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Given the success of 4D-variational methods (4D-Var) in numerical weather predic-

tion, and recent efforts to merge ensemble Kalman filters with 4D-Var, we revisit

how one can use importance sampling and particle filtering ideas within a 4D-Var

framework. This leads us to variational particle smoothers (varPS) and we study how

weight-localization can prevent the collapse of varPS in high-dimensional problems.

We also discuss the relevance of (localized) weights in near-Gaussian problems. We

test our ideas on the Lorenz’96 model of dimensions n = 40, n = 400, and n =
2, 000. In our numerical experiments the localized varPS does not collapse and yields

results comparable to ensemble formulations of 4D-Var, while tuned EnKFs and

the local particle filter lead to larger estimation errors. Additional numerical experi-

ments suggest that using localized weights may not yield significant advantages over

unweighted or linearized solutions in near-Gaussian problems.
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1 INTRODUCTION

In numerical weather prediction (NWP), and in many other

applications in science and engineering, one wants to update

the state of a numerical model based on noisy observations of

the state, e.g. Kalnay (2003), van Leeuwen (2009), Bocquet et
al. (2010) and Fournier et al. (2010). Accounting for errors in

the numerical model and in the observations naturally leads to

a Bayesian formulation of this problem in terms of prior prob-

abilities, likelihoods and posterior probabilities. An important

feature of such “data assimilation” problems in NWP is their

size. A typical global atmospheric model has more than

600 million state variables and several million atmospheric

observations are assimilated into such a model during a 6 hr

cycle. Numerical data assimilation methods have been devel-

oped and refined over the past decades and can be divided

into three main groups: variational methods (e.g. Talagrand

and Courtier, 1987; Bennet et al., 1993), Kalman filters (e.g.

Tippet et al., 2003; Evensen, 2006), and particle filters (PFs;

e.g. Gordon et al., 1993; Doucet et al., 2001; Arulampalam

et al., 2002; van Leeuwen, 2009). Given the immense size of

the problem in NWP, it is imperative that useful numerical

methods scale favourably with the size of the problem.

Ensemble Kalman filters (EnKFs) have been implemented

for full-scale global atmospheric models. Their success with

extremely small ensemble size (50–100) is made possi-

ble by covariance localization, as described in Gaspari and

Cohn (1999), Hamill et al. (2001), Houtekamer and Mitchell

(2001), Houtekamer et al. (2005), Anderson (2007; 2012).

During localization one makes use of the fact that observa-

tions have only a local effect: observations of the weather

collected in Australia do not have an immediate effect on

estimates of the weather in North America. To enforce the

locality of observations, ensemble estimates of prior errors

are de-correlated by setting the corresponding elements in

the error covariance matrix to zero. This leads to sparse and

banded forecast and posterior covariances, which allows for

effective EnKF implementations with small ensemble sizes,

e.g. Morzfeld et al. (2017) and Bickel and Levina (2008).

Variational methods also have been applied to full-scale

global atmospheric models. Their implementations exploit

the same sparse/banded problem structure during optimiza-

tion, by using nonlinear least-squares algorithms and adjoint

equations for gradient computations. Many recent works

merge EnKF and 4D-Var methods to create hybrid schemes

that can combine strengths of Kalman filter and variational
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approaches, e.g. Lorenc (2003), Buehner (2005), Liu et al.
(2008), Sakov et al. (2012), Bonavita et al. (2012), Bocquet

and Sakov (2013; 2014); Lorenc et al. (2015), Poterjoy and

Zhang (2015), Bocquet (2016) and Hodyss et al. (2016).

PFs are rarely used in NWP. The reason is that many

PFs require an ensemble size that scales exponentially with

dimension, e.g. Bickel et al. (2008), Bengtsson et al. (2008),

Chorin and Morzfeld (2013), Snyder et al. (2008; 2015), Sny-

der (2011) and Morzfeld et al. (2017). This effect is often

called the “collapse of PFs”. The collapse for a class of PFs

(see below), is unavoidable for generic problems, i.e. prob-

lems without any additional “structure”. Thus, while PFs may

collapse on any given, generic, high-dimensional problem,

they may work fine on some problems, characterized by spe-

cific problem structure, such as bandedness or sparsity of

forecast covariances. The main idea of “localizing” PFs is

to exploit banded problem structure to avoid PF collapse

(section 2.4 below). Several methods to localize PFs have

been invented and have been shown to “work well”, mostly on

relatively simple models (Lei and Bickel, 2011; Reich, 2013;

Penny and Miyoshi, 2015; Poterjoy, 2015; Tödter and Ahrens,

2015; Lee and Majda, 2016; Poterjoy et al., 2017), but Poter-

joy and Anderson (2016) and Robert et al. (2017) present

results in a realistic NWP context.

On the other hand, it is important to realize that localiza-

tion should not be viewed as a “cure for all problems” with

PFs. After localization, one can think of a data assimilation

problem as a collection of loosely coupled sub-problems, and

localized PFs solve each sub-problem individually. It is thus

not the number of sub-problems, or the overall dimension, or

the overall number of (independent) observations that define

the performance bounds for localized PFs, but the character-

istics of each sub-problem. It is yet to be determined whether

localized PFs can indeed solve some of the high-dimensional

data assimilation problems that arise in NWP, where the num-

ber of observations per sub-problem can be huge, and possibly

leads to collapse of even localized PFs. Moreover, there are

PFs, e.g. the equivalent weights PF (van Leeuwen, 2010; Ades

and van Leeuwen, 2013), which avoid filter collapse by judi-

cious choice of proposal distributions, and these PFs, and

their (non-)collapse are not described by the “typical” the-

ory for the collapse of PF as described, e.g. in Chorin and

Morzfeld (2013), Snyder et al. (2008; 2015), Bickel et al.
(2008), Bengtsson et al. (2008), Snyder (2011) and Morzfeld

et al. (2017).

We do not attempt to address all of the above issues in this

article, and focus our attention on how importance sampling

and PF ideas can be used within a 4D-Var framework and,

more specifically, what role weight-localization plays in this

context. When studying importance sampling for data assim-

ilation in NWP, it becomes apparent that it matters which

posterior distribution one considers for sampling – the distri-

bution of the state at observation time, p(xk|yk), as is typical

in particle filtering, or the distribution of the initial condition

of a deterministic model at an earlier time, p(xk−1|yk), as is

typical in variational methods; see also Bocquet and Sakov

(2014) and Weir et al. (2013). These ideas leads us to revisit

implicit sampling and variational particle smoothers, which

were also considered by Atkins et al. (2013), how these meth-

ods can be localized, and what role the localized weights play

in near-Gaussian problems.

2 BACKGROUND AND NOTATION

2.1 Data assimilation problem formulation

We consider data assimilation problems defined by

xk = fk(xk−1), (1)

yk = hk(xk) + 𝜀k, (2)

where k = 1, 2,… is discrete time, the state at time k, xk, is an

nx-dimensional vector, yk is a noisy observation of the state,

and 𝜀k are independent identically distributed (iid) Gaussian

random variables with means E [𝜀k] = 0, and covariance

matrices Rk = E
[
𝜀k𝜀

T
k

]
. Here the numerical model fk is a

known nx-dimensional vector function, and the observation

function hk is an ny-dimensional vector function. Note that

we exclude model error and stochastic models from our study.

We touch, briefly, on stochastic models and “optimal” parti-

cle filters in the Appendix, but defer a more thorough study

to future work.

The goal in data assimilation is to estimate the state at time

k, given the data up to time k. This estimate can be based on

the posterior distribution at time k, given observations up to

time k
p(xk|y1∶k) ∝ p(xk|y1∶k−1)p(yk|xk), (3)

which is the foundation for (ensemble) Kalman fil-

ters, as explained by Evensen (2006) and Tippet et al.
(2003), and particle filters, e.g. van Leeuwen (2009) and

Arulampalam et al. (2002). Here and below, y1∶m denotes the

set of vectors {y1, y2,… , ym}.

Alternatively, one can consider the state at time k−1, given

the data up to time k, described by the posterior distribution

p(xk−1|y1∶k) ∝ p(yk|xk−1)p(xk−1|y1∶k−1). (4)

The above posterior distribution is fundamental to

four-dimensional variational (4D-Var) methods, e.g. Tala-

grand and Courtier (1987) and below. An estimate of xk can

be based on p(xk−1|y1∶k) by using the model to evolve this

distribution to time k. Of course, one can also go back further

in time and consider, e.g. the distribution p(xk−L|y1∶k). Such

extensions, sometimes called “lag-L smoothers”, are concep-

tually simple but the details are intricate and we choose not

to discuss them here.

2.2 4D-Var

In 4D-Var methods, the distribution p(xk−1|y1∶k−1) in

Equation 4 is approximated by a Gaussian with mean 𝜇 and
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covariance B, called the background and background covari-

ance respectively. Replacing p(xk−1|y1∶k−1) by the Gaussian

p̃(xk−1|y1∶k−1) =  (𝜇,B) in Equation 4, generates an approx-

imate posterior distribution,

p̂(xk−1|y1∶k) ∝ p̃(xk−1|y1∶k−1)p(yk|xk−1), (5)

which can be written as

p̂(xk−1|y1∶k) ∝ exp (− (xk−1)) , (6)

where

 (xk−1) =
1

2
(xk−1 − 𝜇)T B−1 (xk−1 − 𝜇)

+ 1

2

{
h
[
f (xk−1)

]
− yk)

}T R−1 {h[ f (xk−1)
]
−yk} .

(7)

The cost function  is minimized by 4D-Var methods, e.g.

Talagrand and Courtier (1987). The minimizer of the cost

function, x∗
k−1

is an estimate of xk−1 given the observations

y1∶k up to time k. An estimate of xk can be obtained by

evolving x∗
k−1

forward to time k using the model (1). It is

important to realize that the approximate posterior distribu-

tion p̂ is not a Gaussian. Non-Gaussian aspects are introduced

by the nonlinear model or observation functions.

