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Abstract

Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff gen-
eration processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thun-
derstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells
conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and
decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over south-
ern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an
extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff
response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm).
The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity
analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few
kilometers aside.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Complex interactions exist between spatio-temporal
structure of rain systems and watershed hydrological re-
sponse. While this is a long-standing research issue in
hydrology (e.g., [42,61,11,46,29,35,52]), a comprehen-
sive study of these interactions requires detailed rainfall
0309-1708/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advwatres.2005.07.014
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data in space and time that were effectively unavailable
until recently.

For many years rain gauge networks were the pri-
mary source of storm data. However, these networks
are typically sparse and the recorded rainfall data do
not adequately represent the spatial variability of the
storm (e.g., [32]). In recent years, a new source of rain-
fall data from weather radar systems has become avail-
able. This new technology permits a detailed view of the
rainstorm over the watershed with high spatial and
temporal resolution not previously available. Access to
reliable information on different storm characteristics,
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such as the location of the storm over the watershed and
its structure and direction of motion, presents a new
stage in rainfall–runoff analysis.

It was hoped that the use of detailed radar rainfall
information as input into hydrological models, repre-
senting the watershed hydrological response, would
significantly improve understanding of rainfall–runoff
processes and aid in predicting their outcome. How-
ever, a review of studies using radar rainfall data in
hydrological modeling (e.g., [39,24,34,44,2]) provide
mix evidence for such improvements [4,49]. Among
the difficulties reported were the accuracy of radar
rainfall estimates [1,27], and runoff sensitivity to sub-
pixel rainfall variability [25,32,60,22]. Arguably, even
though information about rainfall patterns exists in ra-
dar rainfall data, there is a need to develop new ways
to exploit this information and gain greater insights
into rainfall and subsequent watershed response behav-
ior [19,56].

The current study suggests an innovative approach to
the above challenge. Our focus is on semi-arid water-
sheds and their response to air mass thunderstorm
events. We emphasize, as a key issue, the spatial struc-
ture at which the radar rainfall data are represented in
the hydrological models. In the standard approach, ra-
dar-based rainfall data are applied into the model in a
grid structure that states the amount of rain at each
pixel in a given time step. The grid is either that of the
observing radar system, or a transformation is per-
formed into another standardized grid. For example,
radars in the US National Weather Service (NWS)
weather radar network observe rainfall in polar grids
with 1� · 1 km pixels for different tilts with a time sam-
pling interval of 5 min. Data from several radars are
merged and integrated to produce surface hourly rain-
fall at national grids of about 4 · 4 km2 pixels. This
radar rainfall product is sent to the River Forecast Cen-
ters (RFC) and serves as input to NWS hydrological
models [15].

Although grid structures are common and straight-
forward, some difficulties regarding their use in hydro-
logical modeling are raised here:

1. Often, hydrological modeling is interested not
only in simple runoff estimation but also in identifying
the key elements affecting runoff production. In such
cases, the models are structured to allow questions
about interactions between hydrologically significant
elements. For example, the surface runoff processes in
the watershed are commonly conceptualized as occur-
ring over hillslopes and channels. In these cases, the
topographical data are not used in the model in their
original structure (grid or contours) but rather, the
data are processed to identify the hillslope and channel
elements and their characteristics (slope, length, area,
etc.). The same argument holds for rainfall data. In
many cases, only limited information can be attained
by representing the rain as an arbitrary data structure
(i.e., a grid of pixels with uniform rainfall). On the
other hand, identifying �significant elements� within
the rainfall data, may allow advanced analysis by
enhancing our ability to concentrate on the interaction
of the rain system with the hydrological units and
processes.

2. The representation of rainfall in a grid structure
implies a strong assumption concerning uniform rainfall
over a pixel. This assumption has important conse-
quences in hydrological modeling, especially in a semi-
arid environment where runoff generation processes
are sensitive to small-scale rainfall variability (e.g.,
[11,17,18,5]).

3. Radar rainfall data are known to contain relatively
large errors resulting from the indirect measurement
[27]. To reduce error, radar rainfall data are often
smoothed out, usually by integration to larger pixels
and time steps. In other words, the grid structure is
maintained but with lower resolution. A tradeoff exists
between reducing error and losing important informa-
tion contained in the small-scale data [16].

In the current study we introduced rainfall input
data to the hydrological model in the form of hydro-
logically significant rain elements instead of the stan-
dard radar-grid structure. Because the analysis is
focused on air mass thunderstorm rain events, the
hydrologically significant elements chosen were the
basic convective units, usually referred as ‘‘rain cells’’.
Rain cells are conceptualized in our work as isotropic
circular elements with maximal rain intensity at the cell
center. The location, maximal intensity and decay fac-
tor of each rain cell in the investigated storm were
fed into the hydrological model and the watershed re-
sponse was computed. In this approach, the computed
runoff is directly linked to spatial characteristics of the
rainfall and thus, we believe, greater insights can be
gained on interactions of rain and hydrological systems
(see also [36]).

The objectives of this study are

1. To represent rain fields of air mass thunderstorm
events as a set of rain cells (the rain cell parameters
are derived from observed weather radar data by
applying a conceptual rain cell model).

2. To compare the spatial characteristics of the rain
fields, as obtained by applying the rain cell model,
to the ones obtained by using grided radar or dense
gauge network data.

3. To identify the dominant factors of the rain cells by
applying the cell-based rain fields of an extreme thun-
derstorm event to the hydrological model.

4. To examine runoff sensitivity to rain cell characteris-
tics identified in objective 3.
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2. Background

2.1. Study areas and data

The two study areas are located in the semi-arid cli-
mate regime of southern Arizona. The summer weather
of this region is strongly affected by the North American
monsoon [8,54], which results in frequent air mass thun-
derstorms that are highly convective, intense, localized,
and of short duration.

