	regression.	

The	SPS	requires	information	in	three	main	areas:	the	location	of	a	household,	household	
member	characteristics,	and	household	assets	such	as	air	conditioners,	refrigerators,	vehicles,	
agricultural	land	and	livestock.		Data	on	these	characteristics	is	then	compressed	into	twelve	
indicators.	For	example,	ownership	of	refrigerators,	freezers	and	washing	machines	is	lumped	
into	one	binary	indicator,	which	takes	a	value	of	1	if	a	household	possesses	any	of	the	three	
assets.	Similarly,	air	conditioners	and	heaters	are	compressed	into	one	indicator.	Each	indicator	
is	then	assigned	a	weight.	The	exact	choice	of	the	twelve	indicators	and	the	weights	assigned	to	
them	depend	on	the	context.	Logistic	regression	models	using	data	from	Living	Standards	
Measurement	Surveys	are	typically	used	to	identify	which	12	indicators	are	the	best	predictors	
of	poverty	in	any	given	country	and	period	(see	Schreiner	2006	for	details).	The	coefficients	
from	the	regression	are	then	transformed	into	weights	for	each	indicator.	The	total	score,	the	
sum	of	individual	scores,	can	then	be	related	to	the	probability	that	a	household	is	poor	by	using	
a	simple	statistical	table.	A	local	pro-poor	organization	can	then	implement	a	small	household	
survey	based	on	just	these	12	indicators,	calculate	a	poverty	score,	and	determine	eligibility	for	
a	household	to	receive	subsidized	goods	and	services.			

The	SPS	has	received	much	attention	from	World	Bank	Programming	as	the	Bank’s	twin	goals	of	
eliminating	extreme	poverty	and	inequality	require	measuring	poverty	rates	in	specific	
populations	targeted	by	development	programs	worldwide.	Considering	the	time	and	cost	
required	for	using	poverty	measures	based	on	large	scale	survey	data,	and	the	data	and	
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technical	demands	of	using	small	area	estimations,	the	SPS	has	become	the	post	popular	
solution	for	project	specific	poverty	estimation	(Skoufias	et	al	2020).	

The	development	of	the	SPS	for	Pakistan	using	PSLM	2005/06	is	documented	in	Schreiner	
(2010),	and	an	update	using	the	PSLM	2007/08	is	documented	in	Hou	(2009).	Each	household	
receives	a	score	between	0	and	100,	with	higher	scores	indicating	lower	levels	of	deprivation.	In	
January	2009,	The	Government	of	Pakistan	adopted	the	poverty	SPS	as	the	targeting	tool	for	the	
Benazir	Income	Support	Program,	the	flagship	cash	transfer	program.	The	cut-off	score	for	
poverty	was	decided	as	17.5,	at	which	16.3	percent	of	families	–	about	5.9	million	–	would	be	
covered.	This	cutoff	was	chosen	to	align	with	an	estimated	national	poverty	headcount	of	17%	
at	the	time	(Hou,	2009).	In	general,	the	rural	poverty	rate	in	Pakistan	has	always	exceeded	the	
national	poverty	rate	by	about	5	to	6	percentage	points	(Government	of	Pakistan,	2016).			

The	SPS	on	which	this	paper	is	based	was	collected	from	1.9	million	households	in	14	districts	
in	Pakistan’s	Sindh	province,	as	part	of	the	Sindh	Union	Council	Economic	Strengthening	
Support	(SUCESS)	Programme.	The	SUCCESS	Programme	covered	eight	out	of	the	province’s	24	
districts;	data	were	collected	in	an	additional	six	were	by	the	Government	of	Sindh	(GoS)	and	
Sind	Rural	Support	Organization	(SRSO)	under	the	People’s	Poverty	Reduction	Program	(PPRP).	
Table	1	lists	the	enumerated	districts	and	presents	the	household	count	from	the	Population	
Census	20171,	which	was	conducted	soon	after	the	poverty	scoring.	

Table	1:	Simple	Poverty	Score	Coverage	in	Districts		

Districts	
Rural	HH	

(Census	2017)	
SPS	Enumeration	

Coverage	
Badin	 282909	 75.1	
Jamshoro	 104518	 74.8	
Dadu	 216911	 78.5	
Matiari	 109997	 70.9	
Sujawal	 136805	 73.0	
Tando	AY	 113185	 73.0	
Tando	MK	 104297	 69.9	
Thatta	 150588	 88.7	
Kamber	 155566	 94.4	
Larkana	 142358	 85.0	
Mirpur	Khas		 205234	 75.6	
Umerkot	 164990	 77.6	
Sanghar	 267383	 77.3	
Khairpur	 279258	 95.7	
Source:	SUCCESS/PPRP	and	authors’	calculations	using	Population	Census	2017	
	
As	can	be	seen	in	Table	1,	the	SPS	survey	coverage	is	very	high	but	not	complete.	The	data	were	
collected	 through	 computer-assisted	 personal	 interviews	 (CAPI)	 at	 the	 doorstep	 of	 each	
household	 using	 Android	 Tablets.	 Household	 information	 was	 collected	 from	 a	 household	
member	 older	 than	 18	 years,	 with	 preference	 for	 the	 head	 or	 the	 spouse	 of	 the	 head	 of	 the	
household.	GPS	readings	were	taken	at	the	end	of	each	interview.	

 
1	The	exact	number	of	rural	households	was	not	available.	We	were	calculated	these	using	the	total	
population,	the	proportion	of	population	that	was	rural	and	the	average	household	size	in	the	district.	
(See	
https://www.pbs.gov.pk/sites/default/files//population_census/District%20wise%20Sindh%20TABLE
%201%202017%20FINAL.pdf)			
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We	 can	 evaluate	 the	 relationship	 between	 household	 SPS	 scores	 in	 our	 sample	 with	 the	
consumption-based	measure	used	 for	Pakistan’s	official	poverty	 line	 (GOP,	2016b)	using	data	
from	 the	 Household	 Integrated	 Economic	 Survey	 (HIES)	 from	 2015-16.	 Figure	 1	 shows	 the	
distribution	of	the	poverty	score	for	the	consumption	poor	and	consumption	non-poor	using	the	
government	definition.	There	is	overlap	between	poverty	scores	of	the	poor	and	non-poor,	which	
means	there	is	a	risk	of	inclusion	errors	at	low	poverty	scores	(i.e.,	counting	the	non-poor	as	poor	
due	to	a	low	SPS).	Above	a	SPS	of	approximately	70	the	probability	of	being	poor	drop	to	zero;	
the	probability	of	being	non-poor	is	‘reasonably’	high	above	a	poverty	score	of	approximately	30.		
	
	
Fig	1:	The	Simple	Poverty	Score	and	consumption	poverty	

	
Source:	Authors’	estimations	using	HIES	2015-16	
	

Given	the	different	dimensions	of	life	measured	in	the	SPS,	it	is	natural	to	explore	relationship	
between	the	SPS	and	a	measure	of	multidimensional	poverty,	which	has	gained	prominence	in	
subnational	poverty	research	and	policy	in	recent	years.	The	SPS	explicitly	uses	poverty	on	non-
monetary	dimensions	aims	to	predict	consumption	/	basic-needs	poverty.	Multidimensional	
poverty,	on	the	other	hand	explicitly	recognizes	that	poverty	along	social	dimensions	may	not	
necessarily	accompany	reductions	in	consumption	poverty.	Vision	2025,	which	institutionalized	
a	multidimensional	poverty	index	(MPI)	to	informs	policymaking	in	Pakistan,	was	designed	with	
the	explicit	aim	of	balancing	progress	on	monetary	measures	of	poverty	with	that	in	the	social	
dimension	(Government	of	Pakistan,	2016a).	For	example,	a	household	is	considered	deprived	
in	education	if	a	child	is	not	going	to	school	because	schools	are	far	away	or	are	unaffordable.	
Similarly,	a	household	is	deprived	if	health	facilities	are	too	far	away	or	lack	enough	staff	to	
serve	new	clients.		

Although	the	MPI	was	supposed	to	be	updated	every	two	years,	consistent	with	the	frequency	of	
the	district-level	representative	PSLM	survey,	the	only	measure	of	MPI	currently	available	is	
based	on	the	2014-15	survey.	Households	deprived	on	33%	of	the	weighted	indicators	are	
categorized	as	poor.	Table	2	shows	the	concordance	between	MPI	and	SPS.	Households.	While	
the	magnitude	of	incidence	is	very	different	across	the	two	measures,	the	ranking	of	the	districts	
is	very	highly	correlated	(linear	correlation	coefficient	of	0.74).	

Table	2:	Concordance	between	MPI	(2014-15)	and	Simple	Poverty	Score	(2015/16/17)	
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District		 MPI	Incidence		 SPS	Headcount	 Median	SPS	 Mean	SPS	
Larkana	 42.0	 28.8	 25.0	 25.9	
Dadu	 51.4	 40.9	 21.0	 22.5	
Khairpur	 51.6	 28.7	 24.0	 25.9	
Jamshoro	 55.6	 32.5	 23.0	 24.8	
Matiari	 62.1	 28.6	 25.0	 26.2	
Sanghar	 66.8	 34.9	 23.0	 24.0	
Tando	AY	 67.3	 31.3	 23.0	 25.3	
Mirpurkhas	 68.9	 39.7	 21.0	 22.5	
Kambar	Shahdadkot	 72.0	 41.0	 21.0	 22.3	
Badin		 74.8	 40.7	 21.0	 21.8	
Tando	MK	 78.4	 38.0	 21.0	 23.1	
Thatta	 78.5	 40.1	 21.0	 22.2	
Sujawal		 82.0	 46.9	 19.0	 20.6	
Umerkot		 84.7	 44.9	 19.0	 20.9	
	

Methodology	for	estimating	rural	poverty	with	ensemble	transfer	learning	

The	Social	Protection	Strategic	Unit	of	Pakistan’s	Sindh	Province	has	a	goal	of	identifying	
households	in	rural	Sindh	eligible	for	cash	relief,	the	kind	support	where	households	severely	
affected	by	Covid-19	and	Monsoon	floods	are	given	financial	assistance.	Following	these,	we	
perform	a	binary	classification	task	that	predicts	whether	a	household	in	a	given	1km2	grid	cell	
is	chronically	poor	using	the	median	poverty	score	of	the	cell.	Thus,	each	1km2	cell	represents	a	
single	“training	scene;”	a	model	will	learn	from	input	about	the	scene	from	different	data	
sources	and	predict	the	poverty	status	of	the	median	household	in	that	scene.	For	the	poverty	
status	variable,	the	PPRP	report	suggest	the	following	categorization:	0	-	11	Extremely	
poor/destitute,	12	-	18	Chronically	poor,	19	-	23	Transitory	poor,	24	-	100	Non	poor.	We	
binarized	these	classes,	categorising	a	cell	with	0	-	18	PSC	score	as	“chronically	poor,”	and	those	
with	19	or	greater	as	“not	chronically	poor.”		Thus,	we	predict	whether	the	median	poverty	
score	of	a	cell	is	below	19	(chronically	poor)	or	19	and	above	(not	chronically	poor).	In	machine	
learning	classification	tasks,	there	is	often	a	decision	to	be	made	between	optimizing	for	recall	
or	precision.	For	a	poverty	classifier	with	good	recall,	most	of	the	areas	that	are	truly	
“chronically	poor”	would	be	predicted	as	chronically	poor.	In	contrast,	a	classifier	with	good	
precision	would	instead	focus	on	making	sure	that	most	of	the	predicted	“chronically	poor”	
areas	are	actually	“chronically	poor.”	The	SPSU’s	cash	transfer	program,	as	with	many	poverty	
interventions,	seek	to	ensure	that	everyone	who	needs	support	gets	support,	which	drove	us	to	
optimize	recall	accuracy	over	precision	in	cases	of	trade-off	between	the	two.	

Through	the	SPSU,	we	accessed	the	SPS	data	containing	1.95	million	households	in	14	districts2	
of	Sindh.	While	the	data	were	meant	to	represent	exclusively	rural	households,	visual	inspection	
revealed	that	some	surveyed	areas	were	de	facto	urban	in	nature,	usually	peri-urban	
settlements	on	the	edge	of	medium-sized	cities.	Consultation	with	local	experts	in	Pakistan	
confirmed	that	these	areas	were	surveyed	because	their	administrative	status	was	‘rural’	at	the	

 
2	District	boundaries	in	Sindh	have	seen	considerable	changes	since	the	early	2000s,	when	there	were	21	
districts.	4	new	districts	were	added	in	2004,	three	in	2005,	1	in	2013	and	1	in	2020.	We	do	not	have	
access	to	the	most	recent	boundaries	and	this	paper	uses	boundaries	consistent	with	districts	in	2016.	
The	1.9	million	geocoded	household	surveys	are	from	12	of	the	then	existing	29	districts.	
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time.	In	line	with	our	objective	to	map	poverty	in	rural	areas,	we	dropped	these	de	facto	urban	
observations.	We	also	dropped	all	observations	falling	within	or	intersecting	the	boundaries	of	
an	“urban	centre”	as	defined	by	the	Global	Human	Settlement	Layer	(GHSL).	Specifically,	we	
used	data	from	the	2019	Settlement	Model	(SMOD)	of	the	GHSL	to	extract	the	urban	centre	layer	
(Pesaresi	et	al.,	2019).	We	identified	and	dropped	95,271	observations	falling	within	this	urban	
centre	layer.	We	also	dropped	183,656	observations	with	(1)	poverty	scores	exactly	equal	to	
zero	–	understood	to	be	errors	–	or	(2)	GPS	locational	accuracy	error	over	20	meters,	and	left	
out	5,531	surveys	conducted	before	2016.	Our	final	sample	contains	1.67	million	individual	
georeferenced	observations.	

Two	types	of	spatial	errors	became	evident	while	cleaning	the	data:	(1)	spatially	diffuse	GPS	
coordinates	for	individual	settlements	(often	in	fields	or	on	roads),	suggesting	that	the	
coordinates	were	not	captured	at	the	actual	location	of	the	household/settlement,	and	(2)	
unrealistically	dense	concentrations	of	observations	in	towns	and	cities	from	enumeration	
areas,	suggesting	that	enumerators	may	have	congregated	at	a	location	to	upload	data	and	
accidentally	assigned	that	location	to	all	surveys	that	had	been	collected	that	day..	

To	create	a	target	layer	for	the	CNN	model,	we	computed	the	median	PSC	score	for	observations	
falling	within	each	1km2	grid	cell.	Given	the	spatial	errors	described	above,	we	opted	for	a	
spatial	resolution	of	1km2,	substantially	finer	than	the	resolution	used	in	the	studies	discussed	
earlier.	This	left	35,730	cells	across	Sindh	that	contained	PSC	observation(s).	To	preserve	the	
anonymity	of	households,	we	eliminated	3,120	cells	with	fewer	than	3	observations.	We	also	
dropped	329	cells	with	300	or	more	observations,	which	probably	reflected	new	urban	
settlements.	Table	3	shows	the	descriptive	statistics	of	median	poverty	scores	for	~	1.67	million	
households	and	1km2	grid	cells.	

Table	3.	Descriptive	statistics	of	PSC	observations	and	target	layer	(1km2	grid	cells)	

	

Min	 Max	 Mean	 Std	
1st	

Quartile	
Median	

3rd	

Quartile	

Household	count	(1km2	grid	cells)	 3	 299	 47	 48	 14	 31	 62	

Median	poverty	score	(1km2	grid	cells)	 3.5	 80	 21	 5.5	 18	 21	 24	

Poverty	scores	(not	gridded)	 1	 100	 23	 11	 15	 22	 30	

	

Input	Data	

We	used	three	openly	accessible	inputs:	daytime	satellite	imagery,	nighttime	satellite	imagery,	
and	accessibility	data.	Previous	studies	have	shown	that	daytime	satellite	imagery	and	NTL	offer	
important	information	about	the	economic	geography	of	areas	(Head	et	al.,	2017;	Jean	et	al.,	
2016;	Bleakley	and	Lin,	2017).	For	data	on	daytime	satellite	imagery,	we	accessed	10m2	
resolution	Sentinel	2	images	from	ESA’s	Copernicus	Open	Access	Hub	via	QGIS.	The	images	were	
captured	between	January	and	April	2016,	contemporaneous	with	the	SPS	data	collection	
period.	All	tiles	except	1	had	less	than	1	percent	cloud	cover.	The	tiles	were	processed	into	true	
colour	images	and	mosaicked	into	a	single	raster.	For	NTL	data,	we	used	the	2016	median	VIIRS	
Annual	VNL	V2	product	from	the	Earth	Observation	Group	(Elvidge	et	al.,	2021).	The	original	
resolution	of	the	VIIRS	image	was	~	500m2,	so	we	resampled	it	down	to	10m2	to	match	the	
Sentinel	2	resolution.		Finally,	we	used	as	accessibility	layer	reflecting	travel	time	to	settlements	
with	5,000	–	10,000	population,	which	was	extracted	from	global	accessibility	map	(Nelson	et	
al.,	2019).		
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Ensemble	transfer	learning	with	convolutional	neural	networks	

To	predict	whether	the	median	household	in	each	cell	is	chronically	poor	we	employed	an	
ensemble	approach	involving	transfer	learning	among	three	models:	(1)	ResNet-50	(2)	ResNet-
50V2	and	(3)	ResNet-101.	Past	studies	have	used	transfer	learning	techniques	to	map	poverty	
and	economic	wellbeing	with	good	results	(Jean	et	al.,	2016;	Xie	et	al.,	2016;	Head	et	al.,	2017).	
These	studies	employ	a	two-step	approach	where	an	existing	CNN	model	is	first	used	to	predict	
nighttime	light	intensity	using	daytime	satellite	imagery	as	input.	In	the	process,	the	CNN	learns	
to	extract	predictive	features	from	the	daytime	satellite	imagery	which	are	subsequently	used	as	
inputs	in	a	regression	to	predict	the	final	target	label.	We	followed	the	approach	of	Yeh	et	al.	
(2020)	by	training	the	CNN	models	end-to-end	using	the	three	inputs	(daytime	and	nighttime	
satellite	and	accessibility).	

The	three	ResNet	architectures	were	chosen	for	their	high	performance	on	the	ImageNet	image	
classification	challenge.	We	predicted	the	poverty	status	for	each	cell	using	the	three	models	in	
turns.	In	cases	where	the	three	models	do	not	agree	on	a	prediction	for	a	cell,	we	used	the	
majority	prediction	the	final	predicted	status.	All	the	models	have	three	inputs	(Sentinel	2	
images,	nightlights,	and	accessibility),	and	the	data	within	each	cell	is	at	a	100x100	resolution.	
The	models	were	initialized	with	weights	trained	on	ImageNet.	

For	a	given	model	and	input,	we	extracted	features	with	the	corresponding	ResNet	architecture,	
performed	global	average	pooling	to	reduce	the	extracted	features,	and	added	dense	layers	for	
classification.	We	then	concatenated	the	final	layers	of	each	trained	input	and	added	a	fully	
connected	layer,	which	outputs	a	binary	classification	for	each	cell:	chronically	poor	or	not	
chronically	poor.	To	minimize	overfitting,	we	introduced	dropouts	prior	to	the	final	layer	that	
randomly	eliminated	neurons.	

The	models	were	trained	using	ADAM	to	optimize	the	overall	accuracy.	A	batch	size	of	16	and	
learning	rate	of	0.00005	were	used	in	the	training	for	all	the	models.	The	models	were	trained	
over	30	epochs	with	an	early	stopping	mechanism	that	allows	the	models	to	stop	after	10	
continuous	epochs	if	there	is	no	improvement	in	the	validation	accuracy.	The	weights	from	the	
best	performing	epochs	were	retained.	We	implemented	and	trained	the	models	using	the	Keras	
and	Tensorflow	libraries	in	Python.	

