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Abstract

Quantitative spectral gap for thin groups of hyperbolic isometries

by

Michael Magee

Let Λ be a subgroup of an arithmetic lattice in SO(n+1, 1). The quotient Hn+1/Λ has

a natural family of congruence covers corresponding to ideals in a ring of integers. We

establish a super-strong approximation result for Zariski-dense Λ with some additional

regularity and thickness properties. Concretely, this asserts a quantitative spectral

gap for the Laplacian operators on the congruence covers. This generalizes results of

Sarnak and Xue (1991) and Gamburd (2002).
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Chapter 1

Introduction

Let n > 1, F a totally real number field with a fixed infinite place, and

G = SO(Fn+2, q) the closed F -subgroup of GLn+2 which preserves a quadratic form q

defined over F . We require G(R) ∼= SO(n+ 1, 1) at the fixed place and compact at the

other real places. Let OF be the ring of integers of F and Γ = G(F ) ∩ GLn+2(OF ).

Ideals I in OF give a level structure by defining

Γ(I) = {γ ∈ Γ : γ ≡ I mod I} (1.1)

the principal congruence subgroup at level I. Let Λ be a subgroup of Γ which is Zariski-

dense in G(C). We also assume that the traces of Λ in the adjoint representation

generate the ring OF . Then Λ inherits a level structure by defining

Λ(I) = Λ ∩ Γ(I). (1.2)

The groups Γ, Λ, Λ(I) act by isometries on hyperbolic space Hn+1. On one hand,

Λ can be thin in Γ as it is possibly infinite index, but on the other hand it is thick
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enough (Zariski-dense with large trace field) so that the group structure does not

degenerate. We further require that Λ is geometrically finite. This means that any

Dirichlet fundamental domain for Λ in Hn+1 is finitely faced, and implies that Λ is

finitely generated1.

Adding this geometric regularity gives us a further gauge of thickness. For a

point o ∈ Hn+1 the orbit Λo accumulates on a subset of the boundary Sn∞ of Hn+1.

This is called the limit set of Λ and denoted L(Λ). This set is Cantor-like and has an

associated Hausdorff dimension δ(L(Λ)). The motif of this paper is that if δ(L(Λ))

is large enough, that is we have ‘sufficient thickness’, then there is a ‘super-strong’

approximation statement for the congruence quotients Λ/Λ(I). Concretely, this asserts

the existence of a spectral gap.

The congruence quotients Λ/Λ(I) act as deck transformations on the quotient

space X(I) ≡ Hn+1/Λ(I) and induce a locally isometric covering

πI : X(I)→ X ≡ Hn+1/Λ. (1.3)

We make some extra assumptions on Λ to ease exposition. By Selberg’s Lemma [Se-60],

which states that any finitely generated matrix group has a normal subgroup of finite

index without torsion, we can pass to a finite index normal subgroup without elliptic or

orientation reversing elements. In addition we may need to pass to a subgroup which

is the kernel of the spinor norm at a localization of OF , we deal with this subtlety in

Section 2.1. Any analysis will then occur on finite coverings of the initial X and X(I).

It follows in Section 2.1 from the work of Weisfeiler [Weis-84] that away from

1We refer the reader to [Ka-00] for general details about hyperbolic geometry.
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finitely many primes the natural inclusion Λ/Λ(I) ↪→ Γ/Γ(I) is onto some large sub-

group2 (Γ/Γ(I))′. In other words, if we choose a set of generators S = {A1, . . . , Ak}

for Λ and consider the Cayley graph HI ≡ H(SΓ(I), (Γ/Γ(I))′) then this graph is

connected. This is the initial strong approximation statement which is to be strength-

ened.

A natural such strengthening is to insist that these graphs be ‘highly con-

nected’, a concept which can be made precise by defining the expansion coefficient of

a k-regular graph H

c(H) = inf

{
|N(W )|
|W |

: |W | < 1

2
|H|

}
(1.4)

where W runs over subsets of the vertex set of H and N(W ) denotes its set of neigh-

bours. The Cayley graphs in question have associated discrete Laplacians which are

neighbour-averaging operators on functions on the vertices. As in [Lu-93] the spectral

theory of these operators is related to the expansion coefficients of the graphs. The

highly-connectedness will then be a property of a family of graphs (in our case HI),

we say that HI are a family of expanders if there exists C real such that

lim inf
|OF /I|→∞

c(HI) ≥ C > 0. (1.5)

Suitably reinterpreted this asserts a spectral gap for the graph Laplacians. It is a fairly

direct consequence3 of Fell’s continuity of induction [F-62] that by passing through rep-

resentation theoretic descriptions of the action of the Laplacians (graph theoretic and

diffeo-geometric), it is sufficient to prove a spectral gap result ‘up above’ to establish

2The kernel of a spinor norm at a finite semi-local ring.
3This argument appears in detail in [Ga-02].
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the expansion property for the Cayley graphs HI . To summarize, the spectral gap

for the manifolds X(I) would imply a connectedness property which naturally goes

beyond strong approximation, hence ‘super-strong’ approximation.

To see the asserted spectral gap, we consider the Laplacian operators ∆X ,

∆X(I), and in particular, their L2 spectra denoted Ω(X), Ω(X(I)) respectively. The

bottom of the spectrum was characterized by Sullivan in [Sul-82], and Lax and Phillips

established a finiteness property in [LP-82]. These results can be summed up as follows.

1.0.1 Theorem (Sullivan, Lax and Phillips) Suppose δ > n/2. The following

hold:

1. The bottom of the L2 spectrum of the Laplacian on X (resp. X(I)) is an

eigenvalue of multiplicity one at λ0 = δ(n− δ).

2. The L2 spectrum in the range [δ(n− δ), n2/4) consists of finitely many discrete

eigenvalues.

The hypothesis of our main theorem will imply δ > n/2.

The Hausdorff dimension of the limit set L(X(I)) is the same for all I, so this

result tells us the bottom of the spectrum at all levels. Moreover any eigenfunction of

∆X lifts to an eigenfunction of ∆X(I) with the same eigenvalue, so by the finiteness

statement in the previous theorem we know that at level I the discrete spectrum of

∆X(I) in (0, n2/4) consists of that of ∆X in addition to finitely many new eigenvalues.

Our main theorem gives an explicit range in which there can be no new eigenvalues

(for I avoiding finitely many primes). Together with the finiteness of the spectrum
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in (0, n2/4) for X and at each of the finitely many excluded levels, this implies the

existence of a spectral gap.

Before stating our main theorem we give some history of the spectral gap.

Our starting point is Selberg’s seminal paper [Se-65] where it is proved

1.0.2 Theorem (Selberg) Let Γ(N) be the principal congruence subgroup of

SL2(Z) at level N , and Γ′ ⊃ Γ(N). Then letting X ′(N) = H2/Γ′ and writing

λ1(X ′(N)) for the first non-zero eigenvalue of ∆X′(N) we have for any N ≥ 1

λ1(X ′(N)) ≥ 3/16. (1.6)

It was conjectured by Selberg at the same time that in fact, with notation as before

λ1(X ′(N)) ≥ 1/4. (1.7)

Selberg’s 3/16 result is no longer the state of the art4, however, the conjectured 1/4

remains unattained. This is a fundamental open problem of modular forms. The

reader can read Sarnak’s notice [Sa-95] for a friendly exposition of the subject, as well

as the notes of Sarnak [Sa-05] for more recent developments.

Theorem 1.0.2 was generalized to three dimensions by Sarnak [Sa-83] where

it was proved that if E is any quadratic imaginary number field and OE the ring of

integers then

λ1(H3/SL2(OE)) ≥ 3/4. (1.8)

4Luo, Rudnick and Sarnak in [LRS-95] proved λ1(X ′(N)) ≥ 171/784 by using properties of GL3

Rankin-Selberg L-functions. Shortly after this Iwaniec [I-96] proved the slightly weaker λ1(X ′(N)) ≥
10/49 by using only the GL2 theory. Kim and Shahidi [KiSh-02] proved λ1(X ′(N)) ≥ 66/289 via
the existence of the functorial symmetric cube for GL2. After some further developments along
these lines (functorial powers) Kim and Sarnak [KiSa-03] proved the current best result, which says
λ1(X ′(N)) ≥ 975/4096.
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The method used there is very much in the spirit of Selberg’s proof of (1.6). It

extends to congruence subgroups of SL2(OE). This was further extended to arbitrary

dimension by Elstrodt, Grunewald and Mennicke [EGM-90] and Cogdell, Li, Piatetski-

Shapiro and Sarnak [CLPS-91] independently. Both these papers prove that if Q is a

quadratic form of signature (1, n+ 1), n > 1, Q isotropic over Q, and Γ a congruence

subgroup of SO0
n+2(Z, Q) then

λ1(Hn+1/Γ) ≥ 2n− 1

4
. (1.9)

Work of Burger and Sarnak [BS-91] gave further progress by allowing one to link the

Laplacian spectrum of conguence hyperbolic manifolds to the automorphic spectrum

of GL2. Together with results of Blomer and Brumley [BB-11] this lifting argument

yields that when G and Γ are as in our setup and Γ(I) is a congruence subgroup,

λ1(Hn+1/Γ(I)) >
25

32

(
n− 25

32

)
. (1.10)

Recently, following the proof of the fundamental lemma by Ngô [N-10] and

the weighted fundamental lemma by Chaudouard and Laumon [CL-10, CL-09], certain

conditional results of Arthur appearing in [A-05] have become fact. Using these results

of Arthur, Bergeron and Clozel proved in [BC-12] the following result on the spectrum

of the Laplacian.

1.0.3 Theorem (Bergeron, Clozel) Let G be a Q-group obtained by restriction of

scalars from a special orthogonal group (split or quasi-split) over a totally real number

field. Additionally suppose that G does not come from a twisted form 3D4 or 6D4 and

that G(R) is the product of SO(n + 1, 1) with a compact group. For any torsion free
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congruence subgroup Γ ⊂ G, the spectrum of the Laplacian on Hn+1/Γ is contained

in the set ⋃
0≤j<n

2

{j(n− j)} ∪

[
n2

4
−
(

1

2
− 1

N2 + 1

)2

,∞

)
, (1.11)

where N = n+ 1 if n is odd and N = n+ 2 if n is even. In particular, when n ≥ 3 we

have the spectral gap result

λ1(Hn+1/Γ) ≥ n− 1. (1.12)

This result feeds our main theorem via the work of Kelmer and Silberman

[KeSi-10] relating the spectral theory to the lattice point count. When n ≥ 3 Theorem

1.0.3 gives the best possible input for our method. When n = 2, we use the lattice

point of Sarnak and Xue [SX-91] which is also the best possible.

The proof of Theorem 1.0.2, for example, relies essentially on the underlying

arithmetic of the modular group SL2(Z) and associated Kloosterman sums5. We

will not have access to such rich arithmetic and will rely on a more robust ‘almost

geometric’ method developed by Sarnak and Xue [SX-91] and extended to the two

dimensional infinite volume case by Gamburd [Ga-02]. Sarnak and Xue proved

1.0.4 Theorem (Sarnak, Xue) Let F be a totally real number field with a fixed

infinite place, and OF the ring of integers of F . Let G be an orthogonal F -subgroup of

GL4 with G(R) ∼= SL2(R) (resp. SL2(C)) at the fixed place and compact at the other

real places. Let Γ be a finite index subgroup of G(F ) ∩GL4(OF ) which is cocompact

5The estimates for Kloosterman sums come from Weil [Weil-48] and appeal to the Riemann hy-
pothesis for curves (also proved by Weil). Iwaniec proved (1.6) in [I-89] using Kloosterman sums but
without relying on Weil’s bound. Gelbart and Jacquet [GJ-78] proved that 3/16 is not attained in
(1.6) by a very different method to that of Selberg.
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in SL2(R) (resp. SL2(C)). Then for large enough prime ideals P ⊂ OF

Ω(Hn+1/Γ(P)) ∩ [0, µ) = Ω(Hn+1/Γ(1)) ∩ [0, µ)

where n = 1 (resp. 2) and µ = 5/36 (resp. 11/36) in the case of SL2(R) (resp.