In many “traditional” 4D-Var schemes, the background

covariance matrix B is “static”, i.e. it does not change from

one cycle to the next. Updating background matrices in view

of the observations is the main idea of ensemble formulations

of 4D-Var. We refer to Lorenc et al. (2015) and Hodyss et al.
(2016) for the definitions of the various flavours of ensem-

ble formulations of 4D-Var and recall the iterative ensemble

Kalman filter (IEnKF; Sakov et al., 2012) and the iterative

ensemble Kalman smoother (IEnKS; Bocquet and Sakov,

2013; 2014; Bocquet, 2016) as specific, well-studied and the-

oretically well-justified examples of ensemble formulations

of 4D-Var.

There are three main approaches to blending

flow-dependent ensemble background covariances with

4D-Var. In ensemble-4DVar (E4D-Var; e.g. Lorenc, 2003;

Buehner, 2005; Poterjoy and Zhang, 2015), a flow depen-

dent background is obtained by coupling an EnKF system

to a variational system. In 4D-ensemble var (4DEnVar), a

4D ensemble is used to to replace the tangent linear and

adjoint model operators in 4D-Var, e.g. Liu et al. (2008)

and Poterjoy and Zhang. An ensemble of 4D-Vars method

(EDA; e.g. Bonavita et al., 2012) generates an ensemble by

solving a variational problem Ne times with perturbed obser-

vations and perturbed states. The IEnKF and IEnKS (Sakov

et al., 2012; Bocquet and Sakov, 2013; 2014; Bocquet, 2016)

are also ensemble-based variational methods, derived and

inspired by Bayes’ rule, which, as opposed to E4D-Var, are

self-sufficient and do not require any additional data assimi-

lation system. The IEnKF and the IEnKS do not necessarily

require tangent linear and adjoint models, but tangent linear

and adjoint models can be used for some implementations of

IEnKF/IEnKS. Below, we will test some of these techniques

on a Lorenz’96 (L96) model described in Lorenz (1996),

and compare EDA and E4D-Var results to results obtained

by a variational particle smoother (varPS). We also discuss

connections of varPS to ensemble formulations of 4D-Var, in

particular with the IEnKF and the IEnKS (Sakov et al., 2012;

Bocquet and Sakov, 2013; 2014; Bocquet, 2016).

2.3 Particle filters

A PF draws weighted samples from the posterior distribution

p(xk|y1∶k) ∝ p(xk|y1∶k−1)p(yk|xk), (8)

by drawing samples from a proposal distribution q(xk) (e.g.

Doucet et al., 2001; Arulampalam et al., 2002; van Leeuwen,

2009). Attached to each sample is a weight

wk ∝
p(xk|y1∶k)

q(xk)
. (9)

The weighted ensemble
{

xj
k,w

j
k

}
, j = 1,… ,Ne, approx-

imates the posterior distribution p(xk|y1∶k) in the sense that

weighted averages over the ensemble converge to expected

values with respect to the posterior distribution as Ne →
∞. We will use the “standard particle filter” with proposal

distribution and weights given by

qk(xk) = p(xk|y1∶k−1), wk ∝ p(yk|xk).

This means that the standard PF amounts to generating

a forecast ensemble by running the numerical model (just

as EnKF), and then attaching weights proportional to the

likelihood to each ensemble member.

The “quality” of a PF can be assessed by computing the

effective sample size (e.g. Doucet et al., 2001),

Neff =
Ne

G
, G = 1 + var(wk)

E(wk)2
=

E(w2
k)

E(wk)2
. (10)

The effective sample size is a heuristic quantity that

describes the sample size of an unweighted ensemble equiva-

lent to the weighted ensemble. If the variance of the weights

is large, then G is large and the effective sample size is small.

In an extreme case, Neff may be one, and the particle filter has

“collapsed” and produces statistical estimates with an accu-

racy equivalent to having only one sample. For a particle filter

to be “useful”, G cannot be too large.

2.4 Localization of particle filters

It has been shown that the required ensemble size of a PF can

grow exponentially with dimension, (e.g. Bengtsson et al.,
2008; Snyder et al., 2008; 2015; Snyder, 2011; Chorin and

Morzfeld, 2013; Rebeschini and van Handel, 2015; Morzfeld

et al., 2017). This is certainly true for generic problems and

for a certain class of PFs, however the collapse of PFs can be

prevented by making use of the locality of observations, i.e.

the fact that an observation has a local, not a global effect.
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This is the main idea behind localization of PFs, first dis-

cussed by Bengtsson et al. (2003) and van Leeuwen (2003),

which typically consists of the following two steps (e.g. Lei

and Bickel, 2011; Reich, 2013; Penny and Miyoshi, 2015;

Poterjoy, 2015; Tödter and Ahrens, 2015; Lee and Majda,

2016; Poterjoy and Anderson, 2016; Poterjoy et al., 2017 give

specific localization strategies):

1. find a way to compute weights in Equation 9 locally;

2. make use of these local weights without upsetting the com-

plex multivariate relationships between variables (model

“balance”).

A diagonal problem is characterized by a diagonal model,

[fk(xk−1)]i = [fk]i([xk−1]i),

a diagonal observation function,

[hk(xk)]i = [hk]i([xk]i),

and a diagonal observation-error covariance R. Here and

below, [a]j denotes the jth component of a vector a.

Block-diagonal problems, which consist of “blocks” of inde-

pendent variables, can be defined similarly. In (block-) diag-

onal problems one can achieve step (a) by computing the

weights for each coordinate and step (b) by resampling sep-

arately in each coordinate because there are no multivari-

ate relationships between variables. Using the diagonalizing

approach in a coupled problem amounts to neglecting cor-

relation, which avoids PF collapse, but introduces additional

errors if correlations among the variables are indeed impor-

tant. There is thus a trade-off between preventing PF collapse

by localization and the additional errors introduced by local-

ization.

Localization strategies for data assimilation problems that

are not diagonal typically introduce tuning parameters to

define the localization and then adjust these parameters such

that a mean square error (MSE) is on the order of a pre-

dicted average variance (spread; technical definitions of MSE

and spread are given below). As a specific example, con-

sider the localization schemes created by Poterjoy (2015) and

Poterjoy and Anderson (2016). The PF weights vary with

location (or state variable), and weights at a certain location

depend only on observations in the neighborhood of a given

location. A posterior ensemble is generated by merging prior

particles and particles that are weighted with the spatially

varying weights using a localization function. Parameters that

define the localization function are then tuned to yield small

MSE and an appropriate spread. Bias introduced by this pro-

cedure is assumed to be small. It is not known what the

localization scheme does to the asymptotic behavior of the PF

as the ensemble size goes to infinity. However, such issues

are not specific to PFs and their localization. Similar state-

ments are also true for localization of EnKFs – there are

several localization strategies in use, it is not clear which is

best, and, in general, different localization schemes lead to

different asymptotic behaviour of EnKF, (e.g. Mitchell and

Houtekamer, 2002; Lorenc, 2003; Kepert, 2009; Greybush et
al., 2011; Le Gland et al., 2011).

3 VARIATIONAL PARTICLE SMOOTHERS

Motivated by the success of 4D-Var methods in NWP, and

the recent advances in making PFs more applicable via local-

ization, we revisit how localized PFs (more generally, impor-

tance sampling) can be used within a 4D-Var framework,

and the specific role and advantages of weight localization

in this context. As indicated above, 4D-Var methods work

with the posterior distribution p(xk−1|y1∶k), particle filters

usually work with p(xk|y1∶k). “Smoothers”, on the other hand,

also work with p(xk−1|y1∶k), i.e. there is a natural connec-

tion between smoothers and 4D-Var (also Sakov et al., 2012;

Atkins et al., 2013; Bocquet and Sakov, 2013; 2014; Boc-

quet, 2016). We thus consider “particle smoothers”, their

localization and their connections with 4D-Var and ensem-

ble formulations of 4D-Var. Note that we adopt typical Monte

Carlo literature terminology, as in Doucet et al. (2001), and

we define a particle smoother to be a sampling method

for p(xk−1|y1∶k), in the same vein as a PF is a sampling

method for p(xk|y1∶k). One can use results, obtained by a

smoother at time k − 1, to compute state estimates at obser-

vation time, k, by using the numerical model to evolve the

smoother-ensemble to observation time, as is routinely done

in 4D-Var (section 2.2; also Bocquet and Sakov, 2013; 2014).

Particle smoothers thus work as follows. We pick a pro-

posal distribution q(xk−1; y1∶k), draw samples from it, and

then attach to each sample a weight

w ∝
p(yk|xk−1)p(xk−1|y1∶k−1)

q(xk−1; y1∶k)
. (11)

The weighted ensemble
{

xj
k−1

,wj
}

, j = 1,… ,Ne, approx-

imates the posterior distribution p(xk−1|y1∶k) in the sense that

weighted averages over the ensemble converge to expected

values with respect to the posterior distribution p(xk−1|y1∶k)
as Ne → ∞. In practice one runs into the problem that these

weights cannot be evaluated, because p(xk−1|y1∶k−1) in the

numerator of Equation 11 is generally not known. The excep-

tion are linear/Gaussian problems, for which p(xk−1|y1∶k−1)
can be computed explicitly. The same difficulty arises when

one considers particle filters, as is discussed section 3.5.

3.1 Sampling the past by a variational particle
smoother

The above deficiency can be overcome by using a Gaussian

approximation for p(xk−1|y1∶k−1), as is common in 4D-Var

(section 2.2) and the IEnKF or the IEnKS (Sakov et al.,
2012; Bocquet and Sakov, 2013; 2014; Bocquet, 2016). Thus,

we replace p(xk−1|y1∶k−1) in Equation 4 by the Gaussian

p̃(xk−1|y1∶k−1) =  (𝜇,B), to construct the approximate pos-

terior distribution p̂ in Equation 5. One can evaluate the
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approximate posterior p̂, and thus construct importance sam-

pling methods for p̂.