	

Results	and	Discussion	

We	validated	the	ensemble	model	using	three	approaches.	First,	we	compared	predictions	for	
random	holdout	test	samples.	Second,	we	used	a	spatial	cross-validation	approach:	whole	
districts	were	omitted	from	the	training	process	and	then	used	for	out-of-sample	testing.	Last,	
we	generated	predictions	for	Ghotki,	a	district	with	no	PSC	data,	conducted	an	original	survey	
involving	7194	households	sampled	from	174	1km2	grid	cells,	and	compared	our	predictions	
with	the	survey	data.		

For	the	first	approach,	30	percent	of	the	cells	across	Sindh	had	PSC	scores	<	19,	and	70	percent	
≥	19.	To	avoid	bias	in	the	training	datasets,	we	sampled	~	9600	cells	(the	count	of	cells	with	PSC	
<	19)	from	the	latter	so	we	have	the	same	number	of	samples	for	each	class.	The	dataset	was	
split	into	15,596	training,	1,732	validation,	and	1,925	test	samples.	The	model’s	performance	in	
predicting	the	labels	for	the	unseen	test	set	is	shown	in	Figure	2.	To	establish	that	the	
performance	of	the	model	is	significantly	better	than	a	random	occurrence	or	lottery,	we	
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generated	random	predictions	for	the	test	set,	repeated	1000	times,	and	compared	the	results	
with	the	model.	

In	identifying	the	chronically	poor,	the	model	records	71	percent	recall	accuracy	and	62	percent	
precision	accuracy.	The	accuracy	of	the	random	predictions	ranges	from	44	to	56	percent	for	
recall,	and	47	to	55	percent	for	precision.	As	shown	in	Figure	2,	the	model	performs	21	points	
better	than	the	median	of	the	random	predictions	for	recall,	and	12	points	better	for	precision.	
Similarly,	the	model	performs	13	points	better	than	random	predictions	for	the	overall	accuracy	
metric.	These	metrics	highlight	the	importance	of	the	model,	especially	in	the	context	of	Sindh	
where	there	is	currently	no	measurement	for	mapping	and	supporting	the	chronically	poor.	

Figure	2:	CNN	ensemble	model	predictions	versus	random	predictions	for	chronically	poor	

	

For	a	second	validation	approach,	we	randomly	split	the	datasets	into	six	folds	(denoted	“Kf”s),	
with	each	fold	containing	two	districts.	Then,	we	ran	the	ensemble	model	on	five	folds	(ten	
randomly-selected	districts)	and	tested	the	model’s	out-of-sample	accuracy	for	one	fold	(two	
districts).	The	folds	were	rotated	for	each	iteration	such	that	all	districts	were	used	for	both	
training	and	testing	at	the	end	of	sixth	round.	This	approach	paints	a	better	picture	of	the	likely	
performance	of	the	model	when	used	to	generate	predictions	in	districts	with	no	poverty	data.	
As	with	the	first	approach,	we	compare	the	results	of	each	cross-validation	iteration	with	
random	predictions.	We	produced	random	predictions	for	the	test	sample,	repeated	1000	times	
for	each	iteration,	and	the	median	score	for	recall	and	precision	were	computed.		

Figure	3	compares	the	performance	of	the	model	with	the	random	predictions	for	each	
iteration.	The	model’s	recall	accuracy	ranges	from	59	percent	for	Kf4	to	81	percent	for	Kf3	and	a	
median	of	74	percent.	The	model	recorded	at	least	70	percent	recall	accuracy	for	four	out	of	six	
folds.	The	precision	accuracy	ranges	from	32	percent	for	Kf3	to	43	percent	for	Kf2.	The	model’s	
recall	accuracy	is	higher	than	that	of	the	random	predictions	for	all	the	folds.	The	precision	of	
the	model	is	also	higher	than	the	random	prediction	in	all	except	one	fold	(Kf3).	Even	so,	the	
model’s	marginal	loss	in	precision	is	compensated	by	its	recall	performance,	which	is	much	
higher	than	that	of	the	random	prediction.	

Figure	3:	Cross-validation	comparison	of	CNN	model	with	random	predictions	for	the	
chronically	poor.	
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The	model’s	recall	performance	is	high	in	both	arid	and	non-arid	ecological	regions	of	the	
province.	The	cross-validation	performance	of	the	model	in	selected	districts	is	shown	in	Figure	
4.	The	highest	recall	(81	percent)	is	observed	in	Kf3,	which	used	predominantly	non-arid	
districts	(Tando	M.	K	and	Tando	A.	Y)	as	out-of-sample	test	districts.	The	second	highest	recall	
(80	percent),	however,	is	found	in	Kf2	with	test	districts	comprising	of	Matiari	and	the	arid	
Jamshoro.	The	model’s	recall	is	also	high	in	test	districts	that	have	both	arid	and	non-arid	zones.	
For	instance,	the	model	recorded	75	percent	recall	accuracy	in	Sanghar	and	Mirphurkhas	(Kf6),	
test	districts	with	both	ecological	zones.	Thus,	the	CNN	model	produces	generally	good	results	
across	ecological	contexts,	which	is	important	because	it	shows	the	model	is	not	biased	against	a	
particular	ecological	zone.	

	

	

	

	

	

	

	

	

	

Fig	4:	Cross-validation	performance	of	CNN	model	in	selected	districts	
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Hits:	observed	poor	and	predicted	poor	
Misses:	observed	poor	and	predicted	not	poor	
	
Validation	of	existing	CNN	applications	are	mainly	limited	to	the	kinds	of	cross-validation	
approaches	like	those	described	above.	We	choose	to	go	a	step	further	and	conduct	a	true	out-
of-sample	validation	exercise	using	an	original	survey	in	Ghotki,	a	district	with	no	PSC	data	and	
both	arid	and	non-arid	ecological	conditions.	Prior	to	the	survey,	we	used	the	CNN	model	to	
generate	predictions	for	all	habitable	1km2	grid	cells	of	Ghotki.	Using	the	PSC	methodology,	we	
constructed	poverty	scores	from	the	original	survey	data	and	used	it	as	a	benchmark	to	assess	
the	performance	of	the	model.	As	with	the	first	two	validation	approaches,	we	also	executed	
thousands	of	random	predictions	and	compared	it	with	the	CNN	model	as	shown	in	Figure	5.	

The	model’s	performance	in	the	key	recall	metric	is	59	percent	while	that	of	the	random	
predictions	(median)	is	50	percent.	The	two	are	virtually	at	par	for	precision	metric:	44	percent	
for	the	model	and	45	percent	for	the	random	predictions.	The	model	performing	nine	points	
better	than	random	in	the	recall	metric	is	significant	considering	that	the	model	was	trained	on	
2016-2019	PSC	data	while	the	original	survey	was	conducted	in	2022.	Besides,	unlike	the	
original	survey	used	for	the	validation,	the	PSC	data	used	to	train	the	model	contain	substantial	
spatial	errors	as	described	earlier.	
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Figure	5:	Ground	truthing	results	of	CNN	model	versus	random	predictions	

	

The	ensemble	deep	learning	model	has	produced	promising	results	as	shown	above.	In	addition	
to	outperforming	all	of	the	randomly	generated	predictions,	the	model	also	compares	well	with	
results	from	existing	studies.	For	instance,	the	transfer	learning	model	developed	by	Xie	et	al.	
(2016)	identifies	the	poor	in	Uganda	with	66	percent	recall	accuracy	at	39	percent	precision.	
This	means	in	identifying	the	poor,	results	from	holdout	test	samples	randomly	drawn	across	
Sindh	indicates	that	our	CNN	model	performs	considerably	better	than	Xie	et	al.’s:	five	points	
higher	in	recall,	and	23	points	higher	in	precision.	Thus,	the	model	outperforms	Xie	et	al.’s	in	
minimizing	both	inclusion	and	exclusion	errors	in	identifying	the	poor.	This	is	even	more	
significant	considering	the	spatial	resolution	our	model	is	10	times	finer	than	that	of	Xie	et	al.’s,	
which	is	10km2.	Besides,	Xie	et	al.’s	poverty	mapping	includes	urban	and	rural	areas,	making	it	
less	challenging	than	differentiating	economic	characteristics	within	rural	areas	as	done	here.	

Similarly,	the	model’s	performance	from	the	rigorous	cross-validation	is	higher	than	Xie	et	al.	
(2016)	in	recall	accuracy	in	four	of	the	six	iterations.	The	model’s	recall	is	at	least	14	points	
higher	than	Xie	et	al.’s	for	two	of	the	iterations	(Kf2	and	Kf3),	and	not	less	than	six	points	higher	
for	another	two	(Kf1	and	Kf5).	The	recall	of	the	model	is	lower	than	Xie	et	al.’s	for	only	one	
iteration.	The	model’s	precision	is	higher	than	Xie	et	al.’s	for	three	iterations	(Kf1,	Kf2	and	Kf4)	
and	lower	in	the	other	three.	A	potential	reason	for	our	model’s	comparatively	average	
precision	performance	is	inclusion	errors	in	the	underlying	SPS.	As	shown	in	Figure	1,	poverty	
scores	below	19	often	reflect	households	that	are	both	asset-poor	and	consumption-poor,	but	
there	are	also	occasionally	some	asset-poor	households	that	are	not	consumption-poor.	Our	
target	measure	(the	poverty	scorecard)	is	chiefly	asset-based,	making	it	extremely	challenging	
to	identify	these	consumption-poor	households	when	training	on	asset-poor	scores	from	the	
sky.	Besides,	as	indicated	earlier,	in	cases	of	trade-offs,	our	priority	to	minimize	exclusion	errors	
in	identifying	the	chronically	poor	than	place	higher	emphasis	on	recall.	

	

Conclusion	

The	traditional	approach	of	using	census	to	generate	economic	data	is	too	expensive	for	LMICs,	
and	such	data	are	mostly	out	of	date	in	rapidly	growing	developing	countries.	The	Demographic	
and	Health	Surveys	(DHS),	the	dominant	alternative,	has	a	limited	sample	and	sparse	spatial	
coverage	in	many	countries.	Capitalizing	on	advancement	in	computer	vision	techniques,	there	
have	been	many	new	approaches	that	use	deep	learning	techniques	such	as	CNN	in	combination	
with	satellite	imagery	to	measure	economic	wellbeing	or	map	poverty.	However,	CNN	models	
are	rarely	developed	to	differentiate	poverty	within	rural	areas,	and	most	prior	applications	
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have	been	too	coarse	in	spatial	resolution	to	use	for	fine-grained	social	support	programs.	
Therefore,	policy	makers	in	LMICs	seeking	to	target	livelihood	interventions	in	rural	areas	at	a	
much	finer	scale	will	have	major	challenges	relying	on	CNN	models.	

We	have	developed	an	ensemble	CNN	model	based	on	three	transfer	learning	sub-models	to	
map	chronic	poverty	at	a	fine	scale	(1km2	resolution)	in	rural	Sindh,	Pakistan.	The	model	draws	
on	Pakistan’s	comprehensive	but	spatially	noisy	poverty	scores	data	as	target	layer,	and	satellite	
imageries	(daytime	and	night-time)	and	accessibility	as	input	data.	We	have	demonstrated	that	
the	combination	of	CNNs	trained	on	publicly	available	inputs	can	generate	good	prediction	of	
poverty	at	a	much	finer	scale	in	rural	areas,	even	when	the	target	data	is	noisy.	A	rigorous	cross-
validation	and	external	validation—ground	truthing	of	predictions	with	an	original	survey—
show	that	the	model	performs	well	in	minimizing	exclusion	errors	across	both	arid	and	non-
arid	regions,	which	are	important	in	determining	livelihood	and	lifestyle	patterns	in	rural	
Pakistan.	Altogether,	our	low	cost	and	scalable	approach	to	predicting	rural	poverty	can	
improve	how	social	welfare	interventions	are	targeted	in	data	challenged	LMICs.	Our	approach’s	
high	prediction	accuracy	will	also	improve	as	less	noisy	data	is	collected	in	the	future,	
underscoring	the	need	for	a	more	spatially-accurate	economic	datasets	in	LMICs	that	analysts	
can	use	to	study	and	support	social	welfare	interventions.		
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Abstract


Scarce information and human capital may make it difficult for residents of developing
countries to produce accurate forecasts, limiting responses to uncertain future events
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1 Introduction


Economic theory predicts that poor forecasts reduce welfare. An agent who relies on a
biased forecast of high prices tomorrow may consume too little today. An agent who does
not anticipate high temperatures may fail to reschedule physically intense outdoor work.
Even well-informed experts commonly make forecasting mistakes (Tetlock, 2017). Residents
of developing countries may face a substantially more difficult information environment,
with relevant third-party forecasts are often unavailable or of poor quality (Rosenzweig and
Udry, 2014a,b). Moreover in developing countries, underlying behavioral biases may interact
with information scarcity and lower levels of human capital (Stiglitz, 2000; Hanushek, 2013;
Hanna, Mullainathan, and Schwartzstein, 2014).1 The resulting errors are consequential, as
people in developing countries face considerable risk in domains from health (Blakely et al.,
2005) to employment and income (Jalan and Ravallion, 1999).


Air pollution provides a suitable domain to study decision problems involving forecasts,
particularly in the developing world (Chang et al., 2019). It varies at high frequency, with
large changes occurring from one day to the next. This allows a subject to produce or
consume multiple forecasts over the course of an experiment, and creates scope for changes
in a subject’s forecasting process. Uncertainty over air pollution matters, as air pollution
affects mortality and health (Knittel, Miller, and Sanders, 2016; Arceo, Hanna, and Oliva,
2016; Barreca, Neidell, and Sanders, 2021; Gong et al., 2022), labor productivity (Chang
et al., 2016a; Neidell, 2017; Chang et al., 2019; Adhvaryu, Kala, and Nyshadham, 2022) and
labor supply (Hanna and Oliva, 2015).2 Because of these consequences, one can reasonably
expect that subjects take air pollution forecasting seriously. Air pollution has also become
an ubiquitous part of life in developing cities (IQAir, 2019), rendering it a more natural
forecasting domain than those sometimes employed in lab studies (e.g. stock prices).


In this paper, we exploit uncertain air pollution to study how developing-world urbanites
solve forecasting problems in the presence of limited information and human capital. We
concern ourselves with the following broad questions. Do residents of developing cities
exhibit positive demand for forecast products? Can they form useful forecasts, and can
their forecasting ability be improved? How does consuming forecasts influence behavior,
especially avoidance of environmental harm? The answers to these questions shed light on
human decision making, and also form important inputs to benefit-cost analyses of policies


1Stiglitz (2000) writes, “One of the central aspects of less developed countries is that markets work less
efficiently, including ‘markets for information.’ ”


2Other important work in this area includes: Alberini et al. (1997); Cropper et al. (1997); Jeuland,
Pattanayak, and Bluffstone (2015); He, Liu, and Salvo (2019); Bishop, Ketcham, and Kuminoff (2022). For
reviews, see Graff Zivin and Neidell (2018) and Aguilar-Gomez et al. (2022).
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concerning air pollution monitoring and abatement.
To address these research questions we implemented a randomized controlled trial,


which included two orthogonal treatments: 1) day-ahead air pollution forecasts delivered
by text message (SMS); and 2) general in-person training designed to improve forecasting
performance. In theoretical terms, we model these two treatments as shocks to inputs in an
agent’s forecast production function: text-message pollution forecasts increase information,
while training increases human capital.3 Broadly, three types of outcomes interest us:
1) consumption, e.g. willingness to pay (WTP) for our air pollution forecast product;
2) production, e.g. error in forecasting air pollution; and 3) behavioral responses, e.g.
willingness to pay for particulate-filtering face masks.


Our experiment involved 999 subjects in Lahore, Pakistan. In 2019, Lahore ranked as
the twelfth most polluted city in the world, with air roughly comparable to that of Delhi and
Dhaka (IQAir, 2019; Riaz and Hamid, 2018; Zahra-Malik, 2017). While Lahore experiences
acute pollution, its residents face a challenging information landscape in which to make
accurate forecasts (i.e., to form unbiased expectations). Some sources (public and private)
provide retrospective information, but such efforts remain incomplete in space and time
and information quality is uncertain.4 The Punjab Government’s Environmental Protection
Department (EPD) posts past measurements, but only online in English.5 The US consulate
in Lahore recently began providing hourly pollution averages online, but this represents one
point in a city with an area of more than 680 square miles. Retrospective and real-time air
pollution readings are not readily available to residents—particularly the majority who do
not speak English—while air pollution forecasts are entirely absent.


Average levels of human capital in Lahore may also hamper residents’ ability to forecast
accurately. Citywide, average educational attainment lies between 6.2 and 6.5 years (NIPS
and ICF, 2019). In our subject population, it is 9.3 years. Pakistan’s nationwide educational
attainment (4.8 years) is a year lower than India’s, and roughly comparable to Uganda’s,
Ethiopia’s, and Nigeria’s (World Bank, 2017). These countries’ urban residents may face skill
constraints similar to those of our subjects. Moreover, Lahore’s residents may confront the
same behavioral biases that generate forecasting errors even in highly educated populations
(Kahneman and Tversky, 1973).


Using incentive-compatible elicitations, we find that subjects exposed to our one-day-


3In our theoretical model (Section 2), information and human capital may be complements or substitutes.
4Manipulation of air pollution readings has been documented in other developing-country settings


(Ghanem and Zhang, 2014; Ghanem, Shen, and Zhang, 2020).
5According to the Punjab Government: “Data on air quality in the province is scant. Sporadic monitoring


of air pollutants suggests that ambient air standards for particulate matter with size 2.5 micron (PM2.5) ...
are exceeded frequently” (Punjab Environmental Protection Department, 2017).
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ahead air pollution forecasts were willing to pay an average of 93 Pakistani Rupees (PKR)
to continue receiving forecasts for 90 days.6 On a monthly basis, this equals roughly 60
percent of the cost of 4G mobile internet access. It stands in contrast to low willingness
to pay for health-promoting goods like insecticide-treated nets and chlorine (Kremer et al.,
2011). Both forecast provision and training reduced error in incentivized forecasts of fine
particulates (PM2.5) by roughly one-tenth of a standard deviation, or 5 µg/m3.7 This equals
approximately 20 percent of the World Health Organization’s corresponding maximum safe
24-hour standard.8 Given that four to six months elapsed between the training and the
forecast elicitation, the error reduction is notable and consistent with a durable increase
in human capital.9 Forecast provision increased willingness to pay for particulate-filtering
masks by 6.6 PKR, roughly five percent of the retail price.10 While the estimated effect of
training on mask demand is positive (4 PKR), it is imprecise.11


We also estimate the effect of forecast receipt on outdoor time. This is an important
margin of response to air pollution, as outdoor pollution exposure is frequently higher than
indoor (US Centers for Disease Control and Prevention, 2022).12 Forecast receipt increased
outdoor time by 16 percent on relatively less polluted days and reduced outdoor time by 3
percent on more polluted days. That is, SMS forecasts improved the alignment of outdoor
time with the level of air pollution.13 This pattern of responses was more pronounced for
subjects who reported caring about air quality at baseline, and for children.


Our research design allows for investigation of the mechanisms driving reductions in
air pollution forecast errors. Error reductions were greater at the one-day horizon than
at the three-day horizon, reflecting improvements in both accuracy and precision. The
SMS forecast treatment resulted in increased seeking of air pollution information from other
sources, consistent with complementarity and potentially an error-reducing mechanism in
this group. Forecast error reductions were largest for trained subjects who choose to view


6Willingness to pay for both forecasts and masks was elicited using a Becker-DeGroot-Marschak
mechanism (Becker, DeGroot, and Marschak, 1964).


7Forecasts were incentivized using payments for responses within 5, 10, or 20 percent of realized particulate
pollution.


8Here “fine particulates” denotes PM2.5 air pollution: the concentration of particulates of diameter 2.5
microns or less, measured in micrograms per cubic meter (µg/m3). For PM2.5, the World Health Organization
has set the daily standard at 25 µg/m3 and the annual standard at 10 µg/m3 (World Health Organization,
2006).


9The trainings occurred in August 2019; the endline in January-February 2020.
10N95 masks filter 95 percent of small particles. According to the mask manufacturer 3M, a genuine N95


mask retailed for 135 PKR (on average) in Lahore in November 2019, while our experiment was in progress.
We completed endline surveys prior to the outbreak of Covid-19 in Pakistan.