SL2(C)).

The Sarnak and Xue machine makes use of the fact that if new eigenvalues appear,

they are of high multiplicity. This follows by bounding below the dimension of new

irreducible representations of the factor group Λ/Λ(I). Everything we need in this

direction is contained in Section 2.1. The multiplicities feature in one side of the

trace formula, and the other side of the trace formula can be related to a lattice point

count by choosing the right family of automorphic kernels to trace. We introduce the

necessary kernels and gather some estimates on the lattice point count and spherical

functions in Section 2.3.

In the cocompact case the lattice point count plays against the multiplicity

estimate via the trace formula to give a contradiction when new eigenvalues appear

in a certain range. This is the approach of Sarnak and Xue. However, in the infinite

volume case the trace formula does not hold as is, and must be reinterpreted as an

inequality. Further repairs are needed and these were made by Gamburd in the two

dimensional (H2) case to prove in [Ga-02]

1.0.5 Theorem (Gamburd) Let Λ = 〈A1, . . . , Ak〉 be a finitely generated subgroup

of SL2(Z) with δ > 5/6. Let X(p) = H2/Λ(p). For p large enough

Ω(X(p)) ∩ [δ(1− δ), 5/36) = Ω(X(1)) ∩ [δ(1− δ), 5/36).
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The ‘Collar Lemmas’ in [Ga-02] form a key part of the generalization of Sarnak and

Xue’s method to infinite volume. Roughly speaking, these state that eigenfunctions

corresponding to eigenvalues < 1/4 in X(p) are uniformly bounded through p away

from concentrating near infinity. The methods used to prove these do not obviously

generalize to higher dimensions. The needed generalization is the thrust of this paper

and appears in Section 2.2 as Lemma 2.2.8 along with the prerequisite geometry.

The proof of Lemma 2.2.8 has a nice heuristic as follows. If one considers

classical motion of a particle on a line under a step potential of height V0, and the

conserved energy E is < V0, then the particle will never enter the region covered

by the step. This is due to E = K + V and K ≥ 0. In the quantum mechanical

version of the same system it is no longer true that the stationary wave function is

zero inside the step (quantum tunnelling). However provided E < V0 is bounded

away from V0 we should get uniform bounds through E which say the wave function

cannot be arbitrarily concentrated inside the step. The positive Laplacian ∆X(I)

plays the role of a Schrödinger operator for free dynamics on X(I), the eigenvalues of

∆X(I) corresponding to energy levels. We seek uniform bounds on eigenfunctions with

eigenvalues bounded away from and less than n2/4, which can be thought of as the

escape energy, so that these eigenfunctions are bound states. Given that their energy

is uniformly bounded through I away from escape, they should not concentrate near

infinity. Making formal sense of this argument constitutes the bulk of the proof.

All the machinery is brought together in Section 2.4 to prove the following.
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1.0.6 Theorem (Main Theorem) Let F be a totally real number field with a fixed

infinite place, and OF the ring of integers of F . Let G = SO(Fn+2, q) the closed

F -subgroup of GLn+2 which preserves a quadratic form q defined over F . Assume

G(R) ∼= SO(n+ 1, 1) at the fixed place and compact at the other real places. Let Λ be

a subgroup of G(F ) ∩GLn+2(OF ) with the following properties.

Algebraic Fullness Λ is Zariski-dense in G(C) and the traces of Λ generate OF .

Geometric Regularity The image of Λ at the fixed place is geometrically finite,

orientation preserving and torsion free as an isometry group of Hn+1.

Fractal Fullness The Hausdorff dimension δ of the limit set of Λ is greater than s0
n,

defined

s0
n ≡ n−

2(n− 1)

(n+ 1)(n+ 2)
. (1.13)

Let X(I) = Hn+1/Λ(I) for I an ideal in OF . Then by replacing Λ with a finite index

subgroup if necessary we have for |OF /I| large enough and I coprime to a finite set

of primes

Ω(X(I)) ∩
[
δ(n− δ), s0

n(n− s0
n)
)

= Ω(X(1)) ∩
[
δ(n− δ), s0

n(n− s0
n)
)
. (1.14)

The finite index subgroup of Λ which we may need to pass to is the Λ1 of Section 2.1.

This is not necessary if one assumes that Λ is contained in the kernel of the appropriate

spinor norm. The index of this subgroup has independent bounds which depend on

the number of generators of Λ and the structure of a localization6 (OF )S respectively.

6This localization is given by strong approximation.
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1.0.7 Corollary (Main Corollary) For Λ as before (replace Λ with the finite index

spinor norm kernel if necessary) and δ > s0
n, Ω(X(I)) has a spectral gap. That is to

say, writing λ1(X(I)) for the second smallest eigenvalue of ∆X(I), for |OF /I| large

and I coprime to a finite set of primes

λ1(X(I)) ≥ min
(
λ1(X), s0

n(n− s0
n)
)
.

Some remarks are due before we mention applications. When Λ = Γ we obtain the re-

sult of Clozel [Clo-03] on property (τ), albeit with a weaker bound. For any arithmetic

lattice the Borel Density Theorem [Bor-60] implies Zariski-density, so our result also

applies (when our geometric criteria are met). In this case we obtain the current best

bound for an arbitrary arithmetic lattice in SO(n + 1, 1). This is due to a somewhat

trivial tightening in Lemma 2.1.3 of the arguments in Kelmer and Silberman [KeSi-10]

together with a nontrivial improvement in Lemma 2.1.4. When Λ is of infinite index

our result is entirely new. We show that our result is not vacuous in this case by

constructing eligible Λ in Section 3.

One important application of the spectral gap is the Bourgain-Gamburd-

Sarnak affine linear sieve introduced in [BGS-06], [BGS-10], which we recall now.

1.0.8 Theorem (Bourgain, Gamburd, Sarnak) Let G ⊂ GLn be a connected,

simply connected, absolutely simple algebraic group defined over Q. Let f ∈ Q[G]

be a non-zero non-unit with t irreducible factors in Q[G]. Let Λ be a subgroup of

G(Q) ∩ GLn(Z) finitely generated by a set S. We suppose the pair (Λ, f) has the

following properties.

Algebraic Fullness Λ is Zariski-dense in G.
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No local congruence obstructions For all integer q ≥ 2 there exists x ∈ Λ with

(f(x), q) = 1.

Square free Expansion As q runs through square free integers the Cayley graphs

H(SΛ(q),Λ/Λ(q)) form an expander family.

Then there exists r such that the set of x ∈ Λ such that f(x) has at most r prime

factors is Zariski-dense in G. Moreover the minimal such r is bounded explicitly and

effectively in terms of the spectral gap in the expander family.

This result is given in [BGS-10, Theorem 1.6]. Using tools of additive combinatorics

Bourgain and Gamburd [BG-08] established the expansion property for Zariski-dense

Λ ⊂ SL2(Z) through prime levels. In [BGS-09] the expansion property in SL2(Z) for

Zariski-dense Λ is proved for square free levels, and an equivalence between expansion

in Cayley graphs and the spectral gap for the spaces H2/Λ(q) is given. In case δ(Λ)

is ≤ 1/2 there is no discrete L2 spectrum and the gap has to be interpreted as a pole

free region of the meromorphically continued resolvent (∆H2/Λ(q)− s(1− s))−1. Affine

sieve methods are used to sharply estimate the quantity

|{x ∈ Λ : |x| ≤ T, all the irreducible factors of f have prime evaluation at x}|

using the non-explicit gap. Furthermore (still in [BGS-09]) it is shown that there is

an r such that

|{x ∈ Λ : |x| ≤ T, f(x) has at most r prime factors}| (1.15)

has a good bound below, in particular implying that f(Λ) contains infinitely many

r-almost primes, that is, numbers which are products of at most r primes. This r can
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be determined explicitly using either the value of the L2 spectral gap or the size of the

pole free region of the (continued) resolvent (corresponding to δ > 1/2 and δ ≤ 1/2

respectively).

The explicit gap is utilized in the paper of Kontorovich [Ko-09]. There the

affine sieve theory is applied (with the necessary adaptations) to the function

f(c, d) = c2 + d2

and the orbit O = (0, 1)Γ, for Γ an infinite index, Zariski-dense, finitely generated

subgroup of SL2(Z) with δ(Γ) > 149/150 and containing parabolics. Then using Gam-

burd’s explicit 5/6 gap from [Ga-02], it is proved that f(O) contains infinitely many

25-almost primes. Similar methods are applied (in particular also using Gamburd’s

5/6 gap) by Kontorovich and Oh [KoOh-10] to the Pythagorean orbit O = (3, 4, 5)Γ

for Γ a finitely generated Zariski-dense subgroup of SOQ(Z),

Q(x) = x2 + y2 − z2.

They consider hypotenuse (F (x) = z), area (F (x) = xy/12) and product (F (x) =

xyz/60) functions. The affine linear sieve gives infinitely many R-almost primes in

F (O) for explicit R provided δ(Γ) is large and there are no local congruence obstruc-

tions for the pair (O, F ) (R and δ depend on the function F considered).

Theorem 1.0.6 will yield similar applications via the affine linear sieve.

1.0.1 Notation

Throughout this thesis we use f � g to mean that f ≤ Cg for some constant

C and f ≈ g to mean that g � f � g. If subscripts are present, e.g. �ε, this indicates

13



that the implied constant depends on the subscripts. We view the number field F and

the groups G and Λ as fixed throughout, so all our implied constants possibly depend

on these objects.
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Chapter 2

Proof of the Theorem

2.1 Algebra

2.1.1 Strong Approximation and reduction to prime powers

The aim of this section is to control the factor groups Λ/Λ(I) and their

representation theory. The group Λ/Λ(I) is naturally a subgroup of Γ/Γ(I). In

[Ga-02] the case n = 1 is treated at prime levels. In this case enough is known

about the maximal subgroups of SL2(Fp) to provide an ad hoc proof that outside

of finitely many primes p, Λ/Λ(p) ∼= SL2(Fp). The needed bound on the nontrivial

representations is that of Frobenius.

For us the description of the factor groups will follow from the work of We-

isfeiler [Weis-84]. This describes strong approximation for Zariski-dense subgroups of

algebraic groups which amongst other things are simply connected. We therefore need

to carefully deal with the fact that SO is covered by Spin. The bounds on representa-
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tions at prime levels are due to Seitz and Zalesskii [SZ-93] and at the general level we

use a result of Kelmer and Silberman [KeSi-10] together with an improvement of our

own.

Recall that F is a totally real number field with a fixed infinite place, and

G = SO(Fn+2, q) is the closed F -subgroup of GLn+2 which preserves a quadratic form

q defined over F . We assume G(R) ∼= SO(n + 1, 1) at the fixed place and is compact

at the other real places. The ring of integers of F is OF and Γ = G(F ) ∩GLn+2(OF ).

We drop the dependence on F and simply write O = OF in this section. Then we

take Λ a subgroup of Γ which is Zariski-dense in G(C) and such that the traces of Λ

in the adjoint representation generate OF . The congruence subgroups Γ(I), Λ(I) are

kernels of the reduction map mod I an ideal in O.