A natural choice for a proposal distribution is the Gaussian

q(xk−1; y1∶k) =  (x∗, J−1)

∝ exp
[
−1

2
(xk−1 − x∗)TJ(xk−1 − x∗)

]
, (12)

where x∗ is the minimizer of  , and J is the (approxi-

mate) Hessian of  , evaluated at the minimizer x∗. For

example, one can use the Gauss–Newton approximation of

the Hessian, which requires first derivatives of  , computed

by tangent linear and adjoint models (e.g. Talagrand and

Courtier, 1987). Strategies for implementing this sampling

method in high-dimensional problems using existing software

infrastructure are discussed in Auligné et al. (2016), and the

ensemble of the IEnKF and the IEnKS is constructed sim-

ilarly (Sakov et al., 2012; Bocquet and Sakov, 2013; 2014;

Bocquet, 2016; and our discussion below).

With this proposed distribution, the weights become

w ∝
p(yk|xk−1)p̃(xk−1|y1∶k−1)

q(xk−1; y1∶k)

∝
exp [− (xk−1)]

exp
[
− 1

2
(xk−1 − x∗)TJ(xk−1 − x∗)

] . (13)

To avoid under- or overflow, one may want to consider com-

puting the negative logarithm of the weights, ŵ = − log(w).
Once all Ne negative-log weights ŵ are computed, one can

subtract their minimum value from all of them, then take the

exponential, then normalize so that the weights sum to one.

The weighted ensemble
{

xj
k−1

,wj
}

, j = 1,… ,Ne approxi-

mates the posterior distribution p̂ in Equation 5, in the sense

that weighted averages converge to expected values as Ne →
∞. Generating samples in this way is an implementation of

“implicit sampling”, (e.g. Chorin et al., 2010), whose connec-

tions with variational data assimilation have been discussed

in Atkins et al. (2013). Implicit sampling in the context of

smoothing has first been discussed by Weir et al. (2013),

where it was also shown that considering a smoothing den-

sity can prevent collapse. An application of this method to

geomagnetic data assimilation can be found in Morzfeld et al.
(2017). Its use in inverse problems is discussed in Morzfeld

et al. (2015). A recent application of this sampling method

can also be found in Liu et al. (2017). We discuss connections

of this sampling method, applied to the posterior distribution

p(xk|y) with ensemble formulations of 4D-Var, specifically

with the IEnKF and the IEnKS, in section 3.3. For the remain-

der of this article we refer to this method as the “variational

particle smoother” (varPS).

Note that the varPS proposal distribution in Equation 12

is Gaussian, but the posterior distribution p̂ in Equation 5 is

not necessarily a Gaussian. The unweighted varPS ensem-

ble (all weights equal to w = 1∕Ne) is distributed according

to the varPS proposal distribution, but the varPS weights in

Equation 13 account for the non-Gaussian aspects of p̂ and

“transform” samples from the Gaussian proposal distribu-

tion, into weighted samples of the posterior distribution. In a

linear/Gaussian problem, the proposal distribution is exactly
equal to the posterior distribution, so that all weights are

equal. Since all weights are equal, varPS does not collapse,

even if the dimension is high. These issues are carefully dis-

cussed in Weir et al. (2013). However, in practice, varPS can

be expected to collapse due to nonlinearity and/or approxima-

tions of the proposal covariances. The collapse of varPS and

how it can be prevented by weight-localization is discussed in

detail in section 4.

Finally, note that the Gaussian approximation used to define

the approximate posterior distribution p̂ in Equation 5 causes

distributional errors in the sense that the varPS produces

weighted samples of the approximate posterior distribution p̂,

rather than the posterior distribution p in Equation 4. Such

errors vanish when the problem is linear and Gaussian. The

success of variational methods in practice, which rely on the

same Gaussian approximation as varPS, indicates that dis-

tributional errors may be small in “near-Gaussian problems”

of practical importance. The success of the IEnKF and the

IEnKS, which also rely on a Gaussian approximation of p̂,

is another indication that this approximation is indeed appro-

priate (Sakov et al., 2012; Bocquet and Sakov, 2013; 2014;

Bocquet, 2016)

3.2 Cycling varPS

The varPS performs the following three steps:

1. solve the 4D-Var problem;

2. generate samples by perturbing the posterior mode;

3. compute weights by Equation 13.

To be able to start and to cycle a varPS, one needs to

compute and update the background state 𝜇 and background

covariance B. To start the algorithm, one can use a “cli-

matological” covariance and mean, or some other initial

guess. With this choice, one solves the 4D-Var problem

of minimizing  in Equation 7, to find the most likely

state x∗ and approximate Hessian J, which define the pro-

posal distribution (12). We draw Ne samples,
{

xj
k−1

}
,

j = 1,… ,Ne, from the Gaussian proposal and compute

their weights by Equation 13, to obtain a weighted ensemble

of the approximate posterior (5). One can then resample,

and replace particles with low weights by particles with

larger weights to obtain an unweighted ensemble (e.g.

Doucet et al., 2001; Arulampalam et al., 2002 for resam-

pling algorithms). Each ensemble member is then evolved

to time k using the model (1), which leads to an ensemble at

observation time
{

xj
k

}
, j = 1,… ,Ne. The background state

and background covariance at the next assimilation cycle are

obtained by computing the ensemble mean and ensemble

covariance. Localization and inflation of this updated back-

ground covariance can be tuned just like localization and
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inflation in EnKF. It may also be necessary to localize the

weights, as discussed in section 4. Pseudo-code for the varPS

is provided in algorithm 1.

Algorithm 1 Variational particle smoother (varPS)

Solve the variational problem: minimize  (xk−1)
Result: minimizer x∗ and Hessian J
Localize/inflate proposal covariance J−1

Sampling: draw an ensemble of Ne particles from the

proposal: xj
k−1

∼  (x∗, J−1)
Compute and store the corresponding states at time k (run-

ning the model Ne times)

for j = 1,… ,Ne do
Compute weight: wj ∝

exp[− (xk−1)]
exp

[
− 1

2
(xk−1−x∗)TJ(xk−1−x∗)

]
end for
Normalize weights: wj ← wj∕

∑Ne
l=1

wl
Resample states at time k using these weights

Update background state 𝜇 and background covariance B
from resampled states

Localize/inflate background covariance B
Set k ← k + 1 and repeat

3.3 Connections of varPS with ensemble formulations
of 4D-Var

One can interpret the varPS as a weighted sampling method

for computing a flow-dependent background-covariance

matrix in 4D-Var. Compared to EDA, the varPS is computa-

tionally less demanding because it requires only one optimiza-

tion. Moreover, because of its weights, the varPS can account

for additional aspects of nonlinearity and non-Gaussianity

when generating the analysis ensemble. Such weights can,

in principle, also be generated for EDA by borrowing ideas

from the “Bayesian inverse problem” literature, where this

technique is known as “Randomize-then-optimize” (RTO;

Bardsley et al., 2014). A related approach is “random-

ized maximum likelihood”, used in oil-reservoir modelling

(Oliver et al., 2008). However, such weights require localiza-

tion or else varPS or weighted EDA/RTO collapses when the

dimension of the problem is large. Weight-localization for

varPS is discussed in detail in section 4.

Compared to E4D-Var the varPS does not require an EnKF

system. In our numerical experiments with L96 models

(Lorenz, 1996) in section 5 we compare E4D-Var and EDA

to the varPS and find that they give comparable results. In

our implementation, the varPS differs from 4DEnVar, because

we use tangent linear and adjoint model operators during

the solution of the variational problem. In the future, one

can experiment with using ideas from 4DEnVar for practical

implementation of the varPS on large-scale NWP problems.

The varPS also has connections with the IEnKF and the

IEnKS (Sakov et al., 2012; Bocquet and Sakov, 2013; 2014;

Bocquet, 2016). The IEnKF/IEnKS ensemble is generated

similarly to how the varPS generates its unweighted ensem-

ble. In fact, if one views the IEnKF/IEnKS as the “concept”

of using a Gaussian approximation of p(xk−1|y1∶k) to generate

an ensemble (setting aside details of numerical implementa-

tion or additional approximations), then the ensemble of the

IEnKF/IEnKS is identical to the proposal ensemble of varPS.

Thus, the most significant difference between varPS and the

IEnKF/IEnKS are weights. These weights, and their localiza-

tion are the focus of this article. Below, we also study varPS

“with equal weights”, i.e. we study what happens when one

sets all weights equal to 1∕Ne, and this varPS with equal

weights is in fact an IEnKF/IEnKS (section 4). In the con-

text of ensemble formulations of 4D-Var and IEnKF/IEnKS,

it is important to realize that IEnKF/IEnKS make use of the

same Gaussian approximation of p(xk−1|y1∶k−1) as 4D-Var,

varPS and (other) ensemble formulations of 4D-Var. How-

ever, IEnKF/IEnKS do not require a “separate” data assimila-

tion system for updating background covariances, since such

an update is built into the algorithms.

3.4 Benchmarking varPS against EnKF and localized
PF

We benchmark the varPS by numerical experiments with the

linear problem

xk = xk−1, (14)

yk = xk + 𝜀k, (15)

where 𝜀k are iid Gaussians with diagonal covariance matri-

ces Rk = I. This problem has been used in the context of

the collapse of PFs before by Chorin and Morzfeld (2013),

Snyder et al. (2008; 2015), Bickel et al. (2008), Bengtsson

et al. (2008), Snyder (2011) and Morzfeld et al. (2017). We

pick the dimension to be nx = ny = 100, which is large

enough to make unlocalized PFs collapse. In fact, the results

obtained at this dimension are qualitatively the same as those

of higher-dimensional problems.