11This estimate is not statistically significant at conventional thresholds.
12Relative indoor and outdoor air pollution exposure depends on the pollutant, combustion within the


dwelling, and the intensity of physical exertion.
13For a formalization of this claim, please see the theoretical model of Section 2.
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a weather forecast before making their air pollution forecasts. This is potentially consistent
with improved information processing by trained subjects.


Our project contributes to several literatures, of which the first is on pollution avoidance
behavior (Graff Zivin and Neidell, 2013).14 A substantial empirical literature addresses
avoidance behavior in developed countries. Prominent examples include Neidell (2004),
Graff Zivin and Neidell (2009), and Moretti and Neidell (2011).15 We provide evidence from
a low-income developing country, where both preferences and the scope for avoidance may
differ (e.g. because of available technologies or jobs). Previous work on avoidance largely
relies on natural experiments for identification (Neidell, 2009, 2010). For example, while we
can often observe an avoidance behavior, such as a canceled trip to a movie theater (He, Luo,
and Zhang, 2022) or a mask purchase (Zhang and Mu, 2018; Wang and Zhang, 2021), agents’
air pollution expectations go unobserved. Our experimental design allows us to observe both
expectations and avoidance behaviors for the same subjects, including total outdoor time
rather than a proxy. Our finding that average willingness to pay for masks is roughly 70
percent of the retail price offers a potential explanation for low take-up in some developing
cities with high air pollution.


Second, our results add to the literature on demand for environmental information.16


To the best of our knowledge, ours is the first paper in this literature to study demand for
forecasts.17 Barwick et al. (2019) estimate effects of real-time air pollution information in
China on a variety of outcomes, including shopping and housing markets, and use these
responses to bound the value of air pollution information. Our study differs in eliciting
the value of air pollution information directly, using an incentive-compatible mechanism.
This avoids the need to specify channels through which information affects utility, and
recovers the entire demand curve. Another related study is Barnwal et al. (2017), which
randomized prices for arsenic testing of drinking-water wells in Bihar, India. In contrast,
our experiment elicited willingness to pay for information from subjects who had experience
with our forecast product. The resulting estimate is policy-relevant, and it pertains to a near-
universal exposure (airborne fine particulates).18 Our results on acquisition and processing
of complementary environmental information (e.g. weather forecasts) are also novel.


14Some work prefers the term “averting behavior”; we view the two as synonymous.
15Graff Zivin and Neidell (2013) provides a thorough review, including a brief theoretical foundation.
16A related literature studies health information in developing countries. For a review, see Dupas and


Miguel (2017).
17In pilot surveys, respondents were asked to rank real-time alerts, retrospective readings, and forecasts


from most to least desirable. 69 percent ranked forecasts first, and 25 percent ranked them second.
18In Barnwal et al. (2017) and many other studies eliciting demand for static environmental and/or health


information, demand can only be elicited once, before agents have any experience with the information.
Since air pollution varies at high frequency, we can first expose agents to the information and then elicit
willingness to pay.
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The third relevant literature is on forecasting in developing countries. Previous work
has focused on farmers and responses to weather forecasts, especially precipitation forecasts
(Rosenzweig and Udry, 2014a,b; Kala, 2017). While we also study responses to forecasts,
this paper makes novel contributions to this literature on several dimensions. We elicit
beliefs directly using incentive-compatible mechanisms, rather than inferring them within
a structural model. Our experiment examines a different but consequential type of
uncertainty–air pollution–and different responses–e.g. time spent outside. Studying these
beliefs and behaviors is increasingly important, as rural citizens in the developing world
continue moving to cities (Henderson, 2002).


Lastly we contribute to the body of work on training interventions in developing countries.
Previous research has focused on business and entrepreneurship skills (Karlan and Valdivia,
2011; McKenzie and Woodruff, 2014; Valdivia, 2015; Brudevold-Newman et al., 2017),
or job training (Card et al., 2011; Acevedo et al., 2017). Our paper instead considers
training in general-purpose forecast skills. Researchers have sought to improve forecasting
performance in high-income settings, typically with highly educated subjects (Mellers et al.,
2014; Morewedge et al., 2015; Soll, Milkman, and Payne, 2015). So far as we are aware, ours
is the first study to adapt such techniques to the constraints of a developing city.


The rest of the paper proceeds as follows. Section 2 presents our theoretical model
and Section 3 discusses the design of our experiment. Section 4 describes our approach to
empirical analysis. Section 5 discusses estimated treatment effects and mechanisms, and
Section 6 concludes.


2 Theoretical model


In this section, we build a simple model of pollution avoidance by a forward-looking agent.
Consider an individual who at the end of the day (t = 0) is planning activities for the next
day (t = 1). Her payoff depends on the level of air pollution tomorrow and there are two
possible states s ∈ {h, l}, high and low. The agent consumes only at t = 1. Pollution
effects can be mitigated by engaging in avoidance behavior, which can be purchased in both
periods. Examples of avoidance in our setting include protective face masks and cancellation
or rescheduling of planned outdoor activities.19 Let x and y denote the amount of avoidance
purchased in periods 0 and 1 respectively, so the agent’s payoff is


E − ds(x+ y)− c(x, y),


19One might object that masks are a durable good. We do not model them as such because 1) masks have
a limited life span, roughly 1 to 30 days in our Lahore setting, and 2) the cost of avoidance can be viewed
in terms of opportunity cost, i.e use of a mask today prevents usage later.
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where E > d(0) is her initial endowment20 and ds is the state-dependent damage function,21


assumed to be decreasing and strictly convex in the sum of avoidance purchased.22 We
further assume that both the magnitude of damage and the marginal benefit of avoidance
are increasing with the level of pollution, that is dh(A) ≥ dl(A) ∀A and dh1(A) ≤ dl1(A) ∀A.23


The cost of avoidance is captured through the cost function c, which is assumed to be strictly
convex and increasing in both x and y. The marginal cost of avoidance rises if the agent
waits to purchase. This may be thought of as capturing increased search costs or higher
price from a time-constrained search for a mask, or the increased difficulty of rescheduling
outdoor activities at the last minute.24 Mathematically this implies that globally, c1 ≤ c2.
We ensure this by assuming that c(0, 0) = c1(0, 0) = c2(0, 0) = 0 and that for all x and y,
c11 ≤ c12 ≤ c22.25


The level of pollution is unknown at time 0 but revealed at time 1. The probability of high
pollution is P (h) = π.26 In the process of optimizing the agent forms an internal forecast,
F ∈ {H,L}, of tomorrow’s pollution. Her forecasting performance depends on her human
capital τ and her information set ι at t = 0, both exogenous. We define the probability of
a correct forecast as the the agent’s skill, P (H|h, ι, τ) = P (L|l, ι, τ) = ρ, and assume she
is equally good at predicting high and low pollution.27 We assume that skill is increasing
in both information and human capital, but make no assumption on their interaction (i.e.
whether they are substitutes or complements). Finally we assume that, given ι and τ , the


20We assume the endowment is large enough to avoid any credit constraints.
21We assume the agent is risk neutral. While extension to risk aversion is possible, it reduces tractability


without adding interesting results. We are unable to study changes in risk aversion, as those involve
comparing lotteries that are significantly different. A specialized model making this point is presented
in Appendix F.


22The assumption that damage is decreasing in the sum of avoidance implies avoidance actions are perfect
substitutes across the two periods. This matches our setting where, for example, a mask purchased yesterday
is a perfect substitute for a mask purchased today. The damage function can be generalized to any weighted
sum, e.g A = x + εy. Generalizing further is possible, say to a damage function of the form d(x, y), if we
either 1) make an interim assumption while solving, similar to Rosenzweig and Udry, 2014a, or 2) make
assumptions on the third derivatives of the damage function.


23A notation reminder is in order: we denote the partial derivative of a real valued function f(~a) with
respect to the i-th argument as fi.


24Very far ahead of time, all other time uses in an individual’s allocation are potentially substitutes for
outdoor time. Just beforehand, however, substitution may be constrained, or so expensive an individual
would never undertake it.


25As costs are convex in each period’s avoidance, making this assumption ensures that at any (x, y), buying
more x would increase the marginal cost of x by less than the marginal cost of more y (c11 ≤ c21). Similarly
buying more y would raise marginal cost of y by more than that of x (c22 ≥ c12). This is perhaps easier to
see if we assume c(x + βy), where β > 1. Then the marginal cost of y is always higher than that of x, and
the above assumptions hold. Also note that c(0, 0) = c1(0, 0) = c2(0, 0) = 0 is an elective normalization.
The only requirements are c(0, 0) = α, c1(0, 0) = β and c2(0, 0) = γ, and γ ≥ β.


26The parameter π can also be interpreted as the agent’s unbiased prior before she begins optimizing.
27Note the abuse of notation. ρ is a function of (ι, τ), and not a constant. We drop the arguments for


notational simplicity.
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forecast is weakly useful. Formally this requires ρ ≥ max{π, 1− π}.


2.1 Avoidance purchased after pollution is realized (2nd period)


We begin solving backward and consider the problem at time t = 1 (the second period).
The state of the world s is known, as is the previously purchased level of avoidance x. The
agent’s problem is given by


us(x) = max
y
{E − ds(x+ y)− c(x, y)}. (1)


Under our assumptions, a unique state-dependent level of avoidance exists, though the two-
stage nature of the problem precludes parsimonious assumptions that would ensure it is
non-zero. We focus on the cases that yield interior solutions. Then the state-dependent
optimal level of avoidance in period 1, ys(x), is implicitly defined by the first-order condition


− ds1(x+ ys)− c2(ys) = 0. (2)


By the implicit function theorem we know that ys1 = −−d
s
11 − c12


−ds11 − c22
∈ [−1, 0], as ds and c are


convex in all variables and 0 < c11 ≤ c12 ≤ c22. The results are intuitive given that avoidance
actions in the two periods are substitutes, and the marginal cost of avoidance increases in
the second period. Finally note that if a < b, then a + ys(a) ≤ b + ys(b). That is, if the
agent invests less in the first period, she does not fully make up for it in the second period.


2.2 Avoidance purchased before pollution is realized (1st period)


We now turn our attention to the full ex-ante problem. Given forecasting skill ρ the agent
maximizes


V (ρ, π) = max
xH ,xL


{π[ρuh(xH) + (1− ρ)uh(xL)] + (1− π)[ρul(xL) + (1− ρ)ul(xH)]}. (3)


Interpreting the above, notice that first the state of the world is determined (with probability
π), and then the agent makes a forecast (with skill ρ). The agent’s forecast may incorporate
external signals. Based on her forecast, the agent chooses her level of avoidance at period 0.
Once the state is realized, she purchases extra avoidance as needed and experiences utility
based on the state.


We can transform this bivariate maximization problem into two simpler forecast-
dependent problems using Bayes’ rule. The value function can alternatively be expressed
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as


V (ρ, π) = ϕ{max
xH


[qHuh(xH) + (1− qH)ul(xH)]}+ (1− ϕ){max
xL


[qLul(xL) + (1− qL)uh(xL)]},


where ϕ = P (H) = 1 − ρ − π + 2πρ , qH = P (h|H) = πρ
ϕ


and qL = P (l|L) = ρ(1−π)
1−ϕ . This


transformation allows us to instead solve an interim problem at time 0 that is a function of
the agent’s forecast.28 The result is similar to the rainfall forecasting problem presented in
Rosenzweig and Udry (2014b), though with one important distinction. Unlike Rosenzweig
and Udry (2014b) we model skill as P (F |s) = ρ (suppressing exogenous variables), while
Rosenzweig and Udry (2014b) model it as P (s|F ) = q, with the quality measure assumed
equal for both signals. As can be seen from our formulations of qF , this assumption is
meaningfully restrictive.


We can now solve the agent’s problem based on her forecast. Consider the case when she
forecasts a high level of pollution. Again, this could be based largely on an external signal.
Then her optimization problem is


max
x


 qH [E − dh(x+ yh(x))− c(x, yh(x))]
+(1− qH)[E − dl(x+ yl(x))− c(x, yl(x))]


 . (4)


Before continuing, we note that the best-case scenario for the agent is low pollution.
Given that the marginal cost of air pollution rises in the second period, it then follows
directly that the agent will always pre-purchase at least the optimal level of avoidance for
low pollution, xl = argmaxxE − dl(x)− c(x). Furthermore in the state with low pollution,
the agent will not purchase additional avoidance tomorrow, i.e. yl(xl + x) = 0 for all x ≥ 0.
Then we can re-write equation 4 as


max
x


q
H [E − dh(xl + x+ yh(x))− c(xl + x, yh(x))]
+(1− qH)[E − dl(xl + x)− c(xl + x, 0))]


 .


28The transformation is a direct application of Bayes’ rule and simple algebraic manipulation. We
reproduce some of the main steps below


max
xH ,xL


{P (h)P (H|h)uh(xH) + P (h)P (L|h)uh(xL) + P (l)P (L|l)ul(xL) + P (l)P (H|L)ul(xH)}


= max
xH ,xL


{P (H)P (h|H)uh(xH) + P (L)P (h|L)uh(xL) + P (L)P (l|L)ul(xL) + P (H)P (l|H)ul(xH)}


= max
xH ,xL


{P (H)[P (h|H)uh(xH) + P (l|H)ul(xH)] + P (L)[P (h|L)uh(xL) + P (l|L)ul(xL)]}.
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The first-order condition yields29


qH [−dh1 .(1 + yh1 )− c2y
h
1 − c1] + (1− qH)[−dl1 − c1] = 0.


Rearranging and substituting in the first-order condition for the period 1 problem (equation
2) yields


qH [−dh1 ] + (1− qH)[−dl1]− c1 = 0. (5)


We do not need to check the second-order condition as this is a simple case of partial
minimization. However as we use it later, the second derivative is −qHdh11.(1 + yh1 ) − (1 −
qH)dl11 − c11 < 0, as the damage function and costs are strictly convex, and yh1 ∈ [−1, 0].


Equation 5 implicitly defines xH(qH), the optimal level of investment given a forecast of
high pollution. We can now ascertain the effect of forecast skill on the level of avoidance


purchased in advance. By the implicit function theorem, xH1 = −−d
h
1 + dl1
SOC


≥ 0, where SOC
is the (negative) second order condition and dh1(A) ≤ dl1(A) ∀A. Symmetric arguments imply
that xL1 ≤ 0.


Finally, we wish to compare levels of investment based on the signal the agent receives.
Under our assumptions on the agent’s forecast skill (ρ ≥ max{π, 1 − π}), we know that
qH , qL ≥ 1


2 . Then as a first step in our comparison of xH(qH) and xL(qL), we investigate the
artificial case where qL = qH = q. Let us consider the first-order conditions for both forecasts.
For H, we need q[−dh1 ] + (1− q)[−dl1] = c1, while for L we require (1− q)[−dh1 ] + q[−dl1] = c1.
Recall that c is increasing and convex, and that dh1(A) ≤ dl1(A) (equivalently, −dh1(A) ≥
−dl1(A)). Then in the case for each forecast, we need the q-weighted average of the slopes
of the damage functions to equal the slope of the period 0 cost function. For the high
forecast more weight is on the steeper damage function, while the reverse is true for a
forecast of low pollution. Coupled with the convexity of the cost function, this implies that
xH(q) > xL(q) ∀q. The result is both intuitive and consistent with Rosenzweig and Udry
(2014a): a forecast of high pollution, given the same q, should result in higher investment
compared to a forecast of low pollution.


While intuitive, the result is incomplete, as qH need not equal qL. In fact, depending
on the value of π, either could be higher.30 Recall that xH1 ≥ 0 and xL1 ≤ 0, and consider
first the case when qH ≥ qL. Then we have that xL(qL) ≤ xH(qL) ≤ xH(qH). Similarly,
when qL ≥ qH , we have that xH(qH) ≥ xL(qH) ≥ xL(qL). We have seen, then, that


29Once again, we focus on interior solutions, though it is possible to assume Inada conditions here to
ensure interiority.


30In particular, if π ≥ 0.5, qH ≥ qL, while the reverse is true otherwise.
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xH(qH) ≥ xL(qL) for all possible cases.31


2.3 Willingness to pay for improvements in forecast services


We now turn our attention to willingness to pay for our forecast service, represented within
the model as an increase in the agent’s forecast quality. Recall that the value function,
V (ρ, π) is defined by equation 3. Then application of the envelope theorem yields


V1 = π[uh(xH(qH))− uh(xL(qL))] + (1− π)[ul(xL(qL))− ul(xH(qH))].


To sign this expression, we need to sign uh(xH)− uh(xL) and ul(xL)− ul(xH). Consider the
expression us1 = −ds1(1 + ys1) − c1 − c2y


s
1 = −ds1 − c1. Taking the second derivative yields


us11 = −ds11(1 + ys1)− c11 < 0, so us is concave and attains unique maxima (one per state).
Of interest, however, are not the maxima (as the agent cannot predict the state of


the world perfectly), but rather uh1(xH) and ul1(xL). Note that xH is implicitly defined by
qH [−dh1 ]+(1−qH)[−dl1] = c1 and similarly xL is implicitly defined by qL[−dl1]+(1−qL)[−dh1 ] =
c1. So given that dh is steeper than dl (and both have negative slope), then at xH , uh1 ≥ 0
and at xL, ul1 ≤ 0.32 This coupled with the fact that xH(qH) ≥ xL(qL), and that both us are
concave, implies that V1 ≥ 0. Hence we know that as the quality of the forecast improves,
the individual’s utility increases. This implies that willingness to pay for a useful third-party
(external) forecast is positive, and increasing in quality.


Before we move to the final step and model the effects of training and our SMS forecast
service, we note that the previous results for xH and xL provide some useful insights.
Compared to a world where the state of air pollution is known (qH = qL = 1), in
a world with imperfect information, the agent under-invests when her forecast is high
(xH(qH) ≤ argmaxx uh(x)) and over-invests when it is low (xL(qL) ≥ argmaxx ul(x)).33 The
result is intuitive, as when the agent forecasts high pollution, she under-invests to benefit
from the non-zero probability of a low pollution state, and vice versa. This result adds to
the set of potential explanations for low mask take-up in developing-country settings with
low information and variable pollution.


31This is driven by the fact that ρ ≥ max{π, 1− π}, which implies qL, qF ≥ 0.5.
32To see this more clearly, focus on uh


1 |xH = −dh
1 − c1. At xH , qH [−dh


1 ] + (1− qH)[−dl
1] = c1, and so c1 is


equal to the weighted average of slopes of dh and dl. Then if follows that dhis steeper than c at xH and so
uh


1 is positive. Symmetric arguments apply to ul
1 at xL.


33Another way of seeing this result is by noting that “perfect” forecasts would imply that qH = qL = 1.
Given that xH


1 ≥ 0 and xL
1 ≤ 0, imperfect signals yield under- and over-investment, for high and low forecasts


respectively.
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2.4 Effects of information and training


As a final step, we now model the effects of our experimental interventions: SMS forecasts
and forecasting training. Recall that ρ is a function of information ι and human capital τ .
Within the model, we think of our SMS forecast as an increase in the agent’s information.
In the extreme case an agent may simply adopt our forecast as her own.34 Similarly, our
training is designed explicitly to increase human capital in the dimension of forecast ability.
Both our experimental treatments, then, should improve agents’ forecast skill.


2.5 Hypotheses


The assumption that our treatments increase an agent’s forecast skill yields the following
hypotheses.


Hypothesis 1. Willingness to pay for services that improve the agent’s forecast is non-zero.


We now turn to avoidance behavior. Lahore experienced high air pollution throughout
our study. If subjects forecast high air pollution, we expect the following.


Hypothesis 2. Subjects receiving our treatments should undertake more avoidance behavior.
In particular, we expect those in all treatment arms to have higher willingness to pay for
masks, compared to those in the control arm.


Similarly, our time-use data provide us with information on avoidance as a function of
the forecast sent a day ahead. Our model suggests that avoidance is increasing in the level
of the air pollution forecast.


