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Abstract

We illustrate general techniques for assessing dynamic stability in games of incomplete

information by re-analyzing two models of preference evolution, the Arce (2007) employer-

worker game and the Friedman and Singh (2009) Noisy Trust game. The techniques include

extensions of replicator and gradient dynamics, and for both models they confirm local stability

of the key static equilibria. That is, we obtain convergence in time average for initial conditions

sufficiently near equilibrium values.
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1 Introduction

Standard equilibrium concepts, such as Bayesian Nash Equilibrium and Sequential Equilibrium,

offer sophisticated formulations of what one might hope to see in games of incomplete information.

These equilibrium concepts, however, beg the crucial dynamical question: would human players

ever actually reach such an equilibrium, or even get close?

For games of complete information, such questions of dynamic stability have been addressed

in a principled way by evolutionary game theory. That theory shows that certain subsets of Nash

equilibrium (e.g., Evolutionary Stable States, ESS) are indeed reachable by players using simple

adaptation rules (e.g., replication, imitation or learning); see, for example Weibull (1995), Fried-

man (1991) and Sandholm (2010) for games in normal form and Cressman (2003) for games in

extensive form. For games of incomplete information, however, dynamic stability questions re-

main largely unresolved.

The present paper addresses those questions. It does not prove new general results nor offer

new models, but it does show how to extend dynamics (specifically, replicator and gradient dynam-

ics) from games of complete information to games of incomplete information. In some cases the

extensions continue to yield systems of ordinary differential equations (ODEs) but in other cases

they yield partial differential equations (PDEs), and the stability properties of these systems can be

investigated analytically or numerically.

The dynamical systems that we propose endogenize the evolution of types. In that sense

they go beyond recent studies of dynamic stability of games of incomplete information that hold

fixed the distribution of types in order to focus on the adaptation of beliefs and/or actions. These

recent studies include Ely and Sandholm (2005), which uses best-response dynamics; Cressman

(2003, Section 4.7.2) and Amann and Possajennikov (2009) which apply replicator dynamics. The

present paper greatly extends the approach of Possajennikov (2005), who fixes a discrete set of

four types in Prisoner’s Dilemma and Hawk-Dove games in complete and incomplete information

environments, and uses replicator dynamics to endogenize the shares of the alternative types.

In the present paper we embed the types in a continuous type space and allow them to evolve

(slowly) via gradient dynamics, while replicator dynamics describe the rapid adaptation of indi-

vidual behavior. Endogenizing the set of types sharpens the model’s predictions and may enhance

the applicability of evolutionary game theory when information is imperfect. In some applications,
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tremble rates and imperfect observability are key features of the game of incomplete information

and we therefore show how to incorporate them into a dynamic specification. On the other hand,

we do not explicitly model the adaptation of beliefs; for our applied focus they can be regarded as

following the distribution of actions as it evolves.

We take no strong position on which underlying processes govern the evolution of types and

actions. It is natural for economists to think of entry and exit as governing type evolution, but other

social scientists may regard individual preference types as subject to gradual change or conversion

under the influence of role models and peers. For a given type of individual, the distribution of

actions can adapt via personal experience of success and failure, or social learning, or even entry

and exit. The underlying process determines the precise dynamic specification.

We illustrate the techniques using two recent models of preference formation, Arce (2007) and

Friedman and Singh (2009). Our idea is that generality is best developed from specific instances

and we chose these two models as relatively simple instances of the complexities noted two para-

graphs earlier. The models both apply the indirect evolution approach to preferences: players of

given preference types are matched pairwise to play a game with specified material payoffs. The

players adapt actions (on a rapid time scale) so as to maximize expected utility under the given

type distribution, while (on slower time scales) the distribution among types and the types them-

selves evolve according to realized material payoffs. Previous investigations represented indirect

evolution in terms of a static notion such as ESS; e.g. see Güth and Yaari (1992), Ok and Vega-

Redondo (2001) and Dekel, Ely and Yilankaya (2007). Here we will instead use standard dynamic

specifications — replicator and gradient — to assess the stability of the relevant equilibria.

Our work draws on several other strands of literature. Our continuous type space is an instance

of continuous trait space, for which the static equilibrium concepts of continously stable strategies

(CSS) and neighborhood invader stable (NIS) were first introduced respectively by Eshel (1983)

and Apaloo (1997). Later authors, notably Oechssler and Riedel (2002), Cressman (2005), and

Doebeli and Hauert (2005), connected these static concepts to dynamic stability under replicator

dynamics and Dieckman’s canonical dynamics. Friedman and Ostrov (2010, 2013) argue that gra-

dient dynamics are natural when the topology of the continuous action space matters — e.g., when

it is easier to evolve (or cheaper to adjust) to a nearby action or trait than to a distant one — and in

particular when payoff or fitness is given by the expectation over the current distribution of traits or

actions encountered in interactions. Applying the fitness gradient to each action chosen in a large
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population, they obtain a partial differential equation governing the distribution of actions and note

conditions under which the distribution converges asymptotically to a mass point or to a stationary

density. Dieckman’s canonical dynamics are a variant of gradient dynamics in which the mean of

the current action distribution responds to the payoff gradient while the variance remains constant.

We will elaborate on these points (and mention other published work) later when presenting the

dynamic analysis.

The presentation begins in Section 2 with Arce’s (2007) equilibrium analysis of efficiency

wages in a two population game of incomplete information. A population of Workers containing

two types (one self-interested and the other autonomy-preferring) is randomly matched pairwise

with a population of Employers who cannot observe Worker type. Which preference types and

what sort of behavior will survive in the long run? Arce uses static concepts to indentify equilibria

and emphasizes the result that increasing the incentive wage can destabilize an efficient equilibrium

for some distributions of preference types.

The first step in our analysis is to write out the expected payoff and expected utilities given

all state variables, including the population share of each type of Workers, which Arce (2007)

takes as exogenous. Then we introduce and analyze a system of four coupled ordinary differential

equations (ODEs) that characterizes the evolution of the state variables. That system uses standard

replicator dynamics, with fitness given by the realized material payoffs, to model the time path

of the population shares. To model the adjustment of strategy mixtures, the ODE system focuses

on utility and applies gradient dynamics, which in this context coincides with standard replicator

dynamics. The parameters include speed of adjustment, and we emphasize cases where strategy

mixture adjustment is faster than the evolution of types.

For some equilibria, eigenvalue techniques allow us to analytically characterize dynamic sta-

bility. However, for some key equilibria, these and other tractable analytic techniques are incon-

clusive. We then rely on numerical solutions of the ODE system and explain why it is appropriate

in such cases to focus on time averages. Our results complement and extend those of Arce (2007)

and other theoretical work on models of indirect evolution, e.g. Ok and Vega-Redondo (2001) and

Dekel, Ely and Yilankaya (2007). In particular, we find that both kinds of Workers can coexist in

states where the aggregate play corresponds to a Nash equilibrium with selfish preferences. Our

simulations also provide insight into how key parameters influence transitory behavior.

Section 3 describes the basic trust game and its extension to a game of incomplete information
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due to Friedman and Singh (2009, henceforth FS09). They propose a static equilibrium refinement

called Evolutionary Perfect Bayesian Equilibrium (EPBE) for population games. At EPBE, each

surviving type in each population has the same expected material payoff and no potential entrant

type has higher payoff.

