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The emerging and rapidly changing landscape of autonomous vehicles and shared mobility 

technologies bring up possibilities for a paradigm shift in how we model and analyze mobility. 

Transportation and mobility systems can now be connected continuously and seamlessly, which 

can make them more flexible and shareable. What can make this possible? Put simply, it would 

require integrating various mobility options so that travelers can freely hop among them. The 

demarcation lines among modes can then become increasingly hazy, as every individual trip may 

include multiple modes to various degrees. This implies that the paradigm shift is in how we view 

the travel modes. What were traditionally considered as limited discrete mode options, need to be 

seen as part of a continuum. In turn, we should focus more on mode combinations rather than 

individual travel modes. In this dissertation, we propose shifting the focus to the new idea of a 

mode option pool with an associated structure. The option pool would include every type of travel 

option in a continuous spectrum. This observation motivates the phrase ‘travel-option chain (TOC)’ 

mode proposed in this dissertation as a combination of travel options in a continuous spectrum.  
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Shared use of vehicles – either time-shared, or seat-shared – expands the travel option pool. 

Autonomous vehicle technology makes even more time-shared use of vehicles possible, as the 

driver constraint is also removed, and thus further expands the travel mode option pool. Then the 

question is on how to make such a larger option pool available for a large number of users, to 

improve their level of mobility and the productivity of the vehicles as well as the associated 

infrastructure. One aspect that needs to be addressed is that people cannot be individually owning 

the vehicles and infrastructure involved in all of the mobility options they use from the pool. 

Different people may partially or fully own different components such as, for instance, vehicles or 

spaces where they are parked. Some ownership may be time-shared as well. Publicly provided 

transit systems with purchased tickets will naturally be part of many TOC modes. Subscription-

type ownership is a possibility, if mobility service providers offer the options for purchase, and 

they can be bundled options as well, similar to phone plans. This fits within Mobility-as-a-Service 

(MaaS) platforms that have been proposed in recent years. In this dissertation, a powerful user-

side concept, ‘mobility portfolios’ is proposed that encompasses MaaS platforms, subscriptions, 

ownership, bundled plans and selection of optimal TOCs from a continuum spectrum of modes. 

The question then ensues on how we can find the optimal TOC modes. From an analytical 

standpoint, this can be solved with a ridematching problem formulation of matching paths in a 

time-expanded multimodal network. A more vexing problem is how people can travel on these 

TOC modes unless they have paid for it in a certain way. The mobility portfolio scheme proposed 

in this dissertation is geared to make it possible for them to pay for it in an efficient way and in a 

shareable manner with enough flexibility. This dissertation defines mobility portfolio as a 

“grouping of the number of hours/cost/resources that can be spent on each distinct travel options, 

so as to fit within a time/cost/resource constraint specified for a given time period”. The portfolio 
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approach compartmentalizes the travel options that are chained, and allocates appropriate 

“quantities” of them, when we view them as consumable travel commodities and resources. The 

portfolio scheme incorporates pricing for the commodities and are expected to bring in efficiency 

and cost savings while increasing shared mobility participation. This is a good approach for 

controlling TOC mode change travel behaviors and it subsumes currently envisaged ideas such as 

MaaS mobility bundles in a smart and shared mobility system with subscription options.  

The focus of this dissertation is on the user level decisions on selecting the TOC modes from their 

mobility portfolios scheme. Innovative options such as users offering their own resources (e.g., 

owned vehicles) and their own services (e.g., potential driving for shared rides) are incorporated 

in the portfolios. We develop an iterative framework which is rooted on a learning-based travel 

cost perception update model, so as to model the users being provided with the best travel options 

as well as the best usage plan for mobility portfolios. Performing simulated case studies on a real 

network, we confirm that the proposed framework converges to the optimum mobility portfolio 

state for system participants and improves the performance of the system by inducing people to 

use shared mobility options more.  
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Chapter 1 

Motivation 

Traffic congestion is one of the major problems in cities all over the world, with solo drivers in 

privately-owned vehicles being a significant component of it. The latest data from the 2017 

National Household Travel Survey reveal some startling figures: almost 88% of commuters make 

their trip in a private vehicle, and work-related trips have a vehicle occupancy of merely 1.18 

persons per vehicle. Moreover, the duration of an average car trip in the United States is 

approximately 27 minutes. We can, therefore, reasonably conclude that a typical car is in use only 

for a small fraction of time during the day and is parked for the overwhelming majority of the time. 

If vehicle occupancy is converted from persons per vehicle to a dynamic metric such as seat-hours 

used, the operational efficiency of a typical car is less than 5%. These traditional trip patterns have 

serious, long-term implications. As vehicle trips of low operational efficiency continue to be a 

large fraction of overall traffic, congestion is expected to worsen, leading to unacceptably high 

levels of greenhouse gas emissions. Over the last decade, the concept of ridesharing has received 

attention from academia, planning agencies, and private companies because of its potential to 

reduce individual car ownership, decreasing the number of cars on the road, thereby mitigating 
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traffic congestion and lowering overall emissions. Studies show that each car-sharing vehicle in 

use results in 9 to 13 fewer cars on the road (Shaheen and Chan, 2015). Closely related to 

ridesharing is the concept of carsharing that has also gained popularity over the past several years.  

The sharing economy in transportation, housing, and other sectors has become an integral part of 

our lives. People are increasingly receptive to the idea that empty vehicle seats can be shared, and 

the number of participants in shared mobility systems continues to increase. In tandem, real-time 

communication and information technologies (CIT) have contributed to the popularity of shared 

mobility frameworks, as they enable drivers and riders to be matched on-demand and provide a 

convenient payment system. Furthermore, innovations in autonomous vehicle (AV) technologies 

broaden the horizons of shared mobility with possibilities such as on-demand shared AV fleets, 

peer-to-peer AV fleets, AV carsharing, etc.  

1.1 Overview of Multimodal Ridesharing systems 

Multimodal ridesharing systems (RSS) is a broad umbrella term that describes many mobility 

services. A common misconception is that ridesharing is synonymous with carpooling. Perhaps 

the most well-known mechanism for carpooling is to match drivers and riders that have the same 

origin and destination (which usually limits the matching rate). Multimodal ridesharing systems 

extend the concept of carpooling to include multiple modal connections. In such a system, riders 

and drivers provide their origin/destination and desired departure/arrival time. The system can 

match a rider to multiple drivers to increase the matching rate and to provide a faster path. It should 

be noted that the term “driver” can conceptually include virtual “drivers” representing other modes 

of transport, such as transit or bikes. Rudnicki et al. (2008) studied ridesharing with walking, where 
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the roles of drivers and passengers were known and each driver was assigned to passengers with 

the same destination (Rudnicki et al., 2008; Czioska et al., 2017). Other studies (Gruebele, 2008; 

Aydin et al., 2020) have proposed route/hop planning schemes, such as: (a) car -> car -> car; (b) 

car; (c) car -> airplane -> bus; (d) foot -> car -> car -> car; (e) car -> subway -> bus; (f) bicycle -

> car -> bicycle; (g) foot; (h) bicycle; (i) foot -> bus -> foot. In previous studies conducted at UC 

Irvine (Masoud et al., 2017; Masoud and Jayakrishnan, 2017a), a multimodal ridesharing system 

was proposed to enhance the use of the LA Metro Red Line (a subway), allowing transfers between 

shared-ride cars and the LA Metro. One of the highlights of these studies is that a sizable fraction 

of travelers in drive-alone vehicles switched to transit (Masoud et al., 2017). Figure 1.1 illustrates 

the concept of multimodal RSS. 

 

 

Figure 1.1 Multimodal ridesharing system concepts. 
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1.2 Need for Innovations in Trip Modeling 

There is a broad consensus in academia and in the private sector that the ongoing revolution in 

transportation systems will bring about changes in car-ownership and has the potential to make 

transportation networks more efficient. Several interesting questions emerge: How will 

transportation systems change in the short term and long term as shared and autonomous systems 

become more prevalent? How do we model people’s movements and travel mode choice behavior 

in the context of shared mobility systems?  

Autonomous vehicle technologies can make transportation and mobility systems more flexible and 

shareable by connecting them continuously and seamlessly. Before that happens, we need a 

paradigm shift in how we model and analyze mobility in the first place. One promising avenue of 

inquiry is to integrate several mobility options so that travelers can freely hop among them. The 

boundaries that demarcate different modes can then become increasingly fluid, as every individual 

trip may include multiple modes to various degrees. This implies that the paradigm shift is in how 

we view travel modes. What were traditionally considered discrete mode options now need to be 

seen as part of a continuum. Therefore, an analysis of mode combinations rather than isolated 

travel modes becomes necessary. 

Let us, for instance, envision a ridesharing scenario in which a person A who wants to be served 

for her trip is picked up by driver B who drops her off at an intermediate point, waiting to be picked 

up by another driver to drop her off to her final destination. The driver B proceeds to a different 

route to serve another user. Therefore, driver B’s travel mode is a combination of travel mode 

options such as drive-alone, drive yourself and ridesharing. Finally, another driver C (who is 
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driving alone) picks up person A and drops her off at her destination. Three participants in this 

example shift their travel mode options seamlessly and keep moving continuously until finishing 

their journey (Figure 1.2).  

 

Figure 1.2 Travel mode example 

This example, though simple, illustrates the challenge in modeling the participants’ travel-mode 

sharing behavior in a discrete manner, as is common in traditional transportation planning system 

contexts. 

1.3 Goals of the Dissertation 

In this dissertation, we propose and develop the idea of a “mode option pool” to model individual 

trips. The mode option pool is defined as a set of all available travel options to a user with each 

travel option having its own characteristics (e.g., drive yourself option, shared-seat option, public 

option, bike, vehicle ownership option, etc.). This observation motivates the term ‘travel-option 

chain (TOC)’ mode proposed in this dissertation as a combination of travel options in a continuous 
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spectrum. The advantage of this model is that it can generate a “mode” for individuals by 

combining any characteristics of mode options. For instance, a ridesharing driver’s TOC mode can 

be defined as: [drive yourself option(1), vehicle-ownership option(1), shared-seat option(1)]. The 

term M(x) denotes a binary variable which is 1 if a person experiences the designated option M, 

otherwise it is 0. As another example, a ridesharing rider’s TOC mode can be defined with a chain 

[drive yourself option(0), vehicle-ownership option(0), shared-seat option(1)]. Finally, a 

carsharing user’s TOC mode can be defined as [drive yourself option(1), vehicle-ownership 

option(0)].  

Shared use of vehicles – either time-shared, or seat-shared – expands the travel option pool. 

Incorporating Autonomous Vehicle technology in this scenario further expands the travel mode 

option pool, since the driver constraint is also removed. An immediate observation is that this 

system needs to have a large option pool available for a large number of users to be efficient in 

terms of user mobility and the productivity of the vehicles and their associated infrastructure. One 

aspect that needs to be addressed is that it is infeasible for any individual to own all mobility 

options and infrastructure involved in all of the mobility options available in the travel option pool. 

Different people may partially or fully own different components such as vehicles or the spaces 

where they are parked. They may also have purchased the right to temprarily “own” a seat in a 

transit vehicle for some trips with a transit pass. Our proposed system allows for the possibility of 

time-shared ownership of all or most system components as well. Publicly provided transit systems 

with purchased tickets will naturally be part of many TOC modes. Subscription-type ownership is 

a possibility if a particular mobility service provider offers the option for purchase. Mobility 

service providers can offer bundled options as well, similar to phone plans. This fits within 
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Mobility-as-a-Service (MaaS) platforms that have been proposed in recent years. In this 

dissertation, we propose a powerful user-side concept called “mobility portfolio” that encompasses 

MaaS platforms, subscriptions, ownership options, bundled plans and selection of optimal TOCs 

from a continuum of modes. 

The focus of this dissertation is on the user level decisions of selecting the TOC modes in the mode 

option pool from their mobility portfolios scheme. Innovative options such as users offering their 

own resources (e.g., owned vehicles) and their own services (e.g., potential driving for shared rides) 

are incorporated in the portfolios. We implement this paradigm by developing an agent-based 

platform for various geographical networks, travelers, and mobility service supply side details. 

Our developed platform has the ability to model an integrated shared transportation system which 

encompasses a wide range of mobility services such as peer-to-peer ridesharing, shared 

autonomous fleets, and peer-to-peer carsharing. We propose an iterative framework which is 

rooted in a learning-based travel cost perception update model, to model the provision (assumed 

to be by user apps) of optimal mobility portfolio solutions to individuals. The objective of the 

mathematical formulation attempts to minimize the total travel expenditure of users during 

mobility portfolio periods, which could be several days, weeks, or months. The TOC modes in the 

proposed mobility portfolio model are obtained from the results of a ride matching problem applied 

at the individual level for each trip. We extended Masoud and Jayakrishnan (2017a)’s dynamic 

programming (DP) algorithm to find the minimum cost itinerary for riders in an expanded travel 

option pool throughout the week, month, and season. This modification with the proposed iterative 

method allows individuals to dynamically shift their travel status (i.e., to be a ridesharing driver 

or a rider) within the period, if necessary.  
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1.4 Dissertation Outline 

This dissertation is organized as follows. In chapter 2, we present a literature review of research 

on shared transportation concepts. Chapter 3 contains a description of the modeling details of the 

proposed continuous-mode and shared transportation system platform. Chapter 4 introduces the 

mobility portfolio framework and its component modules. We present the mathematical 

formulation of the mobility portfolio problem along with its variants, including bundling 

mechanisms, and their associated solution methodologies. We design numerical experiments and 

discuss the results obtained in chapter 5. We formulate and solve a multi-hop ridematching 

optimization problem which lies at the core of the proposed mobility portfolio framework in 

chapter 6. We provide a conjoint analysis of factors that influence travelers’ decisions to adopt 

multimodal rideshare systems like ours in chapter 7. Finally, chapter 8 provides a summary of the 

conclusions and directions for future research.  
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Chapter 2 

Literature Review 

The value of the global sharing economy has continued to rise and is predicted to increase to more 

than 300 billion dollars in 2025, from just 15 billion dollars in 2014. This phenomenon has been 

accompanied by technological advances in the transportation field, leading to increased efficiency 

of transportation services. Shared transportation systems allow users to access those services more 

easily and provide system-wide benefits. Therefore, optimizing such systems will remain a focus 

of transportation researchers, state agencies and commercial interests in the foreseeable future. In 

this chapter, we present a literature review of various paradigms and methodologies that are related 

to the concept of shared transportation services. 

2.1 Mobility-as-a-Service (MaaS)  

As vehicles are increasingly viewed not only as personal possessions but as shareable goods, the 

concept of Mobility as a Service (MaaS) has emerged and evolved into various types of 

subscription-based services such as ride-hailing, car-sharing, peer-to-peer ridesharing, and bike-
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sharing. The popularity of MaaS in the commercial world has sparked interest in academia as well. 

There exists a significant body of literature related to MaaS. MaaS has a wide range of 

sustainability objectives such as reducing vehicle miles/hours traveled, green-house-gas emissions, 

private car ownership, and transportation iniquity. Also, as research on autonomous vehicles has 

accelerated radically over the past decade, shared autonomous fleet vehicles are being increasingly 

viewed as a new form of MaaS with the overall goal of sustainable development. In this section 

we focus on four specific areas where this development is taking place. We describe them in more 

detail in the following sub-sections. Note that all or most MaaS systems that currently exist or are 

proposed have a limited and discrete view of the modes that become part of it, while this 

dissertation considers the TPC option space to be essentially a continuous spectrum. In that sense, 

the work in dissertation is a much more generalized framework that subsumes current definitions 

of MaaS systems 

2.1.1 Ridesharing System and Matching Problem  

Ridesharing is not a new concept. Through the 1960s and into the mid-1970s in the United States, 

carpooling to work was a popular choice among commuters. In the subsequent decades, however, 

use of this mode declined as a result of increasing car ownership rates. The remarkable 

development in information and communication technologies (ICT) and the emergence of the 

sharing economy in recent years have revived the idea of ridesharing systems.  

A key aspect of any shared mobility system is the ride matching process between the mobility 

service provider and the “mobility recipient”. A higher match rate results in a more efficient and 
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profitable rideshare system, which is why it has been the focus of research in both academia and 

industry.  

The first efforts to solve the ridesharing matching problem focused on pairing a single rider with 

a single driver (Agatz et al., 2010; Agatz et al., 2011; Furuhata et al., 2013; Herbawi and Weber, 

2012). Albeit simple, it continues to be the most popular ridesharing matching method in the 

absence of sophisticated technologies and routing algorithms. Its matching rate, however, is not 

satisfactory because an underlying requirement of this system is that the origin and destination 

point of a rider needs to be identical to that of the driver. One way to improve the matching rate is 

to allow the driver to transfer between drivers so that a single rider could potentially be serviced 

by multiple drivers (Agatz et al., 2010; Herbawi and Weber, 2011a; Herbawi and Weber, 2011b). 

Yet another improvement is to give enough time flexibility to a driver so that she could serve 

multiple riders before finishing her own trip (Agatz et al., 2010; Furuhata et al., 2013). Eventually, 

a many-to-many ridesharing approach was suggested (Agatz et al., 2010; Masoud and 

Jayakrishnan, 2017a; Masoud and Jayakrishnan, 2017b), along with the concept of meeting points 

which allow riders to transfer between drivers (Agatz et al., 2010; Masoud and Jayakrishnan, 

2017a; Stiglica et al., 2015; Li et al., 2018). With the aim of providing a flexible P2P ridesharing 

system in real-time and improving computational efficiency, Masoud and Jayakrishnan (2017a) 

introduced the Ellipsoid Spatiotemporal Accessibility Method (ESTAM) to create a reduced 

network for each individual. They used to Dynamic Programming (DP) algorithm to solve the ride-

matching problem optimally.  

One highly useful feature of a ridesharing system is that it is relatively flexible and can integrate 

with an existing rigid traditional transportation system. As the ridesharing pool is increased by 
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incorporating sharable vehicles (which can include private vehicles) with other travel modes (e.g., 

public transit system, walk, and so on), ridesharing participants who are willing to be shared riders 

(SRs) can take advantage of a more diverse and customized set of travel options. Under a 

multimodal ridesharing system, these systems can be used as public transit feeders that deliver 

travelers to public transit stations that have fixed schedules and routes (Agatz et al., 2010; Masoud 

and Jayakrishnan, 2017a; Masoud and Jayakrishnan, 2017b; Varone and Aissat, 2015; 

Fahnenschreiber et al., 2013; Faroqi and Sadeghi-Niaraki., 2015; Masoud et al., 2017; Ma et al., 

2018; Stiglica et al., 2018). Considering ‘walking’ as one type of ridesharing mode, Lin et al., 

(2016) proposed a ridesharing-by-virtual-pools (RSVP) system and tested this system at 

transportation hubs. A real-time ridesharing service system can be considered as an alternative 

public transportation mode as well (Aissat and Varone, 2015; Xing et al., 2009; Ma, 2017). By 

allowing transfer between different types of travel modes, Masoud and Jayakrishnan (2017b) 

formulated a binary optimization problem in a time-expanded network for the multi-hop peer-to-

peer (P2P) ride-matching problem. In their study, a decomposition algorithm was adopted to 

reduce the size of the problem and to accelerate the ride-matching problem solution via solving 

multiple smaller problems. Wang (2013) considers metrics such as systemwide travel and travel 

cost to formulate and solve a dynamic ridesharing matching problem. Herbawi and Weber (2011) 

also formulate a dynamic ride-matching problem by minimizing the total travel time of both 

drivers and riders. 
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2.1.2 Carsharing System and Car Ownership  

Carsharing is another critical component of shared mobility systems. The key aspects of carsharing 

are (a) a car is a sharable good when it is idle and (b) people join the service to rent vehicles for a 

short-term period. Early carsharing systems were primarily business-to-consumer (B2C) services 

with vehicles provided at fixed spots. Therefore, determining the optimal location of the carsharing 

vehicles was an important research topic (Herbawi et al., 2016; Bsaybes et al., 2015; Nourinejad 

et al., 2015; Jorge et al., 2014; Wagner et al., 2015; Huang et al., 2018). When electric vehicles 

are used for carsharing, the carsharing location problem is combined with the electric vehicle 

charging location problem (Bruglieri et al., 2017; Bruglieri et al., 2018a; Bruglieri et al., 2018b).  

Several studies have documented the effects of carsharing on private vehicle ownership. Shaheen 

et al., (2018) document the trends in carsharing and vehicle ownership in North America. They 

report that the number of users of carsharing markets has gradually increased, while the growth in 

private vehicle ownership has decreased over the same time period. Glotz-Richter (2012) report 

the effects of replacing car ownership with carsharing: almost 90% of carsharing users said car-

sharing completely replaced a car in their household (i.e., the household did not have a private 

vehicle anymore), and 32% of carsharing users stopped using their private car entirely. Glotz-

Richter’s findings lend support to the notion that people are enthusiastic towards the idea of 

carsharing, especially when it is cost-efficient. With the help of ICTs, carsharing systems could be 

reshaped as peer-to-peer (p2p) mobility services. In p2p carsharing systems, participants can rent 

other vehicles and at the same time rent their own vehicles to other people in the system. By 

providing a vehicle with low costs (by covering the costs of insurance, for example) and high 
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accessibility and flexibility, more and more people can join p2p carsharing systems. This can 

create strong network effects that encourage more people to join the system, thereby achieving 

economies of scale. Shaheen et al., (2015) conducted a survey to examine users’ awareness and 

perception of P2P carsharing in relation to vehicle ownership and travel behavior in San Francisco 

and Oakland. Despite the economic and demographic discrepancies between respondents from 

those cities, on an average 35% of respondents whose travel type was a ‘vehicle owner’ reported 

that they would consider using p2p carsharing or renting out their own vehicle through a p2p 

operator. In a subsequent study, Shaheen et al., (2018) found that there exists a small proportion 

of the population who would be amenable to giving up car ownership entirely and would prefer a 

rented car from p2p carshaing system. Ballús-Armet et al., (2015) found that the group who had 

the most openness towards p2p carsharing system was the group who did not own their car and 

wanted to increase their mobility availability. However, those who have a fixed daily commute 

trip preferred to continue to use their current travel mode.  

2.1.3 Autonomous Vehicles and Their Implications 

The availability and deployment of autonomous vehicles, especially fully autonomous vehicles 

(AVs) will lead to various changes in our society in the coming decades. Therefore, it is crucial to 

design mobility systems that fully leverage the potential of these vehicles. As this new travel mode 

emerges, research efforts have been undertaken to integrate it with shared transportation systems. 

New forms of shared mobility such as free-floating carsharing service with autonomous vehicle 

fleets can be a sustainable and road-friendly transportation alternative that increases overall 

network capacities and performance (Zhang et al, 2015). A single AV can be accessible to many 
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more people than currently served by personal autos. Thus, they reduce ownership costs for users. 

In certain scenarios, shared autonomous vehicles (SAV) show potential to become high-occupancy 

vehicles which can replace several single-driver vehicles (Fagnant et al., 2015; Segal and 

Kockelman, 2016; Gurumurthy and Kockelman, 2018). Schoettle and Sivak (2015) show that in 

extreme cases, car ownership rate could drop by around 43%, from an average of 2.1 vehicles to 

1.2 vehicles per household, providing more opportunities for a single mode to be accessible to 

multiple people. Hyland and Mahmassani (2018) suggest optimization strategies to operate 

autonomous vehicle fleets dynamically to improve SAVs’ performance efficiency in reducing 

empty miles and traveler wait times. When AVs are used in a fleet such as commute shuttle buses 

or reserved mass transit (Gucwa, 2014; Fagnant et al., 2015), the optimization problem becomes 

matching users’ accessibility characteristics to AVs schedule/routing constraints, analogous to 

ridesharing accessibility problem formulations. 

2.1.4 Travel Behavior Change in Shared Mobility systems 

Transformations in mobility services effected by means of newly applied travel modes (e.g., P2P 

ridesharing, P2P carsharing, etc.) and realizable mode (e.g., AV fleets) are expected to cause 

changes in travel behavior. The most popular methods to forecast travel mode choice behavior is 

the well-known discrete choice modeling approach. Priatama et al., (2018) used a binary logit 

model to develop a mode choice model, considering a ridesharing service in DKI Jakarta. In their 

study, ridesharing service’s fare per km and waiting time for the service were selected as model 

parameters. Moeckel et al., (2013) proposed a nested multinomial logit mode choice model by 

integrating not only drive-alone and shared-ride modal options but also public side travel options 
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(e.g., bus, rail and air). Zhao and Kockelman (2018) used a multinomial logit model to investigate 

the impact of connected autonomous vehicles (CAVs) and shared autonomous vehicles (SAVs) 

and applied their developed model to the existing travel demand model for the Austin, Texas, 

region. In their study, SAV was considered a carsharing (renting) mode.) To satisfy the 

independence of irrelevant alternative (IIA) axiom, in their study, SAVs and CAVs were distinct 

travel modes compared to Auto and Bus modes. Considering several factors such as VOTT, 

personal vehicle operation cost, parking, and toll costs, which may affect the travel mode choice 

behavior, they found that more people are willing to shift their travel mode if Avs are more cost 

effective.  

 

2.2 Transformation in Transportation Services 

The shared mobility options described in the previous section can operate inside a comprehensive 

mobility service platform. A well-designed platform can perform several functions, such as 

planning a journey, book trips with various mobility operators, handle payments, and transporting 

passengers. Such a platform could also leverage the massive real-time data available to it to make 

travel-related recommendations to users, based on their experiences. These recommendations can 

include bundled mobility services that contain tailor-made combinations of shared mobility option 

and credits for each option, just like in a mobile plan. In this section we focus on two specific areas: 

recommender systems with MaaS and MaaS bundle design. 
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2.2.1 MaaS Recommender System 

In general, recommender systems are widely accepted in content delivery services as news 

magazines, academic articles, advertisements, and various other products. The aim is to maximize 

recommendation acceptance rate, user satisfactions, or corporate profits (Adomavicius and 

Tuzhilin, 2005). These systems have gained popularity as smartphones have become ubiquitous, 

which allows companies to provide real-time information that users need or may be interested in 

via apps. By integrating recommender systems and smartphone applications, various 

recommendation services in the domains of health, tourism, and education have become common. 

In addition, using GPS trajectories, check-in data from social networks and points of interest is 

available to platform owners, allowing them to recommend location to their users context (Wang 

et al., 2013; Yin and Lee, 2010; Berjani and Strufe, 2011; Levandoski et al., 2012). It is, therefore, 

only a matter of time that recommender systems would be used in transportation systems of the 

future.  

In the transportation context, users can be recommended trip activity locations, routes, departure 

time and pickup locations. The success of recommender systems depends on how well it predicts 

people’s behavior and preferences. To this end, various techniques based on learning have been 

conducted. One such technique is the Multi-Armed bandit (MAB) algorithm (Chu et al., 2010, and 

Zhou and Chow, 2019). Using this technique, Chow and Liu (2012) proposed recommendation for 

points of interest based on routing costs and activity benefits. Zhou et al., (2019) suggest a system 

which can provide departure time and path selection by considering on-time arrival reliability. 

