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Abstract

Graphs and Combinatorial Representations of StochastieBses
by
Daniel Shaw Ting
Doctor of Philosophy in Statistics
with the Designated Emphasis in

Communication, Computation, and Statistics
University of California, Berkeley

Professor Michael I. Jordan, Chair

This thesis covers two distinct topics connected by thedr afsgraphs. First is a theoretical
analysis of graph Laplacians and locally linear embeddihgds] on manifolds using tools for dif-
fusion processes. The implications of this analysis ara {@Btter understanding of the relationship
between graph Laplacians and LLE, (2) understanding hovaphgconstruction method affects
the limit operator, and (3) obtaining a graph has nice pitiggesuch as sparsity or a well-behaved
spectrum given a desired limit.

In the second topic we examine random graphs and theiragkdtip to nonparametric Bayesian
methods. We give combinatorial processes describing aavenparametric hierarchical Bayesian
models. These processes lead to the development of new MCkifless and provide a new
perspective on the models. We introduce the idea of discadgulation and fragmentation pro-
cesses to describe various hierarchical models and iglemtifarticular model of interest using
coagulation-fragmentation duality. We consider thesel@amgraphs in the more general context
of random combinatorial objects and give an applicationamfdom trees to drawing a random
sample without replacement from a distributed stream.
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Chapter 1

Introduction

This dissertation presents a few topics using graphs iisstatand machine learning. The appli-
cations of graphs may be broken down abstractly into thresgoaes:

1. Graph Laplacians and an analysis of their asymptoticeptgs,

2. Representations of combinatorial objects and their egjitins to nonparametric hierarchi-
cal Bayesian models, and

3. Exploiting graphical structure in general Markov ChainritoCarlo procedures.

For all three categories, the goals are two-fold. First isdégelop theory or insights which can
present a unified perspective of multiple existing methddiss allows one to relate as well as dis-
tinguish amongst the different methods. Second is to ajyalye insights to develop new methods
or models that improve upon existing ones.

The first category contributes to understanding manifoéaiieng methods as well as in em-
pirically constructed smoothness penalties for use in seipervised learning. Specifically, we
examine how the choice of graph construction method affisetdimiting graph Laplacian. We
import theory for the approximation of diffusion processesllow us to (1) analyze both Lapla-
cian based methods and local linear embedding (LLE), (2)tiifeand sometimes correct for
deficiencies in methods, and (3) define a graph constructethad that can empirically construct
a desired first order smoothness functional and how to doatvray that gives attractive theoret-
ical or computational properties. From a technical pemsgeahe contributions are a method for
analyzing KNN graphs and other non-smooth kernels.

The second category focuses on finite combinatorial reptasens for stick-breaking pro-
cesses used in nonparametric Bayesian mixture modeling thieedata itself is finite. The con-
tributions to this area are two-fold. The first contributisnin computation for MCMC methods.
Using representations of mixture models with random feresé develop novel samplers for non-
parametric Bayesian models like the Dirichlet process (DBture model or the hierarchical
Dirichlet process (HDP) mixture model which outperformstixig samplers. Developing sam-
plers for other models such as the nested Dirichlet procd3RB) and tree stick-breaking process
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is straightforward using the representation. The seconttibation is that the combinatorial rep-
resentations present another perspective and interaasights for many hierarchical Bayesian
models. In particular, the hierarchical structure of maapparametric Bayesian models may be
codified by coagulation and fragmentation operations. @hls in understanding the relationship
among the different hierarchical nonparametric Bayesiadetsoas well as suggesting a new hier-
archical model where the marginal distributions at evevglléorm a Pitman-Yor process. We also
examine some side problems in random permutations and sepgrid show how the combina-
torial representation yields a novel reservoir samplirggpathm for computing a random sample
without replacement in a map-reduce or distributed setting

The third category introduces the idea of using augmentigikov chain on a single variable
to a Markov chain where the states are themselves are grahissideas is used to propose some
beneficial modifications to the new MCMC algorithms developetthe second category.



Chapter 2

Graph Constructions and Asymptotics of
the Graph Laplacian

Graph Laplacians have become a core technology in machameig. They have appeared in
clustering (Kannan et al., 2004, von Luxburg et al., 2008peahsionality reduction (Belkin and

Niyogi, 2003, Nadler et al., 2006), and semi-supervisediaeg (Belkin and Niyogi, 2004, Zhu

et al., 2003).

While graph Laplacians are but one member of a broad classtbbaethat use local neighbor-
hood graphs to model data lying on a low-dimensional maaiéshbedded in a high-dimensional
space, they are distinguished by their appealing matheatgiroperties, notably: (1) the graph
Laplacian is the infinitesimal generator for a random walktloe graph, and (2) it is a discrete
approximation to a weighted Laplace-Beltrami operator oraaifold, an operator which has nu-
merous geometric properties and induces a smoothnessoinaictThese mathematical properties
have served as a foundation for the development of a grovi@grétical literature that has ana-
lyzed learning procedures based on the graph Laplaciareview briefly, Bousquet et al. (2003)
proved an early result for the convergence of the unnorea@lgraph Laplacian to a regularization
functional that depends on the squared density Belkin and Niyogi (2005) demonstrated the
pointwise convergence of the empirical unnormalized Leiplato the Laplace-Beltrami operator
on a compact manifold with uniform density. Lafon (2004) &ratller et al. (2006) established a
connection between graph Laplacians and the infinitesima¢igator of a diffusion process. They
further showed that one may use the degree operator to ttmreffect of the density. Hein et al.
(2005) combined and generalized these results for weak@intiygse (strong) convergence under
weaker assumptions as well as providing rates for the unalared, normalized, and random walk
Laplacians. They also make explicit the connections to temgkted Laplace-Beltrami operator.
Singer (2006) obtained improved convergence rates forfanmidensity. Gie and Koltchinskii
(2005) established a uniform convergence result and fomaticentral limit theorem to extend the
pointwise convergence results. von Luxburg et al. (2008)Belkin and Niyogi (2006) presented
spectral convergence results for the eigenvectors of graplacians in the fixed and shrinking
bandwidth cases respectively.

Although this burgeoning literature has provided many uwisgfsights, several gaps remain
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between theory and practice. Most notably, in construgtiegneighborhood graphs underlying the
graph Laplacian, several choices must be made, includangtthice of algorithm for constructing
the graph, witht-nearest-neighbor (kNN) and kernel functions providing thain alternatives, as
well as the choice of parameters kernel bandwidth, normalization weights). These choctzes
lead to the graph Laplacian generating fundamentally mifferandom walks and approximating
different weighted Laplace-Beltrami operators. The emgstiheory has focused on one specific
choice in which graphs are generated with smooth kernelsshitinking bandwidths. But a variety
of other choices are often made in practice, including kN&pgs, -neighborhood graphs, and
the “self-tuning” graphs of Zelnik-Manor and Perona (200&urprisingly, few of the existing
convergence results apply to these choices (see Maier(@08B) for an exception).

This chapter provides a general theoretical framework fafyaing graph Laplacians and op-
erators that behave like Laplacians. Our point of view diféeom that found in the existing
literature; specifically, our point of departure is a sta@tltaprocess framework that utilizes the
characterization of diffusion processes via drift andudiibn terms. This yields a general kernel-
free framework for analyzing graph Laplacians with shnvgkheighborhoods. We use it to extend
the pointwise results of Hein et al. (2007) to cover non-stind@rnels and introduce location-
dependent bandwidths. Applying these tools we are ableewtiiy the asymptotic limit for a
variety of graphs constructions including kNNnpeighborhood, and “self-tuning” graphs. We are
also able to provide an analysis for Locally Linear EmbeddRoweis and Saul, 2000).

A practical motivation for our interest in graph Laplacidvased on KNN graphs is that these
can be significantly sparser than those constructed usimglse even if they have the same limit.
Our framework allows us to establish this limiting equivale. On the other hand, we can also ex-
hibit cases in which KNN graphs converge to a different litmén graphs constructed from kernels,
and that this explains some cases where kNN graphs perfoontypdoreover, our framework
allows us to generate new algorithms: in particular, by gisotation-dependent bandwidths we
obtain a class of operators that have nice spectral conveggeroperties that parallel those of
the normalized Laplacian in von Luxburg et al. (2008), butchitonverge to a different class of
limits.

2.1 The Framework

Our work exploits the connections among diffusion processkiptic operators (in particular the
weighted Laplace-Beltrami operator), and stochastic wiffgal equations (SDEs). This builds
upon the diffusion process viewpoint in Nadler et al. (2008jitically, we make the connection
to the drift and diffusion terms of a diffusion process. Thlbws us to present a kernel-free
framework for analysis of graph Laplacians as well as giargetter intuitive understanding of the
limit diffusion process.

We first give a brief overview of these connections and priesengeneral framework for the
asymptotic analysis of graph Laplacians as well as progidome relevant background material.
We then introduce our assumptions and derive our main seBulithe limit operator for a wide
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range of graph construction methods. We use these to ced@dgmptotic limits for specific graph
constructions.

Relevant Differential Geometry

AssumeM is am-dimensional manifold embeddedi¥i. To identify the asymptotic infinitesimal
generator of a diffusion on this manifold, we will derive teft and diffusion terms in normal
coordinates at each point. We refer the reader to Boothby6)1f®8 an exact definition of normal
coordinates. For our purposes it suffices to note that nocowdinates are coordinatesii* that
behave roughly as if the neighborhood was projected ontdathgent plane at. The extrinsic
coordinates are the coordinat®$ in which the manifold is embedded. Since the density, and
hence integration, is defined with respect to the manifollpwst relate to link normal coordinates

s around a point: with the extrinsic coordinateg This relation may be given as follows:

y—x = Hys+ Ly(ss") + O(|[s*|]), (2.1)

whereH, is a linear isomorphism between the normal coordinatd?’irand them-dimensional
tangent pland’, atz. L, is a linear operator describing the curvature of the madhiéoid takes
m x m positive semidefinite matrices into the space orthogonghéaangent planel-. More
advanced readers will note that this statement is GaussheandH, and L, are related to the
first and second fundamental forms.

We are most interested in limits involving the weighted laaygl-Beltrami operator, a particular
second-order differential operator.

Weighted Laplace-Beltrami operator

Definition 1 (Weighted Laplace-Beltrami operatofhe weighted Laplace-Beltrami operator with
respect to the densityis the second-order differential operator defineddy := A — VT‘ITV
whereA , := div o V is the unweighted Laplace-Beltrami operator.

It is of particular interest since it induces a smoothingctional for f € C?(M) with support
contained in the interior of the manifold:

8P i@ = 1V - (2.2)

Note that existing literature on asymptotics of graph Lejalas often refers to the/" weighted
Laplace-Beltrami operator as, wheres € R. This isA,. in our notation. For more information
on the weighted Laplace-Beltrami operator see Grigor'y@962.

Equivalence of Limiting Characterizations

We now establish the promised connections among ellipgcaiprs, diffusions, SDESs, and graph
Laplacians. We first show that elliptic operators defineudifbn processes and SDEs and vice
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versa. An elliptic operataf is a second order differential operator of the form

67(0) = Yoy 31D + )2 4 ey pio)

i 7

where them x m coefficient matrix(a;;(z)) is positive semidefinite for alt. If we use normal
coordinates for a manifold, we see that the weighted LapBeteami operator), is a special
case of an elliptic operator withu;(x)) = I, the identity matrixh(x) = 45, andc(z) = 0.
Diffusion processes are related via a result by Dynkin wisitzttes that given a diffusion process,
the generator of the process is an elliptic operator.

The (infinitesimal) generatdy of a diffusion process; is defined as

t—0 t

when the limit exists and convergence is uniform overHereE, f(X;) = E(f(X;)| X, = ).
A converse relation holds as well. The Hille-Yosida theomdmaracterizes when a linear opera-
tor, such as an elliptic operator, is the generator of a ststah process. We refer the reader to
Kallenberg (2002) for proofs.

A time-homogeneous stochastic differential equation (pB&ines a diffusion process as a
solution (when one exists) to the equation

dXt = M(Xt)dt + U(Xt)th,

where X, is a diffusion process taking valuesitf. The termsu(z) ando(x)o(z)T are thedrift
anddiffusionterms of the process.

By Dynkin’s result, the generat@ of this process defines an elliptic operator and a simple
calculation shows the operator is

G/le) = % 2_ (o@)o@)), %{;2 i Z “i(x)agf)'

ij

In such diffusion processes there is no absorbing statehartdtm in the elliptic operatefz) = 0.
We note that one may also consider more general diffusiongsses where(x) < 0. When
c(x) < 0 then we have the generator of a diffusion process with kjliitherec(z) determines the
killing rate of the diffusion at:.

To summarize, we see that a SDE or diffusion process defindipiiceoperator, and impor-
tantly, the coefficients are the drift and diffusion termsd dhe reverse relationship holds: An
elliptic operator defines a diffusion under some regularitgditions on the coefficients.

All that remains then is to connect diffusion processes mtiooous space to graph Laplacians
on a finite set of points. Diffusion approximation theoremsvde this connection. We state one
version of such a theorem .
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Theorem 2 (Diffusion Approximation) Let u(z) ando(z)o(x)? be drift and diffusion terms for
a diffusion process defined on a compact$et R°, and let and’ be the corresponding infinites-
imal generator. Le{Yt(”)}t be Markov chains with transition matricd3, on state spacegr; }!-,
for all n, and letc,, > 0 define a sequence of scalings. Put

~ ) — Ey(n)_ Y(”): .

fin(2;) =c,E(Y; i|Yy ;)

6n(xi)&n(xi)T:char(Y1(n)\Y[)(n) = ;).
Let f € C?(S). Ifforall e > 0
fin(@i) = p(s),
6n(23) 00 (1) — o(z)o(z)T,

¢psup P <HY1(n) — x| > e‘ YO(") = x,) — 0,

i<n

then the generators,, f = ¢,(P, — I)f — G f Furthermore, for any boundeflandt, > 0 and
the continuous-time transition kern€l(¢) = exp(tA,) andT' the transition kernel foiG, we
haveT,, (t) f — T'(t)f uniformly int for ¢t < .

Proof. We first examine the case wh¢lr) = =. By assumption,

Apmpx = (P, — DN = an(Yl(") — xi\Yb(") = ;)
~ inl) = p(x) = Ar.

Similarly if f(z) = za, ||Aymaf — Afll, — 0. If f(z) =1, thenA, 7, f = m,Af = 0. Thus,
by linearity of A,,, A, m.f — Af for any quadratic polynomiaf.

Taylor expandf to obtainf(z + h) = ¢.(h) + J.(h) wheregq,(h) is a quadratic polynomial
in h. Since the second derivative is continuous and the suppgrisscompactsup,c v 9.(h) =
o(||h|[%) andsup, , d.(h) < M for some constant/.

LetA, = Yl(") — ;. We may bound4,, acting on the remainder terdp(h) by

sup Apdy = caE(0,(An)|Y" = 2)
< sup B (0 (A)I(| An| < Y3 = )+
M sup ¢, P(||A,]] > e|yy™ = z)
= o(caB(||An][* Vg™ = 2)) + M sup e, P(||A,]| > e[Yy™ = 2)
= o(1) x

where the last equality holds by the assumptions on the umiémnvergence of the diffusion term
6,07 and on the shrinking jumpsizes. Thut,r,f — Af forany f € C*(M).
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The class of function§’*(M) is dense in_..(M) and form a core for the generatdr Stan-
dard theorems give equivalence between strong convergémenitesimal generators on a core
and uniform strong convergence of transition kernels on aaBarspace (e.g. Theorem 1.6.1 in
Ethier and Kurtz (1986)). ]

We remark that though the results we have discussed thusefatated in the context of the
extrinsic coordinate®R’, we describe appropriate extensions in terms of normaldiocates in
section 2.8.

2.2 Assumptions

We describe here the assumptions and notation for the réisé @hapter. The following assump-
tions we will refer to as thetandard assumptiondJnless stated explicitly otherwise, |¢tbe an
arbitrary function inC?(M).

Manifold assumptions

AssumeM us a smoothn-dimensional manifold isometrically embeddedRh via the mapi :
M — R’. The essential conditions that we require on the manifaid ar

1. Smoothness, the majs a smooth embedding.

2. A single radiusi, such that for alk: € supp(f), M N B(x, ho) is a neighborhood of with
normal coordinates, and

3. Bounded curvature of the manifold overpp(f), i.e. that the second fundamental form is
bounded .

When the manifold is smooth and compact, then these conslificlsatisfied.
Assume pointgz;}2°, are sampled i.i.d. from a densitye C?(M) with respect to the natural
volume element of the manifold, and thais bounded away from O.

Notation

For brevity, we will always use,y € R’ to be points onM expressed in extrinsic coordinates
ands € R™ to be normal coordinates fgrin a neighborhood centeredat Since they represent
the same point, we will also ugeands interchangeably as function arguments, jiéy) = f(s).
Whenever we take a gradient,it is with respect to normal doates.

Generalized kernel

Though we use a kernel free framework, our main theorenzasia kernel, but one that is gen-
eralizes previously studied kernels by 1) considering simooth base kernels,, 2) introducing
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location dependent bandwidth functiongy), and 3) considering general weight functiangy).
Our main result also handles 4) random weight and bandwidtbtions.
Given a bandwidth scaling parameter- 0, define a new kernel by

K(ea) = w121, 2.3

Previously analyzed constructions using smooth kerndls @@mpact support are specific in-
stances of this more general kernel. In those construgtitresbandwidth scaling is fixed so
r. = 1 and the weighting function takes the particular fary(y) = d(z)~*d(y)~* whered(z) is
the degree function antl€ R is some constant.

The directed kNN graph is obtained &, (z,y) = I(||z — y|| < 1), r,(y) = distance to the
k' nearest neighbor of, andw,(y) = 1 for all z,y. We note that the kerné{ is not necessarily
symmetric; however, it (y) = r,(z) andw,(y) = w,(z) for all z,y € M then the kernel is
symmetric and the corresponding unnormalized Laplacipositive semi-definite.

Kernel assumptions

We now introduce our assumptions on the choiEgsh, w,., . that govern the graph construction.
Assume that the base kern€} : R, — R, has bounded variation and compact support/and

0 form a sequence of bandwidth scalings. For (possible raphtmration dependent bandwidth and
weight functions{™(-) > 0,w{"”(-) > 0, assume that they convergentg(-), w,(-) respectively
and the convergence is uniform ovee M. Further assume they have Taylor-like expansions for
allz,y € Mwith ||z —y|| < h,

r(y) = ra(x) + () + agsign(ul syus)'s + )z, 5
wi (y) = wy () + Vg (2)s + € (, 5)
where the approximation error is uniformly bounded by

sup  [e")(z,5)] = O(h7)
zEM,||s||<hn

sup  [el) (z,5)| = O(h7)
zeM,||s||<hn

We briefly motivate the choice of assumptions. The bounde@tan condition allows for
non-smooth base kernels but enough regularity to obtaitslinT he Taylor-like expansions give
conditions where the limit is tractable to analytically qme as well as allowing for random-
ness in the remainder term as long as it is of the correct offiee particular expansion for the
location dependent bandwidth allows one to analyze unididddNN graphs, which exhibit a non-
differentiable location dependent bandwidth (see se@idih Note that we do not constrain the
general weight functions{™ (y) to be a power of the degree functiaf),(z)*d,(y)* nor impose
a particular functional form for location dependent bardthsr,. This gives us two degrees of
freedom, which allows the same asymptotic limit be obtaifedan entire class of parameters
governing the graph construction. In section 2.6, we dscu® may choose a graph construction
that has more attractive finite sample properties than athestructions that have the same limit.

(2.4)
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Functions and convergence

We define here what we mean by convergence when the domaihe &irictions are changing.
When takeg, — g wheredomain(g,) = &, C M, to mean||g, — m,g||,, — 0 wherem,g =
g|Xn is the restriction ofy to X,,. Likewise, for operatorg;, on functions with domairk,,, we take
T.g = T,m.g. Convergence of operatofs — T meansl,,f — T f forall f € C*(M). When
X, = M for all n, this is convergence in the strong operator topology urtteLt, norm.

We consider the limit of the random walk Laplacian defined &Y.a, = I — D~'W wherel
is the identity,J is the matrix of edge weights, ard is the diagonal degree matrix.

2.3 Main Theorem

Our main result is stated in the following theorem.

Theorem 3. Assume the standard assumptions hold eventually with piatiyal If the bandwidth
scalingsh,, satisfyh,, | 0 andnh™"2/logn — oo, then for graphs constructed using the kernels

) = w™ |y — ||

there exists a constatty, ,, > 0 depending only on the base kerdg] and the dimensiom such
that forc,, = Zx, m/h?,

—c, LW f — Af
whereA is the infinitesimal generator of a diffusion process withfibleowing drift and diffusion
terms given in normal coordinates:

— ()2 Vp(z)  Vw(z)
o) =t (054 505

oy(x)oy(x)" = ry(x)*]

+ (m+2)%) ,

wherel is them x m identity matrix.

Proof. We apply the diffusion approximation theorem (Theorem 2)ltain convergence of the
random walk Laplacians. Sindg, | 0, the probability of a jump of size- ¢ equals 0 eventually.
Thus, we simply need to show uniform convergence of the drift diffusion terms and identify
their limits. We leave the detailed calculations in sectt® and present the main ideas in the
proof here.

We first assume thak’, is an indicator kernel. To generalize, we note that for kisrioé
bounded variation, we may writty(z) = [I(Jz] < z)dns(z) — [I(|z| < z)dn_(z) for some
finite positive measures_, n, with compact support. The result for general kernels thdovis
from Fubini’'s theorem. We also initially assume that we avegthe true density. After iden-
tifying the desired limits given the true density, we showttthe empirical version converges
uniformly to these limits.
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The key calculation is lemma 7 in the section 2.8 which eshbs that integrating against an
indicator kernel is like integrating over a sphere re-cextt®nh? 7, (x). Given this calculation and
by Taylor expanding the non-kernel terms, one obtains theitesimal first and second moments
and the degree operator.

