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Abstract
In most cognitive and motor tasks, speed-accuracy trade
offs are observed: Individuals can respond slowly and
accurately, or quickly yet be prone to errors. Control
mechanisms governing the initiation of behavioral
responses are sensitive not only to task instructions and
the stimulus being processed, but also to the recent stimu-
lus history: when stimuli can be characterized on an easy-
hard dimension (e.g., word frequency in a naming task),
an easy item is responded to more slowly when inter-
mixed with hard items than when presented among other
easy items; likewise, hard items are responded to more
quickly when intermixed with easy items. We propose a
mathematical theory with three components: a model of
temporal dynamics of information processing, a decision
criterion specifying when a response should be initiated,
and a mechanism of adaptation to the stimulus history.
Performance during the course of an experimental trial is
cast in terms of a utility function that increases with accu-
racy and decreases with response time. We assume a deci-
sion criterion that initiates a response at the point in time
that maximizes expected utility. We posit that the effect
of the stimulus history arises because information con-
cerning recent trial difficulty is incorporated into the util-
ity estimate. We present further behavioral studies to
validate predictions of the theory.

Consider a simple task in which you are asked to name
the sum of two numbers, such as 14+8. Given sufficient
time, you presumably produce the correct result; how-
ever, under speed pressure, mistakes can occur. In most
all cognitive and motor tasks, such empirical speed-
accuracy trade offs are observed: Individuals can
respond slowly yet accurately, or quickly and be prone
to errors. Speed-accuracy trade offs are due to the fact
that evidence accumulates gradually in response sys-
tems over time (Rabbitt & Vyas, 1970). Responses initi-
ated earlier in time will be based on lower quality
information, and hence more likely to be incorrect. This
paper addresses a simple yet fundamental form of cog-
nitive control—the mechanism that governs the initia-
tion of a behavioral response, and therefore, where an
individual operates on the speed-versus-accuracy con-
tinuum. In the following section, we describe data that
place constraints on the nature of control mechanisms.

We describe shortcomings of existing theoretical frame-
works that have tried to account for these data. We then
present a framework that successfully explains key phe-
nomena and makes further predictions which we have
verified through additional behavioral studies.

The Blocking Effect
To understand the control mechanism that initiates
responses, consider the variables that affect its opera-
tion. The mechanism is influenced by task instructions:
individuals can choose to emphasize speed or accuracy.
The mechanism is also influenced by recent perfor-
mance: participants often slow down after producing an
error (Rabbit & Vyas, 1970). Finally, even in the
absence of errors, the mechanism is sensitive to the
recent stimulus environment (Kiger & Glass, 1981):
when items are presented in a sequence or block, reac-
tion time (RT) and error rate to an item depends on the
immediately preceding items.

This blocking effect is generally studied by manipu-
lating item difficulty. Some items are intrinsically easier
than others, e.g., 10+3 is easier than 5+8, whether due to
practice or the number of cognitive operations required
to determine the sum. By definition, individuals have
faster RTs and lower error rates to easy problems. How-
ever, the RTs and error rates are modulated by the com-
position of a block. Consider an experimental paradigm
consisting of three trial blocks: just easy items (pure
easy), just hard items (pure hard), and a mixture of both
in random order (mixed). When presented in a mixed
block, easy items slow down relative to a pure block and
hard items speed up. Thus, the control mechanism that
initiates responses uses information not only from the
current stimulus, but also adapts to the stimulus environ-
ment in which it is operating. Table  shows a typical
blocking result for a word reading task, where word fre-
quency is used to manipulate difficulty. Based on our
review of the blocking-effect literature (e.g., Lupker,
Brown & Columbo, 1997; Lupker, Kinoshita, Coltheart,
& Taylor, 2000; Taylor & Lupker, 2001), we summarize
the central, robust phenomena as follows.

Pure Block Mixed Block Difference
Easy Item 488 ms (3.6%) 513 ms (1.8%) +25 ms (–1.8%)
Hard Item 583 ms (12.0%) 559 ms (12.2%) –24 ms (+0.2%)

TABLE 1. RTs and Error Rates for 
Blocking study of Lupker, Brown, 
& Columbo (1997, Experiment 3)
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(1) Easy items are faster and less error prone than hard.
(2) When intermixed, easy items slow down and hard

items speed up. However, the convergence of RTs
for easy and hard items in a mixed block is not
complete. Thus, RT depends both on the stimulus
type and the composition of the block.