We apply several data assimilation methods (see below) and

assess their performance by the mean square error (MSE) and

the spread. The MSE is defined by

MSE = 1

n

n∑
j=1

([xt
k]j − [x̄k]j)2, (16)

where [a]j denotes the jth element of a vector a, where xk
is the “true” state at time k, and where x̄k is the estimate of

the state at time k of a data assimilation algorithm. For the

localized PFs and EnKF, we use the weighted ensemble mean

and ensemble mean, respectively, as the estimate. The varPS

yields an “analysis” ensemble at time k − 1, which we propa-

gate to time k using the model (here the identity matrix). The

varPS estimate is the average over the ensemble at time k,

which is obtained by applying the model (14) to the ensem-

ble generated at time k − 1. The spread is defined as the
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normalized trace of the posterior covariance matrix at time k:

spread = 1

n
trace(Pa). (17)

For the localized PFs, Pa is the covariance of the weighted

ensemble, and for EnKF, Pa is the covariance of the analy-

sis ensemble. For varPS Pa is computed from the ensemble

at time k (not at time k − 1). This ensemble is generated in

using the observation at time k. Note that we use the MSE

(Equation 16) and not its square root (root mean square error)

to assess performances of the various methods. For that rea-

son, we use the spread as defined in Equation (17), and not its

square root (which is also common).

We apply a localized and inflated stochastic EnKF, local-

ized by the identity matrix. Inflation is tuned to achieve an

MSE roughly equal to the spread. We also apply a localized

PF (section 2.3) to this problem. Localization of the PF is

straightforward in this diagonal problem because we can com-

pute weights separately in each variable, and also perform the

resampling step separately in each variable (section 2.4). One

may argue that this problem is too trivial to test localization

methods because this problem lacks complex multivariate

relationships between the various state components (balance);

(see also Rebeschini and van Handel, 2015; Snyder et al.,
2015; Morzfeld et al., 2017). Nevertheless, this problem can

serve as a benchmark and best-case-scenario for localized PF.

We compare the results we obtain by the “optimal” local-

ization strategy of decoupling to the localization methods

described by Poterjoy (2015) and Poterjoy and Anderson

(2016). Here we use a small localization radius, as is required

by this diagonal problem, and tune the localization scheme

to achieve small MSE and comparable spread. We also

apply the varPS, which does not require localization because

the problem is linear, and, therefore, all weights are equal

(section 4 gives benchmark results with nonlinear prob-

lems). Inflation of varPS is tuned to achieve small MSE and

comparable spread.

For each method, we vary the ensemble size and record

MSE and spread. We perform each experiment 5,000 times

and average over the number of experiments. The results are

shown in Figure 1; (a) shows the results with R being the iden-

tity matrix, and (b) when R = 0.1I, i.e. when the accuracy of

the observations is increased.

We note that EnKF (in orange) exhibits the smallest MSE

and that MSE is approximately equal to the spread even

for small ensembles. The varPS (in red) yields comparable

results. Both localized PFs (green and purple) exhibit larger

MSE and a small spread, unless the ensemble size is larger

than the dimension of the problem. Moreover, localization by

Poterjoy’s method yields results that are similar to the results

one obtains by localization via decoupling, indicating that the

localization strategy is effective.

We now consider a variation of this problem and decrease

the observation-noise covariance by setting R = 0.1 I. We

observe qualitatively similar results as before, i.e. EnKF and

varPS errors are smaller than PF errors, and localization by

Poterjoy’s method is as effective as an “optimally” localized

PF. However, the PFs now yield significantly larger MSE than

EnKF or varPS. We also note that localized PFs underestimate

the spread in both experiments, unless the ensemble size

is large. This suggests that “inflation” is needed by PFs in

addition to localization.

If these examples were indeed indicative of how data assim-

ilation algorithms perform in meteorological problems, then

we conclude that localized PFs may not perform as well

as localized EnKF or varPS in Gaussian or “nearly” Gaus-

sian problems. The numerical experiments with localized

PFs presented in Poterjoy (2015) and Poterjoy and Ander-

son (2016) confirm this conclusion – localized PFs are found

http://wileyonlinelibrary.com
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to perform no better than localized EnKF unless the non-

linearity/non-Gaussianity is significant due to a nonlinear

observation function. Taking our simple examples with “per-

fect” localization and the more realistic simulations with a

doable localization strategy into account, it appears unlikely

that even a localized PF can perform as well as EnKF when

the ensemble size is small and when the problem is Gaussian

or nearly Gaussian.

The varPS performs as well as the EnKF. This may not

be surprising because varPS exploits linearity of the model,

while the PF, localized or not, does not make use of this linear-

ity. However, our numerical examples give no indication that

PF or varPS would be more appropriate than a tuned EnKF.

3.5 Why smoothing and not filtering?

We wish to explain in more detail why we use the varPS

to sample the distribution p(xk−1|y1∶k), rather than adopting

the “usual” PF approach and sampling p(xk|y1∶k). Recall that

the “standard” PF samples the proposal distribution q(xk) =
p(xk|y1∶k−1) by using the model to evolve an ensemble from

time k − 1 to time k. Its weights are the ratio of the posterior

distribution and the proposal distribution:

w ∝
p(xk|y1∶k)

q(xk)
∝

p(xk|y1∶k−1)p(yk|xk)
p(xk|y1∶k−1)

∝ p(yk|xk).

Note that p(xk|y1∶k−1), which is generally unknown, cancels

in the calculation of the weights.

In principle, other choices of proposal distributions are pos-

sible. In particular, one may choose a proposal distribution

q(xk|xk−1, y1∶k) that depends on the observations at time k,

rather than only on observations up to time k−1. Suppose we

have such a proposal and can draw Ne samples from it. The

weights of the particles are given by

w ∝
p(xk|y1∶k−1)p(yk|xk)

q(xk|xk−1, y1∶k)
.

These weights cannot be evaluated because the probability

distribution p(xk|y1∶k−1) is, in general, not known. The excep-

tion are linear/Gaussian problems for which p(xk|y1∶k−1) is

known. Since the weights cannot be computed, using a par-

ticle filter with proposal distributions other than the standard

choice is not possible without further approximation, e.g. the

one presented in Klaas et al. (2005). Alternatively, one could

use a Gaussian approximation for p(xk|y1∶k−1), which would

lead to particle filter algorithms similar to 3D-Var or EnKF

methods.

Note that the varPS runs into the same problem: the pos-

terior distribution p(xk|y1∶k) cannot be evaluated. For this

reason, a Gaussian approximation of p(xk−1|y1∶k−1) is used to

define the approximate posterior distribution p̂ (Equation 5).

This approximate posterior can be evaluated, which is the key

to computing weights for the varPS. Note that IEnKF/IEnKF

also make use of the approximate posterior distribution p̂, and

uses this approximation, and not the “true” posterior distribu-

tion for ensemble generation (Sakov et al., 2012; Bocquet and

Sakov, 2013; 2014; Bocquet, 2016).

Therefore, the main difference between particle filtering

(sampling the distribution p(xk|y1∶k)) and smoothing/varPS

(sampling the distribution p(xk−1|y1∶k)) is the time at which

a Gaussian approximation is made. We argue that a Gaus-

sian approximation of p(xk−1|y1∶k−1) is more sensible than a

Gaussian approximation of p(xk|y1∶k−1). Numerical evidence

for this statement may be the success of 4D-Var techniques

and of IEnKF/IEnKS (Sakov et al., 2012; Bocquet and Sakov,

2013; 2014; Bocquet, 2016), which rely on this approxi-

mation, for NWP. The varPS we propose makes the same

Gaussian approximation of a “background”, or prior distribu-

tion, as 4D-Var, the IEnKF and the IEnKS, but it can draw

samples from a possibly non-Gaussian posterior distribution.

Finally, one may wonder how other PFs, such as the equal

weights particle filter of Ades and van Leeuwen (2013) and

van Leeuwen (2010), nudging techniques as described by

Weare (2009) and Vanden-Eijnden and Weare (2012), some

implicit PFs described by Morzfeld et al. (2012), Chorin and

Tu (2009) and Chorin et al. (2010), PFs using an EnKF pro-

posal as in Papadakis et al. (2010), or optimal PFs described

by Arulampalam et al. (2002), Doucet et al. (2000; 2001),

Zaritskii and Shimelevich (1975), Liu and Chen (1995) and

Snyder et al. (2015) fit into this picture. Such filters are built

for stochastic models, which are slightly different and dis-

cussed briefly in Appendix A. In particular, we show that

even optimal PFs, optimally localized, cannot match the per-

formance of the EnKF in a linear benchmark problem. Here

it is important to note that optimality refers to optimality over

a class of PFs, defined by a certain family of proposal dis-

tributions. Equivalent weights PFs, for example, make use of

more general mechanisms for proposing an ensemble and are

not members of this family of PFs. Therefore, the results we

report in the Appendix do not apply to them.

4 WEIGHT-LOCALIZATION OF THE
VARIATIONAL PARTICLE SMOOTHER

We noted above that the varPS does not collapse on ideal-

ized linear/Gaussian problems. The reason is that the proposal

distribution of varPS is a Gaussian, centred at the mode and

with a covariance equal to the inverse Hessian of the 4D-Var

cost function. Thus, the proposal distribution is equal to the

posterior distribution of a linear problem. This implies that

all weights are equal, which in turn implies that collapse does

not occur. In practice however a problem is rarely linear and

the Hessian is typically not known exactly. We show that the

weights of varPS collapse in this situation, and that the col-

lapse can be prevented by weight-localization. We first con-

sider “diagonal” problems, for which weight-localization is

straightforward. We then present a weight-localization strat-

egy that can be used for more general, non-diagonal problems.
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4.1 Linear diagonal problems

We first neglect effects of nonlinearity and describe how the

collapse of the varPS can be caused by a proposal distribu-

tion with larger covariance than the posterior distribution. In

practice, this situation is likely to occur because of inflation

or approximations used when generating 4D-covariances.

We first illustrate the collapse of the varPS by considering

a Gaussian posterior distribution  (0, I) and Gaussian varPS

proposal distribution with slightly larger covariance:

p(xk−1|y1∶k) =  (0, I), q(xk−1) =  (0, (1+𝛽) I), 𝛽 > 0.

