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Design procedures for L-shaped and T-shaped concrete-filled steel tube (CFST) columns subjected to bending and
compression loading scenarios were developed through parametric study using finite element (FE) models
verified by existing experimental results. The finite element study on this special-shaped CFST column subjected
to pure bending considered parameters of steel-to-concrete ratio a, steel yield strength f;, concrete strength fu,
and column limb width-to-thickness ratio B/t (H/t). For their behavior under eccentric compression, additional
parameters of section stiffening pattern, loading angel ¥, eccentricity, and axial compression ratio were included.
Parametric analysis results show that steel-to-concrete ratio a, steel yield strength f; and column limb width-to-
thickness ratio B/t (H/t+) have obvious influences on the flexural resistances of the special-shaped CFST col-
umns, while concrete strength fu. has a small effect and can be ignored. The column limb width-to-thickness
ratio B/ty, steel to concrete ratio a, steel yield strength f;, concrete compressive strength fi, loading angle 9,
eccentricity e and section stiffening type have significant effects on the N-M correlation curves, and the convex
portion of the N-M curves has a certain symmetry. The column limb width-to-thickness ratio B/t, and axial com-
pression ratio n have significant effects on the shape of My-My correlation curves. Based on the FE analysis results,
design formulae for calculating sectional flexural resistances were proposed for special-shaped CFST columns.
Besides, simplified formulae were provided to conservatively predict the resistances of special-shaped CFST sec-

tion and column under eccentric compression based on extensive analysis results of FE models.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional rectangular column has column corners which pro-
trude towards the inside of the rooms (Fig. 1(a)), which not only affects
the indoor visual aesthetic, but also reduces the building area [1]. Col-
umns with special-shaped (T-shaped, L-shaped, or cruciform-shaped)
cross sections as shown in Fig. 1(b), are possible solutions to undesir-

able protruding column corners [1]. The width-to-thickness ratio of
each column limb is typically not more than 4. Special-shaped columns
have been increasingly used in residential and official buildings because
of the smooth connection between special-shaped columns and adja-
cent infilled walls, which can more efficiently utilize indoor floor space.

Previous studies mainly focused on the static behavior of T-shaped
and L-shaped reinforced concrete columns subjected to concentric

* Corresponding author at: Key Laboratory of New Technology for Construction of Cities
in Mountain Area (Ministry of Education), Chongging University, Chongqing 400045,
China.

E-mail address: yangyuanlong@cqu.edu.cn (Y. Yang).

compressive load or biaxial eccentric compressive load, from which
moment and axial force interaction relationships for design were pro-
posed [2-7]. Recent studies on special-shaped concrete-filled steel
tube (CFST) columns have shown their superior seismic performance
is over conventional special-shaped reinforced concrete columns [8—
15]. Special-shaped CFST column structure not only has the charac-
teristics of traditional special-shaped column structure, but also has
the ability of the steel tube to restrain the core concrete, thus improving
its strength and ductility [12,14-16]. Besides, the special-shaped CFST
column structure caters to the trend of building assembly and industri-
alization. Since special-shaped CFST columns have the architectural
benefits of special-shaped columns and desirable seismic behavior,
many projects have utilized this new type of structural system (see
Fig. 2).

Although special-shaped CFST columns have been applied in many
practical projects, the existing specifications and regulations, such as
Chinese technical specification for concrete structures with specially
shaped columns (JGJ149-2017) [1] and technical code for con- crete
filled steel tubular structures (GB50936—2014) [17], have no
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Fig. 1. Rectangular and special-shaped cross-sectional columns in frame structures.

(a) New China Building (b) Mingsheng Square

(¢) Yuzixi Village (d) Fukang Home

Fig. 2. Applications of special-shaped CFST columns. Note: The images in Fig. 2 from reference [37,38].

established design methods for computing their resistances. Existing
studies have focused primarily on numerical simulations [18,19],
which are not convenient for engineering design. As so far, some re-
searchers have carried out experimental studies on the performance
of special-shaped CFST columns subjected to eccentric compression
[18,19], and relatively few studies on its pure bending performance
[20]. So, until more experimental studies of special-special CFST col-
umns under both eccentric compression and bending are found, exten-
sive FE analysis could come as rescue to the designers. Besides, the
references [12,16,21,23,30,32,35,36] show that the FE software
ABAQUS can be used to simulated analysis for CFST columns to obtain
results consistent with experiment. Therefore, this paper develops a de-
sign procedure for special-shaped CFST columns under pure bending as
well as eccentric compression using finite element (FE) models, in the
ABAQUS software package, verified against existing experimental
results. Parameter analysis was carried out to study the influences of
section stiffening measures, loading angel 9, column limb width-to-
thickness ratio B/ty, steel-to-concrete ratio a, steel yield strength fi,
concrete prismatic compressive strength fi, eccentricity e, and axial
compression ratio n. The design methods for the resistances of special-
shaped CFST columns proposed are convenient for the engineering
design practice and are shown to be conservative.

2. Finite element models

The FE models of special-shaped CFST were built in ABAQUS to
reflect specimens tested in pure bending by Liu et al. [20] and those sub-
jected to eccentric compression by Yang et al. [18] and Zuo et al. [19].
These test results were used to verify the FE modeling process and to
ensure realistic results such that further parametric study could be reli-
ably carried out.

2.1. Material constitutive models and element types

The steel constitutive model used employs an elastic perfectly plastic
bilinear stress-strain relationship (Fig. 3(a)) with a small tangent mod-
ulus of strain-hardening equal to 1% of the elastic modulus [21-23,32].
The elastic modulus Es of steel is assumed as 2.06 X 10> MPa, and the
Poisson's ratio of steel is 0.3.

The plastic damage constitutive model is adopted for concrete
[21-27]. Five parameters in this concrete constitution describe its
yield function and plastic flow procedure. They are taken as the follow-
ing values: the dilation angle is 35° the eccentricity is 0.1; the fio/feo is
1.16; the K. is 0.67 and the viscosity parameter is 0.0001 [21,23,24].
For the pure bending FE model, the constraint effect of steel tubes on
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Fig. 3. Uniaxial stress-strain curves of steel and concrete.

concrete is not considered and the input uniaxial stress-strain relation-
ship curve (Fig. 3(b)) of plain concrete is determined according to Ap-
pendix C of a China Code for design of concrete structures (GB 50010~
2010) [28], as shown below. The d. and d: are the damage variable of
concrete under uniaxial compression and tensile [28], which character-
ize the degradation of the elastic stiffness.