After writing out the expected payoffs and utilities, we derive a system of six coupled dif-

ferential equations that characterizes the evolution of the state variables. Five of these equations

roughly parallel the ODEs for the Arce (2007) model and the other equation uses gradient dynam-

ics to describe evolution of the preference parameter. In line with FS09 and the previous section,

we assume that individuals adjust their strategy mixes rapidly relative to the rate of change in pop-

ulation shares (which adjust via entry and exit, or type switching). We assume that preference

parameter adjusts (via genetic disposition and/or internalized norms) at an even slower rate. Our

results support the implicit assumption in FS09 that EPBE is dynamically stable. More specifically,

we show for reasonable parameters that the time average state converges to the relevant EPBE from

initial conditions near the equilibrium value. That is, the “good” EPBE of the noisy trust game is

locally stable in time average.

The last section summarizes the findings and offers suggestions for applying the techniques

more broadly. The appendix includes the mathematical details of the Arce model.

2 The Arce (2007) Employer-Worker Model

After reviewing the model and its known equilibria, we write out the state-contingent payoffs and

specify dynamics. Then we assess the dynamic stability of all equilibria.

2.1 Elements of the model

Each Employer (row player) in a large population is randomly matched with one Worker (column

player). There are two possible types of workers: Type 1 or self-interested (comprising a fraction

ϕ ∈ [0,1] of the population) and Type 2 or autonomy-preferring (fraction 1−ϕ). Either type of

worker decides only whether to work (W) or shirk (S); the respective mixture probabilities are
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denoted q j and 1− q j for each type j = 1,2.1 Thus workers’ type-contingent strategy space is

[0,1]× [0,1].

Each Employer decides whether to monitor (M) or not (N); the mixture probabilities are p and

1− p respectively. Thus Employer’s strategy space is [0,1] and the state of the system is a vector

S = (ϕ, p,q1,q2) ∈ [0,1]4.

Table 1 shows the payoffs. The Employer receives gross payoff v > 0 when the worker works,

offset by the wage w > 0 paid to the worker and by the monitoring cost m > 0. Note that in

this model, the Employer is unable to condition the wage on the level of output. Workers who

work incur an effort cost e > 0. In addition to these material payoffs, a Type 2 worker receives

a utility increment (+α) when her Employer does not monitor and a symmetric decrement (−α)

with monitoring. In the case that a worker shirks and gets caught, her payoff is equal to zero. The

parametric restrictions

w > e, w > m, α > e, α + e > w (1)

ensure that shirking is not a dominant strategy and eliminate other trivial cases. Arce (2007) sets

wage at the value w=
√

vm that maximizes the Employer’s expected payoff; in this case (1) implies

restrictions on the gross payoff v.

Table 1: Employer (row) and Worker (column) Payoffs. The fraction of Type 1 workers is ϕ ,
and mixing probabilities are p for Employer and q j for workers of Type j.

Type 1 (ϕ) Type 2 (1−ϕ)

W (q1) S (1-q1) W (q2) S (1-q2)

M (p) v−w−m, w− e −m,0 v−w−m, w− e−α −m,0

N (1-p) v−w, w− e −w,w v−w, w− e+α −w,w

Source: Arce (2007)

Arce notes that if all workers are known to be Type 1, then the unique Nash equilibrium is

mixed: p = p∗ = e/w ; q1 = q∗1 = (w−m)/w. He also notes that if all workers are known to be

Type 2, there is again a mixed NE in which p = p∗∗ = (α − e)/(2α −w), q2 = q∗2 = (w−m)/w,
1The monomorphic interpretation of a mixture probability q j is that every type j player adopts exactly the same

mixed strategy q jW + (1− q j)S. The polymorphic interpretation is that a fraction q j of the type j players adopt the
pure strategy W and the rest adopt the pure strategy S. The analysis below works for either interpretation, as well as
for the more general interpretation that there is a distribution of pure and mixed strategies among the the type j players
with overall mean q j.
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as well as two pure NE: one at (N,W ) or p = 0, q2 = 1 and the other at (M,S) or p = 1, q2 = 0.

2.2 Expected payoffs and utilities

Which equilibria, if any, are dynamically stable? Before introducing evolutionary dynamics to

answer that question, we set the stage by writing out expected payoffs and utilities.

The Employer’s expected payoff ωP in equation (2) below arises from receiving v when the

employee works (probability ϕq1 +(1−ϕ)q2), minus the monitoring costs incurred (with proba-

bility p) and the wages paid to the worker. Recall from Table 1 that the Employer pays w unless

he monitors and the worker shirks, an event of probability p(ϕ(1−q1)+(1−ϕ)(1−q2)). Thus

ω
P = (ϕq1 +(1−ϕ)q2) · v− p ·m− [1− p(ϕ(1−q1)+(1−ϕ)(1−q2))] ·w (2)

Both types of workers receive material payoff w− e if they work (probability qi) or w in the

event that they do not work (1− qi) and the Employer does not monitor (1− p). For the self-

interested worker (type 1), expected utility coincides with expected material payoff ωA1, which is

therefore

ω
A1 = q1 · (w− e)+(1−q1)(1− p) ·w. (3)

Similarly, material payoff for Type 2 worker is

ω
A2 = q2 · (w− e)+(1−q2)(1− p) ·w, (4)

while her expected utility includes the preference parameter α and is

ω
A2
α = q2 · [p · (w− e−α)+(1− p) · (w− e+α)]+(1−q2)(1− p) ·w. (5)

2.3 Dynamic adjustment equations

Recall that the state space is four dimensional, and specifies the fraction ϕ of type 1 workers,

Employer’s mixing probability (p) and workers’ mixing probabilities (q j). We therefore specify

dynamics as a system of four coupled ordinary differential equations (ODEs), derived from ex-
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pected payoffs using standard evolutionary principles.

Arce (2007, p.718) comments, “This then begs the question, what determines the initial dis-

tribution of agent types?” and cites several exogenous factors. For our purposes it is better to

complete the model by endogenizing the distribution ϕ . We invoke the basic principle of evolu-

tion that the type with higher material pyoff (= fitness) will increase its share of the population.

More specifically,2 we impose standard continuous time replicator dynamics (Taylor and Jonker,

1978; Hofbauer and Sigmund, 1988), which postulate that the growth rate ϕ̇/ϕ of the share of

self-interested workers is proportional (with rate constant β
ϕ
) to its payoff ωA1 relative to the pop-

ulation average (ω̄). Equation (6) and other equations below use the fact that relative payoff can

be written as ωA1− ω̄ = ωA1−ϕωA1− (1−ϕ)ωA2 = (1−ϕ)(ωA1−ωA2). Thus ϕ̇ is equal to

ϕ(1−ϕ)(ωA1−ωA2) times a positive adjustment speed parameter β
ϕ
.

The remaining equations apply replicator dynamics for the mixture probabilities p,q1 and q2.