We can vary the dimension n of this problem and compute

G in Equation 10 as a function of dimension (Snyder et al.,
2015 give the calculation):

G =

(
1 + 𝛽√
1 + 2𝛽

)n

. (18)

The exponential dependence of G on dimension implies that

the ensemble size required by the varPS grows exponentially

with dimension (since Neff = G⋅Ne).

In this diagonal problem, weight-localization is straightfor-

ward and can prevent collapse. As described in the context

of PFs, weight-localization in a diagonal problem can be

done by computing weights for varPS independently for each

state component because there are no complex multivariate

relationships. The weight-localization implies that the n fac-

tors of G in Equation 18 apply to each variable separately,

i.e. for each variable we have Gi = (1 + 𝛽)∕
√

1 + 2𝛽, which

is “small”, so that a moderate number of ensemble members

is sufficient to solve this problem, independently of dimen-

sion n. Therefore, weight-localization breaks the exponential

dependence of the required ensemble size on dimension and

prevents the collapse of varPS.

We further illustrate the collapse of the varPS by revisit-

ing the linear diagonal benchmark problem of section 3.4. We

now relax the assumption that the varPS proposal covariance

is exactly equal to the posterior covariance and consider a

varPS with proposal distribution

q(x) =  (x∗,C), C = (1 + 𝛽) J−1,

where x∗ is the posterior mode and 𝛽 = 0.05. As before, we

vary dimension n for this problem from n = 100 to n = 1, 000,

and compute G of varPS as a function of n. To compute G
we use an ensemble size Ne = 105. Such a large ensemble

size is necessary here because the larger G is, the larger Ne
is required to compute G accurately. The results are shown

in Figure 2a. We note the exponential dependence of G on n,

which causes the collapse of varPS.

When we fix dimension, n= 100, and apply weight-

localization to the varPS, the collapse is prevented and we

obtain small MSE and comparable spread even when Ne is

small, as shown in Figure 2b. Indeed, this varPS (light blue)

yields results comparable to what we obtained under idealized

conditions in section 3.4.

The collapse of a localized varPS does not occur if G,

in each variable, is small. However, if G is small, then the

varPS proposal is a good approximation of the posterior dis-

tribution (locally, in that variable). The reason is that the

varPS weights (Equation 13) account for differences between

the varPS proposal and posterior distributions. G is only

small if the weights are nearly constant, which means that

the varPS proposal differs only minimally from the posterior

distribution. Thus, one may question whether an accurate

solution can be obtained by setting the weights of each varPS

ensemble member to w = 1∕Ne, rather than using the weights

in Equation 13. The resulting ensemble is distributed accord-

ing to the varPS proposal distribution in Equation 12, not the

posterior distribution p̂ in Equation 5. Thus, posterior means

and covariances are approximated by proposal means and

covariances, and this approximation should be “good” if G is

small. Naturally, replacing the varPS weights by w = 1∕Ne
also prevents the collapse in high-dimensional problems (sim-

ilar to weight-localization). For the reminder, we will call an

http://wileyonlinelibrary.com
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implementation of varPS with weights w = 1∕Ne the equally
weighted varPS or varPS with equal weights. The equally

weighted varPS is similar to some ensemble formulations of

4D-Var which are currently in practical or operational use

(e.g. Zupanski, 2004; Sakov et al., 2012; Bocquet and Sakov,

2013; 2014; Kuhl et al., 2013; Auligné et al., 2016; Boc-

quet, 2016). Indeed, one can view varPS as an importance

sampling method that uses IEnKF/IEnKS as a proposal dis-

tribution, or, vice versa, one can view the IEnKF/IEnKS as

varPS with equal weights. The reason is that the proposed,

unweighted ensemble of varPS coincides with the ensemble

used by IEnKF/IEnKS (setting numerical implementations of

optimization or Hessian/Jacobian computations aside). Note

that the use or “non-use” of weights has also been discussed in

the context of RTO (section 3.3 and Bardsley et al., 2014). For

some problems, samples from the RTO proposal distribution,

without any weights, lead to accurate estimates even if the

sampling problem is not Gaussian (figures 1 and 3 in Bardsley

et al., 2014). In fact, the corrections induced by the weights

often seem negligible. These ideas were also discussed in the

context of pollutant source retrieval in Liu et al. (2017). We

emphasize that varPS or RTO with equal weights are fun-

damentally different from the “equal weights particle filter”

(EWPF) of Ades and van Leeuwen (2013) (Appendix A).

All three methods, varPS and RTO with equal weights, and

EWPF have equal weights “by construction” and, therefore,

avoid filter collapse, but EWPF modifies samples so that all

samples receive an equal weight, whereas varPS and RTO

with equal weights simply neglect the weights, i.e. these

methods accept the proposal distribution as the posterior

distribution.

Results obtained by the equally weighted varPS are shown

in black in Figure 2. In this example the equally weighted

varPS can achieve MSE comparable to the weighted varPS,

i.e. the weights do not have a large effect on MSE. However,

the equally weighted varPS overestimates the spread. The rea-

son is that the covariance matrix of the proposal is larger than

the covariance of the posterior distribution. Nonetheless, one

can obtain good results by an equally weighted varPS when-

ever the covariance of the proposal is a “good” approximation

of the posterior covariance (inverse Hessian of the 4D-Var

cost function). This also suggests that the equally weighted

varPS can be an effective strategy in high-dimensional lin-

ear problems, as the equal weights prevent the collapse. We

investigate if the “equal weights” strategy is applicable to

(mildly) nonlinear problems in the next section.

4.2 Diagonal nonlinear problems

The rate at which the collapse of varPS occurs in mildly

nonlinear problems can be studied by “small noise theory”,

e.g. Goodman et al. (2015). For a small noise analysis, we

assume that the approximate posterior p̂ in Equation 5 is

“near” a Gaussian, e.g. because the model f is mildly nonlin-

ear. This means that the 4D-Var cost function  is quadratic

plus an order-𝛾 perturbation, and possibly higher-order terms

(HOTs):

 (xk−1) =
1

2
(xk−1 − x∗)T J (xk−1 − x∗) + O(𝛾) + HOTs,

where J is the Hessian of  evaluated at x∗, and where O(𝛾)
denotes terms that are equal to some constant multiplied by

𝛾 . A Taylor expansion of G in Equation 10 can be written as

G = 1 + E
[
C3(xk−1 − x∗)2

]
⋅ O(𝛾2) + HOTs

where C3 is the third coefficient of a Taylor expansion of  .

To leading order, and for a fixed dimension n, the required

ensemble size of varPS thus scales quadratically in the per-

turbation parameter 𝛾 . In contrast, the standard PF has the

property that G → ∞ as 𝛾 → 0, i.e. the required ensemble

size blows up as the perturbation decreases in size, indicat-

ing that the collapse of the varPS happens “more slowly” than

for the standard particle filter in near-Gaussian problems (also

Weare, 2009 and Vanden-Eijnden and Weare, 2012).

Nonetheless, there is a “hidden” dependence of G on

dimension, which we investigate by considering diagonal

problems for which

G = E[w2]
E[w]2

=
(

E1

(E2)2

)n

. (19)

The derivation of this formula and expressions for the quan-

tities E1 and E2 are in Appendix B. Since G is exponential

in n, our calculation indicates that even in mildly nonlinear

problems (small perturbation parameter 𝛾), varPS collapses

exponentially fast if dimension is large.

We illustrate the collapse of varPS in nonlinear problems,

by a nonlinear test problem similar to the linear problem of

section 3.4:

xk = xk−1 + 𝛽
(
−
√

3 x2
k−1

+ x3
k−1

)
,

yk = xk + 𝜀k,

where 𝜀k are iid Gaussians and where xs
k is to be interpreted

element-wise, i.e. (xs)i = (xi)s. Note that the perturbation

parameter 𝛽 controls the nonlinearity and that we recover the

linear benchmark problem of section 3.4 for 𝛽 = 0.

We first fix 𝛽 = 0.1 and vary dimension n and compute G as

a function of dimension. Results obtained with an ensemble

of size Ne = 104 are shown in Figure 3a.

We note the expected exponential scaling of G with dimen-

sion, leading to the collapse of varPS. Next, we fix dimension

n = 10 and vary the perturbation parameter 𝛽 between zero

(linear problem) and one (nonlinear problem). This allows

us to investigate the performance of varPS as the problem

becomes “more nonlinear”. In order to prevent the collapse

of varPS for 𝛽 > 0, we localize its weights by decoupling

(as described above). Results are shown in Figure 3a for

an ensemble size of Ne = 100. Since MSE and spread are

“random” for each experiment (the true state and the obser-

vation are drawn at random), we show the average of MSE

and spread of 10,000 experiments. We compare the results

we obtain by varPS with “optimal” weight-localization (light
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FIGURE 3 (a) G as a function of dimension computed for a given n using a ensemble size Ne = 104 (blue dots). The dashed red line shows an exponential

fit. (b) MSE (solid lines) and spread (dashed lines) as a function of the perturbation parameter 𝛽 for varPS with weight-localization (light blue) and equally

weighted varPS (black) [Colour figure can be viewed at wileyonlinelibrary.com]

blue) to results we obtain by the equally weighted varPS, i.e.

setting all weights to w = 1∕Ne (see above). Both methods

give identical results when the perturbation parameter 𝛽 = 0,

since 𝛽 = 0 corresponds to a linear problem, so that the varPS

weights indeed are all equal w = 1∕Ne. However, even for

relatively large perturbation parameters 𝛽 ≈ 0.4, the varPS

with equal weights yields acceptable results. Thus, even

for moderately nonlinear problems, and even for relatively

large ensemble sizes, the equally weighted varPS provides an

effective means to obtain “useful” solutions of the nonlinear

problem. The varPS weight become important only when

the nonlinearity is substantial (large 𝛽). This result suggests

that the weighted varPS solution only provides benefits over

the unweighted solution for “highly” nonlinear/non-Gaussian

problems. In near-Gaussian problems, using localized

weights may not yield significant advantages over the equally

weighted varPS, or other linearized solutions.

