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Abstract

Graphs and Combinatorial Representations of Stochastic Processes

by

Daniel Shaw Ting

Doctor of Philosophy in Statistics

with the Designated Emphasis in

Communication, Computation, and Statistics
University of California, Berkeley

Professor Michael I. Jordan, Chair

This thesis covers two distinct topics connected by their use of graphs. First is a theoretical
analysis of graph Laplacians and locally linear embedding (LLE) on manifolds using tools for dif-
fusion processes. The implications of this analysis are (1)a better understanding of the relationship
between graph Laplacians and LLE, (2) understanding how a graph construction method affects
the limit operator, and (3) obtaining a graph has nice properties such as sparsity or a well-behaved
spectrum given a desired limit.

In the second topic we examine random graphs and their relationship to nonparametric Bayesian
methods. We give combinatorial processes describing several nonparametric hierarchical Bayesian
models. These processes lead to the development of new MCMC samplers and provide a new
perspective on the models. We introduce the idea of discretecoagulation and fragmentation pro-
cesses to describe various hierarchical models and identify a particular model of interest using
coagulation-fragmentation duality. We consider these random graphs in the more general context
of random combinatorial objects and give an application of random trees to drawing a random
sample without replacement from a distributed stream.
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Chapter 1

Introduction

This dissertation presents a few topics using graphs in statistics and machine learning. The appli-
cations of graphs may be broken down abstractly into three categories:

1. Graph Laplacians and an analysis of their asymptotic properties,

2. Representations of combinatorial objects and their applications to nonparametric hierarchi-
cal Bayesian models, and

3. Exploiting graphical structure in general Markov Chain Monte Carlo procedures.

For all three categories, the goals are two-fold. First is todevelop theory or insights which can
present a unified perspective of multiple existing methods.This allows one to relate as well as dis-
tinguish amongst the different methods. Second is to apply these insights to develop new methods
or models that improve upon existing ones.

The first category contributes to understanding manifold learning methods as well as in em-
pirically constructed smoothness penalties for use in semi-supervised learning. Specifically, we
examine how the choice of graph construction method affectsthe limiting graph Laplacian. We
import theory for the approximation of diffusion processesto allow us to (1) analyze both Lapla-
cian based methods and local linear embedding (LLE), (2) identify and sometimes correct for
deficiencies in methods, and (3) define a graph construction method that can empirically construct
a desired first order smoothness functional and how to do it ina way that gives attractive theoret-
ical or computational properties. From a technical perspective, the contributions are a method for
analyzing kNN graphs and other non-smooth kernels.

The second category focuses on finite combinatorial representations for stick-breaking pro-
cesses used in nonparametric Bayesian mixture modeling whenthe data itself is finite. The con-
tributions to this area are two-fold. The first contributionis in computation for MCMC methods.
Using representations of mixture models with random forests, we develop novel samplers for non-
parametric Bayesian models like the Dirichlet process (DP) mixture model or the hierarchical
Dirichlet process (HDP) mixture model which outperform existing samplers. Developing sam-
plers for other models such as the nested Dirichlet process (nDP) and tree stick-breaking process
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is straightforward using the representation. The second contribution is that the combinatorial rep-
resentations present another perspective and interestinginsights for many hierarchical Bayesian
models. In particular, the hierarchical structure of many nonparametric Bayesian models may be
codified by coagulation and fragmentation operations. Thisaids in understanding the relationship
among the different hierarchical nonparametric Bayesian models as well as suggesting a new hier-
archical model where the marginal distributions at every level form a Pitman-Yor process. We also
examine some side problems in random permutations and sampling and show how the combina-
torial representation yields a novel reservoir sampling algorithm for computing a random sample
without replacement in a map-reduce or distributed setting.

The third category introduces the idea of using augmenting aMarkov chain on a single variable
to a Markov chain where the states are themselves are graphs.This ideas is used to propose some
beneficial modifications to the new MCMC algorithms developedin the second category.
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Chapter 2

Graph Constructions and Asymptotics of
the Graph Laplacian

Graph Laplacians have become a core technology in machine learning. They have appeared in
clustering (Kannan et al., 2004, von Luxburg et al., 2008), dimensionality reduction (Belkin and
Niyogi, 2003, Nadler et al., 2006), and semi-supervised learning (Belkin and Niyogi, 2004, Zhu
et al., 2003).

While graph Laplacians are but one member of a broad class of methods that use local neighbor-
hood graphs to model data lying on a low-dimensional manifold embedded in a high-dimensional
space, they are distinguished by their appealing mathematical properties, notably: (1) the graph
Laplacian is the infinitesimal generator for a random walk onthe graph, and (2) it is a discrete
approximation to a weighted Laplace-Beltrami operator on a manifold, an operator which has nu-
merous geometric properties and induces a smoothness functional. These mathematical properties
have served as a foundation for the development of a growing theoretical literature that has ana-
lyzed learning procedures based on the graph Laplacian. To review briefly, Bousquet et al. (2003)
proved an early result for the convergence of the unnormalized graph Laplacian to a regularization
functional that depends on the squared densityp2. Belkin and Niyogi (2005) demonstrated the
pointwise convergence of the empirical unnormalized Laplacian to the Laplace-Beltrami operator
on a compact manifold with uniform density. Lafon (2004) andNadler et al. (2006) established a
connection between graph Laplacians and the infinitesimal generator of a diffusion process. They
further showed that one may use the degree operator to control the effect of the density. Hein et al.
(2005) combined and generalized these results for weak and pointwise (strong) convergence under
weaker assumptions as well as providing rates for the unnormalized, normalized, and random walk
Laplacians. They also make explicit the connections to the weighted Laplace-Beltrami operator.
Singer (2006) obtained improved convergence rates for a uniform density. Gińe and Koltchinskii
(2005) established a uniform convergence result and functional central limit theorem to extend the
pointwise convergence results. von Luxburg et al. (2008) and Belkin and Niyogi (2006) presented
spectral convergence results for the eigenvectors of graphLaplacians in the fixed and shrinking
bandwidth cases respectively.

Although this burgeoning literature has provided many useful insights, several gaps remain



CHAPTER 2. GRAPH CONSTRUCTIONS AND ASYMPTOTICS OF THE GRAPH
LAPLACIAN 4

between theory and practice. Most notably, in constructingthe neighborhood graphs underlying the
graph Laplacian, several choices must be made, including the choice of algorithm for constructing
the graph, withk-nearest-neighbor (kNN) and kernel functions providing the main alternatives, as
well as the choice of parameters (k, kernel bandwidth, normalization weights). These choicescan
lead to the graph Laplacian generating fundamentally different random walks and approximating
different weighted Laplace-Beltrami operators. The existing theory has focused on one specific
choice in which graphs are generated with smooth kernels with shrinking bandwidths. But a variety
of other choices are often made in practice, including kNN graphs,r-neighborhood graphs, and
the “self-tuning” graphs of Zelnik-Manor and Perona (2004). Surprisingly, few of the existing
convergence results apply to these choices (see Maier et al.(2008) for an exception).

This chapter provides a general theoretical framework for analyzing graph Laplacians and op-
erators that behave like Laplacians. Our point of view differs from that found in the existing
literature; specifically, our point of departure is a stochastic process framework that utilizes the
characterization of diffusion processes via drift and diffusion terms. This yields a general kernel-
free framework for analyzing graph Laplacians with shrinking neighborhoods. We use it to extend
the pointwise results of Hein et al. (2007) to cover non-smooth kernels and introduce location-
dependent bandwidths. Applying these tools we are able to identify the asymptotic limit for a
variety of graphs constructions including kNN,r-neighborhood, and “self-tuning” graphs. We are
also able to provide an analysis for Locally Linear Embedding (Roweis and Saul, 2000).

A practical motivation for our interest in graph Laplaciansbased on kNN graphs is that these
can be significantly sparser than those constructed using kernels, even if they have the same limit.
Our framework allows us to establish this limiting equivalence. On the other hand, we can also ex-
hibit cases in which kNN graphs converge to a different limitthan graphs constructed from kernels,
and that this explains some cases where kNN graphs perform poorly. Moreover, our framework
allows us to generate new algorithms: in particular, by using location-dependent bandwidths we
obtain a class of operators that have nice spectral convergence properties that parallel those of
the normalized Laplacian in von Luxburg et al. (2008), but which converge to a different class of
limits.

2.1 The Framework

Our work exploits the connections among diffusion processes, elliptic operators (in particular the
weighted Laplace-Beltrami operator), and stochastic differential equations (SDEs). This builds
upon the diffusion process viewpoint in Nadler et al. (2006). Critically, we make the connection
to the drift and diffusion terms of a diffusion process. Thisallows us to present a kernel-free
framework for analysis of graph Laplacians as well as givinga better intuitive understanding of the
limit diffusion process.

We first give a brief overview of these connections and present our general framework for the
asymptotic analysis of graph Laplacians as well as providing some relevant background material.
We then introduce our assumptions and derive our main results for the limit operator for a wide
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range of graph construction methods. We use these to calculate asymptotic limits for specific graph
constructions.

Relevant Differential Geometry

AssumeM is am-dimensional manifold embedded inRb. To identify the asymptotic infinitesimal
generator of a diffusion on this manifold, we will derive thedrift and diffusion terms in normal
coordinates at each point. We refer the reader to Boothby (1986) for an exact definition of normal
coordinates. For our purposes it suffices to note that normalcoordinates are coordinates inRm that
behave roughly as if the neighborhood was projected onto thetangent plane atx. The extrinsic
coordinates are the coordinatesRb in which the manifold is embedded. Since the density, and
hence integration, is defined with respect to the manifold, we must relate to link normal coordinates
s around a pointx with the extrinsic coordinatesy. This relation may be given as follows:

y − x = Hxs+ Lx(ss
T ) +O(

∣

∣

∣

∣s3
∣

∣

∣

∣), (2.1)

whereHx is a linear isomorphism between the normal coordinates inRm and them-dimensional
tangent planeTx at x. Lx is a linear operator describing the curvature of the manifold and takes
m × m positive semidefinite matrices into the space orthogonal tothe tangent plane,T⊥

x . More
advanced readers will note that this statement is Gauss’ lemma andHx andLx are related to the
first and second fundamental forms.

We are most interested in limits involving the weighted Laplace-Beltrami operator, a particular
second-order differential operator.

Weighted Laplace-Beltrami operator

Definition 1 (Weighted Laplace-Beltrami operator). The weighted Laplace-Beltrami operator with
respect to the densityq is the second-order differential operator defined by∆q := ∆M −

∇qT

q
∇

where∆M := div ◦ ∇ is the unweighted Laplace-Beltrami operator.

It is of particular interest since it induces a smoothing functional forf ∈ C2(M) with support
contained in the interior of the manifold:

〈f,∆qf〉L(q) = ||∇f ||
2
L2(q)

. (2.2)

Note that existing literature on asymptotics of graph Laplacians often refers to thesth weighted
Laplace-Beltrami operator as∆s wheres ∈ R. This is∆ps in our notation. For more information
on the weighted Laplace-Beltrami operator see Grigor’yan (2006).

Equivalence of Limiting Characterizations

We now establish the promised connections among elliptic operators, diffusions, SDEs, and graph
Laplacians. We first show that elliptic operators define diffusion processes and SDEs and vice
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versa. An elliptic operatorG is a second order differential operator of the form

Gf(x) =
∑

ij

aij(x)
∂2f(x)

∂xi∂xj
+
∑

i

bi(x)
∂f(x)

∂xi
+ c(x)f(x),

where them × m coefficient matrix(aij(x)) is positive semidefinite for allx. If we use normal
coordinates for a manifold, we see that the weighted Laplace-Beltrami operator∆q is a special
case of an elliptic operator with(aij(x)) = I, the identity matrix,b(x) = ∇q(x)

q(x)
, andc(x) = 0.

Diffusion processes are related via a result by Dynkin whichstates that given a diffusion process,
the generator of the process is an elliptic operator.

The (infinitesimal) generatorG of a diffusion processXt is defined as

Gf(x) := lim
t→0

Exf(Xt)− f(x)

t

when the limit exists and convergence is uniform overx. HereExf(Xt) = E(f(Xt)|X0 = x).
A converse relation holds as well. The Hille-Yosida theoremcharacterizes when a linear opera-
tor, such as an elliptic operator, is the generator of a stochastic process. We refer the reader to
Kallenberg (2002) for proofs.

A time-homogeneous stochastic differential equation (SDE) defines a diffusion process as a
solution (when one exists) to the equation

dXt = µ(Xt)dt+ σ(Xt)dWt,

whereXt is a diffusion process taking values inRd. The termsµ(x) andσ(x)σ(x)T are thedrift
anddiffusionterms of the process.

By Dynkin’s result, the generatorG of this process defines an elliptic operator and a simple
calculation shows the operator is

Gf(x) =
1

2

∑

ij

(

σ(x)σ(x)T
)

ij

∂2f(x)

∂xi∂xj
+
∑

i

µi(x)
∂f(x)

∂xi
.

In such diffusion processes there is no absorbing state and the term in the elliptic operatorc(x) = 0.
We note that one may also consider more general diffusion processes wherec(x) ≤ 0. When
c(x) < 0 then we have the generator of a diffusion process with killing wherec(x) determines the
killing rate of the diffusion atx.

To summarize, we see that a SDE or diffusion process define an elliptic operator, and impor-
tantly, the coefficients are the drift and diffusion terms, and the reverse relationship holds: An
elliptic operator defines a diffusion under some regularityconditions on the coefficients.

All that remains then is to connect diffusion processes in continuous space to graph Laplacians
on a finite set of points. Diffusion approximation theorems provide this connection. We state one
version of such a theorem .
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Theorem 2 (Diffusion Approximation). Letµ(x) andσ(x)σ(x)T be drift and diffusion terms for
a diffusion process defined on a compact setS ⊂ R

b, and let andG be the corresponding infinites-
imal generator. Let{Y (n)

t }t be Markov chains with transition matricesPn on state spaces{xi}ni=1

for all n, and letcn > 0 define a sequence of scalings. Put

µ̂n(xi) =cnE(Y
(n)
1 − xi|Y

(n)
0 = xi)

σ̂n(xi)σ̂n(xi)
T=cnVar(Y

(n)
1 |Y

(n)
0 = xi).

Letf ∈ C2(S). If for all ǫ > 0

µ̂n(xi)→ µ(xi),

σ̂n(xi)σ̂n(xi)
T → σ(xi)σ(xi)

T ,

cn sup
i≤n

P
(∣

∣

∣

∣

∣

∣
Y

(n)
1 − xi

∣

∣

∣

∣

∣

∣
> ǫ
∣

∣

∣
Y

(n)
0 = xi

)

→ 0,

then the generatorsAnf = cn(Pn − I)f → Gf Furthermore, for any boundedf andt0 > 0 and
the continuous-time transition kernelsTn(t) = exp(tAn) andT the transition kernel forG, we
haveTn(t)f → T (t)f uniformly int for t < t0.

Proof. We first examine the case whenf(x) = x. By assumption,

Anπnx = cn(Pn − I)x = cnE(Y
(n)
1 − xi|Y

(n)
0 = xi)

= µn(x)→ µ(x) = Ax.

Similarly if f(x) = xxT , ||Anπnf − Af ||∞ → 0. If f(x) = 1, thenAnπnf = πnAf = 0. Thus,
by linearity ofAn, Anπnf → Af for any quadratic polynomialf .

Taylor expandf to obtainf(x + h) = qx(h) + δx(h) whereqx(h) is a quadratic polynomial
in h. Since the second derivative is continuous and the support of f is compact,supx∈M δx(h) =
o(||h||2) andsupx,h δx(h) < M for some constantM .

Let∆n = Y
(n)
1 − xi. We may boundAn acting on the remainder termδx(h) by

sup
x
Anδx = cnE(δx(∆n)|Y

(n)
0 = x)

≤ sup
x
cnE(δx(∆n)I(||∆n|| ≤ ǫ)|Y (n)

0 = x)+

M sup
x
cnP(||∆n|| > ǫ|Y (n)

0 = x)

= o(cnE(||∆n||
2 |Y (n)

0 = x)) +M sup
x
cnP(||∆n|| > ǫ|Y (n)

0 = x)

= o(1)

where the last equality holds by the assumptions on the uniform convergence of the diffusion term
σ̂nσ̂

T
n and on the shrinking jumpsizes. Thus,Anπnf → Af for anyf ∈ C2(M).
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The class of functionsC2(M) is dense inL∞(M) and form a core for the generatorA. Stan-
dard theorems give equivalence between strong convergenceof infinitesimal generators on a core
and uniform strong convergence of transition kernels on a Banach space (e.g. Theorem 1.6.1 in
Ethier and Kurtz (1986)).

We remark that though the results we have discussed thus far are stated in the context of the
extrinsic coordinatesRb, we describe appropriate extensions in terms of normal coordinates in
section 2.8.

2.2 Assumptions

We describe here the assumptions and notation for the rest ofthe chapter. The following assump-
tions we will refer to as thestandard assumptions. Unless stated explicitly otherwise, letf be an
arbitrary function inC2(M).

Manifold assumptions

AssumeM us a smoothm-dimensional manifold isometrically embedded inRb via the mapi :
M→ R

b. The essential conditions that we require on the manifold are

1. Smoothness, the mapi is a smooth embedding.

2. A single radiush0 such that for allx ∈ supp(f),M∩B(x, h0) is a neighborhood ofx with
normal coordinates, and

3. Bounded curvature of the manifold oversupp(f), i.e. that the second fundamental form is
bounded .

When the manifold is smooth and compact, then these conditions are satisfied.
Assume points{xi}∞i=1 are sampled i.i.d. from a densityp ∈ C2(M) with respect to the natural

volume element of the manifold, and thatp is bounded away from 0.

Notation

For brevity, we will always usex, y ∈ R
b to be points onM expressed in extrinsic coordinates

ands ∈ R
m to be normal coordinates fory in a neighborhood centered atx. Since they represent

the same point, we will also usey ands interchangeably as function arguments, i.e.f(y) = f(s).
Whenever we take a gradient,it is with respect to normal coordinates.

Generalized kernel

Though we use a kernel free framework, our main theorem utilizes a kernel, but one that is gen-
eralizes previously studied kernels by 1) considering non-smooth base kernelsK0, 2) introducing
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location dependent bandwidth functionsrx(y), and 3) considering general weight functionswx(y).
Our main result also handles 4) random weight and bandwidth functions.

Given a bandwidth scaling parameterh > 0, define a new kernel by

K(x, y) = wx(y)K0

(

||y − x||

hrx(y)

)

. (2.3)

Previously analyzed constructions using smooth kernels with compact support are specific in-
stances of this more general kernel. In those constructions, the bandwidth scaling is fixed so
rx = 1 and the weighting function takes the particular formwx(y) = d(x)−λd(y)−λ whered(x) is
the degree function andλ ∈ R is some constant.

The directed kNN graph is obtained ifK0(x, y) = I(||x− y|| ≤ 1), rx(y) = distance to the
kth nearest neighbor ofx, andwx(y) = 1 for all x, y. We note that the kernelK is not necessarily
symmetric; however, ifrx(y) = ry(x) andwx(y) = wy(x) for all x, y ∈ M then the kernel is
symmetric and the corresponding unnormalized Laplacian ispositive semi-definite.

Kernel assumptions

We now introduce our assumptions on the choicesK0, h, wx, rx that govern the graph construction.
Assume that the base kernelK0 : R+ → R+ has bounded variation and compact support andhn >
0 form a sequence of bandwidth scalings. For (possible random) location dependent bandwidth and
weight functionsr(n)x (·) > 0, w

(n)
x (·) ≥ 0, assume that they converge torx(·), wx(·) respectively

and the convergence is uniform overx ∈M. Further assume they have Taylor-like expansions for
all x, y ∈M with ||x− y|| < hn

r(n)x (y) = rx(x) + (ṙx(x) + αxsign(u
T
x s)ux)

T s+ ǫ(n)r (x, s)

w(n)
x (y) = wx(x) +∇wx(x)

T s+ ǫ(n)w (x, s)
(2.4)

where the approximation error is uniformly bounded by

sup
x∈M,||s||<hn

|ǫ(n)r (x, s)| = O(h2n)

sup
x∈M,||s||<hn

|ǫ(n)w (x, s)| = O(h2n)

We briefly motivate the choice of assumptions. The bounded variation condition allows for
non-smooth base kernels but enough regularity to obtain limits. The Taylor-like expansions give
conditions where the limit is tractable to analytically compute as well as allowing for random-
ness in the remainder term as long as it is of the correct order. The particular expansion for the
location dependent bandwidth allows one to analyze undirected kNN graphs, which exhibit a non-
differentiable location dependent bandwidth (see section2.4). Note that we do not constrain the
general weight functionsw(n)

x (y) to be a power of the degree function,dn(x)αdn(y)α nor impose
a particular functional form for location dependent bandwidthsrx. This gives us two degrees of
freedom, which allows the same asymptotic limit be obtainedfor an entire class of parameters
governing the graph construction. In section 2.6, we discuss one may choose a graph construction
that has more attractive finite sample properties than otherconstructions that have the same limit.



CHAPTER 2. GRAPH CONSTRUCTIONS AND ASYMPTOTICS OF THE GRAPH
LAPLACIAN 10

Functions and convergence

We define here what we mean by convergence when the domains of the functions are changing.
When takegn → g wheredomain(gn) = Xn ⊂ M, to mean||gn − πng||∞ → 0 whereπng =
g|Xn

is the restriction ofg toXn. Likewise, for operatorsTn on functions with domainXn, we take
Tng = Tnπng. Convergence of operatorsTn → T meansTnf → Tf for all f ∈ C2(M). When
Xn =M for all n, this is convergence in the strong operator topology under theL∞ norm.

We consider the limit of the random walk Laplacian defined by asLrw = I −D−1W whereI
is the identity,W is the matrix of edge weights, andD is the diagonal degree matrix.

2.3 Main Theorem

Our main result is stated in the following theorem.

Theorem 3. Assume the standard assumptions hold eventually with probability 1. If the bandwidth
scalingshn satisfyhn ↓ 0 andnhm+2

n / log n→∞, then for graphs constructed using the kernels

Kn(x, y) = w(n)
x (y)K0

(

||y − x||

hnr
(n)
x (y)

)

(2.5)

there exists a constantZK0,m > 0 depending only on the base kernelK0 and the dimensionm such
that for cn = ZK0,m/h

2,
−cnL

(n)
rw f → Af

whereA is the infinitesimal generator of a diffusion process with thefollowing drift and diffusion
terms given in normal coordinates:

µs(x) = rx(x)
2

(

∇p(x)

p(x)
+
∇w(x)

w(x)
+ (m+ 2)

ṙx(x)

rx(x)

)

,

σs(x)σs(x)
T = rx(x)

2I

whereI is them×m identity matrix.

Proof. We apply the diffusion approximation theorem (Theorem 2) toobtain convergence of the
random walk Laplacians. Sincehn ↓ 0, the probability of a jump of size> ǫ equals 0 eventually.
Thus, we simply need to show uniform convergence of the driftand diffusion terms and identify
their limits. We leave the detailed calculations in section2.8 and present the main ideas in the
proof here.

We first assume thatK0 is an indicator kernel. To generalize, we note that for kernels of
bounded variation, we may writeK0(x) =

∫

I(|x| < z)dη+(z) −
∫

I(|x| < z)dη−(z) for some
finite positive measuresη−, η+ with compact support. The result for general kernels then follows
from Fubini’s theorem. We also initially assume that we are given the true densityp. After iden-
tifying the desired limits given the true density, we show that the empirical version converges
uniformly to these limits.
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The key calculation is lemma 7 in the section 2.8 which establishes that integrating against an
indicator kernel is like integrating over a sphere re-centered onh2nṙx(x). Given this calculation and
by Taylor expanding the non-kernel terms, one obtains the infinitesimal first and second moments
and the degree operator.