Yoon et al., (2020) provided a destination recommender system for mobility-on-demand (MOD) 
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services. They proposed a platform that provides MOD vehicles that are equipped with various 

destination information. The platform computes routes and destinations for new requests from 

existing passengers’ pickup and drop-off points. Li et al. (2015) proposed a recommendation 

mechanism for taxi drivers to reduce the number of vehicles on the roads and the cost of trips. 

Their recommender system has been integrated with a real-world fleet management system. Xu et 

al., (2020) developed a recommender systems framework to balance mobility supply and demand 

in e-hailing platforms. Their study aimed to reposition drivers, generating possible destinations by 

considering point of interests (POIs) with the highest number of passenger requests in historical 

data. They applied the proposed framework to the online system of Chinese ride-hailing company 

DiDi Chuxing and reported that it enhanced driver experience and led to a modest increase in their 

incomes.  

In addition to recommender systems for mobility suppliers, research has been devoted to 

recommender systems at the individual level. Gustowski et al., (2017) proposed a conceptual 

framework that builds contexts for individuals that based on their profile, activity, and environment 

(spatiotemporal information, and climatic information). By leveraging this information, they 

developed recommendation systems for personalized context-aware services to mobile users in 

smart cities. By collecting people’s historical location information, activity duration information, 

and demographic information such age, gender majority and main languages, they predicted 

feasible locations to access services, and to recommend precise routes to get there. Song (2018) 

developed a model that provides personalized urban mobility solutions. Their recommendations 

were delivered using an app-based service with menus containing contains route and mode 
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combinations. They computed optimal menu options for users by using historical and current 

information about their acceptance or rejection behavior. 

2.2.1 MaaS Bundling Design 

Along with MaaS-related services and studies, MaaS bundling design problems have been 

formulated by researchers to study shared-mobility systems. Bundling is a widely accepted concept 

in marketing and economics. Despite the fact that the original purpose of bundling schemes in 

economics is to maximize profits, in transportation, bundling scheme is devised to encourage 

people to use more sustainable travel modes. From this perspective, the bundling idea has 

developed into a form of a combined ticket that contains several public transportation choices such 

as metro, bus, taxi, etc. 

We propose a generalized comprehensive framework of grouping mobility options with the 

associated bundled payment plans for subscription-based mobility in our research, which we term 

“mobility portfolios” (Jayakrishnan et al., 2019). As for relevant previous work in this direction, 

Matyas and Kamargianni (2019) independently conducted an initial study on a concept of 

designing MaaS bundles to support shared modes and proposed it as a monthly subscription plan, 

similar to mobile phone plans. The options included were few and conceptually discrete in their 

concept. In their study, they offer three MaaS bundle plans with different combinations of mobility 

options (e.g., public transport, bike sharing, car sharing, and taxi). To attract people to MaaS 

bundles more actively, incentive-based schemes are applied for each option (Ho et al., 2018; Ho 

et al., 2021a; Ho et al., 2021b). Furthermore, each plan has limited credits in the form of fixed 

bundle cost per month. Similar to the other MaaS mobile applications, a MaaS bundle also can be 
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delivered via a mobile application with a mobile payment system. Ho et al. (2021a) build a digital 

MaaS trial platform with a booking and payment integration system, and aggregate five existing 

private-sector MaaS services (ride-share, public transit, taxi, car-sharing, car-rental) as mobility 

bundle options.  

Most MaaS bundling design problems are based on survey methods to drive the properties of 

bundle options and offer bundle choice models to estimate the interest in MaaS subscription 

bundles. Ho et al. (2021b) propose a mixed multinomial logit model and find that subscribers’ 

travel activity and cost savings from discounted fares on options are factors that influence their 

mode choices.  

2.3 Discussion 

We review two streams of literature in this chapter: literature on MaaS and shared mobility services, 

and literature on transformation in transportation services strategy. Earlier works on MaaS and 

shared mobility services aimed to increase the matching ratio between the potential shared-

mobility users and the shared-mobility providers. We examined the existing literature related to 

AV and AV fleets and vehicle ownership changes and find that shared mobility services combined 

with MaaS lead to a change in people’s mode choice behaviors. While studies related to shared 

mobility services studies have been conducted only for each specific mobility service, MaaS 

bundling design methodologies focus on overall strategies to provide an all-encompassing shared 

mobility bundle for users. Recommender systems with MaaS systems can bring more personalized 

services and provide optimal mobility solution according to individual tastes.     
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Chapter 3 

A Study of the Factors Affecting Multimodal 

Ridesharing with Choice-based Conjoint Analysis  

3.1 Motivation 

The research in this dissertation started with an early study on the user-acceptance of multi-modal 

shared mobility systems, as it is the primary component of the proposed mobility portfolios based 

on a comprehensive continuous-spectrum of TOC “modes”. Before embarking on developing a 

full-fledged model framework with portfolio schemes, it is important to identify the key factors 

that could affect the success of the framework from a user standpoint, even if such a study wold 

naturally involved only a somewhat-limited form of multi-modal ridesharing. Thus the study in 

this chapter is a based on a user-survey that involved only the currently proposed ride-sharing 

systems without the significant enhancements that will be brought by the mobility portfolio 

schemes discussed in the subsequent chapters. 
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Multimodal ridesharing systems (RSS), where multiple transportation modes fulfil rider trip 

demands, have been the focus of recent studies seeking to improve the matching rate and 

connectivity across travel modes, with the aim of providing increased mobility (Rudnicki et al., 

2008; Masoud et al., 2017; Masoud and Jayakrishnan, 2017b). Multimodal RSS, however, have 

several key issues that must be addressed before they can be viable: (a) do RSS provide reasonable 

travel times (Gruebele, 2008; Korea Railroad Research Institute, 2016; Agatz et al., 2011; Wang, 

2013; Bilali et al., 2019)?; (b) do RSS properly price their services (Gruebele, 2008; Agatz et al., 

2011; Wang, 2013; Agatz et al., 2012; Ginaviciene and Sprogyu, 2020)?; (c) can RSS ensure a 

reasonable number of transfers (Masoud and Jayakrishnan, 2017b; Wang, 2013)?; (d) do RSS 

provide sufficient ridesharing incentives to encourage their use (Gruebele, 2008;Brownstone and 

Golob, 1992)? 

These are the most significant issues influencing a potential user’s inclination towards multimodal 

RSS. By adopting multimodal RSS services, users could have their time and travel costs lowered, 

compared to their current travel options. At the same time, even people willing to use multimodal 

RSS services might not accept this option if they end up paying more for it. Similarly, even with 

lower travel cost and travel time, a user may only be willing to accept a transfer inconvenience if 

there is a sufficient incentive, such as a subsidy.  

Therefore, with any type of multimodal ridesharing system, it is necessary to analyze how travelers 

respond to the set of attributes characterizing the system. Capturing the implicit determinants of 

individual preferences is also important. Factor analysis and conjoint analysis are commonly used 

as multivariate statistical techniques to gain insights regarding consumer behavior through 

empirical or quantitative measurements (Korea Railroad Research Institute, 2016; Kim et al., 
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2015). Kim et al. (2015) analyzed the potential factors affecting the attitudes of participants 

towards car ownership and program participation in electric vehicle sharing programs (EVSPs). 

Unlike factor analysis, which is used to examine how underlying constructs influence responses 

on a number of measured variables, a conjoint analysis is used in market research to determine 

how people value different features that constitute an individual product or service. A conjoint 

analysis examines which combination of a limited number of attributes is most influential on an 

individual’s decision making. This analysis also makes it possible to evaluate the relative 

importance of a set of attributes. While common in marketing research, conjoint analysis has not 

been widely used in transportation systems research, although it can be useful in providing insights 

into user acceptance of newly proposed systems and designs. In this dissertation, we employ a 

choice-based conjoint analysis method. Data were collected using a web-based survey system, 

targeting people who live in Southern California (e.g., Los Angeles, Irvine, San Diego, and Santa 

Barbara).  

The remainder of the chapter is structured as follows. In the next section, we briefly introduce the 

concept of multimodal ridesharing. Section 3.3 outlines the technical approach that was used for 

the conjoint survey design. We describe the data that were collected and present the conjoint 

analysis with a multinomial logit model in section 3.4. We follow this with a discussion of the 

impact factor results and conclude the chapter with a discussion on future research opportunities.  

3.2 Choice-based Conjoint Survey Design  

As part of this study, a choice-based conjoint survey was designed and conducted in the Southern 

California region, comprising the cities of Los Angeles, San Diego, Santa Barbara, and Irvine. The 
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sample size of the survey was 4,254 choices obtained from 401 participants. The web-based survey 

was chosen because it can minimize missing data by advising respondents to respond to all 

questions. In addition, a well-designed survey website can help respondents to understand the 

purpose of the survey and, thus, can increase their participation (Ginaviciene and Sprogyu, 2020). 

3.2.1 Conjoint Survey Design 

Conjoint analysis is a marketing research technique used to assess the weight individuals place on 

different features of a given product or service. Products are represented by their attributes and 

respondents provide data about their preferences for hypothetical products that are defined by 

combinations of attributes. A range of new models and techniques for the estimation of part-worth 

functions have been developed. While several conjoint methods exist, two primary alternatives are 

the ratings-based (RB) and choice-based (CB) conjoint analyses. A significant systematic 

difference between these two analysis options is the compatibility effect. For example, some 

attributes (such as brand name) tend to be more critical in RB models, whereas some comparable 

attributes (such as price) are likely to be more important in CB models (Karniouchina et al., 2009). 

Choice-based conjoint analysis has become perhaps the most widely used conjoint technique in 

marketing research. Rao (2013) described the major steps in a conjoint study. These include 

problem selection of attributes and design of profiles (i.e., the set of at-tribute levels describing a 

system design alternative), choice set and analysis methods, and, finally, utilization of results (see 

Figure 3.1a). To analyze the impact factors of the multimodal ridesharing system, we designed a 

survey questionnaire by applying choice-based conjoint analysis shown in Figure 3.1b. 
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The selection of attributes and the design of choice sets is critical in conjoint studies because each 

attribute combination for hypothetical products influences the choice of an alternative. 

 

(a) 

 

(b) 
 Figure 3.1 Overview of conjoint analysis design: (a) major steps in conjoint study; (b) conjoint 

analysis steps for multimodal RSS impact factor analysis. 
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Hypothetical alternatives are presented as profiles, which is defined as a set of attribute levels that 

describes the hypothetical system design alternative. In general, the number of levels is restricted 

to a relatively small number for any attribute, from as few as 2 to no more than 5 or 6, to ensure 

that fewer profiles are generated for data collection. Next, we describe some relevant studies that 

influenced our selection of attributes. 

Various metrics can be considered to evaluate the utility of a travel mode. Wang (2013) considered 

system-wide travel and travel cost to optimize a dynamic ridesharing matching problem. Herbawi 

and Weber (2012) formulated a dynamic ride-matching problem by minimizing the total travel 

time of both the driver and riders. Ko et al. (2017) considered EVSP renting and returning hours 

as the survey components for an electric vehicle sharing program. 

A survey conducted by the Korea Railroad Research Institute (2016) considered travel time and 

travel cost to be the representative attributes for the proposed rail alternatives. Accordingly, travel 

time and travel cost were considered important factors that affect the choice of transport mode 

(Furuhata et al., 2013; Stiglic et al., 2016). 

Multimodal ridesharing systems (RSS) technically include transferring between travel modes, and 

the number of transfers may be a critical factor affecting the preferences of potential multimodal 

RSS users. Masoud et al. (2017) considered LA Metro Red Line stations as transfer points to 

provide a connection point between travel modes. Wang (2013) stated that consistent, seamless, 

and efficient mode transfers will only be possible with effective optimization technologies. 

Furuhata et al. (2013) addressed the necessity for transfer points to support high-dimensional ride-

matching algorithms. 
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It is also possible to encourage people to use multimodal RSS by providing sustainable 

transportation incentives. Brownstone and Golob (1992) studied the effects of incentives that are 

designed to promote carpool ridesharing on work trips to reduce congestion and air pollution. They 

proposed ordered-probit discrete choice models to estimate the commuting mode choice of full-

time workers in the Los Angeles area. Three kinds of incentives to control transportation demand 

were investigated: (a) reserved or other preferential parking for ride-sharers; (b) direct carpooling 

and/or vanpooling cost subsides by employers; (c) guaranteed rides home for ride-sharers. They 

found that providing all workers with these incentives would reduce drive-alone commuting by 11 

to 18 percent. The effectiveness of high-occupancy vehicle (HOV) lanes in promoting ridesharing 

on Southern California freeways was also considered as a rideshare incentive (Brownstone and 

Golob, 1992; Lloret-Batlle et al., 2017). 

Two recent programs offered some insight into the design of our survey. San Luis Obispo 

(California) Council of Governments (SLOCOG) launched the county-wide SLO Regional 

Rideshare program1 to reduce the reliance on driving alone and to improve mobility. SLO Regional 

Rideshare provides the “iRideshare” service, which is a free online ride-matching system with 

online trip logging for rewards and prizes. Back ‘N’ Forth Club Rewards is a free program in the 

region that is offered to businesses and organizations that encourage employees to use sustainable 

transportation when commuting. Employees record their trips made by bike, carpool, vanpool, bus, 

telecommute, or on foot into their personal calendars at iRideshare.org and then redeem points for 

 
 

1 SLO Rideshare System,  https://www.slocog.org/programs/system-efficiency/slo-regional-rideshare 

https://www.slocog.org/programs/system-efficiency/slo-regional-rideshare


 

28 

 

gift cards. This system provides carpooling reimbursements to drivers and offers discounted 

pricing to riders. The riders cover a share of driver costs, ranging from approximately USD 2 to 

USD 10, and the drivers receive reimbursements ranging from USD 3 to USD 9 per passenger per 

trip. Another such program is a sustainable transportation incentive program at Santa Monica 

College (California) that is designed to reduce the use of single-occupancy vehicles. The college 

provided monthly incentives per usage of sustainable transportation alternatives, such as biking, 

walking, and carpooling. To ensure incentive compatibility, the program offers three options of 

ridesharing incentives, namely, USD 150, USD 200, and USD 250 per month. Based on these 

findings, in this dissertation, ridesharing travel time changes (compared to the user’s current travel 

time), ridesharing travel cost changes (compared to the user’s current travel cost), the number of 

transfers, and the monetary incentives for ridesharing (as an annual reward) are considered as 

attributes of the multimodal RSS survey. Table 3.1 shows the attributes of the multimodal RSS 

and the option levels. Once the attributes and levels are chosen, the next step is to generate the 

stimulus set of hypothetical profiles to be evaluated by respondents. The procedure for 

constructing stimulus profiles is intertwined with the particular conjoint approach used (Rao, 2013). 

Well-known statistical techniques such the full cards method and fractional factorial design are 

used to generate profiles. In the full cards method, the profiles are generated by a full factorial 

design, including all combinations of the attribute levels. However, these designs are not practical 

when the total number of combinations is large (Rao, 2013). With this method, our study would 

generate 81 profiles, which is too large for respondents to evaluate. 

This problem can be resolved by using a fractional factorial design, which reduces the number of 

profiles using an orthogonal design, and which offers several advantages. First, these designs are 
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concise yet convey all the information needed to the responder to make their choices. Second, they 

enable the estimation of all of the main effects of attributes in a conjoint study. These designs can 

be restricted to blocks so that each individual receives a balanced subset of profiles (Rao, 2013). 

Table 3.1 Multimodal RSS attributes and levels 

Attribute Sub-attribute Level 

Efficiency Number of transfers 

2 times or more 1 

1 time 2 

No transfer 3 

Mobility 
Ridesharing travel time compared 

to your current travel time 

Up to 10 min. longer 1 

Up to 5 min. longer 2 

Equal or less 3 

Economic 

Feasibility 

Ridesharing travel cost compared 

to your current travel cost 

Up to 10% higher 1 

Up to 5% higher 2 

Equal or less 3 

Ridesharing incentives 

Up to USD 150 annual refund 1 

Up to USD 200 annual refund 2 

Up to USD 250 annual refund 3 

The condition for a design to be orthogonal (which is called symmetric if each attribute in the 

design has the same number of levels) is that each level of one factor appears with each level of 

another factor with proportional frequencies. In a symmetric orthogonal design, every level of a 

factor occurs an equal number of times with every level of another factor. Orthogonal arrays can 

either be balanced or imbalanced in terms of the levels of attributes. The property of level balance 

implies that every level occurs the same number of times within each attribute in the design. An 

imbalanced design allows for larger standard errors in the parameter (part-worth) estimates. 

Therefore, to reduce errors, the orthogonal design method was adopted with the balanced 

incomplete block design process. Details of the process can be found in Rao (2013). 
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3.2.2 Conjoint Choice Set Design 

In general, there are two types of choice-based conjoint schemes that are studied: (1) binary choice 

experiments where the response is binary to a stimulus profile; (2) multinomial choice experiments 

where the responses are to a set of three or more alternatives, including a “no choice” option, which 

can make a decision more realistic (Rao, 2013; Lloret-Batlle et al., 2017) A binary choice 

experiment is used when each profile is presented to the respondent seeking a response of yes or 

no. We designed a multinomial choice experiment to determine the relative importance of each 

multimodal RSS attribute. We chose the process suggested by Rao (2013) to design our 

multinomial choice experiments. The first step is to design the profiles of alternatives, using the 

attributes and their levels. The second step of the process is to scheme choice sets, with each set 

consisting of a subset of these profiled alternatives. Choice sets can be created manually (using a 

shifting method), which develops an ordered combination of attribute levels. The shifted-design 

choice set is shown in Table 3.2, where 27 profiles emerge for different sets of attribute levels. A 

sample from the conjoint questionnaire is shown in Table 3.3. 

Table 3.2 Shifted design for nine choice sets of three for four attributes, each at three levels 

Choice set Profile Attribute 1 Attribute 2 Attribute 3 Attribute 4 

1 

1 1 1 3 1 

2 2 2 2 2 

3 3 3 1 3 

2 

4 1 2 2 3 

5 2 3 1 1 

6 3 1 3 2 

3 
7 1 3 1 2 

8 2 1 3 3 
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9 3 2 2 1 

4 

10 2 1 2 2 

11 3 2 1 3 

12 1 3 3 1 

5 

13 2 2 1 1 

14 3 3 3 2 

15 1 1 2 3 

6 

16 2 3 3 3 

17 3 1 2 1 

18 1 2 1 2 

7 

19 3 1 1 3 

20 1 2 3 1 

21 2 3 2 2 

8 

22 3 2 3 2 

23 1 3 2 3 

24 2 1 1 1 

9 

25 3 3 2 1 

26 1 1 1 2 

27 2 2 3 3 

 

Table 3.3 A sample choice attributes and option levels from the conjoint questionnaire 

Choice Set Attribute Option 1 Option 2 Option 3 

None of these 

options 
1 

Number of transfers 2 times or more 1 time No transfer 

Ridesharing travel 

time 

compared to user’s 

current travel time 

Up to 10 min. 

longer 

Up to 5 min. 

longer 
Equal or less 

Ridesharing travel cost 

compared to user’s 

current travel cost 

Up to 10% higher Up to 5% higher Equal or less 

Ridesharing incentives 
Up to USD 150 

annual reward 

Up to USD 200 

annual reward 

Up to USD 250 

annual reward 

Select      
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3.2.3 Sociodemographic and Trip Characteristics Factor 

In the survey, respondents were asked about their sociodemographic factors, such as employment 

status, age, gender, and household income and trip characteristics, such as primary trip purpose, 

trip frequency, primary trip mode, travel time, travel distance, and the number of transfers. Their 

willingness to use multimodal RSS was also considered. 

3.2.4 Characteristics of Respondents 

Table 3.4 displays the sociodemographic and      travel characteristics of respondents to the web-

based survey. 

As indicated in Table 3.4, most respondents were female (61.3%), full-time employed (46.6%), 

and within the 35-44 age group (53.9%). Concerning the primary travel mode, 78.8% of the 

respondents preferred to use personal vehicles when they made their most frequent trip (i.e., 

to/from work: 43.1%). Due to the high proportion of private vehicle users, almost 70 percent of 

respondents made zero transfers. An interesting observation is that 83.5% of respondents answered 

that they were willing to use a multimodal ridesharing system. This reveals that most people are 

willing to change their travel mode when they are offered a multimodal ridesharing system, as 

long as it satisfies their preferences. 

Both travel time and trip distance appear to be evenly distributed. Respondents’ household 

incomes were also evenly distributed, with the median group of between USD 50,000 and USD 

75,000 (25.2% of respondents). The most common trip frequency was found to more than once 

per week but not every day was reported by almost half (48.8%) of the respondents. 
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Table 3.4 Sociodemographic and trip characteristics of the participants survey respondents 

  Sociodemographic characteristics 

Sociodemo-graphic 

Characteristics 

Variable Description 
Sociodemographic 

Characteristics 
Variable 

Employment 

Status 

Employed full-time 187 
Employment 

Status 

Employed part-time 68 17.0 

Homemaker 35 8.7 

Student 41 10.2 

Retired 34 8.5 

Unemployed 36 9.0 

Age 

Under 16 years old 1 Age 

16-24 years old 60 15.0 

25-34 years old 131 32.7 

35-44 years old 85 21.2 

45-54 years old 50 12.5 

55-64 years old 51 12.7 

65 years old or older 22 5.5 

Prefer not to answer 1 0.2 

Gender 

Female 246 Gender 

Male 151 37.7 

Prefer not to answer 3 0.7 

Other 1 0.2 

Household 

Income 

Less than USD 15,000 27 
Household 

Income 

USD 15,000 to USD 

25,000 
30 7.5 

USD 25,000 to USD 

35,000 
25 6.2 

USD 35,000 to USD 

50,000 
52 13.0 

USD 50,000 to USD 

75,000 
101 25.2 

USD 75,000 to USD 

100,000 
60 15.0 

USD 100,000 to USD 

150,000 
45 11.2 

More than USD 

150,000 
36 9.0 

Prefer not to answer 25 6.2 

Trip Characteristics 
Most 

Frequent Trip 
To/from work Trip Characteristics 

Most 

Frequent Trip 
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School 42 10.5 

Shopping 71 17.7 

Personal business 79 19.7 

Social and recreation 30 7.5 

Other 6 1.5 

Trip 

Frequency 

Less than once per 

week 
32 

Trip 

Frequency 

More than once per 

week, but not every day 
193 48.1 

Once every day 124 30.9 

More than once every 

day 
52 13.0 

Primary 

Travel Mode 

Personal vehicle (car, 

truck, van, motorcycle, 

etc.) 

316 
Primary 

Travel Mode 

Rail 

(Subway, light rail, 

commuter rail, etc.) 

8 2.0 

Bus 27 6.7 

Bicycle 10 2.5 

Walk 8 2.0 

Uber/Lyft/taxi/shuttle 13 3.2 

Carpool, vanpool 15 3.7 

Other 4 1.0 

Average 

Travel 

Time 

Less than 5 minutes 15 

Average 

Travel 

Time 

6 ~ 10 minutes 60 15.0 

11 ~ 15 minutes 87 21.7 

16 ~ 20 minutes 68 17.0 

21 ~ 30 minutes 75 18.7 

31 ~ 45 minutes 49 12.2 

45 ~ 60 minutes 20 5.0 

More than 60 minutes 27 6.7 

Average Trip 

Distance 

Less than 5 miles 70 
Average Trip 

Distance 

6 ~ 10 miles 119 29.7 

11 ~ 20 miles 103 25.7 

21 ~ 30 miles 62 15.5 

31 ~ 40 miles 28 7.0 

41 ~ 50 miles 9 2.2 

more than 50 miles 10 2.5 
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Number of 

Transfers 

0 279 
Number of 

Transfers 

1 86 21.4 

2 or more 36 9.0 

Willingness 

to 

use 

multimodal 

RSS 

Yes, I would definitely 

try 
149 

Willingness to 

use 

multimodal 

RSS 

Maybe, I would 

consider trying 
186 46.4 

No, I would definitely 

not try 
66 16.5 

 

3.4 Choice-based Conjoint Analysis: Mathematical Formulation 

Conjoint analysis is a commonly applied multivariate statistical technique that is used to gain 

understanding of how people make distinctions between products or services, so as to design new 

products or services that incorporate the most valued aspects. There are only a small number of 

transportation-related studies that use choice-based conjoint analysis based on surveys (Kofteci et 

al., 2010; Jianrong et al., 2011; Seok et al., 2016). This dissertation utilized a multinomial logit 

(MNL) model to estimate behavior based on choice-based conjoint data, which provides the 

preferences for each attribute of a product or service. 

In conjoint analysis, each respondent must choose one alternative from each of several choice sets. 

These choice sets are constructed by dividing the total set of profiles across K choice sets. In this 

dissertation, each choice set contained the same number of alternatives without loss of generality. 

The utility of alternative m in choice set 𝑠 for individual 𝑖 is de-fined as equation (3.1): 
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𝑢𝑖𝑠𝑚 =  𝑋𝑠𝑚𝛽 +  𝑒𝑖𝑠𝑚 (3.1) 

where 𝑋𝑠𝑚 is a (1 ⨯ 𝑆)  vector of variables representing the characteristics of the 𝑚𝑡ℎ  choice 

alternative in choice set s, 𝛽 is an (𝑆 ⨯ 1) vector of unknown parameters, and 𝑒𝑖𝑠𝑚 is an error term. 

The MNL model treats each observation from the same respondent as an independent observation, 

which falls within the standard random utility approach (Haaijer, 1999). Under this criterion, the 

MNL model for 400 respondents choosing from 15 choice sets is computationally equivalent to 

6,000 respondents choosing from one choice set. 

The choice probabilities in the conjoint MNL approach can be obtained by using the 

straightforward generalization of equation (3.2). The probability that alternative 𝑚 is chosen from 

set 𝑠 is: 

𝑃𝑠𝑚 =
exp (𝑋𝑠𝑚𝛽)

∑ exp (𝑋𝑠𝑚𝛽)𝑀
𝑛−1

 (3.2) 

The maximum likelihood technique is most suitable to estimate the logit model using data at the 

individual level. Assuming that choices are available for I individuals, let the choice for the 

𝑖𝑡ℎperson be denoted by (𝑦𝑖1, … , 𝑦𝑖𝑆𝑖 ), where 𝑆𝑖 is the choice set of the 𝑖𝑡ℎ person and each y is 

equal to 0 or 1, depending on whether the corresponding alternative is chosen or not (Rao, 2013). 