M (z) = him / sKn(z,y)p(y)ds

n

= a0 (1) 22 ) T pla)iata) + o))
My (x) = % / ss" Ky (x,y)p(y)ds

fﬁ”;hi ()" (un)pla) ]+ O(h),

dn(7) = 7 / Kn(z,y)p(y)ds

= Clom(@)" (wo(2)p(z) + O(hn))
whereCy, n, = [u™"dn, C, ,, = [u™dn and is the signed measure= 7, — n_. A more
detailed expansion of the moment calculations is givenatice 2.8
Let Zx, m = (m+2) KS - andcn = Zr,m/h2. Sincek, /d, define Markov transition kernels,

taking the limitsus(z) = lim ¢, M 1 "(2)/dn(z) andoy(z)os(z)" = lim chZ(”( )/d,(z) and
n—oo n—oo
applying the diffusion approximation theorem gives theestaesult.

To more formally apply the diffusion approximation theorama may calculate the drift and
diffusion in extrinsic coordinates. In extrinsic coordies, we have

o) =rior (5 S e 22
+ 1 (2)* Ly (1),

o(x)o(z)" = r(z)"ly,,

wherelly, is the projection onto the tangent planeratand H, and L, are the linear mappings
between normal coordinates and extrinsic coordinatesetefmEqn (2.1).

To prove the convergence of the empirical quantities, wegxd in two steps. First, examine
the behavior of a non-random kernel where the bandwidth agight functions are fixed. The
a.s. uniform convergence of the moments can be shown usintgstér's inequality and Borel-
Cantelli. In the second step, we show that the moments usegatidom bandwidth and weight
functions may be eventually bounded above and below usipgpppate non-random functions.
These function shrink to the limit bandwidth and weight fumcs at an appropriate rate and the
squeeze theorem establishes the a.s. uniform convergemtber details are given in section 2.8

Sincep, w,, r, are all assumed to be bounded away fi@grthe scaled degree operatdysare
eventually bounded away from O with probability 1, and thatoaious mapping theorem applied

M(”)/ 2

to L gives a.s. uniform convergence of the drift and diffusion.
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]

Unnormalized and Normalized Laplacians

While our results are for the infinitesimal generator of awdifbn process, that is, for the limit
of the random walk Laplaciad,, = I — D'V, it is easy to generalize them to the unnor-
malized Laplacian., = D — W = DL,, and symmetrically normalized Laplacidn,,,,, =

I — D~ 1/2WD 1/2 __ D1/2L D 1/2

Corollary 4. Take the assumptions in Theorem 3, andd&ie the limiting operator of the random
walk Laplacian. The degree termis(-) converge uniformly a.s. to a functiaft-), and

—dLMWf 5 d-Af as.

wherec), = c,/h™. Furthermore, under the additional assumptierig'+*/log n — oo, sup,, wi™ —
wy| = o(h?), sup,,, Ir™ — .| = o(h2), andd, w,, r, € C2(M), we have

_an(n

norm

f—dY? A Y?f) as.

Proof. For any two functions);, ¢, : M — R, defineg,(é1, ¢2) = (¢1(-), f1(-)d2(-)). We note
that g, is a continuous mapping in the,, topology and

(dna C/nLZ ) = gu(dn> CnLrwf)‘
By the continuous mapping theoremdjf — d a.s. and:nLﬁ’{L)f — Lf a.s. inthe then
LM 5 d- Lf.

Thus, convergence of the random walk Laplacians impliesegence of the unnormalized Lapla-
cian under the very weak condition of convergence of theakegperator to a bounded function.

Convergence of the normalized Laplacian is slightly trickid/e may write the normalized
Laplacian as

L f=dY2L (d 2 f) (2.6)
= dyPLUW(d7YV2f) + dPLE) (d 2 — a7 f). (2.7)

Using the continuous mapping theorem, we see that conveggeinthe normalized Laplacian,
LS f — d~Y2L,,(dV/2f), is equivalent to showing,Liw ((dn"> — d"V/2)f) — 0. A
Taylor expansion of the inverse square root gives that shg)wiLﬁ’Zv)(dn — d) — 0 is sufficient to
prove convergence.

We now verify conditions which will ensure that the degreermpors will converge at the
appropriate rate. We further decompose the empirical @egperator into the biagd,, — d and
empirical errord,, — Ed,,.
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Simply carrying out the Taylor expansions to higher ordengein the calculation of the degree
functiond,, in Eq. 2.24, and using the refined calculation of the zerotimemt in lemma 8 in
section 2.8, the bias of the degree operatat,is- d = h2b + o(h?) for some uniformly bounded,
continuous functior.

Thus we have,

L) (dy — d) = euhl ||(I = Py)bll, + o(1) = o(1) (2.8)

sincec, h? is constant an¢l(I — P,)¢||,, — 0 for any continuous functiop.
We also need to check that the empirical efféf — Ed, ||, = O(h2) a.s.. Ifnh™**/logn —
oo then using the Bernstein bound in equation 2.28 witeplaced byh? and applying Borel-
Cantelli gives the desired result.
O

Limit as weighted Laplace-Beltrami operator

Under some regularity conditions, the limit given in the m#éheorem (Theorem 3) yields a
weighted Laplace-Beltrami operator.
For convenience, defingz) = r.(x), w(z) = w,(x).

Corollary 5. Assume the conditions of Theorem 3 and let p*wy™ 2. If r,(y) = ry(z), w.(y) =
wy(x) forall z,y € M andr.(-), w)(-) are twice differentiable in a neighborhood @f, z) for
all z, then forc), = Zy, /R >

L 5 A, (2.9)
p
Proof. Note thatV|,_, v(y) = 2 V|,_, r.(y). The result follows from application of Theorem 3,
Corrollary 4, and the definition of the weighted Laplace-Battr operator. O

2.4 Application to Specific Graph Constructions

To illustrate Theorem 3, we apply it to calculate the asymptonits of graph Laplacians for sev-
eral widely used graph construction methods. We also apyygeneral diffusion theory frame-
work to analyze LLE.

r-Neighborhood and Kernel Graphs

In the case of the-neighborhood graph, the Laplacian is constructed usingraek with fixed
bandwidth and normalization. The base kernel is simply tidécator functionky(z) = I(|z| <
r). The radius-,(y) is constant s@(z) = 0. The drift is given byu,(z) = Vp(z)/p(z) and the
diffusion term iso,(z)o,(z)” = I. The limit operator is thus

1A Vp(z)" 1

- = ZA
pom T p(z) V=gt
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as expected. This analysis also holds for arbitrary kemfdi®unded variation. One may also in-
troduce the usual weight functi%ﬁ")(y) = d,(z)~*d,(y)~* to obtain limits of the form, A 2-za).
These limits match those obtained by Hein et al. (2007) aridrLg2004) for smooth kernels.

Directed k-Nearest Neighbor Graph

For KNN-graphs, the base kernel is still the indicator keraued the weight function is constant
However, the bandwidth functiori")(y) is random and depends an Since the graph is directed,
it does not depend omsor, = 0.

By the analysis in section 2.4, (z) = cp~ /™ (z) for some constant. Consequently the limit
operator is proportional to

1 VT 1

Note that this is generallyot a self-adjoint operator ith(p). The symmetrization of the graph has
a non-trivial affect to make the graph Laplacian self-aatjoi

Undirected k-Nearest Neighbor Graph

We consider the OR-construction where the nogesndv; are linked ifv; is a k-nearest neigh-

bor of v; or vice-versa. In this case:frén)(y) = max{p,(z), pn(v)} wherep,(z) is the dis-
tance to the:!" nearest neighbor aof. The limit bandwith function is non-differentiable, (y) =

max{p~/™(z), p~Y/™(y)}, but a Taylor-like expansion exists with(z) = ﬁvﬁ((f)ﬁ. The limit
operator is
1
WAP172/WL'

which is self-adjoint inL.(p). Surprisingly, ifm = 1 then the kNN graph construction induces a
drift awayfrom high densiy regions.

Conditions for kNN convergence

To complete the analysis, we must check the conditions fd¥ kgfkaph constructions to satisfy
the assumptions of the main theorem. This is a straightfi@hagplication of existing uniform
consistency results for KNN density estimation.

Leth, = (%)1/’”. The condition we must verify is
sup HT(I”) — TxHOO = 0O(h?) a.s.
yeM

We check this for the directed kNN graph, but analyses foeiokiNN graphs are similar. The
kNN density estimate of Loftsgaarden and Quesenberry (1865

pn<.%‘) = Vi

 n(hert(2))m (2:10)
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whereh,r{" (r) is the distance to th&'" nearest neighbor of givenn data points. Taylor ex-
panding equation 2.10 shows that|if, — p||., = O(h2) a.s. then the requirement on the location
dependent bandwidth for the main theorem is satisfied.

Devroye and Wagner (1977)’s proof for the uniform consisyeaf KNN density estimation
may be easily modified to show this. Take= (k,/n)? in their proof. One then sees thiat =

m+2 24+2/m .. . .
kn/n — 0 and™e— — __ku — oo are sufficient to achieve the desired bound on the error.

logn ni+2/m logn

“Self-Tuning” Graphs
The form of the kernel used in self-tuning graphs is

Ko(z,y) = exp <M) _

on(x)on(y)

whereo,,(z) = p,(z), the distance betweenand thek? nearest neighbor. The limit bandwidth
function isr.(y) = /p~/™(z)p~1/™(y). Since this is twice differentiable, corollary 5 gives the
asymptotic limit, which is the same as for undirected kNNptis

p72/mAp172/m .

Locally Linear Embedding

Locally linear embedding (LLE), introduced by Roweis andI%2000), has been noted to behave
like (the square of) the Laplace-Beltrami operator Belkin Bintbgi (2003).

Using our kernel-free framework we will show how LLE diffefilom weighted Laplace-
Beltrami operators and graph Laplacians in several waysLE)has, in generaho well-defined
asymptotic limitwithout additional conditions on the weights. 2) It can obhihave like amn-
weightedLaplace-Beltrami operator. 3) It is affected by the curvataf the manifold, and the
curvature can cause LLE to not behave like any elliptic oper@ncluding the Laplace-Beltrami
operator).

The key observation is that LLE only controls for the driftrtein the extrinsic coordinates.
Thus, the diffusion term has freedom to vary. However, ifrinifold has curvature, the drift in
extrinsic coordinates constrains the diffusion term inmalrcoordinates.

The LLE matrix is defined ad — W)™ (I — W) whereW is a weight matrix which minimizes
reconstruction errol’ = argminy, ||(I — W")y||* under the constraintd’’1 = 1 andW/; # 0
only if j is one of thek!” nearest neighbors af Typically £ > m and reconstruction erree 0.
We will analyze the matri\/ = I — .

Suppose LLE produces a sequence of matrides= [ — W,,. The row sums of\/,, are0.
Thus, we may decompos¥,, = A — A~ whereA' A~ are generators for finite state Markov
processes obtained from the positive and negative weighfgectively. Assume that there is some
scalingc,, such that, A, ¢, A, converge to generators of diffusion processes with drifts;:
and diffusion terme .01, 0_o’. Sety = py — p_ andoo? = o0, —o0_o_.
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No well-defined limit

We first show there is generally no well-defined asymptoiratlivhen one simply minimizes re-
construction error. Supposenk(L,) < m(m + 1)/2 atxz. This will necessarily be true if the
extrinsic dimensiorb < m(m + 1)/2 + m. For simplicity assumeank(L,) = 0. Minimizing
the LLE reconstruction error does not constrain the diffagerm, andr(z)o(z)” may be chosen
arbitrarily. Choose asymptotic diffusiary” and drift « terms that are Lipschitz so that a corre-
sponding diffusion process necessarily exists. A diffosigth terms2o0? andy will also exist in
that case.

One may easily construct graphs for the positive and negateights with these asymptotic
diffusion and drift terms by solving highly underdeternmdnguadratic programs. Furthermore, in
the interior of the manifold, these graphs may be constdusehat the finite sample drift terms are
exactly equal by adding an additional constraint. Thifs,— 2G, + ¢''V andA; — Gy + 'V
whereG, is the generator for a diffusion process with zero drift aiflision termo_(z)o_ ().
We haver, M, = AT — A — G,. Thus, we can construct a sequence of LLE matrices that have
0 reconstruction error but have an arbitrary limit. It isiad to see how to modify the construction
when0 < rank(L,) < m(m +1)/2.

No drift

Sincepu,(z) = 0, if the LLE matrix does behave like a Laplace-Beltrami opearét must behave
like an unweighted one, and the density has no affect on ifie dr

Curvature and limit

We now show that the curvature of the manifold affects LLE #mat the LLE matrix may not
behave like any elliptic operator. If the manifold has sudint curvature, namely if the extrinsic
coordinates have dimensiérn> m+m(m+1)/2 andrank(L,) = m(m+1)/2, then the diffusion
term in the normal coordinates is fully constrained by th# tbrm in the extrinsic coordinates.

Recall from equation 2.1 that the extrinsic coordinates asation of the normal coordinates
arey = x + H,s + L,(ssT) + O(||s||°). By linearity of H, and L,, the asymptotic drift in the
extrinsic coordinates ig(z) = Hjus(z) + Ly (0s(z)os(z)T).

Since reconstruction error in the extrinsic coordinatd} ise have in normal coordinates

ps(r) =0 and L,(oy(z)oy(x)") =0.

In other words, the asymptotic drift and diffusion termsAf and A,, must be the same, and
CnMn — GQ — G[) = 0.

This implies that the scaling, where LLE can be expected to behave like an elliptic operator
gives the trivial limit 0. If another scaling yields a nomvtal limit, it may include higher-order
differential terms. It is easy to see whén is not full rank, the curvature affects LLE by partially
constraining the diffusion term.
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(A) Gaussian Manifold (B) Kernel Laplacian embedding
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(C) Raw kNN Laplacian Embedding (D) rescaled kNN Laplacian Embedding
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Figure 2.1: (A) shows a 2D manifold where theandy coordinates are drawn from a truncated
standard normal distribution. (B-D) show embeddings usiifigrént graph constructions. (B)
uses a normalized Gaussian kerggﬁ%, (C) uses a kNN graph, and (D) uses a kNN graph
with edge weights,/p(x)p(y). The bandwidth for (B) was chosen to be the median standard
deviation from taking 1 step in the kNN graph.

Regularization and LLE

We note that while the LLE framework of minimizing reconstiion error can yield ill-behaved
solutions, practical implementations add a regularizetigom when constructing the weights. This
causes the reconstruction error to be non-zero in genedlaises unique solutions for the weights
which favor equal weights (and asymptotic behavior like kjidphs).

2.5 EXperiments

To illustrate the theory, we show how to correct the bad bemasf the kNN Laplacian for a
synthetic data set. We also show how our analysis can priadicurprising behavior of LLE.
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(A) Toroidal helix (B) Laplacian
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Figure 2.2: (A) shows a 1D manifold isometric to a circle. (Bdbow the embeddings using (B)
Laplacian eigenmaps which correctly identifies the stma;t(C) LLE with default regularization
le-3, and (D) LLE with negligible regularization 1e-6.

KNN Laplacian

We consider a non-linear embedding example which almosioaitlinear embedding techniques
handle well but the KNN graph Laplacian performs poorly. Ufgg2.1 shows a 2D manifold em-
bedded in 3 dimensions and embeddings using different grapsiructions. The theoretical limit
of the normalized Laplaciat,,,, for a KNN graph isL;,, = %Al. while the limit for a graph
with Gaussian weights i8,.,ss = A,. The first 2 coordinates of each point are from a truncated
standard normal distribution, so the density at the boyndasmall and the effect of the/p term

is substantial. This yields the bad behavior shown in FigQuig(C). We may use the relationship
between thé:*-nearest neighbor and the density in Eqn (2.10) to obtairoa @stimatep of the
density. Choosingv.(y) = /pn(x)pn(y), gives a weighted kNN graph with the same limit as
the graph with Gaussian weights. Figure 2.1 (D) shows thsictiange yields the roughly desired
behavior but with fewer “holes” in low density regions andmam high density regions.
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LLE

We consider another synthetic data set, the toroidal hieliwhich the manifold structure is easy
to recover. Figure 2.5 (A) shows the manifold which is clg@gbmetric to a circle, a fact picked
up by the KNN Laplacian in Figure 2.5 (B).

Our theory predicts that the heuristic argument that LLEdvek like the Laplace-Beltrami
operator willnot hold. Since the total dimension for the drift and diffusi@mnbs is2 and the
global coordinates also have dimension 2, that there igétboancellation of the first and second
order differential terms and the operator should behawethke 0 operator or include higher order
differentials. In Figure 2.5 (C) and (D), we see this that LLdtfprms poorly and that the behavior
comes closer to the 0 operator when the regularization tesmaller.

2.6 Remarks and Discussion

Non-shrinking neighborhoods

In this dissertation, we have presented convergence sessilig results for diffusion processes
without jumps. Graphs constructed using a fixed, non-simghkandwidth do not fit within this
framework, but approximation theorems for diffusion preses with jumps still apply (see Jacod
andSirjaev (2003)). Instead of being characterized by the drifl diffusion paiy:(z), o(z)o(z)7,
the infinitesimal generators for a diffusion process witmps is characterized by the &ky-
Khintchine” triplet consisting of the drift, diffusion, an‘Lévy measure.” Given a sequence of
transition kerneldy,,, the additional requirement for convergence of the lingifonocess is the ex-
istence of a limiting transition kerné{ such that[ K,,(-, dy)g(y)dy — | K(-,dy)g(y)dy locally
uniformly for all C! functionsg. This establishes an impossibility result, that no mettnad only
assigns positive mass on shrinking neighborhoods can havgaime graph Laplacian limit as a a
kernel construction method where the bandwidth is fixed.

Convergence rates

We note that one missing element in our analysis is the derivaf convergence rates. For the
main theorem, we note that it is, in fact, not necessary ttyapgiffusion approximation theorem.
Since our theorem still uses a kernel (albeit one with muciikeeconditions), a virtually identical
proof can be obtained by applying a functigrand Taylor expanding it. Thus, we believe that
similar convergence rates to Hein et al. (2007) can be o&daiAlso, while our convergence result
is stated for the strong operator topology, the same camditas in Hein give weak convergence.

Relation to density estimation

The connection between kernel density estimation and dgraplacians is obvious, namely, any
kernel density estimation method using a non-negativedt@énduces a random walk graph Lapla-
cian and vice versa.
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In this dissertation, we have shown that as a consequendemtiflying the asymptotic degree
term, we have shown consistency of a wide class of adaptiveekéensity estimates on a manifold.
We also have shown that on compact sets, the the bias termfagsraly bounded by a term of
orderh?, and a small modification to the Bernstein bound (Eqn 2.28gthat the variance is
bounded by a term of ordér ™. Both of which one would expect. This generalizes previouskwo
on manifold density estimation by Pelletier (2005) and (rzgR009) to adaptive kernel density
estimation.

The well-studied field of kernel density estimation may désal to insights on how to choose
a good location dependent bandwidth as well. We compareotine 6f our density estimates to
other well-known adaptive kernel density estimation teghes. The balloon estimator and sample
smoothing estimators as described by Terrell and Scot)1&@ respectively given by

poy 1 ||z — |
filz) = nh(z)d ;K (W) (2.11)

; 1 1 || — x|
folx) = ;zi: h(mi)dK< A ) (2.12)

In the univariate case, Terrell and Scott (1992) show thabtiloon estimators yield no im-
provement to the asymptotic rate of convergence over fixed\walth density estimates. The
sample smoothing estimator gives a density estimate whoels ciot necessarily integrate to 1.
However, it can exhibit better asymptotic behavior in sormges. The Abramson square root law
estimator (Abramson, 1982) is an example of a sample smuptstimator and takes(x;) =
hp(x;)~/2. On compact intervals, this estimator has bias of otdeather than the usuaf (Sil-
verman, 1998), and it achieves this bias reduction withesrting to higher order kernels, which
necessarily negative in some region. However, the biassiteihfor univariate Gaussian data is of
order(h/log h)?* (Terrell and Scott, 1992), which is only marginally bettean/?.

While we do not make claims of being able to reduce bias in tBe o&density estimation a
manifold, in fact, we do not believe bias reduction to theeorof #* is possible unless one makes
some use of manifold curvature information, the existingsity estimation literature suggests
what potential benefits one may achieve over different regad a density.

Eigenvalues/Eigenvectors

We find our location dependent bandwidth results to be oféstein the context of the negative
result in von Luxburg et al. (2008) for unnormalized Lap#ans with a fixed bandwidth. Their re-
sults state that for unnormalized graph Laplacians, thensigctors of the discrete approximations
do not converge if the corresponding eigenvalues lie indinge of the asymptotic degree operator
d(x), whereas for the normalized Laplacian, the “degree operetdhe identity and the eigen-
vectors converge if the corresponding eigenvalues stay &am 1. Our results suggest that even
with unnormalized Laplacians, one can obtain convergemekeoeigenvectors by manipulating
the range of the degree operator through the use of a locdgipaendent bandwidth function. For
example, with KNN graphs we have that the degree operateseniallyl. For self-tuning graphs,
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the degree operator also converges to 1, and since the &donel an equicontinuous family of
functions, the theory for compact integral operators maydmously applied when the bandwidth
scaling is fixed.

Thus we can obtain unnormalized and normalized graph Legplat¢hat (1) have spectra that
converges for fixed (non-decreasing) bandwidth scalingg2converge to a limit that is different
from that of previously analyzed normalized Laplacians mtiee bandwidth decreases to O.