M
(n)
1 (x) =

1

hmn

∫

sKn(x, y)p(y)ds

= CK0,mh
2
nrx(x)

m+2

(

wx(x)
∇p(x)

m+ 2
+ p(x)

∇wx(x)

m+ 2
+ wx(x)p(x)ṙx(x) + o(1)

)

M
(n)
2 (x) =

1

hmn

∫

ssTKn(x, y)p(y)ds

=
CK0,m

m+ 2
h2nrx(x)

m+2 (wx(x)p(x)I +O(hn)) ,

dn(x) =
1

hmn

∫

Kn(x, y)p(y)ds

= C ′
K0,m

rx(x)
m (wx(x)p(x) +O(hn))

whereCK0,m =
∫

um+2dη, C ′
K0,m

=
∫

umdη andη is the signed measureη = η+ − η−. A more
detailed expansion of the moment calculations is given in section 2.8

LetZK0,m = (m+2)
C′

K0,m

CK0,m
andcn = ZK0,m/h

2
n. SinceKn/dn define Markov transition kernels,

taking the limitsµs(x) = lim
n→∞

cnM
(n)
1 (x)/dn(x) andσs(x)σs(x)

T = lim
n→∞

cnM
(n)
2 (x)/dn(x) and

applying the diffusion approximation theorem gives the stated result.
To more formally apply the diffusion approximation theoremwe may calculate the drift and

diffusion in extrinsic coordinates. In extrinsic coordinates, we have

µ(x) = rx(x)
2Hx

(∇p(x)

p(x)
+
∇wx(x)

wx(x)
+ (m+ 2)

ṙx(x)

rx(x)

)

+ rx(x)
2Lx(I),

σ(x)σ(x)T = r(x)2ΠTx ,

whereΠTx is the projection onto the tangent plane atx, andHx andLx are the linear mappings
between normal coordinates and extrinsic coordinates defined in Eqn (2.1).

To prove the convergence of the empirical quantities, we proceed in two steps. First, examine
the behavior of a non-random kernel where the bandwidth and weight functions are fixed. The
a.s. uniform convergence of the moments can be shown using Bernstein’s inequality and Borel-
Cantelli. In the second step, we show that the moments using the random bandwidth and weight
functions may be eventually bounded above and below using appropriate non-random functions.
These function shrink to the limit bandwidth and weight functions at an appropriate rate and the
squeeze theorem establishes the a.s. uniform convergence.Further details are given in section 2.8

Sincep, wx, rx are all assumed to be bounded away from0, the scaled degree operatorsdn are
eventually bounded away from 0 with probability 1, and the continuous mapping theorem applied

to M
(n)
i /h2

n

dn
gives a.s. uniform convergence of the drift and diffusion.
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Unnormalized and Normalized Laplacians

While our results are for the infinitesimal generator of a diffusion process, that is, for the limit
of the random walk LaplacianLrw = I − D−1W , it is easy to generalize them to the unnor-
malized LaplacianLu = D − W = DLrw and symmetrically normalized LaplacianLnorm =
I −D−1/2WD−1/2 = D1/2LrwD

−1/2.

Corollary 4. Take the assumptions in Theorem 3, and letA be the limiting operator of the random
walk Laplacian. The degree termsdn(·) converge uniformly a.s. to a functiond(·), and

−c′nL
(n)
u f → d · Af a.s.

wherec′n = cn/h
m. Furthermore, under the additional assumptionsnhm+4

n / log n→∞, supx,y |w
(n)
x −

wx| = o(h2n), supx,y |r
(n)
x − rx| = o(h2n), andd, wx, rx ∈ C

2(M), we have

−cnL
(n)
normf → d1/2 · A(d−1/2f) a.s.

Proof. For any two functionsφ1, φ2 :M → R, definegu(φ1, φ2) = (φ1(·), f1(·)φ2(·)). We note
thatgu is a continuous mapping in theL∞ topology and

(dn, c
′
nL

n
uf) = gu(dn, cnLrwf).

By the continuous mapping theorem, ifdn → d a.s. andcnL
(n)
rw f → Lf a.s. in the then

c′nL
(n)
u → d · Lf.

Thus, convergence of the random walk Laplacians implies convergence of the unnormalized Lapla-
cian under the very weak condition of convergence of the degree operator to a bounded function.

Convergence of the normalized Laplacian is slightly trickier. We may write the normalized
Laplacian as

L(n)
normf = d1/2n L(n)

rw (d
−1/2
n f) (2.6)

= d1/2n L(n)
rw (d

−1/2f) + d1/2n L(n)
rw (d

−1/2
n − d−1/2)f). (2.7)

Using the continuous mapping theorem, we see that convergence of the normalized Laplacian,
cnL

(n)
normf → d−1/2Lrw(d

−1/2f), is equivalent to showingcnL
(n)
rw ((d

−1/2
n − d−1/2)f) → 0. A

Taylor expansion of the inverse square root gives that showing cnL
(n)
rw (dn − d)→ 0 is sufficient to

prove convergence.
We now verify conditions which will ensure that the degree operators will converge at the

appropriate rate. We further decompose the empirical degree operator into the biasEdn − d and
empirical errordn − Edn.
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Simply carrying out the Taylor expansions to higher order terms in the calculation of the degree
function dn in Eq. 2.24, and using the refined calculation of the zeroth moment in lemma 8 in
section 2.8, the bias of the degree operator isdn − d = h2nb+ o(h2n) for some uniformly bounded,
continuous functionb.

Thus we have,

cnL
(n)
rw (dn − d) = cnh

2
n ||(I − Pn)b||∞ + o(1) = o(1) (2.8)

sincecnh2n is constant and||(I − Pn)φ||∞ → 0 for any continuous functionφ.
We also need to check that the empirical error||dn − Edn||∞ = O(h2n) a.s.. Ifnhm+4

n / log n→
∞ then using the Bernstein bound in equation 2.28 withǫ replaced byh2n and applying Borel-
Cantelli gives the desired result.

Limit as weighted Laplace-Beltrami operator

Under some regularity conditions, the limit given in the main theorem (Theorem 3) yields a
weighted Laplace-Beltrami operator.

For convenience, defineγ(x) = rx(x), ω(x) = wx(x).

Corollary 5. Assume the conditions of Theorem 3 and letq = p2ωγm+2. If rx(y) = ry(x), wx(y) =
wy(x) for all x, y ∈ M andr(·)(·), w(·)(·) are twice differentiable in a neighborhood of(x, x) for
all x, then forc′n = ZK0,m/h

m+2

−c′nL
(n)
u →

q

p
∆q. (2.9)

Proof. Note that∇|y=x γ(y) = 2 ∇|y=x rx(y). The result follows from application of Theorem 3,
Corrollary 4, and the definition of the weighted Laplace-Beltrami operator.

2.4 Application to Specific Graph Constructions

To illustrate Theorem 3, we apply it to calculate the asymptotic limits of graph Laplacians for sev-
eral widely used graph construction methods. We also apply the general diffusion theory frame-
work to analyze LLE.

r-Neighborhood and Kernel Graphs

In the case of ther-neighborhood graph, the Laplacian is constructed using a kernel with fixed
bandwidth and normalization. The base kernel is simply the indicator functionK0(x) = I(|x| <
r). The radiusrx(y) is constant sȯr(x) = 0. The drift is given byµs(x) = ∇p(x)/p(x) and the
diffusion term isσs(x)σs(x)T = I. The limit operator is thus

1

2
∆M +

∇p(x)T

p(x)
∇ =

1

2
∆2
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as expected. This analysis also holds for arbitrary kernelsof bounded variation. One may also in-
troduce the usual weight functionw(n)

x (y) = dn(x)
−αdn(y)

−α to obtain limits of the form1
2
∆p2−2α).

These limits match those obtained by Hein et al. (2007) and Lafon (2004) for smooth kernels.

Directed k-Nearest Neighbor Graph

For kNN-graphs, the base kernel is still the indicator kernel, and the weight function is constant1.
However, the bandwidth functionr(n)x (y) is random and depends onx. Since the graph is directed,
it does not depend ony so ṙx = 0.

By the analysis in section 2.4,rx(x) = cp−1/m(x) for some constantc. Consequently the limit
operator is proportional to

1

p2/m
(x)

(

∆M + 2
∇pT

p
∇

)

=
1

p2/m
∆p2 .

Note that this is generallynota self-adjoint operator inL(p). The symmetrization of the graph has
a non-trivial affect to make the graph Laplacian self-adjoint.

Undirected k-Nearest Neighbor Graph

We consider the OR-construction where the nodesvi andvj are linked ifvi is ak-nearest neigh-
bor of vj or vice-versa. In this casehmn r

(n)
x (y) = max{ρn(x), ρn(y)} whereρn(x) is the dis-

tance to thekthn nearest neighbor ofx. The limit bandwith function is non-differentiable,rx(y) =
max{p−1/m(x), p−1/m(y)}, but a Taylor-like expansion exists witḣrx(x) = 1

2m
∇p(x)T

p(x)
. The limit

operator is
1

p2/m
∆p1−2/m .

which is self-adjoint inL2(p). Surprisingly, ifm = 1 then the kNN graph construction induces a
drift awayfrom high densiy regions.

Conditions for kNN convergence

To complete the analysis, we must check the conditions for kNN graph constructions to satisfy
the assumptions of the main theorem. This is a straightforward application of existing uniform
consistency results for kNN density estimation.

Let hn =
(

kn
n

)1/m
. The condition we must verify is

sup
y∈M

∣

∣

∣

∣r(n)x − rx
∣

∣

∣

∣

∞
= O(h2n) a.s.

We check this for the directed kNN graph, but analyses for other kNN graphs are similar. The
kNN density estimate of Loftsgaarden and Quesenberry (1965) is

p̂n(x) =
Vm

n(hnr
(n)
x (x))m

(2.10)
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wherehnr
(n)
x (x) is the distance to thekth nearest neighbor ofx givenn data points. Taylor ex-

panding equation 2.10 shows that if||p̂n − p||∞ = O(h2n) a.s. then the requirement on the location
dependent bandwidth for the main theorem is satisfied.

Devroye and Wagner (1977)’s proof for the uniform consistency of kNN density estimation
may be easily modified to show this. Takeǫ = (kn/n)

2 in their proof. One then sees thathn =

kn/n→ 0 andnhm+2
n

logn
= k

2+2/m
n

n1+2/m logn
→∞ are sufficient to achieve the desired bound on the error.

“Self-Tuning” Graphs

The form of the kernel used in self-tuning graphs is

Kn(x, y) = exp

(

− ||x− y||2

σn(x)σn(y)

)

.

whereσn(x) = ρn(x), the distance betweenx and thekth nearest neighbor. The limit bandwidth
function isrx(y) =

√

p−1/m(x)p−1/m(y). Since this is twice differentiable, corollary 5 gives the
asymptotic limit, which is the same as for undirected kNN graphs,

p−2/m∆p1−2/m .

Locally Linear Embedding

Locally linear embedding (LLE), introduced by Roweis and Saul (2000), has been noted to behave
like (the square of) the Laplace-Beltrami operator Belkin andNiyogi (2003).

Using our kernel-free framework we will show how LLE differsfrom weighted Laplace-
Beltrami operators and graph Laplacians in several ways. 1) LLE has, in general,no well-defined
asymptotic limitwithout additional conditions on the weights. 2) It can onlybehave like anun-
weightedLaplace-Beltrami operator. 3) It is affected by the curvature of the manifold, and the
curvature can cause LLE to not behave like any elliptic operator (including the Laplace-Beltrami
operator).

The key observation is that LLE only controls for the drift term in the extrinsic coordinates.
Thus, the diffusion term has freedom to vary. However, if themanifold has curvature, the drift in
extrinsic coordinates constrains the diffusion term in normal coordinates.

The LLE matrix is defined as(I −W )T (I −W ) whereW is a weight matrix which minimizes
reconstruction errorW = argminW ′ ||(I −W ′)y||2 under the constraintsW ′1 = 1 andW ′

ij 6= 0
only if j is one of thekth nearest neighbors ofi. Typically k > m and reconstruction error= 0.
We will analyze the matrixM = I −W .

Suppose LLE produces a sequence of matricesMn = I −Wn. The row sums ofMn are0.
Thus, we may decomposeMn = A+

n − A
−
n whereA+

n , A
−
n are generators for finite state Markov

processes obtained from the positive and negative weights respectively. Assume that there is some
scalingcn such thatcnA+

n , cnA
−
n converge to generators of diffusion processes with driftsµ+, µ−

and diffusion termsσ+σT
+, σ−σ

T
−. Setµ = µ+ − µ− andσσT = σ+σ+ − σ−σ−.
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No well-defined limit

We first show there is generally no well-defined asymptotic limit when one simply minimizes re-
construction error. Supposerank(Lx) < m(m + 1)/2 at x. This will necessarily be true if the
extrinsic dimensionb < m(m + 1)/2 + m. For simplicity assumerank(Lx) = 0. Minimizing
the LLE reconstruction error does not constrain the diffusion term, andσ(x)σ(x)T may be chosen
arbitrarily. Choose asymptotic diffusionσσT and driftµ terms that are Lipschitz so that a corre-
sponding diffusion process necessarily exists. A diffusion with terms2σσT andµ will also exist in
that case.

One may easily construct graphs for the positive and negative weights with these asymptotic
diffusion and drift terms by solving highly underdetermined quadratic programs. Furthermore, in
the interior of the manifold, these graphs may be constructed so that the finite sample drift terms are
exactly equal by adding an additional constraint. Thus,A+

n → 2G0 + µT∇ andA−
n → G0 + µT∇

whereG0 is the generator for a diffusion process with zero drift and diffusion termσ−(x)σ−(x)
T .

We havecnMn = A+
n − A

−
n → G0. Thus, we can construct a sequence of LLE matrices that have

0 reconstruction error but have an arbitrary limit. It is trivial to see how to modify the construction
when0 < rank(Lx) < m(m+ 1)/2.

No drift

Sinceµs(x) = 0, if the LLE matrix does behave like a Laplace-Beltrami operator, it must behave
like an unweighted one, and the density has no affect on the drift.

Curvature and limit

We now show that the curvature of the manifold affects LLE andthat the LLE matrix may not
behave like any elliptic operator. If the manifold has sufficient curvature, namely if the extrinsic
coordinates have dimensionb ≥ m+m(m+1)/2 andrank(Lx) = m(m+1)/2, then the diffusion
term in the normal coordinates is fully constrained by the drift term in the extrinsic coordinates.

Recall from equation 2.1 that the extrinsic coordinates as a function of the normal coordinates
arey = x + Hxs + Lx(ss

T ) + O(||s||3). By linearity ofHx andLx, the asymptotic drift in the
extrinsic coordinates isµ(x) = Hxµs(x) + Lx(σs(x)σs(x)

T ).
Since reconstruction error in the extrinsic coordinates is0, we have in normal coordinates

µs(x) = 0 and Lx(σs(x)σs(x)
T ) = 0.

In other words, the asymptotic drift and diffusion terms ofA+
n andA−

n must be the same, and
cnMn → G0 −G0 = 0.

This implies that the scalingcn where LLE can be expected to behave like an elliptic operator
gives the trivial limit 0. If another scaling yields a non-trivial limit, it may include higher-order
differential terms. It is easy to see whenLx is not full rank, the curvature affects LLE by partially
constraining the diffusion term.



CHAPTER 2. GRAPH CONSTRUCTIONS AND ASYMPTOTICS OF THE GRAPH
LAPLACIAN 17

−2

0

2

−1
0

1

0.05

0.1

0.15

(A) Gaussian Manifold

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(B) Kernel Laplacian embedding

−0.05 0 0.05
−0.05

0

0.05

(C) Raw kNN Laplacian Embedding

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(D) rescaled kNN Laplacian Embedding

Figure 2.1: (A) shows a 2D manifold where thex andy coordinates are drawn from a truncated
standard normal distribution. (B-D) show embeddings using different graph constructions. (B)
uses a normalized Gaussian kernelK(x,y)

d(x)1/2d(y)1/2
, (C) uses a kNN graph, and (D) uses a kNN graph

with edge weights
√

p̂(x)p̂(y). The bandwidth for (B) was chosen to be the median standard
deviation from taking 1 step in the kNN graph.

Regularization and LLE

We note that while the LLE framework of minimizing reconstruction error can yield ill-behaved
solutions, practical implementations add a regularization term when constructing the weights. This
causes the reconstruction error to be non-zero in general and gives unique solutions for the weights
which favor equal weights (and asymptotic behavior like kNNgraphs).

2.5 Experiments

To illustrate the theory, we show how to correct the bad behavior of the kNN Laplacian for a
synthetic data set. We also show how our analysis can predictthe surprising behavior of LLE.
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Figure 2.2: (A) shows a 1D manifold isometric to a circle. (B-D) show the embeddings using (B)
Laplacian eigenmaps which correctly identifies the structure, (C) LLE with default regularization
1e-3, and (D) LLE with negligible regularization 1e-6.

kNN Laplacian

We consider a non-linear embedding example which almost allnon-linear embedding techniques
handle well but the kNN graph Laplacian performs poorly. Figure 2.1 shows a 2D manifold em-
bedded in 3 dimensions and embeddings using different graphconstructions. The theoretical limit
of the normalized LaplacianLknn for a kNN graph isLknn = 1

p
∆1. while the limit for a graph

with Gaussian weights isLgauss = ∆p. The first 2 coordinates of each point are from a truncated
standard normal distribution, so the density at the boundary is small and the effect of the1/p term
is substantial. This yields the bad behavior shown in Figure2.1 (C). We may use the relationship
between thekth-nearest neighbor and the density in Eqn (2.10) to obtain a pilot estimatep̂ of the
density. Choosingwx(y) =

√

p̂n(x)p̂n(y), gives a weighted kNN graph with the same limit as
the graph with Gaussian weights. Figure 2.1 (D) shows that this change yields the roughly desired
behavior but with fewer “holes” in low density regions and more in high density regions.
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LLE

We consider another synthetic data set, the toroidal helix,in which the manifold structure is easy
to recover. Figure 2.5 (A) shows the manifold which is clearly isometric to a circle, a fact picked
up by the kNN Laplacian in Figure 2.5 (B).

Our theory predicts that the heuristic argument that LLE behaves like the Laplace-Beltrami
operator willnot hold. Since the total dimension for the drift and diffusion terms is2 and the
global coordinates also have dimension 2, that there is forced cancellation of the first and second
order differential terms and the operator should behave like the 0 operator or include higher order
differentials. In Figure 2.5 (C) and (D), we see this that LLE performs poorly and that the behavior
comes closer to the 0 operator when the regularization term is smaller.

2.6 Remarks and Discussion

Non-shrinking neighborhoods

In this dissertation, we have presented convergence results using results for diffusion processes
without jumps. Graphs constructed using a fixed, non-shrinking bandwidth do not fit within this
framework, but approximation theorems for diffusion processes with jumps still apply (see Jacod
andŠirjaev (2003)). Instead of being characterized by the drift and diffusion pairµ(x), σ(x)σ(x)T ,
the infinitesimal generators for a diffusion process with jumps is characterized by the “Lêvy-
Khintchine” triplet consisting of the drift, diffusion, and “Lêvy measure.” Given a sequence of
transition kernelsKn, the additional requirement for convergence of the limiting process is the ex-
istence of a limiting transition kernelK such that

∫

Kn(·, dy)g(y)dy →
∫

K(·, dy)g(y)dy locally
uniformly for allC1 functionsg. This establishes an impossibility result, that no method that only
assigns positive mass on shrinking neighborhoods can have the same graph Laplacian limit as a a
kernel construction method where the bandwidth is fixed.

Convergence rates

We note that one missing element in our analysis is the derivation of convergence rates. For the
main theorem, we note that it is, in fact, not necessary to apply a diffusion approximation theorem.
Since our theorem still uses a kernel (albeit one with much weaker conditions), a virtually identical
proof can be obtained by applying a functionf and Taylor expanding it. Thus, we believe that
similar convergence rates to Hein et al. (2007) can be obtained. Also, while our convergence result
is stated for the strong operator topology, the same conditions as in Hein give weak convergence.

Relation to density estimation

The connection between kernel density estimation and graphLaplacians is obvious, namely, any
kernel density estimation method using a non-negative kernel induces a random walk graph Lapla-
cian and vice versa.
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In this dissertation, we have shown that as a consequence of identifying the asymptotic degree
term, we have shown consistency of a wide class of adaptive kernel density estimates on a manifold.
We also have shown that on compact sets, the the bias term is uniformly bounded by a term of
orderh2, and a small modification to the Bernstein bound (Eqn 2.28) gives that the variance is
bounded by a term of orderh−m. Both of which one would expect. This generalizes previous work
on manifold density estimation by Pelletier (2005) and Ozakin (2009) to adaptive kernel density
estimation.

The well-studied field of kernel density estimation may alsolead to insights on how to choose
a good location dependent bandwidth as well. We compare the form of our density estimates to
other well-known adaptive kernel density estimation techniques. The balloon estimator and sample
smoothing estimators as described by Terrell and Scott (1992) are respectively given by

f̂1(x) =
1

nh(x)d

∑

i

K

(

||xi − x||

h(xi)

)

(2.11)

f̂2(x) =
1

n

∑

i

1

h(xi)d
K

(

||xi − x||

h(xi)

)

. (2.12)

In the univariate case, Terrell and Scott (1992) show that the balloon estimators yield no im-
provement to the asymptotic rate of convergence over fixed bandwidth density estimates. The
sample smoothing estimator gives a density estimate which does not necessarily integrate to 1.
However, it can exhibit better asymptotic behavior in some cases. The Abramson square root law
estimator (Abramson, 1982) is an example of a sample smoothing estimator and takesh(xi) =
hp(xi)

−1/2. On compact intervals, this estimator has bias of orderh4 rather than the usualh2 (Sil-
verman, 1998), and it achieves this bias reduction without resorting to higher order kernels, which
necessarily negative in some region. However, the bias in the tail for univariate Gaussian data is of
order(h/ log h)2 (Terrell and Scott, 1992), which is only marginally better thanh2.

While we do not make claims of being able to reduce bias in the case of density estimation a
manifold, in fact, we do not believe bias reduction to the order ofh4 is possible unless one makes
some use of manifold curvature information, the existing density estimation literature suggests
what potential benefits one may achieve over different regions of a density.

Eigenvalues/Eigenvectors

We find our location dependent bandwidth results to be of interest in the context of the negative
result in von Luxburg et al. (2008) for unnormalized Laplacians with a fixed bandwidth. Their re-
sults state that for unnormalized graph Laplacians, the eigenvectors of the discrete approximations
do not converge if the corresponding eigenvalues lie in the range of the asymptotic degree operator
d(x), whereas for the normalized Laplacian, the “degree operator” is the identity and the eigen-
vectors converge if the corresponding eigenvalues stay away from 1. Our results suggest that even
with unnormalized Laplacians, one can obtain convergence of the eigenvectors by manipulating
the range of the degree operator through the use of a locationdependent bandwidth function. For
example, with kNN graphs we have that the degree operator is essentially1. For self-tuning graphs,
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the degree operator also converges to 1, and since the kernels form an equicontinuous family of
functions, the theory for compact integral operators may berigorously applied when the bandwidth
scaling is fixed.