Compactness of G(Rv) away from the fixed place implies discreteness of Γ at

the fixed place, by using the isomorphism G(R) ∼= SO(n+ 1, 1) we therefore realize Γ

and Λ as discrete isometry groups of n + 1 dimensional hyperbolic space Hn+1. We

assume that Λ is geometrically finite, hence finitely generated.

As in Weisfeiler [Weis-84, Theorem 1.1] there exists a finite set of primes

S such that G can be given the structure of a group scheme over the localization

OS of O away from S and Λ is contained in GOS (OS). This results from ‘clearing

denominators’ in the definition of q, we take S as in [Weis-84, Theorem 1.1]. We have

then an ‘orthogonal OS-module’ in the sense of Bass [Bass-74] by equipping P = On+2
S

with q : On+2
S → OS , and G = SO(P, q) as a group scheme over OS . Following Bass
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[Bass-74] there is a short exact sequence of group schemes (suppressing q)

1→ µ2 → Spin→ GOS → 1 (2.1)

which is exact in the fppf 1 topology on Spec(OS).

This yields the sequence in cohomology

1→ µ2(OS)→ Spin(OS)→ GOS (OS)→σ H1(Spec(OS), µ2). (2.2)

There is an isomorphism H1(Spec(OS), µ2) ∼= Discr(OS) which converts σ into the

spinor norm SN . The discriminant group Discr(OS) fits into the exact sequence

0→ µ2(OS)→ O∗S →2 O∗S → Discr(OS)→ Pic(OS)→2 Pic(OS), (2.3)

which implies that Discr(OS) is a finite abelian group of exponent 2.

We let Λ̃ denote the preimage of Λ in Spin(OS). The Strong Approximation

theorem of Weisfeiler [Weis-84] then states that there is a finite index subgroup Λ̃0 of

Λ̃ such that the image of Λ̃0 is dense in the group Spin(ÔS), where ÔS is the profinite

completion of OS . In particular for I avoiding S the reduction map

Λ̃0 → Spin(OS/I) ∼= Spin(O/I)

is onto.

By appealing to commutativity of the diagram obtained by reducing the

sequence (2.2) modulo I we get that

Λ/Λ(I) ⊇ Image(φI) = ker (SNI : GOS (O/I)→ Disc(O/I)) , (2.4)

1faithfully flat and finitely presented
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where φI : Spin(O/I) → GOS (O/I) is the covering map of finite groups and SNI is

the spinor norm at I. If Λ/Λ(I) is bigger than the image then there will be nontrivial

representations of Λ/Λ(I) which factor through the quotient (Λ/Λ(I))/Image(φI).

We let

Λ1 = kerSN |Λ (2.5)

be the kernel of the spinor norm restricted to Λ, this is a finite index normal subgroup.

The index [Λ : Λ1] is bounded independently by the size of Discr(OS) and by 2L where

L is the number of generators of Λ. Then we have the precise strong approximation

statement

Λ1/Λ1(I) = ker(SNI) (2.6)

for I avoiding S.

If I has prime factorization

I =

l∏
i=1

Prii

then the group Λ1/Λ1(I) splits as a product

Λ1/Λ1(I) ∼=
l∏

i=1

Λ1/Λ1(Prii ), (2.7)

so that bounds on the size of Λ1/Λ1(I) will follow from bounds at prime power levels

via |Λ1/Λ1(I)| =
∏
i |Λ1/Λ1(Prii )|. Let ρ : Λ1/Λ1(I) → Aut(V ) be a nontrivial irre-

ducible representation of level I, i.e. ρ does not factor through a representation of

Λ1/Λ1(I ′) for any I ′|I, I ′ 6= I. Then ρ is a tensor product of irreducible representa-

tions ρi : Λ1/Λ1(Prii )→ Aut(Vi) which are of level Prii respectively and

dim ρ =
∏
i

dim ρi. (2.8)
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We have now reduced the needed argument to prime power level. We deal with the

prime case first.

2.1.2 Prime case

Writing kP = OF /P for the residue field at P, the previous discussion says

that for P avoiding S we have

Λ1/Λ1(P) =


Ω±(2m, |kP |) if n = 2m− 2 is even

Ω(2m+ 1, |kP |) if n = 2m− 1 is odd.

(2.9)

We recall some facts about these groups from [Suz-82]. If n = 2m− 1 is odd

the commutator subgroup Ω(2m+1, |kP |) is simple and of index 2 in SO(2m+1, |kP |).

If m ≥ 2 and n = 2m− 2 even then there are two special orthogonal groups

SO±(2m, |kP |) and we write Ω±(2m, |kP |) for the commutator subgroup. The center

has size at most two and the central factor group is simple for m ≥ 3. When m = 2

we have split and nonsplit versions

PΩ+(4, |kP |) = PSL2(|kP |)× PSL2(|kP |),

PΩ−(4, |kP |) = PSL2(|kP |2).

The following Lemma gives the needed bounds for prime levels.

2.1.1 Lemma Let ϕ be a nontrivial representation of Λ1/Λ1(P). Then the dimension

of ϕ is bounded below as |kP | → ∞ by

dimϕ� |kP |n−1. (2.10)
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We have for the size of the group Λ1/Λ1(P)

|Λ1/Λ1(P)| ≈ |kP |(n+2)(n+1)/2. (2.11)

Proof By the previous discussion, outside finitely many primes we have Λ1/Λ1(P) ∼=

Ω(±)(n + 2, |kP |). The possible sizes for this group can be found in [Suz-82]. For

n 6= 2, 4 this is a perfect central extension of degree at most 2 of a finite Chevalley

group, and lower bounds for the dimension of a nontrivial representation of such a

group can be found in [SZ-93]. If n = 2 then we have Λ1/Λ1(P) a degree 2 perfect

central extension of PSL2(|kP |) × PSL2(|kP |) or PSL2(|kP |2). At worst we have a

faithful irreducible representation of PSL2(|kP |) contained in ϕ. The needed bound is

then well known. Finally if n = 4, using the accidental isomorphisms ([Suz-82])

PΩ+(6, |kP |) = PSL4(|kP |), PΩ−(6, |kP |) = PSU4(|kP |),

then in either case there is an associated nontrivial projective representation whose

dimension can be bounded by further results tabulated in [SZ-93].

2.1.3 Prime power case

In this section we make use of the work of Weisfeiler [Weis-84] to bound the

size of the group Λ1/Λ1(Pr) and the work of Kelmer and Silberman [KeSi-10] along

with some improvements to bound the dimension of new representations. As we have

Λ1/Λ1(Pr) = kerSNPr any new representation lifts to a nontrivial representation of

the Spin group which we denote H(O/Pr). The level structures are such that the lift

is a new representation of H(O/Pr).
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For i > 0 let H(P i) denote the kernel of the reduction map H(O/Pr) →

H(O/P i), or in other words the congruence subgroup of H(O/Pr) of level P i. Let L

denote the Lie algebra of H. We will use the following Lemma of Weisfeiler.

2.1.2 Lemma ([Weis-84] Lemma 5.2)

1. For i > 0 the H(kP) module H(P i)/H(P i+1) is isomorphic to L(kP)⊗P i/P i+1,

where the action on the first factor is by Ad and the action on the second factor

is trivial.

2. The map (x, y) 7→ [x, y] maps H(P i) ×H(Pj) into H(P i+j) and descends to a

map

H(P i)/H(P i+1)×H(Pj)/H(Pj+1)→ H(P i+j)/H(P i+j+1).

This map is given explicitly by

[x⊗ r, y ⊗ s] = [x, y]⊗ rs

when H(P i)/H(P i+1) is viewed as L(kP)⊗ P i/P i+1 and similarly for j, j + i.

3. If [L(kP), L(kP)] = L(kP) then [H(P), H(P)] = H(P2).

Immediately it follows that H(P i) is abelian for i ≥ r/2 in light of

[H(P i), H(P i)] ⊆ H(P2i) = {1}. Let k = [r/2] be the integral part of r/2. Suppose

that ρ is a new representation of H(O/Pr), i.e. the restriction Res
H(O/Pr)
H(Pr−1)

ρ is not

trivial. The work of Kelmer and Silberman [KeSi-10] can be paraphrased2

2We make a slight improvement here by noting that the proof of [KeSi-10, Proposition 4.4] goes
through when their e is n− 1 for n = 2, 3, 4 in our indexing of n.
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2.1.3 Lemma (Kelmer, Silberman) There is a character χ of H(Pr−k) appearing

in Res
H(O/Pr)
H(Pr−k)

ρ which has nontrivial restriction to H(Pr−1). Moreover for the orbit of

χ under the co-Adjoint action of H(O/Pr) we have

M ≡ |Orbit(H(O/Pr),co−Ad)(χ)| �


|kP |r(n−1) if r = 2k even

|kP |(r−1)(n−1) if r = 2k + 1 odd

(2.12)

and there is an immediate bound below for dim ρ ≥M .

For r = 2k this is the result which we will use. Assume now that r = 2k + 1 and we

will look for the natural strengthening

dim ρ� |kP |r(n−1). (2.13)

As in Lemma 2.1.3 take a character χ which appears in Res
H(O/Pr)
H(Pr−k)

ρ and such that

Res
H(Pr−k)
H(Pr−1)

χ is nontrivial. We recall some of the ingredients of the proof for our own

use. The co-Adjoint action of H(O/Pr) on the unitary dual ̂H(O/Pr−k) descends

to an action of H(O/Pk). Then ̂H(O/Pr−k) is isomorphic to L(O/Pk) via a map

which intertwines the co-Adjoint and adjoint actions. Under this fixed isomorphism

χ is identified with an element X ∈ L(O/Pk) such that X 6= 0 mod P. An orbit-

stabilizer argument then provides enough characters via the Ad-orbit of X. The bound

on the size of the stabilizer is obtained by induction and at each stage the nonzero

reduction XP ∈ L(kP) of X modulo P is all the data which is needed. For an explicit

formulation of the connection between XP and χ0 ≡ Res
H(Pr−k)
H(Pr−1)

χ let Tr denote the

Galois trace Tr : kP → Fp where |kP | = pf for some f . Then after the identification

H(Pr−1) ∼= L(kP) we have for Z ∈ L(kP)

χ(Z) = χ0(Z) = exp

(
2πiTr(B(XP , Z))

p

)
, (2.14)
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where B denotes the nondegenerate Killing form on L(kP).

Let Vχ be the subspace of V (the vector space associated to ρ) upon which

H(Pr−k) acts by χ. As all the Vχ′ for χ′ in the co-Adjoint orbit are isomorphic and

orthogonal, if we can prove the dimension of Vχ is large we get a bound

dimV = dim ρ� dimVχ |Orbit(H(O/Pr),co−Ad)(χ)|. (2.15)

In the next Lemma we utilize a better bound on dimVχ to get an improvement for r

odd on the dimension bound in Lemma 2.1.3 (which is using the trivial dimVχ ≥ 1).

2.1.4 Lemma Let r = 2k + 1 ≥ 3 and ρ a new representation of H(O/Pr). Then

dim ρ� |kP |r(n−1) (2.16)

with implied constant uniform through r and P.