Corollary 6. Assume the standard assumptions. Further assume{tf(gt(@) ch > ho}

forms an equicontinuous family of functions for soige- 0. Letq, g € C?(M) be bounded away
from 0 andco. Set

vz\/g r2(y) = Vv(7)y(y) (2.13)
~(pg\"? g B
o= (;) : w,y) = Veo@)y). (2.14)

If h,, = hy for all n, then the eigenvectors of the normalized Laplacians cgever the sense
given in von Luxburg et al. (2008). i, | 0 satisfy the assumptions of theorem 3, then the limit
rescaled degree operator is= g and

—nLnormf — g~ 2LA (972 f) (2.15)
p

which induces the smoothness functional

<f, g‘I/Q%Aq(g‘l/Qf)> = (V2 0V)) yw- (2.16)

La(p)

Proof. Assume the:, | 0 case. Use corollary 5 and solve forand~ in the system of equations:
q = p*wy™*2, g = pwy™. Intheh, = h, case, the conditions satisfy those given in von Luxburg
et al. (2008) with the modification that the kernel is not badesh away from 0 and the additional
assumption thatis bounded away from 0. Thus, the asymptotic degree opeta&dmounded away
from 0, and the proofs in von Luxburg et al. (2008) may be aaplvithout additional modification.

O

We note that the restriction to an equicontinuous family efrlel functions excludes kNN
graph constructions. However, one may get around this bgidering the two-step transition
kernelsKy(z,y) = K(z,-) * K(-,y), wherex denotes the convolution operator with respect to
the underlying density. For indicator kernels like thosedus KNN graph constructiongs, will
be Lipschitz and hence form an equicontinuous family. Thfusne handles the potential issues
with the random bandwidth function, one may apply the thexdrgompact integral operators to
obtain convergence of the spectrum and eigenvectors for ghlgh Laplacians wheh grows
appropriately.
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Reasons for choosing a graph construction method

We highlight how our more general kernel can yield advaraageproperties. In particular, it
yields graphs constructions where one can (1) control tlaesgy of the Laplacian matrix, (2)
control connectivity properties in low density regions) {Bve asymptotic limits that cannot be
attained using previous graph construction methods, andiyé Laplacians with good spectral
properties in the non-shrinking bandwidth case.

One way to control (1) and (2) is to make the binary choice afigi& NN or a kernel with
uniform bandwidth to construct the graph. Our results shmat, tby using a pilot estimate of the
density, one can obtain sparsity and connectivity progeiiti the continuum between these two
choices.

For (3) and (4), we note that the limits for previously analyzinnormalized Laplacians were
of the formp*~'A,« f. Using corollary 5, one see that limits of the forgmq for any smooth,
bounded density on the manifold can be obtained. Equivalently, one can aqpmate the smooth-
ness functional|V f| |i2(q) for any almost any;, not justp®.

For normalized Laplacians, which have good spectral pt@serthe previously known limits
induced smoothness functionals of the fqdl’ﬁ’(p“*a)/?f)H;(pa). With our more general kernel

and anyg, ¢ € C*(M), we may induce a smoothness functional of the f(ﬁl’W‘(gf)Hiz(q). In par-

ticular, in the case where the smoothness functional issjustrm on the gradient df, ||V f] |i2(q),
g may be chosen to be almost any density, notqustp'.

2.7 Conclusions

We have introduced a general framework that enables us tgzarewide class of graph Laplacian
constructions. Our framework reduces the problem of gramtidcian analysis to the calculation
of a mean and variance (or drift and diffusion) for any graphstruction method with positive
weights and shrinking neighborhoods. Our main theoremrmelstexisting strong operator conver-
gence results to non-smooth kernels, and introduces aadoeation-dependent bandwidth func-
tion. The analysis of a location-dependent bandwidth fongin particular, significantly extends
the family of graph constructions for which an asymptotigitiis known. This family includes the
previously unstudied (but commonly used) kNN graph comsibns, unweighted-neighborhood
graphs, and “self-tuning” graphs.

Our results also have practical significance in graph coostns as they suggest graph con-
structions that (1) can produce sparser graphs than thos&aoted with the usual kernel methods,
despite having the same asymptotic limit, and (2) in the fix@addwidth regime, produce normal-
ized Laplacians that have well-behaved spectra but coaverg different class of limit operators
than previously studied normalized Laplacians. In paldiGuhis class of limits include those that
induce the smoothness functioerHQLQ(q) for almost any density. The graph constructions
may also (3) have better connectivity properties in lowsilgregions.
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2.8 Proofs

Main lemma

Lemma 7 (Integration with location dependent bandwidthpt I be the indicator function and
h > 0 be a constant. Let, be a location dependent bandwidth function that satisfiestiduedard
assumptions, i.e. it has a Taylor-like expansion

Ta(y) = ro(@) + (7 (@) + ausign(ug s)u,)"s + e (2, 5).

LetV,, = F(’fgfl) be the volume of the unit—sphere.

2
Then

1 |y — 2] >
My=—— (11— — ro(2)™
0 thm/ ( 05) < h|ds=r.(x)" + he(z, h)

1 |y — || ) m+2,; 3
M, = thm/s]l( ) < h)ds=hry(x)""r(z) + h'er(z, h)

1 — 2h?
M, = /SST]I (Hy il < h) ds = 72(2)" 2 + Wey(, h)

Vinh™ () m + 2

wheresup,.c v nn, l€i(z, h)|| < C. for some constant’, > 0.

Proof. Let v(s) = 7(z) + sign(sTu,)au,. We will show that the set on which the indicator
function is approximately a sphere shifteddr, (x) with radiushr,(z).

|ly — 2| _ S|P ssT[ |2 200 () + v(s) s s12))2
H( e <h)—ﬂ(\| P+ ||L (s < R (@) + o(s)"s + O(lsI*))?)

L (IsI1? < Bra(e)(1 + 20()7s + O(2)))
1 (1l - 22 4 S g o oqn) )

@ TR
- (H O

‘ < hry(z) + h35x(s)>
for some function,.(s). Furthermore, the assumptions on the bounded curvatureahanifold
and uniform bounds on the bandwidth function remainder tefm, s) give that the perturbation
termJ, (s) may be uniformly bounded byup,, ., |6.(s)| < Cs(||s||*) for some constan(.
The result for the zeroth moment follows immediately fronsthrhe results for the first and
second moments we calculate in lemma 10. N

Refined analysis of the zeroth moment

For convergence of the normalized Laplacian, we need a refireed result for the zeroth moment.
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Lemma 8. Assume
T2 (y) = r.(s) + €-(z, 5).

wherer,(s) is twice continuously differentiable as a functionzoénd s and ande, is bounded.
Then

/ lehm]I (HZ;I—(;H < h) ds = r,(2)™ + h?b(z) + hPeo(z, h)

whereb is continuous andup,, |¢y(z, h)| — 0 ash — 0.

Proof. We first sketch idea behind the proof and leave the detailstévasted readers. One may
convert the integral in normal coordinates to an integrgdtar coordinatesR, 6). One may then
apply the implicit function theorem to obtain that the unipdsed radius functiorR is a twice
continuously differentiable function df. This gives a Taylor expansion of the zeroth moment
with respect toh. €,.(z, s) gives the desired result.

We may express the integral for the zeroth moment in polardinates

Z,(h) = / lehm]l (HZJS”)”” < h) ds

- / R (6, h)dpg

where is the uniform measure on the surface of the umisphere and = s/h = R,(0,h))6
solves the equation

131> + L(35T) = (ro(z) + hVre(2)75 + h25 M, 0)3)

andH,, () is the Hessian of,(-) evaluated ab.

By the implicit function theorem, the solutiorisdefine a twice continuously differentiable
function ofz, h. For sufficiently smalh > 0, s is bounded away frorf sincer,, is bounded away
from 0 and||s/h|| is bounded away fromo by the bound in lemma 7. Thu&,.(¢,h) andZ,.(h)
are twice continuously differentiable with bounded secdedvatives.

Z.(h) then has a second-order Taylor expansioth) = Z,.(0) + Z.(0)h + Z”(0)h* + o(h?).

By the less refined analysis in lemma 7, we have hd0) = r,(z)™ andZ.(0") = 0. One
may apply a squeeze theorem to obtain that the contribufitrecerror terne,.(z, s) to the zeroth
moment is bounded by, sup, . |¢,(z, s)| for some constan®’., and the result follows. ]

Moments of the indicator kernel / Integrating over the centered splere in
normal coordinates

Here we calculate the first three moments of the normalizéidator kernel wher&,, = [ I(||u|| <
1)du = me du is the volume of then-dimensional unit sphere in Euclidean space.
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Lemma 9 (Moments for the sphere)let K(||s|| /h) =
moments are given by:

- 1(|ls|| < h). Then the first two

1
My = /K(Hs|| /h)ds = / ds =1+ O(h?)
Vi, Js

Mlz/sK(HsH/h)ds: ! /sds:0+0(h4)
s

1 1
M,y = /SSTK(||S|| /h)ds = A /sm sstds = m—+2]1+ O(h*).

Proof. The error termg) (k') arise trivially after converting normal coordinates togant space
coordinates. Thus, we may simply treat the integrals agiate in m—dimensional Euclidean
space to obtain the leading term. The valuesiMfyrand )/, follow immediately from the defini-
tion of the volumeV,,, and by symmetry of the sphere. We obtain the second momauit lgs

calculating the values on the diagonal and off-diagonaltt@roff-diagonal

1
— s;8:ds =0
Vin Js.,
for i # j due to symmetry of the sphere.
On the diagonal
1 / 2 Vin—1 /1 2 2\(m—1)/2
— s;ds = s;(1—s7)\™ ds; (2.17)
Vi Js,, | ( )
Vir [ 2\ (m—1)/2
= si X si(1—s7) ds; (2.18)
m —1
Vinr [ 1 )
= = 1 — s2)m+D/2¢s, 2.1
0+ 7 /_1m+1( s7) ds; (2.19)
1 V —1 1 2
= ™ Vi1 (1 — s2)m /25, 2.20
1 mel Vm+2
= 2.21
m+ 1 Vm-‘rl Vm ( )
1
) (2.22)
where the last equality uses the recurrence relatiorighip = m2—_7;2Vm. n

Integrating the shifted and peturbed sphere

Here we calculate the moments used in Lemma 7.

The integrals in lemma 7 essentially involve integratingrosphere with (1) a shifted center
h*r.(z), (2) a symmetric shift byign(s”u)h%a,u on two half-spheres, and (3) a small perturba-
tion 735, (s).
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Lemma 10(Moments of the shifted and perturbed sphetestv. € R™, u be a unit vector irR™,
B € R, andh > 0. DefineK (s) = I(||s — v. + sign(s"u)Bu|| < h + h3§), so that the support
of K is a shifted and perturbed sphere with center symmetric shiftign(s”w)Su, and radius
perturbationh3s.
Assume|v.||, |8] < Ch? andd < min{C, 1} for some constan®, and puth,,,., = h + h3d
Then

1 .
M():— K(S)dS:hm+€0
m Rm
M, = 1 sf((s)ds = h" 2.+ ¢
Vi Jgm
1 T hm+2
MQZV_ 58 K(s)ds:m+211+62.

wheree; < kCh™H! ande; < kCh™F3 fori = 1,2 andx is some universal constant that does not

max max

depend on, v, or 5.

Proof. SetH. = {s € R™ : u's > 0} andH_ = HY to be the half-spaces defined by For a
setH C R™, letH +v. :=={w+v.:w € H}.
We first bound the error introduced by the perturbafiéf Define

A= supp(K) = {s € R™ : ||s — ve + sign(s"u)Bul| < h + h*s}
A:={seR™: ||s —v. +sign(s"u)Bu|| < h}

so thatA gets rid of the dependence on the perturbation.
For any functiorn, we have a trivial bound

/AQ(S)dS_/AQ(S)dS

< Qmaz|Vol(A) = Vol((A))]

< Qmaxvm|hm - hm|

max

< QumazVin (mh™ 1Y (135)

max

= O(W"™2Qumas) (2.23)

WhEreQmaz = SUP|j5|<h,... @(s) andmV,,, is the surface area of the-dimensional sphere. For
Q(s) =1/V,,, 8/ Vi, 0r ss’ /V,,, the correspondin®, ... arel/Vi,, huaz/Vim, andh2,. . /V,.. The
error induced by the perturbation is thus of the right order.

We now consider the integral over the unperturbed but ghéfhere. Denote b, (v) the ball
of radiush centered on. Note that the functiofi(s € A) = I(||s — v. + sign(s"w)Bul| < h) is
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symmetric around.. Thus, for a functiorQ(s — v. + fu) which is symmetric around,,

/Q(s — ve)ds =2 / Qs — v.)ds
A AnNH+
=2 Qs —v)I(||s — ve|| < h)ds—
H+

2 [ Qs = v Uls = vell < 1) = (lls = v+ Bl < W)ds
— [ Q! < hyds-
2 Q(s —ve)(I(s € By(ve)) — I(s € Bp(v. — fu)))ds

H+
ForQ(s) = 1/V or ss” /V,,,, lemma 9 gives that the value of the main tefr®(s)I(||s|| < h)ds
is h™ or —I respectively. The error term is bounded by

2 " Qs —v.)(I(s € Bp(v.)) — (s € Byp(v. — fu)))ds

<90 /H H(s € Bu(vd)) — (s € Bales = 5u))lds

< 2Qmaz|B|Area(H N By(ve))

< 2@max’ﬁ| (mvm—lhmil)
< vam—lchaa:hm+l

where Area(H' N By(v.)) is the surface area of a half-sphere of radiuslugging inQ,,.. =
1/V,, andh?/V,, give that the error terms for the zeroth and second momeatiledions are of
the right order.

By another symmetry argument, we have for the first momentitzion fz Vim(s —v.)ds =0

or equivalently,
—/ sds = — ds

= hmvc + O(h™*?)

where the last equality holds from the calculation of the#emoment above. More precisely, the
error term is bounded BmV,,_1CQumazh™ 0.
O

Details of proof the main theorem
Expansion of moment calculations

We expand the moment calculations in the proof of the maiardéra. Each step is a consequence
of an assumption or from the lemmas computing the momentg @i indicator kernel.



CHAPTER 2. GRAPH CONSTRUCTIONS AND ASYMPTOTICS OF THE GRAPH
LAPLACIAN 28

M () = o [ sKuleo)plo)ds

n

— him sw™ (s) Ko (M) p(s)ds

n hnrg(gn)(s)
= him s (we(z) + Vwg(z)"s + O(h2)) (p(z) + Vp(z)"s + O(h2)) x
Iy — 2]
= Clrymrs(e)"* (10,0 T2 1 () T (a)pla)ie) + o))

M (a) = o [ 55K 0)plo)ds

hm
1/ T, (n) lly — ||

=— [ ssw,"(s)Ko | ———— | p(s)ds
w o |, Sy ) )
1

= [ 5T () + Oh) () + O(ha) Ko (M) N

hnrg(cn)(s)
= SR 2 (02 (g ()o@ + O(h),
(o) = 1 [ Kalzw)plu)ds (224)
= him w™ (5) K, <%> p(s)ds (2.25)
_ him (wa(2) + O(hn)) (p(x) + O(hy)) Ko (%) ds (2.26)
= CkymT2(2)™ (e (x)p(x) + O(hy)) (2.27)

Almost sure uniform convergence of empirical quantities

Proof. For non-randorrrﬁ;”) = rx,w;g”) = w,, the uniform and almost sure convergence of the

empirical quantities to the true expectation follows fromagplication of Bernstein’s inequality.
In particular, the value of,(z,S) = S;K (%) is bounded byK,,..h,, whereS isY in

normal coordinates and,,,.. depends on the kernel and the maximum curvature of the mdnifo
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Furthermore, the second moment calculation ¥6f gives that the varianc®ar(F,(z, S)) is
bounded by:h™*2 for some constant that depends o and the max ofy, and does not depend
onz. By Bernstein’s inequality and a union bound, we have

)

= Pr (sup E,Fo(z;,Y) —EF,(2;,Y)| > eh;””)

i<n

L )
2 M

n

Pr (sup E Fo(x;,Y) —

i<n

ey
hi

2

€
2 _ . 2.28
< ”eXp( 2c/(nhg”2)+2Kmaxe/(3nh;"+1)> (2.28)

The uniform convergence a.s. of the first moment follows f&wnel-Cantelli. Similar inequalities
are attained for the empirical second moment and degreesterm

Now assumeé"),wé”) are random and defing,, as before. To handle the random weight
and bandwidth function case, we first choose determiniségit and bandwidth functions to

maximize the first moment under a constraint that is satigeatually a.s.. Define

B (y) = w,(y) + kh2sign(s;)
T (y) = ro(z) + (o (2) + agsign(ul s)u,) s — kh2sign(s;)

Fo(y) = sl (y) Ko (—}ny(_n)g(:y’l))

for some constant such thatr(" < r{ andw(™ > w{™ eventually. This is possible since

the perturbation termé")(x,s),eg”(a:,s) = O(h2). Thus, we havé’, ,,(z,y) > F,(z,y) for all
x,y € M eventually with probability 1. Sincg,. ,,(x,Y’) uses deterministic weight and bandwidth
functions, we obtain i.i.d. random variables and may apipdyBernstein bound oR ,,(z,y) to
obtain an upper bound on the empirical quantities, nafigl,. ,(z,Y) > E,F,(z,Y) for all

x € M eventually with probability 1. We may similarly obtain a lemwbound. By lemma 10, the
difference between the expectation of the upper bound an&tBF, ,(z,Y) — EFg,(z,Y) =
o(kh™2). Applying the squeeze theorem gives a.s. uniform conveer the empirical first
moment]\fl(")/h%. The degree and second moment terms are handled similarly. N
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Chapter 3

Combinatorial Structures: Distributions
and Representations

In this chapter we examine the problem of representatingbawatorial structures and describ-
ing natural distributions on the representations. By cowuioinal structures, we mean graphs,
permutations, partitions, or other discrete objects. Triragry motivation for studying these com-
binatorial structures is in their relationship to sticle@king processes and nonparametric Bayesian
hierarchical mixture models.

We give a finite combinatorial representation many nonpatemhierarchical Bayesian mod-
els using random graphs. In other words, we gifiaiée random cluster model which describes the
clustering behavior of a hierarchy offinite stick-breaking processes on any finite subset of a set
of points. The implications of the representations are tad- In terms of new algorithms, we ob-
tain new Markov Chain Monte Carlo (MCMC) samplers for nonparaiméierarchical Bayesian
models. In particular, we obtain two samplers for the higharal Dirichlet process (HDP). In the
experimental results in chapter 4, both samplers emplyisabw substantially better performance
over a Chinese Restaurant Franchise sampler. Furthermoedsavpresent an informal argument
that one of the new samplers should never be more than 3 timesewthan the usual Chinese
restaurant franchise Gibbs sampler in the worst case. Tregentations also lead to better un-
derstanding of hierarchical models. In particular, gragpresentations of hierarchical Bayesian
models lend themselves to descriptions as coagulation raggnentation processes. These hi-
erarchical models, including the HDP, nested Dirichletd@ss (nDP), nested Chinese restaurant
process (NCRP), and tree-structured stick-breaking prooesgbe described by the sequence of
coagulation and fragmentation operations. Using coaiguldtagmentation duality, one also iden-
tifies a hierarchical model of particular interest whererntaginal distribution at each level of the
hierarchy is from a Pitman-Yor process.

Beyond the applications to Bayesian models, this chapteritescthe relationships among
random graphs, permutations, stick-breaking, and coattgurocesses. For example, the “re-
versed” Chinese restaurant process provides an immediatection between the Kingman coa-
lescent and the CRP. By exploiting the relationship betweephgrand permutations, we devise
a merge operation which generalizes reservoir samplingyigthgns for drawing a random sample
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without replacement from a single stream to an distributgdrahm.

This chapter address a fairly wide range of topics whichifiédl the following categories: 1) the
representation of combinatorial structures, 2) naturstridbutions and data generating processes
on these structures and their relation to existing nonpatammodels, 3) insights gained from
examining alternate representations 4) practical impboa of alternate representations, such as
new MCMC methods.

3.1 Representations for mixture models

Partitions are a combinatorial structure of particulagiast due to their important role in Bayesian
statistics. Any Bayesian mixture model has a latent strectunich is described by a partition.
For hierarchical mixture models the latent structure magéscribed by a nested partition. This
partition, along with the data, forms a sufficient statibicthe complete data likelihood.

The most common way to represent the latent structure igrtmdnce a latent class membership
variablez; for each data point;, where the latent variable assigns a cluster ID to the cooreding
point. In this representation, changing a single latentiée z; only affects the class membership
of a single point.

Instead of latent class membership variables, one may usbinatorial structures to represent
partitions. Examples of combinatorial structures inclgdaphs, forests, permutations, and map-
pings from a finite set to itself. Such structures have beed as data augmentation schemes in
the past. The general scheme of using the connected contgafenrandom graph to represent
a partition is referred to as a random cluster model. The 8a@mWang sampler for the Ising
model is an example of a random cluster model used to sampiéiqes. Recently, Blei and
Frazier (2010) use functional digraphs to give the distade@endent Chinese Restaurant Process
(ddCRP) which gives both a new Gibbs sampler for Dirichlet pssamixture models as well as a
non-exchangeable prior on partitions.

The representation of a partition in terms of a combinatatiaicture defines an alternate set
of variables on which one can perform Gibbs sampling. Wegmesvo applications to samplers
for Hierarchical Dirichlet Process Mixture Models using timsights gained from examining the
combinatorial structures. The first extends the ddCRP sartglgierarchical Dirichlet Processes
(HDPs) and demonstrates how exploiting the combinatotrattire via dynamic programming
makes one iteration as fast as the usual Gibbs sampler. Thadextends the split-merge sam-
pler for Dirichlet Processes to HDPs. Chapter 4 introducethdéun optimizations to split-merge
samplers using ideas that are generally applicable to Matkain Monte Carlo methods.

We also extend the existing connections between combiahgiructures and certain stick-
breaking processes to a wider range of processes incluakrdDP, the Nested Dirichlet Processes
(nDP) of Rodriguez et al. (2008), the Nested Chinese RestaBranesses (NnCRPs) of Blei et al.
(2010), and Tree-structured Stick Breaking Process of Adatrat (2010). The underlying com-
binatorial structure makes clear that all of these prosessy be described as compositions of
coagulation and fragmentation processes. We briefly discos the processes of coagulation and
fragmentation on combinatorial structures lead to hidriaed models and sharing of parameters.
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We also point out that one coagulation-fragmentation meeehich is not currently used for data
modeling has particularly nice properties.