(3) Speed-accuracy trade offs are observed: a drop in
error rate accompanies easy-item slow down; a rise
in error rate accompanies hard-item speed up.

(4) Blocking effects occur across diverse paradigms,
including naming, arithmetic verification and calcu-
lation, target search, and lexical decision. They are
obtained when stimulus or response characteristics
alternate from trial to trial (Lupker et al., 2000).
Thus, the blocking effect is not associated with a
specific stimulus or response pathway, but rather is
a general phenomenon of response initiation.

(5) Overt responses are necessary for obtaining block-
ing effects, but overt errors are not.

(6) A signature of the effect concerns the relative mag-
nitudes of easy-item slow down and hard-item
speed up. Significantly more speed up than slow
down is never observed. The trend is that speed up
is less than slow down—indeed, some studies show
no reliable speed up—although equal magnitude
effects are observed.

(7) The effects of stimulus history are local, i.e., the
variance in RT on trial n due to trial n–k decreases
rapidly with k. Dependencies for k>2 are not reli-
able (Taylor & Lupker, 2001).

Explanations for the Blocking Effect
The blocking effect demonstrates that the response time
depends not only on information accruing from the cur-
rent stimulus, but also on recent stimuli in the trial his-
tory. Therefore, any explanation of the blocking effect
must specify how control processes, which determine
the point in time at which a response is initiated, are sen-
sitive to the composition of a block. Various mecha-
nisms of control adaptation have been proposed.

Domain specific mechanisms. Most of the pro-
posed mechanisms are domain specific. For example,
Rastle and Coltheart (1999) describe a model with two
routes to naming, one lexical and one nonlexical, and
claim that the composition of a block affects the empha-
sis that is placed on the output of one route or the other.
Meyer, Roelofs, and Levelt (2003) manipulate word
length and explain blocking effects in terms of a control
process, sensitive to block composition, that decides
when to initiate a naming response—either after the
motor program for the first syllable has been generated,
or after the motor program for the entire word has been
generated. Because of the ubiquity of blocking effects
across tasks, domain-specific accounts are not compel-
ling. Parsimony is achieved only if the adaptation mech-
anism is localized to a stage of response initiation
common across stimulus-response tasks.

Rate of processing. Kello and Plaut (2003) have
proposed a rate-of-processing explanation, according to
which control processes adjust a gain parameter on units
in a dynamical connectionist model. The parameter
determines the steepness of the sigmoid curve. Techni-
cally, the gain does not affect rate of processing, i.e., it
does not simply rescale time. Increasing the gain does
result in more rapid convergence, but it also yields a
higher error rate; thus the account should more appro-
priately be framed in terms of adapting the rate of con-
vergence. Simulations of this model have explained the
basic blocking effect, but not the complete set of phe-
nomena we listed previously. Of greater concern is the
fact that the model predicts that naming duration
decreases with increased speed pressure, which doesn’t
appear to be true (Damian, 2003; Kinoshita, unpub-
lished). 

Evidence criterion. A candidate mechanism with
intuitive appeal is the trial-to-trial adjustment of an evi-
dence criterion, which specifies the level of evidence
that must accumulate in support of a decision before the
response is initiated. Random walk and diffusion mod-
els have such a parameter, often called the response cri-
terion (Ratcliff, 1978). According to this account, the
evidence criterion is determined by recent trial history:
if previous trials were easy, the criterion is set low, if
previous trials were hard, the criterion is set high. Thus,
the criterion would be lowest in a pure-easy block, inter-
mediate in a mixed block, and highest in a pure-hard
block. When the criterion is high, RTs are slower but
error rates are lower, resulting in slow down of easy
items and speed up of hard items in a mixed block.

Taylor and Lupker (2001) illustrate that adaptation
of an evidence criterion can—at least in some models—
yield incorrect predictions concerning the blocking
effect. Strayer and Kramer (1994) attempted to model
the blocking effect with an adaptive response criterion
in the diffusion model. They managed to fit their block-
ing data but the account had two fatal shortcomings.
First, they allowed different criteria for easy and hard
items in a mixed block, which makes no sense because
the trial type was not known in advance, and setting dif-
ferential criteria depends on knowing the trial type. Sec-
ond, they used a nonstandard blocking paradigm in
which the trial difficulty depended on whether an item
was presented in a pure or mixed block, easy items
being more difficult and hard items being less difficult
in a mixed block. 