The 148 km2 Walnut Gulch Experimental Watershed
(WGEW; [18]) is located 50–70 km east-southeast of the
Fig. 1. (a) Location map of the two study areas and the radar stations. (b) Th
Tucson radar) encompassing the 148 km2 WGEW study area and the 74 gaug
azimuth 291–320� and range 42–78 km relative to the Phoenix radar. Rada
Phoenix study area (azimuth 291–320� and range 42–78 km relative to the P
Maricopa County. Radar polar grid resolution is of 1� · 1 km.
Tucson WSR-88D weather radar, which is a part of the
NWS weather radar network (Fig. 1a). The watershed is
equipped with a dense network of rainfall gauges
(Fig. 1b) managed by the Agriculture Research Service
of the US Department of Agriculture (USDA-ARS).
Thirteen convective storms from the 1999 and 2000
monsoon seasons (June–August) were selected for the
study (Table 1). Radar data from a 1125 km2 segment
encompassing the watershed were used for the analysis
(see Fig. 1b). Because radar beams at the first and sec-
ond tilts are partially blocked by terrain before they
reach the watershed, only the third tilt data (elevation
e radar segment (azimuth: 93–122� and range: 42–78 km relative to the
es in the watershed. The radar segment of the Phoenix study area is in
r polar grid resolution is of 1� · 1 km. (c) The radar segment of the

hoenix radar) and the gauge network of the Flood Control District of



Table 1
Storm characteristics

Storm Study area Local start time Duration (h) Area storm deptha (mm) Max 1minb (mm/h) Max depthc (mm)

1 WGEW 06/17/1999 14 3 2.1 150 26.7
2 WGEW 07/06/1999 18 3 10.2 148 28.8
3 WGEW 07/14/1999 10 14 43.9 260 89.0
4 WGEW 07/25/1999 17 3 1.7 232 25.2
5 WGEW 08/02/1999 16 6 10.0 152 28.8
6 WGEW 08/18/1999 14 3 2.1 166 16.2
7 WGEW 08/28/1999 16 5 19.7 230 37.7
8 WGEW 08/31/1999 15 5 16.4 219 47.8
9 WGEW 06/18/2000 16 3 3.1 129 23.7
10 WGEW 06/29/2000 11 3 15.2 182 57.6
11 WGEW 07/16/2000 17 6 7.1 113 29.5
12 WGEW 08/06/2000 18 7 25.3 326 55.8
13 WGEW 08/11/2000 11 4 24.0 391 90.4
14d Phoenix 07/14/2002 20 4 20.2 NA 56.9

NA—data not available.
a Average of all gauge data available. For the WGEW study area all the gauges are located within the watershed.
b Maximum 1-min rainfall intensity recorded at a gauge.
c Maximum storm depth recorded at a gauge.
d Data for the Phoenix storm is obtained from rain gauges operated by the Flood Control District of Maricopa County.
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angle of 2.4�) were used for the analysis (equivalent to
3 km altitude above ground over the study area; average
watershed elevation is roughly 1340 m above mean sea
level). The relatively high altitude might impose an addi-
tional error in the radar rainfall estimates resulting from
evaporation or hail contamination. However, it should
be emphasized that a very limited portion of the US
has NWS radar data available within 2 km of the sur-
face and in the western US radar data are typically sam-
pled near and above 3 km [28]. Rain data from 74 rain
gauges located in the watershed area (Fig. 1b) were used
for radar calibration and in the evaluation procedure.

The second study area is the Phoenix metropolitan
area, located northwest of the Phoenix NWS WSR-
88D weather radar (Fig. 1a). Data from a summer storm
in 2002 were used for this study (Table 1). The radar data
segment used to cover the Phoenix storm was similar in
size and distance (from radar) to that used for the
WGEW events. Because there are no topographic block-
age problems in the Phoenix area, we were able to use
radar data from the lowest three tilts (roughly equivalent
to 1, 2, and 3 km above ground level) for the analysis.
Gauge data for the Phoenix area were used for examina-
tion of the derived radar rainfall estimation equation (see
Section 2.2 below). Thirty-four gauges operated by the
Flood Control District of Maricopa County are within
the analyzed segment of the radar (Fig. 1c).

2.2. Radar rainfall estimation

Radar reflectivity data (Z) [mm6 m�3] are represented
in polar coordinates centered at the radar station at a
resolution of 1� · 1 km (equivalent to 0.88–1.23 km2 at
the examined areas) for different tilts with a time sam-
pling interval of 5 min. Reflectivity data are commonly
converted to rain intensity data (R) [mm/h] using a
power law Z–R relationship Z = aRb. In this study,
the exponent parameter (b) was set to the value of 1.4
that is used by the NWS for convective rainfall [15],
while the multiplicative parameter (a) was adjusted
based on comparison of gauge and radar storm depth
data. The resulting Z–R relationship, based on analysis
of radar and gauge data for the selected 13 storms over
WGEW, was

Z ¼ 655R1:4 ð1Þ
An upper threshold of 100 mm/h was applied to the

estimated rain intensity. This is a default threshold rain
intensity used by the NWS to reduce unreasonably
large estimates caused by hail cores in thunderstorms
[15]. The Z threshold value used here (56 dbz, where
1 dbz = 10LogZ) is different from the threshold used
by the NWS (53 dbz, [15]), because of the different
Z–R relationships.