Hypothesis 3. Avoidance (e.g. reduced outdoor time) is expected to better match the state
(high or low pollution) among recipients of the SMS service. In particular, subjects receiving
SMS forecasts should avoid more than control subjects on high-pollution days and less on
low-pollution days.


Under the additional assumption that experience with our SMS forecast increases its
perceived skill, we expect the following.


Hypothesis 4. Willingness to pay for forecast service will be greater for those who have
experience receiving the SMS service, compared to those without.


Finally we note that the interaction effects of the two treatments are ambiguous in sign,
largely because we impose little structure on the agent’s forecast function ρ.35


34Here and throughout the paper, we remain largely agnostic on questions of belief updating.
35There is little empirical basis for restricting ρ in our setting. While agents’ behavior in combining


information and human capital to produce forecasts raises interesting research questions, they are mostly
beyond the scope of this paper.
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Hypothesis 5. Among participants who received the SMS service, training will increase
WTP for the SMS service if training and information are complements ( ∂


2ρ


∂ι∂τ
≥ 0) and


decrease it if they are substitutes.


3 Experimental design


Details of sampling and randomization are discussed in Appendix C. Figure 1 shows the
division of our sample into treatment and control groups. We find no evidence of imbalance
across these groups at either baseline or endline (Tables A1 through A4).


At baseline all subjects received a pamphlet explaining fine particulate air pollution
(PM2.5). A color-coded table described potential health effects for different pollution ranges
in neutral language. The pamphlet also provided the mean and 5th and 95th percentiles of
the distribution of daily average fine particulate readings.36 Broadly the goal of the pamphlet
was to put all subjects—including the control group—in a position to make grossly reasonable
forecasts. In Treatment Groups 1 and 3 (T1 and T3 ), we delivered SMS air pollution forecast
messages to respondents every day over a period of eight months. In Treatment Groups 2
and 3 (T2 and T3 ), we implemented the forecast training once for every subject. More
detailed descriptions of these interventions follow.


3.1 Interventions


3.1.1 Day-ahead air pollution forecasts


We designed a model to forecast day-ahead (t+1 ) PM2.5 air pollution. Our ensemble forecast
combined the following inputs.37


1. A model based on data from our own air pollution monitors. PM2.5 levels for t+1 were
predicted using a MA7 model with day of the week fixed-effects and weather forecast
controls. The MA7 form was selected using a cross-validation exercise.


2. A similar MA7 model based on data from the US Consulate’s air pollution monitor.


3. MeteoBlue and SPRINTARS models. These are third-party forecasts based on satellite
data.


For additional detail on how these models were estimated and disseminated, see Appendix
D. We provided our treatment-group (T1 ) respondents two pieces of information in each


36The percentiles were described in colloquial language that assumed no knowledge of probability.
37For more detail, see Section C.4.
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message: 1) an average PM2.5 air pollution forecast for t+1 ; and 2) the realized average
PM2.5 level for the previous day (t-1 ). The latter was intended to allow subjects to assess
the accuracy of our previous forecasts.


3.1.2 Forecast Training


We implemented a one-hour training in forecasting skills based on the principles of Tetlock
(2017) and Kahneman (2011). Broadly speaking, the training aimed to reduce behavioral and
psychological mistakes that decrease the accuracy of subjects’ forecasts. A group of specially
selected and trained enumerators conducted the trainings in Urdu in subjects’ homes, and
subjects received 150 PKR for their participation.38


The first set of training exercises covered the concept of calibration. In pilot sessions,
most subjects made large errors and demonstrated overconfidence, consistent with evidence
from high-income countries (Mellers et al., 2014). The calibration exercises were intended
to show subjects that they had room for improvement and open their minds to subsequent
lessons.


The next set of exercises taught subjects to combine “outside” and “inside” views when
making a forecast (Kahneman and Lovallo, 1993; Lovallo, Clarke, and Camerer, 2012).The
outside view is a mean outcome or base rate from a reference class of similar uncertain
events. In our setting, long-run mean air pollution in Lahore would be a reasonable base
rate. The inside view incorporates information particular to the event being forecast, like
the probability of rain tomorrow. Subjects were taught how to choose a good reference class
and warned of the tendency to give too much weight to the inside view.


In the following set of exercises, subjects were asked to reflect on an earlier forecasting
task and had the opportunity to change their previous forecasts. This taught subjects to
slow down and to engage “System Two” in the language of Kahneman (2011). Subjects then
completed an exercise that encouraged them not to round their forecasts excessively.


The next exercise taught subjects an important heuristic for forecasting time series: they
were instructed to consider a history at least as long as the time horizon of the forecast task.
That is, to forecast three days ahead one should consider at least three days of history. The
final exercise reminded subjects that people tend to allow their emotions and preferences to
influence their forecasts. For example, a person who plans to spend the day outside tomorrow
may underrate the chance of rain.


All exercises involved the active participation of subjects and were followed by clear
feedback. The training was designed to be general: none of the exercises involved air


38Urdu is one of the primary local languages spoken in Lahore.
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pollution, nor was any air pollution information provided. Sessions were relatively brief,
with an average duration of 51 minutes.39


3.2 Primary outcomes


We measured five primary outcomes at endline.


1. Willingness to pay (WTP) for pollution forecasts. We elicited respondents’
willingness to pay for a 90-day subscription to our PM2.5 forecast SMS service. We used
a Becker-DeGroot-Marschak (BDM) mechanism (Becker, DeGroot, and Marschak,
1964), drawing the price in Pakistani Rupees (PKR) from a uniform distribution on
the interval [0, 200].40 This outcome allows us to measure forecast consumption—that
is, do our respondents value forecast information?


2. Air pollution forecast error index. We asked respondents to forecast Lahore’s
average PM2.5 levels at t + 1 and t + 3 and calculated an index of the two forecast
errors.41 We incentivized the forecasts by offering payments for responses within 5, 10,
and 20 percent of realized PM2.5 levels. This outcome allows us to examine forecast
production—that is, do our treatments improve respondents’ ability to forecast? Before
providing an air pollution forecast, subjects had the opportunity to view a weather
forecast at no cost. Weather forecasts are potentially relevant because, for example,
rain greatly reduces particulate pollution. This secondary feature of the experiment
was designed to evaluate whether treatment would affect takeup and use of relevant
information.


3. Willingness to pay for particulate-filtering face masks. We elicited respondents’
willingness to pay for air pollution masks using a BDM mechanism, with the price in
PKR drawn from a uniform distribution on the interval [0, 200]. This outcome allows
us to measure behavioral response—that is, do our treatments increase respondents’
valuation of an avoidance good?


4. Air pollution avoidance index. We asked respondents to report (yes or no) whether
in the past week they: (i) reduced the number of hours spent on non-work outdoor
activities; (ii) reduced the number of hours worked significantly; or (iii) rescheduled
activities across days in response to poor air quality. We indexed these responses into a


39The standard deviation of training duration was 15 minutes.
40Before bidding on masks or forecasts, subjects completed a practice BDM auction using real money and


answered comprehension questions. Enumerators explained any errors in answering these questions.
41Absolute-value forecast errors were divided by the control-group standard deviation at each time horizon


(t+1) and (t+3), then averaged to form the index.
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single measure. This outcome offers an additional dimension of behavioral response—
that is, do our treatments alter respondents’ time allocations in ways that reduce air
pollution exposure?


5. Happiness variance. On a five-point Likert scale, we asked respondents to report
“how variable has [their] level of happiness been from day to day over the past week.”42


This measures whether our treatments help subjects to better smooth subjective well-
being across days.


4 Empirical strategy


This section explains our strategy for estimating causal effects of treatment. Meaningful
deviations from the pre-analysis plan are described in Appendix E.3.


4.1 Intent to treat


We estimate willingness to pay for three months of SMS forecasts between subjects.


Yi = α +Z ′


iβ + εi (6)


In this equation i indexes subject and Y is the outcome. Z is a vector of dummies denoting
random assignment to SMS forecasts (ZF ) and training (ZT ), plus their interaction (ZFT =
ZF ∗ ZT ). Our pre-analysis plan anticipated power concerns under correction for multiple
testing across eight primary estimates (discussed in Section 4.3). With such concerns in view,
the plan pre-specified theoretically motivated one-tailed tests for some treatment-outcome
combinations. For willingness to pay for forecasts, our pre-specified hypothesis test takes the
one-tailed form: α + βF > 0. That is, we test whether mean willingness to pay is positive
among subjects in the SMS-forecast-only group.43 This is the test that will be included in
our multiple-testing correction procedure.44


We estimate effects within subject for the following primary outcomes: air pollution
forecast error index, self-reported happiness variance, willingness to pay for a particulate-
filtering mask, and an index of air pollution avoidance. The estimating equation is as follows.


42Happiness variance and the air pollution avoidance index are self-reported measures.
43Note that because randomization block dummies are not included in Equation 6, treatment effects are


not identified and estimates of β should not be interpreted causally. The sum α + βF is of research and
policy interest even though it does not reflect causal effects of treatment.


44The hypotheses that willingness to pay among control subjects is positive α > 0, that training affects
willingness to pay βT 6= 0, and that the treatments interact βF T 6= 0, are interesting but secondary.
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Yi = Z
′


iβ + γY0i +X ′


iδ + εi (7)


Notation for outcomes and treatments is as in Equation 6.45 Y0 is the baseline variable
corresponding to the outcome Y . X is a vector of controls, including randomization block
dummies. As pre-specified, other elements of X were chosen using post-double-selection
LASSO applied separately to each primary outcome.46


Again as pre-specified, hypothesis testing on β̂ varies by outcome. For the air pollution
forecast error index, theory predicts that more information and better forecast training
should both weakly improve forecast quality. The tests are one-tailed, against the alternatives
βF < 0, βT < 0. The substitutability or complementarity of our two interventions is
theoretically ambiguous, so the test of their interaction is two-tailed (βFT 6= 0) for this
and all other outcomes. Theory predicts that both treatments should improve subjects’
ability to smooth utility over time, so tests in the model of self-reported happiness variance
are one-tailed (βF < 0, βT < 0). Finally we expect both treatments to increase avoidance,
so tests for mask demand and the avoidance index are against the following alternatives:
βF > 0, βT > 0.


4.2 Treatment on the treated


For the training arm (ZT = 1) we observe participation in the training session (PT = 1). For
the forecast arm (ZF = 1) takeup means looking at our SMS forecast. This was not directly
observable. Moreover it plausibly varied, both across individuals and within individual over
time. As pre-specified, we construct a takeup measure using endline survey responses to the
question: “How many times in the last week have you seen our pollution forecast message?”47


Denote the response of subject i as Ri.48 Then a subject’s takeup is defined as PFi = 1
7Ri.


This variable will range from zero to one, and can be interpreted as the fraction of forecasts
taken up. While PFi is measured with error, in expectation this error has zero covariance
with our random treatment assignment Zi. Importantly, we also allow for takeup by those
in our control group.49 In the endline survey, we showed control respondents a picture of a
forecast treatment SMS message and asked “Did you receive any LUMS air pollution text


45All treatment regressions include a constant term, but we omit it from most equations in this document
in the interest of clarity.


46See Appendix E.2 for more discussion.
47This question was asked only of subjects assigned to the forecast treatment.
48Subjects who responded “not sure” are assigned Ri = 0.
49Such non-compliance was not possible with the training treatment as we had absolute control over who


participated.
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messages similar to these from someone else?”50 If the respondent said yes, we followed up
with “If yes, how frequently did this happen?” We estimate a frequency in the last week by
dividing the reported (total) frequency by the number of weeks of the forecast intervention.
Just 31 of 544 subjects (5.7 percent) outside the text message group reported receiving any
of our pollution forecasts. Of these 31 subjects, 22 reported receiving one to nine of our
messages over the entire course of the study, and just nine reported receiving ten or more
(Table A15).


The interaction of takeup measures is simply PFT = PFPT . Let the vector P contain all
three takeup variables. Effects of treatment on the treated are estimated using 2SLS, with
Z instrumenting for P . Estimating equations appear in Appendix E.1. One- and two-tailed
hypothesis tests for primary outcomes are analogous to those in our ITT regressions.


4.3 p value adjustments


To address the problem of multiple hypothesis testing, we follow the procedures in Benjamini,
Krieger, and Yekutieli (2006) to control the false discovery rate for a pre-specified subset
of alternative hypotheses related to our primary outcomes: willingness to pay for forecast
information (α + βF > 0), air pollution forecast error index (βF < 0, βT < 0), self-reported
happiness variance (βT < 0), willingness to pay for masks (βF > 0, βT > 0), and the
avoidance index (βF > 0, βT > 0). The total count of included tests is eight. Note this is
not an exhaustive list of hypotheses involving treatment effects on our primary outcomes.
As pre-specified, where a test is less interesting we exclude it from the adjustment procedure.


5 Results


5.1 Primary outcomes, intent to treat


We begin by examining demand for 90 additional days of our SMS air pollution forecasts.
As pre-specified, our analysis focuses on subjects exposed only to the forecast treatment.
Forecasts are plausibly an experience good, and these subjects’ demand reflects months of
interaction and learning. This informed demand constitutes the relevant estimand for a
policymaker contemplating distribution of government forecasts and conducting a benefit-
cost analysis. Figure 2 Panel A presents a histogram of willingness to pay (WTP) for this
group. There is evidence of round-number heaping, particularly at multiples of 10 and 50.
Vertical lines indicate the mean at 93.22 PKR and the median at 100 PKR. Roughly two
percent of respondents in this group bid the maximum of 200 PKR and their willingness


50LUMS is the Lahore University of Management Sciences.
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to pay is potentially censored. This implies that true mean willingness to pay is weakly
greater than our reported value. In a right-tailed test against a zero null hypothesis p = .000
and we reject at the one percent level of significance (see Table A5). This is consistent
with Hypothesis 1 from the model in Section 2, that willingness to pay for useful forecasts
is non-zero. On a monthly basis, mean WTP of 93 PKR represents roughly 60 percent
of the cost of 4G mobile internet access.51 Considering a different benchmark, 93 PKR is
approximately 20 percent of a day’s earnings for an unskilled laborer. Under the assumption
that our forecasts provide no direct utility (as in the theoretical model of Section 2),52 mean
WTP can be interpreted as the expected welfare gain from additional avoidance facilitated
by the information. Figure 2 Panel B presents the same underlying WTP responses as a
demand curve. The average elasticity of quantity demanded—expressed here as the share of
subjects purchasing—with respect to price is -.93.


In our low-income subject population, finding an appreciably positive mean willingness
to pay was by no means obvious ex ante. Barnwal et al. (2017) discovered low and elastic
demand for arsenic testing of wells in Bihar, India. More broadly, a large body of work in
development economics has revealed both low and strongly elastic demand for preventative
health care (Kremer and Glennerster, 2011). Thornton (2008) found that even at a zero
price, only 34 percent of subjects pick up HIV test results. Even small incentives doubled
takeup. This suggests that demand for health information (or alternatively, information
complementary to health care) may share features with demand for other preventative
measures, like insecticide-treated nets and water treatment.


The relatively high willingness to pay for air pollution forecasts may stem from several
factors. First, because we delivered the forecasts by text message, subjects do not face the
takeup barriers in time, distance, and inconvenience identified by studies like Thornton
(2008) and Kremer et al. (2011). Second, many previous studies have not used BDM
elicitation. Finally, differences in setting may be important. Studies like Kremer et al.
(2011) have examined rural populations, while ours is urban. Air pollution is a salient issue
in Lahore because of its severity: in 2019, the city ranked as the 12th most polluted in the
world based on PM2.5 (IQAir, 2019). While our results may not transfer to settings like
Accra or Santiago—which experience substantially better air quality—they potentially shed
light on cities with air pollution similar to Lahore’s (for example, Delhi and Dhaka) and on


51Alternatively, one can use total mobile phone costs as a reference point. Table 22 of Pakistan Bureau of
Statistics (2017) gives monthly per capita communications expenditure in the third quintile at 75.62 PKR.
Dividing our WTP estimate by three gives a monthly WTP of 31.07 PKR. As a proportion of communications
expenditure this is 41 percent.


52By “no direct utility” we mean that subjects do not derive satisfaction from the forecast itself, even
without acting on it.
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past periods of acute fine particulate pollution in cities like Beijing.
Our other primary hypotheses pertain to regression estimates of intent-to-treat effects,


which are presented in Table 1. Column headings indicate dependent variables and shaded
cells denote pre-specified primary hypotheses. Column 1 presents estimates for an index of
air pollution forecast errors, aggregating errors at one- and three-day horizons (t + 1 and
t+ 3). This is our primary outcome in the domain of forecast production. Provision of SMS
forecasts reduced forecast error by .074 standard deviations, while training reduced forecast
error by .11 standard deviations. As discussed in Section 4, we pre-specified a one- or two-
tailed test at the outcome-treatment level. The resulting p-values appear in square brackets.
The SMS effect on forecast error is statistically significant at the ten percent level (p = .056),
while the training effect is statistically significant at the one percent level.53 Subjects in the
SMS forecast group had not yet received the next day’s forecast message at the time they
made their own incentivized forecasts, so the reduced error is not a mechanical consequence
of treatment.54 Instead the negative treatment effect for this group is consistent with learning
about the data-generating process for air pollution over the course of the experiment. The
negative effect of training on forecast error is consistent with increased forecasting-relevant
human capital.


The interaction effect on air pollution forecast error is positive (column 1 of Table 1), so
the effect on the group that received both treatments was−.074+−.11+.11 = −.074σ. While
the estimated interaction effect is only marginally statistically significant, it is consistent
with net substitutability of information and human capital in the production of forecasts. A
similar pattern obtains in all columns of Table 1, with estimated interaction effects taking
the sign opposite that of the forecast and training effects. Our data do not speak to the
sources of this substitutability. Potential explanations include crowd-out of training by
recent, salient SMS forecasts and constraints on recall or cognition. As treatment interactions
were not the focus of our experimental design—none were included in our pre-specified
primary outcomes—we do not discuss them further.


The reductions in forecast error from forecast provision and training are practically
large. Estimating effects in concentration rather than standard deviations (Table A6), both
treatments reduced forecast error by approximately 5 µg/m3, or 8 percent of the control
mean. The WHO 24-hour standard for PM2.5 is 25 µg/m3, so the marginal effects of forecasts
and training are roughly 20 percent of the maximum healthy level.55 The .11σ reduction


53Correction of these p-values for multiple testing is discussed later in this section.
54That is, subjects were not in a position to simply parrot the prediction of our forecast model. It is of


course possible that subjects in the SMS group based their forecasts in part on recently received messages.
Recall that our forecast messages contained predictions for t+1 but not t+3.


55Both the United States and the European Union employ more stringent standards.
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from forecast training is particularly remarkable, as our endline surveys took place four to six
months after the training sessions. This suggests that our relatively brief sessions—average
duration was 51 minutes—produced durable improvements in subjects’ forecasting ability.56


Comparisons to other studies in which experimenters designed treatments to reduce
forecast error require care, owing to differences in setting, time horizon, and forecast scoring.
Mellers et al. (2014) found that probability training improved mean standardized Brier
score—a measure of forecast skill—by roughly .1σ. The improvement persisted over two
years. Following the same annual training intervention over four years, Chang et al. (2016b)
found a six to 12 percent improvement in Brier scores, again roughly similar to our estimated
effects. While the participants belonged to many countries, they all had bachelor’s degrees,
and two thirds had graduate degrees. The probability training of Mellers et al. (2014)
and Chang et al. (2016b) contained substantially more material and more complex tasks
than ours. Thus we find a striking result—a shorter, simpler training, conducted with less
educated subjects, yielded a coarsely similar improvement in forecast performance for air
pollution.


Column 2 of Table 1 presents effects on the variance of happiness, as reported by subjects
on a five-point Likert scale.57 Larger values correspond to higher variability. Estimated
effects are small and not statistically distinguishable from zero. These coefficients potentially
reflect both small or null treatment effects on this outcome and the measurement problems
that attend questions of this type (Bond and Lang, 2019). Note that the sample size in
column 2 is 951, rather than 999 as in the other columns of Table 1. Here and throughout
the paper, sample sizes less than 999 reflect non-response.