(1) Uniaxial compressive stress-strain relationship of concrete
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=1 n—1px ox<1p

decVa N pen 02b

> ] —————  W:xN1b
a:0x—1b2 p x

where x Y4 e=eco; pc Y& fo =Ec€cr; n Y Ecgco=0FEceco—fu P; ac ¥4 0:157
0 [ =1:4P0785—0:905; .0 is peak compressive strain; f is prismatic
compressive strength; E. is elastic modulus of concrete.

(2) Uniaxial tension stress-strain relationship of concrete
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where x Y e=cw;pi Y fy=Ecw0,a; Y4 0:312f tkz;ao is peak tensilestrain;
fu is prismatic tensile strength; N=mm?.

For FE models subjected to eccentric compression, the constraint ef-
fect of the steel tubes on concrete is considered and the input uniaxial
stress-strain relationship curve of confined concrete is determined ac-
cording to Han et al. [22] and Liu et al. [16].

A shell element with four-node reduction integration (S4R) is
adopted for the steel tube. A three-dimensional solid element with
eight-node reduction integration (C3D8R) is adopted for core
concrete.

2.2. Surface interaction, boundary conditions and loading method

A surface-to-surface contact interaction is applied to describe the in-
teraction between steel tube and concrete, specifying a hard contact

property in the normal direction and a friction property in the tangen-
tial direction with the friction coefficient of 0.25 [21-23]. This interac-
tion allows separation of the concrete and steel tube after tube's local
buckling.

In the FE model, the boundary condition and loading scheme are
modeled completely according to those in the experiments (Fig. 4). It
is worth noting that eccentric loading is achieved by adjusting the
position of the rigid body reference point (RP) on the top of column.

2.3. Verification of FE model

Bending-displacement curves of T-shaped CFST columns are calcu-
lated with the FE model and compared with experimental results

(Fig. 5). As can be seen, simulated bending-displacement curves are in
relatively good agreement with the experimental results, which reveals
that the bending FE model is reliable. Besides, the steel plate in the black

circle in Fig. 6(b) is so close to the neutral axis that the stress is generally
0.2—0.3f; and the flexural strength of TCW1-3 is only 6% higher than
that of TCWT1-1 (Fig. 5(a)). Therefore, the T-shaped CFST columns
with the same cross-section type as TCWT1-1 is used to carry out flex-
ural strength parametric analysis in the following. Eccentric load versus
mid-span horizontal displacement curves and failure models of special-
shaped CFST columns are calculated with the FE models and compared
with experimental results (Fig. 7). It can be seen from Fig. 7 that the FE
calculation results are in good agreement with the experimental results,

which shows that the eccentric compression FE models are reliable.

3. Sectional flexural resistances of special-shaped CFST columns

3.1. Parametric analysis

Based on the established bending FEM of T-shaped CFST columns,
the bending model of Li-shaped CFST columns is established. Then on
the base of these, the influence of parameters such as section size,
steel ratio @ and material strength (fy, fu) on the bending mechanical
properties of special-shaped CFST columns in the characteristic di-
rection (Fig. 8(a)-(e)) was analyzed. Where YYSY indicates that the
neutral axis is parallel to the flange and the flange is the compression
zone; YYSL indicates that the neutral axis is parallel to the flange and
the flange is the tension zone; PXFB indicates that the neutral axis is
parallel to the web. According to the parametric analysis results, the
simplified calculation formulae of the flexural resistance of special-
shaped CFST columns in the characteristic direction are proposed.
Fig. 8(f)-(g) show the dimensions of cross-section of special-
shaped CFST columns. The parameter ranges of special-shaped
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(a) Eccentric compression of T-
shaped CFST column [ 18]

(b) Eccentric compression of L-
shaped CFST column [19]

(c) Bending of T-shaped CFST

column [20]

Fig. 4. Boundary conditions and loading schemes of related experimental researches.

CFST columns are as follows: column limb width-to-thickness ratio
B/t (H/ty) = 2.0-4.0, thickness of steel tube ¢t = 2.0—4.0 mm, steel
-to-concrete ratio a = 3.5%—11.7%, yield strength of steel tube f, =
235-345 MPa and prismatic compressive strength of concrete fix =
20.1-40.0 MPa.

Fig. 9 shows the bending moment versus mid-span displacement of
special-shaped CFST columns. It can be seen from Fig. 9 that the bending
strengths in various characteristic direction are quite different, espe-
cially when the cross-sectional size is large. The ultimate bending mo-
ment M, is defined as bending strength when the maximum fiber
strain of steel tube in tension zone at mid-span reaches 10,000 ue
[20,29-32]. The parameter analysis results are shown in Table 1 and
Table 2.

140
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. 80
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u (mm)

(a) TCWT1-1/ TCW1-3 [20]

3.2. Simplified calculation of sectional flexural resistances of special-shaped
CFST columns

The following simplified calculation models can be established
based on the assumptions: (1) original plane cross-sections remain
plane; (2) section plastic stress distribution assumption is applied;
(3) the contribution of concrete in tension is neglected; (4) the effect
of shear force is omitted; (5) the relative interface slippage of the steel
tube and concrete is omitted.

Combining the above assumptions with the stress distribution of the
mid-span section calculated by the FEM, the simplified stress distribu-
tion model is proposed to derive the formula for calculating the flexural
resistance of mid-span section.

150
=5.0 mm
120 =4.0 mm
—~ =3.0 mm
=
5 200 fu=37.8 MPa
S 0 . = /,=391 MPa
= ol =3.0-5.0 mm
- = TCW1-2
30 = _d TCW1-3
= TCW1-4
100 FEM
1 ' 1 ' 1 ' 1 ' 1 . - -
0 10 20 30 40 50 60
u (mm)

(b) TCW1-2/3/4 [20]

Fig. 5. Comparison of bending-displacement curves between experiment and FEM.



(a) Stress distribution of TCWT1-1 [20]

(b) Stress distribution of TCW1-3 [20]

Fig. 6. Stress distribution of TCWT1-1 and TCW1-3 under ultimate state.

3.2.1. The characteristic direction YYSY
1) For the characteristic direction YYSY (h < ty), the simplified models

of the stress distribution of special-shaped CFST columns under ulti-
mate bending moment (cross-sectional plastic bending strength) M,
are shown in Fig. 10. Since the steel plates in the red circle in Fig. 10
(b) and (d) are close to the neutral axis, the stress is generally 0.2—
0.35fy, which contributes little to the bending strength. Therefore,
the contribution of the steel plates in the red circle to the bending
strength is ignored  in simplified  calculation.