Thus the system of four coupled ODEs is

ϕ̇ = β
ϕ
ϕ(1−ϕ)[ωA1−ω

A2] (6)

= β
ϕ
ϕ(1−ϕ)[(pw− e)(q1−q2)]

ṗ = β p(1− p)
∂ωP

∂ p
(7)

= β p(1− p)[−m+(ϕ(1−q1)+(1−ϕ)(1−q2)) ·w]

q̇1 = βq1(1−q1)
∂ωA1

∂q1
(8)

= βq1(1−q1)(pw− e)

q̇2 = βq2(1−q2)
∂ωA2

α

∂q2
(9)

= βq2(1−q2)[(w−2α)p+α− e]

where the parameters w,e,m,α , and β are exogenous.

As noted earlier, we assume that the mixing probabilities adjust more rapidly than the type

distribution ϕ , i.e., that β >> β
ϕ
> 0. The restrictions (1) apply to parameters w,e,m,α (or to

2Here and elsewhere, in modelling the adjustment of shares or mixture probabilities in [0,1] for two (pure) alterna-
tives, there are many smooth monotone (or sign preserving) dynamic specifications to choose among. As catalogued
in Weibull (1997) and Sandholm (2010), these include BNN, perturbed best response and various sorts of learning
dynamics. The techniques illustrated below can straightforwardly be tailored to such specifications. In our experi-
ence with state spaces built from [0,1] factors, the stability results are insensitive to the choice of a specific smooth
monotone dynamic, but we offer no guarantee.
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v,e,m,α if w is chosen by the square root formula). To complete the dynamic specification, take

the initial state as given and impose the boundary conditions 0≤ p≤ 1, 0≤ q j ≤ 1 and 0≤ ϕ ≤ 1.

Given only two possible strategies for each type of player (and thus a probability distribution

described by one variable) and random matching (and therefore expected payoffs linear in the

relevant proportions), the payoff differences across strategies, e.g., ωP|[p=1]−ωP|[p=0] coincide

with the payoff gradients, e.g., ∂ωP

∂ p . Thus the equations for the mixture probabilities can also be

reinterpreted as gradient dynamics supplemented by a binomial variance factor.

2.4 Dynamic behavior

Describing the dynamic behavior of a system of 4 ordinary differential equations depending on

8 exogenous parameters sounds like a complicated task. However, for our purposes it suffices to

identify the dynamically stable equilibrium (DSE) points — the subset of rest points or steady

states that are Lyapunov stable. That is, we seek steady states (states for which the right hand

side of the ODE system is zero) such that a solution of the ODE system with initial condition

sufficiently close to the steady state will remain close to the steady state forever. The idea is that

only neighborhoods of DSE are likely to be empirically relevant; elsewhere behavior is transient

and will be hard to identify in field data.

Two technical remarks are in order before proceeding. First, Lyapunov stability does not

guarantee asymptotic stability, i.e., does not guarantee that the solution above actually converges

to the DSE as t→ ∞.

Second, it is well known that Nash equilibria (NE) are a subset of steady states (or dynamic

equilibria, DE); see for example Weibull, 1995, Proposition 3.4.3 It is also well known that DSE

are a subset of NE and that, for smooth systems of ODEs like (6 - 9), a necessary condition for

DSE is that the Jacobian matrix evaluated at the NE has no eigenvalues with positive real part and

a sufficient condition is that all eigenvalues have negative real parts; see for example Hirsch and

Smale, 1974, Chapter 9. Eigenvalues with zero real part suggest (but do not guarantee) Lyapunov

stability, and suggest (again with no guarantees) failure of asymptotic stability.4

3In the present case, however, we include an extra DE condition in (10) below that ϕ̇ = 0. This eliminates from the
outset those NE for which the two different surviving types of workers have different material payoffs in equilibrium.

4In such cases, it seldom helps to look at second order expansions of the dynamical system, but often third order
terms can resolve local stability questions, at the cost of considerable analytic complication. Lyupanov functions
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We will therefore use the following algorithm to identify DSE:

• find all DE, separately checking corners, edges, faces and interior of the state space;

• identify the subset of DE that are NE, and eliminate the others;

• find the eigenvalues of the Jacobian matrix of (6 - 9) evaluated at each NE, and eliminate any

NE which yields an eigenvalue with positive real part; and

• identify as locally stable (and therefore empirically relevant) any NE whose eigenvalues all

have negative real parts, and use numerical methods to assess the dynamic stability of any

remaining NE that yields an eigenvalue with zero real part.

To begin, recall that by definition a DE for the present model is a solution to

ϕ̇ = ṗ = q̇1 = q̇2 = 0. (10)

To sort out the many solutions, recall that our state vector S = (ϕ, p,q1,q2) ∈ [0,1]4 is a four

dimensional hypercube. Each of the 24 = 16 corners represents a pure strategy profile, and (by

virtue of the binomial factors) is a solution to (10). One strategy is mixed along each of the

16 ·4/2 = 32 edges, two are mixed in each 2-d face (4 ·(4 ·3)/2 = 24 of them), and three are mixed

in each 3-d face (4 ·2 = 8 of them), while interior points represent strictly mixed strategy profiles.

The first step in the algorithm, then, gives us 16 corner DE. Checking all edges and faces

sounds tedious, but the special structure of the model allows shortcuts. When ϕ = 0 (or 1), the

value of q1 (or q2) is irrelevant, so 8 of the edges and all 16 corners are subsumed in the DE subset

{(1,0,0, ·),(1,0,1, ·),(1,1,0, ·),(1,1,1, ·),(0,0, ·,0),(0,1, ·,1),(0,1, ·,0),(0,0, ·,1)}. Recall from

Section 2.1 that only the last two cases are pure NE in the restricted (ϕ = 0,1 face) games, so we

can eliminate the other six cases as dynamically unstable. Indeed, the same argument allows us to

eliminate edge DE in all of these faces. So the only remaining edges are of the form (i) ϕ ∈ (0,1)

and (ii) p,q1,q2 ∈ {0,1}. From equations (10) and (6) we see that (i) entails either p = w/e (which

is inconsistent with (ii)) or q1 = q2, which is “pure pooling” by (ii). But p = 1 and q1 = 0 are not

mutual best responses, nor are (p,q1) = (0,1) and (p,q2) = (1,1). Hence there are no edge DE.

are a far more elegant way to establish stability properties, but there is no systematic way of finding such functions.
Therefore, as noted below, we favor numerical methods to deal with the problem, and often these methods provide
further insights.
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The Appendix collects arguments of a similar character that show the full set of NE is5

{(0,1, ·,0),(0,0, ·,1),(1, p∗,
w−m

w
, ·),(0, p∗∗, ·, w−m

w
),(

w−m
w

, p∗,1,0)[lw],

(
m
w
, p∗,0,1)[hw],(x, p∗,

−m+wx
wx

,1),(x, p∗,
−m+w

wx
,0)}. (11)

Here x is in some parameter-dependent subset of [0,1] specified as needed below, while p∗ = e/w,

p∗∗ = α−e
2α−w , and [hw] (or [lw]) in subscripts indicates that the state is a NE in the high wage region

of parameter space w−2e > 0 (or in the low wage region w−2e < 0).