Proof Take χ, Vχ as before. We avoid all finitely many primes P where the char-

acteristic p of kP is ramified in F . By Lemma 2.1.2 H(Pr−k) is in the center of

H(Pk) = H(Pr−k−1) and so H(Pk) preserves Vχ. Let φ0 denote the subrepresenta-

tion of Res
H(O/Pr)
H(Pk)

ρ corresponding to Vχ and choose some irreducible representation

(φ,W ) of H(Pk) appearing in (φ0, Vχ). Our trick is to consider the Hom(W,W ) ∼= φ̄⊗φ

representation of H(Pk). As H(Pr−k) acts as an irreducible character on W it acts

trivially on Hom(W,W ) and so φ̄⊗ φ factors through a representation of the abelian

group H(Pk)/H(Pr−k) which is isomorphic to L(kP) by Lemma 2.1.2. Then φ̄ ⊗ φ

splits as a direct sum of irreducible characters of L(kP)

φ̄⊗ φ ∼=
(dimW )2⊕
i=1

θi. (2.17)
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Similarly to before we can write for each i and Z ∈ L(kP)

θi(Z) = exp

(
2πiTr(B(Yi, Z))

p

)
(2.18)

for uniquely determined Yi ∈ L(kP). Let U = 〈Y1, . . . , Y(dimW )2〉 be the Fp vector

subspace of L(kP) spanned by the Yi. In fact, via composition in Hom(W,W ) any

element of this space is one of the Yi as the θi form an abelian group. Let U⊥ be the

orthogonal subspace to U with respect to Tr(B(•, •)). For v ∈ U⊥ we have θi(v) = 1

for all i and therefore φ̄ ⊗ φ(ṽ) = IdHom(W,W ), where ṽ denotes a lift of v in H(Pk).

The group Gv generated by ṽ and all of H(Pr−k) does not depend on the lift and

is an abelian group by Lemma 2.1.2. Therefore Res
H(Pk)
Gv

φ splits as a direct sum of

irreducible characters. As φ̄⊗ φ(ṽ) is trivial all of these characters must be the same

and therefore φ(ṽ) is a scalar multiple of the identity on W . For any z̃ ∈ H(Pk)

reducing mod H(Pr−k) to z ∈ L(kP) we have for the image of the group commutator

1 = φ([ṽ, z̃]Grp) = φ([v, z]Lie), (2.19)

where [v, z]Lie is viewed as an element of H(Pr−1) by Lemma 2.1.2. Moreover

φ([ṽ, z̃]) = χ0([v, z]) = exp

(
2πiTr(B(XP , [v, z]))

p

)

in the notation from our previous discussion so in particular

Tr(B(XP , [v, z])) = 0 (2.20)

for all z ∈ L(kP), or what is the same by ad-invariance of the Killing form

Tr(B([v,XP ], z)) = 0. (2.21)
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By nondegeneracy it follows that [v,XP ] = 0, i.e. v is in the centralizer CL(kP )(XP).

As in [KeSi-10] we have3

dimkP CL(kP )(XP) ≤ dimkP L(kP)− 2(n− 1) (2.22)

and as we have shown U⊥ ⊆ CL(kP )(XP) it follows that

dimFp U
⊥ ≤ dimFp CL(kP )(XP) = f dimkP CL(kP )(XP)

≤ f(dimkP L(kP)− 2(n− 1))

= dimFp L(kP)− 2f(n− 1)

where f is the inertia degree. Then immediately dimFp U ≥ 2f(n− 1) so that

dimW ≥
√

# of Yi =

√
|Fp|dimFp U ≥

√
|Fp|2f(n−1) = |kP |n−1. (2.23)

Finally W is a subspace of Vχ and as we remarked before we have the bound

dim ρ ≥ dimVχ|Orbit(H(O/Pr),co−Ad)(χ)| ≥ dimW |Orbit(H(O/Pr),co−Ad)(χ)|. (2.24)

Inserting the bound from Lemma 2.1.3 on the size of the orbit together with the bound

in (2.23) gives us the desired result

dim ρ� |kP |n−1|kP |(r−1)(n−1) = |kP |r(n−1). (2.25)

We remark that the idea of this proof should hold in the more general setting

of Lemma 2.1.2, provided centralizer bounds analogous to (2.22) can be obtained.

3This inequality is the key to the inductive step of the proof of Lemma 2.1.3, so it is fitting that it
is also the ingredient here.
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2.1.4 General result

Now we have all that is required for the main result of this section.

2.1.5 Lemma If

I =
l∏

i=1

Prii (2.26)

is the prime factorization of I an ideal in OF , then for the size of the group Λ1/Λ1(I)

we have

|Λ1/Λ1(I)| ≈
l∏

i=1

|kPi |ri(n+1)(n+2)/2 = |OF /I|(n+1)(n+2)/2. (2.27)

Any representation ρ of Λ1/Λ1(I) of level I has dimension

dim ρ�
l∏

i=1

|kPi |ri(n−1) = |OF /I|n−1. (2.28)

Proof For the size of the group it is sufficient to give the size of each of the Λ1/Λ1(Prii )

by (2.7). This is obtained from the bound at prime level in Lemma 2.1.1 together with

Lemma 2.1.2 which gives the size of the factor H(Pji )/H(Pj+1
i ) as |kPi |(n+2)(n+1)/2 =

|L(kPi)|. The bound on the dimension of ρ follows from the discussion leading up to

(2.8) together with the bounds obtained at prime level in Lemma 2.1.1, at even power

of prime level in Lemma 2.1.3 and at odd power of prime level in Lemma 2.1.4.

2.2 Eigenfunction Estimates

2.2.1 The geometry near infinity

Recall that we are considering geometrically finite, torsion free and orienta-

tion preserving subgroups Λ,Λ(I) of Isom+(Hn+1) (here we replace Λ with the Λ1 of
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the previous section if necessary). The geometry of the quotients X(I) = Hn+1/Λ(I)

is well understood, although less is usually said about the nature of the covering maps

πI : X(I) → X. We aim in this section to describe the geometry of the covering

maps near infinity. A good description of the geometry at a fixed level can be found in

the paper of Mazzeo and Phillips [MP-90]. We follow the notation of [Gu-09], where

Guillarmou considers slightly less general spaces (with finite holonomy in the cusps)

but provides very useful analytic lemmas which can be extended to our case without

difficulty.

The space Hn+1 has a natural compactification by adding a sphere at infinity

Sn∞. The action of Λ on Hn+1 extends to the sphere. If o is a point in Hn+1 then

the orbit Λo accumulates on a subset of the boundary denoted L(Λ), the limit set of

Λ (that this set is independent of o is a general property of nonpositive curvature).

The complement Sn∞ − L(Λ) is called the domain of discontinuity. It follows that Λ

acts discretely and properly discontinuously on the domain of discontinuity. As Λ is

geometrically finite it has a Dirichlet fundamental domain F in Hn+1 which is finitely

faced by totally geodesic hypersurfaces. If Λ is infinite index in Γ then this fundamental

domain necessarily extends to the boundary, and the bounding hypersurfaces meet the

boundary in subsets of n − 1 dimensional spheres. Similar statements hold for Λ(I),

in particular a fundamental domain FI for Λ(I) is paved by images of F under coset

representatives of Λ/Λ(I).

The elements of Γ can be classified by their fixed points on the boundary.

Either γ fixes two points on the boundary and the geodesic between these two points,
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in which case it is called hyperbolic, or γ has one fixed point and acts by Euclidean

motions on horospheres tangent to this point. In the latter case γ is called parabolic.

Away from parabolic fixed points, the region where F meets the boundary

can be covered by finitely many charts isometric to regions

Mr = {(x, y) ∈ (0,∞)× Rn ; x2 + |y|2 < 1}, (2.29)

gr = x−2(dx2 + dy2),

which we call regular neighbourhoods. These can be chosen sufficiently small so that

they project isometrically to the quotient X. The pulled back charts cover a cor-

responding region in X(I). The remaining neighbourhoods are near parabolic fixed

points. Suppose that∞ in the upper half space model is the fixed point of a parabolic

element, by conjugating if necessary. Let Λ∞ consist of all elements of Λ with this

fixed point. This group is purely parabolic by discreteness and can be thought of as

acting as Euclidean isometries on any horosphere, which is isomorphic to Rn. Some

of the facts which follow come from the theory of Bieberbach groups for which the

reader can consult the notes of Thurston [T-97].

Following [MP-90], the group Λ∞ contains a maximal normal free abelian

subgroup Λa of finite index. We define the rank k of the cusp at ∞ to be the rank of

Λa. There exists a maximal affine subspace Rk ⊂ Rn fixed by Λ∞. The subgroup Λa

acts on this space by translations and the quotient Fk ≡ Rn/Λ∞ is the total space of

a flat vector bundle of rank n− k over a compact flat base manifold Bk. This Bk can

realized concretely as Rk/Γ∞. It is covered by a flat k-torus T k = Rk/Λa by the usual

Galois correspondence, the covering map coming from the map of flat vector bundles
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F̃k ≡ Rn/Λa → Rn/Λ∞ restricted to the zero section. We use y for a local coordinate

in the fibre coming from Rn−k, and z for a coordinate on Bk coming from the covering

Rk → Rk/Λ∞. To cover the regions at infinity in X which come from parabolic fixed

points we can use charts isometric to rank k cuspidal neighbourhoods

Mk = {(x, [y, z]) ∈ (0,∞)× Fk ; x2 + |y|2 > 1}, (2.30)

gk = x−2(dx2 + dy2 + dz2),

where we are writing [y, z] for local trivializing coordinates. The quadratic differential

dz2 refers to a flat metric on Bk. Note also that |y|2 is a well defined function, as

changing trivialization affects an orthogonal transformation on y and similarly dy2 is

defined independently of trivialization. In general there are finitely many cusps of each

rank but to simplify the discussion we assume that there is only one neighbourhood

of each cuspidal type Mk. We drop the isometries which identify the sets in X with

the model neighbourhoods and think of the Mr, Mk as sets in X. It can be arranged

so that all the cuspidal neighbourhoods are disjoint.

We consider now the covering maps πI : XI → X. If q is a parabolic fixed

point of Λ with stabilizer Λq then Λq ∩ Γ(I) also fixes this point and is the stabilizer

in Λ(I), i.e. Λ(I)q = Λq ∩ Γ(I). In addition, Λa ∩ Γ(I) is the maximal normal free

abelian subgroup Λ(I)a in Λ(I)q. There is then a map of flat rank n−k vector bundles

Fk,I ≡ Rn/Λ(I)q → Fk which when restricted to the zero section gives a covering map

of flat compact manifolds Bk,I ≡ Rk/Λ(I)q → Bk. If one considers the images of F

under coset representatives of Λ/Λ(I) one sees that π−1
I (Mk) is isometric to a disjoint
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union of isometric cuspidal neighbourhoods

π−1
I (Mk) ∼=

mk,I∐
i=1

Mk,I (2.31)

where

Mk,I = {(x, [y, z]) ∈ (0,∞)× Fk,I ; x2 + |y|2 > 1}, (2.32)

gk = x−2(dx2 + dy2 + dz2),

and as before, y and z refer to trivializing coordinates for the flat vector bundle. If

lk,I is the degree of the covering of base manifolds Bk,I → Bk then we have mk,I lk,I =

|Λ/Λ(I)|, the degree of the covering map πI . As we will work with the covering tori

T kI ≡ Rk/Λ(I)a → Tk it is salient to note that the obvious diagram of covering maps

involving the tori T kI , T k and base manifolds Bk,I , BI is commutative. The covering

map at Mk can be given explicitly with respect to these neighbourhoods, indeed it is

directly induced by the map Fk,I → Fk so that the x coordinate is preserved. As for

the regular neighbourhoods, it can be arranged so that the preimage π−1
I (Mr) of each

individual Mr is isometric to |Λ/Λ(I)| disjoint copies of Mr. Then the covering map

in each disjoint copy is given by the identity with respect to these charts.