The calculation formulae for the bending strength of special-shaped

CFST columns can be obtained as follows according to the simplified

model in Fig. 10.
M Y Dhzp Php G
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3.2.2. The characteristic direction YYSL

o6b

1) For the characteristic direction YYSL (h < H-ty), the simplified

models of the stress distribution of special-shaped CFST columns
under ultimate bending moment M, are shown in Fig. 12. Since
the steel plates in the red circle in Fig. 12(b) and (d) are close to
the neutral axis, the stress is generally 0.25—0.40f;, which contrib-
utes little to the bending strength. Therefore, the contribution of
the steel plates in the red circle to the bending strength is ignored
in simplified calculation.

The calculation formulae for the bending strength of special-shaped

2) For the characteristic direction YYSY (h Nty), the simplified models

of the stress distribution of special-shaped CFST columns under ulti-
mate bending moment M. are shown in Fig. 11. Since the steel plates

in the red circle and the concrete in red rectangle in Fig. 11(b) and

(d) are close to the neutral axis, the stress is quite small, which con-
tributes little to the bending strength. Therefore, the contributions of
the steel plates in the red circle and the concrete in red rectangle to
the bending strength are ignored in simplified calculation.

The calculation formulae for the bending strength of special-shaped

CFST columns can be obtained as follows according to the simplified
model in Fig. 11.

CFST columns can be obtained as follows according to the simplified

model in Fig. 12.
8
2 M, Ya Dh2p Php G
F
>
“hYa— B
where E = 4tfy + (tw — 20X fu

F Y Oty—B—2Hbtf ,—tdtw—2tb X f

D % 2tf, b 0:58t.—2tbf

o7p
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(e) Failure models of TE2 [18]
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Fig. 7. Comparison between FEM results and experimental results.
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2) For the characteristic direction YYSL (h N H-ty), the simpl-
ified models of the stress distribution of special-shaped CFST col-

Since the steel plates in the red circle and the concrete in red rectan-
gle in Fig. 13(b) and (d) are close to the neutral axis, the stress is

umns under ultimate bending moment M, are shown in Fig. 13.



quite small, which contributes little to the bending strength.
There- fore, the contributions of the steel plates in the red
circle and the concrete in red rectangle to the bending strength
are ignored in sim- plified calculation.

The calculation formulae for the bending strength of special-
shaped CFST columns can be obtained as follows according to the
simplified model in Fig. 13.
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Fig. 8. Bending FEM of special-shaped CFST columns in characteristic direction and cross sections. Note: The symbol “ A ”in the figure means the boundary condition is "UX =UY=UZ =0".
The symbol™e” means the boundary condition is “UX = UZ = 0”. For the L-shaped column models, the symbol <" means limiting lateral displacement to avoid torsion.
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where  E'= dtfy 1) For the characteristic direction PXFB (b < 0.5(B— t)), the simplified
models of the stress distribution of special-shaped CFST columns
under ultimate bending moment M, are shown in Fig. 14. Since the
steel plates in the red rectangle in Fig. 14(b) and (d) are close to
the neutral axis, the stress is generally 0.18—0.27f;. Therefore, the
stress of the steel plates in the red rectangle is approximately as-
P Y Btw—B—2HPtf, p Btw—2tPOH—twPf sumed to be 0.2f; in simplified calculation.
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Fig. 9. Bending moment vs. mid-span displacement of special-shaped CFST columns.



Table 1
Parameter analysis results of T-shaped CFST columns.

Table 2
Parameter analysis results of L-shaped CFST columns.

Dimension Length ¢ a 1 S My My My

of of (mm) %) (MPa) (MPa) &kNm) &Nm (kNm)

T-shaped column (YYSY) (YYSL) (PXFB)

section (B L (mm)

x H X ty)

200 x 200 1800 20 56 235 20.1 314 32.8 29.4
x 100

200 x 200 1800 20 56 345 26.8 45.0 459 419
*x 100

200 x 200 1800 2.0 56 345 38.5 47.1 49.1 43.7
*x 100

200 x 200 1800 4.0 11.7 235 38.5 63.3 65.0 59.1
x 100

200 x 200 1800 4.0 11.7 345 385 87.1 86.5 81.8
x 100

300 x 300 2700 20 50 235 20.1 65.5 76.8 589
*x 100

300 x 300 2700 2.0 50 345 32.4 94.9 110.9 85.5
*x 100

300 x 300 2700 3.0 77 235 20.1 90.8 97.2 78.4
x 100

300 x 300 2700 3.0 77 345 38.5 115.3 154.5 122.1
x 100

300 x 300 2700 3.0 77 235 40.0 99.8 121.6 92.3
*x 100

300 x 300 2700 4.0 105 345 324 173.1 184.7 153.0
*x 100

300 x 300 2700 4.0 105 345 385 179.1 191.3 155.8
x 100

400 x 400 3600 2.0 48 235 20.1 106.9 140.2 97.6
*x 100

400 x 400 3600 2.0 48 235 324 107.8 158.4 109.4
% 100

MREA MW 20 48 3B WY b Ikb  pE

* 100

400 x 400 3600 4.0 10.0 345 324 283.3 328.8 245.2
*x 100

500 X 600 5400 3.0 38 235 20.1 385.4 438.2 264.1
x 200

600 x 800 7200 3.0 37 235 20.1 644.3 752.0 382.7

x 200
800 x 800 7200 3.0 3.5 235 20.1 664.6 820.3 591.9
x 200

The calculation formulae for the bending strength of special-shaped
CFST columns can be obtained as follows according to the simplified
model in Fig. 14.