Thus we can obtain unnormalized and normalized graph Laplacians that (1) have spectra that
converges for fixed (non-decreasing) bandwidth scalings and (2) converge to a limit that is different
from that of previously analyzed normalized Laplacians when the bandwidth decreases to 0.

Corollary 6. Assume the standard assumptions. Further assume that
{

K0

(

||y−x||
h

)

: h > h0

}

forms an equicontinuous family of functions for someh0 > 0. Letq, g ∈ C2(M) be bounded away
from 0 and∞. Set

γ =

√

q

pg
rx(y) =

√

γ(x)γ(y) (2.13)

ω =

(

pg

q

)m/2
g

p
wx(y) =

√

ω(x)ω(y). (2.14)

If hn = h1 for all n, then the eigenvectors of the normalized Laplacians converge in the sense
given in von Luxburg et al. (2008). Ifhn ↓ 0 satisfy the assumptions of theorem 3, then the limit
rescaled degree operator isd = g and

−cnLnormf → g−1/2 q

p
∆q(g

−1/2f) (2.15)

which induces the smoothness functional
〈

f, g−1/2 q

p
∆q(g

−1/2f)

〉

L2(p)

=
〈

∇(g−1/2f),∇(g−1/2f)
〉

L2(q)
. (2.16)

Proof. Assume thehn ↓ 0 case. Use corollary 5 and solve forω andγ in the system of equations:
q = p2ωγm+2, g = pωγm. In thehn = h1 case, the conditions satisfy those given in von Luxburg
et al. (2008) with the modification that the kernel is not bounded away from 0 and the additional
assumption thatp is bounded away from 0. Thus, the asymptotic degree operatord is bounded away
from 0, and the proofs in von Luxburg et al. (2008) may be applied without additional modification.

We note that the restriction to an equicontinuous family of kernel functions excludes kNN
graph constructions. However, one may get around this by considering the two-step transition
kernelsK2(x, y) = K(x, ·) ∗ K(·, y), where∗ denotes the convolution operator with respect to
the underlying density. For indicator kernels like those used in kNN graph constructions,K2 will
be Lipschitz and hence form an equicontinuous family. Thus,if one handles the potential issues
with the random bandwidth function, one may apply the theoryof compact integral operators to
obtain convergence of the spectrum and eigenvectors for kNNgraph Laplacians whenk grows
appropriately.
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Reasons for choosing a graph construction method

We highlight how our more general kernel can yield advantageous properties. In particular, it
yields graphs constructions where one can (1) control the sparsity of the Laplacian matrix, (2)
control connectivity properties in low density regions, (3) give asymptotic limits that cannot be
attained using previous graph construction methods, and (4) give Laplacians with good spectral
properties in the non-shrinking bandwidth case.

One way to control (1) and (2) is to make the binary choice of using kNN or a kernel with
uniform bandwidth to construct the graph. Our results show that, by using a pilot estimate of the
density, one can obtain sparsity and connectivity properties in the continuum between these two
choices.

For (3) and (4), we note that the limits for previously analyzed unnormalized Laplacians were
of the formpα−1∆pαf . Using corollary 5, one see that limits of the formq

p
∆q for any smooth,

bounded densityq on the manifold can be obtained. Equivalently, one can approximate the smooth-
ness functional||∇f ||2L2(q)

for any almost anyq, not justpα.
For normalized Laplacians, which have good spectral properties, the previously known limits

induced smoothness functionals of the form
∣

∣

∣

∣∇(p(1−α)/2f)
∣

∣

∣

∣

2

L2(pα)
. With our more general kernel

and anyg, q ∈ C2(M), we may induce a smoothness functional of the form||∇(gf)||2L2(q)
. In par-

ticular, in the case where the smoothness functional is justa norm on the gradient off , ||∇f ||2L2(q)
,

q may be chosen to be almost any density, not justq = p1.

2.7 Conclusions

We have introduced a general framework that enables us to analyze a wide class of graph Laplacian
constructions. Our framework reduces the problem of graph Laplacian analysis to the calculation
of a mean and variance (or drift and diffusion) for any graph construction method with positive
weights and shrinking neighborhoods. Our main theorem extends existing strong operator conver-
gence results to non-smooth kernels, and introduces a general location-dependent bandwidth func-
tion. The analysis of a location-dependent bandwidth function, in particular, significantly extends
the family of graph constructions for which an asymptotic limit is known. This family includes the
previously unstudied (but commonly used) kNN graph constructions, unweightedr-neighborhood
graphs, and “self-tuning” graphs.

Our results also have practical significance in graph constructions as they suggest graph con-
structions that (1) can produce sparser graphs than those constructed with the usual kernel methods,
despite having the same asymptotic limit, and (2) in the fixedbandwidth regime, produce normal-
ized Laplacians that have well-behaved spectra but converge to a different class of limit operators
than previously studied normalized Laplacians. In particular, this class of limits include those that
induce the smoothness functional||∇f ||2L2(q)

for almost any densityq. The graph constructions
may also (3) have better connectivity properties in low-density regions.
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2.8 Proofs

Main lemma

Lemma 7 (Integration with location dependent bandwidth). Let I be the indicator function and
h > 0 be a constant. Letrx be a location dependent bandwidth function that satisfies thestandard
assumptions, i.e. it has a Taylor-like expansion

r̃x(y) = rx(x) + (ṙx(x) + αxsign(u
T
x s)ux)

T s+ ǫr(x, s).

LetVm = πm/2

Γ(m
2
+1)

be the volume of the unitm–sphere.

Then

M0 =
1

Vmhm

∫

I

(

||y − x||

r̃x(s)
< h

)

ds = rx(x)
m + h2ǫ0(x, h)

M1 =
1

Vmhm

∫

sI

(

||y − x||

r̃x(s)
< h

)

ds = h2rx(x)
m+2ṙ(x) + h3ǫ1(x, h)

M2 =
1

Vmhm

∫

ssT I

(

||y − x||

r̃x(s)
< h

)

ds =
2h2

m+ 2
rx(x)

m+2I + h3ǫ2(x, h)

wheresupx∈M,h<h0
||ǫi(x, h)|| < Cǫ for some constantCǫ > 0.

Proof. Let v(s) = ṙ(x) + sign(sTux)αux. We will show that the set on which the indicator
function is approximately a sphere shifted byv/rx(x) with radiushrx(x).

I

(

||y − x||

rx(s)
< h

)

= I

(

||s||2 +
∣

∣

∣

∣L(ssT )
∣

∣

∣

∣

2
< h2(rx(x) + v(s)T s+O(||s||2))2

)

= I
(

||s||2 < h2rx(x)
2(1 + 2v(s)T s+O(h2))

)

= I

(

||s||2 − 2h2
v(s)T s

rx(x)
+
h4v(s)Tv(s)

rx(x)2
< h2rx(x)

2 +O(h4)

)

= I

(∣

∣

∣

∣

∣

∣

∣

∣

s−
v(s)

rx(x)

∣

∣

∣

∣

∣

∣

∣

∣

< hrx(x) + h3δx(s)

)

for some functionδx(s). Furthermore, the assumptions on the bounded curvature of the manifold
and uniform bounds on the bandwidth function remainder termǫr(x, s) give that the perturbation
termδx(s) may be uniformly bounded bysupx∈M |δx(s)| ≤ Cδ(||s||

2) for some constantCδ.
The result for the zeroth moment follows immediately from this. The results for the first and

second moments we calculate in lemma 10.

Refined analysis of the zeroth moment

For convergence of the normalized Laplacian, we need a more refined result for the zeroth moment.
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Lemma 8. Assume
r̃x(y) = rx(s) + ǫr(x, s).

whererx(s) is twice continuously differentiable as a function ofx and s and andǫr is bounded.
Then

∫

1

Vmhm
I

(

||y − x||

r̃x(s)
< h

)

ds = rx(x)
m + h2b(x) + h2ǫ0(x, h)

whereb is continuous andsupx |ǫ0(x, h)| → 0 ash→ 0.

Proof. We first sketch idea behind the proof and leave the details to interested readers. One may
convert the integral in normal coordinates to an integral inpolar coordinates(R, θ). One may then
apply the implicit function theorem to obtain that the unperturbed radius functionR is a twice
continuously differentiable function ofh. This gives a Taylor expansion of the zeroth moment
with respect toh. ǫr(x, s) gives the desired result.

We may express the integral for the zeroth moment in polar coordinates

Zx(h) =

∫

1

Vmhm
I

(

||y − x||

r̃x(s)
< h

)

ds

=

∫

Rx(θ, h)dµθ

whereµθ is the uniform measure on the surface of the unitm-sphere and̃s = s/h = Rx(θ, h))θ
solves the equation

||s̃||2 + L(s̃s̃T ) =
(

rx(x) + h∇rx(x)
T s̃+ h2s̃THrx(0)s̃

)2
.

andHrx(0) is the Hessian ofrx(·) evaluated at0.
By the implicit function theorem, the solutions̃s define a twice continuously differentiable

function ofx, h. For sufficiently smallh ≥ 0, s̃ is bounded away from0 sincerx is bounded away
from 0 and||s/h|| is bounded away from∞ by the bound in lemma 7. Thus,Rx(θ, h) andZx(h)
are twice continuously differentiable with bounded secondderivatives.

Zx(h) then has a second-order Taylor expansionZx(h) = Zx(0) +Z ′
x(0)h+Z ′′

x(0)h
2 + o(h2).

By the less refined analysis in lemma 7, we have thatZx(0) = rx(x)
m andZ ′

x(0
+) = 0. One

may apply a squeeze theorem to obtain that the contribution of the error termǫr(x, s) to the zeroth
moment is bounded byCr supx,s |ǫr(x, s)| for some constantCr, and the result follows.

Moments of the indicator kernel / Integrating over the centered sphere in
normal coordinates

Here we calculate the first three moments of the normalized indicator kernel whereVm =
∫

I(||u|| <
1)du =

∫

Sm
du is the volume of them-dimensional unit sphere in Euclidean space.
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Lemma 9 (Moments for the sphere). Let K(||s|| /h) = 1
hmVm

I(||s|| < h). Then the first two
moments are given by:

M0 =

∫

K(||s|| /h)ds =
1

hmVm

∫

Sm

ds = 1 +O(h3)

M1 =

∫

sK(||s|| /h)ds =
1

hmVm

∫

Sm

sds = 0 +O(h4)

M2 =

∫

ssTK(||s|| /h)ds =
1

hmVm

∫

Sm

ssTds =
1

m+ 2
I+O(h4).

Proof. The error termsO(hi) arise trivially after converting normal coordinates to tangent space
coordinates. Thus, we may simply treat the integrals as integrals inm–dimensional Euclidean
space to obtain the leading term. The values forM0 andM1 follow immediately from the defini-
tion of the volumeVm and by symmetry of the sphere. We obtain the second moment result by
calculating the values on the diagonal and off-diagonal. Onthe off-diagonal

1

Vm

∫

Sm

sisjds = 0

for i 6= j due to symmetry of the sphere.
On the diagonal

1

Vm

∫

Sm

s2i ds =
Vm−1

Vm

∫ 1

−1

s2i (1− s
2
i )

(m−1)/2dsi (2.17)

=
Vm−1

Vm

∫ 1

−1

si × si(1− s
2
i )

(m−1)/2dsi (2.18)

= 0 +
Vm−1

Vm

∫ 1

−1

1

m+ 1
(1− s2i )

(m+1)/2dsi (2.19)

=
1

m+ 1

Vm−1

VmVm+1

∫ 1

−1

Vm+1(1− s
2
i )

(m+1)/2dsi (2.20)

=
1

m+ 1

Vm−1

Vm+1

Vm+2

Vm
(2.21)

=
1

m+ 2
(2.22)

where the last equality uses the recurrence relationshipVm+2 =
2π

m+2
Vm.

Integrating the shifted and peturbed sphere

Here we calculate the moments used in Lemma 7.
The integrals in lemma 7 essentially involve integrating over sphere with (1) a shifted center

h2ṙx(x), (2) a symmetric shift bysign(sTu)h2αxu on two half-spheres, and (3) a small perturba-
tion h3δx(s).
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Lemma 10(Moments of the shifted and perturbed sphere). Letvc ∈ R
m, u be a unit vector inRm,

β ∈ R, andh > 0. DefineK̃(s) = I(
∣

∣

∣

∣s− vc + sign(sTu)βu
∣

∣

∣

∣ < h + h3δ), so that the support
of K̃ is a shifted and perturbed sphere with centervc, symmetric shiftsign(sTu)βu, and radius
perturbationh3δ.

Assume||vc|| , |β| < Ch2 andδ < min{C, 1} for some constantC, and puthmax = h+ h3δ
Then

M0 =
1

Vm

∫

Rm

K̃(s)ds = hm + ǫ0

M1 =
1

Vm

∫

Rm

sK̃(s)ds = hm+2vc + ǫ1

M2 =
1

Vm

∫

Rm

ssT K̃(s)ds =
hm+2

m+ 2
I+ ǫ2.

whereǫ1 < κChm+1
max andǫi < κChm+3

max for i = 1, 2 andκ is some universal constant that does not
depend onδ, vc, or β.

Proof. SetH+ = {s ∈ R
m : uT s > 0} andH− = HC

+ to be the half-spaces defined byu. For a
setH ⊂ R

m, letH + vc := {w + vc : w ∈ H}.
We first bound the error introduced by the perturbationh3δ. Define

A := supp(K̃) = {s ∈ R
m :
∣

∣

∣

∣s− vc + sign(sTu)βu
∣

∣

∣

∣ < h+ h3δ}

A := {s ∈ R
m :
∣

∣

∣

∣s− vc + sign(sTu)βu
∣

∣

∣

∣ < h}

so thatA gets rid of the dependence on the perturbation.
For any functionQ, we have a trivial bound

∣

∣

∣

∣

∫

A

Q(s)ds−

∫

A

Q(s)ds

∣

∣

∣

∣

< Qmax|V ol(A)− V ol((A))|

< QmaxVm|h
m
max − h

m|

< QmaxVm(mh
m−1
max )(h

3δ)

= O(hm+2Qmax) (2.23)

whereQmax = sup||s||<hmax
Q(s) andmVm−1 is the surface area of them-dimensional sphere. For

Q(s) = 1/Vm, s/Vm, or ssT/Vm, the correspondingQmax are1/Vm, hmax/Vm, andh2max/Vm. The
error induced by the perturbation is thus of the right order.

We now consider the integral over the unperturbed but shifted sphere. Denote byBh(v) the ball
of radiush centered onv. Note that the functionI(s ∈ A) = I(

∣

∣

∣

∣s− vc + sign(sTu)βu
∣

∣

∣

∣ < h) is
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symmetric aroundvc. Thus, for a functionQ(s− vc + βu) which is symmetric aroundvc,
∫

A

Q(s− vc)ds = 2

∫

A∩H+

Q(s− vc)ds

= 2

∫

H+

Q(s− vc)I(||s− vc|| < h)ds−

2

∫

H+

Q(s− vc)(I(||s− vc|| < h)− I(||s− vc + βu|| < h))ds

=

∫

Q(s)I(||s|| < h)ds−

2

∫

H+

Q(s− vc)(I(s ∈ Bh(vc))− I(s ∈ Bh(vc − βu)))ds.

ForQ(s) = 1/Vm or ssT/Vm, lemma 9 gives that the value of the main term
∫

Q(s)I(||s|| < h)ds

is hm or hm+2

m+2
I respectively. The error term is bounded by

2

∫

H+

Q(s− vc)(I(s ∈ Bh(vc))− I(s ∈ Bh(vc − βu)))ds

≤ 2Qmax

∫

H+

|I(s ∈ Bh(vc))− I(s ∈ Bh(vc − βu))|ds

< 2Qmax|β|Area(H
+ ∩ Bh(vc))

< 2Qmax|β|(mVm−1h
m−1)

< 2mVm−1CQmaxh
m+1

whereArea(H+ ∩ Bh(vc)) is the surface area of a half-sphere of radiush. Plugging inQmax =
1/Vm andh2/Vm give that the error terms for the zeroth and second moment calculations are of
the right order.

By another symmetry argument, we have for the first moment calculation
∫

A
1
Vm

(s− vc)ds = 0
or equivalently,

1

Vm

∫

A

sds =
vc
Vm

∫

A

ds

= hmvc +O(hm+3)

where the last equality holds from the calculation of the zeroth moment above. More precisely, the
error term is bounded by2mVm−1CQmaxh

m+1vc.

Details of proof the main theorem

Expansion of moment calculations

We expand the moment calculations in the proof of the main theorem. Each step is a consequence
of an assumption or from the lemmas computing the moments using an indicator kernel.
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M
(n)
1 (x) =

1

hmn

∫

sKn(x, y)p(y)ds

=
1

hmn

∫

sw(n)
x (s)K0

(

||y − x||

hnr
(n)
x (s)

)

p(s)ds

=
1

hmn

∫

s
(

wx(x) +∇wx(x)
T s+O(h2n)

) (

p(x) +∇p(x)T s+O(h2n)
)

×

×K0

(

||y − x||

hnr
(n)
x (s)

)

ds

= CK0,mh
2
nrx(x)

m+2

(

wx(x)
∇p(x)

m+ 2
+ p(x)

∇wx(x)

m+ 2
+ wx(x)p(x)ṙx(x) + o(1)

)

M
(n)
2 (x) =

1

hmn

∫

ssTKn(x, y)p(y)ds

=
1

hmn

∫

ssTw(n)
x (s)K0

(

||y − x||

hnr
(n)
x (s)

)

p(s)ds

=
1

hmn

∫

ssT (wx(x) +O(hn)) (p(x) +O(hn))K0

(

||y − x||

hnr
(n)
x (s)

)

ds

=
CK0,m

m+ 2
h2nrx(x)

m+2 (wx(x)p(x)I +O(hn)) ,

dn(x) =
1

hmn

∫

Kn(x, y)p(y)ds (2.24)

=
1

hm

∫

w(n)
x (s)K0

(

||y − x||

hnr
(n)
x (s)

)

p(s)ds (2.25)

=
1

hm

∫

(wx(x) +O(hn)) (p(x) +O(hn))K0

(

||y − x||

hnr
(n)
x (s)

)

ds (2.26)

= C ′
K0,m

rx(x)
m (wx(x)p(x) +O(hn)) (2.27)

Almost sure uniform convergence of empirical quantities

Proof. For non-randomr(n)x = rx, w
(n)
x = wx, the uniform and almost sure convergence of the

empirical quantities to the true expectation follows from an application of Bernstein’s inequality.

In particular, the value ofFn(x, S) = SiK
(

||Y−x||
hnrx(Y )

)

is bounded byKmaxhn, whereS is Y in

normal coordinates andKmax depends on the kernel and the maximum curvature of the manifold.
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Furthermore, the second moment calculation forM
(n)
2 gives that the varianceVar(Fn(x, S)) is

bounded bychm+2
n for some constantc that depends onK and the max ofp, and does not depend

onx. By Bernstein’s inequality and a union bound, we have

Pr

(

sup
i≤n

∣

∣

∣

∣

En
1

hm+2
n

Fn(xi, Y )−
1

h2n
M

(n)
1

∣

∣

∣

∣

> ǫ

)

= Pr

(

sup
i≤n
|EnFn(xi, Y )− EFn(xi, Y )| > ǫhm+2

n

)

< 2n exp

(

−
ǫ2

2c/(nhm+2
n ) + 2Kmaxǫ/(3nhm+1

n )

)

. (2.28)

The uniform convergence a.s. of the first moment follows fromBorel-Cantelli. Similar inequalities
are attained for the empirical second moment and degree terms.

Now assumer(n)x , w
(n)
x are random and defineFn as before. To handle the random weight

and bandwidth function case, we first choose deterministic weight and bandwidth functions to
maximize the first moment under a constraint that is satisfiedeventually a.s.. Define

w(n)
x (y) = wx(y) + κh2nsign(si)

r(n)x (y) = rx(x) + (ṙx(x) + αxsign(u
T
x s)ux)

T s− κh2nsign(si)

F n(y) = siw
(n)
x (y)K0

(

||y − x||

hnr
(n)
x (y)

)

for some constantκ such thatr(n)x < r
(n)
x andw(n)

x > w
(n)
x eventually. This is possible since

the perturbation termsǫ(n)r (x, s), ǫ
(n)
w (x, s) = O(h2n). Thus, we haveF κ,n(x, y) > Fn(x, y) for all

x, y ∈M eventually with probability 1. SinceF κ,n(x, Y ) uses deterministic weight and bandwidth
functions, we obtain i.i.d. random variables and may apply the Bernstein bound onF κ,n(x, y) to
obtain an upper bound on the empirical quantities, namelyEnF κ,n(x, Y ) > EnFn(x, Y ) for all
x ∈ M eventually with probability 1. We may similarly obtain a lower bound. By lemma 10, the
difference between the expectation of the upper bound and the isEF κ,n(x, Y ) − EF 0,n(x, Y ) =
o(κhm+2

n ). Applying the squeeze theorem gives a.s. uniform convergence of the empirical first
momentM (n)

1 /h2n. The degree and second moment terms are handled similarly.
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Chapter 3

Combinatorial Structures: Distributions
and Representations

In this chapter we examine the problem of representating combinatorial structures and describ-
ing natural distributions on the representations. By combinatorial structures, we mean graphs,
permutations, partitions, or other discrete objects. The primary motivation for studying these com-
binatorial structures is in their relationship to stick-breaking processes and nonparametric Bayesian
hierarchical mixture models.

We give a finite combinatorial representation many nonparametric hierarchical Bayesian mod-
els using random graphs. In other words, we give afiniterandom cluster model which describes the
clustering behavior of a hierarchy ofinfinite stick-breaking processes on any finite subset of a set
of points. The implications of the representations are two-fold. In terms of new algorithms, we ob-
tain new Markov Chain Monte Carlo (MCMC) samplers for nonparametric hierarchical Bayesian
models. In particular, we obtain two samplers for the hierarchical Dirichlet process (HDP). In the
experimental results in chapter 4, both samplers empirically show substantially better performance
over a Chinese Restaurant Franchise sampler. Furthermore, wealso present an informal argument
that one of the new samplers should never be more than 3 times worse than the usual Chinese
restaurant franchise Gibbs sampler in the worst case. The representations also lead to better un-
derstanding of hierarchical models. In particular, graph representations of hierarchical Bayesian
models lend themselves to descriptions as coagulation and fragmentation processes. These hi-
erarchical models, including the HDP, nested Dirichlet Process (nDP), nested Chinese restaurant
process (nCRP), and tree-structured stick-breaking process, may be described by the sequence of
coagulation and fragmentation operations. Using coagulation-fragmentation duality, one also iden-
tifies a hierarchical model of particular interest where themarginal distribution at each level of the
hierarchy is from a Pitman-Yor process.

Beyond the applications to Bayesian models, this chapter describes the relationships among
random graphs, permutations, stick-breaking, and coalescent processes. For example, the “re-
versed” Chinese restaurant process provides an immediate connection between the Kingman coa-
lescent and the CRP. By exploiting the relationship between graphs and permutations, we devise
a merge operation which generalizes reservoir sampling algorithms for drawing a random sample
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without replacement from a single stream to an distributed algorithm.
This chapter address a fairly wide range of topics which fallinto the following categories: 1) the

representation of combinatorial structures, 2) natural distributions and data generating processes
on these structures and their relation to existing nonparametric models, 3) insights gained from
examining alternate representations 4) practical implications of alternate representations, such as
new MCMC methods.