Column 3 reports effects on willingness to pay for N95 particulate-filtering masks.58 The
SMS forecast intervention increased WTP by 6.58 PKR and this estimate is statistically
significant at the five percent level.59 The estimated effect of training is positive at 3.95 PKR,
but not statistically significant. These positive estimates are consistent with Hypothesis 2
from the model in Section 2. That is, treated subjects may have higher WTP for masks
because they are able to produce forecasts with smaller errors. Better forecasts enable
subjects to wear masks on the high-pollution days when they are most needed and conserve


56The standard deviation of training duration was 15 minutes.
57The question at endline was, “How variable has your level of happiness been from day to day over the


past week?” At baseline, we asked “How variable has your level of happiness been over the past month?”
While these questions are not identical, we use this baseline measure as a control to improve precision.


58Our endline survey concluded prior to the outbreak of the Covid-19 pandemic. At baseline, we had
capped the maximum bid at 150 PKR. Despite this difference in censoring, we employ baseline WTP as a
control corresponding to Y0i in Equation 7.


59As explained in Appendix E.3, our pre-analysis mistakenly specified a two-tailed test for this coefficient.
Table 1 reports a one-tailed p-value. The two-tailed p-value is .06.
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masks on less-polluted days. Estimated coefficients for the avoidance index are similarly
positive, but are not statistically significant for either treatment. Together the results for
mask demand and avoidance are qualitatively consistent with studies of behaviors related to
water pollution in developing countries. Madajewicz et al. (2007) found a large increase in the
probability of switching wells when they informed households of arsenic contamination, while
Jalan and Somanathan (2008) found that informing households of fecal water contamination
led them to begin purifying their water.


As discussed in Section 4.3, we adjust p values corresponding to primary hypotheses
for multiple testing using the procedure of Benjamini, Krieger, and Yekutieli (2006), which
controls the false discovery rate. Note that this procedure can yield corrected p values that
are larger or smaller than uncorrected values. Table 2 presents the corrected probabilities.
In the test of mean willingness to pay for forecasts (column 1; see also Figure 2) against
a zero null, the estimate remains significant at the one percent level. For treatment-driven
reductions in forecast error (column 2), p = .09 for forecasts and p = .03 for training and
we reject a zero null hypothesis at the ten and five percent levels, respectively. Similarly, for
the effect of SMS forecasts on willingness to pay for masks, p = .07 and we reject a zero null
hypothesis at the ten percent level. We fail to reject the null for the effect of training on
willingness to pay for masks at the ten percent level, but we note that the adjusted p value
is not far above the threshold (p = .13).


5.2 Primary outcomes, effect of treatment on the treated


Table 3 reports estimated effects of treatment on the treated, instrumenting for takeup with
treatment assignment as described in Section 4.2.60 First-stage F statistics are far above
relevant critical values. Pre-specified LASSO control selection and other details are just
as in Table 1. More than 96 percent of subjects assigned to training took up training, so
TOT effects are not meaningfully different from their ITT counterparts.61 Subjects receiving
text messages viewed them slightly less than half the time, so TOT estimates are roughly
twice as large as their ITT counterparts. As a result, the relative magnitudes of effects
from the two treatments are reversed. Among perfect compliers, text messages reduced air
pollution forecast error by more, and increased willingness to pay for masks by more, than
did forecasting training.62 To put the point another way, the apparent advantage of training


60In the text message forecast condition, we define endogenous takeup as the average share of forecasts
viewed, ranging from zero to one, including for the control group. In the training condition, takeup is a
dummy for participation in training.


61The TOT effects of training in columns 1-3 of Table 3 are slightly smaller in magnitude than the
corresponding ITT effects in Table 1 because the double-selection LASSO algorithm chooses a different set
of controls.


62We cannot reject a null hypothesis that the TOT effects are equal in any column.
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in ITT estimates arises largely from higher takeup rates, rather than larger local average
treatment effects on compliers. Perfect compliers in the text message group increased their
willingness to pay for masks by approximately 14 percent of the control-group mean.63


5.3 Mechanisms, primary outcomes


5.3.1 Sources of reduced air pollution forecast error


Column one of Table 1 demonstrates that both SMS forecasts and training reduced an index
of air pollution forecast errors at t+1 and t+3. Which element of the index drives the
estimate? Table 4 separately reports treatment effects on standardized forecast errors at
the two time horizons. Point estimates indicate that both treatments reduce error much
more at t+1 than t+3, though we cannot reject a null hypothesis of equality. Intriguingly,
the relative advantage of the training treatment is greater at the longer time horizon. One
day ahead, training reduces error by 31 percent more than SMS forecasts do. Three days
ahead, training reduces error by 95 percent more.64 Given the large standard errors, we do
not make strong claims about this pattern. It could reflect the fact that our SMS messages
contained forecasts for t+1 but not t+3.65 Over the period they received messages, subjects
might have learned lessons about forecasting one day ahead that proved unhelpful or even
counterproductive when forecasting three days ahead. In contrast, the training treatment
was designed to be general-purpose and produced practically meaningful reductions in error
at both time horizons.


Figure 3 investigates how our interventions reduced error in one-day-ahead forecasts. For
the control group and each treated group, a separate probability density function is estimated
over t + 1 forecast error. Unlike in most of this paper’s exhibits, in Figure 3 errors are
denominated in µg/m3 (rather than control-group standard deviations); no absolute value
operator is applied. At endline control subjects under-predicted pollution substantially,
by 39.6 µg/m3 on average. If subjects face convex pollution-damage and abatement-cost
functions, as hypothesized in our theoretical model, then such underprediction is more costly
than overprediction of similar magnitude. As endline surveys took place during a high-
pollution season (January-February), these prediction errors are plausibly consequential for
health and well-being.66 In contrast, the distributions for the treated groups are shifted


63By “perfect compliers” we mean subjects who viewed 100 percent of the SMS forecasts they received.
64These percentage changes use midpoints as bases.
65The SMS effect at t+1 is not mechanical. At the time they made their incentivized endline predictions,


subjects in the SMS group had not yet received our forecast for the next day.
66At baseline average t + 1 forecast error was positive: subjects over-predicted pollution. This may have


been because baseline surveys occurred during a relatively low-pollution season (April-May). Figure A1
illustrates the distribution of baseline t+ 1 forecast errors.
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rightward, indicating reduced under-prediction. Dispersion is also reduced. Tables A7 and
A8 quantify these differences in means and standard deviations, respectively. Treatment
increased means (reduced underprediction) by 2.1 to 6.4 µg/m3, with the largest change
in the SMS-forecast group.67 Treatment also reduced the standard deviation of errors by
2.7 to 14.3 µg/m3, with the largest change in the training group.68 This is apparent in
Figure 3, where the height of the distribution function at the mode is much greater for the
SMS forecast group than for the others. Because our indexed measure of forecast error (as
in Table 1 and Table 4) is built from absolute values, effects on this variable reflect both
the reduced underprediction and the reduced dispersion in the underlying (non-absolute,
non-standardized) forecast errors.


5.3.2 Analysis from the midline training intervention


If the training intervention genuinely improved forecasting ability, that should have been
apparent not only at endline, but also immediately after completion of the training. Subjects
made incentivized one-day-ahead air pollution forecasts at the beginning of the training
session and again at the end, yielding two observations for each of 522 subjects who completed
training. Recall that subjects received training in both the training-only and forecasts-plus-
training groups. This allows us to estimate simple difference-in-differences models of forecast
errors at t+ 1 and t+ 3, and an index of errors at both horizons (Table 5).69


The effect of SMS forecast receipt on forecast error at t + 1 (row one, column one) is
negative and statistically significant at the ten percent level. At the start of the training
session, subjects who had been receiving SMS forecasts made better one-day-ahead forecasts
than subjects who had not been. Because both treatments were randomized and the forecast-
only subjects had not yet been treated at the start of the training session, this estimate
can sustain a causal interpretation. The negative effect is consistent with subjects learning
about air pollution (or more formally, the data-generating process) through exposure to SMS
forecasts. The effects of SMS forecasts on t+ 3 forecast error and the error index (columns
two and three) are imprecise and one can reject neither a zero null hypothesis, nor a null
hypothesis of equality with the estimate for t+ 1.


At the end of the one-hour training, forecast errors fell in the training-only group–the
“Post training” coefficient is the marginal effect on this group. Point estimates are negative


67These estimates are not statistically significant at conventional thresholds.
68The reduction in standard deviation for the training group is statistically significant (p = .03), but


reductions for the other groups are not statistically significant at conventional thresholds.
69The estimating equation is Yit = β1ZF i + β2Postt + β3ZF i ∗ Postt +X ′


iδ + εit, with i indexing subject
and t period (beginning or end of the training session). As elsewhere in the paper, baseline controls in X
were chosen using post-double-selection LASSO.
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in all three columns, and statistically significant at conventional thresholds in columns one
and three. This is consistent with the training functioning as intended. In the forecasts-and-
training group, though, there was little change from the beginning of training to the end.
Summing the coefficients in the second and third rows gives the marginal effect of the “Post”
variable on this group. These sums are quite close to zero, and one cannot reject a zero null
hypothesis at any conventional threshold. As the “Post” variable was not randomly assigned,
speaking strictly one cannot interpret these marginal effects as causal effects of training. The
scope for confounding in the course of a one-hour training was quite limited, however, and
subjects had little ability to influence the timing of the training sessions.


Broadly, subjects who had been receiving SMS forecasts started the training session
performing better than those who had not. But over the course of the session, the other
subjects caught up in terms of forecast error. One could interpret this as evidence of a ceiling
on forecast accuracy, operating perhaps through memory or cognition. Viewed through the
lens of the model in Section 2, Table 5 provides corroborating evidence that information
and human capital are substitutes in subjects’ forecast production functions. Some of these
trained subjects attrited between training and endline. Table A9 presents the same analysis
for the endline sample and results are strongly similar.


5.3.3 Information seeking and processing


Our endline survey asked a number of questions about subjects’ information diets, especially
pertaining to weather and air quality. Columns one and two of Table 6 present ITT effects
on counts of sources consulted in the past week for a given category. Subjects receiving SMS
forecasts increased the number of air pollution information sources they consulted by .23,
or 15 percent of the control group mean. The estimate is statistically significant at the five
percent level. Our SMS forecasts were deliberately excluded from the question, so the effect
is not mechanical. The positive estimate is consistent with complementarity of our SMS
pollution forecasts and other air pollution information, e.g. social media posts.


Columns three and four of Table 6 evaluate the role of weather forecasts in production of
subjects’ own incentivized air pollution forecasts. Recall that before making an incentivized
forecast (at both baseline and endline), subjects were offered the opportunity to view a
weather forecast. In column three estimates are small and not statistically distinguishable
from zero; neither SMS forecasts nor training changed subjects’ takeup of weather forecasts.
It is possible these null results arise from a ceiling effect, as 92 percent of control subjects
took up the weather forecast. Column four interacts treatments with weather forecast takeup
to estimate heterogeneous effects on air pollution forecast error. Among trained subjects
who do not take up the weather forecast, air pollution forecast error actually increased
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by .24 standard deviations. Weather forecast takeup is endogenous and the result must
be interpreted cautiously. It is worth noting, however, that the training emphasized the
importance of carefully combining an outside view (base rate) and an inside view (situation-
specific information like a weather forecast). A trained subject who did not take up
the weather forecast plausibly missed this important lesson, perhaps because it was not
understood or the subject did not take the training seriously. It is unsurprising that such
a subject might perform worse in forecasting air pollution. Among trained subjects who
did take up the weather forecast, the marginal effect of training was .24 − .37 = −.13.
These are the subjects who drive the reductions in air pollution forecast error estimated in
our primary results (Table 1). The interaction with weather forecast takeup is larger for
training (-.37 standard deviations) than for SMS forecasts (-.10 standard deviations). This
pattern is consistent with trained subjects making better use of relevant information, but
we cannot reject a null hypothesis that the coefficients on these two interactions are equal
at any conventional threshold.


5.3.4 Mask demand


To investigate the positive treatment effect of SMS forecasts on WTP for masks, Figure
A2 presents demand curves by experimental group; they are strongly similar. From
these curves one can see that the increase in mean WTP for the forecast group is driven
primarily by increases in takeup at higher prices (100-200 PKR). Average demand elasticity
is approximately -1.1 in all four groups. Note however that the local elasticity near the
retail price—135 PKR at the time of our study–is greater at roughly -2.4 (Table A10). This
implies that small price changes or subsidies could produce large changes in mask takeup.


5.4 Secondary outcomes, intent to treat


In this section we evaluate the remaining hypotheses from our theoretical model (Section 2).
The first two are related to avoidance behavior. Column one of Table 7 presents SMS forecast
effects on time spent outside on the day before the endline survey, pooling over adults and
children.70 We focus on the SMS treatment rather than training because our SMS forecasts
varied over the course of the endline survey and training did not, but results are robust
to estimating the full suite of treatment effects (Table A11). On relatively cleaner days,


70Subjects completed 24-hour time diaries for both themselves and the youngest physically active child in
their household. The estimating equation is Yi = Yi = βFZF i + βHHi + βF HZF iHi + γY0i +X ′


iδ + εi. Hi


is a dummy for a high air pollution forecast (fine particulate concentration above 150 µg/m3) on the day
of the subject’s endline time diary (the day before the endline survey). As elsewhere in the paper, baseline
controls in X were chosen using post-double-selection LASSO.
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with our forecast of particulate pollution below 150 micrograms per cubic meter, subjects
receiving SMS messages increased outdoor time by .74 hours, or 16 percent of the control-
group mean. This estimate is statistically significant at the five percent level (p = .011).
The 150-microgram value was chosen because it was the threshold for the most polluted
category of days in the pamphlet provided to all subjects (including control subjects; see
Section 3). Because the endline surveys were conducted during a high-pollution time of year
(January-February), all of our SMS forecasts were in either the highest- or second-highest
pollution category. On relatively more polluted days, subjects receiving SMS forecasts spent
slightly less time outdoors than control subjects. That is, the sum of the “Forecasts” and
“Forecasts*Yesterday>150” coefficients is negative (.74 − .88 = −.14) and three percent of
the control mean, but one cannot reject a hypothesized zero marginal effect. When presented
with a relatively good forecast during a bad season for air pollution, SMS-treated subjects
took advantage and control subjects did not. This is consistent with Hypothesis 3. When
presented with a relatively bad forecast, SMS-treated subjects avoided slightly more than
control subjects. Again this is consistent with Hypothesis 3, but we emphasize that the
estimate is imprecise.


Column two of Table 7 presents heterogeneous treatment effects by whether subjects
care about air quality.71 At baseline 85 percent of subjects reported caring. This dimension
of heterogeneity was not pre-specified and results should be interpreted cautiously. Having
said that, the indicator for caring co-varies with other attributes in ways that suggest it is
not merely cheap talk. Covariances with baseline avoidance, endline reports of viewing SMS
forecasts, and endline demand for SMS forecasts are all positive and statistically significant;
the covariance with baseline demand for masks is positive but imprecisely estimated (Table
A12). For subjects who reported caring, the pattern of signs in column two of Table 7 is
similar to that of column one. On days with lower forecast pollution, SMS-treated subjects
who care about air pollution spent three additional quarters of an hour outside, relative to
the control group. On days with higher forecast pollution, they spent one quarter of an hour
less outside.72 Broadly the results in column two are consistent with Hypothesis 3.


Columns three through six of Table 7 repeat the specifications of the first two columns
separately for adults and children. Broadly the patterns of signs for adults and children
are similar to the pooled estimates.73 The smaller samples reduce precision, especially


71The estimating equation adds a triple interaction with an indicator for caring about air quality; this
indicator also enters in non-interacted and double-interacted control terms.


72Among subjects who care about air pollution, the marginal effect of SMS forecast treatment is .068+.69 =
.76 hours on cleaner days and .068 + .69 + 1.26 − 2.27 = −.25 hours on dirtier days. The latter marginal
effect is not statistically significant at any conventional threshold.


73Note that the pooled coefficient on “Forecasts” in column one is not a convex combination of the
corresponding adult- and child-specific coefficients because of our pre-specified LASSO procedure for control
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for children, preventing us from making strong statements about relative magnitudes.
Bearing that caveat in mind, the point estimates are consistent with greater avoidance
among forecast-treated children (.60 − 1.08 = −.48 hours in column five) than adults
(.60 − .45 = −.15 hours in column three). Similarly the marginal effects of SMS forecasts
on high-pollution days in households that care about air quality are consistent with more
avoidance among children than adults.74


Our experiment produced no direct evidence on whether the changes in outdoor time
seen in Table 7 reduced pollution exposure. We cannot exclude the possibility that subjects
were making mistakes, particularly if pollution was high inside their home or workplace.
But staying indoors can be an effective air pollution avoidance strategy. Levels of some
pollutants, e.g. ozone, are generally much lower indoors (US Centers for Disease Control
and Prevention, 2022) and indoor activities often involve less physical exertion (Laumbach,
2010). Our time-use findings are consistent with Barwick et al. (2019), which finds that
credit-card transactions outside the home decline with higher air pollution after the rollout
of real-time pollution information in China.


Finally, our theoretical model delivers two predictions related to willingness to pay
for continued receipt of our SMS pollution forecasts. The first is that willingness to pay
will be higher among subjects who have received the (free) SMS forecast treatment. The
corresponding regression estimate (Table A5, column two) is positive 5.3 PKR and large in
proportional terms, consistent with Hypothesis 4. This estimate is not statistically significant
at conventional thresholds. The estimated interaction effect of the forecast and training
interventions is negative. Under Hypothesis 5, this negative sign implies substitutability of
training (human capital) and information in subjects’ forecast production functions. We
caution, however, that this estimate is imprecise and the associated 95 percent confidence
interval includes practically meaningful values on both sides of zero.


5.5 Robustness


5.5.1 Experimenter demand


One might worry that some subject responses, especially non-incentivized measures of air
pollution avoidance, might have been influenced by perceived experimenter demand. That
is, subjects might have said they took action to avoid air pollution, when in fact they


selection. Appendix Table A13 shows that without LASSO-selected controls, the pooled coefficient is a
convex combination of those for adults and children. Patterns of signs and magnitudes are qualitatively
unchanged, though precision is predictably reduced.


74The marginal effects are .86 + 1.07− .10− 2.40 = −.57 for children and −.41 + 1.54 + 1.17− 2.17 = .13
for adults.
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did not, if they believed we hoped to increase avoidance. This tendency could have been
exacerbated if subjects thought future interactions and payouts could depend on responses.
We attempted to mitigate these effects in several ways. First, all of our enumerators were
trained to distance themselves from the implementation of treatments and to act as unbiased
observers, with no promises of future interactions. We also ensured endline enumerators were
not those that were involved in inviting subjects to treatment or providing them forecast
training. Second, we phrased questions and selected outcomes to try to mitigate experimenter
demand effects, including relying heavily on incentive-compatible elicitations for our primary
analyses. Third, we included a social desirability module in our endline survey, as in Crowne
and Marlowe (1960) and recent studies such as Dhar, Jain, and Jayachandran (2018). From
this module, we construct an index of social desirability and report treatment effects on
this variable in Table A14. Point estimates are small and not statistically significant.
Marginal effects on all three experimental groups are negative, suggesting that if anything
our treatment reduced the propensity to give socially desirable survey responses. No measure
of social desirability is complete and we cannot rule out this type of bias with certainty, but
there is no evidence of it in Table A14.


5.5.2 Spillovers


Given the ease of relaying our forecasts, spillovers might in principle be a concern for our
text message forecast treatment. The sampling was designed to mitigate these concerns by
separating subjects in space, but some social networks might have included both treatment
and control subjects nonetheless. We also asked subjects not to share pollution forecasts
outside their households.