8
My Y Db2p Pbp G
X Ms % Db p Pb b 3b

F
? v — E
where E=4tfy + (tw — 20fx

F Ya —0H—twbt X 1:2f ,—tdtw—2tbf

D % 2tf, b 0:58t,—2tPf 4

P % B1:26,—2B—1:2Hbtf,— Dtw—2tPtf

( )
G% B2—2Btp 2t tf, p twOB—0:5tbtf

Dimension of  Length of t a 1 Jox My My

L-shaped column L (mm) (%) (MPa) (MPa) (kNm) (kN-m)

section (mm) YYSY) (YYSL)

(B x H x t)

200 x 200 x 1800 2.0 56 235 20.1 31.1 31.2
100

200 x 200 x 1800 2.0 56 345 26.8 43.4 46.6
100

200 x 200 x 1800 2.0 56 345 38.5 44.8 488
100

200 x 200 x 1800 4.0 11.7 235 38.5 60.5 63.9
100

200 x 200 x 1800 4.0 11.7 345 38.5 82.0 86.2
100

300 x 300 x 2700 2.0 50 235 20.1 64.0 75.4
100

300 x 300 x 2700 2.0 50 345 32.4 88.2 107.4
100

300 x 300 x 2700 3.0 77 235 20.1 89.2 102.1
100

300 x 300 x 2700 3.0 77 345 38.5 131.1 151.2
100

300 x 300 x 2700 4.0 10.5 345 38.5 169.5 187.1
100

400 x 400 x 3600 2.0 48 235 20.1 101.9 136.8
100

400 x 400 x 3600 2.0 48 235 32.4 108.8 158.6
100

400 x 400 x 3600 2.0 48 235 38.5 111.7 164.2
100

400 x 400 x 3600 2.0 48 345 32.4 161.8 207.4
100

400 x 400 x 3600 3.0 73 345 32.4 214.3 253.1

400 x 400 x 3600 4.0 10.0 235 32.4 201.0 255.3

Fig. 15. The stress of the steel plates in the red rectangle in
Fig. 15(b) is generally 0.55—0.72f;. Therefore, the stress of the

steel plates in the red rectangle is approximately assumed to be
0.7fy in simplified calculation.

The calculation formulae for the bending strength of special-shaped
CFST columns can be obtained as follows according to the simplified
model in Fig. 15.
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Fig. 10. Simplified model of special-shaped CFST columns under pure bending (YYSY).
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Fig. 11. Simplified model of stress distribution of special-shaped CFST columns under pure bending (YYSY).
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Fig. 12. Simplified model of stress distribution of special-shaped CFST columns under pure bending (YYSL).
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Fig. 13. Simplified model of stress distribution of special-shaped CFST columns under pure bending (YYSL).
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Fig. 14. Simplified model of stress distribution of special-shaped CFST columns under pure bending (YYSL).

3.3. Comparison of sectional flexural resistances between FEM calculations
and the simplified calculations

Table 3 is the comparisons of sectional flexural resistance of special-
shaped CFST columns between FEM calculations and the simplified
model calculations, where My rem is the FEM calculation value; My is
the calculated value according to the simplified formulae in this paper.
As can be seen from Table 3, Mu1/Mu rrm of T-shaped CFST columns in
different characteristic directions are respectively 0.83 (YYSY), 0.87
(YYSL) and 0.97 (PXFB). And Mu1/Murem of L-shaped CFST columns in
different characteristic directions are respectively 0.89 (YYSY) and
0.88 (YYSL). Therefore, the simplified calculation formulae proposed
in this paper can slightly conservatively predict the sectional flexural
resistance of special-shaped CFST columns in different characteristic
directions.

4. Resistances of special-shaped CFST columns subjected to eccentric
compression

Fig. 16 is a schematic diagram of special-shaped CFST columns under
eccentric compressive loads. In the diagram, e represents the eccentric-
ity; N represents the eccentric load. For the T-shaped and L-shaped sec-
tion with equal limb in flange and web (B = H), the range of loading
angle 9 from —90° to 90°should be studied due to the symmetry of
the sections. For uniaxial eccentric compression of T-shaped CFST col-
umn (Fig. 16(a)), the neutral axis parallels the web when the loading
angle 9 is 0°, that is the characteristic direction PXFB; the neutral axis

parallels the flange and the flange is the tension zone when the loading
angle 91is 90°, that is the characteristic direction YYSL; the neutral axis
parallels the flange and the flange is the compression zone when the
loading angle ¢ is —90°, that is the characteristic direction YYSY. For
uniaxial eccentric compression of L-shaped CFST column (Fig. 16(b)),
the neutral axis parallels the flange and the flange is the tension zone
when the loading angle ¢ is 135° (45°), that is the characteristic direc-
tion YYSL; the neutral axis is parallels the flange and the flange is the
compression zone when the loading angle ¢is —45° (—135°), that is
the characteristic direction YYSY. When the loading angle ¢ is not
the values above, the sections are considered under biaxial eccentric
compression.

4.1. Uniaxial eccentric compression

4.1.1. Parametric analysis

The dimensions of cross-section of special-shaped CFST columns are
shown Fig. 8. A total of 672 special-shaped CFST stub columns subjected
to eccentric compression are analyzed. Some typical results can be seen
from Fig. 17, in which the section sizes (B, H, tv), the steel ratio (@), the
concrete strength grade (fx), the steel strength grade (f;) and the load-
ing angle (9 have significant influences on the N-M curves, and the con-
vex portion of the N-M curves has a certain symmetry. The parameter
ranges of special-shaped CFST columns subjected to eccentric compres-
sion are same as those under pure bending in section 3.
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Fig. 15. Simplified model of stress distribution of special-shaped CFST columns under pure bending (YYSL).

Table 3
The comparison of sectional flexural resistance of special-shaped CFST column.

Characteristic direction T-shaped section (B x H X t) Steel ratio a (%) Steel tube f; (MPa) Concrete fu. (MPa) - M1/ My, wrn
YYSY 200 x 200 x 100 3.5-11.7 235-345 20.1-40.0 Range 0.79-0.90
300 x 300 x 100 Average value 0.83
400 x 400 x 100 Standard deviation 0.027
YYSL 500 x 600 x 200 Range 0.77-0.94
600 x 800 x 200 Average value 0.87
800 x 800 x 200 Standard deviation 0.051
PXFB Range 0.66—-0.86
Average value 0.78
Standard deviation 0.049
Characteristic direction L-shaped section (B X H X &) Steel ratio a (%) Steel tube f; (MPa) Concrete fix (MPa) - My1/Mu,ren
YYSY 200 x 200 x 100 4.8-11.7 235-345 20.1-40.0 Range 0.83-0.94
300 x 300 x 100 Average value 0.89
400 x 400 x 100 Standard deviation 0.032
YYSL Range 0.76-0.95
Average value 0.88
Standard deviation 0.057

Bx Hx ty is the T-shaped and L-shaped cross-sectional dimensions (in Fig. 8(f) and (g)). a is the area ratio of steel to concrete. fu is the concrete prismatic compressive strength. f; is the
steel yield strength. My rey is the FEM calculation value. My is the calculated value according to Eq. (5)-(10) in this paper. N¢ rev and M rev are the FEM calculation values. N and M. are

the calculated values according to the Eq. (12)-(14) in this paper.