3.1 Representations for mixture models

Partitions are a combinatorial structure of particular interest due to their important role in Bayesian
statistics. Any Bayesian mixture model has a latent structure which is described by a partition.
For hierarchical mixture models the latent structure may bedescribed by a nested partition. This
partition, along with the data, forms a sufficient statisticfor the complete data likelihood.

The most common way to represent the latent structure is to introduce a latent class membership
variablezi for each data pointxi, where the latent variable assigns a cluster ID to the corresponding
point. In this representation, changing a single latent variablezi only affects the class membership
of a single point.

Instead of latent class membership variables, one may use combinatorial structures to represent
partitions. Examples of combinatorial structures includegraphs, forests, permutations, and map-
pings from a finite set to itself. Such structures have been used as data augmentation schemes in
the past. The general scheme of using the connected components of a random graph to represent
a partition is referred to as a random cluster model. The Swendsen-Wang sampler for the Ising
model is an example of a random cluster model used to sample partitions. Recently, Blei and
Frazier (2010) use functional digraphs to give the distance-dependent Chinese Restaurant Process
(ddCRP) which gives both a new Gibbs sampler for Dirichlet process mixture models as well as a
non-exchangeable prior on partitions.

The representation of a partition in terms of a combinatorial structure defines an alternate set
of variables on which one can perform Gibbs sampling. We present two applications to samplers
for Hierarchical Dirichlet Process Mixture Models using the insights gained from examining the
combinatorial structures. The first extends the ddCRP samplerto Hierarchical Dirichlet Processes
(HDPs) and demonstrates how exploiting the combinatorial structure via dynamic programming
makes one iteration as fast as the usual Gibbs sampler. The second extends the split-merge sam-
pler for Dirichlet Processes to HDPs. Chapter 4 introduces further optimizations to split-merge
samplers using ideas that are generally applicable to Markov Chain Monte Carlo methods.

We also extend the existing connections between combinatorial structures and certain stick-
breaking processes to a wider range of processes including the HDP, the Nested Dirichlet Processes
(nDP) of Rodriguez et al. (2008), the Nested Chinese RestaurantProcesses (nCRPs) of Blei et al.
(2010), and Tree-structured Stick Breaking Process of Adamset al. (2010). The underlying com-
binatorial structure makes clear that all of these processes may be described as compositions of
coagulation and fragmentation processes. We briefly discuss how the processes of coagulation and
fragmentation on combinatorial structures lead to hierarchical models and sharing of parameters.
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We also point out that one coagulation-fragmentation process which is not currently used for data
modeling has particularly nice properties.

3.2 Notation

For the reader’s convenience, we list the common symbols we will use in this chapter and their
descriptions.

Symbol Description
X set{x1, ..., xn} of n data points
[n] the set{1, ..., n}
B a partition of[n] with blocksB1, ..., Bk

X (Bi) the set{xj : j ∈ Bi} of points inX corresponding toBi

f(xi|X (Bj))
the posterior predictive probability ofxi for a mixture component
givenX (Bj) belongs to that component

π a permutation
b a base for the strong generating set representation i.e. a permutation

F
a recursive forest on vertices[n] and ordering defined byb
or the equivalent SGS representation

Sn the permutation group on[n]

3.3 Arborescence Forests, Random Recursive Forests, and the
Chinese Restaurant Process

We introduce a series of bijections between combinatorial structures. In particular, we relate com-
binatorial structures with a graph representation. These bijections allow one to develop samplers
in a representation of one’s choice.

We start by relating a commonly used Bayesian nonparametric prior, the Chinese Restaurant
Process (CRP), to a random combinatorial structure, a random recursive forest, through its se-
quential construction. This relationship is well-known inthe probability community but has only
recently implicitly made its way into the machine learning community via the work of Blei and
Frazier (2010).

An arborescence forestF is a directed acyclic graph in which every node has outdegree1 except
for the roots of the forest which have outdegree 0. The weaklyconnected component containing
nodei consists of all nodesj such that, after replacing all directed edges with undirected edges,
there is an undirected path betweeni to j. An arborescence tree is defined in an analogous manner.

A treeT with totally ordered vertices labeledv1 < ... < vn is a recursive tree if all paths to the
rootv1 are decreasing. A labeled forestF is a recursive forest if each subtree is a recursive tree. A
permutationb defines a total ordering byb1 < b2 < ... < bn. We will refer to the permutationb as
a base and sayF respects the baseb if F is a recursive forest onb1 < ... < bn.
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To draw from a recursive tree uniformly at random with respect to a baseb, one may use the
following sequential procedure. Designateb1 as a root. For subsequent points where1 < i ≤ n,
connectbi uniformly at random to one of the previous vertices{b1, ..., bi−1}. It is easy to see that
any sequence of choices yields a unique recursive tree and any recursive tree may be constructed
with some sequence of choices. To draw a recursive forest uniformly at random, introduce a
dummy vertexb0 < b1. Draw a random recursive tree on then + 1 vertices. One is left with a
random recursive forest after removingb0. From this construction it is clear that for a fixed base,
there are(n− 1)! recursive trees andn! recursive forests. One may tilt the distribution of forest to
contain more or fewer trees by changing the probability of connecting to the dummy vertexb0.

The construction of a random recursive forest is intimatelyrelated to the sequential procedure
that describes the CRP. In the CRP, theith customer chooses to sit to the left of thejth customer,
j < i, with probability∝ 1 and chooses to sit at a new table with probability∝ θ. If one identifies
thejth customer with vertexbj andb0 with the action of sitting at a new table, then the relationship
is clear.

3.4 Permutations, Strong Generating Sets, and Bases

The CRP also has a well-known relationship to the cycle representation of permutations. Each
table in the CRP represents a cycle. Furthermore, each sequence of choices yields a unique seating
arrangement. Fori to sit down to the left ofj means that one insertsi immediately to the left of
j in the cycle representation. Since the edges of a recursive forest represent the “sit to the left”
choices in a CRP, it shares the same cycle representation induced by the CRP. We further examine
this relationship and show how the recursive forest representation naturally results from the action
of the permutation group and is the representation of a permutation in terms of a strong generating
set (SGS).

We show how considering both the left and right group actionsleads to a “reversed” Chinese
restaurant process. This “reversed” CRP clearly establishesthe connection between the CRP and
coalescent model in a simple, direct manner. We also examineconnections to random permutations
and sampling which are applied to a distributed random sampling problem in section 3.8

Consider the (right) action of the permutation groupSn on the ordered listb = (1, · · · , n).
LetGi ≤ Sn be the stabilizer of{1, ..., i}. In other words,Gi is the subgroup of permutations of
{i + 1, ..., n} which fix {1, ..., i}. Then,Gn ≤ Gn−1 ≤ · · ·G1 ≤ G0 = Sn is a stabilizer chain
with respect to the baseb whereGn is the trivial subgroup containing only the identity. This gives
a unique representation of the symmetric group via a set of generators defined by right transversals
Ti of Gi in Gi−1. In other words, for any permutationπ ∈ Sn and set of right transversals{Ti}, we
may uniquely write

π = gn · · · g1g0

wheregi ∈ Ti. The set∪iTi defines a strong generating set (SGS) with respect to the baseb.
One particular set of right transversals is of interest. Theright transversalsTi = {(a i) : a ≤ i}

define an SGS with respect tob = (1, · · · , n). In other words,Ti consists of the identity and the
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i − 1 transpositions ofi with a smaller number. For example the permutation(152)(34) may be
written as(12)(3)(34)(25). Clearly, the choice of baseb = (1, · · · , n) is made for convenience,
and we may consider arbitrary ordered lists of{1, · · · , n}. By identifying the transposition(a i)
with the directed edgei → a, the connection between permutations and random recursiveforests
is clear.

We note that this representation of a permutation with a SGS is exactly the logic behind the
Knuth (Fisher-Yates) shuffle which gives anO(n) algorithm for generating a permutation onn
elements. The base is the initial value of the list that is shuffled. A random permutationπ =
(a2b2)...(anbn) is generated in the SGS representation. The Knuth shuffle generates a permutation
by applying the transpositions using the left group action so that(anbn) is applied first.

We note that the right action, which applies(a2b2) first, may also be used to generate a random
permutation. It has the desirable property that it lets one draw a sequence of uniformly (but not
independently) distributed random permutations onS1, S2, .... However, the left action allows one
to obtain a random sample without replacement of sizek inO(k) time by applyingk transpositions
from the SGS representation.

The left action also provides a different perspective to theCRP by yielding a “reversed” Chi-
nese restaurant process. In this case, the sequence of transpositions in the SGS representation are
applied in reverse order, or equivalently in the recusive representation, the edges are examined in
reverse order with respect to the base. Supposen customers arrive in some order at a restaurant,
but no one is seated until the last customer arrives. The lastperson to arrive either chooses to sit at
a new table with probability proportional to some parameterθ or makes a decision to befriend and
sit with one of the previousn− 1 customers with probability proportional to1. When a customer
sits down, that person and all his friends sit at the same table. In this representation the connection
to the coalescent model is clear. If the customers arrive in random order, then the first choice will
either coalesce a random pair with probability proportional to n− 1 =

(

n
2

)

× (2/n) or sit at a new
table (mutate) with probability proportional toθ = (nθ/2)× (2/n).

Figure 3.4 shows the relationships among a permutation in its SGS representation, random
recursive forests, and the action of left and right multiplication by a permutation in its SGS repre-
sentation.

One can make a more explicit connection between the permutations and the recursive forest
using the cycle representation of a permutation. Iterate through nodes in the order specified by the
base. If a node is a root of the forest, then it denotes the start a new cycle. Otherwise, insert the
node to the right of the node it points to. This corresponds toleft multiplication by a transposition.
If one inserts to the left, then it corresponds to right multiplication.

A simple application of the SGS representation is an algorithm for generating permutations
with k cycles inSn. Choose a parameterθ to solvek =

∑n−1
i=0

θ
θ+i

. This gives aCRP (θ) distribu-
tion wherek is the number of expected tables and the equivalent cycle representation hask cycles.
Until k is the number of self-transpositions in the SGS representation, run a Gibbs step to update
one transposition in the SGS representation. Output the final permutation. The usual approach
involves calculating Sterling numbers of the first kind as part of its recursive procedure (Wilf and
Nijenhuis (1989)).
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1 5 3 4 2
1 5 4 3 2
4 5 1 3 2
4 5 1 3 2
4 5 1 3 2

1 2 3 4 5

1 * * * *
1 2 * * *
3 2 1 * *
3 2 4 1 *
3 5 4 1 2

(1 4 3) (2 5) (1 3 4) (2 5)

Figure 3.1: These figures illustrate the relationships withthe permutation(11)(22)(13)(34)(25)
which is in the SGS representation with respect to the base(1, 2, 3, 4, 5). The left and right figures
represent the action of left and right multiplication by thepermutation with the cycle representation
of the permutation given at the bottom. Left multiplicationcorresponds to the Knuth shuffle. The
two actions have different properties. Left multiplication maintains the invariant that after apply-
ing thekth transposition, the lastk elements are a uniform random sample without replacement.
Right multiplication maintains the invariant that the firstk elements are a uniformly drawn random
permutation of the firstk elements. In both of the left figures, the final state containstwo cycles
when regarded as a permutation in one-line notation,(25) and a cycle containing1, 3, 4. The figure
on the right shows the random recursive forest representation. The connected components of the
forest correspond to cycles of the related permutations.

Change of base and invariance of the connected components

As noted above, given a fixed baseb, a permutationπ has an SGS representationF and vice versa.
The forestF may be regarded as a permutation with respect to the base(1, ..., n). and the baseb
itself may be regarded as permutation. When we do so, the relationship is codified by the group
action of conjugationb ◦ F = bFb−1.

This relationship gives a method for changing the base. To change from baseb to b′, one solves
the equationb ◦ F = b′ ◦ F ′ to obtainF ′ = b′−1bFb−1b′ = (b′−1b) ◦ F . While F ′ is regarded
abstractly as a permutation, one simply needs to write down its SGS representation with respect to
the base(1, ..., n) to obtain a forest.

The change of base has one particularly important property with respect to the forest represen-
tation, namely that the vertex sets of the connected components of the forest do not change. This is
obvious from the cycle representation since the cycles represent the connected components of the
forest. Sinceb′ ◦F ′ = b◦F , the cycles are identical, and the connected components must the same
vertices. Thus, samplers which operate on the forest representation with respect to one base can
change the base and obtain a new forest representation whichinduces the same partition structure
as the old forest.

We note that this is not the only choice which preserves the partition structure under a change
of base.
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Polya Urn Processes

When there is a Polya Urn process that generates a partition, the SGS or recursive forest represen-
tation is often a particularly useful representation of theobject. Imagine that the balls in the Polya
urn are numbered in addition to being colored. The base describes the order in which the balls or
points appear while the color denotes the cluster that the point belongs to. The edges give which
numbered ball was drawn at each time step. Thus, the recursive forest describes a process on the
numbered balls. One may color the balls the urn is initialized with, and the edges will determine
the colors of the rest of the balls.

These Polya urn processes along with the notion of exchangeability lead to Gibbs samplers
for many distributions on partitions of interest. To resample the color of a random ball, one first
removes that ball. By exchangeability, this ball may be treated as if it was the last ball. One then
chooses from the remaining balls in the urn and replaces the removed ball with a ball of the same
color as the newly selected ball.

The forest representation leads to a generalization of thisprocess. To obtain the Gibbs step
described by the Polya Urn, one chooses a new base where the selected ball corresponds to the
last element in the base. One then randomly selects a new value for the last element in the SGS
representation. This step is equivalent to updating the color of the selected ball.

Beta-Binomial Distribution and Subtrees

We have described sequential processes that generate the combinatorial structure of interest. We
now describe a generalization of the stick-breaking process that generates the combinatorial struc-
ture. When viewed as a hierarchical processes, it is related to the tree structured stick breaking
process of Adams et al. (2010). Using the process, one can obtain coarse to fine grained infor-
mation about the combinatorial structure without samplingthe entire structure. For example, in
the case of mixture models, one is only interested in the cluster sizes, or equivalently, the sizes
of the maximal subtrees in an arborescence forest and not thetrees themselves. In that case, the
stick-breaking process allows one to draw a sequence of Beta-Binomial random variables to obtain
the tree sizes for the processes defining a CRP.

The hierarchical processes recursively iterates stick-breaking processes to find the sizes of all
subtrees, not just the maximally connected ones. The process is interesting not only because of the
hierarchical nature but also that it yields interesting marginal distributions for the sizes of subtrees
given the location of the subtree’s root within the base.

We proceed by describing a hierarchical method for generating arborescence trees, and the
associated hierarchical stick-breaking process is a natural consequence. Suppose one is given a
set ofn0 points and wishes to draw arborescence forests corresponding to aCRP (θ) distribution.
First, apply the standard stick-breaking process to find thesizes of the maximal subtrees of the
arborescence forest. In other words, start with two points,a dummy pointb0 and the first pointb1
in the base and removeb1 from the set of unassigned points. The first step of the process samples
the number of points that will be attached to the first pointb1. Draws1 ∼ Beta−Binomial(n0−
1, 1, θ) and randomly samples1 points from the set of unassigned points. All these points belong
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to the arborescence tree rooted atb1. The remaining unassigned points belong to the dummy node
b0. Update the number of remaining pointsn1 = n0− s1− 1. Repeat the process, starting with the
first point in the base that is in the unassigned set, and continue until there are no more unassigned
points.

Conditional on the points that belong to a maximal subtree, itis trivial to verify that the joint
probability factorizes so that the structure of the subtrees are independent of each other and that
each subtree is simply a random arborescence tree, so one need not worry about having multiple
components. To draw a random arborescence tree onns points, note that the second point in the
tree must be connected to the first. Thus we can break the arborescence tree into points attached
to the second point and points attached to the first point but not the second. This is trivial to do by
drawingBeta−Binomial(ns − 2, 1, 1) = Uniform(ns − 2) to determine the size of the subtree
rooted at the second point.

While not obvious from the hierarchical process, the sequential construction of arborescence
forests gives the marginal distribution for the size of the subtree rooted at theith regardless of
whether or not it the root of a maximally connected component. It is easy to see from the sequential
procedure that the size of the subtree rooted ati is independent of all points beforei and that the
size isBeta− Bernoulli(n0 − i, 1, i+ θ − 1) distributed.

Since all the necessary draws areBeta − Binomial, it follows from Kolmogorov’s extension
theorem that there exists an underlying process givingBeta distributed weights at every node.
Thus, if one wishes to draw the number of points that are in a given setS that also belong to
the subtree rooted ati, then one simply needs to sample from aBeta − Binomial(|S ∩ {i +
1, ..., n0}|, 1, θ + i − 1). The parameters of theBeta distribution do not change, only the number
of trials in the binomial part changes.

We also note that this observation yields a Markov chain for sampling from a CRP law. Choose
an random indexi from any distribution, and letB be the block associated withi. Divide the points
in B into those occurring beforei or afteri by sampling from aHypergeometric(n0 − 1, |B| −
1, i − 1) distribution. Similarly, find the number of points occurring beforei for all other blocks
as well. Find the size of the subtree rooted ati, and propose to create a new block with probability
proportional toθ with i and its subtree or to attach it to blockBj with probability proportional to
sj wheresj is the number of points inBj occurring beforei.

The random split version of this sampler is inefficient for mixture models since a random split
takes time proportional to the size of the subtree that is split off is unlikely to be accepted, and a
sequential allocation approach takes time proportional tothe size of the entire block and will split
off small blocks. It is of mathematical interest since it defines a new finite state space Markov chain
with a CRP law as its stationary distribution and, as far as the authors know, there is no existing
counterpart in the continuous state space with a Poisson-Dirichlet process law. By considering the
process on an infinite base, one obtains the continuous statespace equivalent.
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3.5 Other combinatorial structures

Thus far, we have focused on permutations, representationsof permutations, and their related
combinatorial structures: partitions and recursive forests. In particular, we have been interested
in how the weakly connected components of a recursive forestdefines a partition. Clearly, the
(weakly) connected components of any (di)graph defines a partition. We need not restrict ourselves
to recursive forests. However, some graphs are of greater interest than others due to computational
reasons or due to links to processes on infinite, continuous spaces.

We give a few examples of other interesting combinatorial structures.

Swendson-Wang, the Ising model, and the random cluster model

The random cluster model draws a random graph by randomly sampling edges from a graph. The
connected components of the graph form clusters. The Swendson-Wang algorithm is a sampler for
the Ising model. It draws from a random cluster model given the current configuration of spins.
One then randomly labels the clusters of the induced partition as−1,+1 with equal probability.
Figure 3.2 illustrates the Swendson-Wang algorithm.

Figure 3.2: Ising model and Swendson-Wang: One alternates between sampling bonds and assign-
ing spins to the connected components formed by the bonds.

Functional digraphs and the ddCRP

The Distance Dependent CRP introduced by Blei and Frazier (2010) defines a distribution on
functional digraphs, i.e. digraphs where every node has outdegree 1 including self-loops. They are
“functional” digraphs since the edges define a mapping from[n]→ [n], and likewise any function
f : [n]→ [n] defines a functional graph. Random recursive forests are a specific type of functional
graph in which the mappingf must obey the constraintf(a) = b =⇒ a > b. As usual, the
weakly connected components of the graph define a partition.
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Undirected graphs, subforests, and matrices

Random recursive forests may be regarded as a random sub-forest of a directed acyclic graph. One
may also consider random subforests of undirected graphs. Undirected graphs are of interest due to
their connection to Laplacian based semi-supervised learning methods, in particular, the harmonic
function solution of Zhu (2005). Given0 − 1 labels, the value of the harmonic function solution
at nodev is the probability thatv is in the same connected component as a1 label for a random
arborescence forest with roots at the labelled points and probability proportional to the product of
its edge weights. This fact may be derived from Cramer’s rule and an extension to Kirchhoff matrix
tree theorem given by Chaiken (1982). Instead of mixture modeling approaches which require
sampling or non-convex optimization, the harmonic function solution or the Tikhonov regularized
harmonic function solution, has a simple solution as the solution to a linear system. Figure 3.3
gives an illustration of a partition induced by an arborescence forest.

Figure 3.3: Laplacian and arborescence forests: Each arborescence forest on the underlying graph
induces a partition. This figure shows one example of an arborescence forest partitioning the
vertices into two components.

3.6 Hierarchical Models

Thus far, the discussion has centered around distributionsover simple partitions. Beyond simple
partitions, nested partitions are of interest as they correspond to hierarchical models. A nested
partition is a sequence of partitionsΠ1,Π2, ... such thatΠi is a refinement ofΠi−1. The natural way
to generalize recursive forests in order to represent nested partitions is to add colors to the edges
where the color indicates at which level of the nested partition the two adjacent points separate into
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different blocks. Each partition in the nested partition isthen represented by the tree induced by
the appropriate set of colors.

We start by describing the Hierarchical Dirichlet Process (HDP) and give a corresponding
combinatorial representation. This representation leadsto a generalization to the ddCRP sampler
of Blei and Frazier (2010) to HDPs. We use the notion of a base and exploit the forest structure to
introduce further improvements.

More generally, we describe how coagulations and fragmentations lead to natural hierarchical
models. We use this to describe several nonparametric hierarchical Bayesian models: the HDP,
the Nested Dirichlet Processes (nDP) of Rodriguez et al. (2008), the Nested Chinese Restaurant
Processes (nCRPs) of Blei et al. (2010), and Tree-structured Stick Breaking Process of Adams
et al. (2010).

Hierarchical Dirichlet Process

The HDP is a hierarchical model in which the data points are already grouped into a set of pre-
defined groupsG. The simple two-level HDP has the following generative process for latent class
membership variables.

β ∼ GEM(θ0) (3.1)

wg ∼ DP (θβ) for g ∈ G (3.2)

zig ∼ wg for i ∈ Ig (3.3)

whereGEM refers to the Griffith-Engen-McCloskey law.
We will regard theGEM process as defining a random measure onN , namely the measure

∑

i∈N βiδi. The per group stick weightswg define random measures onN as well. Pointsxig and
xi′g′ belonging to groupsg andg′ respectively belong to the same cluster if and only ifzig = zi′g′ .

The corresponding combinatorial process on partitions ofn points is the Chinese Restaurant
Franchise (CRF) described by Teh et al. (2006). In the restaurant analogy for the CRF, there are|G|
franchised restaurants withng customers in thegth restaurant. The franchise has an infinite number
of dishes to choose from, and each restaurant has an infinite number of tables, but only one dish
is served at each table. Whenever a customer orders a dish, he/she is able to see the popularity
of the dish across all restaurants in the franchise. The customers arrive in sequence where theith

customer to arrive at restaurantg chooses to sit at an occupied tablet with probability proportional
to the number of customers already at that table or chooses tosit at a new table with probability
proportional to some parameterθ. If the customer chooses to sit a new table, he/she orders a dishφt

with probability proportional to the number of tables whichserve that dish across all restaurants,
or he/she orders a dish which has not been ordered yet with probability proportional to some
parameterθ0.

Just like the HDP is a composition of Dirichlet processes, the Chinese Restaurant Franchise is
the composition of multiple Chinese Restaurant Processes. Wemay use this observation to obtain
a natural forest representation. Within each group, draw a forest on the customers in each group
corresponding to a CRP. Putting all the individual forests together gives a single forest with black
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edges. The roots of this forest correspond to tables in the CRF analogy. Draw a red colored forest
on the roots of this black forest. The induced partition on the roots of the black forest correspond
to the partitioning of tables by the dish served on each table.

We note that while we describe everything for the HDP using the one-parameterGEM distri-
bution, it can easily be generalized to the two-parameter version as well. Section 3.7 gives more
details.