In spite of these problems, we were also convinced
an evidence-criterion-adjustment explanation should be
feasible. We used a somewhat different model of tempo-
ral dynamics and response initiation than Strayer and
Kramer (to be described shortly), but like Strayer and
Kramer, the model had an adaptive parameter that deter-
mined the trade off between speed and accuracy. After
six frustrating months of exploration, we admitted
defeat: The model was unable to obtain the right qualita-
tive pattern of results; either the blocking effect was an
order of magnitude smaller than that observed in experi-
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ments, or went in the wrong direction. Several variants
of the model came close, but were not robust; tiny
changes to parameter values yielded qualitative effects
on the pattern of results.

The failure of an evidence-criterion-adjustment
account is not surprising from another perspective. On
logical grounds, the relative importance of speed versus
accuracy should be determined by task instructions and
pay offs. Item difficulty is independent and unrelated
factor. Consistent with this logical argument is the find-
ing that manipulating instructions to emphasize speed
versus accuracy does not produce the same pattern of
effects as altering the composition of a block (Dorfman
& Glanzer, 1988). 

Adaptation to the statistics of the environment.
Having ruled out three possible explanations, we sketch
a fourth alternative, which is based on the premise that
the goal of cognition is optimal and flexible perfor-
mance across a variety of tasks and environments. In
service of this goal, control mechanisms must be sensi-
tive to the statistical structure of the environment, e.g.,
stimulus characteristics and configurations, response
contingencies, etc. Previous models of control have
exploited this assumption. For example, Treisman and
Williams (1984) and Mozer, Colagrosso, and Huber
(2002) considered a sequential choice task involving
two response alternatives, and proposed that control
mechanisms estimate prior probabilities of the two
responses. If one response is more frequent, the larger
prior induces a bias toward that response, which typi-
cally boosts performance.

Blocking effects can be explained via a related
hypothesis. Because RTs depend on whether a trial is
easy or hard, the control mechanisms responsible for
response initiation must utilize an estimate of the item
difficulty, or the quality of information available to
response processes. If this estimate is unreliable (noisy),
and if control mechanisms make the ecological assump-
tion that the current trial is similar to recent trials, the
estimate can be made more reliable by incorporating
estimates from recent past trials. We elaborate this idea
in a mathematical model of response initiation, and
show that it can explain the key blocking phenomena
listed earlier as well as other puzzling phenomena.

The ASE Model
We refer to our model as ASE, which stands for Adapta-
tion to the Statistics of the Environment. Although the

key claim of the model concerns the mechanism of con-
trol adaptation based on recent experience, we must
make two additional sets of assumptions, one set con-
cerning the temporal dynamics of information process-
ing, and another set concerning the decision criterion
for response initiation Although the specific assump-
tions we make are not critical, they must be made
explicitly to fully flesh out the model.

Temporal dynamics. We need a way to character-
ize the temporal dynamics of information processing in
tasks such as naming. The particular model of temporal
dynamics is not critical, as long as it has the property
that the quality of information available for responding
increases gradually and monotonically over time. 

We chose the probabilistic information transmission
(PIT) model of Mozer, Colagrosso, and Huber (2002,
2003). To summarize the key properties relevant for the
current work, the model consists of a cascaded series of
processing pathways whose details are determined by
the task being modeled. For example, to model a word
naming task, we use a perceptual pathway that maps
visual word forms to an internal semantic/lexical repre-
sentation, and a response pathway that maps the internal
representation to a distinct verbal naming response.
Each pathway is a dynamic Bayesian network, and the
conditional probability distributions in the model are
specified by the nature of the mapping, the state of
expertise being modeled, and the similarity structure
among elements of representation. Given a stimulus pre-
sentation, the output of the model is a probability distri-
bution over response alternatives as a function of time
(Figure 1a). The response chosen at a particular time is a
sample from the distribution (the model cannot choose
the most probable response). The time course of pro-
cessing depends on information transmission probabili-
ties in the model. Easy, high frequency, and well
practiced items have higher transmission probabilities,
and hence are conveyed more rapidly.