We sought to measure those spillovers we could not eliminate. At endline, subjects in
the control group were asked if they received our forecasts from someone else. Just 31 of
544 subjects (5.7 percent) outside the text message group reported receiving any of our
pollution forecasts. Of these 31 subjects, 22 reported receiving one to nine of our messages,
and just nine reported receiving ten or more; Table A15 reports the complete set of spillover
frequencies. This evidence on spillovers does not raise substantial bias concerns. In addition,
we account for measured spillovers as a form of control non-compliance in our treatment-on-
the-treated estimates in Section 5.2. Because spillovers were so infrequent, accounting for
them produces minimal changes in our estimates.
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5.5.3 Other robustness


Table A16 reports primary ITT results without controlling for baseline measures of the
outcomes, and without the controls selected by the post-double-selection LASSO. As
expected precision is somewhat worse than in Table 1. Point estimates for pre-specified
primary effects are strongly similar across the two tables.


6 Conclusion


We show that increasing information and human-capital inputs allows developing-country
urbanites to make more accurate forecasts. Most strikingly, our one-hour forecast training
reduced forecast error for incentivized predictions made up to six months later. This is
consistent with the training building human capital that works against common prediction
biases. Exercises of this type could be a useful complement to education and job training
in the developing world. While our training was relatively expensive to administer, other
work has demonstrated successful de-biasing from videos and video games, which scale much
more cheaply (Morewedge et al., 2015). The constituent lessons and exercises from our
training could be delivered via such low-cost channels. More generally, our training results
suggest that assisting people in using information they already have is at least as important
as delivering new information (Hanna, Mullainathan, and Schwartzstein, 2014).


Exposure to information—pollution forecasts—also increased willingness to pay for
protective masks. This suggests that in areas where mask-wearing is not yet commonplace,
information provision could be an important spur to mask adoption and other pollution
avoidance. Our findings that mean WTP for masks is roughly 70 percent of the retail price
and demand is locally elastic suggest that modest subsidies could produce large changes in
takeup, with concomitant health benefits.


Masks are a private response to environmental information. Somanathan (2010) has
hypothesized that in developing countries, environmental information may also increase
demand for environmental quality and lead to public action. If so, the long-run responses to
air pollution forecasts may be greater in scope and magnitude than those we study.


In addition, we present evidence of meaningful willingness to pay for air pollution forecasts
among developing-country urbanites. Even under the conservative assumption that our
estimate of WTP is double the mean among Lahore’s 11 million residents, the implied
annual aggregate WTP is roughly 2.1 billion PKR, or US$12.5 million.75 This argues that
the scarcity of environmental information in many developing countries does not stem from a


75We extrapolate from mean WTP for 90 days of forecasts: (.5 ∗ 93.22PKR) ∗ (365/90) ∗ 11000000 =
2.079 ∗ 109PKR.
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lack of demand. While capital and operating costs for reference-quality air pollution monitors
are considerable—the equipment for a single site typically costs more than US$10,000—
the level of demand we estimate indicates that the welfare gain from investments in air
pollution monitoring and forecasting may be considerable. This is plausibly true not only in
Lahore, but also in other developing-country settings with high pollution, low information,
and comparable or higher incomes.


Many developing cities combine high, variable air pollution with relatively sparse
information and low stocks of human capital. Residents face considerable risk, not only from
the health effects of air pollution, but also in domains from family to employment. While
our experiment was not designed to measure the broad welfare effects of providing forecasts
or training agents to produce more accurate forecasts, they are plausibly considerable, and
warrant future research.
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7 Figures


Figure 1: Experimental Groups
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Figure 2: Willingness to pay (WTP) for air pollution forecasts, forecast-only group
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(a) Panel A: Histogram of willingness to pay
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(b) Panel B: Demand curve for air pollution forecasts
Note: We elicited willingness to pay (WTP) elicited at endline using a Becker-DeGroot-Marschak mechanism (Becker, DeGroot,


and Marschak, 1964), in which all subjects bid on 90 additional days of our SMS air pollution forecasts. The maximum bid was


200 Pakistani Rupees (PKR). Both panels reflect the forecast-only treatment group (246 subjects), as explained in Section 5.1.


The vertical long-dashed line in Panel A marks the mean at 93.22 PKR, while the vertical short-dashed line marks the median


at 100 PKR. For a formal hypothesis test of the mean against a zero null, see Table A5. Panel B expresses quantity demanded


as the share of subjects purchasing; that is, the share with WTP greater than or equal to a given price.


39







Figure 3: Mechanisms: Air pollution forecast errors (t+1)
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Note: Forecast errors are the difference between subjects’ incentive-compatible air pollution forecast and realized pollution on


the day after the endline survey. That is, a negative error represents an underprediction of pollution. Units are µg/m3, rather


than control-group standard deviations as in most exhibits in this paper. Densities were estimated under Stata default kernel


and bandwidth.
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8 Tables


Table 1: Primary outcomes, intent to treat


Forecast
error index


Happiness
variance WTP: Masks


Avoidance
index


Forecasts -0.074 0.052 6.58 0.046
(0.047) (0.070) (3.53) (0.059)
[0.056] [0.77] [0.03] [0.22]


Training -0.11 0.078 3.95 0.019
(0.047) (0.071) (3.54) (0.059)
[0.01] [0.86] [0.13] [0.37]


Forecasts + Training 0.11 -0.11 -7.58 -0.022
(0.066) (0.099) (5.02) (0.083)
[0.097] [0.13] [0.13] [0.79]


Observations 999 951 999 999
Control mean -0.000 0.017 104.1 -0.0019


Note: Coefficients are intent-to-treat effects, with the dependent variable indicated in the column heading. Units are standard


deviations for the forecast error index, the variance of happiness, and the avoidance index. Units are Pakistani Rupees (PKR)


for willingness to pay for masks. Shaded cells denote pre-specified estimates of interest. All columns include randomization


block indicators. A pre-specified LASSO procedure was used to select additional controls separately for each outcome.


Heteroskedasticity-robust standard errors are in parentheses. A pre-specified left-, right-, or two-tailed test was conducted


for each estimate of interest: air pollution forecast error index (βF < 0, βT < 0), self-reported happiness variance (βT < 0),


willingness to pay for masks (βF > 0, βT > 0), and the avoidance index (βF > 0, βT > 0). The resulting p-values appear in


square brackets.
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Table 2: MHT-adjusted p-values, primary outcomes (ITT)


WTP:
Forecasts


Forecast
error index


Happiness
variance WTP: Masks


Avoidance
index


Forecasts - 0.09 - 0.07 0.17
Training - 0.03 0.42 0.13 0.27
Forecasts + Training - - - - -
Mean, forecast-only group 0.001 - - - -


Note: The p value in column 1 corresponds to the test illustrated in Figure 2 and formalized at the bottom of column 1,


Appendix Table A5. The p values in columns 2 through 5 correspond to the tests in Table 1. The MHT correction is performed


using the procedure of Benjamini, Krieger, and Yekutieli (2006), which controls the false discovery rate. As discussed in Section


4.3, the resulting corrected p-values can be larger or smaller than their uncorrected analogs.
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Table 3: Primary outcomes, effect of treatment on the treated


Forecast
error index


Happiness
variance WTP: Masks


Avoidance
index


% Forecasts seen -0.16 0.063 14.8 0.092
(0.11) (0.16) (8.09) (0.14)
[0.07] [0.65] [0.03] [0.25]


Attended training -0.097 0.061 3.92 0.027
(0.049) (0.074) (3.79) (0.062)
[0.02] [0.8] [0.15] [0.33]


% Forecasts seen 0.24 -0.22 -18.2 -0.061
× Attended training (0.16) (0.24) (12.2) (0.20)


[0.13] [0.18] [0.14] [0.76]
Observations 999 951 999 999
Control mean -0.00 0.017 104.1 -0.0019
1st stage F-stat 173.6 168.2 174 171.5


Note: Coefficients are effects of treatment on the treated, with the dependent variable indicated in the column heading. Units


are standard deviations for the forecast error index, the variance of happiness, and the avoidance index. Units are Pakistani


Rupees (PKR) for willingness to pay for masks. Shaded cells denote pre-specified estimates of interest. All columns include


randomization block indicators. A pre-specified LASSO procedure was used to select additional controls separately for each


outcome. Heteroskedasticity-robust standard errors are in parentheses. A pre-specified left-, right-, or two-tailed test was


conducted for each estimate of interest: air pollution forecast error index (βF < 0, βT < 0), self-reported happiness variance


(βT < 0), willingness to pay for masks (βF > 0, βT > 0), and the avoidance index (βF > 0, βT > 0). The resulting p-values


appear in square brackets.
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Table 4: Mechanisms: Forecast errors, by time horizon


Forecast error (t + 1) Forecast error (t + 3)
Forecasts -0.11 -0.023


(0.058) (0.056)
Training -0.15 -0.065


(0.053) (0.057)
Forecasts + Training 0.13 0.070


(0.075) (0.082)
Observations 999 999
Control mean 0.00 0.00


Note: Estimates correspond to Equation 7, with the dependent variable indicated in the column heading. Units are


standard deviations in all columns. All columns include randomization block indicators. A pre-specified LASSO procedure


was used to select additional controls separately for each outcome. Heteroskedasticity-robust standard errors are in parentheses.
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Table 5: Mechanisms: Forecast errors, beginning and end of training


Forecast error (t + 1) Forecast error (t + 3) Forecast error idx
Forecasts -0.13 0.027 -0.045


(0.069) (0.074) (0.060)
Post training -0.14 -0.051 -0.098


(0.054) (0.046) (0.044)
Forecasts * Post 0.17 0.024 0.097


(0.064) (0.066) (0.053)
Observations 1044 1044 1044
Control mean -0.20 -0.30 -0.25


Note: The sample is comprised of two observations for each of 522 trained subjects. Estimates correspond to the equation


in footnote 69, with the dependent variable indicated in the column heading. Units are standard deviations in all columns.


All columns include randomization block indicators. A pre-specified LASSO procedure was used to select additional controls


separately for each outcome. Heteroskedasticity-robust standard errors are in parentheses.
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Table 6: Mechanisms: Information seeking


Weather
seeking


Air quality
info seeking


Weather
forecast
take up


Forecast
error index


Forecasts 0.18 0.23 0.0084 0.024
(0.14) (0.12) (0.022) (0.15)


Training -0.11 -0.015 -0.021 0.24
(0.14) (0.12) (0.024) (0.13)


Forecasts + Training 0.17 0.019 -0.012 -0.13
(0.20) (0.17) (0.034) (0.18)


Forecasts * Took up weather -0.10
(0.16)


Training * Took up weather -0.37
(0.14)


F + T * Took up weather 0.26
(0.20)


Observations 981 978 999 999
Control mean 2.73 1.53 0.92 -0.000


Note: Coefficients are intent-to-treat effects, with the dependent variable indicated in the column heading. In columns one


and two dependent variables are counts of information sources. In column three the dependent variable is an indicator for


taking up a free weather forecast before making incentivized air pollution forecasts. In column four the dependent variable is a


standardized air pollution forecast index, as in column one of Table 1. All columns include randomization block indicators. A


pre-specified LASSO procedure was used to select additional controls separately for each outcome. Heteroskedasticity-robust


standard errors are in parentheses.
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Table 7: Outdoor time, effect of receiving forecasts


Outdoor hours
Forecasts 0.74 0.068 0.60 -0.41 0.60 0.86


(0.29) (0.56) (0.33) (0.61) (0.62) (1.79)
Forecasts * Yesterday > 150 -0.88 1.26 -0.45 1.54 -1.08 1.07


(0.36) (0.99) (0.41) (0.97) (0.77) (3.10)
Forecasts * Cares about air quality 0.69 1.17 -0.10


(0.64) (0.69) (2.00)
Forecasts * Yesterday > 150 * Cares -2.27 -2.17 -2.40


(1.06) (1.04) (3.28)
Observations 1442 1442 980 980 462 462
Control mean 4.74 4.74 4.18 4.18 5.96 5.96
Adult and/or child time? Both Both Adult Adult Child Child


Note: Odd-numbered columns correspond to the equation given in footnote 70. “Yesterday > 150” is an indicator for our SMS


forecast of pollution on the day of a subject’s time diary being greater than 150 µg/m3. Even-numbered columns add triple


interactions with a baseline indicator for caring about air quality; this indicator also enters in non-interacted and double-


interacted control terms. The dependent variable is outdoor time in hours, elicited as part of a 24-hour time diary. All columns


include randomization block indicators. A pre-specified LASSO procedure was used to select additional controls. Columns 1-2


present standard errors that are clustered at the household level. Columns 3-6 present heteroskedasticity-robust standard errors.
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For online publication
A Additional figures


Figure A1: Air pollution forecast errors (t+1), baseline
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Note: Forecast errors are the differences between subjects’ incentive-compatible air pollution forecasts and realized pollution


on the day after the baseline survey. That is, a negative error represents an underprediction of pollution. Units are µg/m3,


rather than control-group standard deviations as in most exhibits in this paper. Density was estimated under Stata default


kernel and bandwidth. The sample includes all baseline respondents.
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Figure A2: Demand curves for N95 masks, endline
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Note: Willingness to pay (WTP) was elicited at endline using a Becker-DeGroot-Marschak mechanism (Becker, DeGroot,


and Marschak, 1964), in which all subjects bid on an N95 mask with a retail price of 135 PKR. The maximum bid was 200


Pakistani Rupees (PKR). Quantity demanded is expressed as the share of subjects purchasing; that is, the share with WTP


greater than or equal to a given price. Local elasticities near the retail price of 135 PKR appear in Table A10.
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B Additional tables


Table A1: Treatment-control balance, full baseline sample


Control Forecast Training
Forecasts


+ Training P-value


Age of respondent (years) 31.643 30.555 30.559 31.776 0.346
(0.663) (0.608) (0.633) (0.647)


Respondent female (=1) 0.515 0.504 0.496 0.482 0.888
(0.030) (0.030) (0.030) (0.030)


# of household members 5.493 5.603 5.676 5.864 0.482
(0.161) (0.145) (0.143) (0.182)


# of elderly in household 0.404 0.397 0.408 0.441 0.886
(0.041) (0.042) (0.042) (0.042)


# of children in household 1.680 1.952 1.746 1.941 0.173
(0.099) (0.112) (0.103) (0.116)


A household member has a respiratory disease 1.857 1.846 1.824 1.853 0.729
(0.021) (0.022) (0.023) (0.022)


# of employed household members 1.728 1.691 1.846 1.820 0.185
(0.060) (0.054) (0.061) (0.062)


Cares about air quality (likert) 3.588 3.647 3.632 3.705 0.577
(0.063) (0.059) (0.058) (0.057)


Aware of the air quality in Lahore (likert) 3.226 3.279 3.255 3.350 0.562
(0.070) (0.062) (0.064) (0.063)


Aware of the air quality in Walton (likert) 2.570 2.513 2.543 2.625 0.837
(0.096) (0.089) (0.087) (0.092)


# of times/week checks the weather 1.823 1.918 1.910 2.056 0.381
(0.093) (0.094) (0.101) (0.098)


Believes n95 masks work (=1) 0.939 0.916 0.922 0.933 0.764
(0.016) (0.018) (0.018) (0.016)


Household owns a car (=1) 1.955 1.944 1.944 1.952 0.917
(0.013) (0.014) (0.014) (0.013)


# of mobile phones household owns 2.632 2.592 2.794 2.823 0.294
(0.077) (0.081) (0.163) (0.110)


Observations 272 272 272 272
F statistic 1.7 1.6 1.5 1.1


Note: Means and heteroskedasticity-robust standard errors reported. P-values are from joint F tests of treatment orthogonality


with respect to listed observables. F statistics are from joint tests of regression coefficients on observables.
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Table A2: Attrition rates by experimental condition


Control Forecast Training
Forecasts +


Training P-value
Attrited from endline dummy 0.059 0.096 0.092 0.081 0.333


(0.014) (0.018) (0.018) (0.017)
Observations 272 272 272 272


Note: Means and heteroskedasticity-robust standard errors reported. P-value is from a joint F test of treatment orthogonality


with respect to an endline attrition indicator.


Table A3: Treatment-control balance, non-attritors


Control Forecast Training
Forecasts


+ Training P-value


Age of respondent (years) 31.746 30.671 30.308 31.580 0.346
(0.685) (0.649) (0.665) (0.660)


Respondent female (=1) 0.500 0.472 0.482 0.484 0.936
(0.031) (0.032) (0.032) (0.032)


# of household members 5.527 5.606 5.563 5.892 0.490
(0.169) (0.145) (0.142) (0.194)


# of elderly in household 0.410 0.382 0.405 0.436 0.856
(0.043) (0.043) (0.044) (0.044)


# of children in household 1.656 1.919 1.741 1.924 0.188
(0.101) (0.097) (0.109) (0.120)


A household member has a respiratory disease 1.852 1.846 1.826 1.856 0.818
(0.022) (0.023) (0.024) (0.022)


# of employed household members 1.734 1.687 1.838 1.824 0.213
(0.063) (0.054) (0.063) (0.065)


Cares about air quality (likert) 3.613 3.695 3.623 3.711 0.568
(0.064) (0.060) (0.061) (0.059)


Aware of the air quality in Lahore (likert) 3.227 3.321 3.282 3.349 0.589
(0.072) (0.063) (0.066) (0.065)


Aware of the air quality in Walton (likert) 2.565 2.558 2.569 2.592 0.993
(0.098) (0.093) (0.093) (0.094)


# of times/week checks the weather 1.824 1.955 1.975 2.012 0.537
(0.095) (0.100) (0.106) (0.101)


Believes n95 masks work (=1) 0.940 0.912 0.919 0.926 0.709
(0.016) (0.019) (0.019) (0.018)


Household owns a car (=1) 1.952 1.938 1.942 1.952 0.884
(0.014) (0.015) (0.015) (0.014)


# of mobile phones household owns 2.645 2.565 2.838 2.815 0.214
(0.080) (0.074) (0.178) (0.117)


Observations 256 246 247 250
F statistic 1.4 1.4 1.4 1.3


Note: Means and heteroskedasticity-robust standard errors reported. P-values are from joint F tests of treatment orthogonality


with respect to listed observables. F statistics are from joint tests of regression coefficients on observables.
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Table A4: Balance, non-attritors, primary outcomes at baseline


Control Forecast Training
Forecasts


+ Training P-value
Forecast error index (baseline) -0.002 0.017 0.108 0.014 0.577


(0.060) (0.062) (0.065) (0.062)
WTP: Masks (baseline) 90.000 89.110 89.615 89.640 0.994


(2.241) (2.209) (2.335) (2.270)
Avoidance index (baseline) 0.005 -0.013 0.093 -0.047 0.249


(0.050) (0.050) (0.052) (0.049)
Happiness variance (baseline) 2.803 2.746 2.703 2.611 0.158


(0.062) (0.064) (0.068) (0.061)
Observations 256 246 247 250
F statistic 0.16 1.89 1.29 1.70


Note: Means and heteroskedasticity-robust standard errors reported. P-values are from joint F tests of treatment orthogonality


with respect to listed observables. F statistics correspond to regressions of group dummies on all baseline measures of primary


outcomes. Willingness to pay for our forecast messages was not elicited at baseline by design.
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Table A5: Willingness to pay for SMS air pollution forecasts


WTP: Forecast WTP: Forecast
Forecasts 4.46 5.34


(4.22) (3.60)
Training -1.22 2.42


(4.08) (3.55)
Forecasts + Training -3.08 -5.15


(5.72) (4.95)
Constant 88.8 109.0


(2.96) (16.0)
Observations 999 999
Forecasts group mean 93.22


(3.00)
[0.00]


Note: Column 1 reports a regression of forecast WTP (in PKR) on a constant term and the three treatment dummies. This


allows a test of the mean in the forecast-only group in a regression context. As pre-specified, we conduct a right-tailed test of


the sum of the Constant and the Forecasts coefficient against a zero null and report the result at the bottom of column 1, with


the resulting p-value in square brackets. Note that because block dummies are not included in column 1, treatment effects are


not identified and estimates should not be interpreted causally. Column 2 reports estimates corresponding to Equation 7, with


forecast WTP as the outcome. Randomization block dummies are included. A pre-specified LASSO procedure was used to


select additional controls. Heteroskedasticity-robust standard errors are in parentheses.
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Table A6: Effects on absolute forecast error in µg/m3


Forecast error
Forecasts -4.12


(2.64)
[0.06]


Training -6.26
(2.63)
[0.01]


Forecasts + Training 6.11
(3.71)
[0.1]


Observations 999
Control mean 64.6


Note: Specification is as in column 1 of Table 1, but with average absolute error (t+1 and t+3) denominated in µg/m3, rather


than control-group standard deviations. As in column 1 of Table 1, tests of the Forecasts and Training estimates are left-tailed


(βF < 0, βT < 0). The resulting p-values appear in square brackets.
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Table A7: Effects on t+1 non-absolute, non-standardized forecast error in µg/m3


Forecast error (t + 1), µg/m3


Forecasts 6.41
(4.06)


Training 2.14
(3.96)


Forecasts + Training -3.49
(5.52)


Observations 999
Control mean -39.6


Note: Specification is as in column 1 of Table 1. Forecast errors are the differences between subjects’ incentive-compatible


air pollution forecasts and realized pollution on the day after the endline survey. That is, a negative error represents an


underprediction of pollution. Units are µg/m3, rather than control-group standard deviations as in most exhibits in this paper.