We illustrate the above statements by illustrating the poste-

rior distributions p(x0|y) and p(x1|y) for the above nonlinear

example with 𝛽 = 0.4. In Figure 4, we plot the posterior dis-

tribution of one of the variables at time t = 0, and its Gaussian

approximation, which is the proposal distribution of varPS, or

equivalently, the approximation used by the equally weighted

varPS.

We use Ne = 106, because ensemble size is not the issue

here, and because we wish to study the errors this method

makes in addition to any sampling error caused by small

ensemble sizes. In Figure 4a, we show the posterior distri-

bution p(x0|y) at time t = 0 and its approximation by the

equally weighted varPS. Figure 4b shows the posterior distri-

bution p(x1|y) at time t = 1, its approximation by the equally

weighted varPS, and its approximation by EnKF, also with

Ne = 106.

We note that there is significant error, both at time t = 0

and t = 1. However the modes of the distributions generated

by the equally weighted varPS and the posterior distributions

nearly coincide (at times t = 0 and at time t = 1). The good

“match” between these modes leads to the small MSE we

observe in our previous experiments. The EnKF approxima-

tion of the posterior distribution at time t = 0, p(x0|y), is the

prior (standard Gaussian, in this example). The EnKF approx-

imation of the posterior distribution at time t = 1, p(x1|y), is

shown in Figure 4a and we note that the mean and mode of the

EnKF approximation are far from their true values. Moreover,

the EnKF overestimates posterior covariances even more than

the equally weighted varPS. We wish to emphasize again that

the equally weighted varPS operates in a way very similar to

some current ensemble formulations of 4D-Var (e.g. Zupan-

ski, 2004; Sakov et al., 2012; Bocquet and Sakov, 2013; 2014;

Kuhl et al., 2013; Auligné et al., 2016; Bocquet, 2016), none

of which makes use of weights (which is equivalent to set-

ting all weights equal to w = 1∕Ne, as in the equally weighted

varPS). This suggest that the equally weighted varPS may be

successful in practical problems with moderate nonlinearity,

and, perhaps more importantly, it suggest that the varPS pro-

posal distribution is accurate and that weight calculation and

possibly localization is straightforward.

4.3 Weight-localization for general problems

Thus far, we have addressed weight-localization of varPS for

diagonal problems (where the optimal localization is triv-

ial to implement), and investigated the validity of neglecting

the weights altogether (as in the equally weighted varPS).

We now present a weight-localization for more general appli-

cations, but assuming that R is a diagonal matrix and that

[y]j = [h]j([f(xk−1)]j), i.e. each component [y]j of an observa-

tion y depends on only one component of f(xk−1). We define

a “localization function” which deceases exponentially with

distance from the observation [y]j:

𝜌j(Δx) = exp
[
− (Δx∕2L)2

]
,

http://wileyonlinelibrary.com
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FIGURE 4 (a) Posterior distribution, p(x0|y), at time t = 0 (blue) and equally weighted varPS approximation (red). (b) Posterior distribution, p(x1|y), at time

t = 1 (blue), equally weighted varPS approximation (red), and EnKF approximation (orange) [Colour figure can be viewed at wileyonlinelibrary.com]

where Δx measures the distance to the observation [y]j and L
is a tuning parameter. Under our assumptions, the weights in

Equation 13 can be written as

w ∝
exp

[
− 1

2
(xk−1−𝜇)B−1(xk−1−𝜇)

]
exp

[
− 1

2
(xk−1−x∗)J−1(xk−1−x∗

] k∏
j=1

exp

[
−1

2

{[y]j−[h]j([f(xk−1)]j)}2

[R]j, j

]
.

Taking the negative logarithm simplifies this equation to

− log w = 1

2
(x − 𝜇)B−1(x − 𝜇) − 1

2
(x − x∗)J(x − x∗)

+
k∑

j=1

1

2

{[y]j−[h]j([f(x)]j)}2

[R]j, j
.

This above expression suggests that we can define a weight

at an observation location by

− log wj =
1

2

{[y]j − [h]j([f(x)]j)}2

[R]j, j

+ 1

2
||𝜌j◦

{
B−1∕2 (𝜇 − xk−1)

}||2
− 1

2
||𝜌j◦

{
J1∕2 (x∗ − xk−1)

}||2,
where the open circle denotes element-wise vector–vector

multiplication. Weights near the observation locations are

computed by interpolating between weights at observa-

tion locations. Taking the exponential and normalizing the

weights so that their sum over the ensemble members and at
every location is one results in a n×Ne matrix of weights, W.

This weight matrix contains the weights of the Ne ensemble

members, and vary over the (spatial) domain.

With the spatially varying weights, we can compute a

weighted mean and weighted covariance matrix using essen-

tially the same methods as in Tödter and Ahrens (2015).

Computing only weighted means and covariances is suffi-

cient for updating the “background” mean and covariance

and avoids difficulties that arise from localized resampling.

In fact, we have experimented extensively with resampling

strategies based on localized weights, but none of the meth-

ods we tried lead to results that are comparable to EnKF or

ensemble formulations of 4D-Var. For that reason, we are here

satisfied with updating the background mean and covariance

using the localized weights, however accurate computation of

higher moments requires more sophisticated techniques; also

van Leeuwen (2009) gives a discussion of the difficulties of

resampling and localization for PFs.

Specifically, let wj be the jth column of the weight matrix,

which contains the spatially varying weights for the jth sample

at time k, xj
k = fk(xj

k−1
). Then

x̄k =
Ne∑
j=1

wj◦ xj
k

is the weighted sample mean. We define the n × Ne matrix U
with colums uj =

√
wj◦ (xk

j − x̄k), where the square root of a

vector is to be understood as taking the square root of each of

its elements. Following Tödter and Ahrens (2015), the back-

ground matrix for the next assimilation cycle is computed as

B = UUT. Note that an “infinite” localization radius implies

that

wj = wj 1,

where 1 is an n-dimensional vector whose elements are all

equal to one. In this case, one obtains the usual formulae for

weighted covariance

B =
Ne∑
j=1

wj (xj
k − x̄k)(xk

j − x̄k)T,
Ne∑
j=1

wj = 1, (20)

i.e. the varPS with weight-localization in the limit of large

localization radius is equal to a varPS without weight local-

ization. When all weights are equal to w = 1∕Ne, the above

formula reduces to

B = 1

Ne

Ne∑
j=1

(xj
k − x̄k)(xk

j − x̄k)T,

http://wileyonlinelibrary.com
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which is not an unbiased estimator for the covariance. This

suggest that one replaces B in Equation 20 by

B = Ne

Ne − 1

Ne∑
j=1

wj (xk
j − x̄k)(xk

j − x̄k)T,
Ne∑
j=1

wj = 1.

Note that the varPS requires localization in two stages:

weight-localization is done by computing weights locally to

produce a weighted covariance estimate. In addition, for small

ensemble sizes, there is significant sampling error, regard-

less of how effective the weight-localization is and, hence,

one must localize the resulting weighted covariance matrix B
to reduce effects of spurious correlations. This second local-

ization, and a required inflation, can be done using the usual

techniques, e.g. by setting

Bloc = 𝛼 (L◦B),

where L is a suitable localization matrix and 𝛼 > 1 is an

inflation parameter, as in EnKF or ensemble formulations of

4D-Var.

4.4 Summary of varPS, its localization and the
equally weighted varPS

We summarize our discussion of varPS so far:

1. the varPS exploits near-Gaussian problem structure by

merging ideas from 4D-Var with the particle approach;

2. varPS can exploit sparse/banded problem structure by

weight localization, which prevents its collapse in

high-dimensional problems;

3. in near-Gaussian problems, the equally weighted varPS

generates ensembles that are as appropriate as weighted

ensembles, while also avoiding collapse.

Items (1) and (2) are essential for obtaining useful

results with small ensemble sizes in high-dimensional prob-

lems. In contrast, PFs make use of sparse/banded struc-

ture by weight-localization, which makes them applicable to

high-dimensional problems because the required ensemble

size is moderate (at least not exponential in dimension). How-

ever, our benchmark tests suggest that localized PFs that do

not exploit Gaussian structure in near-Gaussian problems are

not as effective as techniques that do.

The equally weighted varPS effectively represents the pos-

terior distribution by the Gaussian varPS proposal. The

weights (localized, if necessary) morph the varPS proposal

into the posterior distribution. However, our preliminary tests

suggest that these weights have a significant effect only if

the nonlinearity is substantial. Even in moderately nonlinear

problems, using equal weights can be effective, especially if

small MSE and spread are the main concern, and if one is

limited to small ensemble size.

It is important to re-iterate connections of varPS with

equal weights and IEnKF/IEnKS (Sakov et al., 2012; Boc-

quet and Sakov, 2013; 2014; Bocquet, 2016). We explained

above that the ensemble of IEnKF/IEnKS coincides with

the unweighted (proposal) ensemble of varPS. Thus, varPS

with equal weights can be viewed as an implementation

of an IEnKF/IEnKS. For that reason, we do not compare

IEnKF/IEnKS with varPS or varPS with equal weights in our

numerical experiments below; comparisons with varPS with

equal weights are direct indications of what to expect from

IEnKF/IEnKS.

5 NUMERICAL EXPERIMENTS WITH THE
LORENZ’96 MODEL

We test the varPS on the L96 model (Lorenz, 1996). Our goal

is to test if the ideas we developed above can hold true for

a simple test problem that is popular for testing algorithms

in NWP. More specifically, we use numerical simulations to

examine whether the varPS is better than standard PFs at pre-

venting weight collapse, and whether the proposed method is

an effective data assimilation technique for high-dimensional

nonlinear problems. To that extent, we compare the varPS

to the localized PF, EnKF (square root and stochastic) and

ensemble formulations of 4D-Var.