This model is a generalization of random walk
models and has several advantages. It provides a mathe-
matically principled means of handling multiple alterna-
tive responses (necessary for naming) and similarity
structure among elements of representation, and charac-
terizes perceptual processing, not just decision making.
The counter model (Ratcliff & McKoon, 1997) or con-
nectionist integrator models (e.g., Usher & McClelland,
2001) could also serve us, although the PIT framework
has an advantage in that it operates using a currency of
probabilities—versus more arbitrary units of count or
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FIGURE 1. (a) Output of the probabilistic information-transmission model for presentation of the stimulus, e.g., SEEK, on a word
naming task. (b) Treating the most probable output is an estimate of accuracy (light line is the time threshold). (c) Utility function
based on most probable output (dashed line = time of maximum utility)
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activation—which leads to explicit, interpretable deci-
sion criteria and adaptation mechanisms, and requires
fewer additional assumptions to translate model output
to predictions of experimental outcomes. 

Decision criterion. To model blocking effects, we
must make an explicit assumption concerning the deci-
sion criterion used for response initiation. A simple
speed criterion (i.e., respond at α milliseconds following
stimulus onset) or accuracy criterion (i.e., respond when
the error rate is below α) is inadequate, because easy
items are both faster and more accurate than hard items
in pure blocks. Ratcliff’s (1978) diffusion model uses an
evidence threshold, which effectively yields an accuracy
criterion that declines over time. We adopt this notion,
as illustrated by the gray line in Figure 1b. The line is
characterized by one free parameter, the slope κ. This
criterion can be recast in an optimization framework: A
response is initiated at the point in time that maximizes
utility, where utility increases with expected accuracy
and decreases with time (Figure 1c). Previous psycho-
logical theory has suggested that individuals can choose
the optimal point at which to respond (Mozer et al.,
2002; Rabbitt & Vyas, 1970; Triesman & Williams,
1984).

To summarize, we propose a theory premised on
five key assumptions. (1) Transmission of stimulus
information to response systems is gradual and accumu-
lates over time. (2) Control mechanisms respond at the
point in time that maximizes a utility measure that
depends on both expected accuracy and time. (3) During
ongoing processing, the system is able to compute an
estimate of its response accuracy for the current stimu-
lus. (4) This estimate is unreliable. (5) If control systems
make the ecological assumption that the current trial is
similar in difficulty to recent trials, the accuracy esti-
mate can be made more reliable by incorporating esti-
mates from recent trials.

An accuracy estimate can be obtained from the PIT
dynamics by assuming that the most probable output at
a point in time is correct (Figure 1b); we refer to this as
curve as the current accuracy trace (CAT). Given the
response criterion (grey line, Figure 1b), a response ini-
tiation time can be determined (dashed line). 

If the model’s transmission probabilities are noisy,
the CAT is a high-variance estimate of accuracy,
because the assumption that the most probable response
state is correct may be wrong. The suggestion of noise is
not arbitrary, but rather is a central claim of the diffusion
model, and has been key to explaining a variety of RT
data. To overcome this noise source, it is sensible for
control mechanisms to rely not solely on the CAT, but

on accuracy traces from recent trials. We claim that the
model maintains a historical accuracy trace (HAT), and
the trace used for estimating utility—the mean accuracy
trace (MAT)—is a weighted average of CAT and HAT,
i.e., ,
where n is an index over trials, and

; λ and θ are
averaging weights. Figure 2a depicts the CAT, HAT, and
MAT. The two solid curves represent CATs for easy and
hard trials, as well as the MATs for pure blocks. The dot-
ted curve represents the expected HAT in a mixed
block—an average of easy and hard CATs. The dashed
curves represent the MATs for easy and hard trials in a
mixed block, formed by averaging the HAT and corre-
sponding CAT. Because the CAT and HAT are time-
varying functions, the notion of averaging is ambiguous;
possibilities include averaging the accuracy of points
with the same time value and times of points with the
same accuracy value. It turns out that the choice has no
qualitative impact on the simulation results we present.
The essential requirement is that the computation to
determine response-initiation time can be performed in
real time, including identification of the utility maxi-
mum.

