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Abstract

This study explores how the human brain solves the challenge of flicker noise in

motion processing. Despite providing no useful directional motion information,

flicker is common in the visual environment and exhibits omnidirectional motion

energy which is processed by low-level motion detectors. Models of motion

processing propose a mechanism called motion opponency that reduces flicker

processing. Motion opponency involves the pooling of local motion signals to cal-

culate an overall motion direction. A neural correlate of motion opponency has

been observed in human area MT+/V5, whereby stimuli with perfectly balanced

motion energy constructed from dots moving in counter-phase elicit a weaker

response than nonbalanced (in-phase) motion stimuli. Building on this previous

work, we used multivariate pattern analysis to examine whether the activation pat-

terns elicited by motion opponent stimuli resemble that elicited by flicker noise

across the human visual cortex. Robust multivariate signatures of opponency were

observed in V5 and in V3A. Our results support the notion that V5 is centrally

involved in motion opponency and in the reduction of flicker. Furthermore, these

results demonstrate the utility of multivariate analysis methods in revealing the

role of additional visual areas, such as V3A, in opponency and in motion processing

more generally.

K E YWORD S

hMT+, motion perception, MVPA, noise reduction, V3A, V5

1 | INTRODUCTION

Motion processing is an essential aspect of vision. However, the suc-

cessful interpretation of directional motion information is complicated

by the presence of flicker noise. Any abrupt change in the luminance

of a visual scene, like a flickering light or a bright object appearing

suddenly against a dark background, creates flicker noise: omnidirec-

tional and uninformative signals which can be processed just as any

true motion signal (Born & Bradley, 2005; Bradley & Goyal, 2008).

Therefore, a mechanism to reduce the influence of flicker noise is

essential in effective motion processing (Qian, Andersen, &

Adelson, 1994).

Classic theoretical models of motion processing employ a

mechanism called motion opponency to attenuate the processing of

flicker. During motion opponency, a local motion output is calculated

by combining all motion signals within the given local area (Adelson &

Bergen, 1985; Qian et al., 1994; Reichardt, 1961; Simoncelli &

Heeger, 1998; van Santen & Sperling, 1985). The omnidirectional

motion signals which define flicker noise are locally balanced and

therefore cancel during motion opponency. In contrast, useful motion
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information is typically directional and not locally balanced. As a

result, motion opponency acts as a filter during motion processing,

attenuating flicker information while allowing true motion signals to

continue for further processing.

Physiological research has identified neural responses indicative

of opponency in monkeys. Qian and Andersen (1994) designed a bidi-

rectional and locally motion-balanced dot stimulus in which each

randomly-positioned dot was located near a second dot traveling

in the opposite direction. This stimulus is now referred to as

“counter-phase” (CP) dot motion (Lu, Qian, & Liu, 2004). Relative to a

bidirectional stimulus without local motion balancing, Qian and

Andersen (1994) found that MT neurons exhibited a muted response

to counter-phase stimuli. In fact, this response was not significantly

greater than the MT response to flicker noise.

Neuroimaging has provided evidence for opponency in human

motion processing. Reduced univariate V5 BOLD responses to counter-

phase stimuli have been reported in multiple studies and are generally

consistent with Qian and Andersen's (1994) original physiological work

(Heeger, Boynton, Demb, Seidemann, & Newsome, 1999; Muckli,

Singer, Zanella, & Goebel, 2002; Thompson, Tjan, & Liu, 2013). How-

ever, suggestions exist that motion opponency and local directional

pooling may be distributed throughout the visual cortex in humans

(Garcia & Grossman, 2009). Consistent with a multi-region network of

local motion pooling, Huck and Heeger (2002) found that relatively high

pattern motion-selective responses, indicative of local motion integra-

tion, were not exclusive to V5, occurring also in areas V2 and above.

Various nonopponent stimuli have been employed as a compari-

son against the counter-phase stimulus. Often, a stimulus containing

the same bidirectional local signals, but without local balancing is

employed. One such example of a bidirectional and nonopponent

stimulus has been referred to as “in-phase” (IP) (Lu et al., 2004; Silva &

Liu, 2015; Silva & Liu, 2018; Thompson et al., 2013). The in-phase

(IP) stimulus is nearly identical to a counter-phase (CP) stimulus,

except that both dots within a pair travel in the same direction.