The next step in the algorithm is to write out the Jacobian matrix ((
∂RHS eq. i
∂state var. j )), evaluated at

each NE, and compute the eigenvalues. The Jacobian of ODE system (6 - 9) is

J =

β
ϕ
(1−2ϕ)(pw− e)(q1 −q2 ) β

ϕ
ϕ(1−ϕ)w(q1 −q2 ) β

ϕ
ϕ(1−ϕ)(pw− e) −β

ϕ
ϕ(1−ϕ)(pw− e)

β p(1− p)w(q2 −q1 ) β (1−2p)(w−m−q2 w+ϕw(q2 −q1 )) −βw(p− p2)ϕ −βw(p− p2)(1−ϕ)

0 βq1 (1−q1 )w β (1−2q1 )(pw− e) 0

0 βq2 (1−q2 )(w−2α) 0 β (1−2q2 )[(w−2α)p+α− e]

.

As a warmup exercise, we compute the 2x2 Jacobian (sub)matrix for 2-d face where ϕ = 0

and p,q2 ∈ (0,1). At the pure NE (0,1, ·,0) it is

J =

−β (w−m) 0

0 −β (α− (w− e))


and at the other pure NE (0,0, ·,1) it is

J =

−βm 0

0 −β (α− e)

 .

For these diagonal matrices, the diagonal entries are the eigenvalues and the parametric restrictions

guarantee that all of them are negative. Hence these equilibria are both stable “sinks" with respect

to dynamics restricted to the face. To assess overall stability, we have to look at the full Jacobian

matrix and the Appendix shows that these include positive eigenvalues. Hence neither NE is a

DSE. More intuitively, notice that the pure NE (0,1, ·,0) and (0,0, ·,1) can be destabilized by an

5Recall from footnote 3 that we only include the NE that have equal payoffs for both workers’ types when both
are present. For instance, the NE (x, p∗∗,0,(w−m)/(w · (1− x)) for x ∈ [0,m/w] does not satisfy this equal payoff
condition.
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invasion of Type 1 worker playing W and S, respectively.

The same Jacobian (sub)matrix evaluated at the mixed NE (0, p∗∗, ·,q∗2), where q∗2 =
w−m

w , is

J =

 0 −β p∗∗(1− p∗∗)w

−βq∗2(1−q∗2)(2α−w) 0

 ,

whose eigenvalues are real and have opposite signs, since the parametric restrictions imply that

2α−w > 0. Therefore the equilibrium is an unstable saddle point even with respect to dynamics

restricted to the face, and thus is not a DSE. More concretely, any mixed NE in this face will

be unstable since it is a mixed equilibrium for the two-population replicator dynamics (see eg.

Weibull, 1997, Ch. 5).

The systematic way to assess stability is to evaluate the 4x4 Jacobian matrix at each NE. To

illustrate, take the last NE listed,
(
x, e

w ,
w−m

wx ,0
)
, where x ∈ [w−m

w ,1]. The Jacobian evaluated at

such states is

J =


0 β

ϕ
(w−m)(1− x) 0 0

βe(w−m)(w−e)
w2x 0 −βe

(
1− e

w

)
x −βe

(
1− e

w

)
(1− x)

0 β (w−m)(m+w(−1+x))
wx2 0 0

0 0 0 β (w−2e)α
w

 ,

whose eigenvalues are
{

0, β (w−2e)α
w ,±

√
−βe(w−e)(w−m)(βϕ (x−1)(m−w)+β (m+w(x−1)))

w
√

x

}
. The second

eigenvalue is negative in the low-wage region and positive in the high wage region, while the last

pair of eigenvalues is pure imaginary for x ≥ w−m
w . Hence this NE is dynamically unstable in the

high wage region but remains a DSE candidate in the low wage region.

The Appendix examines the other NE using the same techniques. It rules out DSE status for

the first four in the list and confirms that there are no asymptotically stable NE. The only remaining

DSE candidates are summarized by the following proposition.

Proposition 1 The Arce (2007) game with state system S = (ϕ, p,q1,q2) ∈ [0,1]4 and exogenous

parameters w,e,m,α , and βi has two dynamically stable equilibrium (DSE) candidates:

a. {(x, e
w ,

wx−m
wx ,1) : x ∈ [m

w ,1]} in the high wage case (w > 2e), and

12



b. {
(
x, e

w ,
w−m

wx ,0
)

: x ∈ [w−m
w ,1]} in the low wage case (w < 2e).

It is worth noticing that Proposition 1 is related to the conclusions of Ok and Vega-Redondo

(2001) and Dekel et al. (2007): in the models of evolution of preferences with incomplete infor-

mation, only states where the aggregate play (i.e. the strategy of the Employer p and the average

strategy of workers ϕ ·q1+(1−ϕ) ·q2 ) corresponds to a Nash equilibrium with selfish preferences

(that of Type 1 workers in Arce’s game) can be stable.

2.5 Simulation results

The last step in our algorithm is to investigate convergence behavior of the DSE candidate nu-

merically. Since we do not expect asymptotic stability, we look for convergence in time average

of the state variable S = (ϕ, p,q1,q2). That is, we shall emphasize numerical approximations of

limt→∞ t−1 ´ t
0 S(u)du, denoted by S̄(t), more than of limt→∞ S(t).6

We solve the ODE system numerically using Mathematica.7 We set speeds of adjustment

β
ϕ
= 0.1 and β = 1 and use baseline parameters α = 0.109,m = 0.08,e = 0.1,v = w2m, where the

high wage is w = 0.201 > 2e and the low wage is w = 0.199 < 2e.

For these baseline parameters, the DSE candidate is (x,0.50,1− 1
2.51x ,1), x ∈ [0.39,1] for

the high wage and therefore q1 ∈ (0,0.6) will depend on the level of x. initial Using initial values

ϕ(0) = 0.4, p(0) = 0.52, q1(0) = 0.04 and q2(0) = 0.96, Figure 1 (left panel) shows the numerical

results for the high incentive wage parameters. We obtain a direct convergence for q2 , meanwhile

the dynamics for the remaining variables (ϕ , p and q1) follow a cycle around the interior solution.

We achieve convergence in time average to the relevant equilibrium. At the end of the period, the

time average of the state variables are given by S̄(T )≈ (0.4033,0.4987,0.018,0.9951).

The right panel of Figure 1 shows how the cycles amplify when the initial conditions are far-

ther away from the equilibrium values even though we still obtain convergence in time average. In

our example, the variability of q1 decreases over time meanwhile p and ϕ have a roughly constant

amplitude that is much higher than observed in the left panel.

6Stability in time average is also emphasized in the equilibrium concept Time Average of the Shapley Polygon
(TASP) proposed by Benaim, Hofbauer and Hopkins (2006).

7The codes are available upon request.
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Figure 1: Dynamics in the high wage w > 2e case. Left Panel shows q2(0) = 0.96 and Right Panel
shows q2(0) = 0.90

The other relevant case is the low wage equilibrium, (x,0.50, 1
1.67x ,0),x∈ [0.59,1] for baseline

parameters. Comparing the low wage case against the high wage case, notice that the mixing

probability p is not altered given that we do not change drastically the level of wage. However,

the small change of incentives will affect behavior and the minimum fraction of workers’ types.