Modeling Blocking Effects
Figure 2b provides an intuition concerning the model’s
ability to replicate the basic blocking effect. The mean
RT for easy and hard items in a pure block is indicated
by the point of intersection of the CAT with the time
threshold. The mean RT for easy and hard items in a
mixed block is indicated by the point of intersection of
the MAT with the time threshold. The easy item slows
down, the hard item speeds up. Because the rate of pro-
cessing is not affected by the blocking manipulation, the
error rate will necessarily drop for easy items and rise
for hard items. Although the RTs for easy and hard items
come together, the convergence is not complete as long
as . The theory thus explains the first three phe-
nomena of Section 1. The fourth phenomenon, that the
effects occur across diverse paradigms, is consistent
with the theory: the theory concerns the response
curves, but not the stimulus or response modalities or
domains that underlie the curves. Consequently, cross-
task blocking effects are implied by the theory. The the-
ory is consistent with the observation that blocking
effects occur even in the absence of overt errors,
because the theory is neutral with regard to error pro-
duction, and only if response mechanisms are engaged
(phenomenon 5). If responses are not produced, the

HAT n( ) λCAT n 1–( ) 1 λ–( )HAT n 1–( )+=

MAT n( ) θCAT n( ) 1 θ–( )HAT n( )+=
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response-accuracy curves need not be generated, and the
averaging process that underlies the effect cannot occur.

The fact that hard-item speed up is never greater
than easy-item slow down (phenomenon 6) turns out to
be a key diagnostic. Our initial candidate models tended
to yield more speed up than slow down because the
magnitude of RT change was proportional to the RT, and
hard RTs are larger than easy RTs. Empirically, the
error-averaging model we propose never yields more
speed up than slow down. As shown in Figure 2b, the
mixed-block MAT (dashed) hugs the pure-block MAT
(solid) more tightly for hard than easy items. The asym-
metry is due to the fact that the easy CAT reaches
asymptote before the hard CAT. The model produces
more symmetric blocking effects when responses are
initiated at a point where both easy and hard CATs are
ascending at the same rate (leading to high error rates,
unlike the behavioral data). However, we were unable to
find model parameters that produced the invalid pattern
of more speed up than slow down.

Beyond providing qualitative explanations for key
phenomena, the model fits specific experimental data.
Taylor and Lupker (2001, Expt. 1) instructed partici-
pants to name high frequency words (easy items) and
nonwords (hard items). Table 2 compares mean RTs and
error rates for human participants and the simulation.
One should not be concerned with the error-rate fit,
because measuring errors in a naming task is difficult
and subjective. (Over many experiments, error rates
show a speed-accuracy trade off.) Taylor and Lupker
further analyzed RTs in the mixed block conditional on
the context—the 0, 1, and 2 preceding items. Figure 3
shows the RTs conditional on context. The model’s fit is
excellent. Trial n is most influenced by trial n–1, but
trial n–2 modulates behavior as well; this is well mod-
eled by the exponentially decaying HAT.

Simulation details. Parameters of the PIT model
were chosen to obtain pure-block mean RTs comparable
to those obtained in the experiment and asymptotic
accuracy of 100% for both easy and hard items. We
added noise to the transmission rates to model item-to-
item and trial-to-trial variability, but found that this did
not affect the expected RTs and error rates. We fixed the
HAT and MAT averaging terms, λ and θ, at 0.5, and
picked κ to obtain error rates in the pure block of the
right order. Thus, the degrees of freedom at our disposal
were used for fitting pure block performance; the mixed
block performance (Figure 3) emerged from the model.

Asymptotic Effect of Context
In the standard blocking paradigm, the target item is
preceded by a context in which roughly half the items
are of a different difficulty level. We conducted a behav-
ioral study in which the context was maximally different
from the target. Each target was preceded by a context
of ten items of homogeneous difficulty, either the same
or different difficulty as the target. This study allows us
to examine the asymptotic effect of context switching.
We performed this study for two reasons. First, Taylor
and Lupker (2001) obtained results suggesting that a
trial was influenced by only the previous two trials; our
model predicts a cumulative effect of all context, but
diminishing exponentially with lag. Second, several
candidate models we explored predict that with a strong
context, speed up of hard is significantly larger than
slow down of easy; the model we’ve described does not.