3.2 Notation

For the reader’s convenience, we list the common symbols iVeise in this chapter and their
descriptions.
Symbol Description

X set{zy, ..., x,} of n data points
[n] the set{1,...,n}
B a partition of{n| with blocks By, ..., By

X (By) the set{x; : j € B;} of points inX’ corresponding td3;

the posterior predictive probability of for a mixture component

given X' (B,) belongs to that component

™ a permutation

b a base for the strong generating set representation i.enaufsion
a recursive forest on verticés| and ordering defined by

F . )

or the equivalent SGS representation

' the permutation group o]

N

3.3 Arborescence Forests, Random Recursive Forests, and the
Chinese Restaurant Process

We introduce a series of bijections between combinatoiiatires. In particular, we relate com-
binatorial structures with a graph representation. Thgsetlons allow one to develop samplers
in a representation of one’s choice.

We start by relating a commonly used Bayesian nonparametag, the Chinese Restaurant
Process (CRP), to a random combinatorial structure, a randoorgive forest, through its se-
quential construction. This relationship is well-knownthe probability community but has only
recently implicitly made its way into the machine learnirgramunity via the work of Blei and
Frazier (2010).

An arborescence forestis a directed acyclic graph in which every node has outdegexeept
for the roots of the forest which have outdegree 0. The weashnected component containing
node: consists of all nodeg such that, after replacing all directed edges with undag&dges,
there is an undirected path betwedn ;. An arborescence tree is defined in an analogous manner.

A treeT with totally ordered vertices labeled < ... < v, Is a recursive tree if all paths to the
rootwv, are decreasing. A labeled fordsts a recursive forest if each subtree is a recursive tree. A
permutatiorb defines a total ordering by < b, < ... < b,. We will refer to the permutatioh as
a base and sa¥ respects the bagdf F'is a recursive forestoly < ... < b,.



CHAPTER 3. COMBINATORIAL STRUCTURES: DISTRIBUTIONS AND
REPRESENTATIONS 33

To draw from a recursive tree uniformly at random with respge@ baseh, one may use the
following sequential procedure. Designateas a root. For subsequent points where i < n,
connect); uniformly at random to one of the previous vertidgs, ..., b;,_1 }. It is easy to see that
any sequence of choices yields a unique recursive tree anceanrsive tree may be constructed
with some sequence of choices. To draw a recursive foresbramy at random, introduce a
dummy vertexb, < b;. Draw a random recursive tree on thet 1 vertices. One is left with a
random recursive forest after removityg From this construction it is clear that for a fixed base,
there argn — 1)! recursive trees andl recursive forests. One may tilt the distribution of forest t
contain more or fewer trees by changing the probability efngrting to the dummy vertex.

The construction of a random recursive forest is intimatelgted to the sequential procedure
that describes the CRP. In the CRP, tifecustomer chooses to sit to the left of tji& customer,

j < i, with probabilitye 1 and chooses to sit at a new table with probabikty. If one identifies
the j*" customer with vertek; andb, with the action of sitting at a new table, then the relatiopsh
is clear.

3.4 Permutations, Strong Generating Sets, and Bases

The CRP also has a well-known relationship to the cycle reptagen of permutations. Each
table in the CRP represents a cycle. Furthermore, each sexjokcitoices yields a unique seating
arrangement. Fairto sit down to the left off means that one insertsmmediately to the left of
j in the cycle representation. Since the edges of a recursrestfrepresent the “sit to the left”
choices in a CRP, it shares the same cycle representatioreitithyche CRP. We further examine
this relationship and show how the recursive forest remitasien naturally results from the action
of the permutation group and is the representation of a ption in terms of a strong generating
set (SGS).

We show how considering both the left and right group actieasls to a “reversed” Chinese
restaurant process. This “reversed” CRP clearly establigieesonnection between the CRP and
coalescent model in a simple, direct manner. We also exacoimeections to random permutations
and sampling which are applied to a distributed random sagproblem in section 3.8

Consider the (right) action of the permutation gragipon the ordered list = (1,--- ,n).
Let G; < S, be the stabilizer of 1, ...,i}. In other words(; is the subgroup of permutations of
{i +1,...,n} which fix {1, ...,i}. Then,G,, < G,_1 < ---G; < Gy = S, is a stabilizer chain
with respect to the bagewhereG,, is the trivial subgroup containing only the identity. Thises
a unigue representation of the symmetric group via a setradrgeors defined by right transversals
T; of G, in G;_;. In other words, for any permutatione S,, and set of right transversalg’; }, we
may uniquely write

T =gn"" 9190

whereg; € T;. The setJ;T; defines a strong generating set (SGS) with respect to thehbase
One particular set of right transversals is of interest. fidiet transversalg; = {(a i) : a < i}
define an SGS with respectto= (1,---,n). In other wordsT; consists of the identity and the
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i — 1 transpositions of with a smaller number. For example the permutativs2)(34) may be
written as(12)(3)(34)(25). Clearly, the choice of bage= (1,--- ,n) is made for convenience,
and we may consider arbitrary ordered lists{of- - - , n}. By identifying the transpositiofu i)
with the directed edgé — a, the connection between permutations and random recumsi®sts
is clear.

We note that this representation of a permutation with a SG&actly the logic behind the
Knuth (Fisher-Yates) shuffle which gives &nn) algorithm for generating a permutation an
elements. The base is the initial value of the list that isffiddl A random permutatiom =
(agbe)...(ayby) is generated in the SGS representation. The Knuth shufflergess a permutation
by applying the transpositions using the left group actiothsit(a,b,) is applied first.

We note that the right action, which appliesb.) first, may also be used to generate a random
permutation. It has the desirable property that it lets a@evda sequence of uniformly (but not
independently) distributed random permutationsSpnss, .... However, the left action allows one
to obtain a random sample without replacement of BizeO (k) time by applyingt transpositions
from the SGS representation.

The left action also provides a different perspective toG@fP by yielding a “reversed” Chi-
nese restaurant process. In this case, the sequence gfas#iens in the SGS representation are
applied in reverse order, or equivalently in the recusiy@asentation, the edges are examined in
reverse order with respect to the base. Supposeastomers arrive in some order at a restaurant,
but no one is seated until the last customer arrives. Th@&sbn to arrive either chooses to sit at
a new table with probability proportional to some parameéter makes a decision to befriend and
sit with one of the previous — 1 customers with probability proportional 1o When a customer
sits down, that person and all his friends sit at the same taiblthis representation the connection
to the coalescent model is clear. If the customers arrivamaom order, then the first choice will
either coalesce a random pair with probability proportidaa — 1 = (’2‘) X (2/n) or sit at a new
table (mutate) with probability proportional to= (n6/2) x (2/n).

Figure 3.4 shows the relationships among a permutatiorsi®@S representation, random
recursive forests, and the action of left and right muitiglion by a permutation in its SGS repre-
sentation.

One can make a more explicit connection between the penmgaand the recursive forest
using the cycle representation of a permutation. Iterataityh nodes in the order specified by the
base. If a node is a root of the forest, then it denotes theataew cycle. Otherwise, insert the
node to the right of the node it points to. This correspondsftanultiplication by a transposition.
If one inserts to the left, then it corresponds to right nplikation.

A simple application of the SGS representation is an algorifor generating permutations
with & cycles inS,,. Choose a parametérto solvek = Zf;ol giﬂ This gives aC'RP(#) distribu-
tion wherek is the number of expected tables and the equivalent cycteseptation hak cycles.
Until £ is the number of self-transpositions in the SGS representatun a Gibbs step to update
one transposition in the SGS representation. Output thé geranutation. The usual approach
involves calculating Sterling numbers of the first kind ag péits recursive procedure (Wilf and
Nijenhuis (1989)).
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1 5 3 4 2 1 > * * %
1 5 4 3 2 A 1 2 * * *
4 5 1 3 2 m @ 3 2 1 * *
4 5 1 3 2 3 2 4 1 *
4 5 1 3 2 3 5 4 1 2
(143)(25) (134)(25)

Figure 3.1: These figures illustrate the relationships whth permutatior{11)(22)(13)(34)(25)
which is in the SGS representation with respect to the base 3, 4, 5). The left and right figures
represent the action of left and right multiplication by ge¥mutation with the cycle representation
of the permutation given at the bottom. Left multiplicatioorresponds to the Knuth shuffle. The
two actions have different properties. Left multiplicatimaintains the invariant that after apply-
ing the k" transposition, the lagt elements are a uniform random sample without replacement.
Right multiplication maintains the invariant that the fikstlements are a uniformly drawn random
permutation of the firsk elements. In both of the left figures, the final state contbamscycles
when regarded as a permutation in one-line notafi@®),and a cycle containing, 3, 4. The figure
on the right shows the random recursive forest representalihe connected components of the
forest correspond to cycles of the related permutations.

Change of base and invariance of the connected components

As noted above, given a fixed base permutationr has an SGS representatibrand vice versa.
The forestF” may be regarded as a permutation with respect to the (dase n). and the basé
itself may be regarded as permutation. When we do so, theoretaip is codified by the group
action of conjugatio o I = bFb 1.

This relationship gives a method for changing the base. aogh from baséto i, one solves
the equatiorb o F = ¥’ o F’ to obtainF" = " '0Fb~'t' = (V/~'b) o F. While F" is regarded
abstractly as a permutation, one simply needs to write dts\8®S representation with respect to
the basé1, ..., n) to obtain a forest.

The change of base has one particularly important propeattyrespect to the forest represen-
tation, namely that the vertex sets of the connected commséthe forest do not change. This is
obvious from the cycle representation since the cyclesessmt the connected components of the
forest. Sincé’ o F/ = bo F', the cycles are identical, and the connected componentstheusame
vertices. Thus, samplers which operate on the forest reptason with respect to one base can
change the base and obtain a new forest representation imdietes the same partition structure
as the old forest.

We note that this is not the only choice which preserves thitipa structure under a change
of base.
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Polya Urn Processes

When there is a Polya Urn process that generates a parthi@$®S or recursive forest represen-
tation is often a particularly useful representation ofdbgct. Imagine that the balls in the Polya
urn are numbered in addition to being colored. The base itbescthe order in which the balls or
points appear while the color denotes the cluster that tiv@ pelongs to. The edges give which
numbered ball was drawn at each time step. Thus, the reeuimigst describes a process on the
numbered balls. One may color the balls the urn is initialiwéth, and the edges will determine
the colors of the rest of the balls.

These Polya urn processes along with the notion of exchailggdead to Gibbs samplers
for many distributions on partitions of interest. To resdarthe color of a random ball, one first
removes that ball. By exchangeability, this ball may be &@ats if it was the last ball. One then
chooses from the remaining balls in the urn and replacesetheved ball with a ball of the same
color as the newly selected ball.

The forest representation leads to a generalization ofpiftisess. To obtain the Gibbs step
described by the Polya Urn, one chooses a new base wherelglatedeball corresponds to the
last element in the base. One then randomly selects a new f@lthe last element in the SGS
representation. This step is equivalent to updating theradlthe selected ball.

Beta-Binomial Distribution and Subtrees

We have described sequential processes that generatentiénedorial structure of interest. We
now describe a generalization of the stick-breaking pretest generates the combinatorial struc-
ture. When viewed as a hierarchical processes, it is relatéget tree structured stick breaking
process of Adams et al. (2010). Using the process, one camnatarse to fine grained infor-
mation about the combinatorial structure without samptimg entire structure. For example, in
the case of mixture models, one is only interested in theteluszes, or equivalently, the sizes
of the maximal subtrees in an arborescence forest and natethe themselves. In that case, the
stick-breaking process allows one to draw a sequence ofBiatanial random variables to obtain
the tree sizes for the processes defining a CRP.

The hierarchical processes recursively iterates stielaing processes to find the sizes of all
subtrees, not just the maximally connected ones. The ppos@seresting not only because of the
hierarchical nature but also that it yields interestinggiaal distributions for the sizes of subtrees
given the location of the subtree’s root within the base.

We proceed by describing a hierarchical method for gemeyadrborescence trees, and the
associated hierarchical stick-breaking process is a alatonsequence. Suppose one is given a
set ofn, points and wishes to draw arborescence forests correspptalaC' R P(6) distribution.
First, apply the standard stick-breaking process to findsthes of the maximal subtrees of the
arborescence forest. In other words, start with two poatisyummy point, and the first poinb,
in the base and removg from the set of unassigned points. The first step of the peosasiples
the number of points that will be attached to the first pojnDraw s; ~ Beta — Binomial(ng —
1,1,0) and randomly sample, points from the set of unassigned points. All these pointsrize
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to the arborescence tree rooted-atThe remaining unassigned points belong to the dummy node
by. Update the number of remaining poimts= no — s; — 1. Repeat the process, starting with the
first point in the base that is in the unassigned set, andragmtintil there are no more unassigned
points.

Conditional on the points that belong to a maximal subtreig, tifvial to verify that the joint
probability factorizes so that the structure of the sulstr@e® independent of each other and that
each subtree is simply a random arborescence tree, so odeéoe&orry about having multiple
components. To draw a random arborescence tree, @oints, note that the second point in the
tree must be connected to the first. Thus we can break theesd®rce tree into points attached
to the second point and points attached to the first point duthe second. This is trivial to do by
drawing Beta — Binomial(ns — 2,1,1) = Uniform(ns — 2) to determine the size of the subtree
rooted at the second point.

While not obvious from the hierarchical process, the sedgalecwnstruction of arborescence
forests gives the marginal distribution for the size of thbteee rooted at thé” regardless of
whether or not it the root of a maximally connected componkig easy to see from the sequential
procedure that the size of the subtree rootedisindependent of all points befoieand that the
size isBeta — Bernoulli(ng — i,1,7 4+ 6 — 1) distributed.

Since all the necessary draws @eta — Binomzal, it follows from Kolmogorov’s extension
theorem that there exists an underlying process giviag¢n distributed weights at every node.
Thus, if one wishes to draw the number of points that are invargsetS that also belong to
the subtree rooted &t then one simply needs to sample fronBata — Binomial(|S N {i +
1,...n0}|,1,0 +i — 1). The parameters of thBeta distribution do not change, only the number
of trials in the binomial part changes.

We also note that this observation yields a Markov chaindonging from a CRP law. Choose
an random indexfrom any distribution, and |leB be the block associated withDivide the points
in B into those occurring beforeor after: by sampling from al ypergeometric(ng — 1, |B| —

1,7 — 1) distribution. Similarly, find the number of points occugibefore: for all other blocks
as well. Find the size of the subtree rooted, @&nd propose to create a new block with probability
proportional tof with 7 and its subtree or to attach it to bloék with probability proportional to

s; wWheres; is the number of points ifs; occurring before.

The random split version of this sampler is inefficient foxtare models since a random split
takes time proportional to the size of the subtree that i sfflis unlikely to be accepted, and a
sequential allocation approach takes time proportiontidcsize of the entire block and will split
off small blocks. Itis of mathematical interest since it deg a new finite state space Markov chain
with a CRP law as its stationary distribution and, as far as tilass know, there is no existing
counterpart in the continuous state space with a Poissookit process law. By considering the
process on an infinite base, one obtains the continuoussgtate equivalent.
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3.5 Other combinatorial structures

Thus far, we have focused on permutations, representatibpgermutations, and their related
combinatorial structures: partitions and recursive fre$n particular, we have been interested
in how the weakly connected components of a recursive fatelhes a partition. Clearly, the
(weakly) connected components of any (di)graph definestaipar We need not restrict ourselves
to recursive forests. However, some graphs are of gredtaest than others due to computational
reasons or due to links to processes on infinite, continupaces.

We give a few examples of other interesting combinatorraicstires.

Swendson-Wang, the Ising model, and the random cluster model

The random cluster model draws a random graph by randomlplssgredges from a graph. The
connected components of the graph form clusters. The SwaAd&ng algorithm is a sampler for
the Ising model. It draws from a random cluster model givendtirrent configuration of spins.
One then randomly labels the clusters of the induced pamtdis—1, +1 with equal probability.
Figure 3.2 illustrates the Swendson-Wang algorithm.

OO

O—0O
o0

Figure 3.2: Ising model and Swendson-Wang: One alternategslen sampling bonds and assign-
ing spins to the connected components formed by the bonds.

Functional digraphs and the ddCRP

The Distance Dependent CRP introduced by Blei and Frazier j2@dfines a distribution on
functional digraphs, i.e. digraphs where every node hadeguée 1 including self-loops. They are
“functional” digraphs since the edges define a mapping frem- [n], and likewise any function
f :[n] — [n] defines a functional graph. Random recursive forests arecifisggpe of functional
graph in which the mapping must obey the constrainfi(a) = b = a > b. As usual, the
weakly connected components of the graph define a partition.
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Undirected graphs, subforests, and matrices

Random recursive forests may be regarded as a random sugh-dbeedirected acyclic graph. One
may also consider random subforests of undirected graphdirétted graphs are of interest due to
their connection to Laplacian based semi-supervisedilggmethods, in particular, the harmonic
function solution of Zhu (2005). Giveth— 1 labels, the value of the harmonic function solution
at nodev is the probability that is in the same connected component dslabel for a random
arborescence forest with roots at the labelled points aobgtility proportional to the product of
its edge weights. This fact may be derived from Cramer’s ratkan extension to Kirchhoff matrix
tree theorem given by Chaiken (1982). Instead of mixture rmogl@pproaches which require
sampling or non-convex optimization, the harmonic funtsolution or the Tikhonov regularized
harmonic function solution, has a simple solution as thatgwi to a linear system. Figure 3.3
gives an illustration of a partition induced by an arboresegforest.

Figure 3.3: Laplacian and arborescence forests: Eachest®nce forest on the underlying graph
induces a partition. This figure shows one example of an ago@nce forest partitioning the
vertices into two components.

3.6 Hierarchical Models

Thus far, the discussion has centered around distribubees simple partitions. Beyond simple
partitions, nested partitions are of interest as they spord to hierarchical models. A nested
partition is a sequence of partitioflg, I1,, ... such thatl; is a refinement ofl;_;. The natural way
to generalize recursive forests in order to represent dgxditions is to add colors to the edges
where the color indicates at which level of the nested pantihe two adjacent points separate into



CHAPTER 3. COMBINATORIAL STRUCTURES: DISTRIBUTIONS AND
REPRESENTATIONS 40

different blocks. Each partition in the nested partitiothien represented by the tree induced by
the appropriate set of colors.

We start by describing the Hierarchical Dirichlet Proced®P) and give a corresponding
combinatorial representation. This representation léadsgeneralization to the ddCRP sampler
of Blei and Frazier (2010) to HDPs. We use the notion of a badesaploit the forest structure to
introduce further improvements.

More generally, we describe how coagulations and fragnientalead to natural hierarchical
models. We use this to describe several nonparametricrbiecal Bayesian models: the HDP,
the Nested Dirichlet Processes (nDP) of Rodriguez et al.§208e Nested Chinese Restaurant
Processes (NCRPs) of Blei et al. (2010), and Tree-structuiekl Bteaking Process of Adams
et al. (2010).

Hierarchical Dirichlet Process

The HDP is a hierarchical model in which the data points areaaly grouped into a set of pre-
defined groupg/. The simple two-level HDP has the following generative psxcfor latent class
membership variables.

B~ GEM/(6) (3.1)
w, ~ DP(0p) forge g (3.2)
zig~w, foriel, (3.3)

whereG EM refers to the Griffith-Engen-McCloskey law.

We will regard theGE M process as defining a random measure\gmamely the measure
> ien Bidi. The per group stick weights,, define random measures ahas well. Points:;, and
x4 belonging to groups andg’ respectively belong to the same cluster if and onbyjf= 2.

The corresponding combinatorial process on partitions pbints is the Chinese Restaurant
Franchise (CRF) described by Teh et al. (2006). In the restaaralogy for the CRF, there aj@|
franchised restaurants withy customers in the" restaurant. The franchise has an infinite number
of dishes to choose from, and each restaurant has an infunitder of tables, but only one dish
is served at each table. Whenever a customer orders a dishghs/able to see the popularity
of the dish across all restaurants in the franchise. Themets arrive in sequence where tHe
customer to arrive at restauranthooses to sit at an occupied tablegith probability proportional
to the number of customers already at that table or choosgs @b a new table with probability
proportional to some parameterlf the customer chooses to sit a new table, he/she ordesha.di
with probability proportional to the number of tables whidrve that dish across all restaurants,
or he/she orders a dish which has not been ordered yet withapility proportional to some
parametep.

Just like the HDP is a composition of Dirichlet processes,Ghinese Restaurant Franchise is
the composition of multiple Chinese Restaurant Processesnayaise this observation to obtain
a natural forest representation. Within each group, drawrest on the customers in each group
corresponding to a CRP. Putting all the individual forestetbgr gives a single forest with black
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edges. The roots of this forest correspond to tables in the @RIB@y. Draw a red colored forest
on the roots of this black forest. The induced partition anrbots of the black forest correspond
to the partitioning of tables by the dish served on each table

We note that while we describe everything for the HDP usimgahe-parameter £ M distri-
bution, it can easily be generalized to the two-parametesioe as well. Section 3.7 gives more
details.

Sequential procedure for drawing Forests

The CRF gives a natural sequential procedure for drawingt®r&ven a new point;, in group
g, connect it to a previous point;, in the same group where: < j and color it black with
probabilityoc 1. Otherwise denote it as a root of the black forest with prdkbx 6. If the point
is black root, then connect it with a red edge to t#fleprevious black root with probability 1 or
designate it a root of the red forest with probabitity,. The connected components of the forest
including both the red and black edges defines the samebdititm over clusters as Equation 3.3.
Figure 3.4 illustrates the forest representation.

This gives the p.m.f. for the augmented forest represemtatontaining the forest’ and a
coloring of the edges as red or black.

eker I'(6)

PlF) = eo)Hre+ng
)
)

ekerr(eo
(7“ -+ 90

wherek is the number of roots of the red forestis the number of roots of the black forest, and
n, is the number of points in group

We may use this representation to propose both a new Gibhdesgior the HDP in the colored
recursive forest representation as well as proposing arsglige sampler for the HDP.