While previous research may be consistent with opponency in the

human brain, the human brain's responses to counter-phase and flicker

stimuli have never been directly compared. Because the theoretical for-

mulation of motion opponency selectively reduces flicker noise

processing, a more complete understanding of motion opponency in the

human brain may be achieved by examining the suppressed response to

flicker noise (Adelson & Bergen, 1985; Qian et al., 1994; Reichardt,

1961; Simoncelli & Heeger, 1998; van Santen & Sperling, 1985). If the

reduced BOLD response to motion opponent stimuli reported in previ-

ous human studies is indeed analogous to theoretical motion

opponency, then the human brain may process counter-phase and

flicker stimuli similarly. Because both flicker and counter-phase motion

stimuli exhibit locally balanced motion, a motion opponent system

should output zero net motion in both cases.

With the emergence of multivariate pattern analysis (MVPA) as a

powerful tool for understanding neural processing using fMRI

(Mahmoudi, Takerkart, Regragui, Boussaoud, & Brovelli, 2012; Nor-

man, Polyn, Detre, & Haxby, 2006; Tong & Pratte, 2012), a detailed

exploration of flicker and counter-phase motion processing is now

possible. The traditional fMRI region-of-interest analysis involves

averaging the responses of all voxels with a region to calculate a single

averaged univariate BOLD response. In MVPA classification, a region-

wide and voxel-level pattern of activation is inputted, and a classifica-

tion algorithm predicts which stimulus likely elicited the given brain

response. This allows a comparison between stimuli that elicit the

same univariate response despite potentially eliciting different pat-

terns of voxel activations.

The current study is the first to examine flicker processing and

motion opponency by applying multivariate analysis techniques to

fMRI data. Our primary analysis focused on V5. We trained multivari-

ate classifiers with BOLD data associated with in-phase (IP) stimuli,

counter-phase (CP) stimuli, or nonmotion (NM) stimuli exhibiting inco-

herent onset and offset flicker but no smooth translational movement.

Classifiers were trained to discriminate two of the three different

stimuli and tested on both trained and untrained stimuli. We predicted

the following pattern of results:

1. The multivariate classifier will correctly discriminate IP stimuli from

CP and NM stimuli. This result would be consistent with motion

opponent processing.

2. The multivariate classifier will systematically misclassify CP stimuli

as NM. This result would be consistent with CP stimuli eliciting a

similar neural representation to NM due to motion opponency.

3. The multivariate classifier will systematically misclassify NM stimuli

as CP. This result would also be consistent with CP stimuli eliciting

a similar neural representation to NM due to motion opponency.

As a secondary analysis, we explored the performance of classi-

fiers trained using BOLD data from V1, V2, V3, V3A, and V4 to assess

whether BOLD responses indicative of opponency were present

throughout the human visual system.

2 | MATERIALS AND METHODS

2.1 | Apparatus, stimuli, and experimental
procedure

All experimental stimuli were programmed in Python using the Psy-

chopy library (Peirce, 2007; Peirce, 2009). Stimuli were back-

projected onto a screen (12 cm × 9 cm useable area, 1,024 × 768 res-

olution, 60 Hz refresh rate) that was mounted above the fMRI head

coil. Participants viewed the display through a mirror. Due to differ-

ences in head size, viewing distances ranged between 22 and 25 cm,

and therefore the size of one pixel ranged between 0.027 and 0.031�.

All stimuli were presented in front of a solid gray background (lumi-

nance 4 cd/m2).

Participants fixated on a central black square dot 5 pixels in size

throughout an entire experimental run. The visual presentation alter-

nated between a 12-s stimulus block and a 12-s blank block displaying

only the fixation point. During the stimulus blocks, 250 pairs of ran-

domly distributed white square dots (luminance 67 cd/m2) of size

6 SILVA ET AL.



3 pixels were presented. Each dot was initially placed no more than

8 pixels away from its paired partner along a common orientation, cre-

ating a Glass pattern (Glass, 1969). The Glass pattern could be ori-

ented either horizontally or vertically in any given block. All dots had a

limited dot lifetime of 150 ms before being randomly replotted.