The above Z–R was examined for the Phoenix storm
by comparing total storm depth of 34 gauges within the
analyzed segment to radar estimates in pixels above the
gauges. The total bias found in radar estimates was
�9%, +3% and �22% for the first, second and third tilt
data, respectively. Further details pertaining to radar
rainfall estimation can be found in Morin et al. [38].
3. Representing spatial rainfall patterns in the form

of rain cells

3.1. Rain cell model

Several mathematical descriptions were suggested for
rain cell shapes. Circular uniform cell shape was
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assumed in the stochastic modeling studies of Eagleson
[9], Cox and Isham [6], Wheater et al. [58] and Marco
and Valdes [29]. Uniform, exponential decay and qua-
dratic exponential decay functions for circular rain cells
were examined in the stochastic modeling studies of
Rodriguez-Iturbe et al. [45] and Eagleson et al. [10].
The latter found the quadratic exponential function
most suitable for representing spatial variability of
storm rain depth over the WGEW using rain gauge.
More complex descriptions of rain cell shapes use uni-
form, exponential decay function, quadratic exponential
function or their combinations, in a bivariate form to
get an elliptic cell shape [3,40,13,59,53].

In most of the above studies, mathematical represen-
tation of rain cells is part of stochastic rainfall modeling
with the motivation to randomly generate simulated rain
fields that are similar to observed rain fields in the statis-
tical sense. In the current study we use the mathematical
cell shape description to decompose observed radar rain
data into set of rain cells and replace the observed radar-
grid data with rain fields induced by the retrieved rain
cells. For this goal we adopted the circular quadratic
exponential shape that was already tested for the studied
area [10].

The rain fields are assumed to be composed of multi-
ple rain cells with the rain intensity field at rain cell i is
given by

RiðdÞ ¼ bie
�2a2

i d2 ð2Þ
where Ri(d) is rain intensity [mm/h] for rain cell i at a
distance d [km] from the rain cell center at coordinates
(Xi,Yi), bi is the rain intensity [mm/h] at the center of
rain cell i, and, ai is the decay parameter [km�1] of rain
cell i. Eq. (2) defines a two-dimensional non-normalized
Gaussian surface, where bi represents the amplitude and
ai represents the spatial extent. Parameter ai is equiva-
lent to the inverse of two times the standard deviation
of the Gaussian distribution. Accordingly, relationships
between the rain cell model parameters and other rain
cell characteristics can be derived:

1. If Ii is the integral of rain intensity over rain cell i

[km2 mm/h], then

ai ¼

ffiffiffiffiffiffiffi
pbi

2I i

s
ð3Þ

2. If As
i is the area [km2] of rain intensity above a thresh-

old s [mm/h] (s < bi) then

ln
bi

s
¼ 2a2

i

As
i

p
ð4Þ

Rearrangement of Eq. (4) and applying it to two differ-
ent threshold values s1 and s2 results in
ln bi ¼ a2
i

2

p
As1

i þ ln s1 ¼ a2
i

2

p
As2

i þ ln s2
which implies

1

a2
i
¼ 2

p
As1

i � As2
i

ln s2 � ln s1

ð5Þ

Eqs. (3) and (5) are used in the rain cell retrieval algo-
rithm, explained in the next section, to estimate param-
eters bi and ai, where Ii and As

i are derived from the
observed data.

The selected rain cell model maintains a relatively
simple structure while still representing hydrologically
important spatial characteristics such as: location and
magnitude of maximum rainfall intensity, rain–no rain
areas (rain cell coverage) and small-scale variability
(within rain cells). As aforesaid, the model validity for
the studied region is supported by the work of Eagleson
et al. [10]. It should be emphasized however, that the
circular shape is not expected to be applicable for rain
systems containing un-isotropic elements, such as fronts
or other linear shape systems. Whether this rain cell
model is valid for air mass thunderstorms in other loca-
tions still needs to be examined.

3.2. Rain cell retrieval algorithm

The following is a brief description of the procedure
used for retrieving rain cells for each radar map (the
entire algorithm is available from the first author on re-
quest). A radar map represents a rainfall value (reflectiv-
ity or rain intensity) for each polar pixel in the analyzed
region at a given time step. An example illustrating the
computational stages is presented in Fig. 2.

Step 1. Input: radar reflectivity map for a specific time
step (Fig. 2a).

Step 2. Derive radar rain intensity map by converting
radar reflectivity data at each pixel into intensity using
the Z–R relationship described in Section 2.2 (Fig. 2b).

Step 3. Divide the rain map into individual segments,
where each segment is defined as the region dominated
by a single rain cell (Fig. 2c). A segment is identified
by a local maximum rainfall pixel that is not part of
any existing segment. The segments are gradually
expanded to neighboring pixels with rainfall values low-
er than or equal to the ones already existing in the seg-
ment but higher than a rainfall threshold (5 mm/h, user
defined parameter). The search for local maximum pix-
els is from high to low values. This ensures that pixels
with more than one segment affiliation are assigned to
the segment having higher maximum value.

Step 4. Eliminate or merge segments with small area
or low rain intensity. After identifying all segments in
a rainfall map, segments with area smaller than a mini-
mum threshold (9 km2, user defined parameter) or max-
imum pixel rainfall lower than a threshold center pixel
intensity (25 mm/h, user defined parameter) are either
eliminated (if isolated, i.e., no other segment is neigh-
boring) or merged with the nearest neighbor segment.