Now we seek compactification coordinates for these charts. The transforma-

tion defined locally and which only affects the coordinate in R+ and in the fibre

(x, [y, z]) 7→ (t, [u, z]) =

(
x

x2 + |y|2
, [

−y
x2 + |y|2

, z]

)
(2.33)

actually (by flatness) gives a diffeomorphism from (Mk, gk) to

{(t, [u, z]) ∈ (0,∞)× Fk ; t2 + |u|2 < 1}.
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The pushed forward metric is

t−2(dt2 + du2 + (t2 + |u|2)2dz2). (2.34)

These coordinates allow the chartsMk to be smoothly compactified by adding a {t = 0}

portion to form M̄k. The charts Mr also naturally compactify by adding a {x = 0}

part and all these boundary pieces join together to give a smooth boundary δX̄ to X.

The compactification of X is denoted X̄, this has the structure of a smooth compact

manifold with boundary δX̄. A similar procedure takes place to smoothly compactify

X(I) to X̄(I). For each Mk there is a cusp submanifold isomorphic to Bk of δX̄

corresponding to the zero section of Fk at t = 0. The cusp submanifold of δX̄ coming

from Mk is denoted bk and we define

B ≡ δX̄ −
n∐
k=1

bk. (2.35)

Following the same procedure at level I we get a regular boundary part B(I) which

naturally covers B. A collar neighbourhood of the boundary could now be expected

by Milnor’s Collar Neighbourhood Lemma [Mi-65]; the following proposition gives us

some fine control over the geometry in such a neighbourhood.

2.2.1 Proposition In some collar neighbourhood (0, ε)ρ × δX̄ of δX̄ the hyperbolic

metric is given by

g =
dρ2 + h(ρ)

ρ2
(2.36)

for some smooth family of symmetric tensors h(ρ) on δX̄, depending smoothly on ρ,

positive for ρ > 0 with h(0) = h0 positive on B and satisfying

h(ρ) = du2 + (ρ2 + |u|2)2dz2
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in each M̄k. Moreover ρ = t in M̄k.

This appears as a discussion in [Gu-09]. It extends to include maximal rank cusps by

interpreting the u variable as absent. Also, Guillarmou is only considering the case of

rational cusps, but the proof goes through in our slightly more general case as it only

relies on a PDE being non-characteristic away from the cusps.

The boundary defining function ρ lifts from X to X(I). By our previous

remarks on the nature of the covering maps in local charts, by making ε small enough

so ρ−1((0, ε)) does not escape any of the local charts we can use the same ε for all

I. The metric provided also lifts to the collar neighbourhood (0, ε)π∗Iρ × δX̄(I). By

examining the covering map in the cuspidal regions we get an exact form for the metric

at each level I.

2.2.2 Bounds below in the cusps

Here we examine the cuspidal regions near infinity. There the metric is exact

and we can get an exact result. In the local [u, z] coordinates corresponding to the

boundary part in M̄k, define the product regions Nk(R) = (0, 1/R)×{|u|2 < 3/4}, and

Nk,I(R) = π−1
I (Nk(R)). In the maximal rank cusp Nn(R) = (0, 1/R)×Bn. Note that

by choosing R0 large enough, we can assume that for all R > R0, Nk(R) ⊂ M̄k (hence

the corresponding result at level I), and we make this increase for R0 immediately if

necessary, and consider R > R0.

We separate into two cases depending on whether the holonomy representa-
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tion

h : π1(T k)→ O(n− k) (2.37)

has finite image. If it does then we can pass to a finite locally isometric covering

f : (T k, f∗dz2) → (Bk, dz
2) such that f∗Fk is trivial. The torus T k is the quotient

Rk/ ker(h). Moreover the holonomy representation of T kI is the restriction to a smaller

group so remains finite at all levels. The reader can also note that the finite holonomy

property is always satisfied for n = 2. We cover finite holonomy in the following

Lemma.

2.2.2 Lemma If the holonomy representation of T k has finite image then

∆X(I)|C∞0 (Nk,I(R))≥ n2/4. (2.38)

Proof First we make a lifting argument to simplify the case. Let φ ∈ C∞0 (Nk,I(R)).

We lift φ to a region covering Nk,I(R)

Nk,I(R) ≡ {(t, u, z) ∈ (0, 1/R)× Rn−k × T kI : |u|2 < 3/4}

equipped with the pulled back metric via 1× f . Then note

〈∆
Nk,I(R)

(1× f)∗φ, (1× f)∗φ〉
Nk,I(R)

= |h(π1(T kI ))| × 〈∆Nk,I(R)φ, φ〉Nk,I(R),

‖(1× f)∗φ‖2
Nk,I(R)

= |h(π1(T kI ))| × ‖φ‖2Nk,I(R),

and (1 × f)∗φ ∈ C∞0 (Nk,I(R)) so it is sufficient to prove the result when the cross

section is a trivial bundle over a torus. Then assume that Fk,I ∼= Rn−k × T kI , so that

Nk,I(R) = {(t, u, z) ∈ (0, 1/R)× Rn−k × T kI : |u|2 < 3/4}.
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Now we introduce the change of coordinates t = e−τ , and then conjugate the Lapla-

cian by the function |g|1/4 = enτ/2(e−2τ + |u|2)k/2. Clearly φ 7→ |g|1/4φ preserves

C∞0 (Nk,I(R)). The conjugated Laplacian acts on the L2 space defined by the volume

element dτ ∧ du ∧ dz. One has for L = |g|1/4∆|g|−1/4 in coordinates (τ, u, z)

L = −∂2
τ + e−2τ∆Euclidean

u +
e−2τ

(e−2τ + |u|2)2
∆FlatToroidal
z +

n2

4
. (2.39)

The main part of this calculation appears in [Gu-09, eq. 5.2]. This completes the

proof as the first 3 terms can be easily verified nonnegative on C∞0 (Nk,I(R)) with the

product measure.

As remarked before the reader can skip the next Lemma if they are interested

only in the case n = 2. For the remaining cases the idea is that functions on a flat

bundle with nondiscrete holonomy are equivalent to functions on a bundle with discrete

holonomy where the previous Lemma can be applied. Moreover we can find finite

holonomy bundles ‘arbitrarily close’ to the original, and the action of the Laplacian

is continuous in some sense with respect to this approximation. This perturbation

argument is due to Mazzeo and Phillips as they use it in [MP-90, Lemma 5.12].

2.2.3 Lemma In any cuspidal neighbourhood Nk,I(R),

∆X(I)|C∞0 (Nk,I(R))≥ n2/4. (2.40)

Proof We assume now that the holonomy representation has infinite image, or we are

done by Lemma 2.2.2. We drop the I dependence which does not matter as we only

deal with one level at a time. By the same lifting argument as before it is sufficient
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to consider the case when Bk = T k so the cross section is a flat bundle Fk over a

torus. Then conjugating the parabolic fixed point to ∞ in the upper half space model

{(x, u, z) ∈ R+×Rn−k ×Rk} we have Λ∞ = Λa = π1(T k) a free abelian group of rank

k and preserving the Euclidean horosphere {x = 1} which we take as a cover. The

image of the holonomy representation is commutative so each element in the image

has the same invariant subspaces. For simplicity we proceed as though n = 3 and

k = 1, so that π1(T 1) is infinite cyclic with generator γ. By hypothesis (and further

conjugating if necessary) γ acts on the plane {(x, u, z) ∈ R+ × R2 × R : x = 1} by

γ : (u, z) 7→


 cos θ sin θ

− sin θ cos θ

u, z + 1


with θ irrational. We consider the perturbing map

pη : (u, z) 7→


 cos(ηz) sin(ηz)

− sin(ηz) cos(ηz)

u, z


where η + θ is rational and η will be chosen arbitrarily small in what follows. We

compute

pηγp
−1
η (u, z) =


 cos(θ + η) sin(θ + η)

− sin(θ + η) cos(θ + η)

u, z + 1

 .

This implies pη descends to a bundle isomorphism from Fk → F ηk where F ηk is the total

space of a bundle over T 1 with rational holonomy. It also induces a map (also denoted

pη) to a new cuspidal region Nη
k (R) in the obvious way. Now take φ ∈ C∞0 (Nk(R)).
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It is not hard to show4 that

〈∆Nη
k (R)pη∗φ, pη∗φ〉L2(Nη

k (R)) = 〈p∗η∆Nη
k (R)pη∗φ, φ〉L2(Nk(R)) → 〈∆Nk(R)φ, φ〉L2(Nk(R))

(2.41)

as η → 0. We have also

〈∆Nη
k (R)pη∗φ, pη∗φ〉L2(Nη

k (R)) ≥ n2/4‖pη∗φ‖2L2(Nη
k )(R) = n2/4‖φ‖2L2(Nk(R))

by Lemma 2.2.2. Then choosing a sequence of ηi → 0 with θ+ ηi rational in equation

(2.41) we have

〈∆Nk(R)φ, φ〉L2(Nk(R)) ≥ n2/4‖φ‖2L2(Nk(R))

which is the required bound below. The same idea works in the general case with more

‘perturbation directions’.

2.2.3 Bounds below in regular neighbourhoods

Let B0 ⊂ δX̄ be the compact manifold with boundary

B0 = δX̄ −
n−1⋃
k=1

{(u, z) ∈ δM̄k : |u|2 < 1/4}, (2.42)

δB0 =
n−1⋃
k=1

{(u, z) ∈ δM̄k : |u|2 = 1/4}.

By Proposition 2.2.1, after the change of coordinates ρ = e−τ the hyperbolic metric

on π−1
I ((0, 1/R)×B0) is of the form

g = dτ2 + e2τπ∗Iγ(τ).

4Something very similar appears in the proof of [MP-90, Lemma 5.12].
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Here γ(τ) = h(e−τ ) with h as in Proposition 2.2.1. The Laplacian on π−1
I ((logR,∞)τ×

B0) takes the form (as in [Gu-09, eq. 5.1])

∆X(I) = −∂2
τ − n∂τ −

1

2
π∗I
(
Tr(γ−1(τ).∂τγ)

)
∂τ + e−2τ∆π∗Iγ(τ). (2.43)

Our next Lemma prepares the way by giving the Laplacian on π−1
I ((logR,∞)τ ×B0)

as a ‘polynomial’ in ∂τ and ∇π∗Iγ(0).

2.2.4 Lemma The Laplacian on π−1
I ((logR,∞)τ ×B0) can be written

∆X(I) = −∂2
τ − n∂τ + e−2τ∆π∗Iγ(0) (2.44)

e−τ (π∗If)∂τ + e−3τ
(
π∗Ia.∇π∗Iγ(0) + divπ∗Iγ(0).π

∗
Ib.∇π∗Iγ(0)

)
,

where f (resp. a, resp. b) is a smooth bounded function (resp. one form, resp.

endomorphism of the tangent bundle) on (logR,∞)τ ×B0.

Proof By the smoothness of the family of metrics h(ρ), we can write

γ−1(τ) = (1 + e−τ b)γ−1(0), (2.45)

|γ(τ)|1/2 = (1 + e−τ c)|γ(0)|1/2, (2.46)

|γ(τ)|−1/2 = (1 + e−τ c̃)|γ(0)|−1/2, (2.47)

with (by multiplying (2.46) and (2.47))

c+ c̃+ e−τ cc̃ ≡ 0. (2.48)

The quantities b, c and c̃ are smooth bounded 2-tensors and functions respectively on

(logR,∞)τ×B0. It follows from the compactness of B0 that any fixed finite number of

37



derivatives of b, c and c̃ are smooth and bounded on (logR,∞)τ ×B0. The analogous

statements hold for π∗Iγ(τ) by replacing b, c and c̃ with their lifts.