The results are presented in Table 3. The model
provides an excellent fit to the data. Significantly larger
context effects are obtained than in the previous simula-
tion (~50 ms in contrast to ~25 ms), and—given the
strong context—the easy items become slower than the

TABLE 2. Expt. 1 of Taylor & Lupker (2001): Human data and simulation
Human Data Simulation

Pure Mixed Difference Pure Mixed Difference
Easy 519 ms (0.6%) 548 ms (0.7%) 29 ms (0.1%) 524 ms (2.4%) 555 ms (1.7%) 31 ms (–0.7%)
Hard 631 ms (2.9%) 610 ms (2.9%) –21 ms (0.0%) 634 ms (3.0%) 613 ms (3.7%) –21 ms (0.7%)
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FIGURE 3. RTs from human subjects (black) and
simulation (white) for easy and hard items in
mixed block, conditional on 0, 1, and 2 previous
item types. Last letter in a string indicates the
current trial and first letters indicate context.
Thus, “EHH” means a hard item preceded by
another hard item preceded by an easy item.

simulation
human data

TABLE 3. Context experiment: Human data and simulation
Human Data Simulation

Same Context Diff. Context Switch Effect Same Context Diff. Context Switch Effect
Easy 432 ms 488 ms 56 ms 437 ms 493 ms 56 ms
Hard 514 ms 467 ms –47 ms 514 ms 470 ms –44 ms
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hard (although this effect is not statistically reliable in
the experimental data). Further, both data and model
show more slow down that speed up, a result that
allowed us to eliminate several competing models. For
this simulation, we fit parameters of the PIT model to
the same-context results. We also treated the MAT aver-
aging constant, θ, as a free parameter on the rational
argument that this parameter can be tuned to optimize
performance: if there is not much variability among
items in a block, there should be more benefit to sup-
pressing noise in the CAT using the HAT, and hence θ
should be smaller. We used 0.35 for this simulation, in
contrast to 0.5 for the first simulation.

Reinterpreting Other Experimental Findings
In many studies, contrasts are made between experimen-
tal blocks whose composition varies in terms of the pro-
portion of easy and hard items. In such cases, our model
may provide an alternative interpretation of experimen-
tal results. Consider a subliminal priming study in which
participants are asked to perform lexical decision on a
target string preceded by a masked prime (Bodner &
Masson, 2001). The prime and target could be identical
or unrelated. Although the prime was subliminal—not
accessible for report—a repetition priming effect is
observed: lexical decision RT to a target is faster if the
prime is identical to the target. Subliminal repetition
priming effects are common in the literature, but what is
surprising in this study is that prime validity influences
priming: The priming effect is larger when the prime
and target are identical on 80% of trials (high validity)
than when they are identical on 20% of trials (low valid-
ity). Bodner and Masson suggest that “recruitment of
the prime resource to assist target processing should be
more likely when the...prime validity...is higher.” (p.
618). This counterintuitive explanation implies that the
prime is analyzed deeply: its match to the target is deter-
mined, prime validity is estimated, and the estimate is
available for strategic control. 

Our model offers an alternative account. The repeti-
tion prime makes a trial easy because the prime activa-
tion supports the target, and the unrelated prime makes a
trial relatively hard. Low and high validity conditions
are thus mixed blocks containing 20% and 80% easy tri-
als, respectively. We ran a simulation to show that these
mixtures yield a blocking effect consistent with the
reduction of priming in the low validity condition
(Table 4). In the model, the prime influences the time
course of information transmission, which modulates
the model’s response-initiation criterion on future tri-
als—a simpler, more elegant account than Bodner and
Masson’s.

Conclusions
Theories in cognitive science occasionally hand the
problem of control to a homunculus. More commonly,
control processes are left unspecified. And when imple-
mented, control generally involves explicit, active, and
sophisticated mechanisms. We have described a model
that achieves an interesting sort of control—sequential
adaptation of the speed-accuracy trade off. However, the
mechanism that gives rise to this adaptation is passive
and in a sense dumb; it essentially reestimates the statis-
tical structure of the environment by updating an expec-
tation of task difficulty. Our hope and belief is that many
aspects of cognitive control can be explained away by
such simple, passive mechanisms, eventually eliminat-
ing the homunculus from cognitive science.
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