To engage attention, a mildly effortful behavioral task was

employed. Stimulus blocks were divided into 6 trials, each lasting 1.1 s.

On each trial, the Glass pattern orientation was 15� clockwise or coun-

terclockwise from the block's overall cardinal orientation. Each block

contained three clockwise and three counterclockwise trials. Participants

indicated the orientation of each trial using a button response box. All

participants achieved ceiling performance. An inter-trial interval of

500 ms was used, during which no dots were presented.

Three different paired-dot stimulus conditions were presented

separately in blocks that were randomly interleaved throughout each

scanning run. Each block could be composed of counter-phase (CP),

nonmotion (NM), or in-phase (IP) stimuli. During CP blocks, the two

dots in a pair traveled in opposite directions. CP pairs were initially

separated by 8 pixels along the Glass pattern orientation and traveled

toward one another, crossed, and were randomly replotted after again

achieving a separation of 8 pixels. To temporally stagger the replotting

of CP dots, each CP pair was initially plotted at a randomly selected

point along its full trajectory.

During IP blocks, both dots within a pair traveled in the same

direction along the orientation of the Glass pattern. Each pair was

independently assigned a random initial lifetime to temporally stagger

the replotting of dot pairs, and each pair was independently assigned

a random within-pair distance between 0 and 8 pixels. Different IP

pairs traveled in opposite directions along the Glass pattern orienta-

tion, creating a bidirectional stimulus. Because IP and CP dots all trav-

eled 8 pixels during their 150 ms limited lifetime, the dot speed

ranged from 2.3 to 2.6�/s, depending on viewing distance.

NM dots behaved identically to in-phase dots, except that there

was no translational motion. Critically, in-phase and counter-phase

stimuli contained the same number of left and right motion signals,

and the Glass patterns of all three conditions were indistinguishable

from one another. One experimental run contained 6 blocks of each

paired-dot condition, totaling 18 blocks per run. Each participant

performed 8 runs, totaling 144 blocks (48 blocks per condition).

Stimulus diagrams are presented in Figure 1. See Supporting Infor-

mation Video A for examples of the IP, CP, and NM stimuli and the

behavioral task.

2.2 | Participants

Functional neuroimaging data were collected from five participants.

All participants had normal or corrected-to-normal vision. Informed

consent was obtained, and all participants were treated in accordance

with the Code of Ethics of the World Medical Association

(Declaration of Helsinki). For their participant, participants received

CAN$200 (CAN$50 per scanning hour).

2.3 | Magnetic resonance imaging

All scans took place in the Centre for Functional and Metabolic Map-

ping at the University of Western Ontario's Robarts Research Institute

on the 7T Siemens Magnetom scanner. All functional scans used an

8-channel transmit, 32-channel receive coil optimized for the occipital

pole and providing an unobstructed field-of-view to the visual stimu-

lus. All anatomical scans used an 8-channel transmit, 32-channel

whole-head coil. For each participant, we collected an anatomical scan

(MP2RAGE, 224 sagittal slices, 0.7 mm isotropic voxel size,

TR = 6,000 ms, TE = 2.73 ms, Flip angle 1 = 4�, Flip angle 2 = 5�, TI

1 = 800 ms, TI 2 = 2,700 ms), two retinotopy scans, one with rotating

wedge stimuli and one with expanding ring stimuli (60 coronal slices

originating at the posterior pole, 1.5 mm isotropic voxel size,

TR = 1,000 ms, TE = 19.6 ms, Flip angle = 45�, slice order: interleaved,

phase condition direction: FH, pulse: gradient echo, imaging type:

EPI), one V5 localizer scan (60 coronal slices originating at the poste-

rior pole, 1.5 mm isotropic voxel size, TR = 1,600 ms, TE = 19.6 ms,

Flip angle = 45�, slice order: interleaved, phase condition direction:

FH, pulse: gradient echo, imaging type: EPI), and eight experimental

scans (60 coronal slices originating at the posterior pole, 1.5 mm iso-

tropic voxel size, TR = 1,200 ms, TE = 19.6 ms, Flip angle = 45�, slice

order: interleaved, phase condition direction: FH, pulse: gradient echo,

imaging type: EPI).