Fig. 2. Illustration of rain cell retrieval algorithm for radar data from the storm of July 6, 1999 at time 14:45 (LTC). (a) Radar reflectivity map.
(b) Radar rain intensity map upon application of the Z–R relationship described in Section 2.2. (c) Rain cell segments. Black dots shows the
center of maximum pixels and are considered as the rain cell center locations. (d) Parameter estimation for rain cell 1. Observed area above
threshold (As) for threshold values (s) between 5 and 100 mm/h are indicated (circles). The a parameter is estimated based on these values
according to Eq. (5). The b parameter is estimated from the resultant a and the estimated rain cell integral (I) according to Eq. (3). The computed
curve resulting from the estimated a and b parameters is shown. (e) Results of the retrieval algorithm for the given radar rainfall map. Three rain
cells were identified. The four parameters for each rain cells are contained in the inset table (location in UTM coordinates). Also illustrates the
resulting rain intensity field plotted on 100 · 100 m grid. (f) Mapping of the cell rain intensity field to the radar-grid pixels for comparison with the
observed radar rain intensity map (b).
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Step 5. Identify rain cell for each segment by extract-
ing rain cell parameters. For each segment the center
location of the maximum pixel is considered the rain cell
center (black points in Fig. 2c). For each rain cell i, the
integral of rain intensities over the rain cell, Ii, is
estimated as the sum of rain intensities over the rain cell
data segment. Rain areas greater than the threshold, As

i ,
are estimated as the total area of the data segment pixels
with rain intensity higher than a given threshold for a
series of rain intensities (in the range of 5–100 mm/h).
The model parameters are estimated using Ii and As

i . ai
is estimated using Eq. (5) (Fig. 2d) and bi is then calcu-
lated using Eq. (3). The estimated bi value can, in prin-
ciple, be lower than the threshold cell center intensity
(step 4) or higher than the hail rain intensity upper
threshold (see Section 2.2).

Step 6. Output: number of rain cells for each radar map
and the four model parameters for each cell (Fig. 2e).

Step 7. Perform steps 1–6 for the series of radar maps
of a given storm through time. The algorithm produces
a description of the rain cells (number, location, and
parameters) as they evolve throughout the storm.



Fig. 3. Histograms of computed rain cell parameters for 13 storms
over the WGEW study area: (a) number of rain cells, (b) b parameter,
and, (c) a parameter.
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The threshold parameters used in the algorithm dis-
criminate between pixels that comply with the assumed
rain cell structure and pixels that do not. The threshold
values selected for the current analysis (i.e., area of rain-
fall above 5 mm/h is at least 9 km2 and rain intensity at
the maximum pixel is at least 25 mm/h) are within the
range suggested by other authors (see for example [52]
and references therein). Additionally, results are also
presented for the case where the maximum pixel inten-
sity threshold is lowered to 10 mm/h.

The above algorithm assumes no significant interact-
ing area between adjacent rain cells. Therefore, we can
segment the data and estimate parameters for each rain
cell independently. This assumption appears reasonable
for the current air mass thunderstorm dataset. However,
for a more general case, a global optimization procedure
may be necessary in order to estimate the parameters of
multiple rain cells simultaneously.

3.3. Retrieved rain cell characteristics

The algorithm was applied to radar data from 13
storms over the WGEW (Fig. 1b, Table 1). Statistics
of rain cell characteristics is presented in Fig. 3 and
Table 2. As an example, we examine the results for the
July 6, 1999 storm over WGEW (Fig. 4). The intense
phase of the storm lasted roughly 1.5 h (time steps 3–
19). Within this period the number of rain cells in the
study area at each time step ranges from 3 to 10 and
the b and a parameters range from 10 to 200 mm/h
and from 0.2 to 0.7 km�1, respectively. After this high
intensity period, the number of rain cells was reduced
to 0–5 cells, with b ranging from 10 to 30 mm/h and a
ranging from 0.15 to 0.45 km�1. If the threshold for cen-
ter pixel intensity (see Section 3.1, step 4) is reduced
from 25 to 10 mm/h, the second storm period (time step
20 and on) is characterized by a large number of low
intensity rain cells (Fig. 4b–d). These differences at the
dissipating stage of the storm suggest that the convective
rain cells are no longer the governing structure and
widespread rainfall is more dominant in the rain field.
Under these conditions the assumption of circular rain
cell elements does not necessarily hold and the wide-
spread rainfall is interpreted as many small and low
intensity rain cells. Keeping the threshold for center pix-
el intensity at its high value (25 mm/h) prevents detec-
tion of these artificial rain cells.

The algorithm was also applied to radar data for one
storm over the Phoenix region using the same Z–R rela-
tionship and threshold parameters used for the WGEW
study area. Rain cell characteristics at different radar
tilts were compared for the Phoenix data (Table 2,
Fig. 5). The first tilt data generated more rain cells,
including times at which no rain cells were identified at
the second and third tilts. Close examination of the rain
maps reveals that in most cases these cells contain
ground clutter contamination at the first tilt, while the
others appear at the dissipation stage of the storm.
Comparison of the second and third tilt data showed a
relatively high level of matching rain cells (in terms of
their number and parameters). At time steps 15–18 for
the second tilt there is a considerably larger number of
rain cells relative to the third tilt. As suggested above,
the difference in rain cell number can probably be attrib-
uted to the dissipating stage of the storm occurring at
these time steps. In addition, at time step 10, a rain cell
with b = 218 mm/h was found at the third tilt while the



Table 2
Summary of modeling results

Storm Maps with cells Total number of cells b (mm/h) a (km�1)

Aver. Min. Max. Aver. Min. Max.