We calculate that, using (2.46) and (2.47) and writing d for the exterior

derivative on B0,

divγ(τ) = divγ(0) + e−τ (1 + e−τ c̃)d(c)

+ e−τ (c+ c̃+ e−τ cc̃)divγ(0)

= divγ(0) + e−τω, (2.49)

where the term on the second line vanished due to (2.48) and ω is a smooth bounded

one form on (logR,∞)τ ×B0 (we use boundedness of derivatives of c here). By (2.45),

∇γ(τ) = ∇γ(0) + e−τ b.∇γ(0). (2.50)

Now using that

∆γ(τ) = divγ(τ).∇γ(τ) (2.51)

our previous formulae (2.49) and (2.50) give

∆γ(τ) =
(
divγ(0) + e−τω

)
.
(
∇γ(0) + e−τ b.∇γ(0)

)
(2.52)

= ∆γ(0) + e−τω.
(
1 + e−τ b

)
.∇γ(0) + e−τdivγ(0).b.∇γ(0) (2.53)

= ∆γ(0) + e−τ
(
a.∇γ(0) + divγ(0).b.∇γ(0)

)
, (2.54)

where a (resp. b) is a smooth bounded one form (resp. endomorphism of the tangent

bundle) on (logR,∞)τ × B0. To get the analogous result at level I we can repeat

the argument and note that all the quantities which appear are the lifts of their
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counterparts in the previous discussion. This yields

∆π∗Iγ(τ) = ∆π∗Iγ(0) + e−τ
(
π∗Ia.∇π∗Iγ(0) + divπ∗Iγ(0).π

∗
Ib.∇π∗Iγ(0)

)
. (2.55)

Similar arguments show that

−1

2
π∗I
(
Tr(γ−1(τ).∂τγ)

)
= e−τπ∗If (2.56)

where f is a smooth bounded function. Substituting (2.55) and (2.56) into (2.43) gives

the desired expression (2.44).

To proceed, we conjugate the Laplacian by the function

GI ≡ π∗I(|g|/|γ(0)|)1/4

so as to act on the product space associated to the volume element dτ ∧ µπ∗Iγ(0). The

conjugated Laplacian

L(I;R) : C∞0 (π−1
I ((logR,∞)×B0))→ C∞0 (π−1

I ((logR,∞)×B0))

L(I;R) ≡ GI∆X(I)G
−1
I

takes the form

L(I;R) = L0(I;R) + E(I;R) (2.57)

where

L0(I;R) = −∂2
τ + e−2τ∆π∗Iγ(0) + n2/4. (2.58)

The operator ∆γ(0) refers to the Laplacian on (B0, γ(0)) with Dirichlet boundary

conditions. In the next Lemma we compute the error term E(I;R).
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2.2.5 Lemma In the region π−1
I ((logR,∞)τ × B0) the error term E(I;R) is given

by

E(I;R) = e−τAI∂τ + e−3τBI .∇π∗Iγ(0) + e−3τdivπ∗Iγ(0).CI .∇π∗Iγ(0) + e−τDI (2.59)

where AI and DI are I-uniformly bounded functions, BI is an I-uniformly bounded

one form, and CI is an I-uniformly bounded endomorphism of the tangent bundle.

Proof Our starting point is equation (2.44). We will compute E((1);R) at full level

and compare the calculation to that of general level. Throughout this calculation we

will accumulate error terms, we will always use Ei to denote a smooth bounded function

on (logR,∞)×B0 and Ωi to denote a smooth bounded one form on (logR,∞)×B0.

We write G = G(1) and note

G = e
n
2
τ (1 + e−τJ), (2.60)

and

G−1 = e−
n
2
τ (1 + e−τJ ′), (2.61)

where J, J ′ ∈ C∞((logR,∞) × B0) have bounded derivatives. We will conjugate the

terms in equation (2.44) in turn. Firstly we calculate

G
(
−∂2

τ − n∂τ
)
G−1 = −∂2

τ −
(
n+ 2G∂τ (G−1)

)
∂τ−G

(
∂2
τ (G−1) + n∂τ (G−1)

)
. (2.62)

From (2.61) we can write

∂τ (G−1) = −n
2
G−1 + e−(n

2
+1)τ

(
∂τJ

′ − J ′
)
. (2.63)

and taking another derivative gives

∂2
τ (G−1) =

n2

4
G−1 + e−(n

2
+1)τ

(
∂2
τJ
′ − (n+ 2)∂τJ

′ + (n+ 1)J ′
)
. (2.64)
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Using (2.63) and (2.64) in (2.62) gives

G
(
−∂2

τ − n∂τ
)
G−1 = −∂2

τ − 2Ge−(n
2

+1)
(
∂τJ

′ − J ′
)
∂τ

+
n2

4
−Ge−(n

2
+1)τ

(
∂2
τJ
′ − 2∂τJ

′ + J ′
)
.

This can be written

G
(
−∂2

τ − n∂τ
)
G−1 = −∂2

τ +
n2

4
+ e−τE1∂τ + e−τE2, (2.65)

where boundedness of E1 and E2 follows from boundedness of derivatives of J ′. Sim-

ilarly the ‘f ’ term in (2.44) after conjugation becomes

G
(
e−τf∂τ

)
G−1 = e−τE3∂τ + e−τE4. (2.66)

Therefore the contribution to the conjugated Laplacian from terms with τ derivatives

is

G

(
−∂2

τ − n∂τ −
1

2
e−τf∂τ

)
G−1 = −∂2

τ +
n2

4
+ e−τE5∂τ + e−τE6. (2.67)

Now we calculate

G
(
e−2τ∆γ(0)

)
G−1 = e−2τ∆γ(0) + e−3τ (1 + e−τJ)

(
2(∇γ(0)J

′).∇γ(0) + ∆γ(0)(J
′)
)

(2.68)

= e−2τ∆γ(0) + e−3τΩ1.∇γ(0) + e−3τE7,

and

G
(
e−3τa.∇γ(0)

)
G−1 = e−3τa.∇γ(0) + e−4τ (1 + e−τJ)a.(∇γ(0)J

′) (2.69)

= e−3τΩ2.∇γ(0) + e−4τE8.
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The final term becomes after conjugation

G
(
e−3τdivγ(0).b.∇γ(0)

)
G−1 = e−3τdivγ(0).b.∇γ(0) + e−4τ (1 + e−τJ)(∇γ(0)J

′).b.∇γ(0)

(2.70)

+ e−4τ (1 + e−τJ)(b.∇γ(0)J
′).∇γ(0)

+ e−4τ (1 + e−τJ)divγ(0).b.(∇γ(0)J
′)

= e−3τdivγ(0).b.∇γ(0) + e−4τΩ3.∇γ(0) + e−4τE9.

In total therefore we have

L((1), R) = G∆XG
−1 = −∂2

τ +
n2

4
+ e−2τ∆γ(0) (2.71)

+ e−τA∂τ + e−3τB.∇π∗Iγ(0)

+ e−3τdivπ∗Iγ(0).C.∇π∗Iγ(0) + e−τD

for smooth bounded A, B, C and D. The result at a general level I holds with A

replaced with AI ≡ π∗I(A) and similarly for B, C and D: this follows by repeating

the calculation and noting that all the inputs are lifts from level (1). The output error

terms are then also lifts and the I-uniform bounds follow.

The following Lemma claims that the errors at each level I can be treated as

perturbations simultaneously, by decreasing the size of the neighbourhood at infinity

if necessary. A similar Lemma appears in [P-87, Lemma 4.1].

2.2.6 Lemma For all ε > 0, we can choose R0 = R0(ε) large enough so that for all

R > R0, and all f ∈ C∞0 (π−1
I ((logR,∞)τ ×B0)),

|〈E(I;R)f, f〉| < ε|〈L0(I;R)f, f〉|. (2.72)
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Proof The proof will follow from the identity on C∞0 (π−1
I ((logR,∞)τ ×B0))

〈L0(I;R)f, f〉 = ‖∂τf‖2 + ‖e−τ∇π∗Iγ(0)f‖2 + n2/4‖f‖2. (2.73)

From Lemma 2.2.5, E(I;R) can be written

E(I;R) = e−τAI∂τ + e−3τBI .∇π∗Iγ(0) + e−3τdivπ∗Iγ(0).CI .∇π∗Iγ(0) + e−τDI ,

with AI , DI , I-uniformly bounded functions, BI a vector field with I-uniform bound

and CI representing an endomorphism of the tangent bundle. The norm of CI is

I-uniformly bounded when considered as a function. Each of the terms occurring in

〈E(I;R)f, f〉 can be controlled by (2.73), e.g.

|〈e−3τdivπ∗Iγ(0).CI .∇π∗Iγ(0)f, f〉| = |〈(e−τCI).e−τ∇π∗Iγ(0)f, e
−τ∇π∗Iγ(0)f〉|

≤ ‖(e−τCI).e−τ∇π∗Iγ(0)f‖‖e−τ∇π∗Iγ(0)f‖

≤ ‖e−τCI‖op ‖e−τ∇π∗Iγ(0)f‖2

≤ ‖e−τCI‖op〈L0(I;R)f, f〉

≤ 1

R0
‖CI‖op〈L0(I;R)f, f〉,

and ‖CI‖op is uniformly bounded so by increasing R0 we can sufficiently control the

size of this term. The other terms in 〈E(I;R)f, f〉 are estimated similarly.

2.2.7 Lemma For any η > 0 we can choose R0 = R0(η) large enough so that for all

R > R0

∆X(I)|C∞0 (π−1
I ((0,1/R)×B0))> n2/4− η (2.74)

uniformly through I.
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Proof By Lemma 2.2.6 we can choose R0(η) so that

|〈E(I;R)f, f〉| < 4η

n2
|〈L0(I;R)f, f〉|. (2.75)

The first two terms in (2.58) are nonnegative and so we have L0(I;R) ≥ n2/4. Then

〈L(I;R)f, f〉 = 〈L0(I;R)f, f〉+ 〈E(I;R)f, f〉

> (1− 4η/n2)〈L0(I;R)f, f〉

> (n2/4− η)〈f, f〉,

which gives the result.

2.2.4 Eigenfunction estimates

Let χ : (0,∞)→ [0, 1] be a smooth cutoff function such that

χ(t) =


1 if t ≤ 1/2,

0 if t ≥ 1,

and such that (1− χ2)1/2 is also smooth. Then let χk, k = 1, . . . , n be a set of cutoff

functions defined locally on δX̄ such that in the boundary coordinates corresponding

to M̄k

χk(u, z) = χ(
3

2
|u|2), k < n

χn(z) ≡ 1

and extended by zero to the rest of the boundary δX̄. Also define scaled versions of

the cutoff

χR(ρ) = χ(Rρ) (2.76)
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which localizes to smaller regions as R →∞. For R > R0 large enough view χR as a

function of ρ on the collar neighbourhood of infinity (0, ε)ρ × δX̄, and extend by zero

to a function on the whole of X. Define for notational convenience

χ0 ≡ (1−
n∑
k=1

χ2
k)

1/2, (2.77)

χR,i,∞ ≡ χRχi, i = 0, 1, . . . , n, (2.78)

χR,K ≡ (1− χ2
R)1/2. (2.79)

Then the functions

χR,K , χR,i,∞, i = 0, . . . , n

form an R parameterized partition of unity for X in the sense of [CFKS-87, Definition

3.1]. In particular they are appropriate for application of the IMS localization formula

which first appeared explicitly in [Si-82]. Moreover the functions

π∗IχR,K , π
∗
IχR,i,∞, i = 0, . . . , n

form an R parameterized partition of unity for X(I). Let K(R) = X − ρ−1(0, 1/2R).

This is a compact core for X as it is isolated from the boundary.