The type 1 worker will play close to the upper bound (before they were shirking) meanwhile type

2 worker shirks (before they were working). Also, the minimum level of type 1 workers increases

from 0.39 to 0.59. Starting from values very close to the high wage case equilibrium (Panel left in

Figure 1), we study the dynamics towards the new low wage equilibrium.
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Figure 2: Dynamics in the low wage w < 2e case

Figure 2 shows the simulation results. The workers’ mixing probabilities evolve towards the

opposite extremes since the initial values are related to the high wage case. The fraction of type

1 workers slightly decreases and then moves upward to the new equilibrium. Again, we observe

cycles around the relevant equilibrium value and the time average approaches the equilibrium value
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S̄(T )≈ (0.5822,0.5052,0.9664,0.044).

Our analysis thus complements Arce’s work by endogenously determining the fraction of

types and studying the dynamics of the model. Our value-added includes showing that both types

of workers coexist independently of the level of the incentive wage for a broad set of parameter

values and initial conditions relatively close to the equilibrium values. Our numerical solution

indicates Lyapunov stability, in that the dynamics when both types are present follow a cycle

around the relevant interior equilibrium.

3 The Friedman and Singh (2009) Noisy Trust Game

Analyzing the next model introduces several additional considerations that can be important in

games of incomplete information, such as positive tremble rates, evolving preference parameters,

and higher dimensional state spaces. We rely more on numerical simulation but are nevertheless

able to get a sharp result.

To begin, consider a simple two player game of complete information. The first mover, la-

belled Self (S), chooses whether to trust (T) or not trust (N). Choice N ends the game with zero

payoffs to both players. Choice T gives the move to player Other (O), who can choose either to

to cooperate (C) or defect (D). Choice C gives both players unit payoffs, while choice D yields

payoffs 2 to Other and -1 to Self. Following D, a vengeful type Self (v = vH > 0) will take revenge

and, at cost v to himself, will inflict harm v/c on Other, given an exogenous marginal cost param-

eter c > 0. The equilibrium payoffs are inefficient at (0,0) when v = 0, but are efficient at (1,1)

when v = vH > c.

Author's personal copy

816 D. Friedman, N. Singh / Games and Economic Behavior 66 (2009) 813–829

A. Basic Trust Game

B. Extended Trust Game

* Utility payoff to Self is −1− ch + lnh.

C. Reduced Trust with a vengeance

Fig. 1. Fitness payoffs.

with unique Nash equilibrium (N,D) yielding the inefficient outcome (0,0). For v > c, however, the transformed game has
a unique subgame perfect Nash equilibrium (T,C) yielding the efficient outcome (1,1). The threat of vengeance rationalizes
Other’s cooperation and Self’s trust.

3.1. Can vengeful preferences evolve?

Vengeance thus may have a pro-social role, but is it viable? To answer the question properly (Samuelson, 2001), we
must consider imperfect observability, which we refer to as noisy perceptions. Behavioral noise is also crucial in ensuring
the evolutionary viability of vengeance, because it confounds the inference of type from behavior. Self may intend to choose
N but may twist an ankle and find himself depending on Other’s cooperative behavior, and Other may intend to choose C
but oversleeps or gets tied up in traffic. Such considerations can be summarized in a tremble rate e � 0. Larger values of e
tend to raise Self’s cost of vengefulness and reduce fitness.

When there is behavioral noise as well as perceptual noise, while the vengeance parameter may take on a continuum
of possible values, an argument based on fitness landscape dynamics (Friedman and Singh, 2007)11 justifies the claim
that equilibrium distributions will have support on just two points, one at v = 0 and the other at some specific vH > c,
fixed in the short run but variable in the long run. We will end up with some fraction x of the Self population with
vengeance near vH > c and the remaining (1 − x) with vengeance near v = 0. With just two types, we can streamline
the short run analysis (at a slight loss of generality) by focusing on the misperception probabilities rather than the entire
error distribution. Therefore we define perception as a binary variable s, with s = 1 denoting the perception that Self is
vengeful, and s = 0 denoting the perception that Self is not vengeful. It is convenient (but not essential) to assume equal
misperception probabilities and write a = Pr[s = 0|v = vH ] = Pr[s = 1|v = 0].

4. Perfect Bayesian equilibrium

Fig. 2 shows the game tree based on the assumptions made so far. Nature chooses Self’s true preference parameter as
v = 0 (unvengeful) with probability 1− x, or as v = vH > c (vengeful) with probability x. Nature also independently chooses

11 As its title suggests, the present paper does not specify evolutionary dynamics. However, dynamical intuition will help motivate the formal definition
of EPBE presented below. We therefore note that continuous movement up the fitness gradient has well established antecedents, e.g., Wright (1949), Eshel
(1983) and Kaufman (1993). Such landscape dynamics (Friedman and Ostrov, 2008) are quite distinct conceptually and formally from mutations in a discrete
type space and from replicator-type dynamics.

Figure 3: Simple trust game. The unique subgame perfect NE is (N,D) when v < c and is (T,C)
when v > c
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3.1 Elements of the model

From this simple game, FS09 construct the noisy trust game illustrated in Figure 4. Nature chooses

Self’s non-vengeful type v = 0 with probability 1− x, or else chooses a given vengeful type v =

vH > 0 with probability x. We assume that there are only two types, fixed in the short-run but

variable in the long-run.8

Nature also independently chooses Other’s perception as correct (s = 0 for v = 0, or s = 1

for v = vH) with probability 1−a, or incorrect with probability a. The misperception probability

depends negatively on the level of vengefulness (vH):

a = A(vH) = 0.5exp(−kv2
H) (12)

where k > 0 represents a precision parameter explained in FS09.

Figure 4: The noisy trust game. O denotes Other, Si j denotes Self with vengeance level i and perception j, as
determined by Nature’s move. The four branch labels are Nature’s move probabilities. Source: FS09

Let p1 = Pr[T |v = vH ] denote the probability of trusting when Self is vengeful, and p2 =

Pr[T |v = 0] the probability of trusting when Self is non-vengeful. These probabilities are con-

strained by a tremble rate e ∈ (0,1/2), so that e≤ p0, p1 ≤ 1− e. Self’s (mixed) strategy space is

thus [e,1− e]× [e,1− e]. Similarly, let q1 = Pr[C|s = 1] and q2 = Pr[C|s = 0] denote the proba-

bilities of cooperating when Other observes a vengeful type and a non-vengeful type, respectively.

8FS09 argue informally that fitness landscape dynamics will yield degenerate distributions with support on at most
two discrete points, one fixed at zero and another at some value vH > c > 0 that can vary over time.
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Other’s strategy space is [e,1− e]× [e,1− e].

The state of the system is a vector (v,x, p1, p2,q1,q2) ∈ [0, v̂]× [0,1]× [e,1− e]2× [e,1− e]2

that specifies Self’s actions (p1 and p2), Other’s actions (q1 and q2), the fraction of the vengeful

type (x) and the degree of vengefulness (v = vH ≤ v̂). The current state space is more compli-

cated than that of the Arce model in several respects. Besides the additional mixing variable, we

have a restricted mixture space (to account for trembles, which are conceptually important accord-

ing to FS09) and an endogenous preference parameter.9 Topologically, the state space is the 6-d

hypercube [0,1]6 with a specific parametrization.