2.4 | Preprocessing

The fMRI data preprocessing, the functional localizer analysis, and

the univariate experimental analysis were conducted using

BrainVoyager QX 2.8.4 (Formisano, Di Salle, & Goebel, 2006;

Goebel, Esposito, & Formisano, 2006). Functional data were

F IGURE 1 Diagrams of in-phase
(a), counter-phase (b), and nonmotion
stimuli (c). Dots are shaded according
to their direction of motion.
Nonmotion dots are represented by
broken circles. All dots had limited
lifetimes and the stimuli exhibited
indistinguishable Glass patterns
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preprocessed using motion correction, slice scan time correction,

and highpass filtering. The functional scans were coregistered to the

anatomical scan, and both scans were brought to Talairach space for

region of interest functional localization using BrainVoyager's cor-

egistration and visualization tools. The ROIs were transformed back

to native functional space for multivariate analyses using the

MATLAB toolbox NeuroElf (www.neuroelf.net). All transformations

were applied with sinc interpolation.

2.5 | Regions of interest localization

A standard rotating wedge and expanding ring retinotopic mapping

procedure was used to identify areas V1, V2, V3, V3A, and V4

(Engel, Glover, & Wandell, 1997; Sereno et al., 1995). The black-

and-white checkerboard wedges spanned 45�, shifted 11.25� per

TR (1,000 ms) and completed seven full cycles during the session.

The checkerboard rings began centrally and expanded into the

periphery once per TR (1,000 ms). Twenty such expansions per

cycle occurred, and seven full cycles were completed during the

session. The largest ring had an outer radius of 384 pixels (between

10.4� and 11.9�) and an inner radius of 270 pixels (between 7.3�

and 8.4�). The retinotopic stimuli flickered and reversed their con-

trast polarity at a rate of 8 Hz. V5 localization stimuli were com-

posed of 1,348 white square dots with a side length of three pixels

alternating between inward and outward radial motion. The dots

traveled four pixels per frame (between 6.5 and 7.4�/s) and

reversed direction every 2 s. Four 16-second blocks were pres-

ented, alternating with 16-second blank periods containing

completely static dots exhibiting no limited lifetime. In every locali-

zation scan, participants performed a fixation task, indicating when

the central fixation randomly alternated between “O” and “X.”

Bilateral V5 was identified for each participant. First, a GLM was

fit to the V5 localization data using a box-car stimulus model and Bra-

inVoyager's default double-gamma HRF. The model additionally con-

tained z-scored head-motion nuisance regressors. A whole-brain,

voxel-wise contrast of moving dots verses static dots was applied

(FDR, q < 0.05). V5 was defined as significant clusters of voxels bilat-

erally located near the ascending limb, or the posterior continuation,

of the inferior temporal sulcus or the posterior bank of the superior

temporal sulcus (Dumoulin et al., 2000).

To identify areas V1–V4, a 3D brain surface model was constructed

from the skull-stripped and Talairach-transformed anatomical scan in

BrainVoyager. The surface was inflated, cut across the calcarine sulcus,

flattened, and corrected for surface distortions. A whole-brain, voxel-wise

cross-correlation analysis was carried out and mapped onto the flattened

brain surface, and the borders of V1–V4 were identified by observing the

cross-correlation polarity reversals running along the calcarine sulcus. One

GLM was fit using all experimental data collected for the participant with

one regressor for each stimulus condition and z-scored head-motion nui-

sance regressors. A voxel-wise contrast of stimulus period verses blank

period was applied (FDR, q < 0.05). The final ROIs were defined as the sig-

nificant voxels within the ROI borders.

2.6 | fMRI analysis

For visualization, model-independent univariate BOLD time courses

were extracted from the Talairach-space transformed data for each

stimulus condition and visual area. However, the data were trans-

formed to native functional space for the main MPVA analysis.

Within-subject multivariate pattern classification analyses were

carried out on fitted voxel-wise GLM betas using support vector

machines for each visual area. The GLMs for multivariate pattern

classification were calculated using NeuroElf and were separate

from the GLMs for ROI localization. One GLM per ROI was fitted

with each individual block as a separate regressor (Mumford,

Turner, Ashby, & Poldrack, 2012; Rissman, Gazzaley, & D'Esposito,

2004) and with z-scored head-motion data as additional nuisance

regressors. Each block was modeled as an individual box-car, con-

volved with NeuroElf's default double-gamma HRF and z-score

normalized.