Backward-Forward Forest Gibbs sampler

In the usual Gibbs sampler for a HDP mixture model based olCRIg each Gibbs step updates
the class membership of one point. In the forest representad Gibbs step updates the class
membership of a point and all points in its subtree. If onetoaduch all the points in the subtree
in each iteration, this would be a potentially expensiverapen. However, one may exploit the
underlying forest structure and apply dynamic programntongbtain a sampler that can move
multiple points yet each iteration has a cost similar to theal Gibbs sampler.

For each point we store the sufficient statistic for that paind all the points in its subtree. Thus
when the outgoing edge of a point is updated, rather thantungdiae labels of all of the points in
its subtree, one updates the sufficient statistic along sathe other bookkeeping variables. The
variables needed are given in table 3.6. We note, howe\aritie descriptions of the varibles are
not strict invariants that are maintained at all times.
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Figure 3.4: Forest representation of a Hierarchical DietRrocess (HDP). This figure shows the
HDP forest representation for a clustering of eight datan{gointo two blocks where the points
are pre-classified into three groups. The black edges foeuwasive forest for each of the groups
while the red edges form a recursive forest on the roots ofdfest induced by the black edges.
The red circles are the roots of the forest induced by the medoéack edges while the blue-green
colored circles are roots of the forest induced by black sdge

variable description
b permutation used as the base of the recursive forest
F array containing the random recursive forest
Flegree array containing the number of red incoming and outgoingeedgr each point
Florars array containing the sufficient statistics of the subtrees
z array containing the assignment of points to clusters
i location of the point that the Gibbs sampler is currentlyatpd
L, list of points in cluster and groupy that come before the current point
Lreet | list of points in cluster that come beforé and are roots of’ restricted to black edges
Neg number of pointgL,,|
nheot number of pointg L.
R the number of roots of the black forest

Like the usual Chinese Restaurant Franchise sampler, thises@ nontrivial number of book-
keeping variables. This setup, however, does not requepifg track of the complicated assign-
ment of points to individual tables and groupings of tablesaah level of the hierarchy. The CRF
requires one to keep track of a nested partition with unknstnurcture formed by the assignments
to tables at various levels. In the forest representatlmnstructure of the bookkeeping variables
is fixed by the structure induced by the groups.

The sampler and variables presented here are for the simpletel HDP, but additional
levels will only require changes tB;.yce, Ly, aNAR. Fyeqree Will be a? x n matrix containing
the degrees for each of tlecolors corresponding to levels in the hierarchy. LikewiBeyill be
an array containing the number of roots for each color. Irctee where there are more than two
levels, the groups themselves form a nested partition. Wiile the description of.., is still the
same, updating the cluster assignment of one point willirequpdatingL., for multiple groups.
There is an alternative representation fog which only stores the list of points for groups that are
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at the leaves of the nested partition and counts for thenaterodes, but one still needs to update
counts for every level of the hierarchy when the cluster mensitip of a point changes.

The sampler also does not distinguish between updating tevsus point assignments. One
always operates on single points and pulls all of its chiidang in an update. The information
encoded by.,... is whether or not a Gibbs update can give igooint an outgoing black edge.
If there are any incoming red edges then the outgoing edgéatagssbe red.

The sampler proceeds in two stages, a backward sweep fallbwa forward one. The back-
ward sweep does not require an explicit forest; it instealdl®one up. The forward pass will start
off with only the forest structure and reconstruct the esipssignment of points to clusters. For
convenience in exposition, we will take the base to alwaytlbe., n).

Algorithm 1 BackwardSweep
Require: Parameters,, 6 for the HDP and a priorr on the mixture component parameters. The
variables in table 3.6 except Fiqs, Fuegree. INStead of containing the actual red degree of
each point,F.,-.. only contains the outgoing red degree. Instead gf;;, one simply needs
the sufficient statisti&, for each clustet.
Ensure: F, Fyats, Fuegree Match the descriptions in table 3.6.
1: Initialize F;,;, to contain the sufficient statistic for each singleton.
2: fori=n—1do
3: Letg be the groupx; belongs to and = z; be the current cluster allocation for
RemoveF (i) from S, as well asz; from L.,
If Fyegree(i) > 0 decrementy,,,..(i) and R by one and remove; from L.
Calculate the Gibbs probabilities of attaching to clustetia a black edge via

o g k&

p(Cl) X nc’gf('ri’Sc’a W)l(Fdegree(i) = 0)

7. Calculate the Gibbs probabilities of attaching to clustetia a red edge via

0
p(d) x 7 QOnZ?Otf(xi]Sc/,w)

8: Calculate the Gibbs probabilities of creating a new clustand adding a red self-loop

00
p(d) o 7 +090n2?°tf(xi]5d,7r)
9: Choose a cluster,.,, and color/ according to the Gibbs probabilities
10:  Choose a destination pointfor the outgoing edge from the sét or L*** depending
on the color.
11: Updatertats(j) with Fst(zts@)a F(Z) = j, Fdegree+ = 1(€ = Ted), R+ = 1(6 = Ted)
12: end for

newd

We note that the calculation of Gibbs probabilities andceda of an outgoing edge are iden-
tical in the two sweeps, but the bookkeeping maintains iffeinvariants. The backward pass
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Algorithm 2 ForwardSweep
Require: Parameterd,, 6 for the HDP and a priotr on the mixture component parameters.
F, Fyats, Faegree Match the descriptions in table 3.6.
Ensure: The variables in table 3.6 excep};.;s match the descriptions given.
1: Start a new cluster = 1 with sufficient statisticS; = Fls5(1).
2: Setz; = 1 and initializeL,, = L}°** = {x;} whereg is the groupz; belongs to.
3:fori=2—ndo
4. Letg be the group; belongs to
5: If F(¢) is null andi does not start a new cluster, let= zp(;), the cluster thai’s parent
belongs to, and remov&,;,;s (i) from S..
6: If Fuegree(i) > 0 decrementy, ,..(i) andR by one.
7.  Calculate the Gibbs probabilities of attaching to clustetia a black edge via

p(c) o Nerg f (24 Ser, T)1(Fegree(i) = 0)
8: Calculate the Gibbs probabilities of attaching to clustetia a red edge via

~ 0
R+,

ni2o f (2] Ser, )

()
9: Calculate the Gibbs probabilities of creating a new clustand adding a red self-loop

~ 00,
R+ 6,

p(c') g f (2] Ser, )

10: Choose a clustet,.,, and color/ according to the Gibbs probabilities

11:  Choose a destination pointfor the outgoing edge from the sét or L7 depending
on the color.

12:  Addz;to L., ,andifell is red then also add it tb

13:  UpdateF'(i) = j, Fuegree+ = 1(¢ = red)

14:  Updatez; = ¢ and updates,, , With Fs(7).

15: end for

newd

Cnew *

new

ensures that for all points aftéwhich the sweep has already covered, all the variables coince
the forest are correct, and these will not be further updatéiae backward pass. The forward pass
ensures all the variables excépt,; are valid for the points before the current siephich have
already been covered by the sweep.

Split-merge sampler

We now present a sequentially allocated split-merge algorfor the HDP. Since this is a Metropolis-
Hastings procedure, the only detail that needs to be fillad the proposal distribution. We do
this by simply adapting thé' orwardSweep procedure. In the version of the split-merge sampler
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we present, the main changes to the procedure are that thieenwhclusters is fixed at 1 or 2
depending on whether a merge or split is proposed, and wevataran “empty” allocation for
each proposal similar to the sampler given by Dahl (2003).

Algorithm 3 ProposeSplit
Require: A connected componeiit of the forest with both red and black edges.
1: Permute the order of points i uniformly at random. WLOG label them as points ..., 7.
2. Denotery, z, as the first two points of new blocKs,, B; respectively, and update the relevant
bookkeeping variables.
3: Initialize F4¢5 to sufficient statistics for singletons at¢l. ,..(7) = 0 for all j > 2.
4: Perform a forward Gibbs sweep starting at the third poinhwhe following differences. One
cannot propose a new cluster, and one does not need to remgyg:) from the parent
cluster’s sufficient statistic. The sequential allocafoobabilities are stored.

A ProposeMerge step is identical except one starts with two componénisB; and lets
B = ByU B; be their union, and instead of starting two clusters witlandzx,, one only starts one
clusterz,. If a proposal is accepted, then the chain simply overwthesstate of the components
of the forest that are affected by the proposal.

We note that Wang and Blei (2012) have recently proposed aseige sampler for the HDP.
However, our split-merge sampler is substantially difféfeom theirs. In the context of the CRF,
their formulation applies split-merge moves to the tablagleir split-merge steps cannot separate
customers sitting at a common table. Furthermore, sinc¢afdes that share the same dish or
mixture component parameter, the assignment of custoradebles is random, the split-merge
moves pick from a restricted set of random splits. In our fa@ation, a split-merge step both
reassigns customers to tables as well as tables to dishdseliéee this addresses the fundamental
problem with split-merge samplers for HDPs.

Choosing to split or merge

We have now specified the proposal distribution given a étmcsplit or merge has already been
made. We briefly discuss the possible choices for choosiregtvein to split or merge and suggest
a possible improvement to the existing choice.

Existing split-merge samplers for the CRP make a choice tb @piherge by choosing a ran-
dom transposition uniformly at random and checking whetifetwo elements in the transposition
are in the same or different blocks. This proposal is basati®transposition random walk which
yields aC'RP(1,0) distribution and ignores the role of the parameterOne may introduce a
simple change to the proposal to include the effect.ofirst, take a size-biased pidk, for a
block. Propose to split with probability 6| B,|, or propose to merge with block; with proba-
bility o |B;|. This change is especially relevant for HDP split-mergedamns since probability
of creating a new root isc Raﬁgo. As more roots are created, the probability of creating a new
cluster becomes smaller, and too many splits may be propesiad the naive method. In our
experiments, we used the simple rule based on the trangposahdom walk. We also note that
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an alternate move to splitting and merging is to exchangeskments of two blocks. This has
been proposed before (Thibaux (2008)) though not impleetent

Evaluation

We implemented a Gibbs sampler for the usual CRF represemtatiGibbs sampler in the forest
representation, and a split-merge sampler with variousnigdtions introduced in chapter 4. The
implementations were all done in python. We take the samegyaoson metric as Dahl (2003) to
compare the samplers, namely effective sample size onubkgecing entropy statistic. To compare
the computation cost of the different samplers, we use tineben of likelihood calculations per-
formed. This is reasonable since the time spent in each samvpks dominated by the time spent
on likelihood calculations. Since we introduce a few furtbytimizations for the split-merge sam-
plers in chapter 4, we briefly summarize the results here eadklthe full comparison for the next
chapter.

We find that the Gibbs sampler on the forest representatiorrgly performs substantially
better than the usual Gibbs sampler, both in terms of efiestample size per unit of computation
as well as finding local modes faster in the burn in phase. Mewé did not dominate the usual
Gibbs sampler for every data set. The split-merge samptértive additional optimization of early
rejection for merge moves typically improved upon the Giblspler in the forest representation.
Without early rejection, datasets with well defined clustiid not see a benefit or performed worse
with split-merge moves.

Discussion on different HDP samplers

We have presented two new algorithms for sampling from HD#tume models. The first is a
Gibbs sampler based on the random recursive forest repatieer and is a cousin to the ddCRP
sampler of Blei and Frazier (2010) for CRP mixture models. A lestdre of the algorithm is
that it exploits the tree representation to make each Gitgloation take constant time by using
dynamic programming. The second algorithm is an extensidhé split-merge algorithms for
CRP mixture models described by Jain and Neal (2004) and Da@8Bj2It goes beyond the naive
approach of Wang and Blei (2012) which applies the usual CRRmplige to one level of the
hierarchy conditional on the rest.

Both algorithms propose moves that can split off more tharnpairé. The split-merge sampler
uses a sequential allocation rule to propose a good spliewthe forest-based Gibbs sampler
proposes random splits of various sizes. As Jain and Ne@#jafoint out, splitting uniformly at
random yields a poor proposal for a split-merge sampleedine splits are unlikely to be accepted
but still take time proportional to the merged blocks. Alilgh split proposals in the forest-based
Gibbs sampler do not make use of the value of the data polmes;andomness allows the splits
to be performed cheaply at constant cost if the computdtioost of evaluating the likelihood is
constant given a sufficient statistic. Furthermore, thestbased Gibbs sampler does not perform
a uniform random split and instead proposes smaller splits.
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We give a heuristic justification that the size of the splitsgmsed by the forest-based Gibbs
sampler and ddCRP are of an appropriate size for CRP mixture siotleére are two problems
associated with the split size. The first is if the split sizdarge enough to overcome the effect
of the prior and adding additional parameters to the modieé Jecond is that the proposed split
actually reflects the true desired split. The usual CRP Gibbgpka only moves one point at
a time and suffers from the first problem. The split-merge@amusing uniform random splits
proposes large, expensive random splits in which the taguttocks from the split are too similar
to each other. To address the first problem, we note that tbieelof whether or not to split a
block is akin to the problem of model selection klfs the number of parameters to be added and
n is the size of the block, then the Bayesian Information Cote(BIC) adds a model selection
penalty ofg log n to the maximized log-likelihood. It is a Laplace approximatto the marginal
likelihood and will pick the true model as — oo if one of the models is true. Given a fixed
base, the size of the proposed split for the element of the base is distributed+- Beta —
Binomial(n — i,1,i — 1). Thus, the expected split sizé of a randomly chosen element in the
blockisEZ = %ZL (1 + %) ~ log n. Thus the split sizes are appropriately sized to overcome
the penalty of adding additional parameters.

If one large block was generated from a two component mixtuttemixing weightsp, (1—p),
then if the split size is large, then asymptotics dictate tha two blocks from the split will be
indistinguishable since they are, in fact, drawn from thaeaistribution. In the block that is split
off is of sizelogn, then the probability that thodeg n points all belong to the component with
weightp is approximately'os™ = # Since one sweep of the forest-based Gibbs sampler proposes
n random splits, if all splits were of sideg n, then the expected number of splits is approximately
a constant /p. For a split-merge sampler with a random split proposal,ssmeep consists of only
one split proposal, so even if it proposed splits of $izen, it would requireO,(n) sweeps before
all the points being split off come from the same cluster. S linoth the relatively small size of the
splits plus the efficiencies gained from dynamic prograngngiive a heuristic justification that the
forest-based Gibbs sampler chooses splits that are ncartge. |

We can also heuristically show that the forest-based Giabgpger will never do much worse
than the CRF Gibbs sampler. This is since, for the regular CRRE balef the moves proposed
by the forest-based Gibbs sampler only move a singletonakFandom recursive tree of size
the size of the subtree rooted at tflenode is distributed + Beta — Binomial(n —i,1,i — 1).
Thus, the probability of the subtree being a singletoﬁ.i§umming ovel from 2 to n, one finds
that the expected number of singleton subtreeg:is- 1)/2. Since subtrees can only attach to
nodes occurring earlier in the base, each proposed simghetwe in the forest Gibbs sampler is
not directly comparable to a move in the usual CRP Gibbs samplewever, since the forest-
based Gibbs sampler chooses a base uniformly at randonrdpeged singleton moves for nodes
occurring in the second half of the base are roughly compatatCRP Gibbs moves. The number
of singleton move proposals in the second half of the base 8:/8 > n/3. Thus, one may
expect that a forest-based Gibbs sampler will never do muarle than3 times worse than a Gibbs
sampler. This number is also consistent with our experiaieasults.



CHAPTER 3. COMBINATORIAL STRUCTURES: DISTRIBUTIONS AND
REPRESENTATIONS 48

Forest representations, sequential constructions, and MCMC sampie

In this section, we have exploited two properties of HDPsreate new samplers. First, we ex-
ploited the forest representation of an HDP to obtain a Gsa#bapler. Second, we exploited a
sequential procedure for drawing a recursive forest toiolatasequentially allocated split-merge
sampler. Furthermore, with the forest Gibbs sampler, ongcuoastruct an alternative split-merge
sampler using the restricted Gibbs sampling idea in JairNead (2004) and Jain and Neal (2007).
These ideas are not specific to the HDP. They may be appliedytdiatribution over forests or
recursive forests with sequential constructions.

We will present forest representations and sequentialtaai®ons for the priors of several
nonparametric Bayesian models. Using the same ideas pedsenthis section, one can obtain
forest Gibbs samplers and split-merge samplers for thémw# atodels as well.

3.7 Other models: Fragmentations and coagulations

With the forest representation for a HDP, we have shown holteanate combinatorial represen-

tation leads to new samplers. The goal of this section is toctestrate how similar ideas may be

applied to other processes which are described as stielkdingeprocesses, but have an underlying
combinatorial representation. In general, most processesding a hierarchical model can be
described as some composition of fragmentation and coagulkernels.

Coalescent and coagulations

The main property of a coagulation is obvious from its namegrga coagulation process with
partitionll; at timet, thenll;, A is a coarsening dfl; for A > 0, or equivalently]I; is a refinement
of IT,. A. The time-reversal of a coagulation yields a fragmentatoprocess on partitions such
thatlIl,, A is a refinement ofl; for A > 0.

The canonical example of a coagulation is Kingman’s coaleis(Kingman (1982)) which is
commonly used in population genetics for describing the=aimg of a set of alleles. At each step
of the jump chain of Kingman’s coalescent, two blocks of thetiion are randomly chosen and
merged. The connections between Kingman’s coalescenth@n@hinese restaurant process are
well known. See, for example, Pitman and Picard (2006). H builds a coalescent tree and
marks the branches usingraisson(f) process, then the partitioning of the leaves of the tree into
distinct alleles is” R P(0) distributed. Thus, one can obtain a sequence of partifidip$ indexed
by the mutation raté@ which is a realization of a fragmentation process. The 8§ and Il
give a partitioning into all singletons or a single largeddo We may view the CRP as either a
fragmentation of a partition with all points in a single koor as a coagulation of points. Teh
et al. (2008) use this construction of a nested partitiorhasbiasis for a hierarchical clustering
method.
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HDP as a fragmentation-coagulation

We now cast the HDP as a fragmentation followed by a coagulat\With the HDP, we start
with an a priori partitioningll of points into groups. The first step of the HDP independently
fragments each bloclB; € II using a CRP to obtain a refinementldf. The combinatorial
representation after this stage is the black forest witheabedges or in the case of the CRF, the
partitioning of customers to tables. The second step of tB ks the key idea which allows
different groups to share parameters and borrow strength &ach other in mixture modeling.
This step is a coagulation in which the blocks of the refineraes coagulated with a CRP. In the
forest representation, this corresponds to the red edgemcting components of the black forest.
In the CRF representation, this correspondence is less ahbviou

Nested Dirichlet Process

The nested Dirichlet Process (nDP) is another nonparam@atyesian model which allows dif-
ferent groups to share parameters. In the original forraragiven by Rodriguez et al. (2008),
a family 7 = {Fy, ..., F,} of distributions gives the law of a nested Dirichlet Processture
nDP(QO, 91, H) if

Gy ~ DP(6yH)
mx ~ GEM(6,)

Gj ~ Z WZ(SGZ
k
Fi(16) = / £ (16, m)dG,(n).

wheref is a density function parameterized byr.
We first reformulate the model specification in a way thatvedl@asy identification of a prior
over nested partitions.

¢® ~ GEM(6,)
7~ GEM(6,)
Aj ~
B; ~ q(AJ(i))
Nap ™~ H

(45)
Gj = § :qb ’ 577,4]»13
b

Fy(1¢) = / £l m)dG, (1)
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where as before, we considéfZ’ M as inducing a random measure 40 The latent variable
A, for group j chooses the mixture component titat belongs to. In this case each mixture
component is a random measure itself. The latent vari@ppecks out a component of the random
measure>; wherej = J(i) is the group that pointbelongs to.

The result of this process yields a coagulation-fragmentgirocess. One may patrtition the
points by three different cluster membership variable< fiitst partitionlI; is based on/(i), the
fixed assignment of points to groups. The second partliiors based oM ;;) which is a coagu-
lation of the partition formed by groups. The third partitid; is based on the paitd ), 5;). It
is a fragmentation of second partition since theaefine the partition determined by thk; ;).

This proves that the nDP may be constructed via a coagulagmentation process. One
forest representation for the nDP is obvious given this wiesen. One first builds a random
recursive forest on the groups. This gives the partitign GivenII;, build a random recursive
forest on the points within each block of the partition. FgG8.5 illustrates the representation.

L

® | a0~
N —~— 7 NN/

coagulated group 1 coagulated group :

Figure 3.5: Forest representation of a nested Dirichlec&#ss: Groups are first coagulated via
a CRP. The points within each coagulated group are then fragohdzy CRPs. The resulting
partition is{1,2, 7}, {3,4,6}, {5,8},{9},{10,11, 12}. No edges may be formed between points
in separate coagulated groups.

We may also provide a sequential procedure for drawing feffles the nDP. Order the points
according to some base. For the point, if it is the first point from its group/(4), then connect
that group to one of the previously encountered groups witbgility oc 1 or mark it a root
with probability oc 6;. The assignmenti ;;, then is determined. Connect pointo one of the
previously encountered points which are also assignet) g with probabilityoc 1 or labeli as a
root with probabilitye 6,. We note, however, that the sequential procedure for themBynot
yield a good sequentially allocated split-merge samplée fieason is that the outgoing edge for
a given group constrains the edges of all the points in thaifgr Thus, choosing another group
to coagulate with before inspecting the values of all thenisoin the given group may lead to bad
proposals.
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Nested Chinese Restaurant Process

The nested Chinese Restaurant Process (nCRP) introduced by &lg2910) gives a potentially
infinite hierarchical model for topics. The nCRP induces aatpartition. We may describe the
process as the following pure fragmentation process. @itita partitionIl, with all the docu-
ments in a single cluster. From partitibin_;, generate a refinement by independently fragmenting
each block oflI;_; using a CRP.