The equilibrium concept here is perfect Bayesian equilibrium (PBE). Proposition 1 of FS09

identifies seven families of PBE that depend on game parameters x,a,vH and e. More specifically,

we will find different equilibria depending on the fraction of vengeful types. The pure strategy

PBE equilibria lie on the 2-d faces pi ∈ {e,1− e} and qi ∈ {e,1− e}. In terms of the log ratio

L(y) = log(1− y)/ log(y) they are:

• “Separating," or p2 = q2 = e and p1 = q1 = 1− e when L(c/vH)+ L(e)− L(a) ≤ L(x) ≤
L(c/vH)+L(e)+L(a);

• “Bad Pooling," or p2 = p1 = q1 = q2 = e when L(x)≥ L(c/vH)+L(a); and

• “Good Pooling," or p2 = p1 = q1 = 1− e and q2 = e when L(x)≤ L(c/vH)+L(a).

The mixed strategy PBE families lie on higher dimensional faces:

• “Bad Mix," or p2 = q2 = e and p1,q1 ∈ (e,1−e) when L(c/vH)+L(a)≤ L(x)≤ L(c/vH)+

L(e)+L(a);

• “Bad Hybrid," or p2 = q2 = e, p1 = 1−e and q1 ∈ (e,1−e) when L(x) = L(c/vH)+L(e)+

L(a);

• “Good Mix," or p1 = q1 = 1− e and p2,q2 ∈ (e,1− e) when L(c/vH)− L(a) ≤ L(x) ≤
L(c/vH)+L(e)−L(a); and

• “Good Hybrid," or p2 = p1 = q1 = 1− e and q2 ∈ (e,1− e) when L(x) = L(c/vH)−L(a).
9We could also have endogenized α in Arce’s model, but that would not have been useful since material payoffs

are flat in α except for a discontinuity at a particular threshold that changes type 2 Workers’ behavior. We will see that
evolving v makes good sense in the FS09 model.
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The dynamic analysis will help us identify which equilibria persist in the long-run. As in the

previous application, we start by constructing the expected payoffs and utilities.

3.2 Expected payoffs and utilities

The expected payoffs wv
s and ws of vengeful and non-vengeful types of Self are:

wv
s = (p1(1−a)q1 + p1aq2) ·1+(p1(1−a)(1−q1)+ p1a(1−q2)) · (−1− v) (13)

ws = (p2(1−a)q2 + p2aq1) ·1+(p2(1−a)(1−q2)+ p2a(1−q1)) · (−1) (14)

The expected payoffs ws
o or wo for Other when he perceives a vengeful or a non-vengeful type

are:

ws
o = (x(1−a)p1q1 +(1− x)ap2q1) · (1)+(x(1−a)p1(1−q1)) · (2− v/c)+

((1− x)ap2(1−q1)) ·2 (15)

wo = (xap1q2 +(1− x)(1−a)p2q2) · (1)+(xap1(1−q2)) · (2− v/c)+

((1− x)(1−a)p2(1−q2)) ·2 (16)

Equation (13) is derived as follows. If vengeful Self does not trust (probability 1− p1), she

receives a zero payoff. On the other hand, if she trusts (probability p1), she gets payoff 1 or−1−v

depending on Other’s decision and perception. Her payoff is 1 when Other correctly perceives

(probability (1−a)) a vengeful type and cooperates (probability q1), and also when Other misper-

ceives (probability a) and cooperates (probability q2). She gets −1− v when Other perceives the

vengeful type correctly (1− a) and defects (1− q1); and when she misperceives (a) and defects

(1−q2). Similar logic yields the expressions for non-vengeful Self’s payoff ws as well as Other’s

possible expected payoffs ws
o and wo.

3.3 Dynamic adjustment equations

Recall that the state space is six dimensional, and specifies the fraction of vengeful type (x), the

degree of vengefulness (v) and four mixing probabilities (pi and qi). We therefore specify dynamics

18



as a system of six coupled ordinary differential equations (ODEs), derived from expected payoffs

using standard evolutionary principles.

For the share x of vengeful types in the Self population, replicator dynamics postulate that

the growth rate ẋ/x is proportional (with rate constant βx) to its own payoff wv
s relative to the

population average. The remaining state variables involve a continuum of alternatives. Here we

rely on gradient dynamics.10 Thus the degree of vengefulness v = vH for all vengeful players

changes at a rate proportional to its gradient ∂wv
s

∂v .

As before, we use replicator dynamics for each mixing probability pi and qi. Its adjustment

rate is proportional to its fitness difference, which coincides with its payoff gradient ∂w[v]
s

∂ pi
. To shrink

the range to [e,1− e], we include factors (1− e− pi)(pi− e), analogous to the binomial factors

(1− x)x that keep x in the interval [0,1]. Thus our system of six ODEs is:

v̇ = βv

(
∂wv

s
∂v

)
(17)

ẋ = βx(1− x)x(wv
s−ws) (18)

ṗ1 = β (1− e− p1)(p1− e)
(

∂wv
s

∂ p1

)
(19)

ṗ2 = β (1− e− p2)(p2− e)
(

∂ws

∂ p2

)
(20)

q̇1 = β (1− e−q1)(q1− e)
(

∂ws
o

∂q1

)
(21)

q̇2 = β (1− e−q2)(q2− e)
(

∂wo

∂q2

)
(22)

We assume as usual that pi and qi adjust more rapidly than does x, and that v adjusts least

rapidly (perhaps via genetic disposition and/or internalized norms). Thus 0 < βv < βx < β . To

complete the dynamic specification, take the initial state as given and impose the boundary condi-

tions 0≤ x≤ 1,0≤ v,e≤ pi ≤ 1− e and e≤ qi ≤ 1− e.

10The evolution of continuous biological traits is commonly modeled via gradient dynamcs (e.g., Wright (1949),
Lande (1976) and Kauffman (1993)) or by Dieckmann’s restricted version mentioned in the introduction. Continuous
strategy sets are seen less often in economics, but there is a cluster of papers beginning with Oechssler and Riedel
(2001) that applies the continuous extension of the replicator equation. However, economists going back at least to
Sonnenschein (1982) have also applied gradient dynamics. Friedman and Ostrov (2010)) argue at length that gradient
dynamics are more appropriate when larger changes per unit time are more difficult or expensive, while continuous-
state replicator dynamics are more appropriate when adjustment is via deaths and births not spatially connected.
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3.4 Dynamic behavior

Which PBE remain when x and vH can adjust? To answer, FS09 proposes a static refinement

called evolutionary perfect Bayesian equilibrium (EPBE). In EPBE, all types in the support of

the distribution in each population achieve equal and maximal expected fitness, and no potential

entrant (a type outside the support) has higher expected payoff. Proposition 2 of FS09 shows that

only two states survive the EPBE refinement:

• A “Good Hybrid" EPBE: S = (x,v, p1, p2,q1,q2) = (x∗,v∗,1− e,1− e,1− e,q∗2), in which

Self trusts regardless of her type and Other plays a specific mixed strategy when she perceives

a non-vengeful type,11 for the parameter values c ∈ (0,1), e ∈ (0, ê(k)) and k ∈ (0,0.6),12

and

• the “Bad Pooling" EPBE: S = (0,v,e,e,e,e), for all c > 0, and all behavioral errors rate

e ∈ (0,1/2), in which (apart from trembles) Self never trusts and Other always defects and v

is arbitrary (and moot, since the vengeful type has population share zero).