The classification analysis utilized Linear Support Vector

Machines programmed in Python with the Scikit-learn library using

the default hyperparameter settings (Pedregosa et al., 2011). Three

independent classifiers were trained to discriminate between, and

then tested on, IP and CP, IP and NM, and CP and NM blocks. All

SVMs utilized eightfold cross validation, whereby the classifier was

trained on 7 of 8 runs and tested on the remaining run. This occurred

eight times per SVM such that each run, in turn, served as the testing

set, and the final performance was the average of all eight folds. Data

from all identified ROIs were analyzed in this way.

A further classification analysis was carried out on data from

visual area ROIs exhibiting greater than 70% group-mean accuracy in

at least two of the three pairwise classifiers. Three pairwise SVMs

were trained identically as in the previous analysis, but the testing

dataset was composed of data from the untrained condition. For

example, the classifier trained on seven folds of IP and CP data was

tested on the NM data of the eighth fold, and an eight-fold cross vali-

dation scheme was again used. This analysis was used to probe for

the presence of any systematic misclassification bias between in-

phase, counter-phase, and nonmotion conditions. Because this analy-

sis is unlikely to uncover systematic classification bias if the previous

condition discrimination analysis performs poorly, it was only carried

out with data from ROIs exceeding 70% classification accuracy in two

condition discrimination classifiers.

In all multivariate analyses, significance was established using

within-subject permutation tests in which the condition labels were

randomly permuted within runs, ensuring that each run preserved the

same number of each type of label (Etzel & Braver, 2013). A total of

15,200 permuted datasets were tested, the maximum number of per-

mutations our computing technology reasonably allowed. All partici-

pants received the same permutations, and the results of each

permutation were averaged across participants to create one group

null distribution against which the group average performance could

be compared (Etzel, 2015). The permuted p was defined as the per-

centile rank of the nonpermuted group average divided by the total

number of permutations +1 (15,201).
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3 | RESULTS

3.1 | Univariate results

Figure 2a shows the average BOLD time-series of IP, CP, and NM

blocks, collapsed across participants and percent-normalized by the

voxel intensity of the first TR at stimulus onset. Consistent with previ-

ous studies, visual inspection reveals an increased IP BOLD response

at area V5 and mostly overlapping activity across all three conditions

for the other visual areas tested.

To test for significance in the V5 timeseries, an average % change

was calculated separately for each participant and stimulus condition

by averaging the values of 10 successive TRs (12 s, the length of one

block) in the time series, beginning with the fourth TR (4.8 s after

stimulus onset) to account for the hemodynamic response delay. The

average IP, CP, and NM values were tested using a one-way

repeated-measures ANOVA, finding a significant effect of stimulus

condition F(2,8) = 5.1, p = .038. Pairwise contrasts found a significant

difference between IP (3.39) and CP (3.08), t(8) = 2.6, p = .032, and

between IP and NM (3.04), t(2,8) = 2.9, p = .020. There was no signifi-

cant difference between CP and NM. Figure 2b plots the stimulus

averages.

3.2 | Multivariate results

For all MVPA analyses, significance was determined using a permuta-

tion test with 15,200 random permutations. Therefore, the minimum

p possible is 1
15,201 = 6:6×10−5 when the true value is more extreme

than every null value. IP, CP, and NM blocks were used to train and

test IP v. CP, IP v. NM, and CP v. NM classifiers to examine the sepa-

rability of each condition with a one-tailed permutation test. A

Bonferroni correction for multiple comparisons was applied. This

analysis contains three comparisons across six ROIs; therefore, a criti-

cal p of 0:05
18 = 2:8×10−3 was set to determine better-than-chance

accuracy. See Supporting Information Table A (discrimination perfor-

mance) and Table B (misclassification bias) for summary results within

all ROIs.