The bounding below in Lemmas 2.2.3 and 2.2.7 relied on the localized func-

tions being compactly supported. In order for this to be the case we use an approxi-

mation argument following from the well known fact that on a complete Riemannian

manifold (M, g), the smooth compactly supported functions C∞0 (M) are a core for the

Laplacian ∆g. In other words C∞0 (M) is dense in L2(M) with respect to the graph

norm

‖f‖Γ(∆g) ≡
√
‖f‖2

L2(M)
+ ‖∆gf‖2L2(M)

. (2.80)
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This result can be found in the paper of Chernoff [Ch-73]. Now we state and prove

the key Lemma.

2.2.8 Lemma (Eigenfunction estimates) For any ε > 0, there exists an R = R(ε)

and a constant C = C(ε) > 0 such that if φ is a normalized eigenfunction of the

Laplacian on X(I) with eigenvalue s(n− s) ∈ [δ(n− δ), n2/4− ε] then

∫
π−1
I (K(R))

|φ|2dX(I) ≥ C > 0, (2.81)

uniformly through I.

Proof Suppose that φ is a normalized eigenfunction of ∆I on X(I) with exceptional

eigenvalue s(n− s) ≤ n2/4− ε, i.e.

∆Iφ = s(n− s)φ, ‖φ‖L2(X(I)) = 1.

The IMS localization formula (see [CFKS-87, Theorem 3.2] or [Si-82]) tells us how

to relate global quantities to local quantities. Using this with the partition of unity

π∗IχR,K , π∗IχR,i,∞ for the quantity 〈∆Iφ, φ〉 = s(n− s) we have

s(n− s) = 〈∆I(π∗IχR,K)φ, (π∗IχR,K)φ〉+

n∑
i=0

〈∆I(π∗IχR,i,∞)φ, (π∗IχR,i,∞)φ〉 (2.82)

− 〈|∇I(π∗IχR,K)|2φ, φ〉 −
n∑
i=0

〈|∇I(π∗IχR,i,∞)|2φ, φ〉.

The first term is estimated

〈∆I(π∗IχR,K)φ, (π∗IχR,K)φ〉 ≥ δ(n− δ)‖(π∗IχR,K)φ‖2L2(X(I)), (2.83)

by the Patterson-Sullivan description of the bottom of the spectrum. Let {ϕk}∞k=1 be

a sequence in C∞0 (X(I)) which goes to φ in the graph norm. By Lemmas 2.2.3 and
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2.2.7 we can increase R independently of k and I so that for all i

〈∆I(π∗IχR,i,∞)ϕk, (π
∗
IχR,i,∞)ϕk〉 ≥ (n2/4− ε/4)‖(π∗IχR,i,∞)ϕk‖2L2(X(I)).

Taking the limit in k to get the corresponding statement for φ and summing over i we

have

n∑
i=0

〈∆I(π∗IχR,i,∞)φ, (π∗IχR,i,∞)φ〉 ≥ (n2/4− ε/4)‖(π∗IχR)φ‖2L2(X(I)). (2.84)

The remaining terms in (2.82) can be estimated by noting

∇I(π∗IχR,i,∞) = π∗I(∇(1)χR,i,∞),

so using the product rule for the gradient, and that the projection is a local isometry,

|∇I(π∗IχR,i,∞)|2 = π∗I
(
χ2
R|∇(1)χi|2 + χ2

i |∇(1)χR|2 + 2χRχi〈∇(1)χi,∇(1)χR〉
)

= π∗I
(
χ2
R|∇(1)χi|2 + χ2

i |∇(1)χR|2
)
,

where the last term on the first line vanished due to the form of the metric. Summing

over i, and using the estimates (2.83) and (2.84) in (2.82) we have

s(n− s) ≥ δ(n− δ)‖(π∗IχR,K)φ‖2L2(X(I)) + (n2/4− ε/4)‖(π∗IχR)φ‖2L2(X(I)) (2.85)

− 〈π∗I(|∇(1)χR|2 + |∇(1)χR,K |2)φ, φ〉 − 〈π∗I(χ2
R

n∑
i=0

|∇(1)χi|2)φ, φ〉.

The terms on the second line will be estimated by L∞ norms which are preserved

under π∗I . Now we observe that χ2
R|∇(1)χi|2 is supported only for ρ ≤ 1/R, and there

χ2
R|∇(1)χi|2g ≤ |∇(1)χi|2g = ρ2|∇u,eucχi|2euc ≤ 1/R2|∇u,eucχi|2euc,
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where ∇u,euc, |.|euc refer to the Euclidean gradient and metric for the u coordinate in

the regions M̄k. Therefore we can increase R so that

‖χ2
R

n∑
i=0

|∇(1)χi|2‖∞ < ε/4.

Incorporating these estimates we have, letting

FR = (s(n− s)− δ(n− δ))χ2
R,K + |∇(1)χR|2 + |∇(1)χR,K |2,

then

‖F 1/2
R ‖

2
∞‖φ‖2|L2(π−1

I (K(R)))
≥ ‖(π∗IFR)1/2φ‖2L2(X(I))

≥ (n2/4− ε/2− s(n− s))‖φ‖2
L2(X(I)−π−1

I (K(R)))
.

Now we note that ‖F 1/2
R ‖∞ is uniformly bounded as R → ∞. This follows from

s(n− s) < n2/4, and for example

|∇(1)χR|2g = |ρ2Rχ′|2g = ρ2R2|χ′|2 ≤ |χ′|2,

where ′ denotes a derivative. Then we have shown

1 = ‖φ‖2|L2(π−1
I (K(R)))

+ ‖φ‖2
L2(X(I)−π−1

I (K(R)))

≤

(
1 +

‖F 1/2
R ‖2∞

(n2/4− ε/2− s(n− s))

)
‖φ‖2|L2(π−1

I (K(R)))

≤

(
1 +
‖F 1/2

R ‖2∞
ε/2

)
‖φ‖2|L2(π−1

I (K(R)))

≤ (1 + C0(ε)) ‖φ‖2|L2(π−1
I (K(R)))

= (1 + C0(ε))

∫
π−1
I (K(R))

|φ|2dX(I)
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which establishes the result by taking

C(ε) = 1/(1 + C0(ε)) > 0.

2.3 Analytic Preparations

2.3.1 Estimates for terms appearing in the trace formula

Let o denote the point corresponding to (0, . . . , 0, 1) in the hyperboloid model

for Hn+1. We write G = SO0(n+1, 1), K = SO(n+1) the maximal compact subgroup.

T will be some generating parameter throughout the rest of the paper. For the details

on spherical functions the reader can see [H-08]. For the representation theory we refer

to [Kn-86]. All further ideas in this section are due to Sarnak and Xue [SX-91].

The lattice point count relates to harmonic analysis by consideration of the

function χT : G→ R

χT (g) =


1 if d(o, g(o)) ≤ T,

0 if d(o, g(o)) > T.

(2.86)

For any λ = s(n − s) ∈ (0, n2/4) we can consider the associated compli-

mentary series representation πs. This contains a normalized spherical (K-invariant)

vector v. From this data we construct the spherical function

φs(g) ≡ 〈πs(g)v, v〉. (2.87)

We let fs(g) = χT (g)φs(g), and Fs = fs ∗ fs with fs(g) = fs(g−1). Then following
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[SX-91, Lemma 2.1] we have Fs ∈ C0(K\G/K) and

Fs(g)�


e2(s−n/2)T e−

n
2
d(o,g(o)) if d(o, g(o)) ≤ 2T,

0 if d(o, g(o)) > 2T.

(2.88)

The implied constant can be taken uniformly for s ∈ I ⊂ (n/2, δ], for I a closed

interval. As Fs is K-biinvariant there is an associated spherical transform of Fs,

defined for λt = t(n− t)

F̂s(λt) =

∫
G
Fs(g)φt(g)dG. (2.89)

In fact, the spherical transform is a ∗-homomorphism so we have, evaluating at λ = λs

F̂s(λ) = |fs(λ)|2 =

(∫
G
χT (g)|φs(g)|2dG

)2

, (2.90)

and using the property

φs(exp tX)� e(s−n)t (2.91)

we have

F̂s(λ) =

(∫
G
χT (g)|φs(g)|2dG

)2

�
(∫ T

0
e2(s−n)tentdt

)2

� e4(s−n/2)T . (2.92)

Moreover, as before the implied constant can be chosen uniformly for s in compact

I ⊂ (n/2, δ].

2.3.2 Lattice point count

Now we estimate the quantity

N(Γ(I), T ) ≡ |{γ ∈ Γ(I) : d(o, γo) ≤ T}|. (2.93)

In [SX-91] Sarnak and Xue conjectured that

N(Γ(I), T )�ε
enT (1+ε)

[Γ : Γ(I)]
+ enT/2 (2.94)
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for Γ an arithmetic lattice in SO(n+ 1, 1). They established this result for n = 1, 2 by

a direct counting argument.

For n ≥ 3 we will rely on a result of Kelmer and Silberman from [KeSi-10].

This uses the spectral theory at the cofinite level (for Γ). The best known spectral gap

when n ≥ 3 is given by Theorem 1.0.3 (a result of Bergeron and Clozel from [BC-12]).

This tells us that if s > n/2 and s(n− s) is a nonzero eigenvalue for Hn+1/Γ(I) then

s ≤ n− 1.

The consequence for the lattice point count in SO(n+ 1, 1), n ≥ 3 is

N(Γ(I), T )� enT

[Γ : Γ(I)]
+ e(n−1)T (2.95)

uniformly in T, I. This result appears in [KeSi-10, Theorem 2]. Using the estimate on

the size of the factor group from Lemma 2.1.5, we have the following bound for the

lattice point count.

2.3.1 Lemma (Lattice point count) For any ε > 0 and n ≥ 2 we have

N(Γ(I), T )�ε
enT (1+ε)

|OF /I|(n+2)(n+1)/2
+ e(n−1)T . (2.96)

2.4 Proof of Main Theorem

Let I = [a, δ] a closed interval for some a > n/2. Replace Λ with the Λ1 of

Section 2.1 if necessary. We aim to apply the pre-trace formula to the automorphic

kernel on Hn+1 ×Hn+1 corresponding to Fs at level I i.e.

KI(x1, x2) =
∑

γ∈Λ(I)

Fs(g
−1
x1 γgx2), (2.97)
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where we write gx for any group element such that gx(o) = x. We have for the spectral

decomposition of the automorphic kernel, as in [Ga-02, Proposition 5.2],

KI(x, x) =
∑

λj,I<n2/4

F̂s(λj,I)|ψj(x)|2 + E , (2.98)

where E is some nonnegative contribution from the continuous spectrum. The λj,I

are the eigenvalues of the Laplacian on X(I) below n2/4, counted with multiplicities.

The ψi are the corresponding (lifted) eigenfunctions. There are only finitely many

such eigenfunctions by the work of Lax and Phillips [LP-82].

We can now apply the eigenfunction estimates (Lemma 2.2.8) to find a com-

pact part K ⊂ X such that for all si ∈ I

∫
π−1
I (K)

|ψj(x)|2dX(I) ≥ C > 0 (2.99)

uniformly through si ∈ I and I. This implies

∫
π−1
I (K)

KI(x, x)dX(I) ≥
∑

λj,I<n2/4

F̂s(λj,I)

∫
π−1
I (K)

|ψj(x)|2

≥
∑

λj,I :sj∈I
F̂s(λj,I)

∫
π−1
I (K)

|ψj(x)|2

≥ C
∑

λj,I :sj∈I
F̂s(λj,I).