4.1.2. Simplified calculation of cross-sectional N-M interaction curves

According to the parametric analysis results, it can be summa-
rized that the N-M interaction curve of special-shaped CFST col-
umns can be simplified into three straight lines, as shown by the red
dotted line in Fig. 18(a). Accordingly, the calculation formulae of the
simplified curve are shown in Eq. (11). The point A repre- sents the
sectional axial resistance N [16]; the point D represents the pure
bending resistance M. and determined by the simplified calculation
formulae in section 3.2 of this paper; the point C

represents the point with the maximum bending resistance; the
bending resistance of point B is assumed to be the same with
point D, ie M, = M.. It can be seen from the parametric analysis that
the N-M interaction curve BCD has a certain symmetry, Ny, is
approximately equal to 2N, to simplify the calculation. The stress
distributions of special-shaped CFST columns corresponding to each
characteristic point (D, C, B and A) are shown in Fig. 18

(b) and (c). In summary, this section mainly researches the calcu-
lation method of point C.



Fig. 16. Schematic diagram of the special-shaped CFST column under eccentric compressive load.
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Fig.17. N-M curves of special-shaped CFST columns. Note: The naming rule of specimens is, for example, “T-2-2-1-t-2-fx-20.1-£,-235", “T” means T-section; “2-2-1" means B= 200, H=
200, tv = 100; “t-2” means that the thickness of the steel tube is 2 mm; “fix-20.1” means that the prismatic compressive strength of concrete is 20.1 MPa; “f;-235"” means that the yield
strength of steel tube is 235 MPa.

Figs. 19—20 that the section plasticity neutral axis position is close

AB: N=Np. M vl to the centroid position. The position of the plastic neutral axis in the
Nu—=Ny = My section is statistically summarized in Table 4. It can be found that
BC- N—=Ny b M% 1 a11p the absolute error between the position of plastic neutral axis and
" Ne=Ny =~ My—M. the position of centroidal axis is basically within 5%. Therefore,
it is approximated that the neutral axis passes through the sectional
CD: ﬁ b M—M, Y%l Figs. 19-20 show the cross-sectional stress distributions of T-
N. M.—M. shaped and L-shaped CFST columns at point C. It can be seen from

4.1.3. The simplified calculation method of point C



centroid when simply calculating the N. and M..

It can be seen from Figs. 1920 that the steel plate and concrete
near the boundary between the flange and the web are so close to the
neutral axis that their stress can be neglected when the neutral axis
is parallel to the flange (YYSY and YYSL). Therefore, when simply
calculating the N. and M., the sectional stress distribution is
simplified based on the as- sumptions (see section 3.2 in this paper)
and the FEM results, as shown



(b) The stress distributions of T-shaped section

(c) The stress distributions of L-shaped section

Fig. 18. Simplified N-M interaction curve and the stress distributions of characteristic point.

in Fig. 21. For YYSY (Fig. 21(a)), the T-shaped and L-shaped steel tube are
simplified into an I-shaped steel and all sections are yielding. The stress
of concrete in the compression zone is taken as 1.1fu to consider the
bending contribution of the neglected part in red rectangle (Fig. 21(a)).

For YYSL (Fig. 21(b)), the T-shaped and L-shaped steel tube are simpli-

fied into an I-shaped steel and all sections are yielding. The stress of con-

crete in the compression zone istaken asf . For PXFB, the T-shaped steel
dk

tube is simplified and the stresses of steel plates and concrete are shown

as Fig. 21(c) based on the Mises distributions (Fig. 19(c)).

(1) For YYSY, the calculation formulae of N. and M. can be obtained
as follows according to the simplified model of stress distribution
in Fig. 21(a).

N.%EhpF
M, % Dh2p Php G

F Y DB—ty—2HPtf, p DB—2tbdt,—2tb X 1:1f,

D% 24f,
P Y% ®B—2H—t, bif,, p BB—2tPdt —2¢b X 1:1f

( )
G % =058, 1 H=2Ht p20 if —05BEf,

b 0:550B—2tbdtw—2tP2 f

(2) For YYSL, the calculation formulae of N. and M. can be obtained
as follows according to the simplified model of stress distribution
in Fig. 21(b).

N Y Ehp F

M. Y Dhz p Php G o13p
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Fig. 19. Stress distributions of T-shaped CFST columns at point C.
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Fig. 20. Stress distributions of L-shaped CFST columns at point C.
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(3) For PXFB, the calculation formulae of N. and M. can be obtained
as follows according to the simplified model of stress distribution
in Fig. 21(c).
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Table 4
Positions of special-shaped cross-section centroidal axis and plastic neutral axis.

Section type Loading angel ¢ BXH Xty Centroidal axis ho Neutral axis h abs(h—ho)/h
T-shaped —90° (YYSY) 200 x 200 x 100 83.3 87.12 0.044
300 x 300 x 100 110.0 114.28 0.038
400 x 400 x 100 135.7 140.50 0.034
0° (PXFB) 200 x 200 x 100 100.0 95.75 0.044
300 x 300 x 100 150.0 146.20 0.026
400 x 400 x 100 200.0 197.85 0.011
90° (YYSL) 200 x 200 x 100 116.7 1125 0.037
300 x 300 x 100 190.0 185.7 0.023
400 x 400 x 100 264.3 261.4 0.011
L-shaped —45° (YYSY) 200 x 200 x 100 83.3 87.5 0.048
300 x 300 x 100 110.0 112.51 0.022
400 x 400 x 100 135.7 133.65 0.015
135° (YYSL) 200 x 200 x 100 116.7 117.25 0.005
300 x 300 x 100 190.0 184.5 0.030
400 x 400 x 100 264.3 266.25 0.007
( )
G Y% B2=2Bt p 2t% tfy p Btwtfy—ttify p OH—tPD0:158 p 0:85tw—0:85tbtfy 8 i
1 1 ; 1 dly=reb?
b I_GBH_thbB_thzfck — b= 2tPOB—twP? f > Ne %1 p ey lo=reb"C
1
- ¢ 2
8 ;. h i
Ch 0:232 p 0:6040ei=rsb—0:1060ei=rob? d316b
> 6000
4.1.4. Comparison of sectional resistances at point C between FEM and sim- > i
plified calculation ro AV Iy= 4
Table 5 is the comparison of sectional resistances of special-shaped aeETT
CFST columns at point C between FEM and simplified calculation, 4 o B M._pM
where Nerpm and Merem are the FEM calculation values; Ner and M Where ¢ is the initial eccentricity, e =¢ +e e Va e s
are the calculated values according to the simplified formulae in this ! i v a0 N a