Maximum likelihood estimation determines the values of parameters so as to maximize the 

probability (or likelihood) of matching the observed data. For the 𝑖𝑡ℎindividual with choice set 

𝑆 = {1,2, … , 𝑠𝑖}, the likelihood of observing the choices {𝑦𝑖1, … , 𝑦𝑖𝑆𝑖 } is: 
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𝐿𝑖 = ∏ ∏ 𝑃𝑠𝑚
𝑦𝑖𝑠𝑚

𝑀

𝑚=1

𝑆

𝑠=1

 (3.3) 

The joint likelihood for the sample as a whole is 𝐿 = ∏ 𝐿𝑖
𝑁
𝑖=1  . Here, L is a function of the unknown 

parameters, 𝛽 . The 𝛽  values are determined by maximizing 𝐿  with respect to the 𝛽 ’s using 

standard optimization methods. As is common, equation (3.3) is replaced in the formulation by a 

log function, as in Equation (3.4), which simplifies the optimization process: 

𝑙 =  ∑ ∑ ∑ 𝑦𝑖𝑠𝑚

𝑀

𝑚−1

ln (𝑝𝑠𝑚)

𝑆

𝑠−1

𝐼

𝑖−1

 (3.4) 

Our application used optimization algorithms in XLSTAT (19.4 Version). 

 

3.5 Results 

3.5.1 Model Fitness 

The statistical significance test results for choice-based conjoint analysis with the MNL model is 

presented in Table 3.5. If the p-value is low (defined here as a value less than 0.05), the model is 

said to be statistically significant. As shown in Table 3.5, with 95% confidence, the p-value of the 

choice-based conjoint model that drew from 4,254 observations is less than 0.0001, implying that 

this model is statistically significant. 
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Table 3.5 Statistical significance test results 

Content Statistic 

Observations 4,254.0 

Likelihood value 484.8 

Score 473.5 

Wald 43.7 

p-value < 0.0001 

 

The statistical significance test was also conducted for the four defined impact factors for a 

multimodal ridesharing system. The p-values for the number of transfers, ridesharing travel time, 

and ridesharing travel cost are less than 0.0001. The ridesharing incentive factor has a p-value of 

0.148, as shown in Table 3.6. 

Table 3.6 Statistical significance test results of multimodal ridesharing system attributes 

Attribute Chi-square (Wald) Pr > Wald Chi-square (LR) Pr > Wald 

Number of transfers 305.3 < 0.0001 328.4 < 0.0001 

Ridesharing travel time 

compared to your current 

travel time 

25.7 < 0.0001 25.7 < 0.0001 

Ridesharing travel cost 

compared to your current 

travel cost 

40.3    < 0.0001 39.8 < 0.0001 

Ridesharing incentive 3.8 0.148 3.8 0.150 
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3.5.2 Conjoint Analysis Results 

To analyze the influence of the factors on the choice between alternatives within the multimodal 

ridesharing system, a numerical part-worth utility value was computed for each level of each 

attribute. Considering ridesharing travel cost as a quantitative attribute, the estimated parameters 

for each level of the other three attributes were computed. As shown in Table 3.7, the importance 

between attributes can be confirmed by the Wald value. Transfer level 3 has the largest Wald value, 

making it the most important explanatory variable, while ridesharing incentive shows the lowest 

importance. The reason for the negative estimated coefficient for ridesharing travel cost is that, as 

travel cost increases, it has a negative effect on the selection. From this table, our results reveal 

that the fewer the number of transfers, the shorter the travel time, and the more the incentive, the 

more positive the effect is on the multimodal ridesharing system. 

Table 3.7 Statistical impact factor parameter estimates for multimodal ridesharing systems 

Attribute Level 
Estimated 

coefficient 
Wald Chi-Square Pr > Chi2 

Ridesharing travel 

cost compared to the 

current travel cost 

- -0.234*** 28.9 < 0.0001 

Number of transfers 
2 0.524*** 32.9 < 0.0001 

3 1.511*** 294.3 < 0.0001 

Ridesharing travel 

time compared to the 

current travel time 

2 0.194** 4.9 0.026 

3 0.434*** 25.6 < 0.0001 

Ridesharing 

incentive 

2 -0.037 0.2 0.664 

3 0.152* 3.1 0.077 

1 * 0.10 level, ** 0.05 level, *** 0.01 level. 
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3.5.3 Willingness to Pay for the Multimodal Ridesharing Service 

In economics terms, willingness to pay (WTP) is the amount an individual would be willing to 

spend to receive a good or to avoid an undesirable outcome. Thus, a transaction occurs when an 

individual’s WTP equals or exceeds an offered price. This principle holds for the participants in 

the multimodal RSS being studied. 

As shown in Table 3.8, the choice-based conjoint model suggests that people are likely to pay USD 

2.24 and USD 6.45 when a multimodal RSS provides one transfer and zero transfers, compared to 

two or more transfers, respectively. This result reveals that a “no transfer” option is the most 

preferred factor for a multimodal ridesharing system. 

Table 3.8 Willingness to pay for each attribute 

Attribute Level Willingness to Pay (USD) 

Number of transfers 
2 2.24 

3 6.45 

Ridesharing travel time compared to the 

current travel time 

2 0.83 

3 1.85 

Ridesharing incentive 
2 -0.16 

3 0.65 

Based on the WTP values, the second most important factor is ridesharing travel time. The WTP 

value of each ridesharing travel time level was calculated based on the first level of ridesharing 

travel time, which is “up to 10 minutes longer travel time compared to the participant’s current 

travel time”. For level two and level three of the ridesharing travel time attribute, the participants 

were more likely to pay USD 0.83 and USD 1.85, respectively. 
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Compared to the first level of ridesharing incentive, USD 150, participants were willing to pay 

USD 0.65 when receiving USD 250 as a ridesharing incentive. However, the results indicate that 

participants are not likely to pay when the incentive is only USD 200. It could be interpreted that 

the USD 50 variance between ridesharing incentive levels is not significant enough, meaning the 

p-value of “ridesharing incentive: level 2” in Table 3.7 is not significant. This could be addressed 

by increasing the variance between incentive levels. It is also possible that our design used 

incentive levels that were too low. It is, of course, conceivable that a sufficiently high level of 

monetary incentive would make any option fully attractive, and that we only used conservative 

amounts in this study. Based on a complete cost–benefit analysis of such RSS options, one can 

calculate the plausible maximum amounts of incentives and use that in future studies. 

In summary, the analysis results validate our hypotheses and behavior expectations that a 

multimodal ridesharing system with fewer transfers, shorter travel times, and more usage 

incentives will have a higher level of participation. Based on their willingness to pay, potential 

users value fewer transfers the most. 

3.6 Discussion 

In this chapter, as a starting point of further research that propose mobility portfolio schemes, we 

first assessed individual choice behaviors for currently proposed multimodal ridesharing systems 

(RSS) which are not portfolio-based but have several characteristics of the travel options that will 

be included in mobility portfolio systems. A web-based survey provided the data to examine the 

relevant impact factors with conjoint analysis and discrete choice modeling. The results 

demonstrate the relative magnitude of multimodal RSS’ factors and reveal which factors better 
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encourage the use of such ridesharing systems. The results reinforce the importance and viability 

of factor estimation modeling, and the significance of the “number of transfers” factor in how 

people choose to make their trips. Future research can improve the reliability of survey-based 

factorial analysis by incorporating current multimodal RSS factors, and by developing more 

specific attitudinal statements to expand latent factor analysis, such as safety factors. Particularly, 

considering the ongoing impact of COVID-19, users might place more weight on safety while 

using different ridesharing modes. By conducting further studies, it is expected that insights will 

be gained regarding the changes in the perception of ridesharing. Improving these models will 

promote better planning, engineering, and operations in many regions and communities across the 

United States, which have not yet been well studied regarding the potential of multimodal 

ridesharing systems. 

The research in this chapter yielded insights on user-side acceptance of currently proposed shared 

mobility options, with an emphasis on the primary factors of significance to user-side choices in 

using such systems. The chapters thus provided valuable input in developing the comprehensive 

mobility portfolio model and optimization framework described in the remaining chapters of this 

dissertation.  
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Chapter 4 

New Concept of Travel Modes  

4.1 Definition of research terms 

Advances in the field of transportation, developments in ICT technologies, and the rise of the 

sharing economy have led to development of the well-known concept of Smart City. In smart cities, 

people can utilize an integrated shared transportation system which encompass a wide range of 

seamlessly connected mobility services. In this chapter, we offer a new strategy to model 

individuals’ movements in the system by splitting a travel mode into a combination of travel 

options originating from what we define as a travel option pool.  

People in an integrated shared transportation system need to have the ability to hop among different 

travel modes freely, making their travel mode a chain of multiple travel modes. Furthermore, we 

can envision a system where people can provide accessibility to their vehicles by giving temporal 

ownership to other people. We postulate that these are basic properties that any transportation 

system of the future would need to have. This also implies that people in such system have more 



 

44 

 

complicated travel modes compared to the discrete modes in traditional systems. Therefore, the 

travel modes in highly integrated and shared transportation systems of the future need to be 

modeled differently. To illustrate travel modes that are possible in such systems, we define several 

novel concepts and research terms in this dissertation.  

4.1.1Travel option chain mode 

In this dissertation, we firstly define the concept of ‘travel option chain (TOC) mode’ that is a 

combination of various travel options which generate from the continuous spectrum of the travel 

mode option pool. The following explanation shows in more detail why TOC mode is needed.  

In conventional travel analysis, an individual can use a ‘car’ for his trip. Within the 

umbrella of shared transportation, a travel mode is a commodity which is not only what one 

consumes, but also what one can share (e.g., ridesharing driver – drive yourself and sharing 

empty seat, carsharing, ridesharing rider – not driving your car but riding other’s vehicle, 

etc.). Therefore, in a seamlessly shared transportation system, she can still use a ‘car’ for a 

trip, but he/she can also utilize her car while doing ridesharing, carsharing, and so on. So, 

the travel mode is decided by usage where these travel options come from. 

 

The benefit of modeling trips in a TOC mode is that the current rigid transportation system (with 

discrete travel mode such as vehicle, public transit, bike, etc.) can be transformed into a more 

flexible and shareable system for more efficient travel. ‘Travel option’ is a cross-linkable resource 

that a person can use that makes up the TOC mode. We consider that each travel option has its 
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own set of characteristics, each with its own properties that we term as “levels.” Table 4.1 shows 

an example of the characteristics of a travel option and its associated levels.  

Table 4.1 Characteristics of a Travel Option 

Characteristics of Travel Option Level 

Driving Mode 

0 (Drive yourself) 

1 (Autonomous) 

2 (Not Drive) 

Number of Connection 
0 (No Transfer) 

1 (Need Transfer) 

Parking Space 
0 (Need) 

1 (No Need) 

Willing to use empty seats 
0 (Yes) 

1 (No) 

Punctuality 
0 (High) 

1 (Low) 

Travel time 

0 (No Delay) 

1 (Up to 5-min. Delay) 

2 (Up to 10-min. Delay) 

Public transit 
0 (Not Use) 

1 (Use) 

Walk 
0 (Not Use) 

1 (Use) 

Ownership 

0 (Own – Not Share) 

1 (Own – Share) 

2 (Not Own – Share) 

Vehicle type 

0 (Luxury) 

1 (SUV) 

2 (Sedan) 

… 

N -2 (Bus) 

N-1 (Metro) 

N (Walk) 

… 

… … 
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Having defined the characteristics and levels of a mode, various TOC modes can now be described.  

We denote the term 𝑋(𝑦) to represent a travel option 𝑋 and its level 𝑦. For example, an SUV solo 

driver can be illustrated by combining ‘driving mode (0)’, ‘willing to use empty seats (1)’, and 

vehicle type (1). Similarly, a sedan ridesharing driver can be described as a combination of ‘driver 

mode (0)’, ‘willing to use empty seats (0)’, and ‘vehicle type (2)’. In the same vein, a ridesharing 

rider mode can be captured by combining ‘driving mode (2)’, ‘willing to use empty seats (0)’ and 

‘vehicle type (𝛼)’. It is worth mentioning here that a vehicle type for ridesharing riders is dependent 

on served drivers’ vehicle type. Thus, we illustrate ridesharing riders’ vehicle type as 𝛼.  

For a more nuanced analysis, we categorize a travel mode’s characteristics into three groups: travel 

efficiency (default), travel convenience, and travel sustainability. Each group contains different 

travel mode options. Travel efficiency group contains travel time, parking hours, parking space, 

walking time, waiting time, punctuality and so on. In terms of traveling convenience, drive-

yourself, number of transfers, and Wi-Fi availability could be potential characteristics. Finally, 

fraction of seats used, fraction of personal vehicle operational time used, and public transit usage 

could be considered as sustainability factors.  

4.1.2 Travel mode option pool 

‘Travel mode option pool’ is a set of travel options which is available for a user’s entire trip. The 

travel option pool comprises various kinds of travel options with their defined characteristics, so 

that various TOC modes can be generated from a continuous spectrum by combining any travel 

options. The major advantage of defining the mode option pool is flexibility. Depending on the 
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number of travel option groups and travel options in each group, the travel mode option pool can 

create an endless variety of TOC modes. Therefore, any time a new kind of mobility service is 

introduced in the future (such as autonomous vehicle (AV) or AV fleet), our proposed model can 

seamlessly incorporate it in its formulation by simply adding that service’s characteristics into the 

pool.  

4.1.3 Mobility Portfolio  

As described earlier, a Mobility Portfolio is a grouping of the number of hours/cost/resources that 

can be spent on each distinct travel options, so as to fit within a time/cost/resource constraint 

specified for a given time period. Mobility portfolio is a key contribution of this dissertation. The 

portfolio approach compartmentalizes the travel options that are chained, models them as 

consumable travel commodities and resources, and, finally, includes appropriate quantities of them 

with their own prices that determine the payment the users make for purchasing the portfolio. The 

portfolio scheme incorporates pricing for the commodities and is expected to bring in efficiency 

and cost savings while increasing shared mobility participation, because a lot more travel options 

can then be paid for and combined for multi-modal travel. Existing literature and various case 

studies have shown it to be a promising approach for promoting beneficial changes in travel 

behavior. The mobility portfolio framework subsumes currently envisaged ideas such as MaaS 

mobility bundles in a smart and shared mobility system with subscription options.  

As the development of the portfolio scheme is intricately connected to the platform built to study 

it, the agent-based study platform itself is described first in the chapter, as that makes the 

conceptual explanations in the remainder of the chapter easier. 



 

48 

 

4.2 Conceptual Simulation Platform for Mobility Portfolio  

The main idea underlying mobility portfolios is that all travel options are available and by paying 

for an option people can receive temporal ownership of it. In order to materialize the mobility 

portfolio, various agents such as the transportation network, payment system, and ridesharing 

system are required to cooperate. Using agent-based modeling techniques, we build a simulation 

platform to illustrate how our proposed concepts of travel mode and the mobility portfolio can be 

deployed in practice.  

4.2.1 Agent-based modeling 

An agent-based model (ABM) is a technique to simulate various agents and analyze the interaction 

between these agents. In the context of agent-based transportation modeling, agents refer to any 

autonomous entities within a system. At the individual level, an agent can be a traveler, such as 

private driver, or a truck driver. At the collective level, examples of agents are traffic operators, 

adaptive traffic control devices, shippers, and public agencies (which are themselves composed of 

agents such as urban planners, committee members, and elected officials), consultants, and 

connected/autonomous vehicles. In this dissertation we design a multi-agent, shared and automated 

transportation system using a simulation framework with three agent groups: a transportation 

network agent, a mobility portfolio agent, and a peer-to-peer ridesharing agent. This platform can 

incorporate any number of additional agents as long as their properties can be mathematically 

described. Examples include network traffic control agents, fare control agents, etc. Figure 4.1 

illustrates the overview of the proposed agent-based conceptual mobility portfolio platform. 
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Figure 4.1 Overview of the conceptual mobility portfolio platform 

4.2.2 Transportation Network Agent 

The main purpose of this dissertation is to provide a framework for a single transportation platform 

which can operate different types of transportation services. Connecting various transportation 

modes and aggregating those modes into one single platform is necessary to attract people from a 

convenience and sustainability perspective. From this point of view, we construct a conceptual 

transportation simulation platform which integrates multimodal shared transportation system 

which contains vehicle, bus, walking, and shared travel modes such as a ridesharing mode and 

shared autonomous fleet vehicles (SAFVs).  

In the real world, some transportation services share a vehicle network, but other modes such as 

metro, rails and walking share a physically separate network, which is not part of the vehicle 

network. Due to this physical division, the travel time of users passing through each network needs 
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to be measured differently. With this in mind, we proposed a multi-layered transportation system 

in our previous research (Nam et al., 2018). We build two distinct travel layers, depending on the 

property of transportation mobility providers: (a) vehicle network; and (b) transit network. As 

shown in Figure 4.2, each layer includes several sub-layers. Note that the planar layers in this 

figure are only representing the spatial network. The underlying model and optimization include a 

time-expanded form of each layer for time-space ride-matching that is explained subsequently.   

The base layer for the network is a vehicle network because the primary travel option of a 

significant proportion of system participants is private vehicles. It is important to compose the 

analytical network as a real vehicle network for depicting realistic vehicle movements. The critical 

challenge in building this base layer, however, is that a high resolution for the network causes 

computational complexities. 

 
Figure 4.2 Multilayered Transportation Network Overview 
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 Thus, we perform our analysis on an abstraction of the real network and define the new nodes as 

“go-points.” Without any loss of generality, we assume that all trips originate and terminate at the 

go-points (Masoud and Jayakrishnan, 2017a).  

AV and AV fleets may help reduce car-ownership and congestion. However, to accomplish this 

task, a tremendous number of autonomous vehicles would be needed. Additionally, from a policy 

perspective, it is currently infeasible to shift all private vehicle demand to shared autonomous fleet 

vehicle demand because, in reality, a lot of people may still depend on their current primary travel 

mode (which is a private vehicle) and may not want to relinquish ownership.  

The shared autonomous fleet vehicle network is designed for a system with the key locations being 

vehicle depots. In this sub-layer, we assume that SAFVs have the same features as in the vehicle 

network, which allows us to consider every go-point in the vehicle network as an intermediate 

node and so that nearby intermediate nodes from depots in the SAFVs network can be connected. 

It is worth mentioning that this dissertation considers SAFVs as one of shared mobility options in 

order to portray a near-future transportation system more realistically, instead of changing all 

individuals’ personal vehicles to autonomous vehicles instantly.   

To avoid confusion between go-points in the vehicle layer and the nodes in other layers, here we 

refer to the nodes in transit and autonomous fleet vehicle networks as “station”. In the transit 

network, buses share network links with vehicles, unlike metro rails which are grade separated 

from the vehicle network. The difference between buses and private vehicles is that buses follow 

their own schedule and run only on designated routes. We make a reasonable assumption that the 

time the bus arrives at the stop is always the same, so that its travel time is not affected by traffic 
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congestion. Thus, we load buses and metro rail onto the transit network layer, which consists of 

stations and timetables.  

The primary assumption in the design of our proposed multi-layer network is that each travel mode 

cannot utilize other travel mode networks. Thus, we generate transfer links to connect each layer 

and designate walking as the travel mode for this link.  

By introducing the multi-layer networks and go-points and stations, we build a time-expanded 

network for each layer. The network includes nodes which has both time and location aspects. In 

addition, we discretize the study time span into a set of indexed time intervals of a small duration, 

∆𝑡, expected to be 5 minutes or less (we use 1 minutes) so that time-dependent travel time matrices 

can be used for analysis. In this network, each node 𝑛𝑖 is considered as a tuple (𝑡𝑖 , 𝑠𝑖), where 𝑡𝑖 is 

the time interval during which a user may be located at station 𝑠𝑖. In turn, a link can be represented 

as a tuple (𝑛𝑖, 𝑛𝑗) =  (𝑡𝑖, 𝑠𝑖 , 𝑡𝑗 , 𝑠𝑗) (Masoud and Jayakrishnan (2017a)). One of the advantages of 

this network is that it can intuitively model a waiting movement. Let us suppose that there is a 

rider who is waiting for another driver who can pick and drop her off to her destination or there is 

a shared-ride driver who is waiting for another rider who has not yet arrived at a pick-up point. In 

such cases, their waiting movements can be illustrated as a time-space link that is (𝑡𝑖, 𝑠𝑖, 𝑡𝑗 , 𝑠𝑗) = 

(1,1,2,1). This means that during one time interval she stays at the station (or go-point) 1. More 

details of the ride-matching optimization for individual driver on the time-expanded multi-layer 

networks is given in chapter 5.  
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In such an integrated shared mobility system and the network structure, the proposed P2P 

ridesharing service helps a user (i.e., riders) experience a chain of travel modes according to their 

convenience.  

4.2.3 Mobility Portfolio Agent 

In the proposed shared and automated transportation system, a mobility portfolio agent is a 

subscription-based service provider that connects the system users and the agents in the system via 

smartphone applications. The mobility portfolio agent can show available TOC modes that the 

users can use depending on their system participation status and provide them with a payment 

system. This allows subscribers to easily use the suggested TOC mode from the mobility portfolio 

agent. To achieve these tasks, we define three classes of mobility portfolio sub-agents: a mobility 

portfolio bundle design agent, a solution suggestion agent, and a payment agent.  

(1) Mobility Portfolio Bundle Design Agent 

The travel options in the shared and automated transportation system vary considerably (Table 

4.1). Due to a variety of travel options, a large number of TOC modes can be generated, and the 

system participants enter the system with their own TOC modes in mobility portfolios. However, 

when people actually participate in the system with a mode determined by them, it is intractable 

to execute the p2p ridematching process taking all these characteristics into account. Furthermore, 

people may not use pre-determined TOC modes if no feasible matched partners exist. Note that 

TOC modes are highly dependent on system participation status (i.e., such as a mobility service 

provider and/or a receiver). More specifically, once users enter the system with their own 
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participation status, TOC modes are defined as the outputs from the p2p ridematching process. 

Thus, we introduce a bundle design agent for the mobility portfolio. In this agent, we firstly define 

the system participants’ available travel status. Travel status can be classified in various ways. For 

example, we can set different travel status depending on the mobility service type such as p2p 

carsharing providers, public transit users, shared-bike users, p2p shared-ride drivers, p2p shared-

ride riders, and so on. It is also possible to group the travel status according to the properties or 

status of the shared-mobility providers and shared-mobility receivers. Furthermore, even we can 

include a not-engage-in-shared-mobility status which is a reasonable option for many users in 

various circumstances. Henceforth, in this dissertation, we define that there are three bundle 

options in mobility portfolios: a shared-ride provider (i.e., shared-ride driver), a shared-ride user 

(i.e., shared-ride rider), and a solo-driver.  

(2) Mobility Portfolio Solution Suggestion Agent 

Once people enter the system with a travel status from the mobility portfolio bundle, their TOC 

modes are assigned according to the results from the p2p ridematching process. At this time, people 

may have various options. For instance, let assume that a person joins the system as a shared-

mobility rider. In this platform, he/she requests shared-mobility rides for the trip, and after 

completing the p2p ridematching process there are 10 feasible TOC modes with different shared-

mobility provider sets. In this scenario, this rider needs to compare the cost and benefits between 

the proposed TOC modes. In addition, it is possible that riders have more than 10 feasible TOC 

modes if there are plenty of shared-mobility providers who can serve these travel itineraries, and 

riders have to compare all possible TOC modes manually. Too many choices may cause 

unnecessary user fatigue and makes the system unattractive. To reduce such fatigue, the mobility 
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portfolio aims to provide the best TOC solution to the users. This dissertation assumes that once 

the users receive their travel option from the portfolio, they use it without hesitation.  

(3) Payment Agent 

In the mobility portfolio, each travel option in the system has designated cost. In the consideration 

of the vehicle cost, TOC mode’s price is set in proportion to travel distance. This price can be used 

as a metric that the suggestion agent considers when making decisions between available TOC 

modes. Through the smartphone payment system, the mobility portfolio subscriber can easily book 

the recommended TOC modes. 

4.2.4 Peer-to-Peer Ridematching Agent  

The peer-to-peer ridesharting system is an essential concept through this dissertation, because it is 

the most comprehensive and relaxed type of ridesharing systems. In this system, people can join 

the system as either mobility providers or receivers and shift their travel status at any times. This 

implies that people utilize mobility services not only as service users, but also provide themselves 

with their vehicles as shared-ride drivers or carsharing providers. By allowing people to easily 

shift their travel status, we can provide more opportunities people to get matched. In other works, 

if we divide people into a rider and a driver groups and match, there are people who keep being 

matched, while there are people who don’t have the change to get matched at all.  

Moreover, another benefit of the peer-to-peer ridesharing mechanism is that it is flexible to 

collaborate with a multimodal transportation system that include various mobility services such as 

shared-ride providers, bike, scooter, walk, public transit and even shared autonomous fleet vehicle; 
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and it can easily link mobility services providers and service users. Thus, this problem can be 

solved by formulating a peer-to-peer (p2p) ridematching problem of matching paths in the time-

expanded multimodal network. 

The goal of the p2p ridesharing agent is to match system participants as much as possible in real-

time so that people can instantly begin their trip with their matched partners. In this context, 

Masoud and Jayakrishnan (2021a) mathematically formulated a real-time p2p ridematching 

problem of matching paths and solve it with a dynamic programming approach. One of the 

assumptions they made is that origin and destination are fixed. Variables 𝑂𝑆𝑟, 𝑂𝑆𝑑, 𝐷𝑆𝑟, and 𝐷𝑆𝑑 

represent origin and destination go-points for both riders and drivers, respectively. Another 

assumption in the formulation is that each participant's early departure time from origin and late 

arrival time to destination are randomly generated. Equation (4.5) shows the original ridematching 

problem formulation. In their study, four binary decision variables have been set in equation (4.1)-

(4.4), and using these variables the ridematching problem as shown in equation (4.5).  

𝑥𝑙 
𝑑 = {

1 𝐷𝑟𝑖𝑣𝑒𝑟 𝑑 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑙
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.1) 

𝑦𝑙 
𝑟𝑑 = {

1 𝑅𝑖𝑑𝑒𝑟 𝑟 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑙 𝑤𝑖𝑡ℎ 𝑑𝑟𝑖𝑣𝑒𝑟 𝑑
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.2) 

𝑧𝑟 = {
1 𝑅𝑖𝑑𝑒𝑟 𝑟 𝑖𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.3) 

𝑢𝑟 
𝑑 = {

1 𝐷𝑟𝑖𝑣𝑒𝑟 𝑑 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦 𝑓𝑜𝑟 𝑟𝑖𝑑𝑒𝑟 𝑟
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.4) 
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Constraints set (4.5b)-(4.5d) represent drivers’ route and (4.5e) ensures the flow conservation of 

drivers. Constraints set (4.5f)-(4.5h) represent the riders’ route that is associated with drivers who 

serve a rider from his origin to destination.  