Every ROI achieved greater than chance performance when dis-

criminating IP and CP. In increasing performance order: V1—57%,

p = 9.2 × 10−4; V4—58%, p = 3.3 × 10−4; V2—62%, p = 6.6 × 10−5;

V3—65%, p = 6.6 × 10−5; V3A—76%, p = 6.6 × 10−5; V5—79%,

p = 6.6 × 10−5. Area V1 failed to achieve the significance cutoff when

discriminating IP and NM: 56%, p = 4.4 × 10−3. However, all other

areas successfully discriminated IP and NM. In increasing performance

order: V2—60%, p = 1.3 × 10−4; V4—61%, p = 6.6 × 10−5; V3—67%,

p = 6.6 × 10−5; V5—75%, p = 6.6 × 10−5; V3A—81%, p = 6.6 × 10−5.

When discriminating CP and NM, performance was relatively poorer

across all ROIs. Only data from areas V3 and V3A surpassed the

threshold of significance, V3–58%, p = 6.6 × 10−5; V3A—59%,

p = 6.6 × 10−5. The remaining ROIs did not achieve significance when

discriminating CP and NM, V5–52%, p = 1.5 × 10−1; V1–54%,

p = 3.0 × 10−2; V2–54%, p = 3.5 × 10−2; V4–55%, p = 4.5 × 10−3.

The condition discrimination results for all ROIs are plotted in

Figure 3.

Individual-subject discrimination was also examined to assess

whether individual-subject trends were consistent with the group

analysis. Areas V1–V4 did not exhibit consistent trends across partici-

pants. See Supporting Information Table C for these results. At V3A

and V5, the individual-subject data largely supported the main group

analysis. The classifier could not discriminate NM from CP with any

single-subject dataset at area V5, but the classifier was able to signifi-

cantly discriminate IP from both CP and NM: lowest accuracy 69%,

p = 5.3 × 10−4 with every single-subject dataset. The results from

Area V3A were similar, though less consistent, with one participant

dataset only eliciting uncorrected significance when discriminating IP

(a) (b)

F IGURE 2 Univariate data. (a) Group-averaged univariate time-series during IP, CP, and NM blocks plotted as percent change for all ROIs.
Data were normalized relative to the onset of the visual stimulus (TR = 0). (b) Average % change in V5. Error bars are ±1 within-subject standard
errors (Cousineau, 2005). Asterisks denote significance, p < .05
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and CP, 61%, p = .026 and mixed results when discriminating NM

from CP. Table 1 presents all individual-subject results.

Because the group data from V3A and V5 achieved at least 70%

accuracy in two comparisons, these data were submitted to a further

analysis designed to probe for any systematic misclassification biases.

Three classifiers were trained to discriminate between IP and CP, IP

and NM, and CP and NM identically as in the previous analysis, but

they were tested with the untrained condition to determine whether

the untrained condition would elicit a consistent misclassification

error. A two-tailed permutation test was used to determine

significance, and a Bonferoni correction for multiple comparisons was

applied. This analysis contains three comparisons across two ROIs;

therefore, a critical p of 0:05
6 = 8:3×10−3 was set to determine better-

than-chance performance.

The classifier trained to discriminate CP and NM was tested with

IP data, and there was no systematic misclassification of IP in either

V3A or V5 (see Figure 4a). However, a significant misclassification

bias was found with the classifier trained to discriminate IP and NM

and tested with CP data. CP data was classified more often as NM in

both ROIs; V3A—73% classified as NM, p = 6.6 × 10−5; and V5—72%

F IGURE 3 Condition discrimination MVPA results plotted in percent correct. IPvCP plots the discrimination between in-phase and counter-
phase. IPvNM plots the discrimination between in-phase and nonmotion. CPvNM plots the discrimination between counter-phase and
nonmotion. The shaded bar represents the estimated null distribution. Darker shades represent a higher frequency of values achieving the
associated percent correct. The null distribution was estimated using 15,200 permutations. Performance using the unpermuted dataset is plotted
as circles. The lines illustrate the performance required to exceed the critical p of 2.8 × 10−3