In particular, for any s ∈ I, if λ = s(n− s) appears as an eigenvalue of ∆X(I)∫
π−1
I (K)

KI(x, x)dX(I)� F̂s(λ)� e4(s−n/2)Tm(λ, I), (2.100)

where m(λ, I) is the multiplicity of the eigenvalue and the implied constant is uniform

through all s ∈ I. The last inequality is a result of the estimate for the spherically

transformed kernel in (2.92).
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On the other hand

∫
π−1
I (K)

KI(x, x)dX(I) =
∑

γ∈Λ(I)

∫
π−1
I (K)

Fs(g
−1
x γgx)dX(I)

=
∑

γ∈Λ(I)

∑
l∈Λ/Λ(I)

∫
K
Fs(g

−1
x l−1γlgx)dX

� |OF /I|(n+2)(n+1)/2
∑

γ∈Λ(I)

∫
K
Fs(g

−1
x γgx)dX

� |OF /I|(n+2)(n+1)/2
∑

γ∈Γ(I)

∫
K
Fs(g

−1
x γgx)dX.

The penultimate inequality uses the bound on the size of the group Λ/Λ(I) given

in Lemma 2.1.5. The last inequality is a result of the rather crude observation that

Λ(I) ⊂ Γ(I). Using the upper bound (2.88) we have

∑
γ∈Γ(I)

∫
K
Fs(g

−1
x γgx)dX � e2(s−n/2)T

∑
γ∈Γ(I)

∫
x∈K:d(x,γx)≤2T

e−
n
2
d(x,γx)dX. (2.101)

As K is compact there exists R such that K ⊂ B(o,R) in Hn+1. This gives

d(o, γo) ≤ d(o, x) + d(x, γx) + d(γx, γo) ≤ 2R+ d(x, γx),

and

d(x, γx) ≤ 2R+ d(o, γo).

Then

∑
γ∈Γ(I)

∫
x∈K:d(x,γx)≤2T

e−
n
2
d(x,γx)dX �

∑
γ∈Γ(I):d(o,γo)≤2T+2R

e−
n
2
d(o,γo)dX

�
∫ 2T+2R

0
e−

n
2
tN(Γ(I), t)dt,

by integrating by parts. By using the lattice point bound from Lemma 2.3.1 we
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estimate∫ 2T+2R

0
e−

n
2
tN(Γ(I), t)dt�ε

∫ 2T+2R

0

ent(1/2+ε)

|OF /I|(n+2)(n+1)/2
+ e(n/2−1)t

�ε
enT (1+2ε)

|OF /I|(n+2)(n+1)/2
+ e(n−2)T .

Gathering together we have the upper bound∫
π−1
I (K)

KI(x, x)dX(I)�ε e
2(s−n/2)T

(
enT (1+2ε) + |OF /I|(n+2)(n+1)/2e(n−2)T

)
,

(2.102)

so that we now have upper and lower bounds for the partial trace. Equations (2.102)

and (2.100) give

e2(s−n/2)Tm(λ, I)�ε e
nT (1+2ε) + |OF /I|(n+2)(n+1)/2e(n−2)T .

This is the keystone of the proof. Our previous work on the multiplicities and the

lattice point count will now play together to forbid certain values of s. Using Lemma

2.1.5 to estimate m(λ, I) we now have for any ε > 0

e2(s−n/2)T |OF /I|n−1 �ε e
nT (1+2ε) + |OF /I|(n+2)(n+1)/2e(n−2)T . (2.103)

Taking T ≈ ((n+ 1)(n+ 2)/4) log |OF /I| we have for all ε > 0

|OF /I|(2s−n)(n+1)(n+2)/4+n−1 �ε |OF /I|(1+2ε)n(n+1)(n+2)/4 (2.104)

as |OF /I| → ∞, which can only be true if

s ≤ s0
n ≡ n−

2(n− 1)

(n+ 1)(n+ 2)
.

Recall that at the start we were free to choose an interval Is throughout which we had

uniformity. Going back and choosing

I = [s0
n, δ],
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which makes sense as long as δ > s0
n, we have proved Theorem 1.0.6. Corollary 1.0.7

follows directly.
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Chapter 3

Construction of thin groups with

thick limit sets

Our main theorem (Theorem 1.0.6) gives a quantitative spectral gap for in-

finite covolume subgroups of hyperbolic isometries, provided the Hausdorff dimension

of the limit set is large enough (and some other conditions are met). In other words,

the ‘bass note’ of the quotient manifold must be low. In order to find such a group,

we must remain safe from Doyle’s pretty result [D-88], which states that there is a

universal upper bound for the Hausdorff dimension of the limit sets of Schottky groups

in Isom(H3).

The following procedure for constructing thin subgroups of hyperbolic arith-

metic lattices with arbitrarily large Hausdorff dimension is due to McMullen [McM-12].

He has communicated a method which takes as input a compact n+1 dimensional hy-

perbolic manifold M which arises as an arithmetic quotient Hn+1/Γ and which has an
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embedded totally geodesic hypersurface S such that [S] 6= 0 in Hn(M,Z). The output

is a set of subgroups of Γ which are geometrically finite, infinite index and have Haus-

dorff dimensions of the limit set arbitrarily close to n. This yields groups for which our

main theorem (Theorem 1.0.6) applies. This construction is similar in nature to the

construction of Gamburd in the last section of [Ga-02]. Slightly more care is required

in higher dimension, for example because of the inequivalence of geometrical finiteness

and finite generation.

The required input arises in the work of Millson [Mill-76], whose development

we recount now. We take as our field F = Q(
√
p) with p prime and consider the

quadratic form

q(x1, . . . , xn+2) = x2
1 + x2

2 + . . . x2
n+1 −

√
p x2

n+2. (3.1)

We then take Γ0 to be the subgroup of GLn+2(OF ) which preserves q. The quadratic

form q is conjugate to diag(1, . . . , 1,−1) by a diagonal matrix over R, via conjugation

with the same element we can realize Γ0 as a group of isometries of the hyperbolic plane

Hn+1. We let Γ be the orientation preserving subgroup of Γ0. As we have remarked in

a previous section, Γ is discrete. Moreover Γ is uniform (cocompact) as follows. There

are no rational zeros of q, and Γ contains no nontrivial unipotent elements (if γ ∈ Γ is

unipotent then so is its Galois conjugate, which is an element of a definite orthogonal

group). The work of Mostow and Tamagawa [MT-62] then gives uniformity of Γ. It

is clear that Γ is geometrically finite.

We next consider the congruence subgroups Γ(P) for P prime in F . As in

[Mill-76] for P of large enough norm Γ(P) is torsion-free and the quotient Hn+1/Γ(P) is
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a compact manifold of constant negative curvature. Millson considers the involution

ι in Γ which is the reflection in the plane x1 = 0. As Γ(P) is normal in Γ then

ι normalizes Γ(P) and hence descends to an involution on Hn+1/Γ(P). For P not

of norm two and such that Γ(P) is torsion free we have then a manifold M(P) =

Hn+1/Γ(P) with an involution ι whose fixed point set contains a constantly negatively

curved, orientable, codimension one submanifold S(P). Millson goes on to show that

by passing to congruence subgroups

Γ(P,P ′) ≡ {γ ∈ Γ : γ ≡ I mod P, γ ≡ I mod P ′} (3.2)

with P and P ′ of large enough norm we obtain a manifold M = Hn+1/Γ(P,P ′)

and a corresponding embedded totally geodesic hypersurface S such that [S] 6= 0 ∈

Hn(M,Q). We have π1(M) = Γ(P,P ′) a geometrically finite and finite index subgroup

of a uniform arithmetic lattice.

We are now ready to apply McMullen’s construction [McM-12].

Let e : Hk(M,Z) × Hn+1−k(M,Z) → H0(M,Z) ∼= Z denote intersection

number and consider the homomorphism

φ : π1(M)→ Z, φ(γ) = [S] e [γ], (3.3)

by using the usual map π1(M)→ H1(M,Z). Poincaré duality gives that φ is defined

and nonzero (the reader can see Hatcher [Ha-02] for details), as S is oriented and

embedded φ is moreover onto. The kernel kerφ consists of classes with generic repre-

sentatives which cross S the same number of times in each direction relative to a fixed

orientation of S.
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We can cut M open along S to give a connected manifold with boundary

Mcut. The boundary δMcut consists of two connected components S1 and S2 which

are both isometric to S. Recall that S was obtained as a quotient of a totally geodesic

hyperplane Π ⊂ Hn+1. In this case it is known that π1(M) = π1(Mcut)∗π1(S), the HNN

extension of π1(Mcut) with respect to the maps ij∗ : π1(Sj)→ π1(Mcut) induced from

the inclusions of the boundary components of Mcut. Formally the HNN extension is

generated by π1(Mcut) and an element t subject to the relations

ti1(γ)t−1 = i2(γ), (3.4)

concretely this element t can be chosen to be anything with φ(t) = 1. Fix such a t.

To obtain manifolds with many repeated sections we consider the collection

of hyperplanes

Ck = {γΠ : γ ∈ φ−1(0) = kerφ} ∪ {γΠ : γ ∈ φ−1(k)}. (3.5)

Distinct hyperplanes in this collection do not intersect, and there is a connected com-

ponent of Hn+1 − Ck which meets all of the hyperplanes in Ck, we write Rk for the

closure of this connected component. We let Γk = Stabπ1(M)(Rk) so that for k = 1 we

have that Γ1 = π1(Mcut) and R1 a universal cover for Mcut, i.e. Mcut = R1/Γ1.

The quotient Rk/Γk is then the manifold with boundary which is obtained

by gluing copies M i
cut, i = 1, . . . , k together by identifying one boundary component

of M i
cut with the opposite boundary component of M i+1

cut , leaving two boundary com-

ponents unglued (coming from the first and last copies of Mcut).

We now note some properties of Γk. As Γk is contained in the kernel of φ

it is of infinite index in π1(M). As Rk is invariant under Γk the limit set L(Γk) of
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Γk must lie between the boundary of Π and the boundary of tkΠ. This implies that

the quotient CL(Γk)/Γk of the closed convex hull of L(Γk) by Γk has finite volume

(in fact it is compact). Also noting that Γk is finitely generated implies that Γk is

geometrically finite by a result of Bowditch [Bow-93].

We have constructed Γk, an infinite index geometrically finite subgroup of an

arithmetic lattice in SO(n+ 1, 1). It remains to show that by making k large enough

we can force the Hausdorff dimension of the limit set δ(L(Γk)) to be as close to n

as we like. Equivalently by the work of Sullivan [Sul-82] we can show that there are

arbitrarily small eigenvalues of the Laplacian on Xk ≡ Hn+1/Γk for k large. This will

follow by finding functions uk with small Rayleigh quotient∫
Xk
‖∇uk‖2dXk∫

Xk
|uk|2dXk

. (3.6)

We have Rk/Γk a closed subset of Xk, consisting of k glued copies M i
cut of Mcut. Let

f+ ∈ C∞(Mcut) be such that f+|S1≡ 0 and f+|S2≡ 1 and which is locally constant in

a neighbourhood of the boundary. Now we define for k ≥ 2

uk =



f+ on M1
cut

1 on M i
cut, i = 2, . . . , k − 1

(1− f+) on Mk
cut

0 on Xk −Rk/Γk.

(3.7)

Calculation of the Rayleigh quotient (3.6) gives∫
Xk
‖∇uk‖2dXk∫

Xk
|uk|2dXk

=
2
∫
Mcut
‖∇f+‖2dMcut∫

Mcut
(f+)2 + (1− f+)2dMcut + (k − 2)vol(Mcut)

(3.8)

which tends to 0 as k →∞ (the only term depending on k is the last summand in the

denominator). This completes the construction.
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