Sequential procedure for drawing Forests

The CRF gives a natural sequential procedure for drawing forests. Given a new pointxjg in group
g, connect it to a previous pointxig in the same groupg wherei < j and color it black with
probability∝ 1. Otherwise denote it as a root of the black forest with probability ∝ θ. If the point
is black root, then connect it with a red edge to thekth previous black root with probability∝ 1 or
designate it a root of the red forest with probability∝ θ0. The connected components of the forest
including both the red and black edges defines the same distribution over clusters as Equation 3.3.
Figure 3.4 illustrates the forest representation.

This gives the p.m.f. for the augmented forest representation containing the forestF and a
coloring of the edges as red or black.

p(F ) =
θk0θ

rΓ(θ0)

Γ(r + θ0)

∏

g∈G

Γ(θ)

Γ(θ + ng)

∝
θk0θ

rΓ(θ0)

Γ(r + θ0)

wherek is the number of roots of the red forest,r is the number of roots of the black forest, and
ng is the number of points in groupg.

We may use this representation to propose both a new Gibbs sampler for the HDP in the colored
recursive forest representation as well as proposing a split-merge sampler for the HDP.

Backward-Forward Forest Gibbs sampler

In the usual Gibbs sampler for a HDP mixture model based on theCRF, each Gibbs step updates
the class membership of one point. In the forest representation, a Gibbs step updates the class
membership of a point and all points in its subtree. If one hadto touch all the points in the subtree
in each iteration, this would be a potentially expensive operation. However, one may exploit the
underlying forest structure and apply dynamic programmingto obtain a sampler that can move
multiple points yet each iteration has a cost similar to the usual Gibbs sampler.

For each point we store the sufficient statistic for that point and all the points in its subtree. Thus
when the outgoing edge of a point is updated, rather than updating the labels of all of the points in
its subtree, one updates the sufficient statistic along withsome other bookkeeping variables. The
variables needed are given in table 3.6. We note, however, that the descriptions of the varibles are
not strict invariants that are maintained at all times.
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2 3 4 51 6 7 8

group 1 group 2 group 3

Figure 3.4: Forest representation of a Hierarchical Dirichlet Process (HDP). This figure shows the
HDP forest representation for a clustering of eight data points into two blocks where the points
are pre-classified into three groups. The black edges form a recursive forest for each of the groups
while the red edges form a recursive forest on the roots of theforest induced by the black edges.
The red circles are the roots of the forest induced by the red and black edges while the blue-green
colored circles are roots of the forest induced by black edges.

variable description
b permutation used as the base of the recursive forest
F array containing the random recursive forest

Fdegree array containing the number of red incoming and outgoing edges for each point
Fstats array containing the sufficient statistics of the subtrees
z array containing the assignment of points to clusters
i location of the point that the Gibbs sampler is currently updating
Lcg list of points in clusterc and groupg that come before the current pointi
Lroot
c list of points in clusterc that come beforei and are roots ofF restricted to black edges
ncg number of points|Lcg|
nroot
c number of points|Lroot

c |
R the number of roots of the black forest

Like the usual Chinese Restaurant Franchise sampler, this requires a nontrivial number of book-
keeping variables. This setup, however, does not require keeping track of the complicated assign-
ment of points to individual tables and groupings of tables at each level of the hierarchy. The CRF
requires one to keep track of a nested partition with unknownstructure formed by the assignments
to tables at various levels. In the forest representation, the structure of the bookkeeping variables
is fixed by the structure induced by the groups.

The sampler and variables presented here are for the simple two-level HDP, but additional
levels will only require changes toFdegree, Lcg, andR. Fdegree will be a ℓ × n matrix containing
the degrees for each of theℓ colors corresponding to levels in the hierarchy. Likewise,R will be
an array containing the number of roots for each color. In thecase where there are more than two
levels, the groups themselves form a nested partition. Thuswhile the description ofLcg is still the
same, updating the cluster assignment of one point will require updatingLcg for multiple groups.
There is an alternative representation forLcg which only stores the list of points for groups that are
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at the leaves of the nested partition and counts for the internal nodes, but one still needs to update
counts for every level of the hierarchy when the cluster membership of a point changes.

The sampler also does not distinguish between updating table versus point assignments. One
always operates on single points and pulls all of its children along in an update. The information
encoded byFdegree is whether or not a Gibbs update can give theith point an outgoing black edge.
If there are any incoming red edges then the outgoing edge must also be red.

The sampler proceeds in two stages, a backward sweep followed by a forward one. The back-
ward sweep does not require an explicit forest; it instead builds one up. The forward pass will start
off with only the forest structure and reconstruct the explicit assignment of points to clusters. For
convenience in exposition, we will take the base to always be(1, ..., n).

Algorithm 1 BackwardSweep

Require: Parametersθ0, θ for the HDP and a priorπ on the mixture component parameters. The
variables in table 3.6 exceptF, Fstats, Fdegree. Instead of containing the actual red degree of
each point,Fdegree only contains the outgoing red degree. Instead ofFstats, one simply needs
the sufficient statisticSc for each clusterc.

Ensure: F, Fstats, Fdegree match the descriptions in table 3.6.
1: Initialize Fstats to contain the sufficient statistic for each singleton.
2: for i = n→ 1 do
3: Let g be the groupxi belongs to andc = zi be the current cluster allocation forxi
4: RemoveFstats(i) from Sc as well asxi fromLcg

5: If Fdegree(i) > 0 decrementFdegree(i) andR by one and removexi fromLroot
c .

6: Calculate the Gibbs probabilities of attaching to clusterc′ via a black edge via

p(c′) ∝ nc′gf(xi|Sc′ , π)1(Fdegree(i) = 0)

7: Calculate the Gibbs probabilities of attaching to clusterc′ via a red edge via

p(c′) ∝
θ

R + θ0
nroot
c′ f(xi|Sc′ , π)

8: Calculate the Gibbs probabilities of creating a new clusterc′ and adding a red self-loop

p(c′) ∝
θθ0

R + θ0
nroot
c′ f(xi|Sc′ , π)

9: Choose a clustercnew and colorℓ according to the Gibbs probabilities
10: Choose a destination pointj for the outgoing edge from the setLcnewg or Lroot

cnew
depending

on the color.
11: UpdateFstats(j) with Fstats(i), F (i) = j, Fdegree+ = 1(ℓ = red),R+ = 1(ℓ = red)
12: end for

We note that the calculation of Gibbs probabilities and selection of an outgoing edge are iden-
tical in the two sweeps, but the bookkeeping maintains different invariants. The backward pass
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Algorithm 2 ForwardSweep

Require: Parametersθ0, θ for the HDP and a priorπ on the mixture component parameters.
F, Fstats, Fdegree match the descriptions in table 3.6.

Ensure: The variables in table 3.6 exceptFstats match the descriptions given.
1: Start a new clusterc = 1 with sufficient statisticS1 = Fstats(1).
2: Setz1 = 1 and initializeL1g = Lroot

1 = {x1} whereg is the groupx1 belongs to.
3: for i = 2→ n do
4: Let g be the groupxi belongs to
5: If F (i) is null andi does not start a new cluster, letc = zF (i), the cluster thati’s parent

belongs to, and removeFstats(i) from Sc.
6: If Fdegree(i) > 0 decrementFdegree(i) andR by one.
7: Calculate the Gibbs probabilities of attaching to clusterc′ via a black edge via

p(c′) ∝ nc′gf(xi|Sc′ , π)1(Fdegree(i) = 0)

8: Calculate the Gibbs probabilities of attaching to clusterc′ via a red edge via

p(c′) ∝
θ

R + θ0
nroot
c′ f(xi|Sc′ , π)

9: Calculate the Gibbs probabilities of creating a new clusterc′ and adding a red self-loop

p(c′) ∝
θθ0

R + θ0
nroot
c′ f(xi|Sc′ , π)

10: Choose a clustercnew and colorℓ according to the Gibbs probabilities
11: Choose a destination pointj for the outgoing edge from the setLcnewg or Lroot

cnew
depending

on the color.
12: Add xi toLcnewg and if ell is red then also add it toLcnew .
13: UpdateF (i) = j, Fdegree+ = 1(ℓ = red)
14: Updatezi = cnew and updateScnew with Fstats(i).
15: end for

ensures that for all points afteri which the sweep has already covered, all the variables concerning
the forest are correct, and these will not be further updatedin the backward pass. The forward pass
ensures all the variables exceptFstats are valid for the points before the current stepi which have
already been covered by the sweep.

Split-merge sampler

We now present a sequentially allocated split-merge algorithm for the HDP. Since this is a Metropolis-
Hastings procedure, the only detail that needs to be filled inis the proposal distribution. We do
this by simply adapting theForwardSweep procedure. In the version of the split-merge sampler
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we present, the main changes to the procedure are that the number of clusters is fixed at 1 or 2
depending on whether a merge or split is proposed, and we start with an “empty” allocation for
each proposal similar to the sampler given by Dahl (2003).

Algorithm 3 ProposeSplit

Require: A connected componentB of the forest with both red and black edges.
1: Permute the order of points inB uniformly at random. WLOG label them as pointsx1, ..., x|B|.
2: Denotex1, x2 as the first two points of new blocksB0, B1 respectively, and update the relevant

bookkeeping variables.
3: Initialize Fstats to sufficient statistics for singletons andFdegree(j) = 0 for all j > 2.
4: Perform a forward Gibbs sweep starting at the third point with the following differences. One

cannot propose a new cluster, and one does not need to removeFstats(i) from the parent
cluster’s sufficient statistic. The sequential allocationprobabilities are stored.

A ProposeMerge step is identical except one starts with two componentsB0, B1 and lets
B = B0∪B1 be their union, and instead of starting two clusters withx0 andx1, one only starts one
clusterx0. If a proposal is accepted, then the chain simply overwritesthe state of the components
of the forest that are affected by the proposal.

We note that Wang and Blei (2012) have recently proposed a split merge sampler for the HDP.
However, our split-merge sampler is substantially different from theirs. In the context of the CRF,
their formulation applies split-merge moves to the tables but their split-merge steps cannot separate
customers sitting at a common table. Furthermore, since fortables that share the same dish or
mixture component parameter, the assignment of customers to tables is random, the split-merge
moves pick from a restricted set of random splits. In our formulation, a split-merge step both
reassigns customers to tables as well as tables to dishes. Webelieve this addresses the fundamental
problem with split-merge samplers for HDPs.

Choosing to split or merge

We have now specified the proposal distribution given a choice to split or merge has already been
made. We briefly discuss the possible choices for choosing whether to split or merge and suggest
a possible improvement to the existing choice.

Existing split-merge samplers for the CRP make a choice to split or merge by choosing a ran-
dom transposition uniformly at random and checking whetherthe two elements in the transposition
are in the same or different blocks. This proposal is based onthe transposition random walk which
yields aCRP (1, 0) distribution and ignores the role of the parameterθ. One may introduce a
simple change to the proposal to include the effect ofθ. First, take a size-biased pickB0 for a
block. Propose to split with probability∝ θ|B0|, or propose to merge with blockBi with proba-
bility ∝ |Bi|. This change is especially relevant for HDP split-merge samplers since probability
of creating a new root is∝ θθ0

R+θ0
. As more roots are created, the probability of creating a new

cluster becomes smaller, and too many splits may be proposedusing the naive method. In our
experiments, we used the simple rule based on the transposition random walk. We also note that
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an alternate move to splitting and merging is to exchange theelements of two blocks. This has
been proposed before (Thibaux (2008)) though not implemented.

Evaluation

We implemented a Gibbs sampler for the usual CRF representation, a Gibbs sampler in the forest
representation, and a split-merge sampler with various optimizations introduced in chapter 4. The
implementations were all done in python. We take the same comparison metric as Dahl (2003) to
compare the samplers, namely effective sample size on the clustering entropy statistic. To compare
the computation cost of the different samplers, we use the number of likelihood calculations per-
formed. This is reasonable since the time spent in each sampler was dominated by the time spent
on likelihood calculations. Since we introduce a few further optimizations for the split-merge sam-
plers in chapter 4, we briefly summarize the results here and leave the full comparison for the next
chapter.

We find that the Gibbs sampler on the forest representation generally performs substantially
better than the usual Gibbs sampler, both in terms of effective sample size per unit of computation
as well as finding local modes faster in the burn in phase. However, it did not dominate the usual
Gibbs sampler for every data set. The split-merge sampler with the additional optimization of early
rejection for merge moves typically improved upon the Gibbssampler in the forest representation.
Without early rejection, datasets with well defined clusters did not see a benefit or performed worse
with split-merge moves.

Discussion on different HDP samplers

We have presented two new algorithms for sampling from HDP mixture models. The first is a
Gibbs sampler based on the random recursive forest representation, and is a cousin to the ddCRP
sampler of Blei and Frazier (2010) for CRP mixture models. A key feature of the algorithm is
that it exploits the tree representation to make each Gibbs iteration take constant time by using
dynamic programming. The second algorithm is an extension to the split-merge algorithms for
CRP mixture models described by Jain and Neal (2004) and Dahl (2003). It goes beyond the naive
approach of Wang and Blei (2012) which applies the usual CRP split-merge to one level of the
hierarchy conditional on the rest.

Both algorithms propose moves that can split off more than onepoint. The split-merge sampler
uses a sequential allocation rule to propose a good split while the forest-based Gibbs sampler
proposes random splits of various sizes. As Jain and Neal (2004) point out, splitting uniformly at
random yields a poor proposal for a split-merge sampler since the splits are unlikely to be accepted
but still take time proportional to the merged blocks. Although split proposals in the forest-based
Gibbs sampler do not make use of the value of the data points, the randomness allows the splits
to be performed cheaply at constant cost if the computational cost of evaluating the likelihood is
constant given a sufficient statistic. Furthermore, the forest-based Gibbs sampler does not perform
a uniform random split and instead proposes smaller splits.
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We give a heuristic justification that the size of the splits proposed by the forest-based Gibbs
sampler and ddCRP are of an appropriate size for CRP mixture models. There are two problems
associated with the split size. The first is if the split size is large enough to overcome the effect
of the prior and adding additional parameters to the model. The second is that the proposed split
actually reflects the true desired split. The usual CRP Gibbs sampler only moves one point at
a time and suffers from the first problem. The split-merge sampler using uniform random splits
proposes large, expensive random splits in which the resulting blocks from the split are too similar
to each other. To address the first problem, we note that the choice of whether or not to split a
block is akin to the problem of model selection. Ifk is the number of parameters to be added and
n is the size of the block, then the Bayesian Information Criterion (BIC) adds a model selection
penalty ofk

2
log n to the maximized log-likelihood. It is a Laplace approximation to the marginal

likelihood and will pick the true model asn → ∞ if one of the models is true. Given a fixed
base, the size of the proposed split for theith element of the base is distributed1 + Beta −
Binomial(n − i, 1, i − 1). Thus, the expected split sizeZ of a randomly chosen element in the
block isEZ = 1

n

∑n
i=1

(

1 + n−i
i

)

≈ log n. Thus the split sizes are appropriately sized to overcome
the penalty of adding additional parameters.

If one large block was generated from a two component mixturewith mixing weightsp, (1−p),
then if the split size is large, then asymptotics dictate that the two blocks from the split will be
indistinguishable since they are, in fact, drawn from the same distribution. In the block that is split
off is of size log n, then the probability that thoselog n points all belong to the component with
weightp is approximatelyplogn = 1

pn
. Since one sweep of the forest-based Gibbs sampler proposes

n random splits, if all splits were of sizelog n, then the expected number of splits is approximately
a constant1/p. For a split-merge sampler with a random split proposal, onesweep consists of only
one split proposal, so even if it proposed splits of sizelog n, it would requireOp(n) sweeps before
all the points being split off come from the same cluster. Thus, both the relatively small size of the
splits plus the efficiencies gained from dynamic programming give a heuristic justification that the
forest-based Gibbs sampler chooses splits that are not too large.

We can also heuristically show that the forest-based Gibbs sampler will never do much worse
than the CRF Gibbs sampler. This is since, for the regular CRP case, half of the moves proposed
by the forest-based Gibbs sampler only move a singleton. Fora random recursive tree of sizen,
the size of the subtree rooted at theith node is distributed1 + Beta− Binomial(n− i, 1, i− 1).
Thus, the probability of the subtree being a singleton isi

n
. Summing overi from 2 to n, one finds

that the expected number of singleton subtrees is(n + 1)/2. Since subtrees can only attach to
nodes occurring earlier in the base, each proposed singleton move in the forest Gibbs sampler is
not directly comparable to a move in the usual CRP Gibbs sampler. However, since the forest-
based Gibbs sampler chooses a base uniformly at random, the proposed singleton moves for nodes
occurring in the second half of the base are roughly comparable to CRP Gibbs moves. The number
of singleton move proposals in the second half of the base is≈ 3n/8 > n/3. Thus, one may
expect that a forest-based Gibbs sampler will never do much more than3 times worse than a Gibbs
sampler. This number is also consistent with our experimental results.
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Forest representations, sequential constructions, and MCMC samplers

In this section, we have exploited two properties of HDPs to create new samplers. First, we ex-
ploited the forest representation of an HDP to obtain a Gibbssampler. Second, we exploited a
sequential procedure for drawing a recursive forest to obtain a sequentially allocated split-merge
sampler. Furthermore, with the forest Gibbs sampler, one may construct an alternative split-merge
sampler using the restricted Gibbs sampling idea in Jain andNeal (2004) and Jain and Neal (2007).
These ideas are not specific to the HDP. They may be applied to any distribution over forests or
recursive forests with sequential constructions.

We will present forest representations and sequential constructions for the priors of several
nonparametric Bayesian models. Using the same ideas presented in this section, one can obtain
forest Gibbs samplers and split-merge samplers for these other models as well.

3.7 Other models: Fragmentations and coagulations

With the forest representation for a HDP, we have shown how a alternate combinatorial represen-
tation leads to new samplers. The goal of this section is to demonstrate how similar ideas may be
applied to other processes which are described as stick-breaking processes, but have an underlying
combinatorial representation. In general, most processesencoding a hierarchical model can be
described as some composition of fragmentation and coagulation kernels.

Coalescent and coagulations

The main property of a coagulation is obvious from its name, given a coagulation process with
partitionΠt at timet, thenΠt+∆ is a coarsening ofΠt for ∆ > 0, or equivalently,Πt is a refinement
of Πt+∆. The time-reversal of a coagulation yields a fragmentation, a process on partitions such
thatΠt+∆ is a refinement ofΠt for ∆ > 0.

The canonical example of a coagulation is Kingman’s coalescent (Kingman (1982)) which is
commonly used in population genetics for describing the ancestry of a set of alleles. At each step
of the jump chain of Kingman’s coalescent, two blocks of the partition are randomly chosen and
merged. The connections between Kingman’s coalescent and the Chinese restaurant process are
well known. See, for example, Pitman and Picard (2006). If one builds a coalescent tree and
marks the branches using aPoisson(θ) process, then the partitioning of the leaves of the tree into
distinct alleles isCRP (θ) distributed. Thus, one can obtain a sequence of partitions{Πθ} indexed
by the mutation rateθ which is a realization of a fragmentation process. The limits Π0 andΠ∞

give a partitioning into all singletons or a single large block. We may view the CRP as either a
fragmentation of a partition with all points in a single block, or as a coagulation ofn points. Teh
et al. (2008) use this construction of a nested partition as the basis for a hierarchical clustering
method.
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HDP as a fragmentation-coagulation

We now cast the HDP as a fragmentation followed by a coagulation. With the HDP, we start
with an a priori partitioningΠ of points into groups. The first step of the HDP independently
fragments each blockBi ∈ Π using a CRP to obtain a refinement ofΠ . The combinatorial
representation after this stage is the black forest with no red edges or in the case of the CRF, the
partitioning of customers to tables. The second step of the HDP is the key idea which allows
different groups to share parameters and borrow strength from each other in mixture modeling.
This step is a coagulation in which the blocks of the refinement are coagulated with a CRP. In the
forest representation, this corresponds to the red edges connecting components of the black forest.
In the CRF representation, this correspondence is less obvious.

Nested Dirichlet Process

The nested Dirichlet Process (nDP) is another nonparametric Bayesian model which allows dif-
ferent groups to share parameters. In the original formulation given by Rodriguez et al. (2008),
a family F = {F1, ..., Fg} of distributions gives the law of a nested Dirichlet Processmixture
nDP (θ0, θ1, H) if

G∗
k ∼ DP (θ0H)

π∗ ∼ GEM(θ1)

Gj ∼
∑

k

π∗
kδG∗

k

Fj(·|φ) =

∫

f(·|φ, η)dGj(η).

wheref is a density function parameterized byφ, η.
We first reformulate the model specification in a way that allows easy identification of a prior

over nested partitions.

q(k) ∼ GEM(θ0)

π∗ ∼ GEM(θ1)

Aj ∼ π∗
k

Bi ∼ q(AJ(i))

ηab ∼ H

Gj =
∑

b

q
(Aj)
b δηAjb

Fj(·|φ) =

∫

f(·|φ, η)dGj(η)
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where as before, we considerGEM as inducing a random measure onN . The latent variable
Aj for group j chooses the mixture component thatGj belongs to. In this case each mixture
component is a random measure itself. The latent variableBi picks out a component of the random
measureGj wherej = J(i) is the group that pointi belongs to.

The result of this process yields a coagulation-fragmentation process. One may partition the
points by three different cluster membership variables. The first partitionΠ1 is based onJ(i), the
fixed assignment of points to groups. The second partitionΠ2 is based onAJ(i) which is a coagu-
lation of the partition formed by groups. The third partition Π3 is based on the pair(AJ(i), Bi). It
is a fragmentation of second partition since theBi refine the partition determined by theAJ(i).

This proves that the nDP may be constructed via a coagulation-fragmentation process. One
forest representation for the nDP is obvious given this description. One first builds a random
recursive forest on the groups. This gives the partitionΠ1. GivenΠ1, build a random recursive
forest on the points within each block of the partition. Figure 3.5 illustrates the representation.

1

2

3

4

5

6

7

8

coagulated group 1 coagulated group 2

9

10

11

12

Figure 3.5: Forest representation of a nested Dirichlet Process: Groups are first coagulated via
a CRP. The points within each coagulated group are then fragmented by CRPs. The resulting
partition is{1, 2, 7}, {3, 4, 6}, {5, 8}, {9}, {10, 11, 12}. No edges may be formed between points
in separate coagulated groups.

We may also provide a sequential procedure for drawing forests for the nDP. Order the points
according to some base. For theith point, if it is the first point from its groupJ(i), then connect
that group to one of the previously encountered groups with probability ∝ 1 or mark it a root
with probability∝ θ1. The assignmentAJ(i) then is determined. Connect pointi to one of the
previously encountered points which are also assigned toAJ(i) with probability∝ 1 or labeli as a
root with probability∝ θ0. We note, however, that the sequential procedure for the nDPmay not
yield a good sequentially allocated split-merge sampler. The reason is that the outgoing edge for
a given group constrains the edges of all the points in that group. Thus, choosing another group
to coagulate with before inspecting the values of all the points in the given group may lead to bad
proposals.
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Nested Chinese Restaurant Process

The nested Chinese Restaurant Process (nCRP) introduced by Blei et al. (2010) gives a potentially
infinite hierarchical model for topics. The nCRP induces a nested partition. We may describe the
process as the following pure fragmentation process. Startwith a partitionΠ0 with all the docu-
ments in a single cluster. From partitionΠi−1, generate a refinement by independently fragmenting
each block ofΠi−1 using a CRP.