TABLE 1 V3A and V5 individual-
subject discrimination results and
significance

IPvCP IPvNM CPvNM

Participant % p % p % p

V3A 0 86 6.6E – 05a 90 6.6E − 05a 66 1.1E − 03a

1 89 6.6E − 05a 92 6.6E − 05a 67 1.3E − 04a

2 61 2.6E – 02b 68 3.3E − 04a 51 4.3E − 01

3 70 1.3E − 04a 74 6.6E − 05a 55 1.4E − 01

4 75 1.3E − 04a 83 6.6E − 05a 57 3.5E − 02b

V5 0 89 6.6E − 05a 77 6.6E − 05a 54 2.0E − 01

1 70 1.3E − 04a 79 6.6E − 05a 54 1.8E − 01

2 80 6.6E − 05a 79 6.6E − 05a 49 6.2E − 01

3 81 6.6E − 05a 73 6.6E − 05a 53 2.5E − 01

4 74 6.6E − 05a 69 5.3E − 04a 50 5.6E − 01

Abbreviations: CP, counter-phase stimulus. IP, in-phase stimulus; NM, nonmotion stimulus.
aSignificance at Bonferroni-corrected p = 2.8E − 03.
bSignificance at uncorrected p = .05.
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classified as NM, p = 6.6 × 10−5 (See Figure 4b). Similarly, a significant

misclassification bias was found with the classifier trained to discrimi-

nate IP and CP and tested with NM data. NM data was classified more

often as CP in both ROIs; V3A—71% classified as CP, p = 1.3 × 10−4;

and V5—68% classified as CP, p = 3.9 × 10−4 (See Figure 4c).

Individual-subject misclassification analyses were examined in

areas V3A and V5. Four out of five individual-subject datasets elicited

70% performance in at least two discrimination tasks in both V3A and

V5. These datasets individually achieved the group-level performance

cutoff and will be discussed as “high performing datasets.” It should

be noted that participant identities differed between the V3A and V5

high performing datasets. Table 2 presents all individual-subject mis-

classification bias results.

At Area V3A, all five individual-subject datasets misclassified CP

as NM more often than IP, and two datasets individually reached

Bonferroni corrected statistical significance. The four high performing

datasets also misclassified NM as CP more often than IP, with one

reaching the Bonferroni significance cutoff and two reaching

uncorrected significance (p < .05). No dataset demonstrated IP

misclassification bias.

At area V5, all five datasets misclassified CP as NM more often

than IP, with two datasets achieving Bonferroni-corrected statistical

significance. The four high performing datasets also misclassified NM

as CP more than IP, with two achieving Bonferroni-corrected statisti-

cal significance and a third reaching uncorrected significance. No

dataset demonstrated IP misclassification bias.

4 | GENERAL DISCUSSION

The current study examined the human motion opponency system

using a novel nonmotion flicker-based stimulus and a multivariate

analysis of fMRI data. Motion opponency involves the pooling of local

motion signals to output an overall motion direction and is therefore

useful in flicker noise reduction (Adelson & Bergen, 1985; Qian et al.,

1994; Reichardt, 1961; Simoncelli & Heeger, 1998; van Santen &

(a) (b) (c)

F IGURE 4 Misclassification bias analysis. (a). Results of the classifier trained to discriminate CP and NM and tested with NM data, plotted as
the percent of NM blocks misclassified as CP. (b). Results of the classifier trained to discriminate IP and NM and tested with CP data, plotted as
the percent of CP blocks misclassified as NM. (c). Results of the classifier trained to discriminate IP and CP and tested with NM data, plotted
as the percent of NM blocks misclassified as CP. Plotting conventions are identical to Figure 2. Because this analysis involves six comparisons, the
lines illustrate the performance required to exceed the critical p of 8.3 × 10−3

TABLE 2 V3A and V5 individual-
subject misclassification bias results and
significance