Assuming the baseline parameters k = 0.4, c= 0.5, e= 0.05, βv = 0.001, βx = 0.10 and β = 2,

the “Good Hybrid" is (0.69,1.67,0.95,0.95,0.95,0.87). Of the 6 eigenvalues, 3 are negative, 1 is

zero and 2 are pure imaginary. Thus we surmise that the good EPBE typically is neutrally stable.

To investigate more carefully, we turn to numerical simulations.

3.5 Simulation results

Figure 5 shows typical numerical solutions for baseline parameters and initial conditions not far

from the EPBE. The state for v, x and q2 indeed cycles around the “good" EPBE with constant

amplitude, consistent with Liouville’s theorem. The right panel of Figure 5 confirms convergence

in time average. In the simulations, the remaining mixing probabilities p1, p2 and q1 adjust quite

rapidly to the upper extreme (1− e); meanwhile v hardly moves since it starts with an initial value

close to the equilibrium and its adjustment rate is, by assumption, very slow.

11FS09 presents the conditions that x∗, v∗ and q∗
2

should satisfy. In our dynamic system, we can obtain similar
conditions considering that the gradient has to be zero for the dynamic equation of v and q2 and that both types get the
same payoff.

12ê(k) is given by R(k)/(2−2a+2R(k)) where R(k) = (kv(1+ v/2)−1)a
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Figure 5: Dynamics (Panel left) and Time-Average dynamics (Panel right) of x and q2

The dynamic convergence to the good EPBE is not due to an arbitrary selection of parameters.

From a wide range of parameters consistent with the definition of the good EPBE and initial values

sufficiently near the equilibrium values, we obtain convergence in time average. For baseline

parameters we have confirmed convergence from initial states v∗−0.04 ≤ v(0) ≤ v∗+0.01, x∗−
0.54≤ x(0)≤ x∗+0.10, and for individual mixing probabilities e≤ pi(0)≤ 1−e and e≤ qi(0)≤
1− e. If we simultaneously change all pi probabilities and qi probabilities, to achieve the relevant

equilibrium we need that qi(0)> 0.7.

The dynamic analysis has two caveats. First, notice that in several cases, we do not drastically

alter the initial state. Thus, our analysis focuses on local stability. Second, we must restrict the

adjusment speeds appropriately (βv << βx). This restriction is consistent with the idea from FS09

that slow cultural or genetic adjustment controls v, while exit and entry control x.

The “bad" EPBE is at the corner of the state space, where the mixing probabilities are at

the lower bound e and the fraction of vengeful type x goes to zero. Liouville’s theorem does not

preclude direct convergence to a corner equilibrium. Indeed, from our previous analysis, when we

start from x(0) < 0.15 (not many vengeful types) and qi(0) < 0.35 (a low probability that Other

cooperates) the bad EPBE persists in the long-run.

4 Discussion

We have analyzed the dynamic stability of two games of incomplete information in the context of

the evolution of preferences. We complement Arce’s (2007) results by endogenously determining

the fraction of worker types and studying the dynamics of the state variables. We show that both
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types of workers coexist independently of the level of incentive wage. The second example is a

noisy trust game due to FS09. Here we add dynamics to their static EPBE concept and numerically

illustrate a convergence in time average to the key equilibrium (in which Self trusts regardless of

her type and Other cooperates if she perceives a vengeful type and plays a specific mixed strategy

if she observes a non-vengeful type).

Perhaps the main contribution of the present paper is to illustrate a toolbox for investigating

the dynamic stability of equilibrium in a wide class of games of incomplete information. The

toolbox first asks the researcher to write down the expected payoffs and expected utilities for all

feasible states. Then it applies standard evolutionary concepts to describe the evolution of types

(preference parameters in our examples), their population shares, and action mixtures. It uses

gradient dynamics for a continuous space of types, and uses replicator dynamics for the rest of the

state vector, the population shares and mixture probabilities. (In passing, we note that replicator

dynamics for the mixture probabilities are equivalent to gradient dynamics modified by a binomial

variance factor.) The result is a system of ordinary differential equations (ODEs) in applications

like those just analyzed. (When a continuum of active types is possible, the result can include a

partial differential equation.)

In view of the fact that asymptotic stability cannot be expected in key equilibria of games of in-

complete information, the toolbox emphasizes convergence in time average and includes numerical

methods. One can check robustness by sampling the economically feasible parameter space. Our

toolbox also calls for appropriate restrictions on the adjustment speed parameters. For instance,

in the FS09 game, slow cultural or genetic adjustment controls the type variable (the preference

parameter v), while the exit and entry allow population shares to adjust at a moderate rate and

individual learning allows very rapid adjustment of action mixtures.

Two remarks on modeling philosophy may be helpful to applied economists.

• The toolbox presented here omits some of the more advanced techniques from dynamical

systems theory, such as center manifold techniques or bifurcation techniques, because we

expect these will yield a lower return on applied researchers’ investment. It also omits Lya-

punov functions, since we can offer no systematic way of finding them.

• Mainstream analysis of games of incomplete information typically exogenously specifies the

set of active types and the population shares of those types. That seems to us to push off stage
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the most interesting part of the story. Hence our toolbox emphasizes methods for describing

the evolution of these state variables and for characterizing their long-run behavior. As

illustrated in the FS09 model, endogenizing the set of types can resolve the multiplicity of

equilibria and lead to sharper predictions in applications.

Our exposition brings into focus several open theoretical questions. For example, are the static

refinements CSS or NIS sufficient or necessary for Lyapunov or asymptotic stability under various

specifications of dynamics? To what extent do our toolbox techniques survive for multidimensional

type spaces or action spaces? We hope that our presentation encourages evolutionary theorists to

investigate these and other open questions for games of incomplete information.
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Appendix: Mathematical Details

Finding DE and NE in the Arce (2007) Model

Recall that section 2.4 already identified all corner and edge DE and the subset that are NE.

On the 2-d faces that lie inside the 3-d faces ϕ ∈ {0,1}, section 2.1 noted that the only ad-

ditional NE are the mixes (ϕ, p,q1,q2) = (1, e
w ,

w−m
w , ·) and (0, α−e

2α−w , ·,
w−m

w ). The remaining 2-d

faces involve ϕ ∈ (0,1) and a strict mix of only one of the state variables p,q1,q2. The last

two cases entail one of the q j pure and the other strictly mixed, but (6) then implies that p is

strictly mixed, contradicting the definition of this 2-d face. The remaining 2-d possibility involves

ϕ, p ∈ (0,1), which by (7) implies that ϕ∗ = m/w+q2−1
q2−q1

. Ruling out q2−q1 = 0,13 we see from (6)

that p∗ = e/w. Consequently the only new candidate equilibria are (ϕ∗, p∗,1,0) and (ϕ∗, p∗,0,1).

The dynamics of q2 depends on the sign of α(w−2e)
w after plugging p∗ in (9). The case w−2e > 0

is called high incentive wages, and yields the q∗2 = 1 equilibrium, while low incentive wages, the

case w−2e < 0, yields the equilibrium above with q∗2 = 0.