paper. As can be seen from Table 5, the average values of Ne1 /Ny ppy

and Mci/Mcrem of T-shaped CFST columns are respectively 1.01 and
0.89(YYSY), 0.91 and 0.87 (YYSL), 0.90 and 0.87 (PXFB). And the aver-
age values of Nei/Ne,rem and Mei/Merem of Li-shaped CEFST columns are
respectively 0.96 and 1.03(YYSY), 0.96 and 0.91 (YYSL). Therefore, the
simplified calculation formulae in this paper can slightly conservatively
predict the resistances of special-shaped CFST columns at point C in
characteristic directions (YYSY, YYSL and PXFB).

4.1.5. Second-order effect of special-shaped CFST columns

The second-order effect in the structure can be divided into two cat-
egories. The first type is the P-A effect caused by the vertical load in the
sideway structure; the other one is the P-6 effect caused by the axial
force of the member with the flexural deformation. For the general
building structure, the above two second-order effects exist simulta-
neously, and the P-A effect can be obtained by general structural calcu-
lation software. Referring to domestic and foreign structural design
specifications, such as JGJ 149-2017 [1], GB-50010 [28], ACI-318 [33]
and Eurocode 2 [34], the P-6 effect of special-shaped CFST columns is
considered by the method of amplifying the bending moment of the
control section. That is, the design value of bending moment of the con-
trol section is multiplied by the eccentricity increasing coefficient ne to
consider the P-§ effect (Eq. (15)), and the ne is calculated by the
Eq. (16) based on the specification JGJ149-2017 [1].

915p

Where N is the design value of sectional axial force; Ny is the sec-
tional axial resistance; M is the design value of sectional bending mo-
ment; M, is the sectional flexural resistance.

the additional eccentricity, e, = max (20 mm, 0.15 ruin), and rmi is the
minimum radius of rotation of cross section. Iy 1s the calculated length of

column, determined according to the reference [17]; Ivis the moment of
inertia of the centroid axis xe-xe perpendicular to the direction of the ec-
centric compression (Fig. 16); 4 is the cross-sectional area. Note that
both I and 4 are calculated according to the section size, ignoring the
combination of steel tube and concrete.

When l/re < 17.5, the additional bending moment caused by the P-§
effect in the section of special-shaped CFST columns does not exceed
4.2% of the first-order bending moment of the section and the ne can
be taken as 1.0 [1].

4.1.6. Comparison among experimental results, FEM results and the simpli-
fied calculation results of design method

Fig. 22 shows the comparison among experimental results, FEM re-
sults and simplified calculation results proposed in this paper, which re-
veals the simplified design formulae can conservatively predict the N-M
correlation curve of special-shaped CFST columns.

4.2. Biaxial eccentric compression

For T-shaped and L-shaped CFST section with equal column limb
(B=H) under biaxial eccentric compression, the loading angle & can
be studied from —90° to 90° due to the symmetry of the sections (Fig.
16). It is found that the column limb width-to-thickness ratio (B/ tw),
steel to concrete ratio a, steel yield strength f;, concrete compres- sive
strength fi, loading angle 9, eccentricity e and section stiffening type
have significant effects on the N-M correlation curves. Fig. 23 shows
the N-M -M corgelagion surface of T-shaped CFST column. The

N-M,-My correlation surface is cut perpendicular to the vertical N axis
to obtain the M.-M, correlation curves under different axial compres-
sion ratio n. Therefore, this section mainly studies the influence of col-
umn limb width-to-thickness ratio (B/ty), axial compression ratio n,
section stiffening type, steel to concrete ratio a, steel yield strength f;,
concrete compressive strength fox on Msx-My correlation curves.
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Fig. 21. Simplified model of stress distribution of T-shaped section at point C.
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Table 5
Comparison of sectional resistance of special-shaped CFST column at point C.

Characteristic direction ~ T-shaped section (B x H x t) Steel ratioa (%) Steel tube fi (MPa) ~ Concrete fu (MPa) - Ne/Nepem  Mo/Mepem
YYSY 200 x 200 x 100 4.8-11.7 235—-345 20.1-40.0 Range 0.88-1.18 0.75-0.97
300 x 300 x 100 Average value 1.01 0.89
400 x 400 x 100 Standard deviation 0.105 0.071
YYSL 500 x 600 x 200 Range 0.72-1.16 0.78-0.97
600 x 800 x 200 Average value 0.91 0.87
800 x 800 x 200 Standard deviation 0.171 0.056
PXFB Range 0.77-1.13 0.77-0.97
Average value 0.90 0.87
Standard deviation 0.092 0.056
Characteristic direction ~ L-shaped section (B X H X &) Steel ratio a (%) Steel tube f; MPa)  Concrete fuc (MPa) - Ne/Nerem  Mei/Me rrm
YYSY 200 x 200 x 100 4.8-11.7 235—-345 20.1-40.0 Range 0.83-1.14 0.92-1.13
300 x 300 x 100 Average value 0.96 1.03
400 x 400 x 100 Standard deviation 0.085 0.067
YYSL Range 0.82-1.10 0.82-0.99
Average value 0.96 0.91
Standard deviation 0.093 0.049

Bx Hx ty is the T-shaped and L-shaped cross-sectional dimensions (in Fig. 8(f) and (g)). a is the area ratio of steel to concrete. fu is the concrete prismatic compressive strength. f; is the
steel yield strength. My rey is the FEM calculation value. My is the calculated value according to Eq. (5)-(10) in this paper. Ne ey and M rev are the FEM calculation values. N and M are
the calculated values according to the Eq. (12)-(14) in this paper.
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Fig. 22. Comparison among experimental results, FEM results and simplified calculation results.