One combinatorial representation of the nested partitionsinduced by the nCRP is obvious:
letting each block of each partition be a node in a graph, connect each block with its “parent”
block in the fragmentation process. We can also give a more compact representation where the
vertices of the graph are the data points or documents themselves, rather than blocks of a partition.

Start by drawing a random recursive tree with the documents as vertices. At the first step, cut
the outgoing edge of theith document with probability θ

θ+i−1
. Label the cut edges with1 to denote

the step at which they were cut. This gives aCRP (θ) partition. At stept, repeat the process
for each of the connected components of the partition obtained at stept − 1. In this case, the
ith document refers to theith document within a connected component. Each repetition of the
cutting process induces a partitioning of a component into smaller components which isCRP (θ)
distributed.

We note that there is only a single recursive tree drawn as thestart of the process. One does not
need to draw a new recursive tree at each step, even though thenCRP arises from fragmenting each
block independently. This makes representing the nCRP simplesince, like the HDP and CRP, the
underlying graph describing the partition may be represented using only a single, colored outgoing
edge for each vertex where the color denotes the level at which the edge is cut..

This representation yields a natural Gibbs sampler in the recursive forest representation for the
nCRP. At each step of the sampler, a new outgoing edge and the level at which it is cut are drawn.
The given construction for drawing a random recursive forest describing a nCRP distributed nested
partition is a sequential procedure which may be used to forma split-merge sampler as well.

Pitman-Yor as a new hierarchical model

Thus far, we have described hierarchical models formed by fragmentation-coagulations, coagulation-
fragmentations, and pure fragmentations. None of these exploit the relationship between fragmen-
tation and coagulation. It is, in fact, not a surprise that they are not able to since currently there is no
known clear and simple way to calculate probabilities for the time-reversed partitioning processes
for the given models. This leads us to examine one case where the fragmentation-coagulation du-
ality is understood, which is the family{CRP (θ, α) : 0 ≤ α < 1} whereCRP (θ, 0) denotes
the one-parameter CRP. In this case, one may construct a singleprocess{Πθ

α}α on partitions ofn,
such thatΠθ

α isCRP (n, θ, α) distributed.
The following fragmentation-coagulation relationship holds (Pitman and Picard (2006)). For
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0 < α < 1, 0 ≤ β < 1, θ > −αβ,

(θ, α)
(θ/α,β)−coag
←−−−−−−−
−−−−−−−−→
(−αβ,α)−frag

(θ, αβ). (3.4)

In other words, given aCRP (θ, αβ) distributed partitionΠ and applying aCRP (−αβ, α) inde-
pendently on each of the blocks gives a refinementΠ′ of Π that isCRP (θ, αβ) distributed. Like-
wise, given aCRP (θ, α) distributed partition and coalescing its blocks accordingto aCRP (θ/α, β)
gives coarsening which isCRP (θ, αβ) distributed.

A special case of interest whereβ = 0 is

(θ, 0)
(θ/α,0)−coag
←−−−−−−−
−−−−−−→
(0,α)−frag

(θ, α). (3.5)

Forests and fragmentation-coagulation

We now give a simple combinatorial argument using random recursive forests that proves the
special case in equation 3.5 as well as gives a representation that may be used in Markov chain
samplers.

We generate a colored forest via a fragmentation process andshow that it results in the same
sequential probabilities as aCRP (θ, α) processes. First generate an uncolored random recursive
forest that induces aCRP (n, θ, 0) distribution and then color the edges as follows. Proceed inthe
order given by the base for the random recursive forest. If the outgoing edge of theith node links
to a red root or a node with a red outgoing edge, then color it red with probabilityα; otherwise,
color the edge black. The probability thatith outgoing edge connects to a previous component of
sizem is m

θ+i−1

(

1− 1
m

)

α = m−α
θ+i−1

which is precisely the sequential probability from the usual
construction for aCRP (n, θ, α). By removing the red edges and considering only the black edges,
we fragment theCRP (n, θ, 0) tree to obtain aCRP (n, θ, α) tree. This proves the direction that a
CRP (θ, α) process can be obtained from aCRP (θ, 0) process via aCRP (0, α) fragmentation.

Consider the following forest generating process. Letn points arrive in a given order. Thejth

point may (1) attach via a black edge to an earlier pointi < j with probability proportional to 1
if i is not a root and1 − α if it is, (2) attach to itself with probability∝ θ, (3) draw a red edge to
an earlier rootr with probability∝ α. The sequential probabilities for drawing edges matches the
fragmentation process above, so we have a sequential procedure for drawing “Pitman-Yor forests.”

The proof that aCRP (θ/α, 0) coagulation of aCRP (θ, α) distributed partition yields aCRP (θ, 0)
distributed partition is similar. Start with a black colored forest corresponding to aCRP (θ, α) par-
tition. Proceeding in the order dictated by the given base, consider the roots of the black forest.
At the (i + 1)th root draw a self-loop with probabilityθ/α

i+θ/α
= θ

iα+θ
. We find that the resulting

sequential probabilities for generating the partition defined by the connected components of the
forest with both red and black edges matches aCRP (θ, 0).

This construction, like previously discussed constructions, gives a convenient representation of
a nested partition in terms of a recursive tree with colored edges. However, it only covers a special
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case of the coagulation-fragmentation duality relationship. We can calculate the general sequential
probabilities obtained by composing a CRP fragmentation and CRPcoagulation process

Suppose the outgoing edges for the firsti vertices have already been drawn. Letki be the
number of black roots among the firsti points, and letk′i be the number of red roots among the first
i points. The vertexi+ 1 is designated a new root with probability

θ0 + α0k
′
i

ki + θ0

θ + αki
i+ θ

In the case whereθ0 = θ/α, α0 = β, i.e. the coagulation process isCRP (θ/α, β), then the
incremental probability of creating a new root isθ0+α0k′i

i+θ
θ+αki
θ0+ki

=
θ+αβk′i
i+θ

which is exactly the same
as for aCRP (θ, αβ). One may similarly calculate that the probability of creating attaching vertex
i+1 to a given component matches the corresponding probabilityfor aCRP (θ, αβ) as well. This

shows the directionCRP (θ, α)
(θ/α,β)−coag
←−−−−−−− CRP (θ, αβ). Simple algebra also shows that these

parameters are the only ones such that a CRP distributed coagulation of a CRP generated partition
yields another CRP.

To prove the opposite direction of equation 3.4, we calculate the sequential probability of
the (i + 1)th point starts a new block given that the process is aCRP (θ0, α0) fragmentation of
a CRP (θ, αβ). Let nic be the number of nodes in componentc of theCRP (θ, αβ) distributed
partition when restricted to the firsti data points. Letki be the number of components of the
CRP (θ, αβ) distributed partition andk′ic be the number of fragments in componentc when re-
stricted to the firsti data points andk′i· =

∑

c kic be the total number of fragments. The sequential
probability for labelling the(i+ 1)th point a root is

θ + αβki
i+ θ

+

ki
∑

c=1

nic − αβ

i+ θ

−θ0 + α0k
′
ic

nic + θ0

Whenθ0 = −αβ, α0 = α, then the formula simplifies to the incremental probabilityof creating a
new block at pointi+ 1 for aCRP (θ, α).

Modeling and sampling

We now consider the implications to proposing new hierarchical models, the relationships to exist-
ing models, and sampling for new and existing models. The general idea we apply is that one starts
with a random recursive tree and introduce a fragmentation process to cut edges. This gives a prior
for a top-down hierarchical clustering approach where one understands the prior over partitions at
every level of the hierarchy. One may do the same in reverse bystarting with no edges and adding
them in via a coagulation. These processes include the nCRP. Furthermore, using fragmentation-
coagulation duality, if the nCRP is extended by allowing for negativeθ values in the parameters,
then one can obtain a hierarchy of Pitman-Yor distributed partitions. Representations for all these
models may be described by a random recursive tree plus a sequence of cuts. Thus, there is always
a natural Gibbs sampler for all these models which samples the edge and at what level it is cut.
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Consider the following process on partitions. LetT be a random recursive tree. Attach to each
nodei a pair(Ui, Vi) of Uniform(0, 1) random variables. For fixedθ, α, induce a set of cuts as
follows. Proceeding according to the ordering of nodes in the random recursive tree,

Ui cuts the outgoing edge of nodei if Ui ≤
θ

i−1+θ
(3.6)

Vi cuts the edge ofi if the edge connects to a node whose outgoing edge is cut andVi ≤ α

Let the connected components of the resulting forest define the partitionΠθ,α. From the pre-
vious discussion, this partition clearly has aCRP (θ, α) distribution. Thus, we have defined a
stochastic process on partitions{Πθ,α}θ,α indexed by parametersθ, α. Furthermore, any sequence
(θ(t), α(t))t such thatθ(t), α(t) are both monotonically increasing induces a sequence of nested
partitions.

This class of models contains none of the previously described existing models. The rea-
son is that the process is only Markov whenθ is held fixed, and it is in the regime where the
fragmentation-coagulation duality is understood. If the nCRP is extended to allow for negative
parameter values, then the nCRP falls into this regime with appropriately constrained parameter
values. Of the models that start with a partitionΠ0 and apply Markov fragmentation and coagula-
tion kernels, there are three classes in which there is a representation as a single random recursive
tree with cuts. The first is a sequence of fragmentations, of which the nCRP is an example. The
second is a sequence of coagulations. When using theCRP as the coagulation kernel, one may
regard this as a “reversed” nCRP. Since the family of distributions from the nCRP and “reversed”
nCRP models only coincide when fragmentation-coagulation duality holds, the “reversed” nCRP
is a genuinely different model. The third class is a single fragmentation followed by a sequence of
coagulations, where the HDP is a canonical example of. We note that the nDP does not fall into
one of these classes as it is a coagulation followed by a fragmentation.

The relationship between the random recursive tree with cuts representation and Gibbs sam-
plers is obvious. We have also used this relationship in developing an HDP sampler. This repre-
sentation is also useful for developing auxiliary variablesamplers when theα parameter of aCRP
is treated a hyperparameter in a model. From the rule defined by 3.6 for cutting edges based on the
α parameter, one sees that the coloring of the forest is obtained via a sequence ofBernoulli(α)
draws on edges connected to a black root or pointing to a node with a red outgoing edge. This
branching process is analogous to the sequential process that defines the negative binomial distri-
bution. The likelihood forα is given by

L(α;F ) ∝ αr(1− α)b

wherer is the number of red edges andb is the number of black edges pointing to nodes with red
outgoing edges. If a conjugateBeta prior is placed onα, then the posterior ofα given the forest is
alsoBeta. This gives a combinatorial explanation for the auxiliary variable method for sampling
α described by Teh (2006).

Tree-structured stick breaking

Adams et al. (2010) introduced the general class of tree-structured stick breaking processes. These
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processes may clearly be regarded as fragmentation processes on sticks. Thus, they bear strong
similarity to the nCRP which is also a pure fragmentation process. Indeed, we can show that both
tree-structured stick breaking and the nCRP will generate thesame latent distribution over a hierar-
chy of nested partitions. As a distribution over partitions, the main difference between the two is in
a stopping rule which decides the level of the hierarchy thata point belongs to. The tree-structured
stick breaking process introduces an explicit stick at eachnode designating the probability that a
point (or document) stops at a node and is not allocated to oneof the children. This means that
the tree-structured stick breaking process will define a partition, not nested partition, of the points.
For the nCRP, points (or documents) always belong to a leaf nodeand a node stops splitting when
it contains a singleton or a maximum depth is reached. For both models, sharing of information
comes from the underlying hierarchy. For an nCRP, the word probabilities for a document depend
on the entire path from the root to the document. Thus, in addition to the nested partition of the
documents, one has a non-nested partitioning of words into nodes in the hierarchy. The param-
eters associated with each node are independent in the priordistribution. Soft-sharing amongst
documents is achieved by the hard coupling of words from different documents in the same node.
In the tree-structured stick breaking process, the parameters associated with each node are drawn
conditional on the parent node’s parameters. Thus, sharingoccurs both from the hard coupling of
documents in the same node and from soft-sharing induced by the hierarchy of parameters.

We now prove that the nCRP and tree-structured stick breaking generate the same latent nested
partition. Simply factor the stick probabilities associated with the tree-structured stick breaking
process into a component designating the stopping probabilities and a component for the infinite
latent hierarchy. The latent hierarchy will have the same distribution associated with the nCRP.
Let νǫ be the stopping probability at nodeǫ andβǫ be the stick at the parent node ofǫ that denotes
the probability that a point would go to epsilon if it were notstopped. The probability of a point
belonging to nodeǫ is

πǫ = νǫβǫ
∏

ǫ′≺ǫ

βǫ′(1− νǫ′)

=

(

νǫ
∏

ǫ′≺ǫ

(1− νǫ′)

)(

∏

ǫ′�ǫ

βǫ′

)

.

The probability on the right consisting of theβ sticks is simply the continuous version of choosing
a path in the nCRP. When the sticks are chosen to follow aGEM distribution, then after integrating
out the sticks, then one would have exactly the nCRP. The probability consisting of onlyν sticks,
may be regarded as the probability of stopping at a level of the hierarchy. We illustrate the process
and compare it to the nested CRP in Figure 3.6.

Sequential constructions and fragmentation-coagulation duality

So far, our descriptions of sequential constructions have focused on the application of sequential
methods for drawing from a prior distribution. From a sequential method for drawing from the
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[Example nested partition for the nCRP]

[Example partition for the tree-structured stickbreakingprocess]

Figure 3.6: One obtains the combinatorial picture of the tree-structured stick breaking process by
first drawing nested partitions representing the nCRP (top figure). Each row contains the same
points, but a different partitioning of the points. The multiple levels form a hierarchy of nested
partitions. To obtain the combinatorial equivalent of the tree-structured stick breaking process
(bottom figure), at each node, randomly select a set of pointsto be colored red. Delete all points
under the colored points. The assignment of colored points to boxes gives the partition defined by
the tree structured stick breaking process.

prior, one may add a likelihood term and obtain a sequential construction for a proposal distribution
in an MH algorithm.

We can also use sequential constructions to study the interplay between parameters for an
HDP. First consider the HDP with a single group and with aCRP (θ, α) fragmentation process
andCRP (θ0, α0) coagulation process.

Suppose the outgoing edges for the firsti vertices have already been drawn. Letki be the
number of black roots among the firsti points, and letk′i be the number of red roots among the first
i points. The vertexi+ 1 is designated a new root with probability

θ0 + α0k
′
i

ki + θ0

θ + αki
i+ θ

In the case whereθ0 = θ/α, i.e. the coagulation process isCRP (θ/α, 0), then the incremental
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probability of creating a new root isθ+αki
i+θ

θ0+α0k′i
ki+θ0

exactly the same as aCRP (θ0, α0). One may
similarly calculate that the probability of creating attaching vertexi + 1 to a component matches
theCRP (θ0, α0) probabilities. Since the incremental probabilities for a fragmentation followed
by a coagulation is the same as that of a coagulation followedby a fragmentation, this proves the
fragmentation-coagulation duality.

When there are multiple groups for the HDP, the incremental probability that vertexi + 1 is a
root is

θ0 + α0k
′
i

ki· + θ0

θ + αkig
nig + θ

wherekig is the number of black roots among the firsti vertices in groupg, nig is the number of
vertices among the firsti vertices in groupg, andki· =

∑

g kig is the total number of black roots
among the firsti vertices.

3.8 Applications to non-Partition Problems

So far, we have only described the use of combinatorial structures for tackling the problem of
sampling distributions on partitions and hierarchies. However, distributions on the combinatorial
structures themselves are also of interest.

Reservoir Sampling

As an example, consider the problem of drawing a random sample of sizek from multiple streams
of data. The solution to this problem for a single stream, called the reservoir sampling problem,
was given by Vitter (1985). In modern large-scale data analysis in the map-reduce framework, one
typically does not have a single stream but many streams which need to processed and combined
in a distributed fashion. Previous approaches have been based on weighted version of reservoir
sampling such as those given by Efraimidis and Spirakis (2006) and Kolonko and Ẅasch (2006).
These approaches require maintaining a weight for each element of the sample and placing the
top k weights in a heap. Using the ideas we have developed thus far,we give an elegant solution
that solves the problem for an unweighted random sample without replacement in a single map-
reduce pass and does not require storing weights for each element. Given a randomk sample from
each stream in the map phase, the only additional summary statistic needed to perform the reduce
phase is a count for the length of each stream. Furthermore, we show that without maintaining
any additional information we can combine the output of multiple k samples to obtain a random
sample of size> k.

We first describe the single stream solution and relate it to random permutations and our mul-
tiple stream solution. For the single stream solution, start by including the firstk elements from
the stream in the sample. On theith element of the stream, replace a random element of the cur-
rent sample with the newly encountered element with probability 1/i. If we cast the problem of
finding the firstk elements of a random permutation, then we obtain the solution given in section
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3.4 which, when restricted to storing only the firstk elements of the permutation, is identical the
reservoir sampling solution except that the explicit permutation is maintained.

For the multiple stream case, suppose there are two streamss1, s2 for simplicity. Generalizing
to more than two streams is trivial. Choose a base which contains a dummy element in the first
position and puts all the elements ofs1 befores2. An arborescence tree respecting that base gives a
cyclic permutation of the dummy element and all the elementsof s1, s2, and removing the dummy
element gives a permutation of the elements of the two streams. We first describe how to extract
the firstk elements after the dummy element in a cyclic permutation from the arborescence tree
representation. Recall that the edges of the arborescence tree denote the “sit to the right” process in
a Chinese restaurant process. For a cyclic permutation with adummy element, the analogous goal
in the corresponding Chinese restaurant process with a single round table is to find thek persons
that sit immediately to the right of the head of the table. Thefirst person to the right of the table
head is thelast customer to sit to the right of the head. We denote the this customer as nodexi1
in the arborescence tree. The second to last customer that tried to sit next to the head of the table
but was pushed aside byxi1 we will denote asxi2 . All customers corresponding to the subtree
rooted atxi1 will have inserted themselves betweenxi2 and the head of the table. Thus, to find the
k customers that sit to the right of the head, we look for the last customer to the sit to head and all
the customers in the corresponding subtree. If that subtreeis of size≥ k, then stop. Otherwise,
find the next to last customer that tried to sit next to the head, and repeat.

For the problem of merging two streams, the goal is to find how many customers in streams2
inserted themselves between the head of the table and the last customer from the first streams1 who
tried to sit next to the head. This is exactly the problem of finding the size of a subtree restricted
to the subset of points ins2 which we described in section 3.4. Thus we have the algorithm
MergeReservoirs which calculates the number of samples to pull from each stream to obtain a
final random sample. We note that the resulting sample will typically be bigger thank because the
algorithm can take all customers in the union of the two samples who sit immediately to the right
of the head.

Other problems of interest

For example, consider the matching problem. Permutations encode matchings. If the matching
is between sourcess1, ..., sn and targetst1, ..., tn, and one believes that the matchingsi → ti for
all i is approximately correct, then one may put a prior on permutations which strongly prefers
singletons.

Another example is the ranking problem onn itemsv1, ..., vn. Both arborescence trees and
permutations are combinatorial structures of interest since they respectively represent partial and
total orderings. When each observation consists of a set of items that are presented in a particular
order and the resulting ranking, then random recursive forests give one probability model that takes
into account the the presentation of the items via a base.
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Algorithm 4 MergeReservoirs

Require: ParametersB1, B2 containing randomk samples without replacement from streams
s1, s2 and countsn1, n2 denoting the length of the streams

Ensure: k1 + k2 ≥ k and0 ≥ k1, k2 ≤ k whereki is the number of elements to be taken from
sampleBi

1: Setk1 = k2 = 0.
2: for k1 = 0→ k do
3: Draw z ∼ Beta− Binomial(n2 − k2, 1, n1 − k1)
4: if z > 0 andk1 + k2 + z > k then
5: k2 = min(k2 + z, k)
6: return k1, k2
7: end if
8: end for
9: return k1, k2
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Chapter 4

Markov Chains on Graphs and Split-Merge
Samplers

4.1 Introduction

Developing Markov Chain Monte Carlo (MCMC) methods is somewhat of a black art in which
one draws from a rich toolbox of ideas that others have developed. The ideas presented here both
add to and are inspired by ideas from this toolbox, in particular, the idea of variable augmentation.

In this chapter, the primary idea on which others are built isto augment the state space so
that, instead of a single variableX(t) at a timet, one has a tuple or a stopped Markov chain
X1(t), X2(t), ..., Xτ (t). This augmented representation may be used to both make better proposals
as well as reduce computational costs when one constructs the Markov chains to contain symmetry
that can be exploited.

The main ideas that build off this Markov chain on Markov chain representation is a gener-
alizaton of the notion of launch states that was presented byJain and Neal (2004) and the use of
stopping times to perform early rejection of a bad proposal.As an application, we demonstrate the
use of early rejection for split-merge samplers.

In this chapter, we describe Markov Chain Monte Carlo methods in which the state space is
described by a graphical model. In particular, we consider when the states themselves are Markov
chains, so that the MCMC method is a Markov chain on Markov chains. We use this idea to
propose modifications to the split-merge HDP sampler described in the previous chapter, and we
provide experimental results for the new HDP samplers.

4.2 Markov kernels on branch processes

To tackle the problem of improving split-merge samplers, wefirst introduce a few ideas that are
generally applicable for developing MCMC algorithms. The common thread among these ideas is
that we build Markov chainsX(1), X(2), ... where the states of the Markov chain are stochastic
processesX(t) = (X1(t), X2(t), ...). To distinguish the two, we call{X(t)}t∈N the trunk chain
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and anyX(t) = (X1(t), X2(t), ...) a branch process. Given a desired multivariate stationary distri-
butionp onk variables, the goal is to construct Markov chains such that the stationary distribution
on the firstk variables(X1(t), ..., Xk(t)) of a branch process isp. For ease of exposition, we will
assume that all finite-dimensional distributions under consideration are discrete.

We use branch processes to exploit three ideas. First, each branch process is a sequential pro-
cedure that allows one to incremental build viable proposals. Second, underlying each branch
process is a graphical model encoded by a DAG. When the graphical model contains symmetric
structures, then one can exploit the symmetries as a way to save on computational cost as well as
a means of dealing with nuisance parameters. Third, the branch processes allow the introduction
of stopping times. The stopping times may also be used to savecomputation by performing early
rejection when a partially computed proposal is sufficient for determining that the complete pro-
posal is unlikely to be accepted. They may also be used to continue the branch process to make a
second, improved proposal.

Many of these ideas have existed in the current literature insome form. For example, the
split-merge sampler of Jain and Neal (2004) implicitly usesa branch process where the restricted
Gibbs sweeps are a sequential method used to generate viableproposals and the launch states are
nuisance parameters that exploit symmetries in the underlying graphical model so that the launch
state probabilities never need to be computed. Stopping times may be used to describe Wolff’s
algorithm for the Ising model as well as the Delayed Rejectiontechnique of Tierney and Mira
(1999). In both cases, the branch process continues until a good proposal is reached. While we
are not aware of other cases that use stopping times to perform early rejection, the idea of using
multiple stages for the acceptance rule has been described in Christen and Fox (2005), Murray
(2007), Liu (2008), and Dostert et al. (2006).

Markov chains on graphical models

We describe a Markov chain on branch processes by first considering a more general formulation
where the state of the Markov chain at timet consists of a random distributionG(t) represented by
a graphical model onS(t) vertices, and a tupleX(t) = (X1(t), X2(t), ..., XS(t)) assigning values to
vertices of the graphical model. This is an instance of a random proposal distribution as described
by Besag et al. (1995). For this chapter, a we will use the term graphical model to refer to a graph
describing the set of conditional independence assumptions along with a set of clique potentials or
conditional distributions encoding a joint distribution over the vertices of the graph.