1 19 49 51 11 225 0.37 0.25 0.54
2 29 112 47 13 193 0.38 0.15 0.67
3 86 370 62 11 228 0.41 0.23 0.67
4 13 28 90 20 239 0.46 0.34 0.67
5 29 80 44 11 129 0.40 0.22 0.53
6 17 35 58 14 142 0.44 0.31 0.60
7 30 124 70 14 211 0.39 0.22 0.63
8 39 167 74 9 225 0.36 0.19 0.57
9 12 36 47 16 132 0.38 0.25 0.54
10 28 129 65 14 203 0.41 0.26 0.58
11 31 72 41 10 95 0.41 0.29 0.60
12 21 182 69 13 214 0.37 0.15 0.56
13 23 54 86 12 247 0.39 0.25 0.55
14 (tilt 1) 26 193 42 12 117 0.37 0.21 0.59
14 (tilt 2) 18 152 50 14 159 0.37 0.20 0.60
14 (tilt 3) 18 111 60 14 218 0.40 0.20 0.56

Fig. 4. Rain cells retrieved for the storm of July 6, 1999 over the WGEW study area. (a) Rain cells over the watershed and its neighborhood (part of
the studied area) at time steps 11–14 (18:56–19:11 LTC). The cell center and the 25 mm/h contour (for cells with b > 25 mm/h) are plotted. The two
numbers near each rain cell are the cell center intensity, b (in mm/h), and the decay parameter, a (in km�1) parameters. Time series of: (b) number of
rain cells, (c) b parameter, and, (d) a parameter, are shown for applications with two center pixel intensity thresholds: 25 mm/h (the default threshold)
and 10 mm/h.
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associated rain cells at the second and first tilts had con-
siderably lower b values of 148 mm/h and 104 mm/h,
respectively. However, these high reflectivity data (high-
er than 63 dbz), probably indicate hail contamination, in
all three tilts. In the third tilt, the high reflectivities cov-
ered a larger area, which resulted in a higher integral



Fig. 5. Rain cells retrieved for the storm of July 14, 2002 over the
Phoenix study area for the second radar tilt (1.45� elevation angle) and
the third radar tilt (2.4� elevation angle). The algorithm was applied
with the same Z–R and threshold values as for the WGEW study area.
The figure shows time series of: (a) rain cell number, (b) b parameter,
and, (c) a parameter.
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value and hence a higher b value (see Eq. (3)). Except for
this case, the range of the b and a parameters was similar
for the second and third tilts.

Although further analysis is needed for fine charac-
terization of the rain cells along the vertical profile the
analysis conducted over the Phoenix area suggests that
the third tilt data are both suitable and sufficient for
the analysis presented here. We emphasize this point be-
cause, as already mentioned, the analysis of the WGEW
storms used only the third tilt data because the first two
tilts are blocked by terrain.
4. Evaluating spatial characteristics of cell-based

rain fields

An important step in the study was to evaluate the
spatial characteristics of the rain fields as obtained by
the rain cell model. This step includes comparisons of
these spatial characteristics with those of the grided
radar data and of rain fields computed from the dense
gauge network in the WGEW (an average of one gauge
in 2 km2). Although the gauge data had already been
used to adjust the Z–R relationship and thus to remove
the overall bias from the radar rainfall estimations (see
Section 2.2) they still provided a set of relatively inde-
pendent observations. Gauge rainfall maps, with a
100 m pixel size, were generated from 3-min gauge-rain
intensities, using the multiquadric interpolation method
[52]. A time delay of 5 min was applied to gauge data to
account for the altitude sampling differences [37]. A rain
gauge derived rainfall map was generated at each time
step for which radar rainfall maps were available. Since
gauge rainfall observations are available only within the
watershed area, radar-based rain intensities outside of
the watershed boundaries were assigned to zero.

The evaluation process includes comparison of
several rainfall sources as follows:

1. Rain cells derived from radar data, hereafter called
radar-rain cells.

2. Rain cells derived from rain gauge data are termed
gauge-rain cells. The interpolated gauge rainfall maps
were used as input to the retrieval algorithm
described above (Section 3.1 start at step 3). In order
to use the exact same procedure and avoid scale
related discrepancies, the rain fields were remapped
first to the radar polar grid. Also, the same threshold
parameters were used in the algorithm for the two
inputs.

3. Observed radar rainfall data at the radar-grid, here-
after called radar-grid.

4. Interpolated gauge rainfall, hereafter called gauge-
interpolated.

Below we describe several evaluations tests that were
applied in order to examine the different rain field spatial
characteristics (also see Fig. 6).

4.1. Direct comparison

In this test, the gauge-rain cells and radar-rain cells
over the WGEW were compared. Gauge- and radar-rain
cells were matched according to the distance between the
cells, allowing up to 4-km difference. Seventy-one per-
cent of the gauge-rain cells were identified from the
radar data. In contrast, 40% of the radar-rain cells did
not have a matching cell in the gauge data. The correla-
tion between the derived parameters for 398 matched



Fig. 6. Evaluation scheme. The four rainfall fields used in the
evaluation process and the four evaluation tests. Arrows indicate the
rainfall fields used in each test.
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rain cells is r = 0.65 for the b parameter and r = 0.50 for
the a parameter. Over the matched rain cells with dis-
tances up to one kilometer the correlation of the b and
a parameters is 0.81 and 0.51, respectively. Estimations
of both parameters are higher for radar-rain cells (27%
and 21% for b and a, respectively) due to the following
possible reasons:

(1) Variations in rain intensity from rain aloft to
ground rain (due to evaporation for example) can cause
higher b values for radar-rain cells relative to gauge-rain
cells. It may also cause differences in cells number if rain
exceeds the intensity threshold aloft but does not on the
ground.

(2) Although bias between accumulated rain depth in
gauges and in radar pixels above gauges was removed in
the calibration process (Section 2.2), it still possible to
have bias between gauge and radar rainfall over the en-
tire watershed. As shown later (Section 4.4) a positive
bias is found for the radar data, resulting in higher val-
ues of the b parameter for radar-rain cells.

(3) The average gauge density in WGEW is one gauge
per two km2 (roughly two radar pixels). This causes
gauge-rain field to be smoother than the radar field,
which results in lower estimations of a.