One combinatorial representation of the nested partitinodaced by the nCRP is obvious:
letting each block of each partition be a node in a graph, ecneach block with its “parent”
block in the fragmentation process. We can also give a mamgeact representation where the
vertices of the graph are the data points or documents theesseather than blocks of a partition.

Start by drawing a random recursive tree with the documentedices. At the first step, cut
the outgoing edge of th&" document with probabilityéﬁ. Label the cut edges withto denote
the step at which they were cut. This give€'®&P(0) partition. At stept, repeat the process
for each of the connected components of the partition obthat step — 1. In this case, the
it document refers to th&" document within a connected component. Each repetitiomef t
cutting process induces a partitioning of a component intaller components which §RP(0)
distributed.

We note that there is only a single recursive tree drawn ast#ineof the process. One does not
need to draw a new recursive tree at each step, even thouglBRIe arises from fragmenting each
block independently. This makes representing the nCRP sisipte, like the HDP and CRP, the
underlying graph describing the partition may be represknsing only a single, colored outgoing
edge for each vertex where the color denotes the level atmth&edge is cut..

This representation yields a natural Gibbs sampler in tbersa/e forest representation for the
NCRP. At each step of the sampler, a new outgoing edge and #etawvhich it is cut are drawn.
The given construction for drawing a random recursive fadlescribing a nCRP distributed nested
partition is a sequential procedure which may be used to osplit-merge sampler as well.

Pitman-Yor as a new hierarchical model

Thus far, we have described hierarchical models formeddgnfientation-coagulations, coagulation-
fragmentations, and pure fragmentations. None of thedeiexpe relationship between fragmen-
tation and coagulation. Itis, in fact, not a surprise thaytare not able to since currently there is no
known clear and simple way to calculate probabilities fartime-reversed partitioning processes
for the given models. This leads us to examine one case wheifeagmentation-coagulation du-
ality is understood, which is the fami{fCRP(0,«) : 0 < a < 1} whereCRP(6,0) denotes
the one-parameter CRP. In this case, one may construct a pigiess{I1° }, on partitions ofy,
such thafll® is CRP(n, 0, o) distributed.

The following fragmentation-coagulation relationshigdso(Pitman and Picard (2006)). For



CHAPTER 3. COMBINATORIAL STRUCTURES: DISTRIBUTIONS AND
REPRESENTATIONS 52

0<a<l1l,0<6<1,0>—apf,

(6,0) LT (9, ). (3.4)
(—aB,a)—frag

In other words, given & RP(0, a3) distributed partition] and applying a0’ RP(—af3, ) inde-
pendently on each of the blocks gives a refineni&nif I1 that isC RP (6, o) distributed. Like-
wise, given &0’ RP (0, «) distributed partition and coalescing its blocks accordagC RP(0/«, [5)
gives coarsening which S§RP(6, o) distributed.
A special case of interest whefe= 0 is
(6/a,0)—coag

9,0) 9, ). (3.5)

(0,0)—frag

Forests and fragmentation-coagulation

We now give a simple combinatorial argument using randonursige forests that proves the
special case in equation 3.5 as well as gives a representaid may be used in Markov chain
samplers.

We generate a colored forest via a fragmentation processtaow that it results in the same
sequential probabilities as@R P (0, «) processes. First generate an uncolored random recursive
forest that induces @ RP(n, 0, 0) distribution and then color the edges as follows. Proce¢len
order given by the base for the random recursive forest.elbilitgoing edge of thé" node links
to a red root or a node with a red outgoing edge, then coloditwih probability «; otherwise,
color the edge black. The probability th&t outgoing edge connects to a previous component of
sizem is ;7% (1 — %) a = 722 which is precisely the sequential probability from the dsua
construction for & RP(n, 0, «). By removing the red edges and considering only the blacksdge
we fragment the” RP(n, 0, 0) tree to obtain &' RP(n, §, ) tree. This proves the direction that a
CRP(0, ) process can be obtained fronCd (6, 0) process via & RP(0, «) fragmentation.

Consider the following forest generating process. L@bints arrive in a given order. The"
point may (1) attach via a black edge to an earlier poiat j with probability proportional to 1
if 7is not a root and — « if it is, (2) attach to itself with probabilityx 6, (3) draw a red edge to
an earlier root with probability c a. The sequential probabilities for drawing edges matches th
fragmentation process above, so we have a sequential preckad drawing “Pitman-Yor forests.”

The proofthat &’ RP(6/«, 0) coagulation of &' RP(6, ) distributed partition yields @ RP (6, 0)
distributed partition is similar. Start with a black coldr®rest corresponding to@R P (6, «) par-
tition. Proceeding in the order dictated by the given basasiter the roots of the black forest.
At the (i + 1)** root draw a self-loop with probabilityfg—‘;‘a = ﬁ We find that the resulting
sequential probabilities for generating the partition medi by the connected components of the
forest with both red and black edges matchésrP (6, 0).

This construction, like previously discussed construtdj@ives a convenient representation of
a nested patrtition in terms of a recursive tree with cologes. However, it only covers a special
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case of the coagulation-fragmentation duality relatigmstWe can calculate the general sequential
probabilities obtained by composing a CRP fragmentation and €efaBulation process

Suppose the outgoing edges for the firstertices have already been drawn. lketbe the
number of black roots among the figgtoints, and let; be the number of red roots among the first
i points. The vertex + 1 is designated a new root with probability

90"‘0&0]6;64‘0[]6’1‘
ki+0, i+0

In the case wheré, = 0/a,ay = §, i.e. the coagulation processdskP(0/«, 3), then the

incremental probability of creating a new rooﬁﬂéﬂ 9+jj’“ — %to9BE \which is exactly the same
as foraCRP(0, a3). One may similarly calculate that the probablllty of cragtattaching vertex

i+ 1 to a given component matches the corresponding probatulity C RP(0, «3) as well. This

shows the directio@' RP (0, «) JeB)cong CRP(0,ap). Simple algebra also shows that these
parameters are the only ones such that a CRP distributed ediagudf a CRP generated partition
yields another CRP.

To prove the opposite direction of equation 3.4, we caleuthe sequential probability of
the (i + 1) point starts a new block given that the process ERP (6, ) fragmentation of
aCRP(0,ap0). Letn, be the number of nodes in componentf the CRP (¢, «f3) distributed
partition when restricted to the firgtdata points. Let; be the number of components of the
CRP(0,ap) distributed partition and. be the number of fragments in componenthen re-
stricted to the firsi data points and, = > ;. be the total number of fragments. The sequential
probability for labelling thei + 1) point a root is

k,
0 + Oéﬁkl . Nje — Oéﬁ —90 + Oégk’gc
Whenb, = —af, ay = «, then the formula simplifies to the incremental probabititycreating a
new block at poini + 1 foraCRP(0, «).

Modeling and sampling

We now consider the implications to proposing new hieraalmodels, the relationships to exist-
ing models, and sampling for new and existing models. Thegidea we apply is that one starts
with a random recursive tree and introduce a fragmentatioogss to cut edges. This gives a prior
for a top-down hierarchical clustering approach where ardetstands the prior over partitions at
every level of the hierarchy. One may do the same in reversgdniing with no edges and adding
them in via a coagulation. These processes include the nCRReFuore, using fragmentation-

coagulation duality, if the nCRP is extended by allowing fogaite/e values in the parameters,

then one can obtain a hierarchy of Pitman-Yor distributaditpans. Representations for all these
models may be described by a random recursive tree plus amsegof cuts. Thus, there is always
a natural Gibbs sampler for all these models which sampkeedige and at what level it is cut.
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Consider the following process on partitions. ébe a random recursive tree. Attach to each
nodes a pair(U;, V;) of Uniform(0,1) random variables. For fixefl ., induce a set of cuts as
follows. Proceeding according to the ordering of nodes @rtindom recursive tree,

U; cuts the outgoing edge of nodé U; < —— (3.6)

i—140
V; cuts the edge aof if the edge connects to a node whose outgoing edge is cut;addy

Let the connected components of the resulting forest defiaepartitionIl,,. From the pre-
vious discussion, this partition clearly has’a&® P(6, «) distribution. Thus, we have defined a
stochastic process on partitiof, , }¢ . indexed by parametets «. Furthermore, any sequence
(0(t), a(t))s such that(t), a(t) are both monotonically increasing induces a sequence tédhes
partitions.

This class of models contains none of the previously desdréxisting models. The rea-
son is that the process is only Markov wherns held fixed, and it is in the regime where the
fragmentation-coagulation duality is understood. If tl&R®P is extended to allow for negative
parameter values, then the nCRP falls into this regime withiaately constrained parameter
values. Of the models that start with a partitidp and apply Markov fragmentation and coagula-
tion kernels, there are three classes in which there is @septation as a single random recursive
tree with cuts. The first is a sequence of fragmentations,ho¢lwvthe nCRP is an example. The
second is a sequence of coagulations. When using'tR€ as the coagulation kernel, one may
regard this as a “reversed” nCRP. Since the family of distigdmst from the nCRP and “reversed”
NCRP models only coincide when fragmentation-coagulatialitguholds, the “reversed” nCRP
is a genuinely different model. The third class is a singhgfnentation followed by a sequence of
coagulations, where the HDP is a canonical example of. We thatt the nDP does not fall into
one of these classes as it is a coagulation followed by a feaggtion.

The relationship between the random recursive tree with presentation and Gibbs sam-
plers is obvious. We have also used this relationship inldpugy an HDP sampler. This repre-
sentation is also useful for developing auxiliary variagdenplers when the parameter of & RP
is treated a hyperparameter in a model. From the rule defip8ddfor cutting edges based on the
« parameter, one sees that the coloring of the forest is aditaiia a sequence dernoulli(a)
draws on edges connected to a black root or pointing to a naitleawed outgoing edge. This
branching process is analogous to the sequential procatsddfines the negative binomial distri-
bution. The likelihood fokx is given by

Lo, F)xa"(1—a)

wherer is the number of red edges ahds the number of black edges pointing to nodes with red
outgoing edges. If a conjugatgeta prior is placed ony, then the posterior af given the forest is
also Beta. This gives a combinatorial explanation for the auxiliagyigble method for sampling

« described by Teh (2006).

Tree-structured stick breaking

Adams et al. (2010) introduced the general class of treetstred stick breaking processes. These
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processes may clearly be regarded as fragmentation pesceassticks. Thus, they bear strong
similarity to the nCRP which is also a pure fragmentation psscéndeed, we can show that both
tree-structured stick breaking and the nCRP will generatsedhee latent distribution over a hierar-
chy of nested partitions. As a distribution over partitiothe main difference between the two is in
a stopping rule which decides the level of the hierarchydhatint belongs to. The tree-structured
stick breaking process introduces an explicit stick at eamde designating the probability that a
point (or document) stops at a node and is not allocated tabtiee children. This means that
the tree-structured stick breaking process will define &tpar, not nested partition, of the points.
For the nCRP, points (or documents) always belong to a leaf and@ node stops splitting when
it contains a singleton or a maximum depth is reached. Fdr bmatdels, sharing of information
comes from the underlying hierarchy. For an nCRP, the wordalitibes for a document depend
on the entire path from the root to the document. Thus, intexidio the nested partition of the
documents, one has a non-nested partitioning of words inte$1in the hierarchy. The param-
eters associated with each node are independent in thedisioibution. Soft-sharing amongst
documents is achieved by the hard coupling of words fronedbfit documents in the same node.
In the tree-structured stick breaking process, the paemmassociated with each node are drawn
conditional on the parent node’s parameters. Thus, shadogrs both from the hard coupling of
documents in the same node and from soft-sharing induceledyieérarchy of parameters.

We now prove that the nCRP and tree-structured stick breakingrgte the same latent nested
partition. Simply factor the stick probabilities assoettwith the tree-structured stick breaking
process into a component designating the stopping pratiedidnd a component for the infinite
latent hierarchy. The latent hierarchy will have the sanstrithution associated with the nCRP.
Let v, be the stopping probability at nodeand 5. be the stick at the parent node«that denotes
the probability that a point would go to epsilon if it were rsddpped. The probability of a point
belonging to node is

Te = Veﬁe H ﬁﬁ’(l - VG’)

e/ <e

) (1)

The probability on the right consisting of titesticks is simply the continuous version of choosing
a path in the nCRP. When the sticks are chosen to follGifa/ distribution, then after integrating
out the sticks, then one would have exactly the nCRP. The pilggalmnsisting of onlyv sticks,
may be regarded as the probability of stopping at a level®htararchy. We illustrate the process
and compare it to the nested CRP in Figure 3.6.

Sequential constructions and fragmentation-coagulation duality

So far, our descriptions of sequential constructions haeaded on the application of sequential
methods for drawing from a prior distribution. From a sedismethod for drawing from the



CHAPTER 3. COMBINATORIAL STRUCTURES: DISTRIBUTIONS AND
REPRESENTATIONS 56

[Example nested patrtition for the nCRP]
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[Example patrtition for the tree-structured stickbrealjimgcess]
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Figure 3.6: One obtains the combinatorial picture of the-s&uctured stick breaking process by
first drawing nested partitions representing the nCRP (topdjguEach row contains the same
points, but a different partitioning of the points. The npl& levels form a hierarchy of nested
partitions. To obtain the combinatorial equivalent of theetstructured stick breaking process
(bottom figure), at each node, randomly select a set of ptonte colored red. Delete all points
under the colored points. The assignment of colored poib®xes gives the partition defined by
the tree structured stick breaking process.

prior, one may add a likelihood term and obtain a sequertdiaicuction for a proposal distribution
in an MH algorithm.

We can also use sequential constructions to study the lateletween parameters for an
HDP. First consider the HDP with a single group and with’ BP(0, o) fragmentation process
andC'RP (6, o) coagulation process.

Suppose the outgoing edges for the firstertices have already been drawn. lketbe the
number of black roots among the figgtoints, and let; be the number of red roots among the first
1 points. The vertex + 1 is designated a new root with probability

904‘0&0]@’-64‘@]@
ki+6, i+0

In the case wheré, = 6/, i.e. the coagulation processGsRP(0/«a,0), then the incremental
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probability of creating a new root |%jf—j% exactly the same as@RP (6, ap). One may
similarly calculate that the probability of creating atiawy vertexi 4+ 1 to a component matches
the CRP (6, ) probabilities. Since the incremental probabilities foragimentation followed
by a coagulation is the same as that of a coagulation folldvyea fragmentation, this proves the
fragmentation-coagulation duality.
When there are multiple groups for the HDP, the incrementatbility that vertex + 1 is a

root is

0o + aok; 0 + ok,

k’i. + 90 Nig + 0

wherek;, is the number of black roots among the fifstertices in groupy, n,, is the number of
vertices among the firgtvertices in groupy, andk;. = Zg kiq is the total number of black roots
among the first vertices.

3.8 Applications to non-Partition Problems

So far, we have only described the use of combinatorial stres for tackling the problem of
sampling distributions on partitions and hierarchies. Eweev, distributions on the combinatorial
structures themselves are also of interest.

Reservoir Sampling

As an example, consider the problem of drawing a random saof@izek from multiple streams
of data. The solution to this problem for a single streamledathe reservoir sampling problem,
was given by Vitter (1985). In modern large-scale data asisiy the map-reduce framework, one
typically does not have a single stream but many streamshwieed to processed and combined
in a distributed fashion. Previous approaches have beesdhlms weighted version of reservoir
sampling such as those given by Efraimidis and Spirakis§p@@d Kolonko and \@sch (2006).
These approaches require maintaining a weight for eachegleof the sample and placing the
top k£ weights in a heap. Using the ideas we have developed thusdagjve an elegant solution
that solves the problem for an unweighted random sampleowitreplacement in a single map-
reduce pass and does not require storing weights for eacterte Given a randorh sample from
each stream in the map phase, the only additional summarististaeeded to perform the reduce
phase is a count for the length of each stream. Furtherm@eshaw that without maintaining
any additional information we can combine the output of iplétk samples to obtain a random
sample of size> k.

We first describe the single stream solution and relate émolom permutations and our mul-
tiple stream solution. For the single stream solution tdignncluding the firstc elements from
the stream in the sample. On tié element of the stream, replace a random element of the cur-
rent sample with the newly encountered element with prditati/i. If we cast the problem of
finding the firstk elements of a random permutation, then we obtain the salgjiieen in section
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3.4 which, when restricted to storing only the fikselements of the permutation, is identical the
reservoir sampling solution except that the explicit pet@atian is maintained.

For the multiple stream case, suppose there are two stregamsor simplicity. Generalizing
to more than two streams is trivial. Choose a base which a&adummy element in the first
position and puts all the elementsswfbefores,. An arborescence tree respecting that base gives a
cyclic permutation of the dummy element and all the elemehts, s,, and removing the dummy
element gives a permutation of the elements of the two ssedke first describe how to extract
the firstk elements after the dummy element in a cyclic permutatiomftioe arborescence tree
representation. Recall that the edges of the arborescecddnote the “sit to the right” process in
a Chinese restaurant process. For a cyclic permutation withrany element, the analogous goal
in the corresponding Chinese restaurant process with aesioghd table is to find the persons
that sit immediately to the right of the head of the table. Tirs person to the right of the table
head is thdast customer to sit to the right of the head. We denote the thi®mer as node;;,
in the arborescence tree. The second to last customer ightdrsit next to the head of the table
but was pushed aside hy, we will denote asr;,. All customers corresponding to the subtree
rooted atr;, will have inserted themselves betweenand the head of the table. Thus, to find the
k customers that sit to the right of the head, we look for thedastomer to the sit to head and all
the customers in the corresponding subtree. If that sugreksize> k, then stop. Otherwise,
find the next to last customer that tried to sit next to the haad repeat.

For the problem of merging two streams, the goal is to find h@myrcustomers in stream
inserted themselves between the head of the table and tloeisdsmer from the first streasm who
tried to sit next to the head. This is exactly the problem afifig the size of a subtree restricted
to the subset of points ik, which we described in section 3.4. Thus we have the algorithm
MergeReservoirs which calculates the number of samples to pull from eaclastr® obtain a
final random sample. We note that the resulting sample wiically be bigger thai because the
algorithm can take all customers in the union of the two sasplho sit immediately to the right
of the head.

Other problems of interest

For example, consider the matching problem. Permutationede matchings. If the matching
is between sources, ..., s, and targets,, ..., t,,, and one believes that the matchifjg— ¢; for
all 7 is approximately correct, then one may put a prior on pertimrta which strongly prefers
singletons.

Another example is the ranking problem entemsuvy, ..., v,. Both arborescence trees and
permutations are combinatorial structures of interestesthey respectively represent partial and
total orderings. When each observation consists of a setmoiithat are presented in a particular
order and the resulting ranking, then random recursivesteigive one probability model that takes
into account the the presentation of the items via a base.
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Algorithm 4 MergeReservoirs
Require: Parameters3;, B, containing randonk samples without replacement from streams
s1, 83 and countsy;, ny denoting the length of the streams
Ensure: ki + ko > k and0 > ki, ky < k wherek; is the number of elements to be taken from
sampleB;
1. Setk; = ky = 0.
2: for ki, =0— kdo

3:  Drawz ~ Beta — Binomial(ng — ko, 1,n1 — k1)
4: if z > 0andk; + ko + z > k then

5: ko = min(ks + 2, k)

6 return ki, ko

7. endif

8: end for

9: return kq, ko
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Chapter 4

Markov Chains on Graphs and Split-Merge
Samplers

4.1 Introduction

Developing Markov Chain Monte Carlo (MCMC) methods is somewtiia black art in which
one draws from a rich toolbox of ideas that others have deeeloThe ideas presented here both
add to and are inspired by ideas from this toolbox, in pakdicthe idea of variable augmentation.

In this chapter, the primary idea on which others are buitbisugment the state space so
that, instead of a single variabl€(¢) at a timet¢, one has a tuple or a stopped Markov chain
X1 (t), Xo(t), ..., X, (t). This augmented representation may be used to both males peiposals
as well as reduce computational costs when one constrgckgdrkov chains to contain symmetry
that can be exploited.

The main ideas that build off this Markov chain on Markov chegpresentation is a gener-
alizaton of the notion of launch states that was presentethlvtyand Neal (2004) and the use of
stopping times to perform early rejection of a bad propo&alan application, we demonstrate the
use of early rejection for split-merge samplers.

In this chapter, we describe Markov Chain Monte Carlo methodshich the state space is
described by a graphical model. In particular, we considezmthe states themselves are Markov
chains, so that the MCMC method is a Markov chain on MarkovrehaiWe use this idea to
propose modifications to the split-merge HDP sampler desdrin the previous chapter, and we
provide experimental results for the new HDP samplers.

4.2 Markov kernels on branch processes

To tackle the problem of improving split-merge samplers,finst introduce a few ideas that are
generally applicable for developing MCMC algorithms. Thentoon thread among these ideas is
that we build Markov chains((1), X (2), ... where the states of the Markov chain are stochastic
processesX (t) = (X;(t), Xa(t),...). To distinguish the two, we callX () };en the trunk chain
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and anyX (¢) = (X (t), Xa(t), ...) a branch process. Given a desired multivariate statioriaty-d
butionp on £ variables, the goal is to construct Markov chains such tiastationary distribution
on the firstk variables( X, (t), ..., Xx(t)) of a branch process js For ease of exposition, we will
assume that all finite-dimensional distributions undersoderation are discrete.

We use branch processes to exploit three ideas. First, @anhtbprocess is a sequential pro-
cedure that allows one to incremental build viable proms&econd, underlying each branch
process is a graphical model encoded by a DAG. When the gphimdel contains symmetric
structures, then one can exploit the symmetries as a wayw#&macomputational cost as well as
a means of dealing with nuisance parameters. Third, thechrarocesses allow the introduction
of stopping times. The stopping times may also be used tocawputation by performing early
rejection when a partially computed proposal is sufficiemtdetermining that the complete pro-
posal is unlikely to be accepted. They may also be used tancenthe branch process to make a
second, improved proposal.