Let f be the desired stationary distribution onk variables. Place a distributionq over graphical
models such that the marginal distributionp(x1, ..., xk|G) = f(x1, ...xk) of the the firstk variables
is equal to the desired stationary distribution for anyG in the support ofq. If {(G(t),X(t))}t is an
Markov chain with a unique stationary distribution given byq(g)p(x|g), then the chain restricted
to {(X1(t), ..., Xk(t))}t has the desired stationary distributionf . This is easily proved by simply
marginalizing all extraneous variables.
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Stopping times and MH on branch processes

To construct a MH algorithm on using a Markov chain on graphical models, consider the following
manipulations on the state of the chain to generate a proposal:

1. generate a new set of augmentation variablesXk+1(t), Xk+2(t), ...XS(t)(t)|G(t), X1(t), ..., Xk(t)
given the firstk elements and the graphical modelG(t),

2. draw a new graphical modelG′(t)|G(t),X1,...,S(t)(t) of sizeS ′(t) from some proposal distri-
bution.

3. randomly permute the tuple to obtainπX1,...,S(t)(t) = (Xπ(1)(t), ..., XπS(t)
) whereπ is drawn

from some distribution conditional onG′(t),X(t) and then extending the tuple by drawing
X ′

S(t)+1, X
′
S(t)+2, ..., X

′
S′(t)|πX(t), G′(t) if S ′(t) > S(t) and projecting onto the firstS ′(t)

variables otherwise.

The first two manipulations play the role of generating a new set of states which the chain can
move to but do not modify any of the variablesX1(t), X2(t), ..., Xk(t) of interest, while the last
manipulation uses the new set of states to proposes a change to these variables of interest.

Of special interest are MH algorithms on graphical models with a form amenable for describing
sequentially sampled proposals. Fix a distributionG0 for a discrete time stochastic process and a
distribution for a stopping time with respect to the naturalfiltration of the process. A proposal
consists of the following steps:

1. generate augmentation variablesXk+1(t), Xk+2(t), ...XS(t)|G0, X1(t), ..., Xk(t) and a stop-
ping timeS(t)

2. draw a random permutation onS(t) elements conditional onX(t)

3. construct a stopped chainX ′
1(t), X

′
2(t), ..., X

′
S′(t)(t) such thatX ′

i(t) = Xπ(i)(t) if i ≤ S(t)

andX ′
i(t) is drawn from the conditional distributionX ′

i(t)|X
′
1(t), X

′
2(t), ..., X

′
i−1(t), S

′(t) ≥
i. randomly permute the tuple toπX(t) = (Xπ(1)(t), ..., XπS(t)

).

In this case, the random graphical model is identified by the stopping timeS(t) and the augmen-
tation variablesXk+1(t), Xk+2(t), ..., XS(t) are sampled simultaneously with the stopping time.
Since a random distribution may be selected as the augmentedvariableXk+1(t), this formulation
is not less restrictive. However, each formulation provides a different perspective since the graphs
associated with each formulation are different.

Example: Metropolis-Hastings as a chain on pairs

To illustrate the idea of a Markov chain on branch processes,consider the traditional Metropolis-
Hasting (MH) algorithm as a Markov chain on branch processes. In this case the stopping time is
a constantS(t) = 2 so the stopped chain is always of the formX1(t), X2(t). Since the graphical
model is fixed, each step of the Markov chain consists of two parts. The first is a Gibbs step
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drawing the second element of the pair, in other words, a drawX2(t)|X1(t). The second part is a
choice to accept or reject the transposition(X1(t), X2(t)) → (X2(t), X1(t)) according to the MH
ratio.

Useful properties of MH algorithms on branch processes

The motivation for developing MH algorithms on branch processes are two-fold. First, the use of
stopping times allow the design of chains which adjust the amount of computation spent on one
proposal. The branch process may be stopped at the first instance a viable proposal has been gen-
erated or when it is clear that no future proposals are likelyto be accepted. Second, the algorithms
can eliminate certain computations by exploiting symmetries in the graphical models and in the
encodings of a distribution as potentials on the graph. Thisis due to the same potentials appearing
in both the numerator and denominator of the MH ratio. The simplest example of this is for a
MH algorithm with a symmetric proposal distribution. While one must be able to sample from the
symmetric proposal, the proposal probability never needs be to computed.

We first give existing applications of stopping times as wellas applying them to the HDP
sampler. We then describe the role of symmetry in saving computation.

Example: Stopping times and delayed rejection

Delayed rejection (Tierney and Mira (1999)) is a MCMC technique that has a simple formula-
tion in terms of stopping times. Given aX1(t) from the desired stationary distribution, draw a
sequence of proposalsX2(t), X3(t), .... Let S(t) be a stopping time with stopping probabilities
that are recursively defined as follows.p(S(t) = k|X1(t) = x1, ..., Xk(t) = xk, S(t) ≥ k) =

min
{

1, p(X1(t)=x1,...,Xk(t)=xk,S(t)≥k)
p(X1(t)=xk,...,Xk(t)=x1,S(t)≥k)

}

. In other words,S(t) is chosen such that if the branch chain

stops atk+1, then the MH ratio for the move(X1(t), ..., XS(t)(t), S(t))→ (XS(t)(t), ..., X1(t), S(t))
will be accepted with probability 1. To ensure that the sequence of proposals stop,S(t) may be
capped at some maximum timeK though the acceptance probability may not be 1 ifS(t) = K.
We note that the permutation associated with this proposal is the one which reverses the tuple
(X1(t), ..., XS(t)(t)).

Example: Stopping times and the Wolff sampler

The Wolff sampler for the Ising model is another example of a sampler employing a stopping time.
The Ising model is a binary Markov random field with probability given by

P (~x) ∝ exp

(

∑

i,j

Kij1(xi = xj)

)

.

The Wolff sampler proceeds as follows:

1. Choose a starting clusterC consisting of a single node at random.
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2. At each step, choose an unchecked nodexi in C, marked it checked, and visit all the un-
visited links adjacent toxi. For each linkxi ↔ xj, activate the bond with probability
1− exp(−2Kij) and addxj toC.

3. Repeat until there are no unchecked nodes inC, and flip all the spins inC.

Recast in terms of stopping times, the Wolff sampler builds a branch process on spin-states
where the stopping time is the time the MH ratio hits 1.

Early rejection

The previous examples give cases where the branch chain stops when a good enough proposal is
reached. This prevents computation from being wasted when rejecting prematurely. For the HDP
sampler, we use stopping times to reject when the proposal isunlikely to be accepted but before
the entire proposal is drawn. This skips computations that are likely to be thrown away. For split-
merge samplers these computations are costly since each split or merge proposal has computation
time proportional to the size of the merged block. For well-separated clusters in a mixture model,
the sampler already has information that a merge is highly unlikely to be accepted even before
calculating the merge-to-split proposal probability.

Two-stage acceptance probabilities

Suppose we have a Metropolis-Hastings algorithm where the MH ratio for a move fromx → x′

can be decomposed into a productR(x→ x′) = γ(x, x′)ψ(x, x′), andψ is expensive to calculate.
We can construct a chain which breaks down the acceptance rule into two stages, the first is

based only onγ, and the second requires the expensive computation ofψ but may be skipped if the
move is rejected in the first stage. This idea of using multiple stages for the acceptance rule has
been described in Christen and Fox (2005), Murray (2007), Liu(2008), and Dostert et al. (2006).

Consider the chain that acceptsx→ x′ andx′ → x with the respective two-stage probabilities

α(x→ x′) = min {γ(x, x′), 1}min {ψ(x, x′), 1}

α(x′ → x) = min
{

γ(x, x′)−1, 1
}

min
{

ψ(x, x′)−1, 1
}

.

One can easily verify this chain satisfies detailed balance and has the same invariant distribution
as the original chain using the MH algorithm.

The acceptance probability of this two-stage rule is alwaysless than or equal to the usual MH
acceptance probability. To obtain, a better acceptance rate, note that

γ(x, x′)ψ(x, x′) = min{γ(x, x′), 1}(max{γ(x, x′), 1}ψ(x, x′))

= γ̃(x, x′)ψ̃(x, x′)

whereγ̃(x, x′) = min{γ(x, x′), 1}. In other words, if the first stage is accepted with probabil-
ity 1, the excess in the first stage can always added to the second stage to boost the acceptance
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probability. This leads us to choose the following as the first stage acceptance probability of a
split-to-merge move:

γ(Bsplit,Bmerge) = min

{

f(X (B1 ∪B2))

f(X (B1))f(X (B2))
, 1

}

. (4.1)

Sincef(X (B1)), f(X (B2)) are likely to already have been computed, rejecting a merge can take
a single likelihood calculation. For a merge-to-split move, the first state acceptance probability is
always1 sinceγ(Bsplit,Bmerge)

−1 ≥ 1.

Early stopping and a random two-stage acceptance rule

For merge-to-split moves, the final split state is unknown before calculating the proposal probabil-
ities, so the two-stage acceptance rule for split-to-mergemoves does not apply. Instead we propose
a rule to reject once there is enough information to determine a split is unlikely. We do this by
extending the two-stage acceptance rule and using a random decomposition of the MH ratio based
on a stopping time.

Suppose the proposalX1(t)→ X ′
1(t) is drawn via a sequential procedure and letX2(t), ..., Xk(t)

denote the intermediate states of the procedure. For notational convenience, we will drop the index
t in the rest of the discussion.

At any times, the MH ratio may be decomposed into a productR(X1 → X ′
1) =

γs(X1, X2, ..., Xs)ψs(X1, ..., Xk, X
′
1), so thatγs > 0 depends only on events up to times and

ψs > 0 can depend on any event. This decomposition gives a two-stage acceptance rule for any
fixed choices.

Rather than a fixed time, consider the case where the decomposition depends on a random
stopping timeS with respect to the natural filtration ofX1, ..., Xk. This can be beneficial since
often one does not know how many steps are required before an informed decision to reject can
be made, and the number of steps may depend on the random choices taken by the sequential
procedure. It is easy to prove that this modification preserves detailed balance.

Theorem 11. Given the assumptions in the previous paragraphs, the Markov chain which accepts
the proposalX1 → X ′

1 according on the two-stage acceptance probabilities

αS(X1 → X ′
1) = min {γS(X1, X2, ..., XS), 1}min {ψS(X1, ..., Xk, X

′
1), 1}

αS(X
′
1 → X1) = min

{

γS(X1, X2, ..., XS)
−1, 1

}

min
{

ψS(X1, ..., Xk, X
′
1)

−1, 1
}

gives a Markov chain with the same invariant distribution as achain generated using the MH
algorithm.

Proof. One simply verifies the detailed balance condition on the augmented chain(X,X ′, S).

αs(X1 → X ′
1)p(X1, X

′
1, s) = αs(X1 → X ′

1)p(X1, X
′
1)p(S = s|X1, X

′
1)

= αs(X
′
1 → X1)p(X

′
1, X1)p(S = s|X ′

1, X1)

= αs(X
′
1 → X1)p(X

′
1, X1, t)
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where the second step follows from the non-random two-stageacceptance rule and the assump-
tion that the proposals in both directions share the same sequential procedure.

We note that the decomposition is asymmetrical sinceγS does not depend onX ′
1. This is

necessary sinceX ′
1 is unknown during the sequential procedure for proposing a new state. If one

wishes to perform some form of early stopping on the reverse proposalX ′
1 → X1, then the stopping

times for both proposal directions must share a common filtration to obtain computational benefits.

Application to the HDP split-merge sampler

For split-merge samplers, we use the usual two-stage acceptance rule for split-to-merge moves
and combine it with the two-stage early stopping rule for merge-to-split moves. We illustrate the
application of the two-stage early stopping rule using our split-merge HDP sampler. Modifying
the method for other split-merge samplers is straightforward.

Consider a split proposalYm → Ys for the HDP split-merge sampler, and denote the two blocks
in the split byB0, B1. Given a base, the proposal draws a branch chainZ ′

k, Ym, Z1, Z2, ..., Zk−1, Zk =
Ys, Z

′
1, Z

′
2, ..., Z

′
k−1 wherek is the size of the merged block,Zi denotes the subforest ofYs restricted

to the points in the base up to theith point of the merged block andZ ′
i denotes the same but for

Ym instead ofYs. Note that theZi, Z
′
i are deterministic functions ofYs, Ym respectively. Thus, the

natural filtration ofYm, (Z2, Z
′
2), (Z3, Z

′
3), ..., (Zk−1, Z

′
k−1), Ys is also the natural filtration of just

the sequential splitting procedure which drawsYm, Z2, Z3, ..., Zk−1, Ys. The corresponding merge
proposal has branch chainYs, Z2, ..., Zk−1, Ym, Z2, Z3, ..., Zk−1.

All the split-merge samplers with sequential procedures have a MH ratio of the form

R(Ym → Ys) =
k
∏

i=1

(

f(xi|x1, ..., xi−1, Zi−1)
1(xi∈B0)f(xi|x1, ..., xi−1, Zi−1)

1(xi∈B1)

f(xi|x1, ..., xi−1, Z ′
i−1)

×

×
qm(Z

′
i−1 → Z ′

i)

qs(Zi−1 → Zi)

p(Zi|Zi−1)

p(Z ′
i|Z

′
i−1)

)

whereqm, qs are the sequential proposal probabilities for the MCMC sampler, andp gives the
corresponding sequential allocation probabilities for the prior. Taking the product from1 to a fixed
times rather thank, one obtains a termγt(Ym, Z1, ..., Zs) that does not depend on any of the terms
occurring afterZs. This gives a decomposition suitable for early rejection. We choose the stopping
time S to be the hitting timeS = min{s : γt(x, Zs) < c} for some constantc. Other stopping
times may be sensible, but we choose this one for simplicity.

For a split-to-merge proposal, we may simply use the likelihood term

k
∏

i=1

f(xi|x1, ..., xi−1, Z
′
i−1)

f(xi|x1, ..., xi−1, B0)1(xi∈B0)f(xi|x1, ..., xi−1, B1)1(xi∈B1)

to construct the first stage acceptance probability.
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Symmetries in graphical models

Another advantage to describing MH algorithms in terms of branch chains and graphical models
is that it lends itself to identifying symmetries that may beexploited for computational bene-
fits. LetG(t) denote a graph with associated potentials{ψ(t)

C }C⊂V (G(t))} and the tupleX(t) =
(X1(t), ..., XS(t)(t)) be a tuple generated from this graphical model. Letπ(t) be the proposed
permutation. For simplicity, assume that the proposed graphical modelG′(t) is the same as
G(t). Given a potentialψC whereC ⊂ V (G(t)) , define the action ofπ(t) on the potential by
π(t)ψC = ψπ(t)−1C .

The distribution of the permuted variables may be expressedas either a permutation of the tuple
or of the vertices of the graph.

p(π(t)X(t)|G(t)) =
∏

C

ψC(π(t)X) =
∏

C

(π(t)ψC)(X).

Thus, the set of potentials such thatψC = π(t)ψC , in other words the potentials invariant under
π(t), will appear in both the numerator and denominator of the MH ratio and cancel each other
out.

Launch States and Reversible Jump MCMC

We now demonstrate one useful application of the feature of not needing to calculate the full
proposal probability. Jain and Neal (2004) introduced the notion of a launch state in the context
of samplers for Dirichlet Process Mixture Models with conjugate priors. Rather than restricting
moves of a chain to local moves to states with similar posterior probability, launch states offer a
means for a chain to propose jumping to a distant local mode ofthe posterior. We give a modest,
but powerful, generalization the idea of launch states presented in Jain and Neal (2007) that makes
it generally applicable to MCMC methods but particularly applicable for reversible jump MCMC
methods.

Consider a Markov chain on 4-tuples(X1(t), Xℓ(t), Y1(t), Yℓ(t)) which has stationary distribu-
tion p(x)qℓ(x→ xℓ)q(xℓ → y)qℓ(y → yℓ). Xℓ(t), Yℓ(t) are designated launch states.

Step t + 1 of the chain regenerates the variables exceptX1(t) and proposes the move
(X1(t), Xℓ(t), Y1(t), Yℓ(t)) → (Y1(t), Yℓ(t), X1(t), Xℓ(t)). In other words, the chain proposes a
cyclic permutation of the variables of offset 2. The MH ratiofor such a proposal is

p(Y1(t))q(Yℓ(t))→ X1(t)

p(X1(t))q(Xℓ(t)→ Y1(t))
. (4.2)

The launch proposal probabilities conveniently cancel out. This is illustrated by the following
diagrams that describe the proposed move as a cyclic permutation of offset 2.

The MH ratio is the ratio of the two joint probabilities described by the diagrams. The links
X1(t)→ Xℓ(t), Y1(t)→ Yℓ(t) appear in both diagrams and if the conditional probabilities describ-
ing the edge potentials for those links are the same, then theconditional probabilities associated
with the links cancel in the MH ratio.
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X(t) −−−→ Xℓ(t)




y

Yℓ(t) ←−−− Y (t)

X(t) −−−→ Xℓ(t)
x





Yℓ(t) ←−−− Y (t)

Dirichlet Process example and a general recipe for samplingwith launch states

We describe the DP mixture model samplers of Jain and Neal (2007) and Jain and Neal (2004)
which introduce the idea of launch states and show how to obtain a more general recipe for sam-
pling with launch states without using restricted Gibbs sweeps.

In both of Jain and Neal’s papers, the proposal distributionconsists of 1) sampling a transpo-
sition uniformly at random to determine what blocks to splitor merge and 2) generating a new
proposal state via a launch state and a final Gibbs sweep. Since step 1 is a uniform draw and does
not depend on the current state of the Markov chain, it is inconsequential in computing the MH
ratio, but for completeness in describing the samplers, we give the deterministic rule for choosing
whether to split or merge given a transposition. If the elements of the transposition are both in the
same blockBmerge, the sampler proposes to split blockBmerge into randomly generated blocksB1

andB2 via a series of Gibbs sweeps. Otherwise, the elements of the transposition are in separate
blocks which we denote asB1 andB2, and the sampler proposes to mergeB1 andB2.

For step 2, we may apply equation 4.2 to calculate the MH ratio. However, we give a slightly
more general description that clearly suggests methods which do not rely on restricted Gibbs
sweeps. To simplify the exposition, we will assume that the chain proposes a split from a merged
state. We may write the two branch chains corresponding to the split-to-merge and merge-to-split
proposals as the following graphical model:

Ysm = Xsplit → Xsplit
ℓ → Zsm

1 → · · · → Zsm
ksm → Xmerge → Xmerge

ℓ

Yms = Xmerge → Xmerge
ℓ → Zms

1 → · · · → Zms
kms
→ Xsplit → Xsplit

ℓ

where theZ ’s denote the intermediate states of the final Gibbs sweeps and theksm, kms are deter-
ministic functions of the blocks being modified. The MH ratiofor the proposed move is

R =
p(Yms)

p(Ysm)
=
p(Xmerge)q(Xmerge

ℓ → Zms
1 → · · · → Zms

kms
→ Xsplit)

p(Xsplit)q(Xsplit
ℓ → Zsm

1 → · · · → Zsm
ksm
→ Xmerge)

. (4.3)

In the restricted Gibbs sweep case, there is a unique sequence of intermediate states that takes
Xsplit

ℓ → Xmerge. Thus, we haveq(Xsplit
ℓ → Xmerge) = q(Xsplit

ℓ → Zsm
1 → · · · → Zsm

ksm
→

Xmerge). The same property holds for the merge launch state to split state probabilities, and one
recovers the usual launch state MH ratio equation 4.2. This uniqueness condition is desirable since
it does not introduce variables that may be Rao-Blackwellizedaway, but it is not necessary. This
leads to the following general MCMC launch state procedure:
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Algorithm 5 LaunchStateMCMC

Require: Current stateX1(t), black box launch state generatorlaunch(x), calculable transition
probabilities{qi}i for a (not necessarily homogeneous) Markov process, calculable stopping
time probabilities for the Markov process.
DrawZ1(t) = launch(X1(t))
Draw a realizationZ1(t), Z2(t), ..., ZK(t) = Y1(t) of the stopped process defined by{qi}i
DrawZ ′

1(t) = launch(Y1(t))
Draw a realizationZ ′

1(t), Z
′
2(t), ..., Z

′
K′(t) = Y1(t) of the stopped process defined by{qi}i

AcceptX1(t)→ Y1(t) with probability

p(Y1(t))

p(X1(t))

q(K ′|Z ′
1(t), ..., Z

′
K′(t))

q(K|Z1(t), ..., ZK(t))

∏

i=2K
′qi(Z

′
i−1(t)→ Z ′

i(t))
∏

i=2Kqi(Zi−1(t)→ Zi(t))
.

Reversible jump MCMC

Reversible jump MCMC (RJ-MCMC) methods are a natural area in whichthe idea of launch
states may be applied. In RJ-MCMC methods, such as samplers fornon-conjugate Dirichlet pro-
cess mixture models (DPMMs), must deal with the issue of proposing new parameters or deleting
parameters. Two main challenges exist for this. One is to handle the change in dimension of the
parameters and maintain the detailed balance condition when the parameters are continuous. The
other is to propose a good set of parameters.

To handle the change of number parameters, RJ-MCMC methods typically rely on augment-
ing the states with fewer parameters with additional randomcomponents to make the dimensions
match. For example, consider the case where a model has either 1 or 2 parameters. The 1-
parameter state has the form(θ1, U) whereU is a random component to make the dimensions
of the Markov chain’s state space consistent. However, the joint distribution(θ1, U) of the param-
eters for the 1-parameter model is different from the joint distribution(θ′1, θ

′
2) for the 2-parameter

model. The seminal paper of Green (1995) on RJ-MCMC handles this by only making proposals
(θ1, U) → g(θ1, U) = (θ′1, θ

′
2) whereg is an invertible, differentiable function. This is essentially

a change of variables, and correspondingly, the MH ratio involves the Jacobian ofg. The MH ratio
for a move(θ1, U)→ (θ′1, θ

′
2) is

p2f2(θ
′
1, θ

′
2)

p1f1(θ1)p(U |θ1)

q21
q12

∣

∣

∣

∣

∂(θ′1, θ
′
2)

∂(θ1, U)

∣

∣

∣

∣

wherepi is the prior probability of being in modeli, qij is the probability of proposing to move to
modelj given the current state is in modeli, andfi is the posterior probability of the parameters
given they are for modeli.

Rather than padding models with fewer parameters with a few random components, we can
also concatenate the parameters into a longer vector. For the 1- and 2-parameter models, this
means that the underlying graphical mode is on the 3-tuple(θ1, θ

′
1, θ

′
2). This is the approach taken

in Carlin and Chib (1995) and later related to Green’s approachby Besag (1997), Dellaportas et al.
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(2002) and Godsill (2001). This eschews the problem of having both models share the same 2-
dimensional measurable space. Each model has an independent space. There is no Jacobian to
deal with, and no restriction that the mappingg be diffeomorphic since it is always the identity.

Our approach of using stopped branch chains bears similarities to both approaches. Like
Green’s approach, the variables share a common measurable space. Like Carlin and Chib’s ap-
proach, the parameters of interest at any step are projections of a tuple, so there is no complication
of having to specifying a diffeomorphic change of variables

The use of launch states provides a simple, flexible means to produce good proposals. The
tradeoff is that, if one could collapse the sampler and remove the launch state, the collapsed sam-
pler potentially mixes better than the uncollapsed sampler. However, launch states are most ap-
propriate for cases where the probability of obtaining a launch state cannot even be calculated
much less integrated out, and improved proposals can potentially improve the sampler more than
augmentation hurts.