IP CP NM

Participant % as CP p % as NM p % as CP p

V3A a0 42 5.4E − 01 77 6.7E − 03b 77 1.3E − 02c

a1 23 5.3E − 02 85 2.6E − 04b 90 6.6E − 05b

2 67 2.1E − 01 73 2.3E − 02c 46 7.1E − 01

a3 60 5.2E − 01 60 3.8E − 01 77 1.6E − 02c

a4 60 5.6E − 01 67 1.4E − 01 65 2.3E − 01

V5 a0 54 8.2E − 01 88 4.6E − 04b 77 3.8E − 03b

a1 33 1.6E − 01 60 2.7E − 01 77 9.9E − 04b

a2 67 2.0E − 01 85 6.6E − 04b 65 1.4E − 01

a3 52 8.8E − 01 67 1.8E − 01 73 4.5E − 02c

4 56 7.0E − 01 58 4.3E − 01 48 9.2E − 01

Abbreviations: CP, counter-phase stimulus; IP, in-phase stimulus; NM, nonmotion stimulus.
aHigh performing dataset.
bSignificance at Bonferroni-corrected p = 8.3E − 03.
cSignificance at uncorrected p = .05.
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Sperling, 1985). As a result, a motion-opponent system may process

counter-phase motion and flicker noise similarly. We therefore

hypothesized that BOLD data from any visual area involved in

opponency would elicit a specific multivariate signature: (1) strong

separability of in-phase data and (2) systematic misclassification of

counter-phase blocks as nonmotion and nonmotion blocks as

counter-phase.

Previous neuroimaging work reported suppressed univariate

counter-phase V5 responses (Garcia & Grossman, 2009; Heeger et al.,

1999; Muckli et al., 2002; Thompson et al., 2013). The current study

directly extended this result by comparing the counter-phase and

nonmotion flicker responses to each other as well as to the in-phase

response. Our multivariate predictions were fully born out at the

group level within V3A and V5. These results are consistent with the

notion that V5 similarly processes counter-phase and flicker stimuli

and that motion opponent suppression is recruited during the

processing of both stimuli.

Motion opponency is typically associated with area V5/MT

receiving inputs from V1 (Bradley & Goyal, 2008; Qian & Andersen,

1994). However, the present results also suggest involvement of V3A

in motion opponency, finding robust multivariate signals of

opponency in V3A. However, the current study found different result

profiles between these areas. Unlike area V5, the V3A univariate in-

phase, counter-phase, and nonmotion timeseries curves appear to

overlap (See Figure 2). One possible explanation for the univariate

time-series overlap of IP, CP, and NM blocks is that the population of

V3A neurons participating in opponency is too small to be visually

apparent in the univariate BOLD response. Multivariate classification

methods are more powerful than univariate methods (Mur,

Bandettini, & Kriegeskorte, 2009; Tong & Pratte, 2012), and the pres-

ence of motion opponency throughout the visual system might be

more reliably detected with these more powerful methods.

Furthermore, even while both V3A and V5 exhibited significant

misclassification bias between CP and NM blocks, the group V3A data

exhibited above-chance discrimination of CP and NM, unlike the V5

dataset. Therefore, these results support the notion that while V5

occupies a central role in motion opponency and cannot distinguish

between counter-phase motion and nonmotion flicker, area V3A also

potentially contributes to a motion opponency network while still

processing counter-phase stimuli as motion.

Because opponency contributes a necessary noise-reduction step

in motion processing, the suggestion that V3A participates in

opponency is consistent with previous findings that V3A participates

in motion processing and cooperates with V5 in motion perceptual

learning (Braddick et al., 2001; Chen et al., 2015; Chen, Cai, Zhou,

Thompson, & Fang, 2016; Tootell et al., 1997). Interestingly, we

observed significant IP discrimination against both CP and NM at V2–

V4, potentially consistent with the previous findings of local motion

integration across the whole visual cortex (Garcia & Grossman, 2009;

Huk & Heeger, 2002). However, these results were not as consistent

across individual-subject analyses, nor did their overall discrimination

performance achieve the 70% cutoff achieved by V3A and V5. There-

fore, with the limited power afforded by the current study's small

sample size, no conclusions about whether these additional

extrastriate areas meaningfully contribute to a global motion

opponency network can be made on the basis of the current study

alone.

The results of the current study strengthen the idea that both

counter-phase and flicker stimuli elicit motion opponency in the

human brain. Furthermore, they demonstrate that multivariate ana-

lyses are powerful tools to examine motion opponency throughout

the visual system, providing evidence that area V3A may participate in

motion opponency alongside V5. Further work is required to clarify

V3A's potential role in motion opponency and to examine the full

motion opponent network in the human brain.
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