Many of these ideas have existed in the current literatureome form. For example, the
split-merge sampler of Jain and Neal (2004) implicitly uadganch process where the restricted
Gibbs sweeps are a sequential method used to generate praplesals and the launch states are
nuisance parameters that exploit symmetries in the undgrtyraphical model so that the launch
state probabilities never need to be computed. Stoppingstimay be used to describe Wolff’s
algorithm for the Ising model as well as the Delayed Rejectemhnique of Tierney and Mira
(1999). In both cases, the branch process continues untibd groposal is reached. While we
are not aware of other cases that use stopping times to pedarly rejection, the idea of using
multiple stages for the acceptance rule has been descrnb&tristen and Fox (2005), Murray
(2007), Liu (2008), and Dostert et al. (2006).

Markov chains on graphical models

We describe a Markov chain on branch processes by first canirsgda more general formulation
where the state of the Markov chain at titeonsists of a random distributi@r(¢) represented by
agraphical model 0f(¢) vertices, and a tup (¢) = (X (t), X»(t), ..., Xsq)) assigning values to
vertices of the graphical model. This is an instance of asangroposal distribution as described
by Besag et al. (1995). For this chapter, a we will use the teaphgcal model to refer to a graph
describing the set of conditional independence assungpétomg with a set of clique potentials or
conditional distributions encoding a joint distributionen the vertices of the graph.

Let f be the desired stationary distribution bwariables. Place a distributignover graphical
models such that the marginal distributipfx, ..., zx|G) = f(z1, ...xx) of the the first; variables
is equal to the desired stationary distribution for @hjn the support of;. If {(G(t), X(¢))}+ is an
Markov chain with a unique stationary distribution givenddy)p(x|g), then the chain restricted
to {(X;(t), ..., Xx(t)) }+ has the desired stationary distributigin This is easily proved by simply
marginalizing all extraneous variables.
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Stopping times and MH on branch processes

To construct a MH algorithm on using a Markov chain on graghacodels, consider the following
manipulations on the state of the chain to generate a prbposa

1. generate a new set of augmentation variallles (t), Xi42(t), ... X5 (1) |G (1), X1(t), ..., Xi(t)
given the firstt elements and the graphical modé(t),

2. draw a new graphical modét (t)|G(t), X, s (t) of sizeS’(t) from some proposal distri-

bution.

.....

3. randomly permute the tuple to obtailX, _ gq)(t) = (X (1), ..., st(t)) wherer is drawn
from some distribution conditional o&’(¢), X(¢) and then extending the tuple by drawing
X110 Xstyp2r - Xy |7X(E), G'(2) if S'(t) > S(t) and projecting onto the first’(¢)

variables otherwise.

The first two manipulations play the role of generating a newos states which the chain can
move to but do not modify any of the variablég (¢), X(¢), ..., Xi(t) of interest, while the last
manipulation uses the new set of states to proposes a chatiggse variables of interest.

Of special interest are MH algorithms on graphical modetk wiform amenable for describing
sequentially sampled proposals. Fix a distributianfor a discrete time stochastic process and a
distribution for a stopping time with respect to the natdiléation of the process. A proposal
consists of the following steps:

1. generate augmentation variablgg, ;(t), Xi42(t), .. Xs@)|Go, X1(t), ..., Xx(t) and a stop-
ping time S(t)

2. draw a random permutation 6fit) elements conditional oX (t)

3. construct a stopped chaky (t), X3(t), ..., X, (¢) such thatX;(t) = X (t) if i < S(t)
andX/(t) is drawn from the conditional distributiol/(¢)| X7 (¢), X5(¢), ..., X]_;(t), S'(t) >
i. randomly permute the tuple taX (t) = (Xx1)(t), -, Xng,)-

In this case, the random graphical model is identified by tbpmng timeS(¢) and the augmen-
tation variablesXj,(t), Xx42(%), ..., Xsu) are sampled simultaneously with the stopping time.
Since a random distribution may be selected as the augmeatidble X, (¢), this formulation

is not less restrictive. However, each formulation prosidalifferent perspective since the graphs
associated with each formulation are different.

Example: Metropolis-Hastings as a chain on pairs

To illustrate the idea of a Markov chain on branch processassider the traditional Metropolis-
Hasting (MH) algorithm as a Markov chain on branch proceskethis case the stopping time is
a constaniS(t) = 2 so the stopped chain is always of the foim(t), X»(¢). Since the graphical

model is fixed, each step of the Markov chain consists of twibspaThe first is a Gibbs step
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drawing the second element of the pair, in other words, a dfaW)|X;(¢). The second part is a
choice to accept or reject the transpositio (¢), X2(t)) — (Xa(t), Xi(t)) according to the MH
ratio.

Useful properties of MH algorithms on branch processes

The motivation for developing MH algorithms on branch pssms are two-fold. First, the use of
stopping times allow the design of chains which adjust thewarhof computation spent on one
proposal. The branch process may be stopped at the firshagsgaviable proposal has been gen-
erated or when it is clear that no future proposals are liteelye accepted. Second, the algorithms
can eliminate certain computations by exploiting symnastin the graphical models and in the
encodings of a distribution as potentials on the graph. iBtdsie to the same potentials appearing
in both the numerator and denominator of the MH ratio. Thepsest example of this is for a
MH algorithm with a symmetric proposal distribution. Whileemust be able to sample from the
symmetric proposal, the proposal probability never need® lzomputed.

We first give existing applications of stopping times as veslapplying them to the HDP
sampler. We then describe the role of symmetry in saving coation.

Example: Stopping times and delayed rejection

Delayed rejection (Tierney and Mira (1999)) is a MCMC teclumidhat has a simple formula-
tion in terms of stopping times. Given ¥, (¢) from the desired stationary distribution, draw a
sequence of proposals,(t), X3(t),.... Let S(t) be a stopping time with stopping probabilities
that are recursively defined as follows(S(t) = k| Xi(t) = x1,..., Xi(t) = x5, S(t) > k) =
min {1 e (B)=ar,. Xe (=, 5(0) 2 k) } In other words S(¢) is chosen such that if the branch chain

? p(X1(O)=k,.... Xk (£)=21,5(t) >k)
stops ak-+1, then the MH ratio for the moveX, (t), ..., Xsu (1), S(t)) = (Xsw (1), ..., Xa(t), S(t))
will be accepted with probability 1. To ensure that the segaeof proposals stof#(t) may be
capped at some maximum tinfe though the acceptance probability may not be £(if) = K.
We note that the permutation associated with this propastie one which reverses the tuple

(Xi(t), ..o, Xsy(t)).

Example: Stopping times and the Wolff sampler

The Wolff sampler for the Ising model is another example adragler employing a stopping time.
The Ising model is a binary Markov random field with probdabpigiven by

The Wolff sampler proceeds as follows:

1. Choose a starting clustérconsisting of a single node at random.
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2. At each step, choose an unchecked nede C, marked it checked, and visit all the un-
visited links adjacent ta;. For each linkz; < z;, activate the bond with probability
1 — exp(—2K;;) and addz; to C'.

3. Repeat until there are no unchecked node&s,iand flip all the spins irt".

Recast in terms of stopping times, the Wolff sampler buildganth process on spin-states
where the stopping time is the time the MH ratio hits 1.

Early rejection

The previous examples give cases where the branch chais wtgn a good enough proposal is
reached. This prevents computation from being wasted wéjentmg prematurely. For the HDP
sampler, we use stopping times to reject when the proposaililsely to be accepted but before
the entire proposal is drawn. This skips computations trealikely to be thrown away. For split-
merge samplers these computations are costly since eatcbrsperge proposal has computation
time proportional to the size of the merged block. For weparated clusters in a mixture model,
the sampler already has information that a merge is highlikelg to be accepted even before
calculating the merge-to-split proposal probability.

Two-stage acceptance probabilities

Suppose we have a Metropolis-Hastings algorithm where tHerdfio for a move frome — 2/

can be decomposed into a prodikttr — z’) = ~(z, 2’)¢(x, 2’), andy is expensive to calculate.
We can construct a chain which breaks down the acceptaneantol two stages, the first is

based only ony, and the second requires the expensive computatigrbot may be skipped if the

move is rejected in the first stage. This idea of using mdtgihges for the acceptance rule has

been described in Christen and Fox (2005), Murray (2007)(2008), and Dostert et al. (2006).
Consider the chain that accepts» «’ andz’ — x with the respective two-stage probabilities

alr — 2') = min {y(x, 2'), 1} min {¢(z, 2"), 1}
a(z" = z) = min {y(z,2)"", 1} min {¢(z,2") ", 1} .

One can easily verify this chain satisfies detailed balandéas the same invariant distribution
as the original chain using the MH algorithm.

The acceptance probability of this two-stage rule is alwags than or equal to the usual MH
acceptance probability. To obtain, a better acceptaneemate that

Y@, 2)(z, 2') = min{y(z, 2'), 1} (max{y(z, 2'), 1}¢(z, 2'))

= ’?(:E, $,)1/J($, x/)

whereq(z,2’) = min{~y(z,2’),1}. In other words, if the first stage is accepted with probabil-
ity 1, the excess in the first stage can always added to thendestage to boost the acceptance
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probability. This leads us to choose the following as thd Stage acceptance probability of a
split-to-merge move:

Y(Bapiit; Bmerge) = min { H(X(B1 U By)) 7 1} : (4.1)

F(X(B1)) f(X (B

Sincef(X(By)), f(X(Bsy)) are likely to already have been computed, rejecting a meagaake
a single likelihood calculation. For a merge-to-split motree first state acceptance probability is
always1 sincey(Bspiit, Bmerge) ™+ > 1.

Early stopping and a random two-stage acceptance rule

For merge-to-split moves, the final split state is unknowiokeecalculating the proposal probabil-
ities, so the two-stage acceptance rule for split-to-margees does not apply. Instead we propose
a rule to reject once there is enough information to detegrairsplit is unlikely. We do this by
extending the two-stage acceptance rule and using a randoomgbosition of the MH ratio based
on a stopping time.

Suppose the proposal (1) — X (¢) is drawn via a sequential procedure and¥ett), ..., X ()
denote the intermediate states of the procedure. For angitonvenience, we will drop the index
t in the rest of the discussion.

At any times, the MH ratio may be decomposed into a prodi¢k; — X7) =
vs( X1, X, ooy Xo)0s( X1, ..., Xi, X7), so thaty, > 0 depends only on events up to timeand
s > 0 can depend on any event. This decomposition gives a twe steceptance rule for any
fixed choices.

Rather than a fixed time, consider the case where the decampodepends on a random
stopping timeS with respect to the natural filtration of, ..., X;. This can be beneficial since
often one does not know how many steps are required befonef@amied decision to reject can
be made, and the number of steps may depend on the randoneshaken by the sequential
procedure. It is easy to prove that this modification presedetailed balance.

Theorem 11. Given the assumptions in the previous paragraphs, the Mackain which accepts
the proposalX; — X/ according on the two-stage acceptance probabilities

as(X; — X7) = min {y5(X1, X, ..., Xg), 1} min {¢g( Xy, ..., X, X7),1}
as(X] = X1) = min {vs(X1, Xa, ..., Xg) 7', 1} min {¢g(X1, ..., Xp, X7) 7, 1}

gives a Markov chain with the same invariant distribution ashain generated using the MH
algorithm.

Proof. One simply verifies the detailed balance condition on therarged chaing X, X', S).
as(X1 = X7)p(X1, X1, 8) = (X1 = X7)p(X1, X7)p(S = 5| X1, X7)
= as(Xy — X1)p(X7, X1)p(S = s| X7, X1)
= a(X] = Xy)p(X7, X3, 1)
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where the second step follows from the non-random two-stageptance rule and the assump-
tion that the proposals in both directions share the sameesgiql procedure.

We note that the decomposition is asymmetrical simgeloes not depend oX|. This is
necessary sincg; is unknown during the sequential procedure for proposingva state. If one
wishes to perform some form of early stopping on the reversegsalX| — X, then the stopping
times for both proposal directions must share a commontidtrao obtain computational benefits.

Application to the HDP split-merge sampler

For split-merge samplers, we use the usual two-stage aotaptrule for split-to-merge moves
and combine it with the two-stage early stopping rule for geeto-split moves. We illustrate the
application of the two-stage early stopping rule using qiit-snerge HDP sampler. Modifying
the method for other split-merge samplers is straightfodwa

Consider a split proposal,, — Y, for the HDP split-merge sampler, and denote the two blocks
inthe split byB,, B;. Given a base, the proposal draws a branch cgity,,,, Z1, Z, ..., Zx_1, Zi, =
Ys, 21, Z5, ..., Z,,_, Wherek is the size of the merged block; denotes the subforest bf restricted
to the points in the base up to th#é point of the merged block and! denotes the same but for
Y,, instead ofY;. Note that theZ;, Z! are deterministic functions df;, Y;,, respectively. Thus, the
natural filtration ofY,,,, (Zs, Z}), (Zs, Z5), ..., (Zk-1, Z),_,), Ys is also the natural filtration of just
the sequential splitting procedure which dra\ys 7, Z3, ..., Z,_1, Y,. The corresponding merge
proposal has branch chaif), Z,, ..., Z,_1, Y, Zo, Z3, ..., Zy_1.

All the split-merge samplers with sequential procedure®f@MH ratio of the form

k
i ey L Zi* L(z;€Bo) i e, T Zi, 1(z;€B1)
R(Ym—>Ys)=H<f(x |21,y i1, Zi1) x|z, o vi1, Ziq) y

i=1 f($i|$1> ey Ti—1, Zé,l)
% qm(Zi_y — Zj) p(Zi|Zi—1)>
4s(Zio1 — Zi) p(Zi\Z]_,)

wheregq,,, q; are the sequential proposal probabilities for the MCMC samg@ndp gives the
corresponding sequential allocation probabilities ferphior. Taking the product frormto a fixed
time s rather thark, one obtains a termy(Y,,,, 71, ..., Z,) that does not depend on any of the terms
occurring aftetZ,. This gives a decomposition suitable for early rejectior dNoose the stopping
time S to be the hitting timeS = min{s : y(x, Z;) < ¢} for some constant. Other stopping
times may be sensible, but we choose this one for simplicity.

For a split-to-merge proposal, we may simply use the likthterm
k f(l’i|l‘1,...,l’i_1,Z£_1)
f(xi|zy, ...y w1, Bo)'@i€Bo) f(x|xy, ..., 21, By) (#i€B1)

i=1

to construct the first stage acceptance probability.
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Symmetries in graphical models

Another advantage to describing MH algorithms in terms ailsh chains and graphical models
is that it lends itself to identifying symmetries that may d@eloited for computational bene-
fits. Let G(¢) denote a graph with associated potenti@,L%t)}CCv(G(t))} and the tupleX(t) =
(Xi(t),..., X5 (t)) be a tuple generated from this graphical model. k@t be the proposed
permutation. For simplicity, assume that the proposed tgcab model G'(t) is the same as
G(t). Given a potentiat)- whereC' C V(G(t)) , define the action of(¢) on the potential by
() Yo = Yrpy-10-

The distribution of the permuted variables may be expreas&ither a permutation of the tuple
or of the vertices of the graph.

p(r(OX®)G(1) = [ [ vex®)X) = [ [(r(H)ve)(X).

C

Thus, the set of potentials such that = 7(t)y ¢, in other words the potentials invariant under
7(t), will appear in both the numerator and denominator of the Mtibrand cancel each other
out.

Launch States and Reversible Jump MCMC

We now demonstrate one useful application of the featureobfneeding to calculate the full
proposal probability. Jain and Neal (2004) introduced tbiom of a launch state in the context
of samplers for Dirichlet Process Mixture Models with caygte priors. Rather than restricting
moves of a chain to local moves to states with similar pastgarobability, launch states offer a
means for a chain to propose jumping to a distant local modleeoposterior. We give a modest,
but powerful, generalization the idea of launch statesgmesl in Jain and Neal (2007) that makes
it generally applicable to MCMC methods but particularly ggble for reversible jump MCMC
methods.

Consider a Markov chain on 4-tuple&’ (t), X,(t), Y1(t), Ye(t)) which has stationary distribu-
tion p(z)qe(x — xo)q(ze — y)ae(y — ye). Xo(t), Yo(t) are designated launch states.

Stept + 1 of the chain regenerates the variables exc&ptt) and proposes the move
(Xq(t), Xo(t),Y1(t),Ye(t)) — (Yi(t), Ye(t), X1(t), Xe(t)). In other words, the chain proposes a
cyclic permutation of the variables of offset 2. The MH rdto such a proposal is

p(Yi(1)g(Ye(t)) = X (2)
P(X1()a(Xe(t) = Yi(t))

The launch proposal probabilities conveniently cancel dhis is illustrated by the following
diagrams that describe the proposed move as a cyclic peionutd offset 2.

The MH ratio is the ratio of the two joint probabilities deibed by the diagrams. The links
X1 (t) — Xo(t),Y1(t) — Yi(t) appear in both diagrams and if the conditional probabdlitiescrib-
ing the edge potentials for those links are the same, thenahditional probabilities associated
with the links cancel in the MH ratio.

4.2)
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X(t) —— Xo(t) X(t) —— Xo(t)
Ye(t) «—— Y(t) Yi(t) «— Y(¢)

Dirichlet Process example and a general recipe for samplingith launch states

We describe the DP mixture model samplers of Jain and Ne&l7{2énd Jain and Neal (2004)
which introduce the idea of launch states and show how tdrobtenore general recipe for sam-
pling with launch states without using restricted Gibbs epge

In both of Jain and Neal's papers, the proposal distributimmsists of 1) sampling a transpo-
sition uniformly at random to determine what blocks to splitmerge and 2) generating a hew
proposal state via a launch state and a final Gibbs sweepe Siep 1 is a uniform draw and does
not depend on the current state of the Markov chain, it isnsequential in computing the MH
ratio, but for completeness in describing the samplers, ivethe deterministic rule for choosing
whether to split or merge given a transposition. If the eletsef the transposition are both in the
same blockB,,.., 4., the sampler proposes to split blogk,.,.,. into randomly generated blocks
and B, via a series of Gibbs sweeps. Otherwise, the elements ofghsposition are in separate
blocks which we denote a3, and B, and the sampler proposes to mefgieand B;.

For step 2, we may apply equation 4.2 to calculate the MH r&tmwvever, we give a slightly
more general description that clearly suggests methodshwihd not rely on restricted Gibbs
sweeps. To simplify the exposition, we will assume that th&irc proposes a split from a merged
state. We may write the two branch chains correspondingetsphit-to-merge and merge-to-split
proposals as the following graphical model:

Y;m — Xspl’it N szlit N lem Y ZZZ; N X merge N X;nerge

Yms — X merge _y Xemerge N Z{ns e ZIZLnSS — Xsplit N X;plzt

where theZ’s denote the intermediate states of the final Gibbs sweepthat,,,, .., are deter-
ministic functions of the blocks being modified. The MH rdioo the proposed move is

p(Yms) _ p(Xmerge)q(Xgnerge N Z{ns —S e ZI?;SS N Xsplit)
p(Y;m) p(XSp“t)q(X;plit - me I Zlf:?}n N Xmerge) ’

R= (4.3)

In the restricted Gibbs sweep case, there is a unique segoéntermediate states that takes
X7 — xmerse. Thus, we havey(X;P" — Xmerse) = q( X7 — Z9m — - — Zim —
X™mer9e). The same property holds for the merge launch state to salé probabilities, and one
recovers the usual launch state MH ratio equation 4.2. Tigueness condition is desirable since
it does not introduce variables that may be Rao-Blackwellegdy, but it is not necessary. This
leads to the following general MCMC launch state procedure:
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Algorithm 5 LaunchState MCMC
Require: Current stateX; (¢), black box launch state generatounch(z), calculable transition
probabilities{g; }; for a (not necessarily homogeneous) Markov process, @iilstopping
time probabilities for the Markov process.
Draw Z; (t) = launch(X;(t))
Draw a realizatior?, (t), Zs(t), ..., Zx (t) = Yi1(t) of the stopped process defined fay};
Draw 71 (t) = launch(Y1(t))
Draw a realizatior?| (t), Z(t), ..., Z5.(t) = Yi1(t) of the stopped process defined fy},
AcceptX(t) — Yi(t) with probability
(

p(V1(t) (K| Z1(1), -, Zier (1)) Timp K'0:(Zi1 () = Zi(2))
p(Xi(1)) (K[ Zi(1), ..., Zk (1)) Hi:QKQi<ZZ*1(t)_>ZZ’<t)).

Reversible jump MCMC

Reversible jump MCMC (RJ-MCMC) methods are a natural area in wthehidea of launch
states may be applied. In RJ-MCMC methods, such as samplenstieconjugate Dirichlet pro-
cess mixture models (DPMMs), must deal with the issue of oy new parameters or deleting
parameters. Two main challenges exist for this. One is taleate change in dimension of the
parameters and maintain the detailed balance conditiom wWieeparameters are continuous. The
other is to propose a good set of parameters.

To handle the change of number parameters, RJ-MCMC methoutsltyprely on augment-
ing the states with fewer parameters with additional randomponents to make the dimensions
match. For example, consider the case where a model has &itte2 parameters. The 1-
parameter state has the fority, U) whereU is a random component to make the dimensions
of the Markov chain’s state space consistent. Howeverdine glistribution(6¢,, U) of the param-
eters for the 1-parameter model is different from the joistribution (¢, 6;) for the 2-parameter
model. The seminal paper of Green (1995) on RJ-MCMC handlssthonly making proposals
(01,U) — ¢(01,U) = (01, 0) whereg is an invertible, differentiable function. This is essatiyi
a change of variables, and correspondingly, the MH ratioliras the Jacobian @f The MH ratio
for amove(6,,U) — (01,05) is

p2/f2(01,05) 421 (04, 0)
p1f1(91)p(U’91) q12 8(91, U)

wherep; is the prior probability of being in mode| ¢;; is the probability of proposing to move to
model; given the current state is in modgland f; is the posterior probability of the parameters
given they are for model

Rather than padding models with fewer parameters with a fedaim components, we can
also concatenate the parameters into a longer vector. Eot-tland 2-parameter models, this
means that the underlying graphical mode is on the 3-tiple;, 05). This is the approach taken
in Carlin and Chib (1995) and later related to Green’s apprbgddesag (1997), Dellaportas et al.
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(2002) and Godsill (2001). This eschews the problem of lgabioth models share the same 2-
dimensional measurable space. Each model has an indepespdee. There is no Jacobian to
deal with, and no restriction that the mappinbe diffeomorphic since it is always the identity.