Heteroskedasticity-robust standard errors are in parentheses.
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Table A8: Standard deviation of t+1 air pollution forecast errors, by group


Standard deviation P-value
Control 75.24
Forecasts only 72.51 0.99
Training only 60.90 0.03
Forecasts + Training 67.49 0.42


Note: Forecast errors are the differences between subjects’ incentive-compatible air pollution forecasts and realized pollution on


the day after the endline survey. That is, a negative error represents an underprediction of pollution. Units are µg/m3, rather


than control-group standard deviations as in most exhibits in this paper. P-values correspond to the Brown and Forsythe


(1974) median-based robust test statistic for the equality of variances between control group respondents and respondents in


each of the three treatment groups.
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Table A9: Air pollution forecast errors, beginning and end of training, endline sample


Forecast error (t + 1) Forecast error (t + 3) Forecast error idx
Post training -0.15 -0.060 -0.11


(0.058) (0.049) (0.046)
Forecasts -0.12 0.018 -0.052


(0.070) (0.077) (0.063)
Forecasts * Post 0.16 0.021 0.091


(0.067) (0.069) (0.056)
Observations 968 968 968
Control mean -0.19 -0.28 -0.24


Note: Estimates correspond to the equation in footnote 69, with the dependent variable indicated in the column heading.


Units are standard deviations in all columns. All columns include randomization block indicators. A pre-specified LASSO


procedure was used to select additional controls separately for each outcome. Heteroskedasticity-robust standard errors are


in parentheses. The sample is comprised of 2 observations for each of the 484 trained subjects who completed the endline survey.
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Table A10: Price elasticity of air pollution masks near market price


Bin width 20 30 40
Price elasticity, control -2.13 -2.40 -2.32
Price elasticity, forecasts only -2.44 -2.27 -2.01
Price elasticity, training only -2.04 -2.58 -2.33
Price elasticity, F + T -2.98 -3.08 -2.65


Note: Willingness to pay (WTP) was elicited at endline using a Becker-DeGroot-Marschak mechanism (Becker, DeGroot, and


Marschak, 1964), in which all subjects bid on an N95 mask with a retail price of 135 PKR. The maximum bid was 200 Pakistani


Rupees (PKR). Elasticities are estimated from a log-log regression in which price interacts with a set of 3 bin indicators. (Bin


indicators also enter in non-interacted form.) “Bin width” refers to the bandwidth of the central bin containing the market


price of 135 PKR. That is, a bin width of 20 implies a price elasticity estimated over the range from 125 to 145 PKR. Complete


demand curves and average elasticities appear in Figure A2.
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Table A11: Outdoor time, effect of receiving forecasts, including all treatments


Outdoor hours
Forecasts 0.83 -0.25


(0.41) (0.71)
Forecasts * Yesterday > 150 -0.96 1.62


(0.50) (1.27)
Forecasts * Cares about air quality 0.85


(0.87)
Forecasts * Yesterday > 150 * Cares -2.46


(1.39)
Training -0.69 -0.14


(0.45) (0.87)
Training * Yesterday > 150 0.59 0.51


(0.56) (1.20)
Training * Cares about air quality -1.15


(1.03)
Training * Yesterday > 150 * Cares 0.58


(1.39)
Forecasts + Training -0.15 0.65


(0.60) (1.18)
(Forecasts + Training) * Yesterday > 150 0.10 -0.82


(0.74) (1.85)
(Forecasts + Training) * Cares about air quality -0.38


(1.37)
(Forecasts + Training) * Yesterday > 150 * Cares 0.51


(2.02)
Observations 1442 1442
Control mean 4.74 4.74
Adult and/or child time? Both Both


Note: Column 1 corresponds to a variant of the equation given in footnote 70, with the addition of the training treatment


and the treatment interaction. Column 2 adds triple interactions with a baseline indicator for caring about air quality; this


indicator also enters in non-interacted and double-interacted control terms. The dependent variable is outdoor time in hours,


elicited as part of a 24-hour time diary. All columns include randomization block indicators. A pre-specified LASSO procedure


was used to select additional controls. Standard errors in parentheses are clustered at the household level.
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Table A12: Covariances with caring about air quality


WTP:
masks


(Baseline)


Avoidance
index


(Baseline)


SMS views
per week
(Endline)


WTP:
forecast


(Endline)
Cares about air quality 2.67 0.44 0.52 10.2


(2.91) (0.051) (0.28) (4.06)
Observations 1088 1088 496 999
Control mean 86.9 -0.37 2.58 80.9


Note: Estimates correspond to regressions of the dependent variable indicated in the column heading on a constant and a


dummy variable for caring about air quality at baseline. Units are in Pakistani rupees (PKR) in columns 1 and 4. Units


are standard deviations in column 2. Units are an average count of views per week in column 3. Heteroskedasticity-robust


standard errors are in parentheses.
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Table A13: Outdoor time, effect of receiving forecasts, without LASSO procedure


Outdoor hours
Forecasts 0.57 0.11 0.61 -0.42 0.46 1.85


(0.38) (0.76) (0.43) (0.83) (0.69) (1.78)
Forecasts * Yesterday > 150 -0.74 1.02 -0.63 1.60 -0.99 -0.92


(0.47) (1.19) (0.53) (1.19) (0.87) (2.85)
Forecasts * Cares about air quality 0.60 1.36 -1.86


(0.87) (0.94) (2.03)
Forecasts * Yesterday > 150 * Cares -2.03 -2.68** 0.18


(1.27) (1.29) (3.06)
Observations 1442 1442 980 980 462 462
Control mean 4.74 4.74 4.18 4.18 5.96 5.96
Adult and/or child time? Both Both Adult Adult Child Child


Note: Odd-numbered columns correspond to the equation given in footnote 70. Even-numbered columns add triple interactions


with a baseline indicator for caring about air quality; this indicator also enters in non-interacted and double-interacted


control terms. The dependent variable is outdoor time in hours, elicited as part of a 24-hour time diary. All columns include


randomization block indicators. No LASSO-selected controls are included. Columns 1-2 present standard errors that are


clustered at the household level. Columns 3-6 present heteroskedasticity-robust standard errors.
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Table A14: Effects on a social desirability index


Social
desirability


index
Forecasts -0.139


(0.126)
Training -0.00642


(0.123)
Forecasts + Training 0.0388


(0.179)
Observations 998
Control mean 0.00


Note: Estimates correspond to Equation 7, with the dependent variable indicated in the column heading. All columns include


randomization block indicators. A pre-specified LASSO procedure was used to select additional controls separately for each


outcome. Heteroskedasticity-robust standard errors are in parentheses.


62







Table A15: Spillover frequencies, non-SMS groups


Num. spillover
messages Num. HH


1-9 22
10-24 6
25-49 2
50+ 1


Note: Responses were collected at endline from subjects outside the SMS forecast message group: the pure control group and


the training-only group. Subjects were shown an image of one of our messages and asked if they had received any such messages.
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Table A16: Primary results, no baseline outcome control & no LASSO-selected controls


Forecast
error index


Happiness
variance WTP: Masks


Avoidance
index


Forecasts -0.050 -0.0066 6.79 -0.029
(0.066) (0.083) (3.80) (0.071)
[0.23] [0.47] [0.04] [0.65]


Training -0.13 -0.0081 3.92 -0.078
(0.065) (0.082) (3.82) (0.070)
[0.03] [0.46] [0.15] [0.87]


Forecasts + Training 0.078 -0.030 -7.58 0.085
(0.092) (0.12) (5.41) (0.10)
[0.40] [0.40] [0.16] [0.40]


Observations 999 995 999 999
Control mean 0.00 0.00 104.1 0.00


Note: This is a variant of Table 1 that omits controls for baseline outcomes and LASSO-selected controls. All columns include


randomization block indicators. Heteroskedasticity-robust standard errors are in parentheses. A pre-specified left-, right-, or


two-tailed test was conducted for each estimate of interest: air pollution forecast error index (βF < 0, βT < 0), self-reported


happiness variance (βT < 0), willingness to pay for masks (βF > 0, βT > 0), and the avoidance index (βF > 0, βT > 0). The


resulting p-values appear in square brackets.
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C Data, sampling, and randomization details


C.1 Sampling and subjects


Located in the province of Punjab, Lahore is Pakistan’s second largest city by population.
The Pakistan Bureau of Statistics divides Lahore’s population of 11.1 million into 8 Tehsils
(subdistricts). We use data from the 2011 Multiple Indicator Cluster Survey (MICS) to
compare Walton (one of our selected Tehsils) to the rest of Lahore on key indicators.76


On average, residents of Walton are slightly more educated and wealthier than residents of
Lahore as a whole. For example, 27 percent of household heads have some tertiary education,
compared to 18.5 percent overall in Lahore. Households in Walton are also slightly more
likely to include older relatives. Using data from our pilot surveys and insights from previous
surveys in Lahore, we selected two Tehsils for our survey: Walton and Model Town.77


To collect data on outcomes and covariates we surveyed subjects in the Walton area of
Lahore at multiple points in time. Survey enumerators collected all the primary data on
electronic tablets using SurveyCTO’s Open Data Kit (ODK) server.


We used 7 charges for the study. Between 140 and 180 households per charge were
surveyed, giving a total of 1088 respondents in 7 charges. This was accomplished by using
a GIS-based system to construct 190 meter by 190 meter grid cells within each charge and
selecting up to 19 survey points within each charge. The grid buffer ensured that our survey
points were at least 190 meters from each other. We then drew 128 random GPS points
across the entire sampling frame of 7 charges.


To select households within each charge, a pin was dropped at a random point. A pair of
enumerators proceeded to the pin and selected the nearest household to the left for the first
survey. The enumerators then selected nine other households using the left hand rule: every
fifth household on the left, proceeding in a clockwise spiral fashion. Each enumerator pair
surveyed 5 male and 5 female subjects at each survey point, for a total of 10 respondents. This
ensured the gender distribution in the sample would match the population. Households were
excluded from the sample if the dwelling was locked/empty, all members of the household
were below 18 or above 60 years of age, members were not willing to subscribe to our SMS
service, or the household refused to participate in the study. In any of these situations,
the enumerator skipped the dwelling, recorded the reason for refusal, and selected the next
closest neighbor for the survey. For each household, respondent gender was chosen using a


76The MICS data does not distinguish Model Town (our other selected Tehsil) from other Tehsils.
77To draw our sample of 1088 households within these Tehsils, we included 6 out of the 11 charges (sub-


subdistricts) of Walton and 1 charge of Model Town. The excluded charges included restricted military
and high-income areas, where low response rates were expected. The sampling frame for this experiment
encompassed 7 charges, 41 circles and 231 census blocks.
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pre-generated random list.
Within the household, all members were listed according to their status. A random


number generator programmed in the survey tablet was then used to select a household
member using a three step process. First, the set of household members was restricted
to the eligible population;78 Second, a random number was generated for each member.
Members who were either household heads or spouses of household heads were pre-selected by
allocating them a probability of 1, while all other members were assigned equal probability of
being randomly selected. Third, the random numbers were used to select the nth household
member. The enumerator then asked to speak with the nth listed eligible individual to
conduct the baseline survey, conditional on oral consent.


C.2 Baseline survey (core modules)


The following modules were included in our baseline survey:


1. Information and trust;


2. Willingness to pay for particulate-filtering masks;


3. Air pollution forecast elicitation;


4. Air pollution-related attitudes and behavior;


5. Time use of the respondent and the youngest physically active child;


6. Risk aversion elicitation;


7. Political preference elicitation;


8. Demographics.


C.3 Survey frequency


Data were collected at two stages of the experiment.


1. In-person surveys: In-person baseline and endline surveys of all respondents were
conducted.


2. Treatment survey: For each individual in the forecast training treatment groups
(groups T2 and T3 in Figure 1), we conducted an in-person training session, which
allowed us to collect additional survey data.


78The eligibility criteria were: (i) ages of 18-60 years; (ii) willingness to receive our SMS forecast messages
and our forecast training; and (iii) presence in the dwelling at the time of the survey.
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C.4 Air pollution data


1. AQMesh and Dusttrak II: We used two industrial-grade monitors: (1) the AQMesh;
and (2) the Dusttrak II.79 We installed the AQMesh on the roof of a house in central
Walton. It transmitted air pollution readings via GSM continuously and data were
accessed through an API. The Dusttrak II is a handheld device that a research assistant
used to manually take readings in Walton 2-3 times a day, following a written protocol.


2. AirNow International: U.S. EPA’s AirNow program is a repository of real-time
air quality data and forecasts for the United States. AirNow International is a global
version of the U.S.-based air quality data management and display system. It provides
hourly data on PM2.5 levels. We regularly scraped this data from the AirNow website.80


3. MeteoBlue: MeteoBlue uses nonhydrostatic mesoscale and multi-scale weather
models, which we operated at resolutions between 40 km. For air quality data,
MeteoBlue makes use of forecast data from the European Commission and the ECMWF
(European Centre for Medium-Range Weather Forecasts).81 MeteoBlue uses this third-
party data to source its predictions and issues them from an atmospheric model with a
40 km resolution. We updated these predictions everyday at UTC 06:00, 10:00, 12:00
and 18:00 to include them in our secondary data.


4. SPRINTARS: Spectral Radiation-Transport Model for Aerosol Species
(SPRINTARS) is a numerical model which estimates the effect of aerosols on
the climatic system and its contribution to global air quality.82 The Climate Change
Science Section at the Research Institute for Applied Mechanics, Kyushu University
in Fukuoka, Japan primarily developed the model. SPRINTARS uses aerosols from
both natural and anthropogenic sources to estimate categories for SPM, PM 10 and
PM2.5. We used the forecasts generated from this model in our secondary data on air
quality forecasts.


79The AQMesh is a small-sensor air quality monitoring system for measuring outdoor and indoor
air quality. Details on the product can be found here: https://www.aqmesh.com/product/. The
Dusttrak-II is a battery-powered handheld aerosol monitor. Details of the device can be found here:
https://www.tsi.com/dusttrak-ii-aerosol-monitor-8532/.


80One can obtain the data from the following link after selecting Lahore as a city from the drop-down
menu: https://airnow.gov/index.cfm?action=airnow.global summary.


81Details about the ECMWF model can be found here: https://www.ecmwf.int/en/forecasts.
82Details about the SPRINTARS model can be found here: https://sprintars.riam.kyushu-


u.ac.jp/forecast.html.
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C.5 Weather data


• AccuWeather: AccuWeather is a popular source of weather forecasts. It takes the
U.S. National Oceanic and Atmospheric Administration’s (NOAA) weather forecasts
and transforms them for general consumers. Weather forecast data from Accuweather
were scraped each day for the city of Lahore.83 Data included temperature levels,
precipitation levels and cloud cover.


C.6 Randomization details


Stratification and randomization were performed in R using the commands in the blockTools
package (Moore 2012), which allows for blocking on a high-dimensional set of covariates
and avoids discretizing continuous covariates. For robustness (in terms of block stability) to
outliers, we generated multivariate location and spread using a Minimum Volume Elipsoid
(MVE) estimator. Robustness to outliers was important in our setting because pilot surveys
yielded very large forecast errors for some respondents. In computing the MVE, we weighted
incentive-compatibly elicited baseline outcomes twice as heavily as other covariates. While
the exact magnitudes of these weights were admittedly ad hoc, they made explicit our prior
that baseline outcomes should predict endline outcomes better than other covariates. Per the
recommendation of Athey and Imbens (2017), blocks contained eight subjects. We performed
blocking using the optimal-greedy algorithm implemented in the block command. Within
each block, we randomly assigned two subjects to each experimental condition (forecasts,
training, forecasts and training, control).


C.6.1 Primary treatment


Subjects were stratified on risk aversion, air pollution forecast error (t+1 and t+3 ), travel
time forecast error (t+1 and t+3 ), and willingness to pay for a particulate-filtering mask. We
elicited these variables using incentive-compatible mechanisms as part of the baseline survey.
We further stratified subjects on several self-reported variables: having rescheduled activities
in response to air pollution in the past week, informedness about air pollution, household
health risk from air pollution,84 education, gender, age, and a dummy for having provided
a subsequently verified phone number at baseline. For additional details on randomization,
see Section C.6


83https://www.accuweather.com/en/pk/lahore/260622/daily-weather-forecast/260622.
84This measure was calculated as the first principal component of three indicators: presence of a household


member with breathing problems, presence of children in the household, and presence of elderly people in
the household.
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D Intervention details


D.1 Day-ahead air pollution forecasts


We designed an ensemble model to forecast day-ahead (t+1 ) PM2.5 air pollution: the
concentration of particulates of diameter 2.5 microns or less, measured in micrograms per
cubic meter (µg/m3). Our ensemble forecast combined the following models.85


1. Model based on data from our own air pollution monitors
This model used as inputs: (1) average daily PM2.5 readings from one or both of our
industry qualified air pollution monitors deployed in the Walton neighborhood (our
study area) of Lahore; and (2) AccuWeather t+1 forecasts for minimum temperature,
maximum temperature, and precipitation in inches. The two monitors were: (1) an
AQMesh; and (2) a Dusttrak II. We installed the AQMesh on the roof of a house in
central Walton and it transmitted air pollution readings continuously via GSM. We
then accessed these readings through an API. The Dusttrak II is a handheld device
that a research assistant used to manually take readings in Walton 2 to 3 times a day
under a fixed protocol. We predicted t+1 PM2.5 levels through an MA7 model with
day of the week fixed-effects and weather forecast controls. The MA7 form was selected
using a cross-validation exercise applied to our data.


2. Model based on data from the US Consulate’s air pollution monitor
This model was identical to the model based on our data, but used data from AirNow—
a ground monitor located at the US consulate in Lahore.


3. MeteoBlue and SPRINTARS models
These models offer publicly available air pollution forecasts based on satellite data.
We accessed t+1 forecasts at 5pm each day.


We combined the models above through a simple three step process: first, we designated
retrospective data from our air pollution monitor(s) as the “ground truth” and we demeaned
each of the other models (including our own prediction models) according to the differences
between the predictions in these models and the ground truth over the prior week; second,
we measured the root-mean squared error of each model relative to the ground truth over
the prior week; and third, we took an average of the predictions for t+1, inversely weighted
by each model’s root-mean squared error.


85We describe the data sources listed below in greater detail later in Section C.4.
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We employed an API-based SMS messaging service that used a short code to send SMS
messages to our survey participants in Treatment Groups 1 and 3.86 The use of a short code
allowed the participants to reply to our forecast messages with any queries, enabling some
interaction on text messages as well. We sent our treatment group respondents two pieces
of information: 1) an average PM2.5 air pollution forecast for t+1 ; and 2) realized average
PM2.5 air pollution level for the previous day (t-1 ). The latter was intended to allow subjects
to assess the accuracy of our forecasts.