Max ∑ 𝑧𝑟 − ∑ 𝑊𝑟

𝑟∈𝑅

∑ 𝑢𝑟 
𝑑

𝑑∈𝐷𝑟∈𝑅

 (4.5a) 

∑ 𝑥𝑙 
𝑑

       𝑙∈𝐿:
𝑠𝑖=𝑂𝑆𝑑(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

− ∑ 𝑥𝑙 
𝑑

        𝑙∈𝐿:
𝑠𝑗=𝑂𝑆𝑑(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

= 1 
∀ 𝑑 ∈ 𝐷 (4.5b) 

∑ 𝑥𝑙 
𝑑

𝑙∈𝐿:
𝑠𝑗=𝐷𝑆𝑑(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

− ∑ 𝑥𝑙 
𝑑  

𝑙∈𝐿:
𝑠𝑖=𝐷𝑆𝑑(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

= 1 
∀ 𝑑 ∈ 𝐷 (4.5c) 

∑ 𝑥𝑙
𝑑

       𝑡𝑖, 𝑠𝑖

𝑙=(𝑡𝑖, 𝑠𝑖, 𝑡, 𝑠)∈𝐿

  = ∑ 𝑥𝑙
𝑑

      𝑡𝑖, 𝑠𝑖

𝑙=(𝑡,𝑠, 𝑡𝑗, 𝑠𝑗)∈𝐿

 ∀ 𝑑 ∈ 𝐷 
∀ 𝑡 ∈ 𝑇𝑑   
∀ 𝑠 ∈ 𝑆\{𝑂𝑆𝑑 ∪ 𝐷𝑆_𝑑} 

(4.5d) 

∑(𝑡𝑗 − 𝑡𝑖)𝑥𝑙
𝑑 ≤

𝑇𝑑
𝑇𝐵

∆𝑡
𝑙∈𝐿

 ∀ 𝑑 ∈ 𝐷 (4.5e) 

∑ ∑ 𝑦𝑙 
𝑟𝑑

       𝑙∈𝐿:
𝑠𝑖=𝑂𝑆𝑟(𝑡𝑖,𝑡𝑗)∈𝑇𝑟

𝑑∈𝐷′

− ∑ ∑ 𝑦𝑙 
𝑟𝑑

       𝑙∈𝐿:
𝑠𝑗=𝑂𝑆𝑟(𝑡𝑖,𝑡𝑗)∈𝑇𝑟

𝑑∈𝐷′

= 𝑧𝑟 
∀ 𝑟 ∈ R (4.5f) 

∑ ∑ 𝑦𝑙 
𝑟𝑑

       𝑙∈𝐿:
𝑠𝑗=𝐷𝑆𝑟(𝑡𝑖,𝑡𝑗)∈𝑇𝑟

𝑑∈𝐷′

− ∑ ∑ 𝑦𝑙 
𝑟𝑑

       𝑙∈𝐿:
𝑠𝑗=𝐷𝑆𝑟(𝑡𝑖,𝑡𝑗)∈𝑇𝑟

𝑑∈𝐷′

= 𝑧𝑟 
∀ 𝑟 ∈ R (4.5g) 

∑ ∑ 𝑦𝑙
𝑟𝑑

      𝑡𝑖, 𝑠𝑖

𝑙=(𝑡𝑖, 𝑠𝑖, 𝑡, 𝑠)∈𝐿
𝑑∈𝐷′

= ∑ ∑ 𝑦𝑙
𝑟𝑑

      𝑡𝑖, 𝑠𝑖

𝑙=(𝑡,𝑠, 𝑡𝑗, 𝑠𝑗)∈𝐿
𝑑∈𝐷′

 ∀ 𝑟 ∈ 𝑅 
∀ 𝑡 ∈ Tr  
∀ 𝑠 ∈ 𝑆\{𝑂𝑆𝑟 ∪ 𝐷𝑆_𝑟} 

(4.5h) 

∑ ∑(𝑡𝑗 − 𝑡𝑖)𝑦𝑙
𝑟𝑑 ≤

𝑇𝑟
𝑇𝐵

∆𝑡
𝑙∈𝐿𝑑∈𝐷′

 ∀ 𝑟 ∈ 𝑅 (4.5i) 

∑ 𝑦𝑙
𝑟𝑑 ≤ 𝐶𝑑𝑥𝑙

𝑑

𝑟∈𝑅

 ∀ 𝑑 ∈ 𝐷 
∀ 𝑙 ∈ 𝐿 

(4.5j) 

𝑢𝑟
𝑑 ≥ 𝑦𝑙

𝑟𝑑 
∀ 𝑟 ∈ 𝑅 
∀ 𝑑 ∈ 𝐷  
∀ 𝑙 ∈ 𝐿 

(4.5k) 
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𝑢𝑟
𝑑 ≤ ∑ 𝑦𝑙

𝑟𝑑

𝑙∈𝐿

 ∀ 𝑟 ∈ 𝑅 
∀ 𝑑 ∈ 𝐷  

(4.5l) 

∑ 𝑢𝑟
𝑑 − 1

𝑑∈𝐷

≤ 𝑉𝑟 
∀ 𝑟 ∈ 𝑅 (4.5m) 

 

Constraint set (4.5f) ensure the flow conservation of riders who are successfully matched with 

drivers. Constraint set (4.5e) and (4.5i) limit the total travel time for both drivers and riders, 

respectively. Constraint set (4.5j) ensures that the total number of riders that drivers can serve 

cannot exceed drivers’ vehicle capacity. Constraint sets (4.5k) and (4.5l) register drivers who 

contribute to each rider’s itinerary. Constraint set (4.5m) restricts the number of transfers by each 

rider. The output of the p2p ridematching results is the maximum number of served riders by 

providing a minimum travel time itinerary using a dynamic programming approach. 

In our formulation, we modified the original ridematching problem to account for the extended 

mobility service providers. Instead of using the driver decision variable, 𝑥𝑙 
𝑑, we re-define it as 

shown in equation (4.6). Variable, 𝑑𝑣, denotes a vehicle type 𝑣 that assigned to driver 𝑑. By doing 

so, we can now consider heterogenous vehicle types for not only vehicle, public transit, walk but 

also various vehicle models such SUVs, electric vehicle, 2-seat door vehicle, autonomous vehicle, 

and so on. It makes possible to set different prices according to vehicle types. We also set a cost 

variable, 𝑒𝑑𝑣 , as a designated price for each vehicle type, which allows us to calculate the minimum 

cost travel time path for riders with their associated shared mobility providers. Note that in the p2p 

ridesharing agent, we aim to solve the ridematching problem that aims to find the optimal solutions 

for riders. This is because in the practical standpoint, once people register themselves as a shared-

ride drivers in the mobility portfolio system, they cannot find a rider who can optimize their path 
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because firstly they do not know which other riders will have them in eligible set to even optimize. 

Driver-side optimization is not practical. However, for all riders, once they ask for a ride, they 

have a can to select a group of drivers who can optimize their path. Thus, in the problem of finding 

a path for all system participants, the optimization is done for all riders.  

𝑥𝑙 
𝑑𝑣 = {

1 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑣 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝐷𝑟𝑖𝑣𝑒𝑟 𝑑 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑙
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.6) 

In the p2p ridematching agent, even though we are focusing on riders’ side optimality, the outputs 

from this agent will a travel itinerary for all system participants with associated cost. This will be 

explained in the next chapter. In practice, however, the optimization will be done in real-time, for 

individual riders, to select the best possible drivers for them. 

There are certain implications in how the above optimization is used individually in real-time. First 

of all, it will naturally have to be based on the individual’s objectives and not any system objectives 

such as overall costs or matching ratio. Emphasizing the individual’s objective is important, as 

user-level trust on the system and the app, and their compliance will require the optimization to be 

done from their standpoint. Just as in the case of “system optimum” and “user equilibrium” in 

traditional transportation planning, the system objectives may cause some users to be provided 

solutions that are not best for themselves, and this can lead to lack of trust in the system. Thus 

user-side objective such as minimum travel time cost and payment are needed. However the 

collective system performance with individual (distributed) optimizations does become socially 

beneficial with increased sharing of resources and reduced system costs, in general, as our results 

will show.  
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It is perhaps even more important to describe that the above optimization is performed only for 

riders (who pay for the rides through utilization of their paid portfolio “minutes”). This implies 

that the drivers’ apps are not assumed to optimize from their standpoint. This assumption is based 

on practicality. The mobility agency (or the portfolio seller) cannot ask any rider, who pays, to 

select an option that involves higher payment than their best option in terms of the drivers available. 

However, the drivers who are receiving payment (and thus positive utility from offering the ride) 

can be asked to offer the service to a rider who is not the best from their standpoint and gives less 

payment than another rider. That is, they cannot be allowed to select a rider who is best from that 

driver’s standpoint – which may result in the rider getting a suboptimal solution, which cannot be 

imposed on a “payer”. For this reason, the implementation of the above optimization formulation 

and solution scheme explained in the next chapter are only for riders. The drivers are assumed to 

offer the service if they get a payment. It is possible and not too challenging to introduce a 

minimum payment required for any driver to offer the service, but this has not been attempted in 

this dissertation research.  

4.3 Discussion  

In this chapter, we discussed the limitations of traditional trip modeling when applied to integrated 

and shareable transportation systems. This led to our concept of travel mode pool to describe the 

seamless chaining of various travel modes with different characteristics that are more appropriate 

for these systems. We then describe a conceptual platform based on agent-based modeling 

techniques to operate different entities that compose the shared and automated transportation 

system. In the platform, there are three main elements which are the multi-layered network design: 
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the p2p ridesharing system, and mobility portfolio with the sub-agents that allow users to hop 

between various travel modes. A mathematical formulation of the transformed ride-matching 

problem, which serves as an input to the mobility portfolio agents, is provided.  
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Chapter 5 

Mobility Portfolio Framework 

 

5.1 Overview 

The primary role of the mobility portfolio is to serve mobility plans to system users. Mobility plans 

that are cost-effective can motivate travelers to yield their current travel mode and increase their 

participation in this shared transportation system. This phenomenon can create network effects in 

that additional users make the system more efficient in terms of vehicle usage, leading to reduced 

private vehicle ownership, and consequently, lower overall levels of traffic congestion and 

emissions. Therefore, the design of mobility portfolios is of utmost importance. 

This chapter presents an overview of the framework employed in this book to model an individual 

level mobility portfolio problem, followed by its various mathematical formulations. The modeling 

framework in this chapter takes into account every participant’s travel itinerary, travel cost, 

updated travel time perception, and travel status choice dynamics for every decision phase during 

the mobility portfolio period to eventually provide a mobility portfolio solution. Figure 5.1 shows 
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the different modules and processes that undergird the proposed framework. We describe them in 

more detail in the following section. 

 

Figure 5.1 Mobility Portfolio Framework 

 

5.2 Model Components 

The purpose of the mobility portfolio usage plan is to provide a solution, i.e., a set of TOC modes 

to use at various phases during the mobility portfolio period. As TOC modes are related to travel 

status, the mobility portfolio subscribers have to decide which travel status to choose at every 

decision phase within that time frame. In order to explain travel status choice dynamics over time, 

it is necessary to explicitly model the system participants’ perception of travel time and how this 

perception changes dynamically. Thus, the modeling framework contains the following 

components: (a) preprocessing module, (b) p2p ridesharing module, (c) perception update module, 
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and (d) travel status decision making module. This section provides a description of these modules 

in the broad context of mobility portfolio problems.  

5.2.1 Preprocessing module 

The role of this module is to limit the size of the accessible network for the system participants. 

This is necessary to reduce the p2p ridematching computational time. Masoud and Jayakrishnan 

(2017a) proposed an Ellipsoid Spatio-Temporal Accessibility Method (ESTAM) that reduces the 

size of the original time-expanded network for each system user, considering reachable 

spatiotemporal links within their respective travel time windows. In the preliminary phase of 

framework, we applied the ESTAM method on a abstract network. The algorithmic details can be 

found at Masoud and Jayakrishnan (2017a). Mobility services such as metro and buses follow their 

assigned schedule and routes. Thus, drivers for public mobility services travel on a route-based 

time-expanded network. Notes that transfer and wait movements do not require any specific 

vehicles, since we assume that users walk to transfer between stations and wait there, if required. 

To model this behavior, we set a dummy driver, 𝑑′, as a vehicle for both walking and waiting 

movements. One important aspect of dummy drivers is that they can exit anytime. Thus, dummy 

drivers have access to the entire time spanned spatial network and are not limited by the constraints 

of spatial reachability. 

5.2.2 P2P Ridesharing module 

In this module, the p2p ridematching problem described in the previous chapter is modeled and 

solved using a multi-layered time-expanded network. The output of the p2p ridematching problem 
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in the previously described method is the total number of matched riders. However, the outputs of 

the model in this dissertation are travel itineraries with costs for all system participants (including 

not only matched riders and drivers, but also unmatched riders and solo drivers) and their TOC 

modes with vehicle types. Except for riders who are matched with other drivers, all participants 

are considered to be matched with themselves, so that vehicle types for their trips are the same as 

the ones they would normally use.  

We denote 𝑆𝑖 as the set of travel itineraries for participant 𝑖, and ℓ𝑛 to be the 𝑛𝑡ℎ sequence of links 

that composes the travel itinerary, {ℓ1, ℓ2, … , ℓ𝑛} ∈ 𝑆𝑖 . Note that link ℓ = (𝑡𝑗 , 𝑠𝑗 , 𝑡𝑘, 𝑠𝑘) is now 

spatiotemporal in nature and contains information about the link start-node arrival time and link 

end-node departure time. The term ℓ𝑛
𝑑𝑣  denotes a matched driver with vehicle type for link ℓ𝑛. The 

cost variable 𝑒𝑑𝑣 , defined in chapter 4.2.4, is used to calculate travel cost. The notations of p2p 

ridesharing module are similar to the model described earlier, which we extend in order to 

incorporate potentially new mobility service,  

5.2.3 Perception Update Module 

There are two sub-modules within this module: a travel time perception update module and a travel 

cost perception module.  

Within the mobility portfolio framework, people need to choose to shared-ride drivers, riders, or 

solo driver for their next decision phase. Their decision is closely related to their travel time, since 

vehicle costs for its type have already been fixed at this stage. Our developed agent-based 

simulation platform gathers all system participants travel information, such as travel time, 
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departure time and other trip information. The platform is also able to provide information about 

system performance, which, combined with their experience during their current decision phase, 

can be used by participants to update their travel time for the next decision phase. Updated 

perception of travel time and the change in perception during the mobility portfolio period will be 

major inputs for the next module.  

It is worth mentioning that the network performance is heavily dependent on the number of the 

matched riders, which, in turn, is closely related to the number of potential shared-ride drivers. 

This is because more matched riders lead to less loaded vehicles on transportation networks. The 

network performance can be measured only after the matching process, which means that the 

system users who start their journey with an expected travel time in their perception, may 

experience different travel times when they actually travel on the network. To obtain the 

experienced travel times, we use NeXTA/DTALite (Zhou and Taylor, 2014), a mesoscopic 

simulation for dynamic traffic analysis. The mesoscopic model allows us to obtain a vehicle’s 

trajectory, without incurring the computation costs of microsimulation models.  

There are various studies that focus on updating the perceived travel time by users (Jha et al., 1998; 

Zhang et al., 2014; Lin and Yang, 2019). The broad class of simulation-based day-to-day learning 

methods is considered a well-known approach for modeling perception updates. Bayesian 

inference is also considered a useful statistical method that uses Bayes’ theorem to update 

hypothesis probabilities as more information becomes available. The method usually involves two 

aspects: expected information and experienced information. These data of travel time between 

same origin-destination (OD) pairs can be easily updated using traffic network information and 

historical perception of travel time between same origin-destination (OD) pairs. In Zhang et al. 
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(2014) and Jha et al. (1998) collect traffic network information with the help of transportation 

simulation models, then combine the information and drivers' historical perceptions to update 

perception on routes. However, these studies focus on one particular traveler group for travel 

choice model. For instance, Zhang et al. (2014) uses the updated travel time to estimate travel 

routes and using the updated data when drivers choose their route and departure time. Unlike in 

previous studies, the travel status decision-making module in this dissertation is executed across 

the entire system. In addition, our framework makes a more realistic assumption that system 

participants have different matching experiences, which means that even though people may enter 

the system as a shared-ride riders, some of them may not find a match. We assume that unmatched 

riders would need to drive themselves on their privately-owned vehicles.  

Thus, in this dissertation, we firstly separate people who travel on same OD pairs and then calculate 

the expected travel time using a Bayesian inference model with accumulated experienced travel 

time data and real travel time data from NeXTA/DTALite simulation model with their current 

decision phase travel status. With this updated travel time, we can estimate expected travel costs 

for each travel status for people who have the same origin and destination. The first step of the 

cost estimation is to develop a payoff table method which can illustrate potential profits for each 

item, based upon the characteristics of the ridesharing environment. Using this method, expected 

payoffs, or expected travel cost values in other words, of travel status can be calculated by 

multiplying travel costs in a perfect information scenario by the probability of the matching 

success.  

Thus, in this dissertation, we firstly separate people who travel on same OD pairs and then calculate 

expected travel time using Bayesian inference model with accumulated experienced travel time 
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data and real travel time data from NeXTA/DTALite simulation model with their current decision 

phase travel status.  With this updated travel time, we can estimate expected travel costs for each 

travel status for people who have the same origin and destination by multiplying the current 

experienced average travel cost. In this context, we apply a payoff table method which can 

illustrate potential profits for each item, based upon the characteristics of the ridesharing 

environment. Using this method, expected payoffs, or expected travel cost values in other words, 

of travel status can be calculated by multiplying travel costs in a perfect information scenario by 

the probability of the matching success.  

5.2.4 Travel Status Decision Making Module for Portfolio Usage Plan 

The expected travel costs for each travel status from the previous module can be directly used to 

make travel status choices for the next decision phase within the mobility portfolio period. A key 

aspect of the mobility portfolio framework is that system participants’ sequential decision making 

within the period can be updated during successive iterations. This is intended to simulate a 

person’s decision-making processes in that an individual user’s travel status decision choice is 

influenced by not only their previous decision phase experience but also the experiences of the 

same decision phase during previous iterations. The Ant Colony optimization (ACO) algorithm, a 

popular metaheuristic algorithm, has the capability to mathematically incorporate these two 

learning phases. Thus, we adopt a ACO algorithm with some modifications, and apply it to the 

mobility portfolio problem. The details of the algorithm are described in section 6.3.  
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5.3 Mobility Portfolio Problem 

5.3.1 Mathematical Formulation 

We formulate the mobility portfolio problem mathematically with the objective of maximizing 

savings for each individual. To that effect, we define a decision variable as follows:  

ℎℓ
𝑖𝑑 = {

1 𝑖𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑑 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑙𝑖𝑛𝑘 ℓ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑡𝑜 𝑜𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑟 𝑖 𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5.1) 

𝑔ℓ
𝑖𝑟 = {

1 𝑖𝑓 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑟 𝑖 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑙𝑖𝑛𝑘 ℓ 𝑤𝑖𝑡ℎ 𝑟𝑖𝑑𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛 𝑟 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (5.2) 

The objective function, representing individual’s savings is described in equation (5.3)  

𝑚𝑎𝑥 𝑠𝑖  (5.3) 

We set variable 𝑠𝑖 to represent user 𝑖’s travel cost savings. The travel cost savings can be calculated 

using the following equation: 

𝑠𝑖 =  ∑(𝑍𝑖 − 𝑐𝑖,𝑛)

𝑁

𝑛

 (5.4) 
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We set variable 𝑍𝑖 to represent user 𝑖’s total travel expenditures with primary travel mode (which 

is a private vehicle), and it can be calculated in equation (5.5). Variable 𝑒𝑑𝑣  represents the unit 

cost of vehicle type 𝑑𝑣, and variable 𝑡 ̅𝑖
  shows the average value of the minimum and maximum 

travel times that can be traveled from origin to destination within the time window.  

𝑍𝑖  =   𝑒𝑑𝑣 ∙ 𝑡 ̅𝑖
  (5.5) 

Variable 𝑐𝑖,𝑛  to represent the travel cost for individual 𝑖  at the 𝑛𝑡ℎ  decision phase within the 

portfolio period. Note that |𝑁| represents the length of mobility portfolio period, and 𝐼 represents 

the set of all system participants regardless of their travel status, so that 𝐼 = {𝐷 ∪ 𝑅 ∪ 𝑆𝑂} where 

𝐷, 𝑅, and 𝑆𝑂 represent the group of people who enter the system as drivers, riders, and solo drivers, 

respectively.  

The travel cost for each individual can be calculated after the ridematching results. Equation (5.6) 

represents the travel cost calculation considering a set of links that contribute to a user’s itinerary.  

𝑐𝑖,𝑛 =

∑ ∑ 𝑡𝑖,ℓ
𝑑 ∙ 𝑒𝑑𝑣 ∙ ℎℓ

𝑖𝑑̇ ∙  𝛿

𝑑∈𝐴

∙ 𝜃   

ℓ=(𝑡𝑗,𝑠𝑗,𝑡𝑘,𝑠𝑘)∈𝐿

+ ∑ 𝑡𝑖,ℓ
𝑑 ∙ 𝑒𝑖𝑣 ∙ 𝑔ℓ

𝑖𝑟∙  𝛿 ∙ (1 − 𝜃)  

ℓ=(𝑡𝑗,𝑠𝑗,𝑡𝑘,𝑠𝑘)∈𝐿

  
   

∀ 𝑑 ∈ 𝐴 
∀ 𝑟 ∈ 𝑅  

(5.6) 

where, 

𝜃 = {
1 𝑖𝑓 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑟 𝑖 𝑖𝑠 𝑟𝑖𝑑𝑒𝑟 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝛿 = {

1 𝑖𝑓 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑎𝑙𝑜𝑛𝑒
𝛼 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 𝑖𝑓 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖 𝑖𝑠 𝑎 𝑟𝑖𝑑𝑒𝑟 𝑎𝑛𝑑 𝑝𝑎𝑦 𝑡𝑜 𝑑𝑟𝑖𝑣𝑒𝑟 𝑑

(1 − 𝛼) 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 𝑖𝑓 𝑝𝑒𝑟𝑠𝑜𝑛 𝑖 𝑖𝑠 𝑎 𝑑𝑟𝑖𝑣𝑒𝑟, 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑓𝑟𝑜𝑚 𝑟𝑖𝑑𝑒𝑟 𝑟
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The first term in equation (5.6) indicates riders’ travel cost and the second term shows drivers’ 

travel cost after the ridematching process, respectively. The travel time variable, 𝑡𝑖,ℓ
𝑑 , represents 

user 𝑖’s link ℓ travel time with driver 𝑑. Note that except for matched riders, individual 𝑖 and 

driver 𝑑  are the same. This means that, from a modeling standpoint, a driver and a rider are 

considered the same agent. To account for all mobility service providers such as public transit 

services, 𝑇, and dummy drivers, 𝐷′, we define the set of mobility providers as 𝐴 = {𝐷 ∪ 𝑇 ∪ 𝐷′}. 

Variable 𝛿 represents ride-match benefits. For instance, if a person 𝑖 does not matched whether 

she is a rider or a driver, she has to drive herself without incentives, and thus 𝛿 become 1; and 𝛼 

is an incentive ratio that riders have to pay their matched drivers which is negotiated.  

∑ 𝑡𝑖
𝑑𝑣

𝑁

𝑛=1

≤ 𝐶𝑅𝑑𝑣

𝑚𝑎𝑥  (5.7) 

Equation (5.7) is related to the mobility portfolio scheme. This equation ensures that the amount 

of used travel time on a driver’s vehicle type 𝑑𝑣 must not exceed the maximum travel time credit 

allowable for it. Putting restrictions on vehicle time usage can be seen as similar to placing 

restrictions on travel options provided by the mobility portfolio framework. For instance, if a 

shared-ride driver’s travel itinerary is composed of a set of links, (ℓ1, ℓ2, ℓ3), and he shares link 

ℓ2 with a rider, then, his travel mode can be a set of TOC modes as follows: (‘drive-alone & drive 

yourself’, ‘drive yourself & share empty seat’, ‘drive-alone & drive yourself’). His travel mode is 

composed of three travel options: drive-alone, drive yourself, and share empty seat, with his 

vehicle type for each option being his private vehicle. Thus, the travel time incurred by vehicle 

types is equivalent to the travel time for travel options. The same logic applies to shared-ride riders 

as well. Equation (5.7) represents a constraint that prevents participants from abusing a certain 



 

72 

 

type of travel option and induces them to use other travel options. When some amount of maximum 

travel time credit on travel options is given, this mathematical formulation leads to the optimal 

solution.  

5.3.2 Problem Variants – Multimodal Transportation System Expansion  

(1) Shared Autonomous Fleet Vehicle 

While hewing to the structure of mobility portfolio problem, various problem environments can 

be created by expanding the ridematching formulation described in model (5.5) to include various 

system characteristics. In this section, we review how incremental changes to the formulation 

allow us to model different current and future ridesharing scenarios.  

The travel option pool in model (5.5) contains shard-ride drivers and public transit. The travel 

option pool that is utilized in this dissertation is expanded by incorporating autonomous vehicles 

in shared fleet systems. Even though autonomous vehicles by definition do not actually have a 

driver, for modeling purposes, we assume that there is a virtual driver 𝑠𝑑. The set of mobility 

providers, 𝐴 , is also expanded to become 𝐴 = {𝐷 ∪ 𝑇 ∪ 𝑆𝐷 ∪ 𝐷′} . Shared autonomous fleet 

vehicles (SAFVs) travel routes depend on the passengers origin and destination stations, with 

depots, 𝑜𝑠𝑑 , representing their initial trip origin stations. The route for an SAFVs is a sequence of 

partial destinations which indicates pick-up and drop-off points of passengers. Thus, we modify 

constraint set (5.5b)-(5.5c) to consider the routes of the fleet vehicles as shown in Equation (5.8a)-

(5.8b). 
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∑ 𝑥𝑙 
𝑑𝑣

       𝑙∈𝐿:
𝑠𝑖=𝑂𝑆𝑑(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

− ∑ 𝑥𝑙 
𝑑𝑣

        𝑙∈𝐿:
𝑠𝑗=𝑂𝑆𝑑(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

= 1 
∀ 𝑑 ∈ 𝐴 (5.8a) 

where 
{
𝑠𝑘 = {𝑜𝑠𝑑 ∪  𝑂𝑆𝑑} 𝑖𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑖𝑠 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑑𝑟𝑖𝑣𝑒𝑟 𝑠𝑑

𝑠𝑘 = 𝑂𝑆𝑑 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

∑ 𝑥𝑙 
𝑑𝑣

𝑙∈𝐿:
𝑠𝑗=𝐷𝑆𝑑(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

− ∑ 𝑥𝑙 
𝑑𝑣  

𝑙∈𝐿:
𝑠𝑖=𝐷𝑆𝑑(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

= 1 
∀ 𝑑 ∈ 𝐴 (5.8b) 

where 
{
𝑠𝑘 = {𝑜𝑠𝑑 ∪  𝐷𝑆𝑑} 𝑖𝑓 𝑑𝑟𝑖𝑣𝑒𝑟 𝑖𝑠 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑑𝑟𝑖𝑣𝑒𝑟 𝑠𝑑

𝑠𝑘 = 𝐷𝑆𝑑 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(2) Shared Autonomous Fleet Vehicle and Peer-to-Peer Carsharing Systems 

The modified ridematching problem can be further extended to implement a peer-to-peer 

carsharing service. Unlike commercial carsharing services such as Zipcar, the p2p carsharing 

mobility providers are private vehicle owners. By registering themselves as p2p carsharing 

providers, a user can allow other participants in the system to use their car while it is not operating. 