(4) A certain number of rain cells were located close
to the watershed divide. When retrieved from gauge
data only partial rainfall information is available, caus-
ing them to be either missed or detected with large error
in parameters.
(5) Timing discrepancies due to the different altitude
(3 km) of radar and gauge data depend on the drops�
terminal velocity. For the same group of storms, Morin
et al. [37] found a time delay of 3–9 min between radar
and gauge observations. A 5-min time delay was applied
to the gauge data to roughly represent averaged condi-
tions. However, the actual time delay varies in space
and time (see for example [20]) and can result in a mis-
match between the gauge and radar data.

(6) Space discrepancies depend on the vertical profile
of the horizontal wind velocity and can lead to several
kilometers distance between radar-derived and gauge-
derived rainfall location. We partially overcame this
problem by allowing up to 4 km distance (see [37]) be-
tween matched gauge and radar derived rain cells in
the direct comparison test. However, since the actual
space shift varies, spatial discrepancies can still affect
the direct comparison evaluation results.

In summary, because the direct comparison test
examines the retrieved rain cell parameters, it is rela-
tively sensitive to gauge-radar data discrepancies. The
following three evaluation tests do not match individual
cells, and are less sensitive to these types of errors.

4.2. Parameter distributions comparison

Here, the gauge- and radar-rain cells are compared in
terms of their parameter distributions. Fig. 7 presents
the parameter distributions for radar and gauge-rain
cells within the watershed. In general, the distributions
are similar in their shape but somewhat different in their
central tendencies. The b and a distributions of radar-
rain cells trend toward higher values. In addition, more
radar-rain cells have b values lower than 30 mm/h.
Some of these rain cells probably did not pass the
threshold level on the ground (only 30% of cells had a
matched gauge-rain cell). The distribution of cell areas
(area above threshold rain intensity of 5 mm/h) indi-
cates larger gauge-rain cells (Fig. 7d), suggesting a larger
sampling distance of the gauge data (see Section 4.1).

4.3. Spatial correlation comparison

Spatial correlation is the correlation of rainfall at two
points separated by a given distance. Spatial correlation
curves describe the decay of correlation with increasing
separation distance and are often used to characterize
the spatial variability of rainfall patterns [63]. Here, we
compared the spatial correlation curves of the following
rainfall fields: gauge-interpolated, radar-grid, gauge-rain
cells, and radar-rain cells. In addition, we calculated cor-
relation curves based on radar-rain cells with a 20% dif-
ference in their a parameter. In the analysis, the
correlations were calculated based on rain intensity at
points of gauge locations (in 0.5 km separation distance
bins). We included all time steps over the 13 storms in



Fig. 7. Histograms of: (a) number of rain cells, (b) b parameter, (c) a
parameter, and, (d) rain cell area (above 5 mm/h threshold), from
gauge- (solid) and radar- (open) rain cells for 13 storms over the
WGEW. Only rain cells with centers inside the watershed are included
in the analysis.

Fig. 8. Spatial correlation curves of the following rainfall fields: gauge-
interpolated, radar-grid, gauge-rain cells, radar-rain cells, radar-rain
cells with �20% difference in their a parameter and radar-rain cells
with +20% difference in their a parameter. The correlations were
calculated based on rain intensity at the points of gauge locations in
0.5 km separation distance bins, including all time steps over the 13
storms at which one or more gauges recorded rain intensity larger than
25 mm/h.
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which one or more gauges recorded a rain intensity
higher than 25 mm/h. The comparison of the spatial
correlation curves is shown in Fig. 8.

The rain field induced by gauge-rain cells exhibits
higher spatial correlations as compared to that of
radar-rain cells and fits the �20% a curve. The differ-
ences in spatial correlations are probably due to the
differences in spatial sampling between gauge and radar
that result in smoother gauge-based rain fields. At short
separation distances, spatial correlations of rain fields
induced by gauge-rain cells and radar-rain cells are high-
er than those of gauge-interpolated and radar-grid rain
fields. This is explained by the effect of within rain cell
organization that is dominant at short distances and re-
sults in smoother rain fields. At larger distances, the cor-
relation of the rain cell field drops rapidly and becomes
lower than the non-rain cells correlations.

4.4. Areal rainfall comparison

This test estimated the correlation and bias of rain
intensities between gauge-rain cells, radar-rain cells
and radar-grid to gauge-interpolated rainfall. This was
done by averaging rain intensity over the watershed
and in sub-regions of 4 · 4 km2 and 1 · 1 km2 (total of
11 averaging areas; Fig. 9a). As expected, the highest
correlation with gauge-interpolated rainfall was found
for gauge-rain cells. At the watershed scale, very small
and insignificant difference exists between correlations
of radar-grid rainfall with gauge-interpolated rainfall
and of radar-rain cells with the gauge-interpolated rain-
fall. Over the sub-regions the latter is significantly smal-
ler in the range of 4–16%. Rainfall of gauge-rain cells
and radar-rain cells have large negative biases resulting
from applying thresholds for rain cell pixels (5 mm/h)
and cell center intensity (25 mm/h). Reduction of the
center pixel intensity (see Section 3.1, step 4) from 25
to 10 mm/h results in smaller negative bias (Fig. 9d).
Fig. 9 also indicates a positive bias of the radar-grid
rainfall relative to the gauge-interpolated rainfall. This
bias includes radar pixels without gauges as opposed



Fig. 9. Comparison of areal rain intensity from radar-grid rainfall,
gauge-cell rainfall and radar-cell rainfall with gauge-interpolated
rainfall. The comparison is based on all 13 storms and at 11 locations
and spatial scales: the entire watershed area, five 4 · 4 km areas (L1–
L5) and five 1 · 1 km areas (S1–S5). (a) Evaluation sites and gauge
locations, (b) correlation, (c) bias, and, (d) bias with 10 mm/h
threshold for center pixel intensity (reduced from 25 mm/h).
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to the bias computed in the calibration process (Section
2.2).