Fig. 24 shows the Ms-My correlation curves of T-shaped CFST column
under different axial compression ratios n. It can be seen that the section
stiffening type has effect on the values of the My-My correlation curves,

but has almost no effect on the shape of Ms-My correlation curves,
which is consistent with the conclusion of the Li-shaped CFST column
under biaxial eccentric compression test [19]. Combined with the FEM
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Fig. 24. Mx-My correlation curves of T-shaped CFST columns.

results and the conclusion of the reference [19], the steel-to -concrete
ratio a, steel yield strength fi and concrete strength fix have
little effect on the shape of M<-M, correlation curves and can be
neglected, while the column limb width-to-thickness ratio B/t and
axial compression ratio n have significant effects on the shape of My-
My correlation curves. Therefore, this section mainly studies the influ-
ence of column limb.

4.2.1. Mx-My correlation curves of T-shaped and L-shaped CFST sections
Since T-shaped and Li-shaped CFST columns have similar regularity

under different parameters of column limb width-to-thickness ratio B/

tw and axial compression ratio n, the T-shape CFST column is taken as

an example here. Fig. 25 shows the influences of column limb width-
to-thickness ratio B/ty and axial compression ratio n on the My My
correlation curves of T-shaped CFST columns. For the case of low
axial compression ratio (n < 0.3), as B/ty decreases from 4 to 1.5, the
shape of My-My correlation curves gradually changes from ellipse to cir-
cle. For the case of high axial compression ratio (n N 0.3), as the axial
compression ratio n increases, the shape of M-M, correlation curves
gradually changes from ellipse to triangle. In order to check the resis-
tances of special-shaped CFST columns under biaxial eccentric compres-
sion, the M,-My correlation curves of T-shaped and L-shaped CFST
columns are fitted by the Eq. (17) based on a large number of paramet-
ric analysis results (1872 FEM results).



g 200 M, (kN'm)0°
00
8 150 0.1
Lsofiodliso o0 )
50

M, (kN m)
w0

T-4-4-1-1-2-f,-32f-235

(a) T-400-400-100-n=0.0-0.1

200 M, (kN-m)0°

E
- 00
& 150 01
10000100 | 100
50
M, (kN -m)
-90; o 90°
=200 -1 =100 -50 50 100 200
=50
-100
-150

(d) T-300-300-100-n=0.0-0.1

80 M, (kN-m)0°

=

- 00

8 60 01
l00jo] _
o
20

M, (KN m)

_90° o 90°

80 -0 Y0 20 20 40f[ 60 80
N 20
e

T-22-1-+-2-f,27-345
-80

(g) T-200-200-100-n=0.0-0.1

40 M, (kN-m)o

§ 30 00
% 0.1
2s1J100] o5
joarn
10

M, (KN ‘m)
90°

=907 o
=40 =30 -10 0 10 20 30 40

M, (KN-m)0e

g 200
g 150 i
150 100 150 100
50
M, (kN-m)
-90° 0 %0°

=200 -150 -100 -30 0 50 100 150 200

-100

0 T4d o2 321235

-200

(b) T-400-400-100-n=0.2-0.3

200 M, (kN-m)o

100

02
% 150 03
100 100 100 100
50
M, (kN-m)
o0 o %00

-200 -150 -100 -50 0 50 100 150 200

-50
-100
-150
T-3-3-1-1-3-f -38-f-345
ok v
-200

(e) T-300-300-100-n=0.2-0.3

80 M, (kKN-m)o°

g
= 60 e
5010050 m
20
M, (KN'm)
-90° 0 920°

-80  -60  -40  -20 0 20 40 60 80

=20
40
-60
T=2-2-1-4-2-f -27-f-345
ck y
-80

(h) T-200-200-100-n=0.2-0.3

50100

M, (KN-m)or

200

8 04

~ 05

- 150 06

- 0.7

08

150 100 150 100 09
50

M, (kN'm)
-90° 0 90°

=200 -150 -100 -50 0 50 100 150 200

-100

0 Tgg 10 3241235

(c) T-400-400-100-n=0.4-0.9

200 M, (KN-m)or

= 04
g . 05
_ 150 06
= 0.7
08
100 100 100 100 09
50
M, (kN'm)
900 0 o0°

-200 -150 -100 -30 0 50 100 150 200
=50

-100

=150
T-3-3- 1431, 381,345

(f) T-300-300-100-n=0.4-0.9

80 M, (KN-m)o-
04
05

100 100

60 06
07
5010050 40 08
09
20
M, (kKN-m)
-90° 0 90°

=80  -60 -40 -20 0 20 40 60 80

-40

0 Tl 2772345

ck v

(i) T-200-200-100-n=0.4-0.9

50100



2
=30
5 -30 T L5 12l 27235 T-1.5-1.5-1-4-2of -27+f 235
-1.5-1.5-1-1-2+f 27/ - .

-40
(j) T-150-150-100-n=0.0-0.1 (k) T-150-150-100-n=0.2-0.3 (1) T-150-150-100-n=0.4-0.9

Fig. 25. Influence of B/tw and n on My-My related curve of T-shaped CFST columns.



Table 6

Resistance coefficients a1 and a2 of T-shaped CFST columns under biaxial eccentric compression.

Coefficients a1 and as of T-shaped CFST columns with equal column limbs (B= H)

Loading angel & n 0 0.1 0.2 0.3 0.4

90°-0° Bltw a oz o az an oz o o an az
15 1.50 2.00 1.60 2.00 1.70 2.00 1.80 2.00 2.00 2.00
20 1.40 2.00 1.72 2.00 2.00 2.00 2.40 2.00 3.40 2.00
2.5 1.30 2.00 1.50 2.00 2.10 2.00 2.80 2.00 4.00 2.00
3.0 1.30 1.80 1.60 2.00 2.60 2.00 4.00 2.00 6.20 2.00
3.5 1.30 1.60 1.66 1.70 2.00 2.00 3.40 2.00 5.40 2.00
4.0 1.30 2.00 1.80 2.00 1.80 2.00 3.20 2.00 4.80 2.00
n 0.5 0.6 0.7 0.8 0.9
Bty 3 az 3 az ai az 3} az 3 az
15 2.40 2.00 240 2.00 2.40 2.00 2.40 2.00 240 2.00
2.0 4.60 2.00 5.60 2.00 6.80 2.00 7.60 2.00 8.80 2.00
2.5 7.20 2.00 9.80 2.00 11.00 2.00 11.40 2.00 12.00 2.00
3.0 11.00 2.00 14.00 2.00 15.20 2.00 15.20 2.00 15.20 2.00
3.5 11.00 2.00 14.00 2.00 15.20 2.00 15.20 2.00 15.20 2.00
4.0 11.00 2.00 14.00 2.00 15.20 2.00 15.20 2.00 15.20 2.00