In this scenario, shared-ride riders can also be p2p carsharing drivers. Thus, we define a variable 

𝑑𝑣 
𝑝𝑞

 to denote a vehicle 𝑣  that is assigned to participant 𝑝 and operated by 𝑞 . This service is 

different from regular fleets in that the carsharing vehicle owners’ trip destinations are origins for 

the carsharing services, and carsharing users’ destinations become carsharing vehicles’ 

destinations. Furthermore, the decision variables 𝑥𝑙 
𝑑 in equation (4.1), that were previously defined 

from a drivers’ standpoint, is redefined from the perspective of the vehicle and its owner. Equation 

(5.9) represent new the decision variable.  
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𝑥𝑙 

𝑑𝑣 
𝑝𝑞

= {
1 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑣 𝑡ℎ𝑎𝑡 𝑜𝑤𝑛𝑒𝑑 𝑏𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑝 𝑎𝑛𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑞 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑙
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.9) 

In accordance with the modified decision variable, the constraint sets in equation (5.5b)-(5.5c) are 

redefined in equation (5.10a)-(5.10b).  

∑ 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

       𝑙∈𝐿:
𝑠𝑖=𝑂𝑆𝑑𝑝𝑞(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

− ∑ 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

        𝑙∈𝐿:
𝑠𝑗=𝑂𝑆𝑑𝑝𝑞(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

= 1 
∀ 𝑑 ∈ 𝐴 (5.10a) 

where 
{
𝑠𝑘 = {𝐷𝑆𝑝 ∪  𝑂𝑆𝑑𝑝𝑞} 𝑖𝑓 𝑝 ≠ 𝑞

𝑠𝑘 = 𝑂𝑆𝑑𝑝𝑞 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

∑ 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

𝑙∈𝐿:
𝑠𝑗=𝐷𝑆𝑑𝑝𝑞(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

− ∑ 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

 
𝑙∈𝐿:

𝑠𝑖=𝐷𝑆𝑑𝑝𝑞(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

= 1 
∀ 𝑑 ∈ 𝐴 (5.10b) 

where 
{
𝑠𝑘 = {𝐷𝑆𝑝 ∪  𝐷𝑆𝑑𝑝𝑞} 𝑖𝑓 𝑝 ≠ 𝑞

𝑠𝑘 = 𝐷𝑆𝑑𝑝𝑞 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Defining the p2p carsharing system in this manner makes it possible to maximize the total cost 

savings by adding the extra carsharing cost benefit variable 𝑐𝑖,𝑛
′ . The extra cost benefit variable is 

added to the objective function as follows: 

𝑆𝑖 = ∑(𝑍𝑖 − 𝑐𝑖,𝑛 + 𝑐𝑖,𝑛
′ ∙ 𝜇)

𝑁

𝑛

 (5.11) 

By replacing the cost variable 𝑐𝑖,𝑛 defined in equation (5.6) with 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

, the first term and the second 

term representing the extra cost benefits can be calculated using equations (5.12a)-(5.12b).  
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𝑐𝑖,𝑛

= ∑ ∑ 𝑡𝑖,ℓ

𝑑𝑣 
𝑝𝑞

∙ 𝑒1
𝑑𝑣 ∙ ℎℓ

𝑖,𝑑𝑣 
𝑝𝑞

∙  𝛿

𝑑∈𝐴

∙ 𝜃 + ∑ 𝑡𝑖,ℓ

𝑑𝑣 
𝑝𝑞

∙ 𝑒1
𝑖𝑣 ∙ 𝑔ℓ

𝑖𝑟∙  𝛿 ∙ (1 − 𝜃)  

ℓ=(𝑡𝑗,𝑠𝑗,𝑡𝑘,𝑠𝑘)∈𝐿

   

ℓ=(𝑡𝑗,𝑠𝑗,𝑡𝑘,𝑠𝑘)∈𝐿

 
(5.12a) 

𝑐𝑖,𝑛
′ = ∑ 𝑡𝑖,ℓ

𝑑𝑣 
𝑝𝑞

∙ 𝑒2
𝑑𝑣 ∙ ℎℓ

𝑖,𝑑𝑣 
𝑝𝑞

ℓ=(𝑡𝑗,𝑠𝑗,𝑡𝑘,𝑠𝑘)∈𝐿

  (5.12b) 

The vehicle cost variables 𝑒1
𝑑𝑣and 𝑒2

𝑑𝑣  are determined based on which travel option was used while 

driving the vehicle. The vehicle owner 𝑝 and driver 𝑞 are same for the first term, but different in 

the second term.  

In the modified objective function, 𝜃 is the additional decision variable as defined in equation 

(5.13).  

𝜇 = {
1 𝑖𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 𝑖 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝑎𝑠 𝑎 𝑝2𝑝 𝑐𝑎𝑟𝑠ℎ𝑎𝑟𝑖𝑛𝑔 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5.13) 

In the limiting case, all shared-ride riders become p2p carsharing providers by yielding their cars 

parked at the origin to others. In this case, the mobility provider set 𝐴 = {𝐷 ∪ 𝑇 ∪ 𝑆𝐷 ∪ 𝐷′ ∪ 𝑅} 

and constraint sets (4.8a) and (4.8b) are modified as in the equations (5.14a)-(5.14b):  

∑ 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

       𝑙∈𝐿:
𝑠𝑖=𝑂𝑆𝑑𝑝𝑞(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

− ∑ 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

        𝑙∈𝐿:
𝑠𝑗=𝑂𝑆𝑑𝑝𝑞(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

= 1 
∀ 𝑑 ∈ 𝐴 (5.14a) 

where 
{
𝑠𝑘 = {𝑂𝑆𝑞 ∪  𝑂𝑆𝑑𝑝𝑞} 𝑖𝑓 𝑝 ≠ 𝑞

𝑠𝑘 = 𝑂𝑆𝑑𝑝𝑞 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

∑ 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

𝑙∈𝐿:
𝑠𝑗=𝐷𝑆𝑑𝑝𝑞(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

− ∑ 𝑥𝑙 

𝑑𝑣 
𝑝𝑞

 
𝑙∈𝐿:

𝑠𝑖=𝐷𝑆𝑑𝑝𝑞(𝑡𝑖,𝑡𝑗)∈𝑇𝐷

= 1 
∀ 𝑑 ∈ 𝐴 (5.14b) 
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where 
{
𝑠𝑘 = {𝐷𝑆𝑞 ∪  𝐷𝑆𝑑𝑝𝑞} 𝑖𝑓 𝑝 ≠ 𝑞

𝑠𝑘 = 𝐷𝑆𝑑𝑝𝑞 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

5.3.3 Mobility Portfolio Problem Applications  

(1) Subscription Service Demand Model 

The goal of mobility portfolio service providers is to prescribe a mobility solution set to the 

subscribers. As business, it is in the interest of the service providers to maximize the total number 

of subscribers. On the other hand, existing and potential users could be driven away from this 

platform if they experience unsatisfactory situations such as low matching success rates or low 

cost savings. Therefore, it is necessary to build a service demand model that combines the proposed 

mobility portfolio model with a real-time survey-based decision process that provides information 

about the current sentiments of users to the platform owners. 

(2) Mobility Portfolio Profit Maximization Problem  

The mobility portfolio problem can be configured to provide the maximum profits for the mobility 

portfolio service providers by adding constraints sets or by introducing additional terms to the 

objective function. For instance, to model a system that contains SAFVs as one of the mobility 

providers, we can formulate a multi-objective function that optimizes both SAFVs’ profits and 

mobility portfolio users’ cost savings by introducing an additional term ∑ ∑ 𝑤𝑖,𝑓 ∙ 𝜋𝑖,𝑓𝑓𝑖 . Here 𝜋𝑖 

is a binary decision variable which is 1 if a SAFVs 𝑓 serves a rider 𝑖; otherwise, it is 0. A new 

variable, 𝑤𝑖,𝑓, indicates the profit generated by individual 𝑖 when using a SAFV, 𝑓.  
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5.4 Discussion 

We presented the core mathematical formulation of the mobility portfolio problem in this chapter 

and discussed its variations. The modeling framework presented in this chapter is employed 

throughout the thesis to model and optimize mobility portfolio problems as well as to simulate and 

analyze the impacts of integrated mobility services including p2p ridesharing, p2p carsharing and 

autonomous fleet vehicle sharing. The four components described in this chapter effectively 

capture the travel status choice dynamics and arrive at optimal mobility portfolio solutions. In the 

next chapter, we propose a methodological framework for mobility portfolios with bundling 

mechanisms, one of the most promising avenues for research in shared mobility transportation 

systems.  
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Chapter 6 

Mobility Portfolio Problem  

6.1 Overview 

The simplest form of a mobility portfolio with bundles has three discretized travel statuses: shared-

ride drivers, shared-ride riders, and solo-driver options. In this chapter we propose an iterative 

method rooted in a learning-based travel cost perception update model to solve the mobility 

portfolio problem by providing the minimum mobility portfolio cost for the system participants. 

Performing case studies on a real network, we confirm that the proposed mobility portfolio 

framework converges to a stable state for system participants and improves system performance 

by generating incentives for people to use shared mobility options. 
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6.2 Mobility Portfolio with Bundle Structure 

6.2.1 Illustrative Example  

Bundles contain a set of options that are tied to limited travel credits. Existing MaaS options are 

simply a set of transportation modes. For the purposes of the dissertation, to distinguish our 

framework from existing MaaS options, we call our proposed version as the “Mobility Portfolio 

(MP) bundle.” Our MP bundle is composed of travel statuses – which can be shared-ride driver, 

shared-ride rider, or solo driver – as mobility options. The reason for including a solo driver as an 

option is to consider realistic situations such as people failing to be matched with others or to 

account for situations when they do not want to share their car. Within the bundle platform, 

mobility users are allowed to use any TOC mode available in the shared transportation system. 

Personal mobility providers (i.e., ridesharing drivers) also use those modes by changing their 

status.  

Figure 6.1 shows a graphical representation of an n-period MP bundle. In this graph, each node 

represents one day, and each edge represents a possible travel status that subscribers can choose. 

Note that each day in the figure represents a period of one or more days when a subscriber uses a 

certain mode of travel and has a certain amount of usage credits available to them (e.g., “20 hours 

on a 4-seater car in ridesharing mode”). Travel time credits are set for each travel status option.  

We assume that the MP bundle is provided as a smartphone application and the mobility supplier 

agency or company can collect travel information regarding the subscribers’ travel experience such 

as matching result, travel mode, and travel cost. Also, we adopt a ‘Pay-for-Only-What-You-Use’ 
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pricing approach, meaning that subscribers will only pay the costs associated with their travel 

mode and time.  

It is important to mention that bundles are always specified for a period. During the bundle period, 

people can change their status based on their previous experiences. In the context of this 

dissertation, the bundle period is 5 weekdays, and the decision phase is 1 day. The updating process 

for the next day is influenced both by the user’s experience of the previous day and the same day 

of the previous week. We can also conceptualize each day in our framework as a set of days as 

well. It is critical to incorporate in our design that travelers enter the system at various stages of 

their personal portfolios. Therefore, we model the day-to-day change of status of each user by 

simply modeling in an aggregate fashion representative people in the population making decisions, 

with the entire user pool split into 5 sets. The concept of a day in our framework is used only to 

describe a unit of a mobility period, but in reality, that unit can be any number (i.e., a “day” here 

can refer to any number of days, or a week, though we expect it to be 1 day in practice). The only 

concern is that if the unit is a large number of days, say, 30, the computation to find a steady final 

state of usage of different mode options will be more formidable.  

Figure 6.1 A graph visualization of an n-period mobility portfolio (MP) bundle 
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6.3 Solution Methodology 

6.3.1 Iterative Approach  

The objective function in the mobility portfolio problem is a nondifferentiable function. Therefore, 

we apply a heuristic algorithm, which in this case is an iterative method in order to execute the 

interlinked modules described previously. Our proposed iterative approach is bi-level with an outer 

and an internal iterative process. As shown in Figure 6.2, the internal iteration represents a daily 

travel status update process during a N-period mobility portfolio. This internal process is necessary 

to update the system participants’ travel status for the next day based on their current day’s 

experience of traveling on the current travel option. The role of the outer iteration is to find a 

convergence point, i.e., a set of travel options, that incentivizes the system participants to not 

change their travel status for each day within the period. Once the outer iteration has converged, 

we assume that system users have found a personalized mobility portfolio solution that is stable. 

During the internal iteration, all modules except the preprocessing module are performed 

sequentially. A detailed description of algorithms applied in each module is provided in the next 

section.  
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Figure 6.2 Overview of the iterative process 
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6.3.2 Real-time Ridematching Algorithm 

In this dissertation, we assume that people expect to use their shared-mobility service options as 

soon as they become available. Keeping this in mind, we adopt a real-time ridematching algorithm 

described in chapter 5 that can match system participants with their partners immediately. We 

solve a many-to-one ridematching problem considering shared-ride drivers and riders and create a 

reduced time-expanded feasible network for both drivers and riders using the Ellipsoid 

Spatiotemporal Accessibility Method (ESTAM). We conduct a depth first search (DFS) to 

determine whether there are drivers who can serve a rider’s entire itinerary. If the drivers found by 

DFS cannot serve the entire itinerary of a given rider, then we assume there is no match. For the 

matched drivers and riders, we run a dynamic programming (DP) method to find the minimum 

travel time path. Link travel time between nodes is a key element to find riders’ itineraries.  

In this dissertation, by considering various shared mobility service providers such as shared-ride 

drivers, public transit, walking and shared autonomous fleet vehicles (SAFVs), we modify the 

previously developed DP algorithm to include the mobility provider’s vehicle cost. By doing so, 

the riders can be given a more realistic minimum cost itinerary and the system manager is able to 

know TOC modes for both shared-ride riders and drivers. It is worth mentioning that operational 

problems such as fleet dispatching problems are beyond the scope of our study. The system 

matches participants to SAFVs if their trip information does not violate both SAFVs’ on-boarding 

passengers’ trip and travel time constraints (i.e., waiting times to be picked up or SAFVs’ in-

vehicle travel time). 
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Figure 6.3 shows a time-expanded feasible network for a shared-ride rider 1 that is generated from 

the preprocessing module. Let (𝑖, 𝑡) represent a node that includes a go-point id 𝑖 and time index 

𝑡. As shown in Figure 6.3, links that connect two nodes can be served by drivers 𝑑. Furthermore, 

let 𝑐𝑑𝑣
 be the vehicle cost depending on driver 𝑑’s vehicle type 𝑣. For illustrative purposes, we 

assume that vehicle costs (per minute) for drivers 1, 2, and 3 are $ 0.8, $ 0.5, and $ 0.7, respectively. 

Also, vehicle costs for waiting and walking are set to be $ 0.1. In this example, the origin node is 

(10,5), i.e., 5 is the earliest departure time from the origin, and the destination node is (20,12), 

meaning 12 is the latest arrival time to the destination. Without considering the vehicle cost and 

the number of transfers, this rider’s trip itinerary can be served in two ways, both of which are 

equivalent to each other: by driver 1, and by driver 2 who then transfers the rider to a driver 3. 

When vehicle cost is considered, the route served by driver 2 who carries the rider to the destination 

at 11 is the best matching result.  

 

Figure 6.3 Time-expended feasible network for rider i 
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6.3.3 Perception Update  

Simulation-based day-to-day learning methods are widely accepted approaches in research 

literature to model the process of perception updating. The method usually involves two aspects: 

expected information and experienced information. In Zhang et a. (2014), with the help of the 

artificial urban transportation system (AUTS), traffic information and drivers’ historical 

perceptions are combined to update users’ perception on routes to be selected for the current day’s 

trip. Jha et al., (1998) develop a Bayesian updating model for updating travelers’ travel time 

perceptions with information provided by Advanced Traveler Information Systems (ATIS). 

However, it is not practical to directly apply the existing learning models to our framework. This 

is because the learning process for the MP bundles relies on travel experiences that have occurred 

at two different points in time. Our perception update method is a period-to-period process, not a 

day-to-day process, modeled with representative units of times, that can be single days or a set of 

days. Since mobility portfolio systems do not exist currently, the learning process in our model is 

essentially a mechanism that captures changes in the system and iteratively leads to convergence 

to a final state which reflects the postulated real behavior of the travelers.  

As mentioned earlier, we propose a two-stage learning process: (a) micro level update process, 

which involves applying a Bayesian model to update the expected travel time and cost for the next 

day based on the current day’s experience and (b) macro-level update process, in which we apply 

a modified ant colony algorithm to combine the expected travel cost and the accumulated 

experiences onto the next day.  
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(1) Bayesian Inference Model 

In this dissertation, we introduce a Bayesian inference model to update agents’ perception based 

on the expected travel time before starting the trip (which corresponds to the prior in Bayesian 

terms) and the experienced travel time after finishing the trip on the same day (which corresponds 

to the posterior) with a dynamic traffic simulation model, DTALite/NeXTA. The benefit of the 

Bayesian model is that it allows us to use our prior belief with an uncertainty as the true value of 

the parameters (i.e., known as the prior distribution) to help us calculate the posterior distribution 

of the parameters by using the observed data. A detailed explanation can be found in (Tebaldi and 

West, 1998). In this dissertation, we consider travel time as a parameter to be updated. It is worth 

mentioning that the proposed travel status selection model is a disaggregated choice model because 

each agent’s behavior depends on their trip information (e.g., departure time and origin/destination 

information) and their travel status. However, in this case, the OD travel time data that agents can 

refer to becomes too limited, which can lead to biased choice behavior. To prevent this situation 

from occurring, we aggregate the one-minute time step into a 10-minute time interval. 

Subsequently, we assign the same travel status to agents who have the same OD pair during this 

10-minute time interval. We assume that the travel time is a normally distributed random variable, 

with mean travel time (𝜇) and known variance (𝜎2).  

After performing the previous ridematching processes, the system participants with their own 

travel status are now divided into two sub-groups: matched and unmatched. Furthermore, people 

who choose the solo-driver option are also considered in this step. So, we have a total of five 

different groups: matched shared-ride driver group, an unmatched shared-ride driver group, a 

matched shared-ride rider group, an unmatched shared-rider group, and a solo-driver group.  
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Before starting the simulation, we create a prior distribution of OD travel time for the five different 

groups for each 10-minute period, using the expected travel times. At the end of the simulation, 

we collect the actual travel time values. Considering these values as true data, we create a 

likelihood distribution, which is then used to calculate a posterior distribution. The posterior 

distribution is considered as a new prior distribution for the next day. Note that we assume that the 

posterior and the likelihood distribution follow a normal distribution.  

- The notation employed in this procedure is given below: 

𝐵𝑇𝑘,𝑠
1,𝑖,𝑤

 : Mean expected travel time parameter by individual i on day w for OD pair k 

(o,d) at time interval s before starting the simulation. 

𝜏𝑘,𝑠
1,𝑖,𝑤  : Belief of the travel time on day w by individual I for OD pair k (o,d) at time interval s 

before starting the simulation. 

𝐴𝑇𝑘,𝑠
𝑖,𝑤

 : Mean experienced travel time parameter by individual i on day w for OD pair k (o,d) at  

time interval s after finishing the simulation. 

𝜎𝑘,𝑠
𝑖,𝑤

  : Belief of the travel time on day w by individual i for OD pair k (o,d)at time interval s  

after finishing the simulation. 

𝐵𝑇𝑘,𝑠
2,𝑖,𝑤

: Updated travel time parameter of 𝐵𝑇𝑘,𝑠
1,𝑖,𝑤

 

𝜏𝑘,𝑠
2,𝑖,𝑤

  : Updated belief of updated travel time parameter, 𝐵𝑇𝑘,𝑠
2,𝑖,𝑤

 

𝑥𝑘,𝑠
𝑖,𝑤

   : Experienced travel time on day w by individual i for OD pair k (o,d) at time 

interval s. 

𝑛𝑘,𝑠
𝑤    : Number of individuals who travel OD pair k (o,d) at time interval s. 
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The Bayesian update model is given by equation (6.1)-(6.4). The prior distribution on 𝐵𝑇𝑘,𝑠
𝑖,𝑤

 is 

denoted by N(𝐵𝑇𝑘,𝑠
1,𝑖,𝑤

, 𝜏𝑘,𝑠
1,𝑖,𝑤

) and the likelihood distribution on 𝐴𝑇𝑘,𝑠
𝑖,𝑤

 is denoted by N(𝐴𝑇𝑘,𝑠
𝑖,𝑤

, 𝜎𝑘,𝑠
𝑖,𝑤

). 

By Bayes theorem: 

𝑃𝑟(𝜇|𝑦, 𝜎2) ∝ 𝑃𝑟(𝑦|𝜇) ∙ 𝑃𝑟(𝜇) (6.1) 

𝑁(𝐵𝑇𝑘,𝑠
2,𝑖,𝑤, 𝜏𝑘,𝑠

2,𝑖,𝑤) =  𝑁(𝐴𝑇𝑘,𝑠
𝑖,𝑤, 𝜎𝑘,𝑠

𝑖,𝑤) ∙ 𝑁(𝐵𝑇𝑘,𝑠
1,𝑖,𝑤, 𝜏𝑘,𝑠

1,𝑖,𝑤)    (6.2) 

- where the posterior mean and variance: 

𝐵𝑇𝑘,𝑠
2,𝑖,𝑤 = (

1

𝜏𝑘,𝑠
1,𝑖,𝑤

+
𝑛

𝜎𝑘,𝑠
𝑖,𝑤

)

−1

∙ [
𝐵𝑇𝑘,𝑠

1,𝑖,𝑤

𝜏𝑘,𝑠
1,𝑖,𝑤

+
𝑛

𝜎𝑘,𝑠
𝑖,𝑤

(
1

𝑛𝑘,𝑠
𝑤 ∑ 𝑥𝑘,𝑠

𝑖,𝑤

𝑛

𝑖=1

)] (6.3) 

𝜏𝑘,𝑠
2,𝑖,𝑤 =  (

1

𝜏𝑘,𝑠
1,𝑖,𝑤

+
𝑛

𝜎𝑘,𝑠
𝑖,𝑤

)

−1

 (6.4) 

It is worth noting the value that we want to estimate is a ‘travel time’ value which is non-negative. 

However, it is possible to see the distributions that have negative values in travel time. Particularly, 

we can easily observe this situation when the average travel time is short, and the variance is large. 

To prevent this and provide better estimated solutions, we can apply a truncated normal 

distribution. The benefit from a truncated normal distribution form is to eliminate the unnecessary 

variables and thus to provide better estimates with a designated range. For example, if we precisely 

model a prior travel time distribution that truncated at zero, it could be shown as follows: 

𝑁(𝐵𝑇𝑘,𝑠
1,𝑖,𝑤, 𝜏𝑘,𝑠

1,𝑖,𝑤) ∈ (0, ∞) 
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(2) Payoff Approach  

The output of the Bayesian model gives us the 5 time-dependent prior distributions of travel times 

for every OD pair for the next day. The expected travel time values from the prior distributions are 

now utilized to compute the next day’s expected travel cost (note: we consider the mean travel 

time value). As mentioned above, the travel costs are automatically captured after the ridematching 

process. To provide the expected travel cost expenditure (𝑉) for the next day, we apply the payoff 

method as shown in Figure 6.4.  

 

 

Figure 6.4 Payoff method 

The next day’s expected travel cost for each individual i is calculated by the following equation: 

𝑉𝑚,𝑛
𝑖,𝑤+1 =  𝐵𝑇𝑘,𝑠

2,𝑖,𝑤 ∙  𝐶𝑘,𝑠
1,𝑖,𝑤

 (6.5) 
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The variable, 𝑉𝑚,𝑛
𝑖,𝑤+1

, represents an expected travel cost for individual 𝑖 for the next day (w+1) 

depending on travel status 𝑚  and matching outcomes 𝑛 . The variable, 𝐶𝑘,𝑠
1,𝑖,𝑤

 represents the 

experienced travel cost on day 𝑤 by individual 𝑖 for OD pair 𝑘(𝑜, 𝑑) at time interval 𝑠.  

The expected value for each travel status option m is estimated by equation (6.6): 

𝐸(𝐴𝑚) =  ∑ 𝑉𝑚,𝑛
𝑖,𝑤+1

𝑁

𝑛=1

∙ 𝑃𝑛
 𝑤 = ∑ 𝐵𝑇𝑘,𝑠

2,𝑖,𝑤 ∙  𝐶𝑘,𝑠
1,𝑖,𝑤

𝑁

𝑛=1

∙ 𝑃𝑛
 𝑤 (6.6) 

The variable, 𝑃𝑛
 𝑤, represents a matching ratio on day 𝑤 based on matching results.  

The ridematching ratio is often used as a metric to measure the performance of a ridesharing 

transportation network system, and it is generally associated with the number of riders who are 

served by other drivers (Jha et alk 1998; Masoud et al., 2017; An et al., 2019). The number of 

drivers who serve those riders is not considered in this calculation. That is because, in most cases, 

those who act as mobility providers come from the group of trip-purposeless drivers, thus, whether 

or not a match is made does not affect their decision to continue as drivers. However, in our study, 

the drivers’ experience of getting matches are just as important as the riders’ experiences. To 

calculate the matching success ratio (𝑃1), we divide the total number of the matched drivers and 

riders by the total number of people who make shared trips as drivers or riders. The matching 

failure ratio (𝑃2) is simply (1- 𝑃1). The number of solo drivers is not considered because their travel 

experiences do not depend on the matching process. The expected travel value for a solo-driver 

travel status is the same as the expected travel cost.  
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Proof. The expected value for solo drive travel status is calculated as follows.  

𝐸(𝐴3) =  𝑃1 ∙ 𝑉31 + 𝑃2 ∙ 𝑉32 =  𝑃1 ∙ 𝑉31 + (1 − 𝑃1) ∙ 𝑉32 

Also, 𝑉31 = ∙ 𝑉32. 

Thus, 𝐸(𝐴3) =  𝑃1 ∙ 𝑉31 + (1 − 𝑃1) ∙ 𝑉31 =  𝑉31                   ∎ 

Referring to the MP bundles shown in Figure 6.1, each travel status edge will have the calculated 

expected value from equation (6.6).  

6.3.4 Modified Ant Colony algorithm 

In the macro level update module, we apply the concepts of the Ant colony optimization (ACO) 

algorithm. The ACO algorithm aims to find an optimal path in a graph by running artificial ants 

(i.e., simulation agents) with pheromones (Yang et al., 2008). In the ACO algorithm, each ant 

constructs a solution path within the graph, considering the intensity level of the cumulated 

pheromones on the edge. Edge selection can be modeled as follows:  

𝑝𝑖𝑗
𝑘 =  

𝜏𝑖𝑗
𝛼 ∙ 𝜂𝑖𝑗

𝛽

∑ 𝜏𝑖𝑘
𝛼 ∙ 𝜂𝑖𝑘

𝛽
𝑘∈𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖 

 (6.7) 

- where, 

𝑝𝑖𝑗
𝑘  : probability of moving from position i to j 

𝜏𝑖𝑗  : amount of pheromone deposited on the edge from position i to j. 

𝜂𝑖𝑗  : attractiveness of the edge from position i to j. 