5.1 Results for 40-dimensional problems

We first consider a model with n = 40 variables. The func-

tion f in Equation 1 is given by a fourth-order Runge–Kutta

discretization of the L96 dynamics with time step Δt = 0.05

(as in Poterjoy, 2015). We collect observations of every other

state variable, every fourth time step (ΔT = 0.2 between

observations). We vary the accuracy of the observations and

consider the noise covariances R = I and R = 0.1 I. For each

observation-error covariance we perform data assimilation by

the following algorithms:

1. EnKF (stochastic) with inflation and localization;

2. EnKF (square root) with inflation and localization;

3. PF with localization by Poterjoy’s method;

4. varPS with inflation and weight-localization;

5. varPS with inflation but without weight-localization;

6. varPS with inflation and equal weights (similar to the

IEnKF);

7. E4D-Var with inflation and localization;

8. EDA with inflation and localization.

Localization of the standard PF is done by Poterjoy’s

method described in Poterjoy (2015) and Poterjoy and Ander-

son (2016), with squared exponential localization function.

The method also requires setting a minimum weight, which

has effects similar to that of covariance inflation in EnKF,

and this parameter is also tuned. We make use of an addi-

tional particle adjustment step based on kernel density esti-

mation (KDDM). However, we ran some of the numerical

experiments without the KDDM step and noticed similar

performance.
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Our E4D-Var method is as follows. Given a background

covariance and a set of observations, we minimize the asso-

ciated 4D-cost function by a Gauss–Newton method. The

background covariances are updated by an EnKF (stochastic)

which we run in parallel to our 4D-Var system. Information

is exchanged between the 4D-Var and EnKF systems in the

sense that the background covariance in 4D-Var is updated

by the EnKF analysis covariance of the previous assimila-

tion window, and the EnKF ensemble is re-centred around the

4D-Var state estimate. Our EDA method amounts to solving

the 4D-Var optimization problem repeatedly using perturbed

observations and perturbed states.

We initialize all algorithms with an initial ensemble drawn

from an EnKF run with a large ensemble (and tuned localiza-

tion and inflation), so that the methods start with a spun-up

ensemble. We then perform 103 data assimilation cycles.

Localization and inflation are tuned for each method and

ensemble size by evaluating time-averaged MSE over a matrix

of localization and inflation parameters. We declare the local-

ization/inflation parameters that lead to a minimum time

averaged MSE as “optimal”. MSE and spread, at time k, are

defined as described in section 3.4, Equations 16 and 17. Note

that MSE and spread defined in this way are posterior quanti-

ties (computed using the analysis, rather than forecast ensem-

ble), and that we compute MSE and spread, for all methods,

at observation time. For E4DVar, EDA and varPS, this means

that we propagate the ensemble to time k (when observation

yk is received) using the model (1). The time-averaged MSE

is defined as the average MSE over 800 assimilation cycles

(disregarding the first 200 cycles as additional spin-up):

MSEavg = 1

800

800∑
j=1

MSE200+j.

Results are shown in Figure 5, where we plot time-averaged

MSE and time-averaged spread (defined in the same way as

time-averaged MSE) as a function of the ensemble size Ne.

Note that our simulation and assimilation runs are relatively

short. For that reason the average statistics of MSE and

spread may not be accurate to more than a few digits, how-

ever our numerical experiments reliably indicate the methods’

performances.

Both EnKF implementations (stochastic and square root)

yield comparable results and the EnKFs and localized PF

yield a larger MSE and spread than the variational methods or

varPS. Moreover, the localized PF yields the largest MSE and

its performance degrades when the observation-error covari-

ance is small (consistent with previously reported results).

The variational methods (E4D-Var and EDA) yield the small-

est MSE.

We note that the varPS can “beat” EnKF in this mildly non-

linear problem, but varPS does not perform better than ensem-

ble formulations of 4D-Var (also Bocquet and Sakov, 2013).

It is also remarkable that the varPS does not require weight

localization in this 40-dimensional problem, for which the

standard PF without weight-localization collapses. Indeed,

the results we obtain by weight-localization are comparable

to those obtained without weight-localization. One can argue

that we did not “tune” the weight-localization sufficiently,

since the localized and unlocalized implementations are equal

if the localization radius is large enough (infinite). How-

ever, we obtained the results shown in the figure by tuning

the weight-localization and inflation of varPS over a num-

ber of finite choices. Thus, our experiments confirm that the

weight-localization strategy of section 4 does not introduce

large additional errors, even if the localization radius is not

chosen “optimally” (which is likely the case in practice).

The varPS does not collapse in this problem because the

weights are well-distributed (small G), which indicates that

the varPS proposal distribution is a good approximation of

the posterior distribution in Equation 5. For this reason, the

equally weighted varPS produces results which are almost

identical to the weighted varPS.

5.2 Results for 400-dimensional problems

We repeat some of the calculations for a L96 problem of

dimension n = 400, where we observe every other variable

every four time steps. Our results are shown in Figure 6.

We obtain qualitatively and, to a large extent quantitatively,

the same results as in the experiments with n = 40 dimen-

sions. The reason is that the L96 problem has the anticipated

“sparse structure” we exploit during localization, so that the

overall dimension is irrelevant. What defines performance of

localized data assimilation algorithms is the structure of each

loosely coupled block, not the overall number of blocks.

These numerical experiments are important for testing the

localization of varPS. Only if an unlocalized varPS “fails”,

but a localized varPS leads to useful results can one claim

that the localization is successful. And indeed, n = 400 is

large enough to make the varPS without weight localiza-

tion collapse when the observation noise is large (R = I).

Weight-localization prevents this collapse, and yields results

comparable to the variational methods, but MSE is slightly

larger for varPS. The equally weighted varPS is also effec-

tive and leads to MSE as small as those obtained by the

variational methods. As before, we note that the localized

PF performs poorly when the observation errors are small

(R = 0.1 I), and that the local PF causes larger MSE than

EnKF. Moreover, varPS and the variational methods lead to

smaller MSE than EnKF or localized PF, and the variational

methods give the smallest MSE.

5.3 Results for a 2,000-dimensional problem

We repeat some of our computations on a problem of dimen-

sion n = 2, 000. Here we do not tune localization/inflation

for the various algorithms we consider, but re-use the local-

ization and inflation parameters we obtained when tuning the

n = 400 dimensional problem. All algorithms use Ne = 40
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(a) (b)

(c) (d)

FIGURE 5 MSE (solid lines) and spread (dashed lines) as a function of the ensemble size for several data assimilation algorithms and a Lorenz model of

dimension n = 40. (a, c) Localized PF and EnKFs, (b, d) variational methods and varPS, for (a, b) R = I, and (c, d) R = 0.1 I [Colour figure can be viewed at

wileyonlinelibrary.com]

ensemble members and the observation-error covariance is

R = I. Our results are summarized in Table 1.

The localized standard PF struggles in this

high-dimensional case and gives larger MSE, but keeps

the spread comparable to that of EnKF. The varPS

without weight-localization collapsed in this problem.

Weight-localization prevents this collapse and leads to MSE

and spread as in the n = 40 or n = 400 dimensional problems.

As before, we also obtain small MSE by the equally weighted

varPS. Moreover, as before, varPS with weight-localization

or the equally weighted varPS produce MSE and spread com-

parable to what we obtain by E4D-Var, and “beats” the EnKF,

which yields larger MSE and spread. This numerical exper-

iment further suggests that varPS (with weight-localization

or with equal weights) can perform well with ensemble sizes

that are significantly smaller than the dimension.

5.4 Discussion of numerical experiments

We draw the following conclusions from our numerical exper-

iments.

1. We reminds readers that localization of the data

assimilation algorithms exploits banded problem struc-

ture of L96. This is the reason why localized algorithms

perform identically on L96 problems of dimensions

n = 40, n = 400, and n = 2, 000. Unlocalized methods

do not exploit (or know of) the banded problem structure,

and this is what makes the unlocalized algorithms fail.

2. Localized particle methods with small ensemble sizes do

not collapse on any of the problems we considered, and

yield small MSE and comparable spread. The standard

PF yields larger MSE than EnKF. The varPS (in its vari-

ous implementations) yields smaller MSE than EnKF, but

slightly larger MSE than E4D-Var or EDA.

3. The varPS can perform robustly with small ensembles and

without localization in problems where other unlocalized

particle filters collapse. This property follows from the

varPS exploiting Gaussian assumptions for posterior den-

sities. While the varPS without weight-localization would

work flawlessly in linear/Gaussian problems, even small

deviations from linearity/Gaussianity, or, equivalently,

small errors in approximating covariances will lead to the

collapse of the varPS if the dimension becomes large (as

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

FIGURE 6 As Figure 5, but for a Lorenz model of dimension n = 400 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Results for a 2,000-dimensional L96 problem

Algorithm MSE Spread

EnKF (stochastic) 0.54 0.50

PF, Poterjoy’s localization 0.81 0.51

E4D-Var 0.27 0.37

varPS with weight localization 0.27 0.32

varPS without weight localization 13.5 0.09

varPS with equal weights (IEnKF) 0.28 0.36

is the case for the L96 problem of dimension n = 400 and

n = 2, 000).

4. Weight-localization makes the varPS applicable to prob-

lems of high dimension (n = 2, 000) where the varPS

without weight-localization collapses. The varPS with

weight-localization thus exploits linear and sparse/banded

problem structure. The fact that we obtain similar results

with varPS and ensemble formulations of 4D-Var sug-

gests that the weight-localization strategy is applicable in

the sense that the additional errors due to localization are

small.

5. The equally weighted varPS performs similarly to or bet-

ter than the weighted varPS (even when the weights

are localized). Thus, one should be careful when using

particle methods and localized weights in near-Gaussian

problems: using localized weights may not lead to sig-

nificant advantages over unweighted or linearized solu-

tions, especially when the ensemble size is small (in

which case sampling error is large, perhaps dominant

over errors due to Gaussian approximations). However,

in “more” nonlinear/non-Gaussian problems, this results

cannot be expected to hold. Our numerical experiments

do not allow us to draw conclusions about strongly non-

linear/non-Gaussian problems because we focused on a

nearly Gaussian problem class in our theory, algorithm

design, and numerical experiments.