4.3 Comparison of HDP mixture model samplers

We evaluate the performance of the samplers on two examples.We will refer to the HDP Gibbs
sampler based on the forest representation as simply the Forest Gibbs Sampler. Each sweep con-
sists of a forward and backward pass. For the split-merge (SM) sampler, we interleave 1 Gibbs
sweeps using the forest representation for every 15 split-merge proposals. We consider both the
split-merge sampler with early rejection and without earlyrejection. We did not consider early
stopping in this experiment since it is unlikely to help for such a small dataset. Each split-merge
proposal is regarded as a sweep. The Gibbs sampler in the CRF representation is referred to as the
CRF Gibbs Sampler. We calculate the effective sample size using the code package in R (Plummer
et al. (2006)).

Beta-Bernoulli Example

The first is the synthetic Beta-Bernoulli example used in Jain and Neal (2004) and Dahl (2003).
The synthetic datasets are small with each consisting of 100points on 5 clusters. The dimension of
the data is varied from 6 to 18 dimensions as well as the concentration parameter in theCRP (θ)
process at each level of the hierarchy. We use the same parameter θ on both levels. We refer the
reader to Jain and Neal (2004) for details about the exact parameters that generate the clusters. To
adapt the dataset for the HDP setting, we assign a point in clusteri to groupi with probability0.6.
Otherwise one of the4 other groups are chosen at random. Each sampler is initialized to a partition
which contains a single cluster. Each is then run for 200,000to 300,000 sweeps of which the first
100,000 are treated as burnin. One sample was taken per sweep. For each dimension we generated
10 datasets and ran all the samplers on each of the datasets. Due the the different characterstics of
each dataset, the effective sample sizes for the different datasets can greatly vary . Due to this, we
compare the ratio of each sampler’s effective sample size per likelihood evaluation to the Gibbs
sampler in the CRF representation. For each sampler, this gives the number of effective samples
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for the same computational cost as drawing an effective sample size of 1 using the CRF Gibbs
sampler.

Discussion of Beta-Bernoulli results

Tables 4.1,4.2,4.3, and 4.4 summarize the results of the experiment. The results suggest there are
two regimes in which the samplers exhibit dramatically different performance characteristics. In
the first regime, the cluster sizes are not well-defined and the chain transitions between partitions
with differing numbers of clusters. In this case, the forest-based Gibbs sampler and the split-
merge samplers perform dramatically better than the CRF Gibbssampler. In the second regime,
the cluster sizes are well-defined and virtually all split-merge steps are rejected. We note that the
mixing properties of the Markov chain are arguably less interesting when the clusters are well
defined since the chain is performing Bayesian averaging overparameters that change very little.
In this regime, the CRF Gibbs sampler achieves better effective sample sizes per computational
unit than our proposed samplers when it appeared to mix. However, the CRF Gibbs sampler
was unreliable and often got stuck in a local mode as illustrated in figure 4.6. The degradation of
performance of the forest-based Gibbs sampler was similar to the expected worst case performance
derived in section 3.6 where the forest-based Gibbs sampleris roughly three times worse than the
CRF Gibbs sampler. for a CRP. Figure 4.1 and subsequent figures show these two regimes.

With regards to mixing, in all cases, the split-merge samplers appeared to reach a good mode
faster than the forest-based Gibbs sampler and CRF Gibbs sampler. In most cases, the forest-based
Gibbs sampler reached a mode faster than the CRF Gibbs sampler.Since these experiments were
all performed with all points initialized to a single block,the CRF Gibbs sampler often became
stuck at smaller number of clusters than the rest of the samplers. As expected, the split-merge
samplers were the best at escaping from local modes.

The experimental results also showed that the introductionof an early rejection step to the
split-merge sampler substantially improves the plain split-merge sampler in most cases. Since
the implementation of the split-merge sampler interleavessplit-merge moves with the forest-based
Gibbs sampler, the early rejection step essentially made split-merge moves nearly free when they
are not beneficial.

Ramachandran Density Estimation

We also consider a dataset for estimating the Ramachandran probability distributions given a
residue and its neighbors used in Ting et al. (2010). For these experiments only the central residue
Arginine and its right neighboring residue were used. Thereare 20 possible neighboring residues
yielding 20 groups in the HDP. There were a total of 2155 measurements ofφ, ψ angles. We ran
each sampler for 30,000 iterations and treated the first 15,000 as burnin. For these chains, the as-
signment ot points to an initial cluster was made by fitting a finite Gaussian mixture model. In this
experiment, the forest-based Gibbs sampler and split-merge samplers substantially outperform the
CRF Gibbs sampler. The split-merge sampler with early rejection but no early stopping performed
the best out of the algorithms tried. The results are summarized in Table 4.5 and figures 4.7, 4.8,
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kernel theta dim ratio sd 25 pct 50 pct 75 pct

Forest 1 6 5.53 1.13 3.15 5.41 7.63
SM(3,1) w/ rej 1 6 6.84 1.18 4.01 6.55 10.26
SM(5,1) w/ rej 1 6 12.92 1.15 8.86 11.99 22.29
SM(3,1) 1 6 5.24 1.17 3.49 5.58 6.78
SM(5,1) 1 6 5.94 1.15 3.73 5.88 11.36

Forest 1 9 13.30 1.28 4.19 11.05 40.49
SM(3,1) w/ rej 1 9 32.77 1.41 13.72 44.51 69.34
SM(5,1) w/ rej 1 9 51.60 1.30 13.57 86.49 245.84
SM(3,1) 1 9 26.17 1.42 10.64 39.64 56.57
SM(5,1) 1 9 23.09 1.31 5.63 40.52 107.74

Forest 1 12 3.52 1.45 0.35 6.03 27.08
SM(3,1) w/ rej 1 12 12.44 1.97 0.60 30.00 142.90
SM(5,1) w/ rej 1 12 22.48 1.61 0.32 62.47 404.64
SM(3,1) 1 12 9.58 1.98 0.53 16.37 112.58
SM(5,1) 1 12 9.47 1.62 0.15 26.94 189.60

Forest 1 15 0.89 1.65 0.24 0.33 4.58
SM(3,1) w/ rej 1 15 2.38 2.12 0.27 0.36 79.71
SM(5,1) w/ rej 1 15 2.61 1.68 0.21 0.33 15.78
SM(3,1) 1 15 1.60 2.12 0.17 0.27 56.32
SM(5,1) 1 15 1.01 1.68 0.08 0.13 5.89

Forest 1 18 1.39 2.19 0.18 0.30 426.29
SM(3,1) w/ rej 1 18 4.71 2.58 0.22 0.37 344.14
SM(5,1) w/ rej 1 18 5.81 1.90 0.16 0.29 1117.01
SM(3,1) 1 18 3.12 2.60 0.16 0.25 251.38
SM(5,1) 1 18 2.37 1.90 0.07 0.13 412.06

Table 4.1: Ratio of effective size of sampler per 1M likelihood evaluations vs. CRF Gibbs sampler.
θ = 1
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Figure 4.1: These figures show the effective sample size per 1million likelihood evaluations for
each of the proposed samplers in relation to the CRF Gibbs sampler. The x shaped points represent
runs in which one of the chains clearly failed to mix since thedifferent samplers did not agree on
the average number of clusters. The solid line has slope 1 anddenotes the region where a sampler
exhibited equal performance compared to the CRF Gibbs sampler. The dotted line represents the
expected worst case performance of a Forest Gibbs sampler compared to the CRF Gibbs sampler.
The heuristic derivation is in section 3.6. In general, the points fall into three regimes: one regime
in which the newly proposed samplers substantially outperform the CRF Gibbs sampler, and a
second regime in which the number of clusters is basically fixed and all split-merge moves are
rejected. In this regime, the performance of the forest-based Gibbs sampler is often close to the
expected worst case performance when compared to a CRF Gibbs sampler. For cases where the
calculated effective size was worse than the expected worstcase, many are clear cases where the
CRF Gibbs sampler failed to mix.
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Ratio of effective sample size vs. CRF Gibbs Sampler
by dimension of data, theta = 1
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Figure 4.2: These figures show the harmonic mean of the ratio of effective size of each sampler
relative to the CRF Gibbs sampler. Ninety-five percent confidence intervals are included as well.
In the cases where the posterior has significant mass on both clusterings with four and with five
clusters, the newly proposed samplers significantly outperform the CRF Gibbs sampler. However,
in higher dimensions where the posterior tends to concentrate on only clusterings with 4 clusters,
the new samplers do no better than the CRF Gibbs sampler on average. The early rejection step
for the split-merge sampler typically improves the performance.
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Ratio of effective sample size vs. CRF Gibbs Sampler
by dimension of data, theta = 3
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Figure 4.3: These figures show the harmonic mean of the ratio of effective size of each sampler
relative to the CRF Gibbs sampler when the CRP parameter at both levels of the HDP hierarchy is
θ = 3 .
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Ratio of effective sample size vs. CRF Gibbs Sampler
by dimension of data, theta = 5
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Figure 4.4: These figures show the harmonic mean of the ratio of effective size of each sampler
relative to the CRF Gibbs sampler when the CRP parameter at both levels of the HDP hierarchy is
θ = 3 .
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Ratio of effective sample size vs. CRF Gibbs Sampler
by dimension of data, theta = 7
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Figure 4.5: These figures show the harmonic mean of the ratio of effective size of each sampler
relative to the CRF Gibbs sampler when the CRP parameter at both levels of the HDP hierarchy is
θ = 3 .
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Figure 4.6: These figures show traces for the cluster sizes over time for a chain where the CRF
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the bottom represents the total size of of then largest blocks.
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kernel theta dim ratio sd 25 pct 50 pct 75 pct

Forest 3 6 1.60 1.08 1.30 1.40 1.95
SM(3,1) w/ rej 3 6 1.79 1.14 1.23 1.90 2.41
SM(3,1) 3 6 1.39 1.14 0.94 1.46 1.94

Forest 3 9 3.16 1.27 1.96 2.80 4.67
SM(3,1) w/ rej 3 9 6.19 1.34 2.87 7.30 13.78
SM(3,1) 3 9 4.63 1.35 2.45 5.06 10.35

Forest 3 12 4.26 1.57 2.10 5.53 10.85
SM(3,1) w/ rej 3 12 30.38 1.56 16.40 32.87 58.25
SM(3,1) 3 12 25.81 1.52 13.83 24.29 45.07

Forest 3 15 2.19 1.66 0.32 3.47 14.92
SM(3,1) w/ rej 3 15 8.55 2.12 0.38 21.82 82.58
SM(3,1) 3 15 5.67 2.13 0.24 15.16 62.91

Forest 3 18 0.97 2.71 0.30 0.32 0.95
SM(3,1) w/ rej 3 18 1.31 2.40 0.23 0.29 1.62
SM(3,1) 3 18 0.89 2.40 0.16 0.21 1.24

Table 4.2: Ratio of effective size of sampler per 1M likelihood evaluations vs. CRF Gibbs sampler.
θ = 3

and 4.9. Figure 4.3 shows estimated Ramachandran probabilities given alanine and alanine or
alanine and glycine as the central and right residue respectively.

In this dataset, the forest-based Gibbs sampler consistently outperformed the CRF Gibbs sam-
pler, and split-merge steps further improved the effectivesample sizes per unit of computation.
Both the early rejection and early stopping rules substantially improved the autocorrelation per
unit computation over the plain split-merge proposals. However, combining both the early rejec-
tion and early stopping rules did no better than the early rejection rule by itself.

We also examined the burn-in period in this example and foundthat the forest-based Gibbs
sampler finds a good local mode significantly faster than the CRFGibbs sampler. The split-merge
sampler did not find modes significantly faster than the forest-based Gibbs sampler unless early
rejection was used. With early rejection, a good mode was found faster. Early stopping did not
appear to help reach a good mode faster. All samplers found similar values for the complete data
log-likelihood after the burn in period.
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Figure 4.7: These figures show the effective sample size per 1million likelihood evaluations for
each of the proposed samplers in relation to the CRF Gibbs sampler. Each point represents a pair
of chains with the same initialization. We see the split-merge samplers are the most effective, in
particular the split-merge samplers with the optimizations of early stopping or early rejection have
the best effective sample sizes.



CHAPTER 4. MARKOV CHAINS ON GRAPHS AND SPLIT-MERGE SAMPLERS 81

CRF Gibbs effective size

E
ffe

ct
iv

e 
si

ze

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

kernel

Forest
SM(5,1)

SM(5,1) effective size

E
ffe

ct
iv

e 
si

ze

0.1

0.2

0.3

0.4

0.5

0.
5

1.
0

1.
5

2.
0

kernel

Forest
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the Forest-based Gibbs samplers in relation to the CRF Gibbs sampler (left) and Split-Merge(5,1)
sampler (right). As with the Beta-Binomial data sets, the solid line represents equal performance,
and the dotted line represents the expected worse case performance. In this case, the forest-based
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kernel theta dim ratio sd 25 pct 50 pct 75 pct

Forest 5 6 1.41 1.08 1.16 1.34 1.75
SM(3,1) w/ rej 5 6 1.64 1.09 1.23 1.67 2.15
SM(3,1) 5 6 1.27 1.10 0.91 1.34 1.73

Forest 5 9 2.04 1.24 1.69 2.35 2.97
SM(3,1) w/ rej 5 9 4.19 1.30 2.64 4.06 8.30
SM(3,1) 5 9 3.33 1.32 2.01 3.01 7.64

Forest 5 12 2.21 1.75 1.29 3.36 7.23
SM(3,1) w/ rej 5 12 16.59 1.79 16.74 25.60 51.46
SM(3,1) 5 12 13.96 1.78 12.25 19.09 42.30

Forest 5 15 1.05 1.71 0.35 0.60 4.78
SM(3,1) w/ rej 5 15 3.47 1.95 0.34 0.83 49.10
SM(3,1) 5 15 2.31 1.97 0.23 0.63 35.01

Forest 5 18 0.30 2.79 0.21 0.31 0.50
SM(3,1) w/ rej 5 18 0.89 2.18 0.22 0.38 0.92
SM(3,1) 5 18 0.60 2.18 0.17 0.25 0.60

Table 4.3: Ratio of effective size of sampler per 1M likelihood evaluations vs. CRF Gibbs sampler.
θ = 5
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Figure 4.10: The left plot is a trace plot of the complete datalog likelihood as a function of number
of likelihood evaluations for the Arginine data set. The right plot is a smoothed version taken over
5 runs. Clearly, the split-merge sampler with early rejection and mixed with Gibbs steps in the
forest representation performs the best, and the CRF Gibbs sampler does worst.
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kernel theta dim ratio sd 25 pct 50 pct 75 pct

Forest 7 6 1.40 1.05 1.23 1.32 1.66
SM(3,1) w/ rej 7 6 1.48 1.07 1.19 1.31 1.90
SM(3,1) 7 6 1.21 1.08 0.93 1.17 1.62
SM(5,1) 7 6 0.75 1.13 0.47 0.59 1.25

Forest 7 9 1.83 1.20 1.20 1.92 2.76
SM(3,1) w/ rej 7 9 3.09 1.29 1.53 2.63 5.89
SM(5,1) w/ rej 7 9 4.07 1.39 1.37 3.74 10.73
SM(3,1) 7 9 2.55 1.35 1.32 2.22 5.89

Forest 7 12 2.42 1.74 1.79 4.24 8.88
SM(3,1) w/ rej 7 12 14.47 1.68 13.68 24.59 43.10
SM(5,1) w/ rej 7 12 34.50 1.75 35.66 71.46 114.14
SM(3,1) 7 12 12.09 1.76 10.03 20.01 30.66

Forest 7 15 2.36 1.52 0.43 3.00 7.82
SM(3,1) w/ rej 7 15 9.77 1.82 0.37 32.42 61.96
SM(5,1) w/ rej 7 15 15.25 2.06 0.27 70.25 134.39
SM(3,1) 7 15 4.70 1.95 0.26 19.32 29.80

Forest 7 18 1.01 2.35 0.30 0.38 2.50
SM(3,1) w/ rej 7 18 2.36 2.30 0.29 0.45 15.40
SM(5,1) w/ rej 7 18 2.36 2.41 0.21 0.30 17.77
SM(3,1) 7 18 1.22 2.25 0.19 0.36 3.82

Table 4.4: Ratio of effective size of sampler per 1M likelihood evaluations vs. CRF Gibbs sampler.
θ = 7
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kernel stop rej ratio sd 25 pct 50 pct 75 pct
Forest no stop no early rej 2.54 1.08 1.80 2.79 3.69
SM(5,1) no stop no early rej 7.28 1.13 3.87 8.09 15.61
SM(5,1) stop 10 no early rej12.54 1.16 6.06 11.79 24.24
SM(5,1) stop 20 no early rej13.80 1.17 6.37 12.54 25.62
SM(5,1) no stop early reject 24.28 1.19 11.12 25.98 54.46
SM(5,1) stop 10 early reject 20.52 1.16 10.08 21.52 41.53
SM(5,1) stop 20 early reject 21.00 1.16 8.84 29.39 40.66

Table 4.5: Ramachandran data: Ratio of effective size of sampler per 1M likelihood evaluations
vs. CRF Gibbs sampler.

ALA ALA

 −9 

 −9 

 −8 

 −8 

 −8 

 −7 

 −7 

 −6  −6 

 −6 

 −6 

 −6 

 −5 

 −5 
 −5 

 −5 

 −5 

 −5 

 −5  −4 

 −4 

 −4 

 −4 

 −4 

 −4 

 −4 

 −3 

 −3 

 −3 

 −3 

 −3 

 −3 

 −
3 

 −2 

 −2 

 −2 

 −2 

 −2 

 −2 

 −1 

 −1 

 −1 

 −1 

 −1 

 0 

 0 

 0 

 1 

 1 

−150 −100 −50 0 50 100 150

−
15

0
−

10
0

−
50

0
50

10
0

15
0

ALA ALA

 −8 

 −8 
 −8 

 −7 

 −7 

 −6 

 −6 

 −6 

 −5 

 −
5 

 −5 
 −5  −5 

 −5 

 −5 

 −5  −4 

 −4 

 −4 

 −4 

 −4 

 −
4 

 −4 

 −3 

 −3 

 −3 

 −3 

 −3 

 −3 

 −3 

 −
3 

 −2 

 −2 

 −2 

 −2 

 −2 

 −1 

 −1 

 −1 

 −1 

 −1 

 0 

 0 

 0 

 1 

 1 

 2 

−150 −100 −50 0 50 100 150

−
15

0
−

10
0

−
50

0
50

10
0

15
0

Figure 4.11: The left plot shows an estimated Ramachandran density given alanine and alanine as
the central and right residues respectively. The right plotis the same but conditional on alanine
and glycine instead. The contour plots show that while components are shared in the HDP, the
different density estimates still how some variation between the different groups in the HDP.
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4.4 Discussion of empirical results

Empirically, the forest-based Gibbs sampler was generallymore effective than the standard CRF
Gibbs sampler. This was true both for small synthetic datasets as well as a larger real world dataset.
The addition of split-merge moves further improved the forest-based Gibbs sampler. However, for
both the forest-based Gibbs split-merge samplers, if the clusters are well-defined, then the CRF
Gibbs sampler performs significantly better. However, we regard this case as less interesting since
only a few samples are needed to accurately approximate the posterior.

Of the two optimizations of early rejection and early stopping that we added to split-merge
samplers, early rejection of bad merge proposals was most beneficial. While early stopping is an
improvement over the plain split-merge sampler, it is unclear if it is beneficial when combined with
early rejection.

We note that our version of the split-merge sampler is analogous to Dahl’s sequentially allo-
cated procedure for CRP mixture models. The split proposal is formed by taking the sequential
procedure for drawing from the prior and adding a likelihoodterm. At the start of procedure to
draw a split proposal, two blocks are initialized to containnothing. One may also take Jain and
Neal’s approach of running a Gibbs sweep. For a split proposal in that approach, two blocks are
initialized to a random split of the initial block. In the forest representation where the sufficient
statistics on subtrees are memoized, performing a random split into two subtrees and calculating
a single backward sweep does not take more computation than the sequential allocation approach.
Such an approach may be useful when the prior places most of its mass in areas of low posterior
probability.
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Chapter 5

Conclusion

This thesis examines two distinct topics related to graphs.In each, our goals are to examine an
existing problem under a new perspective and to demonstratehow the insights gained may be
turned into practical tools.

In the first topic, we analyze how the graph construction method affects the limit operator
of the graph Laplacian and analyze the relationship betweengraph Laplacians and LLE. This
analysis covers most graph constructions of interest and can be easily extended to cover most graph
constructions used in practice. Furthermore, it introduces the idea of pilot estimates and variable
bandwidths to graph Laplacians and suggests which graph constructions have good theoretical
and computational properties. A natural extension to this topic is to analyze the broader class
of manifold learning methods. Though not included in this thesis, we have analyzed methods that
lead to second-order smoothness functionals, namely Hessian LLE and local tangent space analysis
(LTSA).

In the second topic, we give useful paradigms for viewing nonparametric Bayesian priors as
combinatorial stochastic processes. In particular, we give representations of the underlying infi-
nite stick-breaking processes as random graphs, and we introduce the discrete fragmentation and
coagulation processes as a means to characterize priors fordifferent hierarchical Bayesian mod-
els. These representations are also useful for developing MCMC algorithms. We give two new
samplers for the hierarchical Dirichlet process and show their, sometimes dramatic, empirical im-
provement over existing samplers, and we sketch new algorithms for other nonparametric Bayesian
models based on their combinatorial representations. These ideas are developed in the more gen-
eral context of studying distributions on combinatorial objects, and we give one application of
the link between random permutations and random trees to devise an algorithm for generating a
random sample without replacement from distributed streams. We leave several topics only par-
tially explored in this topic including a more formal treatment of the MCMC samplers which we
only give a sketch of as well as exploring a particularly attractive hierarchical model with levels
distributed as a Pitman-Yor process.
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E. Gińe and V. Koltchinskii. Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample
results. In4th International Conference on High Dimensional Probability, 2005.

S.J. Godsill. On the relationship between Markov chain Monte Carlo methods for model uncertainty.Journal of
Computational and Graphical Statistics, 10(2):230–248, 2001.

P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.Biometrika,
82(4):711, 1995.

A. Grigor’yan. Heat kernels on weighted manifolds and applications.Cont. Math, 398:93–191, 2006.

M. Hein, J. Audibert, and U. Von Luxburg. From Graphs to Manifolds - Weak and Strong Pointwise Consistency of
Graph Laplacians. InConference on Learning Theory (COLT), 2005.

M. Hein, J.-Y. Audibert, and U. von Luxburg. Graph Laplacians and their convergence on random neighborhood
graphs.Journal of Machine Learning Research, 8:1325–1370, 2007.

J. Jacod and A. N.̌Sirjaev.Limit Theorems for Stochastic Processes. Springer, 2003.

S. Jain and R. M. Neal. A split-merge Markov chain Monte Carloprocedure for the Dirichlet process mixture model.
Journal of Computational and Graphical Statistics, 13(1):158–182, 2004.

S. Jain and R. M. Neal. Splitting and merging components of a nonconjugate Dirichlet process mixture model.
Bayesian Analysis, 2(3):445–472, 2007.

O. Kallenberg.Foundations of Modern Probability. Springer Verlag, 2002.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral.Journal of the ACM, 51(3):497–515,
2004.

J. F. Kingman. The coalescent.Stochastic processes and their applications, 13(3):235–248, 1982.
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