𝛼, 𝛽 : parameters to control the influence of 𝜏𝑖𝑗 and 𝜂𝑖𝑗, respectively. (0 ≤ 𝛼;  𝛽 ≥ 1) 
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The attractiveness of the edge is calculated by 
1

𝑑𝑖𝑗
, where d is the distance. When the ants find the 

feasible path solutions, they leave their pheromones along each segment of the path. The 

pheromone updating rule can be written as follows: 

𝜏𝑖𝑗 ← (1 − 𝑣) ∙ 𝜏𝑖𝑗 +  ∑ ∆𝜏𝑖𝑗
𝑘

𝑚

𝑥

 (6.8) 

- where, 

𝑣   : pheromone evaporation coefficients. 

𝑚   : total number of ants who traverse the edge from position i to j.  

∆𝜏𝑖𝑗
𝑘  : amount of pheromone deposited by the 𝑘𝑡ℎ ant on the edge from position i to j. 

In this dissertation, each traveler has their own MP bundle graph, and the graph is completely 

independent of other users’ graphs. Each traveler bases their travel decision on their own 

experiences which are accumulated from their own iteration process. Thus, we modify equation 

(6.7)-(6.8) as follows: 

𝑝𝑖𝑠
𝑘 =  

𝜏𝑖𝑗
𝑠,𝛼 ∙ 𝜂𝑖𝑗

𝑠,𝛽

∑ 𝜏𝑖𝑗
𝑘,𝛼 ∙ 𝜂𝑖𝑗

𝑘,𝛽
𝑘∈𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖𝑗 

 (6.9) 

𝜏𝑖𝑗
𝑠 ← (1 − 𝑣) ∙ 𝜏𝑖𝑗

𝑠 + 𝑣 ∙ ∑ ∆𝜏𝑖𝑗
𝑠,𝑒

𝑒

 (6.10) 

- where, 

𝜏𝑖𝑗
𝑠,𝑒

  : memory of ridematching experiences on travel status edge s from day i to j. 

𝜂𝑖𝑗
𝑠   : expected value on the next travel status edge s from day i to j. 

∑ ∆𝜏𝑖𝑗
𝑠,𝑒𝑒−1

𝑒=0 : accumulated memory of ridematching experiences on travel status edge s 

from day i to j deposited by 𝑒𝑡ℎ traveler. 
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We consider a pheromone to represent the memory of the travel experiences. We assume that even 

though an agent enters the system as a ridesharing driver or a rider, if he fails to be matched with 

other agents, the memory on the edge will be counted as 1, otherwise 2. If the driver selects an 

edge and is also matched then the memory is 2, to induce him/her to use the edge more in the 

future. Other memory numbers can be used as well, but no parametric study was attempted in our 

research.  

For the solo drivers, their travel status edges will be counted as 1 as well. Unselected edges will 

have a value of 0. The term 𝜂𝑖𝑗
𝑠  is automatically replaced by the value obtained from equation (6.6). 

We assign the same weight to 𝜏𝑖𝑗
𝑠,𝛼

 and 𝜂𝑖𝑗
𝑠,𝛽

, thus, we do not consider the control parameters 𝛼 and 

𝛽. Unlike the original AOC algorithm, in the mobility portfolio problem when travelers select a 

travel status edge, other travelers’ travel experiences on certain edges do not affect their choice. 

This fact allows us to convert the term ∑ ∆𝜏𝑖𝑗
𝑠,𝑒

𝑒  as ∆𝜏𝑖𝑗
𝑠  because 𝑒 = 1. Figure 6.5 shows an 

example of the 𝑗𝑡ℎ iteration and day 2 travel status updating process. 
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Figure 6.5 Mobility portfolio framework: 𝑗𝑡ℎ iteration and travel status update (day 2 example) 

6.3.5 Risk Value Function 

With the results from the previous module, users can now select the most desirable edge. If there 

are no credit limits on the edge, they can keep using that edge as their travel status option. However, 

in the proposed MP bundles model, each option has a limit on usage time. If a person exceeds a 

certain travel option, he can no longer use the option. Moreover, due to the lack of experience, 

some people may have fewer opportunities to use other travel status that can provide a better 

mobility portfolio solution. To prevent the situation of time credits on any mobility portfolio option 

being exhausted before the expiration of the bundled plan period and to provide a chance to select 

less-desirable options, we propose a risk function that calculates the level of risk (r) for an 

individual. This risk function is as follows: 
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𝑟 =  
𝑇𝑜𝑇𝑠∗ − (𝑇𝑠∗,𝑒 + ∑ ∑ 𝑇𝑠,𝑒 ∙ 𝜑𝑠

𝑒−1
𝑒=0 )

𝑇𝑜𝑇𝑠∗
 (6.11) 

where 𝑇𝑠∗,𝑒 is the expected travel time with the selected travel status s* at iteration e. This travel 

time is calculated from equation (6.3). The term 𝑇𝑜𝑇𝑠∗ is a total time credit for the selected travel 

status s* and 𝛿 is an indicator to capture the previous travel time experienced on s*.  

𝜑 =  {
1 𝑖𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 𝑠𝑡𝑎𝑡𝑢𝑠 𝑠 ∗  𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.12) 

If the value of risk is smaller than a random number (𝜃) with a value between 0 to 1, the system 

will randomly select other travel types. The random number could be replaced by a fixed number 

or could be reduced gradually as the days pass.  

6.3.6 Convergence 

We discuss the convergence of the learning process explained earlier. The output of iterative 

methods can get arbitrarily close to some specific value; however it is computationally infeasible 

to converge to a single optimal point. Thus, we propose a convergence rule. First, before 

proceeding to the next outer iteration, at the end of the mobility portfolio period we check the 

travel status of the system participants on the same 𝑛𝑡ℎ day of the current and the previous outer 

iteration, then calculate the status change ratio on each day. If the average of the sum of the ratios 

is less than or equal to a tolerance level of 0.025, it is assumed that it converges, and each individual 

has a stable mobility portfolio solution. Equation (6.13) is used to check for the convergence of 

the iterative process. 
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1

|𝑁|
∑ (

1

𝐼
∑ 𝑢𝑛

𝑖

𝐼

𝐼=0

)

𝑁

𝑛=0

 ≤ 0.025 (6.13) 

The variable, 𝑢𝑛
𝑖 , is a binary variable and its value is 1 if an individual 𝑖’s 𝑛𝑡ℎ day travel status on 

the current iteration, and the previous iteration are different, and 0 otherwise. The variable 𝑁 

indicates the total length of the mobility portfolio period and variable 𝐼 denotes the total number 

of system participants.  

6.4 Numerical Experiments 

6.4.1 General Simulation Setting 

(1) Integrated multimodal transportation network in Irvine area  

A portion of the city of Irvine, California was selected as our study area. We constructed a multi-

layered network of the region, including the possible travel modes in the area. First, we built a 

base layer for the vehicle network. As we assumed in section 4.2.2, go-points in the vehicle 

network are created including the center of TAZ (Traffic Analysis Zone). To build the base layer 

in the study area, we used the California Statewide Transportation Demand Model (CSTDM). 

Each go-point is connected to its nearby go-points, and each link travel time is calculated based 

on the link free-flow speeds. In this layer, the ridesharing drivers travel in their vehicle. Second, 

we added a public transit network layer on top of the base layer. For the bus layer, we utilized the 

general transit feed specification (GTFS) data for the area. There are six bus lines in our search 

scope in GTFS. We also obtained the location of each bus station and timetables for buses. A 
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network for the shared autonomous fleet vehicle (SAFVs) is added to the base layer network. We 

assume that there are three SAFV depots which are evenly distributed within the city. The total 

number of SAFVs operating in the system is 10 and each depot has 3, 3, and 4 vehicles, 

respectively. Walk nodes are depicted by pink nodes, as shown in Figure 6.6. Travelers, especially 

ridesharing riders, can use the walk links to transfer between the different travel modes in the 

different layers. To improve computational speed, we discretize the time horizon with 1-minute 

time intervals.  

 

Figure 6.6 Irvine area network with the I-5/I-405/SR-55 triangle and SR-73 freeway  

 

(2) Mobility Portfolio Setting 

In this dissertation, we set a 5-day MP bundle period, considering weekdays. Considering the size 

of the research area, we give the following usage credits for each option: 180 minutes as a driver, 

200 minutes as a rider, and 150 minutes as a solo-driver for the five-day period.  
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(3) MP Bundle Subscriber Demand Generation  

Referring to the CSTDM model, 262,487 trips are generated during the morning-peak-period. We 

randomly select 45,000 trips as potential subscribers for the mobility portfolio system. Among 

them, we also randomly choose 12,000 people and set their initial travel status as a shared mobility 

rider. In the same fashion, 25,000 people start their first trip in the system as a ridesharing driver, 

and the remaining people make their initial trip as solo-drivers. Travel time windows and departure 

times for each individual are randomly assigned. We randomly assign a travel time flexibility 

between 1 and 15 minutes to each user. 

(4) Vehicle Cost and Discount Value Setting  

To reflect diversity in vehicle price, we assume that there are five different classes of private 

vehicles: electric vehicle, conventional vehicle, luxury conventional vehicle-new, SUV, luxury 

SUV and set prices as $0.2, $0.3, $0.4, $0.5, and $0.6 per minute per vehicle. We assign a random 

class number to each individual vehicle. Furthermore, for public transit we set a price of $0.1 per 

minute and for the SAFVs we set an average vehicle cost of $0.4 per minute. In addition, we 

assume that if anyone shares a trip with others, then people who are involved in the shared trip 

will have a 50% discounted travel cost based upon the length of the shared trip. Note that different 

discount values could be set for each travel mode, however, as an initial study, we consider a single 

value and apply it to all travel modes, including SAFVs, and buses. To consider walk time and 

waiting time penalties, the discount value is not applied for those travel modes.  

(5) Simulation Setting  
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We set the simulation time to be the same as the morning peak period and the trip purpose of 

travelers is set as a work trip. We also evaluate the performance of the network by using the 

proposed framework for the test study in DTALite/NeXTA. In the simulation model, we assign all 

of the travel demand (i.e., 262,487 trips) to study the effects of network traffic congestion on the 

mobility portfolio users’ experience. 

There are several assumptions made in this simulated mobility portfolio framework: 

1) It is a subscription-based transportation system so that the system already knows the 

participants’ origins, destinations and their corresponding time windows. 

2) A user’s travel time window cannot be violated. 

3) Each trip starts or ends only in the predefined Travel Analysis Zones (TAZs), called go-

points. 

4) Every user’s primary travel mode is a combination of drive-yourself option and drive-alone 

option (i.e., same as solo-driver in the traditional mode choice model).  

5) Participants (subscribers) comply with the trips suggested by the mobility portfolio. 

6) The simulation time horizon is a set of 1-min discretized time intervals spanning a total of 

3 hours.  

6.4.2 Uniform Distribution of Mobility Portfolio Starting Date  

It is reasonable to assume that travelers can initiate (or purchase) the bundle on any day of the 

week. Therefore, we uniformly divide people in each travel status group and assign them to 

different weekdays to start their MP bundle plan. Thus, on each mobility portfolio day at iteration 
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1, there are 25,000 drivers, 5,000 riders and 2,400 solo drivers. Note that at iteration 1 the demand 

of each travel status group doubles as each day passes compared to the previous day. One thing to 

mention is that after performing the day 1 simulation at iteration 1, people who traveled on day 1 

with mobility portfolios learned from their experience, which affects their next day (i.e., day 2) 

travel status decision. Therefore, the total number of the system participants for each travel status 

group in practice may not be exactly double. Note that for the problem instances, we generate 10 

different mobility portfolio participants groups. The results we report in this section are averaged 

over 10 simulation runs for each problem.  

(1) Convergence Test 

Combining the proposed mobility portfolio scheme and the agent-based traffic simulation model, 

we gain insight on the performance of the proposed learning methodology. The interest here is in 

observing the convergence of the model for each of the days of the bundling period. To test the 

convergence, we run 10 different simulations. Figure 6.7 shows that the travel status shift ratios 

for each travel status converge to 0.025, which is less than the tolerance level, so the model is 

assumed to converge. Except in the first iteration, the travel status shift ratio in each iteration 

(which represents the 5-day simulation period) varies initially but stabilizes after the fourth 

iteration. This is because the mobility portfolio subscribers are more confident about their choices 

as the days and the iterations progress. Once people are satisfied with a particular travel allocation, 

t h e y  t e n d  t o  m a k e  a  s i m i l a r  c h o i c e  a s  i n  t h e  p r e v i o u s  i t e r a t i o n .  
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Figure 6.7 Iterative convergence of Travel status change ratio, averaged over 10 runs 

 

 

 
Figure 6.8 Changes in the number of shared-ride drivers, shared-ride riders, and solo-ride 

drivers, over 10 runs 

Figure 6.8 shows the variation in the number of people who join the system with a particular travel 

status. Similar to the convergence test results, after the fourth iteration the number of shared-ride 

drivers is stabilized. It is interesting to note that the number of shared-ride riders increases while 

the number of solo-ride drivers tends to decrease. This result indicates that the proposed mobility 
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portfolio framework induces people to join and participate in the shared-mobility transportation 

system.  

Note that we consider the first iteration as a network warming period to load people with different 

portfolio starting days, thus it is reasonable to see that the total number of system participants is 

smaller in this iteration than in later iterations. 

(2) Mobility Portfolio Cost Savings 

Figure 6.9 shows the total mobility portfolio cost savings, defined here as the cost savings 

compared to the default option of not using a mobility portfolio. The savings increase as the 

iterations progress. The total cost savings initially are small because not enough people use the 

suggested solution recommended by mobility portfolio framework, and user have not yet acquired 

the travel experience to make a better choice. At the final iteration, the total cost savings over 5 

days is almost $300K. 

 

Figure 6.9 Total mobility portfolio cost savings, averaged over 10 runs 
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Figure 6.10 shows the total weekly travel costs that spend by people in each travel status group. 

The group with the largest cost savings is the shared-ride riders, who saved $3.77 on average. 

People who enter the system as shared-ride drivers are expected to have their costs reduced by 

$2.35. People in the solo-ride drivers group experience the least cost savings, which is to be 

expected, since their travel option does not change significantly from their existing option. 

However, the number of solo-ride drivers is reduced after the iterative process, resulting in overall 

system savings.  

 

 
Figure 6.10 Average travel cost by travel status: (a) Shared-ride driver, (b) Shared-ride rider, and 

(c) Solo-Driver 

 

(3) Matching Results  

In the mobility portfolio framework, we allow the travel status shifts which leads to changes in the 

matching ratio as the iteration progresses. Figure 6.11 shows the number of matched riders and the 

matching ratio. The number of matched riders continues to increase as the iterations progress. The 

ratio increases until the fifth iteration, drops slightly, and then increases again. This appears to be 
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due to the difference between the total number of the potential shared-ride riders and the served 

riders.  

We also analyze the number of the potential shared-ride drivers and the drivers who actually serve 

riders. Intuitively, more shared-ride drivers lead to more matched riders (An et al., 2019). The 

results presented in Figure 6.12, however, are contrary to this common belief. The horizontal 

distance between the bars represents the number of drivers who are willing to share their car with 

others but drive alone because they are not matched. The largest gap occurs in the first two 

iterations. Especially, in the case of day 5 at iteration 1, approximately one third of drivers are 

matched with riders, and the rest of drivers remain unmatched. By learning from these unsatisfying 

experiences, people shift their travel status and eventually the total number of the potential shared-

ride drivers is stabilized, and the number of matched drivers increases. This figure illustrates the 

effectiveness of our proposed mobility portfolio framework in maintaining an acceptable matching 

level (Figure 6.11) with fewer cars.   

 

Figure 6.11 Changes in matching ratio results, averaged over 10 runs 
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Figure 6.12 Comparisons of the total number of the potential shared-ride drivers and the matched 

drivers, over 10 runs  

 

(4) System Performance  

We also analyze vehicle-mile-traveled (VMT) to evaluate the performance of the integrated shared 

transportation system with the portfolio scheme. Figure 6.13 depicts the results of the reduced 

VMT after every iteration, showing that convergence is achieved. When comparing the VMTs of 

the first and last iterations, we find a reduction of VMT to be over 1.5M units which indicates that 

the mobility portfolio scheme has induced the system into a more beneficial state.  
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Figure 6.13 Total VMT reduction 

 

(5) TOC Mode Share Ratio  

Within the mobility portfolio framework, we divide the system participants into three groups using 

bundles. By using the TOC mode concept presented in chapter 3 it is possible to describe each 

system participant’s actual trip movement.  

Table 6.1 shows 6 TOC modes considered in our framework. They are basic TOC mode (i.e., TOC 

mode-B), a basic element which can be combined together to generate the other 5 TOC modes 

called TOC mode combination (i.e., TOC mode-C).  

As shown in Table 6.1, TOC mode-B 1 through 6 mean solo-ride driver, shared-ride driver, 

autonomous vehicle users, shared-ride rider, public transit passenger, and walk, respectively. Note 

that a vehicle type depends on the ridematching results, so it is denoted as 𝑥, except walk. Using 

these fundamental TOC modes, we can generate several other TOC mode-Cs. Table 6.2 shows the 

TOC mode combination list. TOC mode-C 7 refers to solo-ride driver + shared-ride driver.  
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Table 6.1 Basic TOC modes 

TOC 

Mode-B 

Travel Options (level) 

Driving 

Mode 

Parking 

Space 

Shared 

Empty Seat 

Public 

Transit 
Walk 

Owner

-ship 
Vehicle Type 

1 0 0 0 0 0 0 𝑥 

2 0 0 1 0 0 0 𝑥 

3 1 1 1 0 0 - 𝑥 

4 2 1 1 0 0 - 𝑥 

5 2 1 1 1 0 - 𝑥 

6 2 1 0 0 1 - Walk 

 

The difference between TOC mode-C 7 and 8 is that people who experience TOC mode-C 8 serve 

two shared-ride riders and continue to travel alone after dropping off riders. TOC mode-C 9 

through 16 are applicable for shared-ride riders. TOC mode-C 9 and 11 represent the modes 

shared-ride rider + shared-ride rider (i.e., 1 transfer), and shared-ride rider + walk + shared-ride 

rider (i.e., 1 transfer). The ‘Number of Connection’ column in Table 6.2 conveys the number of 

transfers, thus, TOC mode-C 7 and 8 have a value of 0. Note that we do not count walking as a 

transferrable mode, so that even though TOC mode 12 and 16 contain two TOC mode-B 6s, the 

number of connections for these modes are 2 and 0. The TOC mode columns in TOC mode 

combination list can be extended depending on the number travel path segments which are 

obtained from the ridematching process. 

Table 6.3 shows the TOC mode share for each travel status. The basic TOC Mode 1 is present in 

shared-ride driver, solo-ride driver, and shared-ride rider travel status group. This is obvious 

because unmatched drivers and riders, and solo-ride drivers have to drive themselves. 
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Table 6.2 TOC mode combinations 

TOC 

Mode-C 

TOC mode combination 

TOC mode TOC mode TOC mode TOC mode 
Number of 

Connection 

7 1 2 - - 0 

8 1 2 2 - 0 

9 4 4 - - 1 

10 4 6 - - 1 

11 4 6 4 - 1 

12 4 6 4 6 2 

13 4 6 5 4 3 

14 4 6 5 6 2 

15 6 4 6 - 1 

16 6 6 - - 0 

 

Table 6.3 shows the TOC mode share for each travel status. The basic TOC Mode 1 is present in 

shared-ride driver, solo-ride driver, and shared-ride rider travel status group. This is obvious 

because unmatched drivers and riders, and solo-ride drivers have to drive themselves. Except the 

basic TOC Mode 1, most of shared-ride drivers serve 1 or 2 riders. Furthermore, 136 shared-ride 

drivers pick up and drop off a rider from their own origins and destinations, thus, they have another 

basic TOC Mode 2. For shared-ride riders, most of the matched riders are served directly without 

transferring (TOC Mode-B 4). The next most popular TOC mode is 9 which connects two different 

shared-ride drivers without walk links. This is possible because we use a go-point based network 

structure. These results confirm that by using the TOC option tables (Table 4.1) we can model 

diverse travel movements in any shared transportation system.  
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Table 6.3 TOC mode share by travel status 

 

 

Travel Status TOC Mode 
Number of 

Participants 
Travel Status TOC Mode 

Number of 

Participants 

Shared-ride 

Driver 

1 6,141 

Shared-ride 

Rider  

(continue) 

9 4,523 

2 136 10 24 

7 4,170 11 19 

8 4,604 12 528 

Solo-ride 

Driver 
1 13,229 13 43 

Shared-ride 

Rider 

1 4,375 14 2 

3 54 15 75 

4 7,068 16 9 

 

 

(6) Public Transit Ridership  

The ridership of SAFVs and buses resulting from the mobility portfolio is shown in Figure 6.14. 

The number of SAFVs operating during the morning peak hours is set to be 10. The results show 

that the average number of passengers on the each SAFV is approximately 6.5. During the same 
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time period, the total number of bus passengers is 31, on average. Although at first glance it might 

seem like the usage of public transit systems is not significant, it should be noted that it still 

represents an improvement over current ridership statistic. More importantly, the results exemplify 

the potential of strategies such as incentives or benefits for public transit to promote public transit 

ridership using this framework.  

 

 

Figure 6.14 Ridership in (a) SAFVs and (b) Bus at Iteration 7 

 

6.4.3 Changes in the Number of Shared Autonomous Fleet Vehicles  

In the previous section, we assumed that the people can initiate their mobility portfolio at any day 

of the mobility bundling period. Keeping that assumption, in this section we perform a sensitivity 

analysis on the number of SAFVs in the system. This analysis can show the relationship between 

system performance and the number of matched participants. From this section, we reduce the 
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sample size in half, and so that the total number of the potential shared-ride rider and driver are 

6,000 and 12,500, respectively.  

(1) System Performance  

First, we analyze the impacts of changes in the number of SAFVs without the learning process. 

Table 6.4 and Figure 6.15 show the percentage of matched riders, as the total number of SAFVs 

increases from 10 to 100. We find that the matching rate shows a modest increase as the number 

of vehicles increases. We observe a significant decrease in Vehicle-Miles-Traveled (VMT) as the 

number of SAFVs increases. The VMT reduction gap between the SAFV 10 and SAFV 100 cases 

is 4,000 units. 

Table 6.4 Changes in matched riders and SAFV passengers  

Number of SAFVs Matched Riders Matching Ratio SAFV Passengers 

10 4,595 0.766 53 

20 4,606 0.768 104 

30 4,613 0.769 148 

40 4,623 0.77 198 

50 4,639 0.773 247 

60 4,651 0.775 301 

70 4,662 0.777 354 

80 4,673 0.779 404 

90 4,683 0.78 446 

100 4,691 0.782 484 
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Figure 6.15 Variation in VMT with respect to the number of SAFVs  

(2) Mobility Portfolio Cost Savings 

We perform the mobility portfolio learning process for four different SAFV numbers (10, 20, 50, 

and 100) and Figure 6.16 shows the average travel cost of shared-ride drivers and riders for each 

case after 7 iterations. Without the mobility portfolio scheme, the average travel cost for each 

participant is $14.82. It is interesting to note that in all cases both drivers and riders incur cost 

savings of $9.73 and $8.1 respectively.  
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Figure 6.16 Individual’s average travel cost at convergence state 

 

6.4.4 Extended TOC mode pool 

In this section, we introduce a carsharing service to the system. Unlike commercial carsharing 

services (i.e., carsharing vehicles are owned by companies and it has designated depos), we 

propose a peer-to-peer (P2P) carsharing system composed of private vehicle owners who are 

willing to lend their car when it is being used by them.  

In this shared transportation system, both shared-ride riders and drivers can be carsharing owners. 

The difference in the owner types comes from where the carsharing vehicles are parked. For 

shared-ride riders, their car is located at their origins (i.e., home) while for shared-ride drivers, 

their vehicles are parked near their destinations (i.e., work). Furthermore, the amount of time that 

can be rented is shorter if a car belongs to a shared-ride driver because they have to use it to go 

back to their home. On the other hand, it is longer if a car belongs to a shared-ride rider because 
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they are less reliant on one vehicle. The amount of time will be an important factor especially when 

we extend the mobility portfolio scheme to cover the entire day rather than the morning peak hours. 

This is because, in that case, we would need to consider system participants’ daily activities, their 

activity type, and durations, that will impact their decision to be a shared-ride driver or riders. This 

will also influence the availability of P2P carsharing services can be changed every day or even 

every time.  

To simplify the problem, we consider that only shared-ride drivers provide their car for P2P 

carsharing services. To make an effective comparison, we also adhere to the same simulation 

settings and the sample size described in section 6.4.1. To perform the multimodal ridematching 

problem, we utilized the function that we defined in section 5.3.2 (2). Furthermore, we assume that 

riders do not need to return carsharing vehicles to owners. This means that we consider only one 

bound trip (i.e., work trip) only, guaranteeing that one P2P carsharing vehicle can be matched to 

one shared-ride rider.  

(1) Sensitivity Analysis 

In this section, we perform a sensitivity analysis on the number of carsharing participants in the 

system with the 12,500 drivers and 6,000 riders. Figure 6.17 shows the impact of the carsharing 

services. The base scenario for comparison is 0%, which represents no P2P carsharing vehicles in 

the system. As more people become P2P carsharing providers, the number of people using it 

increases until the carsharing percentage reaches 60%. After that point, the carsharing usage 

gradually plateaus.  
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Figure 6.17 Sensitivity analysis over the number of carsharing participants in the system 

Figure 6.18 illustrates the P2P carsharing usage as the total number of shared-ride drivers increases 

from 10,000 to 15,000. For a given number of participants, we generate multiple random problem 

instances by changing the ratio of P2P carsharing providers. While keeping the number of shared-

ride riders fixed, Figure 6.18 suggests that when the total number of drivers become increases, the 

carsharing usage decreases. It is intuitive to expect this result because shared-ride rides have a 

greater chance to be matched with drivers when there are sufficient number of drivers, and vice 

versa. For example, in the ‘Driver 10,000’ case, shared-ride drivers are only about 1.6 times the 

number of riders, therefore a smaller number of riders can be served by drivers. It leads to riders 

to drive themselves by using carsharing services. Similar to the results depicted in Figure 6.17, 

after the number of carsharing providers reached 60%, the number of users does not increase 

significantly.  
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Figure 6.18 Sensitivity analysis over the carsharing users in the system 

 

We also varied the number of shared-ride riders to study its impact on system performance. Figure 

6.19 depicts the distribution of number of matched participants under different number of shared-

ride drivers and riders, while changing the proportion of P2P carsharing providers. The results 

suggest that higher number of drivers results in higher matched riders. Table 6.5 depicts the 

matching ratio and the travel cost. The highest matching ratio is observed in the case of Driver 

15,000 – Rider 6,000. Furthermore, the average travel cost becomes smaller when the number of 

drivers increases. As shown in Figure 6.19, P2P car sharing has significant impacts on the Driver 

10,000 case. This result is consistent with the previous results shown in Figure 6.18.  
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Table 6.5 Individual’s average travel cost and matching ratio over changes in the number of 

riders and drivers 

Driver 

 

Rider 

6,000 9,000 12,000 

Average 

travel cost 

Matching 

ratio 

Average 

travel cost 

Matching 

ratio 

Average 

travel cost 

Matching 

ratio 

10,000 9.63 0.710 9.57 0.615 9.94 0.513 

12,500 9.71 0.751 9.17 0.689 9.34 0.596 

15,000 9.99 0.766 9.13 0.733 8.97 0.671 

 

 

 
Figure 6.19 Distribution of number of matched riders: (a) Driver – 10,000, (b) Driver – 12,500, 

and (c) Driver – 15,000 

 

(2) TOC Mode Share Ratio  

The introduction of P2P carsharing expands the TOC mode pool. Combining with the original 

TOC modes, it is possible to create additional TOC mode combinations. There are two basic TOC 

modes related to P2P carsharing mode (Table 6.6). The TOC mode-B 17 in Table 6.6 represents 
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P2P carsharing providers that have ‘not drive + Own (Share)’ travel option properties. TOC mode-

B 18 presents P2P carsharing users with a chain of travel options such as Drive yourself, Need 

parking space, and ‘Not Own (Share).  