6 SUMMARY AND CONCLUSIONS

We have benchmarked localized PFs against EnKF on diago-

nal linear problems for which an “optimal” localization strat-

egy is available. We found that localized PFs cannot reach the

performance of EnKF with small ensemble sizes on these lin-

ear test problems. Motivated by our benchmarks, we revisited

a variational particle smoother (varPS) that exploits Gaus-

sian problem structure by merging 4D-Var methods with the

particle approach. We studied how weight localization can

prevent the collapse of varPS and what role the weights play

http://wileyonlinelibrary.com
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in mildly nonlinear/non-Gaussian problems. We found that

the performance of varPS is comparable to that of EnKF on

our linear test problems, and discussed connections of varPS

with ensemble formulations of 4D-Var, in particular with the

IEnKF and the IEnKS.

We obtained good results in simple nonlinear benchmark

problems and also found that the performance of varPS is

comparable to ensemble formulations of 4D-Var in numer-

ical experiments with a L96 model of dimension n = 40,

n = 400, and n = 2, 000. Since ensemble formulations

of 4D-Var and the varPS yield comparable performance in

this mildly nonlinear problem, computational cost may ulti-

mately decide which algorithm should be used. Both varPS

and E4D-Var require an optimization but varPS does not

require running an EnKF in addition to a variational system.

The varPS may be more efficient also than EDA because it

only requires one optimization, rather than one optimization

per ensemble member. The computational cost of varPS and

IEnKF/IEnKS is comparable, since IEnKF/IEnKS and varPS

essentially only differ by the use, or non-use, of weights.

Additional improvements due to the weights may determine

which of these methods is most applicable.

We discussed in detail how the varPS collapses in

high-dimensional problems and show that weight-localization

can prevent this collapse. The varPS with weight localization

exploits linear as well as sparse/banded problem structure,

which may be important for solving NWP problems with

small ensemble sizes. We recall that even a localized parti-

cle method may lead to poor results, or may collapse, when

the number of observations is large. Our numerical experi-

ments or theory do not allow us to draw conclusions about

the applicability of varPS in practice, because we have not

analyzed what happens when the number of observations

is large (larger than the system dimension). Our numerical

experiments suggest that an equally weighted varPS, which

is equivalent to an implementation of IEnKF/IEnKS, can be

effective if the nonlinearity is not too strong. In this case,

localized weights may not lead to significant improvements

over unweighted or linearized solutions. In strongly nonlin-

ear problems, varPS may lead to improvements compared to

varPS with equal weights, or IEnKF/IEnKS, but the required

ensemble size is likely to increase as well. We hope to inves-

tigate such problems in future work; in particular we wish to

investigate how the required ensemble size may scale with the

degree of nonlinearity.
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APPENDICES

A: BENCHMARKING LOCALIZED
PARTICLE FILTERS FOR LINEAR,
DIAGONAL, STOCHASTIC PROBLEMS

We consider data assimilation problems with a stochastic

model, defined by

xk = fk(xk−1) + 𝜂k,

yk = hk(xk) + 𝜀k,

where 𝜂k are iid Gaussian random variables with means

E [𝜂k] = 0, and covariance matrices Qk = E
[
𝜂k𝜂

T
k

]
; all other

definitions are as in Equations 1–2. The posterior distribution

typically used in particle filtering for such problems is

p(x0∶k|y1∶k) ∝ p(x0∶k−1|y1∶k−1)p(xk|xk−1)p(yk|xk), (A1)

(e.g. Doucet et al., 2001). Note that this posterior distribution

is defined over trajectories x0∶k, rather than a state at a given

time. Moreover, the factorization of the posterior distribution

in Equation A1 implies that one can update the posterior dis-

tribution at time k−1, p(x0∶k−1|y1∶k−1), to time k, p(x0∶k|y1∶k),
by sampling p(xk|xk−1)p(yk|xk). This can be done sequentially

in time by using proposal distributions of the form

q(x0∶k; y1∶k) ∝ q(x0)
k∏

j=1

qj(xj; y1∶j, x1∶j−1). (A2)

At each step in time, particle filtering thus amounts

to importance sampling of the “update term”,

p(xk|xk−1)p(yk|xk), using the proposal distribution,

qk(xk; y1∶k, x1∶k−1). The weights are the ratio of posterior and

proposal distributions

wk ∝
p(x0∶k|y1∶k)
q(x0∶k; y1∶k)

∝ wk−1

p(xk|xk−1)p(yk|xk)
qk(xk; y1∶k, x1∶k−1)

.

It is possible to evaluate these weights (without approxi-

mations) because the update term can be evaluated up to a

multiplicative constant.

The “standard” particle filter (SPF) for stochastic problems

uses the stochastic model to define the proposal distribution

and weights

qk(xk; y1∶k, x1∶k−1) = p(xk|xk−1), wk ∝ wk−1p(yk|xk).

The “optimal particle filter” (OPF; e.g. Arulampalam et
al., 2002; Liu and Chen, 1995; Snyder et al., 2015), uses a

proposal distribution and weights given by

qk(xk; y1∶k, x1∶k−1) = p(xk|xk−1, yk), wk ∝ wk−1p(yk|xk−1).

It was shown by Snyder et al. (2015) that this choice of q
is “optimal” in the sense that the variance of the weights is

minimized over proposal distributions of the form (A2).
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FIGURE A1 MSE (solid lines) and spread (dashed lines) as a function of the ensemble size for localized EnKF and particle filters: (a) larger noise in the

observation with R = I, and (b) smaller noise in the observation with R = 0.1 I [Colour figure can be viewed at wileyonlinelibrary.com]

It is important to realize that “optimality” here is over the

class of PFs defined by Equation A2. There are other PFs,

e.g. equivalent weight PFs Ades and van Leeuwen (2013) and

van Leeuwen (2010) that do not belong to this class and our

results do not apply to these filters.

We now apply the SPF and OPF, as well as an EnKF to

a stochastic version of the linear, diagonal test problem in

Equations (14)–(15):

xk = xk−1 + 𝜂k,

yk = xk + 𝜀k.

Here Qk = Rk = I. We localize the PFs by decoupling and

compare this optimal localization to the localization method

of Poterjoy. The EnKF (stochastic) is localized by the identity

matrix. As in section 3.4, we fix the dimension n = 100 and

consider the cases Rk = I and Rk = 0.1 I. Our results are

shown in Figure A1.

We note qualitatively similar results as in our experiments

with a deterministic model in section 3.4: with small ensem-

ble sizes, EnKF yields smaller MSE than both PFs, which

underestimate the spread when the ensemble size is small.

When the observations are “more accurate”, R = 0.1I, the

choice of the proposal distribution becomes important. We

note that with the larger observation noise (R = I), not much

is gained by using OPF over SPF, however when the noise is

small (R = 0.1 I), then OPF yields smaller MSE at smaller

ensemble sizes than SPF. Nonetheless, no PF – not even the

optimal particle filter with “optimal” localization scheme –

can come close to performance of EnKF with small ensembles

(significantly smaller than the dimension, Ne ≪ nx).

In addition, we note that Poterjoy’s localization method

gives results almost identical to what can be achieved by the

“idealized” localization when the optimal proposal is used,

but leads to large MSE when the standard proposal is used

(Figure A1b). Small observation-error covariances have been

one shortcoming of the local PF (with standard proposal) in

the past, e.g. Lee and Majda (2016), and our computations

with linear models suggest that they can be overcome by using

optimal rather than standard proposals.

B: DERIVATION OF EQUATION 19

We derive Equation 19. For a diagonal, nonlinear “small

noise” problem, the cost function can be written as

 (xk) =
n∑

i=1

i(xi),

i(xi) = 1

2
xi,xi ⋅ (xi − xi,∗)2 + 𝛾

[
1

6
xi,xi,xi ⋅ (xi − xi,∗)3

]
+ HOT.

Here xi are the n components of xk, xi,∗ are the n compo-

nents of the posterior mode x∗
k , and xi,xi xi,xi,xi are the second

and third derivatives of the 4D-Var cost function evaluated

at the posterior mode. Note that the approximate posterior

distribution (Equation 5) is

p̂(xk|y1∶k) ∝ exp [− (xk)] ∝
n∏

i=1

exp
[
−i(xi)

]
We define

 0(xk) =
n∑

i=1

 0
i (x

i),  0
i (x

i) = 1

2
xi,xi ⋅ (xi − xi,∗)2

so that the proposal distribution of varPS can be written as

q(xk) ∝ exp
(
− 0(xk)

)
∝

n∏
i=1

exp
[
− 0

i (x
i)
]
.

http://wileyonlinelibrary.com
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The weights are the ratio of posterior and proposal

distribution

w ∝ exp
{
−
[ (xk) −  0(xk)

]}
∝

n∏
i=1

exp
{
−
[i(xi) −  0

i (x
i)
]}

,

and we compute

E[w2] = ∫ …∫
n∏

i=1

exp
{
−2

[i(xi) −  0
i (x

i)
]}

exp
[
−J0

i (x
i)
]√

2𝜋∕xi,xi

dx1 … dxn,

E[w] = ∫ …∫
n∏

i=1

exp
{
−
[i(xi) −  0

i (x
i)
]}

exp
[
−J0

i (x
i)
]√

2𝜋∕xi,xi

dx1 … dxn.

Under our assumptions of identically and independently

distributed variables xi, we have that

E1 = ∫ exp
{
−2

[i(xi) −  0
i (x

i)
]} exp

[
−J0

i (x
i)
]√

2𝜋∕xi,xi

dxi,

E2 = ∫ exp
{
−
[i(xi) −  0

i (x
i)
]} exp

[
−J0

i (x
i)
]√

2𝜋∕xi,xi

dxi,

are independent of the variable index i, so that

E[w2] = E1 ⋅ E1 ⋅ … ⋅ E1 = (E1)n,
E[w] = E2 ⋅ E2 ⋅ … ⋅ E2 = (E2)n,

which yields Equation 19.
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