Loading angel 9 n 0 0.1 0.2 0.3 0.4

—90°-0° Bltw ay az al az ay az ai az ay az
15 2.20 1.80 2.00 1.80 1.80 1.80 1.64 1.80 1.64 1.80
2.0 2.88 1.80 2.50 1.80 2.00 1.80 1.70 1.80 1.50 1.80
2.5 3.10 1.80 2.80 1.80 2.20 1.80 1.68 1.80 1.50 1.80
3.0 4.20 1.80 3.40 1.80 2.30 1.80 1.64 1.80 1.48 1.80
3.5 5.20 1.80 4.60 1.80 3.00 1.80 2.00 1.80 1.50 1.80
4.0 6.80 1.80 6.00 1.80 4.20 1.80 3.00 1.80 1.92 1.80
n 0.5 0.6 0.7 0.8 0.9
Bltw a1 az ai az a1 az a az a1 az
15 1.64 1.80 1.64 1.80 1.52 1.80 1.36 1.80 1.26 1.80
2.0 1.26 1.80 1.12 1.80 1.00 1.80 1.00 1.80 0.80 1.80
25 1.20 1.80 1.00 1.80 0.80 1.80 0.80 1.80 0.80 1.80
3.0 1.12 1.80 0.90 1.80 0.80 1.80 0.80 1.80 0.80 1.80
3.5 1.12 1.80 0.90 1.80 0.80 1.80 0.70 1.80 0.68 1.80
4.0 1.40 1.80 0.90 1.80 0.80 1.80 0.60 1.80 0.60 1.80

MX a1 My az .

Mo, b Moy %1 817p

Table 7

Where My and M, are the sectional bending moments; Mox and Moy

Resistance coefficients a; and az of L-shaped CFST columns under biaxial eccentric

compression.

are the bending capacities of the characteristic directions (YYSY,
YYSL and PXFB) under the corresponding axial force N, which are
calculated according to the resistance of special- shaped CFST
columns under uniaxial eccentric compression ac- cording to section
4.1. The coefficients a1 and a2 are determined

according to the column limb width-to-thickness ratio B/t and
axial compression ratio n in Tables 6-7, which are linearly
interpolated.

4.2.2. Comparison of sectional Mx-My correlation curves between FEM re-
sults and simplified calculation results

Figs. 26 shows comparison of sectional M«-My correlation
curves of special-shaped CFST columns under biaxial eccentric
compression between FEM results and simplified calculation re-
sults determined by Eq. (17). It can be seen that the Eq. (17)
agrees well with the FEM results, and the fitting formula is overall
conservative.

5. Conclusions

The following conclusions can be drawn based on the study.

(1) According to the existing experimental results of special-
shaped CFST columns under pure bending and eccentric com-
pression, the finite element (FE) software ABAQUS is used to
established FE models. The FE models agree well with the ex-
perimental results, which verifies the accuracy of the FE
models.

Coefficients a1 and az of L-shaped CFST columns with equal column limbs (B = H)

Loading n 0 0.1 0.2 0.3 0.4
angel 9 Bty on az ai az ai az ai az ai az
90°-0° 15 260 180 240 1.80 238 180 230 180 200 180

20 260 180 220 180 200 1.80 172 1.80 1.60 1.80
25 240 180 220 180 180 1.80 150 1.80 1.20 1.80
30 210 180 18 180 180 180 150 1.80 1.00 1.80
35 210 180 200 180 140 180 110 1.80 0.90 1.80
40 190 180 170 1.80 1.20 1.80 1.00 1.80 1.00 1.60
n 0.5 0.6 0.7 0.8 0.9

Bty a1 az ai az ai az ai az ai az
15 180 180 170 180 170 180 170 1.80 170 1.80
20 140 180 130 180 130 1.80 130 180 130 180
25 110 1.80 1.00 1.80 1.00 180 1.00 1.80 1.00 150
30 100 160 100 160 100 150 100 1.40 1.00 1.30
35 100 160 100 140 100 140 100 1.40 1.00 1.30
40 100 1.30 1.00 1.30 1.00 1.40 1.00 1.40 1.00 1.20

Loading n 0 0.1 0.2 0.3 0.4
angel ¢ Bty on az ai az ai az ai az ai az
—90°-0° 1.5 240 200 244 200 248 200 250 200 270 200

20 190 200 200 200 220 200 250 200 320 200
25 160 200 180 200 200 200 240 200 380 200
30 110 200 140 200 200 200 300 200 4.00 2.00
35 110 200 140 200 160 200 240 200 3.80 2.00
40 110 200 130 200 160 200 260 200 380 200
n 0.5 0.6 0.7 0.8 0.9

Bty o1 az ai az ai az ai az ai az
15 280 200 290 200 300 200 320 200 330 200
20 400 200 420 200 400 200 260 200 250 200
25 400 200 540 200 420 200 340 200 260 200
30 540 200 880 200 980 200 680 200 6.00 2.00
35 490 200 780 200 960 200 580 200 4.80 2.00
40 560 200 880 200 980 200 680 200 380 2.00
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Fig. 26. Comparison of sectional Mx-M, correlation curves of T-shaped and L-shaped CFST columns.

(2) According to the Mises stress distributions calculated by the
FE model, the simplified models of the sectional stress distri-
butions were proposed for the simplified calculation, and the
corresponding simplified calculation formulae were derived.
The simplified calculation formulae can accurately predict the
flexural resistances of special-shaped CFST columns in the
characteristic direction (YYSY, YYSL and PXFB).

The effects of parameters such as section stiffening measures,
loading angel 9, column limb width-to-thickness ratio B/t,
steel ratio a, material strength (f;, fi), eccentricity and axial
compression ratio n on the mechanical properties of columns
under eccentric compression were analyzed. On this basis, a
simplified calculation formula for the sectional N-M correla-
tion curve of special-shaped CFST columns under uniaxial ec-
centric compression was proposed, which can conservatively
predict the N-M correlation curve. The study also found that
the steel ratio o, material strength (f;, fix) and section stiffen-
ing measures have little effect on the shape of the M\-M, cor-
relation curves, which can be neglected, while the column limb
width-thickness ratio B/ty and axial compression ratio n have
significant influence on the shape of the Ms-My corre- lation
curves. A formula for checking the resistances of special-
shaped CFST columns under biaxial eccentric com- pression
was proposed based on 1872 FE models analysis re- sults,
which is generally conservative.
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