Using these basic TOC modes, we generate 4 different types of TOC mode combinations. Table 

6.7 shows the extended TOC mode combination lists. TOC Mode-C 19 shows a unique travel 

movement by including drive-alone and P2P carsharing options. This mode illustrates that shared-

ride drivers, who do not share their empty seats while traveling, have riders after finishing their 

trip. In addition, TOC Mode-C 20 illustrates shared-ride drivers who serve other users and then 

allow their car to be used for P2P carsharing purposes. As mentioned previously, we do not 

consider the case where shared-ride riders can become P2P carsharing providers. If such shared-

ride riders enter the system, we can easily depict their travel movement by integrating basic TOC 

Mode 4 and 18. TOC Mode-C 21 through 23 are used for shared-ride riders. TOC Mode-C 21 

illustrates the SAFVs and P2P carsharing movement. TOC Mode-C 22 and 23 show the 

collaboration between public transit and walking with carsharing. The length of the extended TOC 

mode combination list can be increased arbitrarily depending on the combinations and their order.  

Table 6.6 Extended TOC modes with P2P carsharing 

TOC 

Mode 

Travel Options (level) 

Driving 

Mode 

Parking 

Space 

Shared 

Empty Seat 

Public 

Transit 
Walk 

Owner-

ship 

Vehicle 

Type 

… … … … … … … … 

17 2 0 0 0 0 1 X 

18 0 1 0 0 0 2 X 

 



 

119 

 

Table 6.7 Extended TOC mode combinations with P2P carsharing 

TOC Mode-C 

TOC mode combination 

TOC mode TOC mode TOC mode 
Number of 

Connection 

19 1 17 - 0 

20 2 17 - 1 

21 4 18 - 2 

22 4 5 18 2 

23 4 6 18 1 

… … … … … 

 

Table 6.8 shows the TOC mode share results by each travel status when P2P carsharing is 

introduced (in the case of Driver 15,000 – Rider 6,000). Approximately half of the drivers are 

needed to serve around 75% of riders in the system indicating an acceptable level of ridematcing.  

Table 6.8 Extended TOC mode share by travel status 

Travel Status TOC Mode 
Number of 

Participants 
Travel Status TOC Mode 

Number of 

Participants 

Shared-ride 

Driver 

1 6,325 

Shared-ride 

Rider  

(continue) 

9 1,513 

2 103 10 16 

7 5,908 11 11 

8 164 12 143 

19 115 13 5 

20 140 14 0 

Solo-Driver 1 6,744 15 24 

Shared-ride 

Rider 

1 1,508 16 4 

3 63 21 255 

4 2,459 22 0 
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6.5 Discussion 

In this chapter, we developed a mobility portfolio modeling framework via an agent-based 

simulation platform and used it to implement various shared mobility services. To provide the best 

transportation itinerary plan, we proposed a mobility portfolio with a bundled plan and developed 

a mathematical formulation to find the mobility solution with the minimum travel cost. A two-

stage learning mechanism is adopted to reflect the decision-making process of system participants 

who continually shift to find a better solution on another day or time period by shifting their travel 

statuses. Results obtained from a test study conducted with an agent-based simulator, 

DTALite/NeXTA, lends support to our hypothesis that the proposed mobility portfolio scheme 

provides the best solution for each individual and improves the system performance. Furthermore, 

since the mobility portfolio framework arrives at a least cost solution, it provides incentives to 

potential users to switch to shared mobility options in the future. From the numerical experiments, 

we also find the impacts of not only the mobility portfolio scheme itself, but also the changes in 

mobility providers in the shared transportation systems. From an individual point of view, the 

mobility portfolio scheme results in cost savings, and from an overall system perspective, it results 

in VMT reduction. In addition, by using the TOC mode concept proposed in this dissertation, it is 

possible to model complex shared travel movements comprising continuously shifting modes and 

ownership. Results show that the proposed scheme can promote the ridership of buses as a feeder 

to the next leg of their trips. Overall, results indicate that implementing the mobility portfolio 

schemes in shared transportation systems effectively improves the performance at the individual 

and system level.  
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We evaluate the performance of the proposed model using a simplified network and assume a 

single depot location which can limit accessibility to people who live far away from the depot. We 

assign a fixed travel cost discount value for every travel mode which may influence an individual’s 

travel status choice behavior. Applying this framework on a more detailed and realistic network is 

expected to yield more insights into the behavioral effects of mobility portfolios and is part of our 

future research.  
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Chapter 7 

Multi-Hop Ridematching Optimization Problem 

7.1 Motivation 

Since the purpose of the ridematching module in the mobility portfolio framework is to provide 

real-time matching results to the individual riders and the ridematching optimization is done by 

the individuals’ apps for their benefits, a system-optimal matching is naturally improbable to 

happen. The ridematching module’s suggestions are expected not to be optimal in terms of a 

system-wide matching ratio, total VMT, cost savings, etc. From the perspective of a service 

provider such as governments and regional planners, however, system-wide benefits cannot be 

overlooked. One advantage of a centralized mobility portfolio platform is that the system has 

access to every participant’s trip information including origin/destination, departure/arrival time 

and their travel status during their mobility portfolio service subscription periods. Thus, it is 

reasonable to say that the portfolio provider can find the individually-optimal ridematching 

solution for each system participant before they start trips and provide it before they ask. The 
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system informs users details such as when to start their trip, where to go to pick up riders or to 

wait until shared-ride providers arrive to pick them. In this chapter, we propose a novel approach 

to solve the multi-hop ridematching optimization problem, which is the backbone of many-to-one 

and many-to-many ridematching problems, by using a linear program.  

7.2 Problem Description 

We are interested in finding matched pairs that maximize system-wide benefits. The benefits could 

be defined in terms of VMT savings or cost savings generated by the matched pairs. Let (𝑖, 𝑗) 

denote a temporally matched pair of rider 𝑖 and driver 𝑗. If we disallow transfers between drivers 

then any rider can only be matched by a single driver. Thus, the set of matched drivers for rider 𝑖, 

𝑘𝑖, can be represented as 𝑘𝑖 = {𝑗1} where 𝑗1 indicates the first driver who serves rider 𝑖.  

If we allow transfers, the set can be formed as 𝑘𝑖 = {𝑗1, 𝑗2, … , 𝑗𝑉+1}. Note that this is an ordered 

list whose number of elements cannot be greater than the allowable number of transfers, 𝑉 + 1. A 

path, 𝑃𝑖, that rider 𝑖 takes can be described as follows: 𝑃𝑖 = {𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑣, … , 𝑝𝑉+1} where 𝑝0 

and 𝑝𝑣+1 represent origin and destination points of rider 𝑖 and 𝑝𝑣 represents a transfer point. Thus, 

driver 𝑗𝑣’s pickup and drop-off points for a matched rider 𝑖 are (𝑝𝑣−1 , 𝑝𝑣) for all transfer points in 

𝑃𝑖. Furthermore, if a rider makes several transfers during a trip, the rider is associated with a set of 

ordered multiple matched pairs, 𝑀, as follows: 𝑀 = {(𝑖, 𝑗1), (𝑖, 𝑗2), … , (𝑖, 𝑗𝑉+1)}. Riders may also 

be associated with several sets representing different combination of drivers. So, a rider 𝑖 can have 

a group of sets of drivers described as follows 𝐾𝑖 = {𝑘𝑖
1, 𝑘𝑖

2, … , 𝑘𝑖
𝑚}. Note that the total number of 

sets in a group is not limited.  
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To evaluate the benefits of a particular match, we calculate the VMT, or cost savings compared 

with traveling alone, which represents the base case scenario, in which riders use their car to drive 

to their destination alone if no ride-share can be identified. We define variables 𝑣(𝑖) and 𝑢(𝑖) to 

denote participant 𝑖’s origin and destination points, and a variable ℎ𝑝,𝑞 to denote the travel distance 

between node 𝑝 and 𝑞. The variable ℎ𝑝,𝑞
∗  is actual travel distance that the 𝑛𝑡ℎdriver 𝑗 in rider 𝑖’s 

𝑚𝑡ℎdriver set 𝑘𝑖
𝑎 travels until he finishes his trip. The variable can be formulated as shown in 

equation (7.1): 

ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛)
∗ = ℎ𝑣(𝑗𝑛),𝑝𝑛−1 + ℎ𝑝𝑛−1,𝑝𝑛

+  ℎ𝑝𝑛,𝑢(𝑗𝑛) 
∀𝑛 = (1,2,3, … , 𝑉 + 1) 

∀𝑝𝑛 ∈ 𝑃𝑖  

∀𝑗𝑛 ∈ 𝑘𝑖
𝑚 

(7.1) 

The first term in equation (7.1) represents the distance to pick rider 𝑖 up from driver 𝑗’s origin, and 

the second term is the distance between transfer point 𝑝𝑛−1 and 𝑝𝑛. The third term represents the 

distance between 𝑝𝑛 and driver 𝑗’s destination point. The VMT savings that are generated from a 

matched pair related to rider 𝑖 and his associated drivers is equivalent to the summation of each 

VMT saving, 𝑤𝑖,𝑗
𝑚, associated with matched rider 𝑖 and driver 𝑗 through the 𝑚𝑡ℎ intermediate node 

in his matched driver set, 𝑘𝑖
𝑚. The VMT savings for the matched pair can be calculated as follows: 

𝑤𝑖,𝑗
𝑚 = ℎ𝑣(𝑖),𝑢(𝑖) + ∑ ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛)

𝑉+1

𝑛=1
𝑗𝑛∈𝑙𝑖

− ∑ ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛)
∗

𝑉+1

𝑛=1
𝑗𝑛∈𝑙𝑖

 

∀𝑛 = (1,2,3, … , 𝑉 + 1) 

∀𝑝𝑛 ∈ 𝑃𝑖  

∀𝑗𝑛 ∈ 𝑘𝑖
𝑚 

∀𝑘𝑖
𝑚 ∈ 𝐾𝑖 

𝑘𝑖
𝑚 ∈ 𝐾𝑖   ∀𝑚 = {1,2, … , 𝑚} 

(7.2) 

We can use equation (7.2) to calculate the cost savings for the matched pair by multiplying it by 

the vehicle cost associated with participant 𝑝, 𝑐𝑝. Thus, equation (7.2) can be modified as follows: 
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𝑤𝑖,𝑗
𝑚 = ℎ𝑣(𝑖),𝑢(𝑖) ∙ 𝑐𝑖 + ∑ ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛) ∙ 𝑐𝑗𝑛

𝑉+1

𝑛=1
𝑗𝑛∈𝑙𝑖

− ∑ ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛)
∗

𝑉+1

𝑛=1
𝑗𝑛∈𝑙𝑖

∙ 𝑐𝑗𝑛
 (7.3) 

 

Without considering transfers, several studies have formulated a one-to-one ridematching problem 

using a maximum-weight bipartite matching model (Figure 7.1a) and have solved it using a linear 

programming approach (Agatz et al., 2011; Wang et al.,2017). Wang et al., (2017) extend a one-

to-one matching problem to a one-to-many matching problem by formulating that a driver can 

serve multiple riders, with the assumption that the driver can cover the entirety of riders’ routes.  

The bipartite graph approach is an efficient tool that arrives at a one-by-one matching solution 

without conflicts. However, there are some limitations of this approach when it is applied to the 

one-to-many matching problem. To illustrate this, let us assume that rider 𝑟1 has two matched 

driver sets, {𝑑1, 𝑑2} and {𝑑3, 𝑑4}. As shown in Figure 7.1b, the rider has four edges, 𝑒𝑖,𝑗 , that 

connect rider 𝑖 and each matched driver 𝑑𝑗 . Also, let us set the costs of each edge as follows: 

𝑐(𝑒𝑟1,𝑑1
), 𝑐(𝑒𝑟1,𝑑2

), 𝑐(𝑒𝑟1,𝑑3
), and 𝑐(𝑒𝑟1,𝑑4

) are 10, 2, 7, and 4 unites respectively. S, the costs of 

drivers set {𝑑1, 𝑑2} and {𝑑3, 𝑑4} are 12 and 11, respectively.  

 



 

126 

 

 

Figure 7.1 Bipartite graph examples for ridematching problems 

 

Thus, the best matched set for rider 𝑖 is {𝑑1, 𝑑2}. Using a learning-based programming method, 

however, rider 𝑖 is matched to {𝑑1} or {𝑑1, 𝑑3} if and only if we set the decision variable as 2 or 0. 

Both solutions are incorrect because drivers in the solutions cannot finish the rider’s trip. To 

mitigate this problem, we propose a novel graphical approach by adding intermediate nodes, 𝑘𝑖
𝑚, 

between rider and driver groups. The purpose of the intermediate nodes is to discretize the feasible 

matched driver sets and to distinguish the riders’ set associated with driver 𝑗 . From the definition 

of the intermediate nodes, it follows that each intermediate node is only connected to a single rider. 

Figure 7.2 illustrates the proposed graphical transformation.  
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Figure 7.2 Graphical approach for one-to-many matching problem 

 

As shown in Figure 7.2, it follows that rider 1 has three available driver sets and driver 3 can be 

associated with two different sets. Also, the maximum number of transfers is 2, because there are 

three drivers in set 3. It is worth mentioning that the costs for edges which connect riders and 

intermediate points are 0, because these edges are virtual and are only used to separate the feasible 

driver sets. The costs for rider 1 and its feasible driver sets can be automatically calculated by 

adding costs generated from edges associated with each set. For instance, from the edge (𝑘1
1, 1), 

we know that rider 1 is matched with driver 1 who belongs to the first matching set. We can also 

calculate also cost savings between rider 1 and driver 1 using equation (7.3).  

In the case of many-to-many ridematching problem, drivers can serve multiple riders and riders 

can use multiple drivers. The proposed graphical approach can be easily implemented in this 

scenario by adding another type of intermediate node named g-intermediate node that includes a 

driver who serves more than 2 riders, henceforth known as g-driver to the graph. The g-
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intermediate nodes contain a list of multiple riders, 𝑙𝑟 = {𝑝, 𝑞, … , 𝑟}. Thus, we set a g-intermediate 

node as follows: 𝑔𝑙𝑟
𝑧  = {𝑘𝑝

𝑛, 𝑘𝑞
𝑚, … , 𝑘𝑟

𝑤}. The graph may have a set of g-intermediate nodes, 𝐺. 

Note that the length of the g-intermediate nodes cannot be greater than vehicle capacity, 𝑉𝐶. Figure 

7.3 exemplifies a graph that is applicable for the many-to-many matching problem. 

 

Figure 7.3 Graphical approach for the many-to-many matching problem 

VMT savings for driver 8 can be calculated by modifying equation (7.1) as follows: 

ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛)
∗ = ℎ𝑣(𝑗𝑛),𝑝𝑛−1 ∙ 𝜑 + ℎ𝑝𝑛−1,𝑝𝑛

∙ 𝜔 +  ℎ𝑝𝑛,𝑢(𝑗𝑛) ∙ τ 

∀𝑛 = (1,2,3, … , 𝑉 + 1) 

∀𝑝𝑛 ∈ 𝑃𝑖  

∀𝑗𝑛 ∈ 𝑘𝑖
𝑚 

𝑘𝑖
𝑚 ∈ 𝐾𝑖   ∀𝑚 = {1,2, … , 𝑚} 

(7.4) 

Variables 𝜑, 𝜔 and 𝜏 are binary variables whose values are defined as follows: 

- if 𝑗𝑛 is a g-driver and rider 𝑖 is the first passenger of 𝑗𝑛, then 𝜑 = 1, 𝜔 = 1, 𝜏 = 0;  

- if 𝑗𝑛 is a g-driver and rider 𝑖 is the last passenger of 𝑗𝑛, then 𝜑 = 0, 𝜔 = 1, 𝜏 = 1;  

- if 𝑗𝑛 is a g-driver and rider 𝑖 is not the first or the last passenger of 𝑗𝑛, then 𝜑 = 0, 𝜔 =

1, 𝜏 = 0; 

- if 𝑗𝑛 is not a g-driver, 𝜑 = 1, 𝜔 = 1, 𝜏 = 1 which is the same as equation (7.1).  
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Furthermore, to find the total pickup distance among passengers who use the same vehicle, we use 

equation (7.5), where the term 𝑙𝑟𝑛 indicates the 𝑛𝑡ℎ passenger in list 𝑙𝑟. 

ℎ′ = ∑ ℎ𝑢(𝑙𝑟(𝑛)),𝑣(𝑙𝑟(𝑛+1) 

𝑉𝐶−1

𝑛=1

 
∀𝑛 = (1,2,3, … , 𝑉𝐶 − 1) 

∀𝑙𝑟(𝑛) ∈ 𝑙𝑟 (7.5) 

Equation (7.6) shows the total VMT savings in the many-to-many ridematching problem 

formulation. 

𝑤𝑖,𝑗
𝑚 = ℎ𝑣(𝑖),𝑢(𝑖) + ∑ ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛)

𝑉+1

𝑛=1
𝑗𝑛∈𝑙𝑖

− (∑ ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛)
∗

𝑉+1

𝑛=1
𝑗𝑛∈𝑙𝑖

+ ℎ′ ∙ 𝜎) 

∀𝑛 = (1,2,3, … , 𝑉 + 1) 

∀𝑝𝑛 ∈ 𝑃𝑖   

∀𝑗𝑛 ∈ 𝑘𝑖
𝑚 

𝑘𝑖
𝑚 ∈ 𝐾𝑖   ∀𝑚 = {1,2, … , 𝑚} 

(7.6a) 

𝜎 = {
1 𝑖𝑓 𝑙𝑖𝑠𝑡 ′𝑙𝑟′ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑟𝑖𝑑𝑒𝑟 𝑖 𝑖𝑛 𝑔𝑙𝑟 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7.6b) 

To calculate the cost savings for the matched pair, we first transform equation (7.5) into equation 

(7.7) by multiplying it with the vehicle cost related to participant 𝑝, 𝑐𝑝. Using equation (7.7), we 

finally arrive at the total cost savings as shown in equation (7.8).  

ℎ′ = ∑ ℎ𝑢(𝑙𝑟(𝑛)),𝑣(𝑙𝑟(𝑛+1) ∙ 𝑐𝑗𝑛

𝑉𝐶−1

𝑛=1
 ∀𝑛 = (1,2,3, … , 𝑉𝐶 − 1) 

∀𝑙𝑟(𝑛) ∈ 𝑙𝑟 
(7.7) 

𝑤𝑖,𝑗
𝑚 = ℎ𝑣(𝑖),𝑢(𝑖) ∙ 𝑐𝑖 + ∑ ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛) ∙ 𝑐𝑗𝑛

𝑉+1

𝑛=1
𝑗𝑛∈𝑙𝑖

− (∑ ℎ𝑣(𝑗𝑛),𝑢(𝑗𝑛)
∗ ∙ 𝑐𝑗𝑛

𝑉+1

𝑛=1
𝑗𝑛∈𝑙𝑖

+ ℎ′ ∙ 𝜎) 

∀𝑛 = (1,2,3, … , 𝑉 + 1) 

∀𝑝𝑛 ∈ 𝑃𝑖   

∀𝑗𝑛 ∈ 𝑘𝑖
𝑚 

𝑘𝑖
𝑚 ∈ 𝐾𝑖   ∀𝑚 = {1,2, … , 𝑚} 

(7.8a) 

𝜎 = {
1 𝑖𝑓 𝑙𝑖𝑠𝑡 ′𝑙𝑟′ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑟𝑖𝑑𝑒𝑟 𝑖 𝑖𝑛 𝑔𝑙𝑟 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7.8b) 
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7.3 Methodology 

In the following sections, we formulate a multi-hop ridematching optimization problem that allows 

transferring between shared-ride mobility providers, and then provide a mathematical 

programming approach to maximize the total cost savings for all system participants. 

7.3.1 Ride-share Match Graph Generation 

As described in Figure 7.2, paths in the graph represent ride-share matches between riders and 

drivers. The key elements of the ride-share graph are rider nodes, mobility provider nodes, 

intermediate nodes, and links between these nodes. In the graph, all riders in the rider group, 𝑅, 

are considered as a rider node 𝑖. Similarly, drivers in share-ride driver group, 𝐷, are considered as 

a mobility provider node 𝑗. Other travel modes such as public transit, walk, and shared-bike, are 

considered mobility provider nodes. Links connect a node 𝑖 ∈ 𝑅 on one side of the graph with a 

node 𝑗 ∈ 𝐷 on the other side if and only it is feasible to establish a ride-share match with rider 𝑖 

and driver 𝑗. If rider 𝑖 has multiple drivers, we create an intermediate node 𝑘.  

We begin by preprocessing data for both shared-ride riders and drivers to reduce the size of the 

network by considering only the accessible spatiotemporal network within their travel time 

window. Instead of using the DP algorithm described in section 6.3.2 that provides an instant 

minimum travel cost matched partner to riders, we only perform a depth first search (DFS) on the 

reduced network for riders to find all possible combinations of mobility providers that complete a 
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rider’s entire trip itinerary. If there are mobility providers sets that cannot serve a rider’s complete 

itinerary, we consider those mobility provider sets are infeasible.  

Let assume that a rider has multiple feasible sets, each representing a different combination of 

mobility providers, and that the ride-share providers allow at most one transfer. The graph 

associated with this scenario becomes as shown in Figure 7.4a. Rider 1 in the figure has two direct 

matched pairs with driver 2 and driver 6 and two matched pairs with intermediate nodes. The 

maximum number of segmented pathways a rider can take is 2. Therefore, the total amount of flow 

that rider 1 can send to the segmented pathways is 0, 1, or 2. Note that the flow value are integers 

because they represent actual users. Considering the flow as a decision variable, we can formulate 

a maximum ridematching problem using a binary decision variable to represent a dummy driver 

for riders. As shown in Figure 7.4b, we add a dummy driver node, 𝑑′, and create four intermediate 

nodes, each connected to two links. By assigning a weight of 0 to the link connected to the dummy 

nodes, we ensure that these links do not impact total system cost savings, which is our objective 

function. In this example, the decision variable is a binary variable whose value is either 2 or 0, 

depending on the maximum number of transfers.  
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Figure 7.4 Example of feasible ride-share match graph  

 

7.3.2 Mathematical Formulation 

The multi-hop ridematching problem is structurally similar to the transshipment network problem 

which is a special case of the transportation problem in which the shipment of goods passes an 

intermediate destination before reaching their final destination. There are three different nodes 

defined in the transshipment problem: transshipment nodes, and supply and demand nodes. 

Transshipment nodes can have both incoming and outgoing links, whereas supply and demand 

nodes are points where goods enter or leave the network.  

Using the properties of nodes in transshipment problem, we model shared-ride riders as supply 

nodes 𝑅, shared-ride drivers as demand nodes 𝐷, and intermediate nodes as transshipment nodes 
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𝐾. Thus, the ride-share match graph has a set of all nodes 𝑁 = 𝑅 ∪ 𝐷 ∪ 𝐾, and a set of links 𝐴. 

Depending on the objective function, the weight of each link in the ride-share matching graph is 

calculated using equations (7.6) and (7.8). A key difference between the transshipment problem 

and the multi-hop ridematching problem is that in the ridematching problem the weights of the 

links entering the intermediate nodes are assigned to be 0. Note that demand nodes can be extended 

if we consider other types of travel modes.  

For the multi-hop ridematching problem, we use two decision variables as defined in equations 

(7.9)-(7.10). Equation (7.9) indicates that if rider 𝑖 uses the 𝑚𝑡ℎ intermediate node 𝑘 then rider 

node 𝑖 will send its flows to the link that connects rider node 𝑖 and the 𝑚𝑡ℎ intermediate node 𝑘. 

The amount of the flows is equivalent to the number of segmented pathways, and is calculated as 

the maximum number of transfers, 𝑉 + 1.  

𝑥𝑖
𝑚 = {𝑉 + 1 𝑖𝑓 𝑟𝑖𝑑𝑒𝑟 𝑖 𝑢𝑠𝑒 𝑚𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑘 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.9) 

𝑥𝑖,𝑗
𝑚 = 

{1 𝑖𝑓 𝑎 𝑝𝑎𝑡ℎ 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑟𝑖𝑑𝑒𝑟 𝑖, 𝑑𝑟𝑖𝑣𝑒𝑟 𝑗 𝑎𝑛𝑑 𝑚𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑛𝑜𝑑𝑒 𝑘 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(7.10) 

 

Now we proceed to outlining a problem that is not optimized based on the objectives of only the 

riders in the system but one that includes both riders and drivers.  Referring to the earlier discussion 

in section 4.2.4, this problem would be one that leads to a system-level optimum, unlike the 

ridematching problem which is a rider-centric problem implemented for individual riders in 

temporal sequence. In addition, if we include information on all future riders and drivers into the 

problem, unlike in the ridematching problem that is implemented in real time with only 
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information on the drivers and riders who have entered the system thus far, then this new problem 

can be considered a benchmark problem that yields the best-possible solution for the system.  We 

formulate this best-solution as a linear program (LP) and solve it, so that the ridematching solutions 

can be compared against that benchmark.  

Equation (7.11a) represents the objective function of the system-wide LP problem. Constraint sets 

(7.11b) and (7.11c) limit the total number of travel segments for rider 𝑖 and driver 𝑗’s vehicle 

capacity, 𝑉𝐶𝑗. Equation (7.11d) is needed to ensure flow conservation. We add a new constraint 

set (7.11e) that indicates all edges which originate from the same intermediate node to have the 

same value (i.e., either 1 or 0). Therefore, this equation guarantees that riders are matched to 

drivers who are located in the same ride-share match list.  