Our approach of using stopped branch chains bears singkatid both approaches. Like
Green’s approach, the variables share a common measuue. sLike Carlin and Chib’s ap-
proach, the parameters of interest at any step are prajsatifca tuple, so there is no complication
of having to specifying a diffeomorphic change of variables

The use of launch states provides a simple, flexible meansottupe good proposals. The
tradeoff is that, if one could collapse the sampler and rearibe launch state, the collapsed sam-
pler potentially mixes better than the uncollapsed samptiewever, launch states are most ap-
propriate for cases where the probability of obtaining anthustate cannot even be calculated
much less integrated out, and improved proposals can paitgntprove the sampler more than
augmentation hurts.

4.3 Comparison of HDP mixture model samplers

We evaluate the performance of the samplers on two exampleswill refer to the HDP Gibbs
sampler based on the forest representation as simply tlestGibbs Sampler. Each sweep con-
sists of a forward and backward pass. For the split-merge) (&vhpler, we interleave 1 Gibbs
sweeps using the forest representation for every 15 sgligeproposals. We consider both the
split-merge sampler with early rejection and without eadjection. We did not consider early
stopping in this experiment since it is unlikely to help foick a small dataset. Each split-merge
proposal is regarded as a sweep. The Gibbs sampler in the CRISeefation is referred to as the
CRF Gibbs Sampler. We calculate the effective sample sizg tisesncode package in R (Plummer
et al. (2006)).

Beta-Bernoulli Example

The first is the synthetic Beta-Bernoulli example used in Jaoh eal (2004) and Dahl (2003).
The synthetic datasets are small with each consisting opd1s on 5 clusters. The dimension of
the data is varied from 6 to 18 dimensions as well as the caratem parameter in the’RP(6)
process at each level of the hierarchy. We use the same parahon both levels. We refer the
reader to Jain and Neal (2004) for details about the exaanpeters that generate the clusters. To
adapt the dataset for the HDP setting, we assign a point gtesliuto group: with probability 0.6.
Otherwise one of thé other groups are chosen at random. Each sampler is ingitbliza partition
which contains a single cluster. Each is then run for 200{6@&D0,000 sweeps of which the first
100,000 are treated as burnin. One sample was taken per.si@egach dimension we generated
10 datasets and ran all the samplers on each of the datasetsh®the different characterstics of
each dataset, the effective sample sizes for the differaiasdts can greatly vary . Due to this, we
compare the ratio of each sampler’s effective sample sizdiggdihood evaluation to the Gibbs
sampler in the CRF representation. For each sampler, this gigenumber of effective samples
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for the same computational cost as drawing an effective kasipe of 1 using the CRF Gibbs
sampler.

Discussion of Beta-Bernoulli results

Tables 4.1,4.2,4.3, and 4.4 summarize the results of therigmpnt. The results suggest there are
two regimes in which the samplers exhibit dramaticallyetidéint performance characteristics. In
the first regime, the cluster sizes are not well-defined aadiain transitions between partitions
with differing numbers of clusters. In this case, the fofes$ed Gibbs sampler and the split-
merge samplers perform dramatically better than the CRF Giabwler. In the second regime,
the cluster sizes are well-defined and virtually all splérge steps are rejected. We note that the
mixing properties of the Markov chain are arguably lessraggng when the clusters are well
defined since the chain is performing Bayesian averaging pse@meters that change very little.
In this regime, the CRF Gibbs sampler achieves better eflestwmple sizes per computational
unit than our proposed samplers when it appeared to mix. Menwéhe CRF Gibbs sampler
was unreliable and often got stuck in a local mode as illtestkan figure 4.6. The degradation of
performance of the forest-based Gibbs sampler was simitaetexpected worst case performance
derived in section 3.6 where the forest-based Gibbs sangteughly three times worse than the
CRF Gibbs sampler. for a CRP. Figure 4.1 and subsequent figunedisbse two regimes.

With regards to mixing, in all cases, the split-merge sanspdg@peared to reach a good mode
faster than the forest-based Gibbs sampler and CRF Gibbsaanmainost cases, the forest-based
Gibbs sampler reached a mode faster than the CRF Gibbs saiBplee these experiments were
all performed with all points initialized to a single blodkie CRF Gibbs sampler often became
stuck at smaller number of clusters than the rest of the samplAs expected, the split-merge
samplers were the best at escaping from local modes.

The experimental results also showed that the introduaifoan early rejection step to the
split-merge sampler substantially improves the plaintgpkrge sampler in most cases. Since
the implementation of the split-merge sampler interleagdis-merge moves with the forest-based
Gibbs sampler, the early rejection step essentially malitersprge moves nearly free when they
are not beneficial.

Ramachandran Density Estimation

We also consider a dataset for estimating the Ramachandodalplity distributions given a
residue and its neighbors used in Ting et al. (2010). Foetkgperiments only the central residue
Arginine and its right neighboring residue were used. Tlaeee20 possible neighboring residues
yielding 20 groups in the HDP. There were a total of 2155 mesamants ofp, 1> angles. We ran
each sampler for 30,000 iterations and treated the firsO058 burnin. For these chains, the as-
signment ot points to an initial cluster was made by fittinghédi Gaussian mixture model. In this
experiment, the forest-based Gibbs sampler and split@samplers substantially outperform the
CRF Gibbs sampler. The split-merge sampler with early rejadiut no early stopping performed
the best out of the algorithms tried. The results are sunzedrin Table 4.5 and figures 4.7, 4.8,
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kernel theta dim ratio sd 25pct 50pct 75 pct

5.53 1.13 3.15 5.41 7.63
6.84 1.18 4.01 6.55 10.26
12.92 1.15 8.86 11.99 22.29

Forest
SM(3,1) w/ rej
SM(5,1) w/ rej

— = =
Sy O O O O

SM(3,1) 524 117 349  5.58 6.78
SM(5,1) 594 1.15 3.73 588  11.36
Forest 13.30 1.28  4.19 11.05  40.49

32.77 141 13.72 44.51 69.34
51.60 1.30 13.57 86.49 245.84

SM(3,1) w/ rej
SM(5,1) w/ rej

— = e
O © © © ©

SM(3,1) 26.17 1.42 10.64 39.64 56.57
SM(5,1) 23.09 1.31 5.63 40.52 107.74
Forest 1 12 352 1.45 0.35 6.03 27.08
SM(3,1) w/ rej 1 12 1244 197 0.60 30.00 142.90
SM(5,1) w/ rej 1 12 2248 1.61 0.32  62.47 404.64
SM(3,1) 1 12 9.58 1.98 0.53 16.37 112.58
SM(5,1) 1 12 947 1.62 0.15 26.94 189.60
Forest 1 15  0.89 1.65 0.24 0.33 4.58
SM(3,1) w/ rej 1 15 238 2.12 0.27 0.36 79.71
SM(5,1) w/ rej 1 15 261 1.68 0.21 0.33 15.78
SM(3,1) 1 15 160 2.12 0.17 0.27 56.32
SM(5,1) 1 15 1.01 1.68 0.08 0.13 5.89
Forest 1 18 1.39 2.19 0.18 0.30  426.29
SM(3,1) w/ rej 1 18 4.71 2.58 0.22 0.37 344.14
SM(5,1) w/ rej 1 18 581 1.90 0.16 0.29 1117.01
SM(3,1) 1 18 3.12 2.60 0.16 0.25 251.38
SM(5,1) 1 18 237 1.90 0.07 0.13 412.06

Table 4.1: Ratio of effective size of sampler per 1M likelidayvaluations vs. CRF Gibbs sampler.
0=1
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kernel
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Figure 4.1: These figures show the effective sample size peilibn likelihood evaluations for
each of the proposed samplers in relation to the CRF Gibbs saniie x shaped points represent
runs in which one of the chains clearly failed to mix since difeerent samplers did not agree on
the average number of clusters. The solid line has slope Hamaotes the region where a sampler
exhibited equal performance compared to the CRF Gibbs sanifilerdotted line represents the
expected worst case performance of a Forest Gibbs sampigragzed to the CRF Gibbs sampler.
The heuristic derivation is in section 3.6. In general, tbhm{s fall into three regimes: one regime
in which the newly proposed samplers substantially ougperfthe CRF Gibbs sampler, and a
second regime in which the number of clusters is basicalldfiand all split-merge moves are
rejected. In this regime, the performance of the foresedddsibbs sampler is often close to the
expected worst case performance when compared to a CRF GibiptesaFor cases where the
calculated effective size was worse than the expected was&, many are clear cases where the
CRF Gibbs sampler failed to mix.
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Ratio of effective sample size vs. CRF Gibbs Sampler
by dimension of data, theta =1

15

=

o
o
3
I

18

SM(3,1) SM(5,1)
wi/ rej wi/ rej

SM(3,1) SM(5,1)
Figure 4.2: These figures show the harmonic mean of the raedfective size of each sampler
relative to the CRF Gibbs sampler. Ninety-five percent confidentervals are included as well.
In the cases where the posterior has significant mass on hateigngs with four and with five
clusters, the newly proposed samplers significantly ofdperthe CRF Gibbs sampler. However,
in higher dimensions where the posterior tends to condentraonly clusterings with 4 clusters,
the new samplers do no better than the CRF Gibbs sampler orgaverae early rejection step
for the split-merge sampler typically improves the perfance.
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Ratio of effective sample size vs. CRF Gibbs Sampler
by dimension of data, theta = 3

100.6 o —
100.4 ,
10%2 - ©
o T o
10702~ e —
1.2 _ p——
1](-3%187 E— —
10~
1026~ e
1024~ B
10%2- E— —
100 = == m e T oo
© 1AL5-
210
@ 10" - 1 —— — o
8 10%5-
o 100 ____________ e e e e —)
T 101.5, _
10" - —— o
10%5- -
100 _____________________________________________________________ —
06 _ B — ——
%80.4 ,
100.2 ,
0 0
O Sl S bbbl LRl =
1092~
10704~
10706 —1 L
| M | 1 |
Forest SM(3.1) SM(3,1)
wi/ rej

Figure 4.3: These figures show the harmonic mean of the ragdfective size of each sampler
relative to the CRF Gibbs sampler when the CRP parameter at lvetls [&f the HDP hierarchy is
0=3.
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Ratio of effective sample size vs. CRF Gibbs Sampler
by dimension of data, theta=5
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Figure 4.4: These figures show the harmonic mean of the ragdfective size of each sampler
relative to the CRF Gibbs sampler when the CRP parameter at lvetls [&f the HDP hierarchy is
0=3.
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Ratio of effective sample size vs. CRF Gibbs Sampler
by dimension of data, theta =7
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Figure 4.5: These figures show the harmonic mean of the ragdfective size of each sampler
relative to the CRF Gibbs sampler when the CRP parameter at lvetls [&f the HDP hierarchy is
0=3.
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Figure 4.6: These figures show traces for the cluster sizestowe for a chain where the CRF
Gibbs sampler becomes stuck and fails to switch betweeerdift cluster sizes. Thé” line from
the bottom represents the total size of of thkargest blocks.
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kernel theta dim ratio sd 25pct 50pct 75 pct
Forest 3 6 1.60 1.08 1.30 1.40 1.95
SM(3,1) W/ rej 3 6 179 1.14 123 190 241
SM(3,1) 3 6 139 1.14 0.94 1.46 1.94
Forest 3 9 316 127 196 280  4.67
SM(3,1) w/ rej 3 9 6.19 134 287 730 13.78
SM(3,1) 3 9 463 1.35 245 506 10.35
Forest 3 12 426 157 210 553 10.85
SM(3,1) w/ rej 3 12 30.38 1.56 16.40 32.87 58.25
SM(3,1) 3 12 25.81 1.52 13.83 24.29 45.07
Forest 3 15 219 1.66 0.32 3.47 14.92
SM(3,1) W/ rej 3 15 855 212 038 21.82 82.58
SM(3,1) 3 15 567 213 024 1516 6291
Forest 3 18 097 271 0.30  0.32 0.95
SM(3,1) w/ rej 3 18 1.31 240 0.23 029 1.62
SM(3,1) 3 18 0.89 2.40 0.16 0.21 1.24

Table 4.2: Ratio of effective size of sampler per 1M likelidagvaluations vs. CRF Gibbs sampler.
0=3

and 4.9. Figure 4.3 shows estimated Ramachandran prolesbditzen alanine and alanine or
alanine and glycine as the central and right residue reispsct

In this dataset, the forest-based Gibbs sampler condistartperformed the CRF Gibbs sam-
pler, and split-merge steps further improved the effecti@mple sizes per unit of computation.
Both the early rejection and early stopping rules substiyii@proved the autocorrelation per
unit computation over the plain split-merge proposals. e\®v, combining both the early rejec-
tion and early stopping rules did no better than the earbcten rule by itself.

We also examined the burn-in period in this example and fabatthe forest-based Gibbs
sampler finds a good local mode significantly faster than the GRBs sampler. The split-merge
sampler did not find modes significantly faster than the tdbased Gibbs sampler unless early
rejection was used. With early rejection, a good mode wanddaster. Early stopping did not
appear to help reach a good mode faster. All samplers founithsivalues for the complete data
log-likelihood after the burn in period.
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Figure 4.7: These figures show the effective sample size peitlibn likelihood evaluations for
each of the proposed samplers in relation to the CRF Gibbs santfdch point represents a pair
of chains with the same initialization. We see the split-geesamplers are the most effective, in
particular the split-merge samplers with the optimizatiohearly stopping or early rejection have
the best effective sample sizes.
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Figure 4.8: These figures show the effective sample size peilibn likelihood evaluations for
the Forest-based Gibbs samplers in relation to the CRF Gilmbglea(left) and Split-Merge(5,1)
sampler (right). As with the Beta-Binomial data sets, thedsliie represents equal performance,
and the dotted line represents the expected worse casemarice. In this case, the forest-based
Gibbs sampler consistently outperforms the CRF Gibbs sarhptes also consistently worse than

the split-merge sampler.
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Figure 4.9: This figure shows the harmonic mean of the ratiefigictive size of each sampler
relative to the CRF Gibbs sampler (left) and SM(5,1) sampieffty. The bars represent 95%
confidence intervals. All the newly proposed sampler sigaifily outperform the CRF Gibbs
sampler. The split-merge samplers with early rejection aignificantly outperform the plain
split-merge sampler.



CHAPTER 4. MARKOV CHAINS ON GRAPHS AND SPLIT-MERGE SAMPLERS 82

kernel theta dim ratio sd 25pct 50pct 75 pct
Forest 5 6 141 1.08 1.16 1.34 1.75
SM(3,1) W/ rej 5 6 164 1.09 123 167 215
SM(3,1) 5) 6 127 1.10 0.91 1.34 1.73
Forest 5) 9 204 1.24 1.69 2.35 2.97
SM(3,1) w/ rej 5 9 419 130 264 4.06 8.30
SM(3,1) 5 9 333 132 201 301 7.64
Forest 5 12 221 1.75 1.29 3.36 7.23
SM(3,1) w/ rej 5 12 16.59 1.79 16.74 25.60 51.46
SM(3,1) 5) 12 1396 1.78 12.25 19.09 42.30
Forest 5 15 1.05 1.71 035 0.60 4.78
SM(3,1) w/ rej 5 15 347 195 034 083 49.10
SM(3,1) 5 15 231 197 023 0.63 3501
Forest 5 18 030 279 021 031  0.50
SM(3,1) W/ rej 5 18 089 218 022 038 0.92
SM(3,1) 5 18 0.60 218 0.17 025  0.60

Table 4.3: Ratio of effective size of sampler per 1M likelidagvaluations vs. CRF Gibbs sampler.
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Figure 4.10: The left plot is a trace plot of the complete diagdikelihood as a function of number

of likelihood evaluations for the Arginine data set. Thentiglot is a smoothed version taken over
5 runs. Clearly, the split-merge sampler with early rejecémd mixed with Gibbs steps in the
forest representation performs the best, and the CRF Gibhsesadoes worst.
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kernel theta dim ratio sd 25pct 50pct 75 pct
Forest 7 6 140 1.05 1.23 1.32 1.66
SM(3,1) W/ rej 7 6 148 107 119 131  1.90
SM(3,1) 7 6 1.21 1.08 0.93 1.17 1.62
SM(5,1) 7 6 0.75 1.13 047  0.59 1.25
Forest 7 9 1.83 120 120 1.92 2.76
SM(3,1) w/ rej 7 9 309 129 153 263 5.89
SM(5,1) w/ rej 7 9 407 139 137 374 10.73
SM(3,1) 7 9 255 1.35 1.32 2.22 5.89
Forest 7T 12 242 1.74 1.79 4.24 8.88
SM(3,1) w/ rej 7 12 1447 1.68 13.68 24.59 43.10
SM(5,1) w/ rej 7 12 3450 1.75 35.66 71.46 114.14
SM(3,1) 7 12 12.09 1.76 10.03 20.01 30.66
Forest 7 15 236 1.52 0.43 3.00 7.82
SM(3,1) w/ rej 7 15 977 182 037 3242 61.96
SM(5,1) w/ rej 7 15 1525 206 027 70.25 134.39
SM(3,1) 7 15 470 195 026 19.32 29.80
Forest 7 18 1.01 235 030 0.38 2.50
SM(3,1) w/ rej 7 18 236 230 029 045 1540
SM(5,1) W/ rej 7 18 236 241 021 030 17.77
SM(3,1) 7T 18 1.22 225 0.19 0.36 3.82

Table 4.4: Ratio of effective size of sampler per 1M likelidagvaluations vs. CRF Gibbs sampler.
0="17
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kernel stop rej ratio sd 25pct 50 pct 75 pct
Forest nostop noearlyrej 2.54 1.08 1.80 279  3.69
SM(5,1) nostop noearlyrej 728 1.13 387 8.09 15.61
SM(5,1) stop10 noearlyrej12.54 1.16 6.06 11.79 24.24
SM(5,1) stop20 noearlyrej13.80 1.17 6.37 12.54 25.62
SM(5,1) nostop earlyreject24.28 1.19 11.12 2598 54.46
SM(5,1) stop 10 earlyreject20.52 1.16 10.08 21.52 41.53
SM(5,1) stop20 earlyreject21.00 1.16 884 29.39 40.66

Table 4.5: Ramachandran data: Ratio of effective size of sampglr 1M likelihood evaluations
vs. CRF Gibbs sampler.
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Figure 4.11: The left plot shows an estimated Ramachandnagitgejiven alanine and alanine as
the central and right residues respectively. The right jgldhe same but conditional on alanine
and glycine instead. The contour plots show that while camepts are shared in the HDP, the
different density estimates still how some variation betwthe different groups in the HDP.
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4.4 Discussion of empirical results

Empirically, the forest-based Gibbs sampler was genenatiye effective than the standard CRF
Gibbs sampler. This was true both for small synthetic désassewell as a larger real world dataset.
The addition of split-merge moves further improved the $oteased Gibbs sampler. However, for
both the forest-based Gibbs split-merge samplers, if tastets are well-defined, then the CRF
Gibbs sampler performs significantly better. However, vwggard this case as less interesting since
only a few samples are needed to accurately approximateottenmor.

Of the two optimizations of early rejection and early stogpthat we added to split-merge
samplers, early rejection of bad merge proposals was maosffioal. While early stopping is an
improvement over the plain split-merge sampler, it is uacigit is beneficial when combined with
early rejection.

We note that our version of the split-merge sampler is amalsdo Dahl's sequentially allo-
cated procedure for CRP mixture models. The split proposarisdd by taking the sequential
procedure for drawing from the prior and adding a likelihdetn. At the start of procedure to
draw a split proposal, two blocks are initialized to contaothing. One may also take Jain and
Neal’s approach of running a Gibbs sweep. For a split prdpnghaat approach, two blocks are
initialized to a random split of the initial block. In the 8t representation where the sufficient
statistics on subtrees are memoized, performing a randétmngp two subtrees and calculating
a single backward sweep does not take more computationtieasetuential allocation approach.
Such an approach may be useful when the prior places mos wfass in areas of low posterior
probability.
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Chapter 5

Conclusion

This thesis examines two distinct topics related to graphseach, our goals are to examine an
existing problem under a new perspective and to demongtiatethe insights gained may be
turned into practical tools.

In the first topic, we analyze how the graph construction wetaffects the limit operator
of the graph Laplacian and analyze the relationship betwgeaph Laplacians and LLE. This
analysis covers most graph constructions of interest amea&asily extended to cover most graph
constructions used in practice. Furthermore, it introdube idea of pilot estimates and variable
bandwidths to graph Laplacians and suggests which grapstrootions have good theoretical
and computational properties. A natural extension to thsctis to analyze the broader class
of manifold learning methods. Though not included in thissils, we have analyzed methods that
lead to second-order smoothness functionals, namely &tekskE and local tangent space analysis
(LTSA).

In the second topic, we give useful paradigms for viewingpavametric Bayesian priors as
combinatorial stochastic processes. In particular, we gapresentations of the underlying infi-
nite stick-breaking processes as random graphs, and veglute the discrete fragmentation and
coagulation processes as a means to characterize pricdgfeoent hierarchical Bayesian mod-
els. These representations are also useful for developi@lyl® algorithms. We give two new
samplers for the hierarchical Dirichlet process and shair,tsometimes dramatic, empirical im-
provement over existing samplers, and we sketch new atgasifor other nonparametric Bayesian
models based on their combinatorial representations. €Tidesis are developed in the more gen-
eral context of studying distributions on combinatoriajealts, and we give one application of
the link between random permutations and random trees tgalan algorithm for generating a
random sample without replacement from distributed steeaWie leave several topics only par-
tially explored in this topic including a more formal treant of the MCMC samplers which we
only give a sketch of as well as exploring a particularlyaattive hierarchical model with levels
distributed as a Pitman-Yor process.
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