We have already found all NE in the 3-d faces ϕ ∈ {0,1}. The 3-d faces p ∈ {0,1} have no

NE, since q j is strictly mixing for states in such faces, and therefore p = p∗ by (9), contradicting

p ∈ {0,1}. Similarly, the faces q1 ∈ {0,1} contain no new NE since a strictly mixed strategy

for q2 implies p = p∗∗ = (α − e)/(2α −w) which contradicts the solution of p∗ in (6). On the

faces q2 ∈ {0,1} we pick up two new NE, (ϕ∗, e
w ,
−m+wϕ∗

wϕ∗ ,1) and (ϕ∗, e
w ,
−m+w

wϕ∗ ,0); the argument

parallels that for the 2-d face where ϕ, p ∈ (0,1). Keeping the third component q1 ∈ [0,1] implies

the restriction ϕ ∈ [m
w ,1] for the first new NE and ϕ ∈ [w−m

w ,1] for the second.

Finally, the interior points are unstable since we already know that the dynamics of q2 depends

on the sign of α(w−2e)
w which forces it to 1 (or zero) in the case of high (or low) wage.

Evaluating the Jacobian matrix at the NE

The text analyzed stability for the first three NE and the last NE listed in (11). In this section, we

find Jacobian matrices and eigenvalues for the remaining NE.

13Notice that if both mixing probabilities are pure and q2−q1 = 0, the best reply p is also pure and thus the dynamics
is not on a 2-d face.
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The Jacobian matrix for (6 - 9) evaluated at the equilibrium (ϕ, p,q1,q2) = (0,1, ·,0) is

J =


β

ϕ
q1(w− e) 0 0 0

0 −β (w−m) 0 0

0 β (1−q1)q1w β (1−2q1)(w− e) 0

0 0 0 −β (α− (w− e))

 ,

whose eigenvalues are
{
−β (α− (w− e)),−β (w−m),β

ϕ
q1(w− e),β (1−2q1)(w− e)

}
. As noted

in the text, the first two are always negative in our parameter space. The third is positive except

when q1 = 0, in which case the last eigenvalue is positive. Hence this NE is definitely not a DSE.

The Jacobian matrix evaluated at (0,0, ·,1) is

J =


β

ϕ
e(1−q1) 0 0 0

0 −βm 0 0

0 β (1−q1)q1w βe(−1+2q1) 0

0 0 0 −β (α− e)

 ,

whose eigenvalues are
{
−β (α− e),−βm,β

ϕ
e(1−q1),βe(−1+2q1)

}
. The third is positive ex-

cept when q1 = 1, in which case the last eigenvalue is positive. Hence this NE also is definitely not

a DSE.

The Jacobian at (x,1,1,1) is

J =


0 0 β

ϕ
(w− e)(1−ϕ)ϕ −β

ϕ
(w− e)(1−ϕ)ϕ

0 βm 0 0

0 0 −β (w− e) 0

0 0 0 β (α− (w− e))

 ,

whose eigenvalues are {0,β (α− (w− e)),βm,−β (w− e)}. The second and third are positive, so

this equilibrium is not a DSE. Notice that this result also follows from the fact that q2 = 1 is not a

best-reply for p = 1.
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The Jacobian at (0,(α− e)/(2α−w), ·,(w−m)/w) is

J =


−βϕ (w−2e)(m−(1−q1)w)α

w(w−2α) 0 0 0
−β (m−(1−q1)w)(α−(w−e))(α−e)

(w−2α)2 0 0 −βw(α−(w−e))(α−e)
(w−2α)2

0 β (1−q1)q1w −β (−1+2q1)(w−2e)α
2α−w 0

0 −βm(w−m)(2α−w)
w2 0 0

 ,

with eigenvalues
{
±
√

β 2m(w−m)(α−e)(α−(w−e))
w(2α−w) , β (1−2q1)(w−2e)α

2α−w , −β (w−2e)(m−(1−q1)w)α
w(w−2α)

}
. The first

pair is real with opposite signs, so this NE is not a DSE. This result is along with the notion that

a mixed equilibrium is unstable in the two-population replicator dynamics, see Weibull (1997, Ch.

5).

The Jacobian at (1,e/w,(w−m)/w, ·) is

J =


0 0 0 0

βe(w−e)(m+(−1+q2)w)
w2 0 −βe

(
1− e

w

)
0

0 βm(w−m)
w 0 0

0 β (1−q2)q2(w−2α) 0
β (−1+2q2)(2e−w)α

w

 ,

with eigenvalues
{

0,±
√
−β 2em(w−m)(w−e)

w ,
β (−1+2q2)(2e−w)α

w

}
. The second eigenvalue is imagi-

nary meanwhile the third can be negative as long as the wage corresponds to the low wage case

(w < 2e) and q2 < 1/2 or the wage is set in the high wage case and q2 > 1/2. Hence this NE

remains a candidate DSE, requiring further investigation.

The Jacobian at (w−m
w , e

w ,1,0) is

J =


0

βϕ m(w−m)

w 0 0

−βe
(
1− e

w

)
0 −βe(w−e)(w−m)

w2
−βem(w−e)

w2

0 0 0 0

0 0 0 β (w−2e)α
w

 ,

with eigenvalues
{

0, β (w−2e)α
w ,±

√
−βϕ βem(w−m)(w−e)

w

}
. The second is negative in the relevant

case of low wages, w− 2e < 0, and the last pair is pure imaginary. Hence this NE remains a

candidate DSE, requiring further investigation. It can be seen to be an extreme case of the NE
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family listed last in (11) and already analyzed in the text.

At (ϕ∗,e/w,0,1), we have ϕ∗ = m/w and the Jacobian is

J =


0 −β

ϕ
m
(
1− m

w

)
0 0

βe
(
1− e

w

)
0 −βem(w−e)

w2
−βe(w−e)(w−m)

w2

0 0 0 0

0 0 0 −β (w−2e)α
w

 ,

with eigenvalues
{

0, −β (w−2e)α
w ,±

√
−βϕ βem(w−m)(w−e)

w

}
. The second is negative in the relevant

case of high wages, w−2e > 0, so this NE also remains a candidate DSE. It is an extreme case of

the next NE family.

The Jacobian at
(

ϕ∗, e
w ,
−m+wϕ∗

wϕ∗ ,1
)

is

J =


0 −β

ϕ
m(1−ϕ∗) 0 0

βem(w−e)
w2ϕ∗

0 −βe
(
1− e

w

)
ϕ∗ −βe

(
1− e

w

)
(1−ϕ∗)

0 βm(−m+wϕ∗)
wϕ∗2

0 0

0 0 0 −β (w−2e)α
w

 ,

with eigenvalues

{
0, −β (w−2e)α

w ,±
√

βem(w−e)(m(−1+ϕ∗)βϕ +(m−wϕ∗)β)
w
√

ϕ∗

}
. The second is negative in

the high wage case, and the last pair is pure imaginary since −m+wϕ∗

wϕ∗ ≥ 0, so the entire family with

ϕ∗ ∈ [m
w ,1] is a candidate DSE in the high wage case.
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