𝑚𝑎𝑥 ∑ 𝑤𝑖,𝑗
𝑚 ∙ 𝑥𝑖,𝑗

𝑚

(𝑖,𝑗)∈𝐴

                                        
(7.11a) 

subject to ∑ 𝑥𝑖
𝑚

𝑚

≤ 𝑉 + 1 ∀𝑚 = {1,2, … , 𝑚} (7.11b) 

 ∑ ∑ 𝑥𝑖,𝑗
𝑚

𝑚𝑖

≤ 𝑉𝐶𝑗 
∀𝑗𝑛 ∈ 𝑘𝑖

𝑚 

𝑘𝑖
𝑚 ∈ 𝐾𝑖   ∀𝑚

= {1,2, … , 𝑚} 
(7.11c) 

 ∑ 𝑥𝑖
𝑚

𝑚

= ∑ 𝑥𝑖,𝑗
𝑚

𝑗∈𝑘𝑖
𝑚

 
∀𝑗𝑛 ∈ 𝑘𝑖

𝑚 

𝑘𝑖
𝑚 ∈ 𝐾𝑖   ∀𝑚

= {1,2, … , 𝑚} 
(7.11d) 

 𝑥𝑖,𝑗1

𝑚 = 𝑥𝑖,𝑗2

𝑚 = ⋯ = 𝑥𝑖,𝑗𝑉+1

𝑚  
∀𝑗𝑛 ∈ 𝑘𝑖

𝑚 

𝑘𝑖
𝑚 ∈ 𝐾𝑖   ∀𝑚

= {1,2, … , 𝑚} 
(7.11e) 

 𝑥𝑖
𝑚, 𝑥𝑖,𝑗

𝑚 ≥ 0  (7.11f) 
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It is worthwhile to mention that if we assume the capacity of driver 𝑉𝐶𝑗 = 1, then the multi-hop 

ridematching problem becomes a many-to-one problem; and if 𝑉𝐶𝑗 ≥ 2, it results in a many-to-

many problem. For the many-to-many ridematching problem cases, some driver may connect to 

several k-type and g-type intermediate nodes. In order to ensure that the drivers’ path is not 

obstructed by infeasible riders and only matched to rider(s) coming from a single 𝑚𝑡ℎ  k-type 

intermediate node or a single 𝑛𝑡ℎ g-type intermediate node, we add more constraints as follows:  

 
∑ ∑ 𝑥𝑖,𝑗

𝑚
𝑚𝑖

𝑉𝐶𝑗
𝑚 +  

∑ ∑ 𝑥𝑖,𝑔
𝑛

𝑛𝑖

𝑉𝐶𝑗
𝑛 = 1 (7.11g) 

 ∑ 𝑥𝑖,𝑗
𝑛

𝑖

= ∑ 𝑥𝑖,𝑗
𝑛

𝑗

 (7.11h) 

In equation 7.11g, the variable 𝑉𝐶𝑗
𝑚 is always equal to 1; and 𝑉𝐶𝑗

𝑛 depends on the number of riders 

that a driver can serve. Note that if a driver 𝑗 associated with a 𝑛𝑡ℎ g-node can serve multiple riders 

then his 𝑉𝐶𝑗
𝑛 is equal to the number of served riders; however, a driver 𝑘 in the same g-node is 

only serve a single rider, his 𝑉𝐶𝑘
𝑛 is equal to 1. Equation 7.11h shows the flow conservation rule 

for riders who are matched to drivers in the 𝑛𝑡ℎ g-type node.  

In next section, we generate several ridematching problem instances. All problems are solved on 

a PC with Core i5 3.5GHz and 24GB of RAM, using the PYTHON programming language and 

PULP solver with standard tuning. 
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7.4 Results 

7.4.1 System Performance 

(1) Cost Savings  

We first investigate the relationship between the number of drivers in the system and total cost 

savings. To that effect, we generate two many-to-one ridematching problem instances: single-hop, 

single-rider (1 transfer, 1 occupancy) and multi-hop, single-rider (2 transfers, 1 occupancy), and 

vary the number of drivers from 6,000 to 12,000 while keeping the number of riders constant at 

6,000. Figure 7.5 shows the results of this analysis. Cost savings for both problem instances 

increase as the number of drivers increases. Overall, the multi-hop, single-rider problem instance 

exhibits higher cost savings than its single-hop, single-rider counterpart. The biggest cost savings 

gap between the two problem instances is attained when the number of drivers is 7,500. In the case 

of 11,000 drivers, the cost savings for both instances are within 1 % of each other, after which it 

widens again. 
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Figure 7.5 Optimal cost savings for many-to-one matching problems 

(2) Percentages of Served Riders 

We compare the ridematching performance measure of the two problems using the linear 

programming (LP) method proposed above (Equations 7-11a through 7-11f) and compare the 

results with those obtained from a real-time ridematching algorithm utilized in chapter 6 for 

comparison.  The intent here is to investigate how close to the system optimality the ridematching 

solutions come.  It should be noted that the LP solutions are not practically feasible, both due to 

lack of future information availability and due to the agency’s usual inability to force any rider to 

pay more for mobility so that another rider pays sufficiently less to reduce the system level costs 

and payments by riders.  

Table 7.1 shows comparative results for the single-hop, single-rider scenario. In terms of the 

number of served riders and the average cost savings per person, the values obtained from the LP 

method are higher than the ones from the real-time matching algorithm. This indicates, even 

though it does not guarantee the optimal cost savings or matched pair for each individual, from the 
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system standpoint, the LP method provides more matching opportunities, though practically they 

may be infeasible to achieve. Alternatively, it can be said that a practical ridematching solution 

will be suboptimal though still beneficial from the system standpoint.  

The most important conclusion is indeed that the ridematching solutions are yielding system level 

benefits not substantially below the benchmark LP optimum.  Another key insight from this 

analysis is that the number of transfers goes down as more drivers are present in the system. This 

is to be expected; as more drivers are available, the probability of being matched to riders without 

transferring increases.  

Table 7.1 Performance comparison in a single-hop, single-rider scenario 

 Num. (%) served rider  Avg. cost savings  Avg. num. transfer 

Driver Real-time LP  Real-time LP  Real-time LP 

6,000 1,719 (29%) 2,142 (36%)  5.72 7.39  0.52 0.59 

6,500 1,842 (31%) 2,270 (38%)  5.58 7.29  0.49 0.58 

7,000 1,968 (33%) 2,377 (40%)  5.40 7.15  0.47 0.55 

7,500 2,124 (35%) 2,505 (42%)  5.29 6.95  0.45 0.54 

8,000 2,209 (37%) 2,564 (43%)  5.17 6.89  0.43 0.53 

8,500 2,325 (39%) 2,686 (45%)  5.10 6.76  0.41 0.52 

9,000 2,415 (40%) 2,747 (46%)  4.99 6.71  0.40 0.50 

9,500 2,497 (42%) 2,816 (47%)  4.93 6.56  0.38 0.48 

10,000 2,567 (43%) 2,870 (48%)  4.80 6.51  0.37 0.47 

10,500 2,616 (44%) 2,908 (48%)  4.69 6.42  0.35 0.46 

11,000 2,681 (45%) 2,983 (50%)  4.62 6.32  0.34 0.45 

11,500 2,752 (46%) 3,034 (51%)  4.55 6.22  0.32 0.43 

12,000 2,819 (47%) 3,055 (51%)  4.51 6.13  0.31 0.43 
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Table 7.2 shows the same comparison for a multi-hop, single-rider model. The results suggest that 

the LP method shows better results in all ridematching performance measures than the real-time 

matching algorithm. Compared with the single-hop single-rider scenario, we find that the average 

number of transfers in the multi-hop, single-rider scenario is slightly higher.  

Table 7.2 Comparisons of matching performance measures with a multi-hop, single-rider model 

 Num. (%) served rider  Avg. cost savings  Avg. num. transfer 

Driver Real-time LP  Real-time LP  Real-time LP 

6,000 1,811 (30%) 2,155 (36%)  5.79 7.44  0.64 0.61 

6,500 1,924 (32%) 2,277 (38%)  5.67 7.34  0.61 0.59 

7,000 2,071 (35%) 2,369 (39%)  5.56 7.22  0.57 0.57 

7,500 2,169 (36%) 2,477 (41%)  5.38 6.99  0.53 0.54 

8,000 2,265 (38%) 2,535 (42%)  5.19 6.92  0.50 0.54 

8,500 2,368 (39%) 2,651 (44%)  5.14 6.77  0.47 0.52 

9,000 2,452 (41%) 2,733 (46%)  5.06 6.74  0.45 0.51 

9,500 2,542 (42%) 2,814 (47%)  4.96 6.61  0.43 0.49 

10,000 2,585 (43%) 2,851 (48%)  4.85 6.51  0.41 0.48 

10,500 2,663 (44%) 2,925 (49%)  4.72 6.45  0.39 0.47 

11,000 2,713 (45%) 2,983 (50%)  4.65 6.32  0.38 0.45 

11,500 2,770 (46%) 3,035 (51%)  4.59 6.24  0.36 0.44 

12,000 2,848 (47%) 3,076 (51%)  4.56 6.21  0.34 0.44 

 

7.4.2 Scenario Analysis 

In this section, we evaluate the proposed graphical method on several ridematching problems. We 

set an OD-based matching problem as a base scenario and create several scenarios by varying the 

number of transfers for riders and the number of served riders for drivers. Table 7.3 shows the 
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summary of the created scenarios. The difference between scenario 1 and 4 is the number of 

transfers that riders can make. Similarly, the number of riders that drivers can serve is different in 

scenario 2 and 3. For instance, in scenario 2, we allow users 1 transfer as rider and restrict the total 

number of riders for a driver to 2. We analyze the performance of each scenario with both the real-

time matching algorithm and the LP method with the graphical approach. We set the maximum 

number of transfers as 2 and set the maximum number of drivers a rider can accept to 3 (Masoud 

and Jayakrishnan, 2017b).  

The number of drivers and riders are fixed at 12,500 and 6,000 respectively, Figure 7.6 shows the 

cost savings in each scenario. The solutions for all scenarios converge at optimal points which are, 

by definition, greater than the cost savings obtained without the optimization approach. The results 

also confirm our intuition that relaxing the problem, i.e., by increasing the allowable number of 

transfers and riders, leads to higher cost savings. 

Table 7.3 Scenario setting 

Scenario 
Property Matching Problem 

Type 
Description 

Transfer Capacity 

Base 0 1 One-to-One OD-based 

1 1 1 Many-to-One Single-hop (1), Single-rider (1) 

2 1 2 Many-to-Many Single-hop (1), Multi-rider (2) 

3 1 3 Many-to-Many Single-hop (1), Multi-rider (3) 

4 2 1 Many-to-One Multi-hop (2), Single-rider (1) 

5 2 2 Many-to-Many Multi-hop (2), Multi-rider (2) 

6 2 3 Many-to-Many Multi-hop (2), Multi-rider (3) 
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Figure 7.6 Cost savings comparisons by scenarios 

Table 7.4 shows the comparative results of all scenarios. In the base scenario, the number of served 

riders is 2,899 which also represents the lowest matching ratio of 48%. The highest number of 

served riders is found in scenario 6 which has the most relaxed matching requirements.  

The computational time shows a commensurate increase as the number of served riders increases. 

This is because every served rider generates at least two subsequent edges in the abstract 

transshipment network. The number of intermediate nodes that a single rider generates depends on 

the number of elements in their associated driver set, which can include multiple drivers. For 

instance, if a rider has five potential driver sets and each set has three drivers (i.e., 2-transfer 

allowing case), then there are five edges are created from a ride node to five intermediate nodes, 

and each intermediate node has three edges which connect to driver nodes. Therefore, for a single 

rider, 15 edges are generated, which contributes to the computational time.  
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Table 7.4 Comparisons of matching performance for different scenarios 

Scenario 
Num. of 

served riders 

(%) 

 
Num. of 

transfers 

 
Avg. vehicle 

occupancy 

 Wait in transfer (min)  
Computational 

time (sec) 
   Min. Avg. Max.  

Base 2,899 (48%)  NA  1.08  NA  2.30 

1 4,102 (68%)  0.44  1.02  1.00 2.99 10.00  4.24 

2 4,269 (71%)  0.40  1.52  2.00 2.83 9.00  5.19 

3 4,334 (72%)  0.39  1.54  2.00 2.75 9.00  4.35 

4 3,766 (63%)  0.53  1.01  1.00 2.78 10.00  4.29 

5 4,069 (67%)  0.38  1.53  2.00 2.71 9.00  7.77 

6 4,656 (78%)  0.42  1.55  2.00 2.72 9.00  7.71 

 

Figure 7.7 depicts the optimality characteristics of the matching algorithm. Before the optimization 

is performed, there are potential riders who are temporarily matched with drivers and some drivers 

who are also temporarily tied with multiple riders. A driver can serve the riders who are associated 

with him if and only if their travel paths are not in conflict with each other, and if the vehicle 

capacity constraints are not violated. If these conditions are not met, drivers can only serve a subset 

of riders associated with them. This accounts for the gap between the potential matched riders and 

the optimal matched riders. The base scenario, which has the tightest matching constraints, shows 

the largest gap between the potential and optimally matched riders. The optimality gap is reduced 

as the matching requirements are relaxed, indicating that the ridematching performance depends 

on how the ridematching problem conditions are configured.  
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Figure 7.7 Optimal matched riders vs potential matched riders 

 

7.4.3 Numerical Experiments 

(1) Varying Rider Demand 

We also evaluate the performance of the graphical approach in terms of the cost savings and 

computational time, by varying the number of riders and keeping the number of drivers fixed. 

Several test scenarios representing different types of matching problem instances are generated. In 

the case of the many-to-many matching problem instance, riders are able to transfer up to 2 times 

and drivers can serve no more than 2 riders. In the many-to-one matching scenario, we retain the 

same constraint for riders, but we limit the number of riders that a driver can serve to 1.  
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Figure 7.8 Computational time comparison 

The computational times are depicted in Figure 7.8a. For the one-to-one matching instance, the 

computational times do not vary significantly as the number of riders increases. That is because in 

this case, the addition of new drivers does not generate intermediate nodes, and the maximum 

number of edges that one rider can create is equal to the number of total drivers, which remain 

constant. However, once we consider transferring, we need to generate intermediate nodes, which 

leads to the creation of an additional edge that connects riders and intermediate nodes. For 

illustrative purposes, if a driver has 3 intermediate nodes and each intermediate nodes has 2 edges 

that link two drivers, 10 new edges are generated in the graph. Therefore, the many-to-many 

matching instance incurs longer computational times compared to other scenarios. Figure 7.8b 

shows the cost savings for each instance. In line with our previous results, increasing the number 

of riders leads to higher cost savings.  

Figure 7.9 shows the number of matched riders for various problem sizes and ridematching 

instances. In figures 6.9b and 6.9c, the gap between matched drivers and riders represents the 

proportion of all drivers who are required to serve riders. In the many-to-one matching instance, 
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the number of drivers needed is higher than the number of riders in all cases. The biggest difference 

occurs when the number of riders is 10,000, needing twice as many drivers to serve riders. In the 

many-to-many matching instance, the gap between matched drivers and served riders is almost 

negligible. The number of drivers needed is less than the number of riders when the number of 

riders rises above 7,000 (shaded red in Figure 7.9c), which has implications for the system 

operators in terms of economies of scale. The distinguishing features of the many-to-many and the 

many-to-one matching scenario is the number of required drivers. Based upon the results, we can 

conclude that more restrictive ridematching constraints reduce the vehicle usage efficiency for 

drivers.  

 

Figure 7.9 Percentage of successful matches 
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(2) Varying Demand and Supply 

In the previous section, we analyzed the performance of the algorithm in different matching 

problem scenarios while keeping the number of drivers sized. In this section, we vary both 

ridesharing drivers (i.e., from 10,000 through 15,000) and riders (i.e., from 1,000 through 10,000), 

and evaluate the graphical algorithm.  

 
Figure 7.10 Distribution of computational time 
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Figure 7.10 depicts the performance measurements of the algorithm under the three different 

matching instances. In all scenarios, the computational time increased as the number of system 

participants increase, because additional participants generate more edges in the graph (Figure 

7.10c). Furthermore, we confirm that the matching ratio increases as the number of drivers increase. 

This tendency appears more conspicuous as the matching requirements are relaxed. It is worth 

mentioning that, in the case of the many-to-many ridematching instance and 12,500 drivers, the 

matching ratio is relatively smaller than in other instances. That can be explained by the gap 

between the potential riders and the actual matched riders, shown in Figure 7.11. The number of 

the potential matched riders are similar regardless of drivers as the number of drivers increases 

from 10,000 to 15,000. However, when in optimal matched riders case with 12,500 drivers, the 

riders who were actually matched are significantly reduced compared to the potentially matched 

ones.  

 
Figure 7.11 Gap between the optimal and potential matched riders 
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Figure 7.12 demonstrates the cost savings in the three problem instances. The most restricted 

matching problem shows the least cost savings. In addition, we confirm that in every instance, 

introducing more participants in the system led to more cost savings benefits.  

Figure 7.13 dhows the distribution of transfers for the many-to-one and many-to-many matching 

instances. We observe that by relaxing the constraint of served riders per driver from 1 to 3, the 

number of transfers is significantly reduced. The results indicate that vehicle occupancy, which is 

a key vehicle efficiency metric, is improved. Fewer transfers also represent an important in the 

quality of the overall rider experience.  

 
Figure 7.12 Distribution of cost savings 



 

149 

 

  
Figure 7.13 Distribution of transfers 

7.5 Discussion 

In this chapter, we developed a graphical method to find the optimal cost savings applicable to 

diverse ridematching problems. Contrary to the traditional bipartite graph approach which 

connects matched riders and drivers with direct links, we introduced modeled the problem using a 

transshipment network structure with intermediate nodes. The role of the intermediate nodes is to 

guarantee a set of drivers who can serve all itineraries and to prevent the possibility that 

realistically unconnected drivers will arise and be chosen by riders. We used a linear programming 

method to find the optimal cost savings, to use as a benchmark.  

We applied the proposed method to a relatively large network and analyzed the impacts of changes 

in demands and supplies in the ridematching system. The proposed graphical approach performs 

better than the real-time matching algorithm in terms of the cost savings. Furthermore, we 

generated different ridematching problem instances by varying the number of transfers and vehicle 

capacity.  
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We evaluate the system performance under these diverse scenarios. Numerical experiments show 

that the graphical approach results in the optimal cost saving solutions, compared to the real-time 

ridematching solution methodology. We also evaluated the system performance when the number 

of transfers and vehicle occupancy are varied. From system user point of view, the relaxed 

ridematching constraints, coupled with an appropriate rider-driver ratio, leads to fewer transfers. 

From an overall system perspective, we confirmed that the proposed algorithm leads the 

improvements of the successful matched riders.  

The proposed graphical algorithm, technically, performed over one optimization time period. 

However, it can also be applied dynamically by decomposing the time period into smaller time 

periods, then using a rolling time-horizon approach. A key insight from the results shown in Figure 

7.11 is that the gap between the optimal and the potential matched riders suggests that there are 

‘super’ drivers who can serve multiple riders. At the same time, there are riders who have similar 

trip itineraries, who are likely to experience matching failures since there are not enough available 

drivers. From the system management point of view, shareable resources are being wasted in these 

circumstances. If some riders were to decide to be drivers, more people can be matched through 

improved system efficiency. This underscores the importance of combining the optimal 

ridematching algorithm with the mobility portfolio framework, which can lead to behavioral 

changes in system participants, resulting in a more efficient system.  
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Chapter 8 

Conclusion  

8.1 Summary and Contributions  

Shared transportation systems continue to gain wide acceptance in societies all over the world. 

Mobility being increasingly viewed as a shareable good as well as property has led to the rise of 

diverse services related to shared mobility. These systems allow people to travel efficiently without 

having to own a vehicle. In addition, autonomous vehicles can greatly expand the travel choices 

of people and incentivize the development of more innovative transportation systems, by 

leveraging real-time information about people’s movements and behavioral choices. Through an 

elaborate study of a comprehensive model of ridesharing, mobility portfolios and the associated 

optimization, the major research objective accomplished in this dissertation are the development 

of a smart transportation platform that can help optimize the individual travelers’ complex 

movements in a shared and multimodal environment and can provide a smart mobility portfolio 

plan under the system. In this process, the thesis proposed new conceptual frameworks to describe 
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the modal options from a continuous combination spectrum, provided formulations and algorithms 

for the associated individual-level optimizations, and developed an agent-based modeling platform 

to study the collective performance of the system over a multiple-day (or longer) period of time.  

First, we develop a new trip modeling concept decomposing previously strict and discrete 

traditional travel modes (i.e., personal, public transit, and walk) into a flexible combination of 

several travel options. We define these as travel option chain (TOC) modes. The benefit of the 

TOC mode concepts is its flexibility. The TOC modes can be utilized universally for any type of 

shared-mobility services, depending on the characteristics of each travel options, and explicitly 

incorporates vehicle ownership (or partial ownership) in their formulation through price/payment 

structures.  

Using the TOC mode as an underlying concept, we designed a platform to model a subscription-

based mobility portfolio framework for shared and autonomous transportation systems. The 

platform was built using agent-based modeling techniques to simulate various agents for individual 

travelers, the system/network/vehicle supply elements, and the optimization elements, so as to 

analyze their interactions and the resulting individual and collective performance.  

We developed a mobility portfolio framework to provide the optimal mobility option for each 

system subscriber based on their travel preferences and previous travel experience. The core of the 

mobility portfolio scheme is a peer-to-peer ridematching module to find the best TOC modes in 

real time for each individual, using a dynamic programming method, and then learning-based 

optimization schemes for the travel choices each during different periods or phases of the portfolio 

period. Once the ridematching process is completed, we system participants’ perception of travel 
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time and cost, based on their matching experiences, are updated. Using these data, we execute a 

decision-making module to recommend a more attractive travel option to the users for their next 

trip.  

The bundling mechanism in the mobility portfolio has a designated shared-mobility usage period 

and credits for each bundle option. Keeping these features in mind, we mathematically formulate 

the mobility portfolio problem aimed to find the combination of travel modes that lead to the 

maximum travel cost savings within the portfolio, for each individual. The objective function in 

the mobility portfolio problem is a nondifferentiable function. Therefore, we apply a heuristic 

algorithm, which in this case is a learning-based iterative method. The novel feature of our 

proposed learning method is that is has a periodic from that incorporates two different time periods 

simultaneously. The learning happens over travel experiences accumulated on the day of travel, 

and the same day corresponding to the previous time period. We update the expected travel time 

for the next day based on the Bayesian Inference model, and then use a modified ant colony 

optimization approach to consider the data collected at different iteration points. To prevent a 

situation in which the system participants use up their credit for a certain travel status before their 

trip is completed, we specify a rick value function. We also demonstrate the flexibility of this 

framework by incorporating different shared-mobility services such as a shared autonomous fleet 

vehicle service and a peer-to-peer carsharing service.  

To measure the performance of the developed framework, we performed a simulation-based 

analysis on an Irvine area network with travel demand data from the California Statewide 

Transportation Demand model (CSTDM).  
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The results from the simulation, including shared autonomous fleet vehicles (SAFVs) operations, 

we demonstrate that the adopted two-stage learning mechanism helps system participants in 

finding a better travel solution for the next day or time period by allowing people to shift their 

travel statuses. From the results of the numerical experiments, we also find the impacts of not only 

the mobility portfolio scheme itself, but also the changes in mobility providers in the shared 

transportation systems. From an individual point of view, the mobility portfolio scheme results in 

cost savings. From a system perspective, operating the multimodal ridesharing system in 

conjunction with SAFVs results in VMT reduction. We also demonstrate the efficiency and 

flexibility of the TOC modes by illustrating shared travel movements and temporal ownership and 

expand the original problem to analyze peer-to-peer carsharing systems. Results also show the 

potential of buses acting as feeders to the next leg of users’ trips. Overall, we can conclude that 

implementing the mobility portfolio schemes in shared transportation systems effectively 

improves performance at the individual and system level.  

A mobility portfolio service provider would be interested in a system that maximizes the number 

of service users and lowers system-wide costs. Thus, we formulate a problem to maximize cost 

savings, which is solved using a novel graphical method that models the problem as a 

transshipment network. Numerical experiments have yielded valuable insights on the ridematching 

performance under various levels of supply and demands. For every ridematching problem 

instance, the graphical approach results in optimal cost saving solutions and a higher matching 

success rate, compared to the real-time ridematching approach. Furthermore, we find that the 

relaxed ridematching constraints, coupled with an appropriate rider-driver ratio, leads to fewer 

transfers.  
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We also performed a stand-alone demand-side study to analyze how people respond to a proposed 

multimodal shared transportation system, at the beginning of the research reported here. To capture 

the implicit determinants of individual preference on shared travel movements, we first select four 

attributes: number of transfers, travel time, travel cost and incentives, all of which are widely 

considered to impact people’s travel choices on the shared transportation system. Then, we employ 

a choice-based conjoint analysis method and use a web-based survey platform to understand users’ 

acceptance of probable shared travel movements in the system. The estimation reinforces the 

importance and viability of factor estimation modeling, and the significance of the number of 

transfers factor in how people choose to make their trips.  

8.2 Future Research Areas  

Modeling the shared travel movements with the mobility portfolio scheme is a relatively new area 

of research that can be extended in various directions.  

One shortcoming in mobility portfolio frameworks is the strong assumption made on the 

subscribers’ acceptance behavior, meaning 100% compliance once a travel status is provided to a 

user. Another assumption is that the mobility portfolio system users do not leave the system even 

when purchasing the portfolio offers no benefits to them. In the worst case, some people may not 

be matched at all and would have to drive themselves. This concern can be mitigated by building 

a demand forecasting model that combines the mobility portfolio scheme and the demand behavior 

model described in chapter 6. Sensitivity analysis can measure the performance of the mobility 

portfolio scheme in the model by changing cost saving incentive ratio, number of transfers, and 

desirable detouring time for riders. In addition, since the mobility portfolio framework arrives at a 
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least cost solution, it is possible to test the impact of the different level of incentives needed for 

user retention. Since the mobility portfolio already considers vehicle costs in its formulation, future 

research can extend this formulation to include dynamic vehicle costs that depends on vehicle 

usage.  

It would be beneficial to analyze how vehicle ownership impacts mobility portfolio subscriptions. 

In the context of COVID-19, data show a significant change in travel behavior, with many people 

are more likely to work from home, thereby resulting in lower vehicle usage. These circumstances 

may encourage people to not undertake the financial commitment of purchasing a vehicle 

especially when it is not being used for commuting. This behavioral shift incentivizes people to 

opt for flexible mobility portfolios, instead. On the contrary, due to COVID-19, people may feel 

safer using their own car. Therefore, more studies are required to accurately gauge user perception 

of ridesharing and vehicle ownership.  

Furthermore, the mobility portfolio model can be extended by considering a chain of daily trip 

activities. The current model only considers a one-way trip, usually a work trip. In reality, travel 

mode and travel status are chosen depending on their activities. In addition, the mobility portfolio 

plan can be formulated as a family plan by allowing the exchanges in credits between family 

members.  

From an operational perspective, we can develop different dispatching strategies for SAFVs to 

minimize waiting times or to maximize profits for SAFVs providers.  

Shared mobility has already changed the transportation landscape in cites all over the world. 

Connected, electric, autonomous, and shared vehicles are expected to revolutionize multimodal 
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shared transportation system even further. In the light of these transformations, the future 

directions of research that we outlined are essential in promoting better planning, engineering, and 

operations in urban and suburban and communities across the United States. 
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