D.2 Forecast Training


We implemented a one-hour forecast training based on the principles of Tetlock (2017)
and Kahneman (2011). In particular we drew on the findings of Mellers et al. (2014) and
Mauboussin and Callahan (2015), but no material was taken directly from this work. Broadly
speaking, the training aimed to reduce behavioral and psychological mistakes that decrease
the precision and accuracy of subjects’ forecasts. Training took place in subjects’ homes.
A group of specially selected and trained enumerators conducted the trainings in Urdu.87


Subjects received 150 PKR for their participation.
Each training session began with incentivized elicitations of air pollution forecasts. Over


the course of the session, we elicited non-incentivized forecasts of the same outcomes to
allow evaluation of individual training exercises. At the end of the session, we again elicited
incentivized forecasts. This structure allows us to measure within-subject changes in forecast
ability over the training session.


The first set of training exercises covered the concept of calibration. Participants provided
80 percent confidence intervals for PM2.5 readings over the previous five days and then
answered numerical questions about Pakistan’s history and culture (for example, “what is
the population of Islamabad?”). For each answer, the subjects provided a confidence level:
the probability that their answer fell within a given range around the truth. In the third
calibration exercise, the subjects answered “true or false” general knowledge questions and
provided confidence levels for each answer. In pilot sessions, most subjects made large errors
and demonstrated overconfidence, consistent with evidence from developed countries (Mellers
et al., 2014). The calibration exercises were intended to show subjects that they had room
for improvement and open their minds to subsequent lessons.


86A short code is a four digit telephone number (shorter than a full phone number) employed to send
and receive SMS and MMS messages over mobile phones. In the local context, banks, public institutions,
and accredited private organizations use short codes to share messages with their clients. The Pakistan
Telecommunication Authority (PTA) follows a rigorous procedure to grant access to short codes. We obtained
the short code “8755” to deliver SMS messages to our survey participants in groups 1 and 3.


87Urdu is one of the primary local languages spoken in Lahore.
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The next set of exercises taught subjects to combine “outside” and “inside” views when
making a forecast (Kahneman and Lovallo, 1993; Lovallo, Clarke, and Camerer, 2012). The
former denotes the base rate at which an event occurs in a reference class (for example,
the long-run average level of PM2.5 in Lahore). The latter denotes factors particular to a
given forecast task (for example, subjects’ knowledge that air pollution in Lahore is lower on
weekends than on weekdays). The exercise taught subjects about choosing a good reference
class and avoiding the tendency to give too much weight to the inside view in forecasting.


In the following set of exercises, we asked subjects to reflect on an earlier forecasting
task. Subjects had the opportunity to change their previous forecasts. This taught subjects
to slow down and to engage “System Two” in the language of Kahneman (2011). Subjects
then completed an exercise that encouraged them not to round their forecasts excessively.
Previous work (Mellers et al., 2014) has found that most subjects round too much; that is,
their initial rounded forecast does not incorporate all the information at their disposal.


The next exercise taught subjects an important heuristic for forecasting time series: they
were instructed to consider a history at least as long as the time horizon of the forecast task.
For example, if they wanted to forecast air pollution for three days ahead, they were told to
consider at least three days of air pollution history.


The final exercise reminded subjects that people tend to allow their emotions and
preferences to influence their forecasts. For example, a person who plans to spend the
day outside tomorrow may underrate the chance of rain.
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E Analysis details


E.1 Treatment on the treated details


The second-stage specification for cross-subject analyses is as follows.


Yi = α + P̂ ′
iβ + γY0i +X ′


iδ + εi (8)


In this equation i indexes subject. Y is the outcome and Y0 is the corresponding baseline
variable. P̂ is instrumented takeup. Other controls and hypothesis testing are as in the ITT
regressions. The three first-stage specifications for arm A ∈ {T, F, FT} are as follows.


PAi = ηA +Z ′


iϕA + νAY0i +X ′


iθA + υAi (9)


(10)


Controls are naturally identical in both the first- and second-stage regressions.
Effects are estimated between subjects for willingness to pay for three months of SMS


forecasts (PKR). The first- and second-stage estimating equations for arm A ∈ {T, F, FT}
are as follows.


Yi = α + P̂ ′
iβ +X ′


iγ + εi (11)


PAi = ηA +Z ′


iϕA +X ′


iθA + υAi (12)


(13)


E.2 Control variables: machine learning and missing values


As indicated in Section 4.1, we employ post-double selection LASSO to choose a precision-
maximizing control set (Ahrens, Hansen, and Schaffer, 2018). This is consistent with the
recommendation of Ludwig, Mullainathan, and Spiess (2019).88 While we used enumerator
training and survey design to minimize non-responses to specific questions, subjects were of
course given the choice of not responding, or responding “don’t know” to any question. We
do not consider as potential control variables any questions with high non-response rates,
as these may indicate confusion and higher likelihood of measurement error. In addition,
to preserve sample size when controls are included, we handle missing values as follows: (i)


88According to Wager et al. (2016), ridge regression, LASSO, elastic net, and random forest procedures
can all be used to improve efficiency without introducing bias into estimated treatment effects.
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create a dummy variable for whether the subject did not answer a given question; (ii) replace
the control variable with zero instead of missing for non-responses; and iii) include both the
control and the dummy in our regression. This is consistent with the recommendation in
Gerber and Green (2012). Coefficients on these variables are not interpretable.


E.3 Meaningful deviations from the pre-analysis plan


• We employ asymptotic standard errors in the body of the paper, rather than standard
errors from randomization inference, because the latter cannot readily be combined
with our pre-specified algorithmic control selection using standard software tools.


• Avoidance index as a primary outcome. In version 1 of our PAP, we listed the avoidance
index as a primary outcome. In version 2 we replaced it with outdoor time, failing
to realize that effects on outdoor time cannot be analyzed using the same regression
framework applied to the other primary outcomes (except forecast WTP, for which no
regression is used). For example, forecasts may increase outdoor time on clean days
and decrease it on polluted days, so the average effect is uninformative. We include
the avoidance index as a primary outcome, and analyze the plausibly heterogeneous
effects on outdoor time under secondary outcomes. This change has no impact on the
number of results that are statistically significant at conventional thresholds (10, 5, or
1 percent).


• Hypothesis tests on willingness to pay for masks. In the PAP we made contradictory
claims about alternative hypothesis (right- vs. two-tailed tests) for the avoidance index
and willingness to pay for masks, even though both are qualitatively similar avoidance
behaviors. We resolve the inconsistency in favor of right-tailed tests on both outcomes.
This change has no impact on the number of results that are statistically significant
at conventional thresholds (10, 5, or 1 percent).


• Hypothesis tests on forecast error. In the PAP we specified a left-tailed test for the
estimated interaction effect (forecasts and training) on air pollution forecast error.
When we later completed our theoretical model, it became obvious that this was an
error, as information and human capital can be either substitutes or complements in
forecast production. Accordingly we present a two-tailed test of this coefficient estimate
in our primary ITT results. This change has no impact on the number of results that
are statistically significant at conventional thresholds (10, 5, or 1 percent).
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F A Model for Risk Aversion


In this appendix section, we build a simple model with the sole purpose of showing that the
effect of changes in risk aversion are ambiguous, in the absence of very strong assumptions
(namely CARA). For simplicity of analysis, we abuse notation by reusing variables defined
in the main text. In short, consider what follows to be independent of the model in the main
text. All variables are re-defined.


First consider the case of air pollution in the absence of any mitigating behavior. The
agent is faced with exposure to either high or low pollution. High levels of pollution reduce
the agent’s utility, and we model this as a reduction in her consumption. We normalize the
agent’s wealth on a low pollution day to C and model high pollution as damage X. Further
assume that the probability of high pollution is p ∈ [0, 1]. The agent is assumed to be risk
averse, and we model this by assuming that for consumption x, the agent receives utility
u(x), such that u(0) = 0, u′ > 0 and u′′ < 0. While later we wish to model the effects of risk
aversion on the agent’s behavior, for simplicity, we suppress any notation for risk preferences,
until they are explicitly needed.


In the absence of any mitigating behavior, the agent faces expected utility (baseline)


B = pu(C −X) + (1− p)u(C).


Now, assume that the agent may engage in avoidance behavior (e.g purchase a mask, re-
schedule activities, or remain indoors longer). Avoidance is not free, and comes at a cost
(especially in the case of lost work), and we model it as a cost a ≤ X.89 By engaging in
avoidance behavior pre-emptively (always avoid), the agent can mitigate all costs associated
with high pollution; in essence she can guarantee the pay-off


A = u(C − a).


It is possible that the agent chooses not to avoid at all times. If the agent could predict
high pollution, she could attempt to only avoid in such cases, and thereby save on the cost
of unnecessary avoidance. In the absence of any forecast, we assume that the agent’s naive
belief that a given day is high pollution is equal to p as well.90 Then every day, with a
probability of p, she either chooses to avoid (in response to what she believes is a high
pollution day), or not avoid with probability (1−p). This probabilistic response to pollution


89If a > X, the agent will never engage in avoidance, and the case is not of interest.
90If nature decides with probability p that there is high pollution, and the agent calculates her expected


pay-off using the same, it is intuitive that the agent uses the same unconditional prediction.
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would yield expected pay-off


N = p(pu(C − a) + (1− p)u(C −X)) + (1− p)(pu(C − a) + (1− p)u(C)). (14)


In the equation above, note that first nature decides whether a day is high or low pollution
and then for each day, the agent naively predicts whether it is high or low pollution. Equation
14 can be rearranged and expressed as the weighted average of A and B,


N =pu(C − a)(p+ (1− p)) + (1− p)(pu(C −X) + (1− p)u(C))


=pA+ (1− p)B.


N is a convex combination of A and B, implying that the agent would never engage in
naive predictions; she would either always avoid if A ≥ B or never avoid. We therefore only
need to consider these two cases, and so introduce our forecast service case by case.


F.1 Introducing forecasting


Now assume there is a service available, which informs the agent whether she will face high
or low pollution. This allows the agent to decide whether to avoid or not contingent on the
additional information in the forecast. The price of the forecast is f and we are interested
in finding the range of prices for which agents would purchase the service. The forecast is
imperfect, that is with a probability π, it may incorrectly predict the level of pollution.91


The forecast allows our agent to only avoid when the forecast predicts there is high pollution.
Then for an agent who purchases the forecast service (and follows it), her expected utility


is given by


p[πu(C − a− f) + (1− π)u(C −X − f)] + (1− p)[πu(C − f) + (1− π)u(C − a− f)].


Note the implicit timing in the formulation. As with naive avoidance, nature first decides
whether there is high or low pollution. Then based on the realized level of pollution, the
forecast predicts the state of the world correctly or incorrectly, with probability π and (1−π)
respectively. If the agent buys the forecast, all consumption levels are reduced by the forecast
price f . The forecast is introduced to two different types of agents; those who in the absence
of a forecast were avoiding and those who were not. We consider these two cases separately.


91While these probabilities may be contingent on the realized level of pollution, for simplicity we assume
that forecast reliability is constant.
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F.2 Forecasting when avoidance is not too costly


In the case where avoidance is not too costly, the agent would purchase the forecast if


p[πu(C−a−f)+(1−π)u(C−X−f)]+(1−p)[πu(C−f)+(1−π)u(C−a−f)] ≥ u(C−a). (15)


We wish to model how behavior would change with changes in risk aversion. To do this, we
focus on the threshold price of the forecast, fa, such that for all f ≤ fa, an agent would
purchase the forecast, and for those above they would continue to avoid at all times.


Remark. A threshold price fa exists.


Proof. Note that we can re-write (15) as T a(f) = p[πu(C−a−f)+(1−π)u(C−X−f)]+(1−
p)[πu(C−f) + (1−π)u(C−a−f)]−u(C−a). T a is continuous as u is continuous. Further
more, it is obvious that it is strictly decreasing in f (as u is strictly increasing). Finally, note
that T a(X) ≤ 0 and if T a(0) ≥ 0 then by the mean value theorem, a fa ∈ [0, X], otherwise
fa = 0. Finally, fa is unique as T a is strictly decreasing.


We are interested in how a non-trivial fa, which can be interpreted as the highest
willingness to pay for a forecast service, behaves as we change the agent’s risk aversion.
Intuitively, it should decrease as risk aversion increases, because the forecast service in
essence offers a lottery, while always avoiding is a certain outcome. The intuition holds,
and to see why we express the threshold function as


T a(f) = u(ϕ)− u(c− a),


where ϕ is the certainty equivalent of a lottery with pay-offs of (C−a−f, C−X−f, C−f)
with respective probabilities (pπ + (1 − p)(1 − π), p(1 − π), (1 − p)π). Then by definition
as risk aversion increases, ϕ decreases, shifting T a downwards and decreasing the threshold
price fa.


Result 1. For agents who, in the absence of a forecast would engage in avoidance, willingness
to pay for a forecast is decreasing in their level of risk aversion .


We can also derive other comparative static results using the geometric properties of T a.


Result 2. The threshold value fa is:


1. Decreasing in p.


2. Increasing in π.
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Proof. As fa is the fixed point of T a, shifts in T a would also shift its fixed point. As such
we consider the partial derivatives of T a with respect to each exogenous variable. ∂Ta


∂p
=


π[u(C − a − f) − u(C − f)] + (1 − π)[u(C − X − f) − u(c − a − f)] ≤ 0 as u′ > 0 and
0 ≤ a ≤ X.


Similarly, ∂Ta


∂π
= p[u(C−a−f)−u(C−X−f)]+(1−p)[u(C−f)−u(C−a−f)] ≥ 0.


Both results are intuitive. As the probability of a high pollution event increases, the
expected benefit of a sophisticated response gained through the forecast falls. Similarly, as
the reliability of a forecast increases, so does demand for it.


F.3 Forecasting when avoidance is too costly


When avoidance is in itself too costly, a forecast product presents the agent with a choice
between two lotteries: forecast-based avoidance and no avoidance. The agent would purchase
the forecast if


T n(f) =p[πu(C − a− f) + (1− π)u(C −X − f)] + (1− p)[πu(C − f) + (1− π)u(C − a− f)]


− pu(C −X)− (1− p)u(C) ≥ 0. (16)


Once again, analogous to the previous case, the model yields a threshold price that is unique.


Remark. A threshold price fn exists when avoidance is costly.


Before conducting comparative statics, let us consider the threshold at which the agent
would consume a forecast even when it is given away for free. We set f = 0 and consider
our agent’s choice. She chooses to use the forecast service if


p[πu(C − a) + (1− π)u(C −X)]


+(1− p)[πu(C) + (1− π)u(C − a)] ≥ pu(C −X) + (1− p)u(C),


p[πu(C − a) + (1− π)u(C −X)− u(C −X)] ≥ (1− p)[u(C)− πu(C)− (1− π)u(C − a)],


pπ[u(C − a)− u(C −X)] ≥ (1− p)(1− π)[u(C)− u(C − a)]. (17)


This formulation provides intuition behind the agent’s choice. The left-hand side in equation
(17) captures the benefit of the forecast; it is the expected utility of avoiding when the
forecast correctly predicts high pollution. Meanwhile the right hand side of the same
equation reflects the expected cost of an incorrect forecast leading to unnecessary avoidance.
The agent would only use a free forecast if the benefit is greater than costs. In essence, this
shows that for a forecast to matter, its skill must exceed some lower bound.
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We now move to comparative static analysis for our non-trivial case, i.e cases where
equation 17 is satisfied, and the agent would have a non-zero threshold price. Basic
comparative statics with respect to p and π can be derived as before, however analyzing
changes with respect to the agent’s risk preferences requires more assumptions. We therefore
first establish the results with respect to the former, and then move to analyze risk separately.


Result 3. The threshold value f t is:


1. Decreasing in p.


2. Increasing in π.


Proof. Analogous to fa, fn is the fixed point of T n and shifts in T n would also shift its fixed
point. As such we consider the partial derivatives of T n with respect to each exogenous
variable. ∂Tn


∂p
= π[u(C − a− f)− u(C − f)] + (1− π)(u(C −X − f)− u(C − a− f) ≤ 0 as


u′ > 0 and 0 ≤ a ≤ X.
Similarly, ∂Tn


∂π
= p[u(C−a−f)−u(C−X−f)]+(1−p)[u(C−f)−U(C−a−f)] ≥ 0.


F.4 Risk aversion and willingness to pay.


To study the relationship between risk aversion and fn, for tractability we need more
structure. We assume that the forecast is perfectly reliable, i.e π =1 and further assume
that the agent’s utility exhibits constant absolute risk aversion (CARA). In particular we
use the standard CARA formulation, and assume that when the agent consumes x units,
her utility takes the form u(x) = 1− e−αx, where α is her Arrow-Pratt coefficient of absolute
risk aversion.


When the forecast is perfectly reliable, the agents choice simplifies to


pu(C − a− f) + (1− p)u(C − f) ≥ pu(C −X) + (1− p)u(C). (18)


The agent is comparing two simple lotteries, with the same binary probabilities over different
outcomes. We therefore define the certainty equivalent for such binary lotteries. For CARA,
the certainty equivalent is not a function of initial wealth, so we define the certainty equivalent
based on spread. Let ce(x, α), be the certainty equivalent of a lottery that yields 0 with
probability p and x with probability (1− p), for an agent with an Arrow-Pratt coefficient of
absolute risk aversion, α.


Then we can re-write equation (18), which defines the threshold value as


u(C − f − a+ ce(a, α)) ≥ u(C −X + ce(X,α)).
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As u is strictly increasing in consumption, we can rewrite the above as C−f−a+ce(a, α) ≥
C −X + ce(X,α). So our threshold is equivalently defined by


f t = (X − a) + ce(a, α)− ce(X,α).


Differentiating with respect to α yields


∂f t


∂α
= ceα(a, α)− ceα(X,α).


To sign this we need to know the rate at which the slope of the certainty equivalent w.r.t.
risk aversion changes w.r.t. the size of the lottery, i.e ceαx. So, let us focus on ce(x, α).
Allowing for minor abuse of notation, we add risk aversion as a determinant of utility and
express utility as u(x, α).


u(ce(x, α), α) = pu(0, α) + (1− p)u(x, α),


= (1− p)u(x, α). (19)


We now differentiate both sides with respect to α, which yields


ux(ce, α)ceα(x, α) + uα(ce, α) = (1− p)uα(x, α),


uα(ce, A)ceα(x, α) = (1− p)uα(x, α)− uα(ce, α),


ux(ce, α)ceα(x, α) = [uα(x, α)− uα(ce, α)]− puα(x, α).


Given our functional form for u, we know that uα = αe−αx ≥ 0, uα = αxe−αx ≥ 0,
uxα = −αxe−αx ≤ 0 and uxx = −α2e−αx ≤ 0. This coupled with the fact that ce(x, α) ≤ x


by construction, implies that the term in the square bracket is negative, and so ceα ≤ 0 (as
expected).


We are interested in ceαx = cexα. To solve this, first differentiate (19) by x and then by
α.


u(ce(x, α), α) =(1− p)u(x, α),


ux(ce, α)cex(x, α) =(1− p)ux(x, α),


cex(x,A) =(1− p) ux(x, α)
ux(ce, α) ,
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cexA =(1− p)ux(ce, α)uxα(x, α)− ux(x, α)[uxx(ce, α)ceα(x, α) + uxα(ce, α)]
ux(ce, α)2 ,


∼
sign


ux(ce, α)uxα(x, α)− ux(x, α)uxx(ce, α)ceα(x, α)− ux(x, α)uxα(ce, α),


∼
sign
− ux(x, α)uxx(ce, α)ceα(x, α) + [ux(ce, α)uxα(x, α)− ux(x, α)uxα(ce, α)].


The first term is negative given what we already know. Focusing on the term in the square
bracket we have


ux(ce, α)uxα(x, α)− ux(x, α)uxα(ce, α) =αe−αce(−αxe−αx)− (αe−αx)(−α(ce)e−αce),


=α2e−α(x+ce)(ce− x) ≤ 0.


Therefore, cexα ≤ 0.
All this allows us to sign ∂f t


∂α
= ceα(a, α) − ceα(X,α). As X ≥ a and ceαx ≤ 0, we have


that ∂f t


∂α
≥ 0.


Result 4. When avoidance is costly, more risk averse agents are willing to pay higher prices
for the (perfectly reliable) forecast service.
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