4.5. Summary of evaluation results

1. Application of the rain cell retrieval algorithm to
radar data identified most (71%) of rain cells identified
from gauge data at a relatively close distance (2 km on
average). A moderate correlation between radar-rain
cells and gauge-rain cells parameters was found (0.65
and 0.5 for the b and a parameters, respectively).

2. Radar-rain cells are characterized by higher (+27%
bias) b parameter values relative to gauge-rain cells.
Possible explanations include altitude differences, the ef-
fects of evaporation and a positive bias in radar rainfall
relative to gauge rainfall for the entire watershed.

3. Gauge-rain cells are in general larger (+52%) than
the radar-rain cells and the rain fields are characterized
by higher spatial correlation (Fig. 8). We suspect this to
be the result of inadequate spatial sampling by the gauge
network. The outcomes are lower a parameter values
(�15%) and smoother rain fields.

4. Rain fields induced by rain cells (from gauge or ra-
dar data) represent only rain pixels that pass the selected
thresholds. This results in an underestimation (�32% on
average) of areal rainfall as compared to the gauge-
interpolated rainfall. Correlation of areal rainfall be-
tween radar-rain cells and the gauge-interpolated rain-
fall is relatively good (0.89, 0.75, 0.66 for the entire
watershed, the 4 · 4 km areas and the 1 · 1 km areas,
respectively).
5. Cell-based rain fields as input into

hydrological model

The above sections presented retrieval of rain cells
from radar data. Each rainfall map is translated into a
set of rain cells specified by their location, maximum
rain intensity, and decay factor. The rain cells are hydro-
logically significant elements and may play an important
role in the process of runoff generation. In this section
we used rainfall in the form of rain cells as input to a
hydrological model to examine the watershed hydrolog-
ical response in an extreme case study.

The hydrological model used is KINEROS2. It is a
physically based, event oriented, rainfall–runoff model
[62,50] developed by USDA-ARS scientists for water-
sheds in semi-arid environments. The model represents
the watershed as a cascade of overland flow planes
and channels, thereby allowing rainfall, infiltration, run-
off and erosion parameters to vary spatially. Recently, a
GIS-based tool (AGWA—see: www.tucson.ars.ag.gov/
agwa) was developed by the USDA-ARS [33] for delin-
eating watersheds into hillslope contributing areas
(abstracted into overland flow plane model elements)
and channels. AGWA also generates model parameter
files, based on topography, soil and land cover informa-
tion. In this study, we used the KINEROS2 model with
default parameters generated by AGWA for the WGEW
(delineation of 53 planes—average area 2.8 km2, and 21
channels). Initial soil moisture content was estimated
from daily rain depth data using simulation model
[21,31]. The study does not include sensitivity analysis
to watershed characteristics and therefore all parameters
were kept as their default values throughout the
analysis.

We analyzed the extreme rainfall–runoff event of
August 11, 2000, which totaled to 25 mm watershed

http://www.tucson.ars.ag.gov/agwa
http://www.tucson.ars.ag.gov/agwa
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average rainfall depth with a maximum gauge depth of
91 mm. Most of the rainfall occurred in less than an
hour and characterized by extreme rain intensities
(e.g., maximal 1-min gauge intensity of 391 mm/h).
The thunderstorm caused a high runoff flow in the wa-
tershed with a peak discharge of 154 m3/s at the outlet,
the highest recorded peak since 1957.

5.1. Storm decomposition into rain cells

Two radar-based rainfall inputs were analyzed using
the hydrological model, the grid rainfall data and the
rain cell data. The rain cell data were generated by
applying the retrieval algorithm above to the storm
radar data. Fig. 10 presents comparison of observed
vs. computed runoff in terms of peak discharge rates
at a range of subwatershed scales (Fig. 10a) and hydro-
graphs at the watershed outlet (Fig. 10b). It should be
emphasized that the radar rainfall estimates were based
on the Z–R relationship described at Section 2.2. If the
default NWS Z–R relationship for convective precipita-
Fig. 10. (a) Watershed map with the five flumes for which comparison
were made between observed and computed runoff using the KIN-
EROS2 rainfall–runoff model for the August 11, 2000 storm. (b)
Comparison of observed vs. computed runoff peak discharge at the five
flumes based on radar-grid input and radar-rain cell input. (c)
Observed runoff and computed runoff hydrographs at the WGEW
outlet with two different inputs: radar-grid rainfall and radar-cell
rainfall.
tion is used [15], the computed runoff peak discharge is
more than two times higher [38]. The computed runoff
hydrographs based on the two rainfall inputs are reason-
ably close to each other and to the observed runoff in
terms of peak discharge. In terms of time to peak, the
computed runoff is on average 25 min early relative to
the observed runoff (not shown). This difference is
equivalent to 16% error, which is reasonable considering
the complexity of rainfall–runoff modeling in semi-arid
watersheds [32].

Comparing the two computed runoff hydrographs
presented in Fig. 10 revealed relatively small differences.
This suggests that both inputs contain essentially the
same information required for predicting the hydrologi-
cal response (as represented by the hydrological model).
However, we believe that the rain cell input also allows
the characterization of the major storm factors in runoff
generation.

A manual examination and tracking of the rain cells
in the August 11, 2000 rainfall–runoff event (Fig. 11,
Table 3) identified five rain cells (cells A–E) that devel-
oped close to or over the watershed. Two of the rain
cells (A and C) were intense (in terms of maximum
intensity and volume) and lasted a relatively long time
(more than 60 min). Rain cell A initiated outside and
north of the watershed and then moved southward into
the watershed. Rain cell C developed within the wa-
tershed and moved west-northwest toward and beyond
the watershed outlet. The three other cells (B, D and
E) moved generally northward, had shorter duration
(15 min) and were less intense.

Comparison of the computed runoff response for
each rain cell separately indicates that only cell C gener-
ates a significant peak discharge at the watershed outlet
(Table 3). This is probably due to its location within the
watershed for most of its life cycle. Another important
factor is the specific configuration of rain cell C relative
to the watershed. Examining the detailed response of
each model element (overland flow planes and chan-
nels) revealed that the cell passed close to watershed
Fig. 11. Retrieved rain cells locations and trajectories over WGEW for
the 8/11/2000 storm. Rain cell tracking was done manually.



Table 3
Rain cell characteristics in the storm of 8/11/2000

Cell Start time Duration
(min)

Maximum
intensity (mm/h)

Volume (m3) Rain over
WGEW (mm)

Peak dischargea

(m3/s)
Runoff
deptha (mm)

A 11:58 70 170 1.54 · 106 5.0 3.2 0.1
B 12:23 15 138 0.28 · 106 2.1 0.0 0.0
C 12:41 65 247 2.32 · 106 12.0 61.5 1.8
D 13:06 15 150 0.27 · 106 0.9 0.0 0.0
E 13:21 15 92 0.17 · 106 0.3 0.0 0.0

a Computed runoff at watershed outlet from each cell separately.
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tributaries at three locations, precipitating more than
25 mm of intense rainfall over their associated contrib-
uting areas. This generated significant excess rainfall
over the associated runoff model elements and high peak
flows at the tributaries to the main channel (Fig. 12).
The flow towards and along the main channel was such
that runoff peaks arriving from the tributaries were rel-
atively close in time to the runoff peak of the main chan-
nel, resulting in an intensification of the peak flow. Over
the last 7 km of the channel, there was no lateral contri-
bution to the flow from hillslope areas or tributaries,
which resulted in reduction of peak flow due to channel
transmission losses.

5.2. Sensitivity analysis

Sensitivity of watershed rain depth and computed
peak discharge to maximum cell intensity and its spread
was examined by applying a factor (0.5–1.5) to the b and
a parameters of cell C (Fig. 13a). Rainfall over the wa-
tershed increases linearly with b and decreases exponen-
tially with a, as dictated by Eq. (2). Changes in rainfall
Fig. 12. Computed response of model elements in relation to rain cell locatio
rain depth from the modeled rain cell C (see Fig. 11) to each overland flow pla
peak discharge (Tp) and peak discharge (Qp) are presented.
are directly and non-linearly translated into changes in
runoff peak discharge (Fig. 13a).

Sensitivity to both parameters is relatively high with
somewhat higher sensitivity to the a parameter. For
example, decreasing b by 10% results in a decreasing
of watershed rain depth by 10% and a decreasing of
35% in runoff peak discharge. Decreasing a by 10% in-
creased watershed rain depth and runoff peak discharge
by 20% and 65%, respectively. The functional relation-
ships of runoff peak discharge and watershed rainfall
are presented in Fig. 13b.

Sensitivity to rain cell location was examined in two
ways: cell direction and cell starting point. Sensitivity
to cell direction was examined through altering the loca-
tions of rain cell C relative to its most southeastern point
(Fig. 14). The two peaks seen in the rainfall graph re-
flects the two major directions (north-west and north-
east) at which the rain cell precipitates rainfall over
the watershed for the longer period of time (see
Fig. 11). Runoff peak discharge is maximized 10–15�
clockwise to direction of maximal rainfall. These prefer-
able directions are dictated mainly by amount of rainfall
n and trajectories for the 8/11/2000 storm over the WGEW. Averaged
ne is shown. For selected points along the channel network the time of



Fig. 13. (a) Sensitivity of watershed rain depth (dashed lines) and of
computed peak discharge (solid lines) to maximum rain cell intensity b
(thick lines) and its spread a (thin lines). Sensitivity is examined by
applying a factor to the parameters of rain cell C. (b) Relationships
between runoff peak discharge and watershed rainfall as response to
changes in parameters b (thick line) and a (thin line) of cell C.

Fig. 14. Sensitivity of watershed rain depth (dashed line) and of
computed peak discharge (solid line) to rain cell C direction. The
sensitivity was examined by rotating locations of rain cell C center at
different angles relative to its most southeastern point.

Fig. 15. Sensitivity of watershed averaged rain depth (a) and of
computed peak discharge (b) to rain cell C starting point. The value
presented at each point in the watershed is the rainfall or discharge
generated if cell C starts at this point. Starting points that generate
maximum rain depth, and maximum runoff discharge are marked by
�R� and �Q�, respectively. The original starting point of rain cell is
marked by �O�.
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precipitated over the watershed and secondarily by the
closeness of the cell track to the main channel. Note that
simulated peak discharge at the actual direction of the
rain cell (0� change in Fig. 14) is very close to its maxi-
mal value for different directions. On the other hand, in
terms of starting point, computed runoff peak increases
more than two fold with less than a 4 km shift in cell
location (Fig. 15). The figure presents watershed rainfall
(Fig. 15a) and outlet runoff peak discharge (Fig. 15b) for
different starting points of cell C. As opposed to the
above sensitivity tests, where watershed rainfall amounts
were the most important factors in determining runoff
peak discharge (e.g., Fig. 13b), in the current test, cell
track position relative to the main channel is a major
factor as well.
6. Discussion

This paper deals with representation of rainfall spa-
tial patterns associated with air mass thunderstorm
events in hydrological model. The rainstorm is repre-
sented as a set of convective rain cells retrieved from ra-
dar data by application of a conceptual rain cell model.
The rain cells characteristics are utilized as input to the
hydrological model. These characteristics include all
main spatial features of rainfall patterns: location and
magnitude of maximum rainfall intensity, rain–no rain
areas (rain cell coverage) and small-scale variability
(within rain cells). These features are important charac-
teristics of the rain system and are known to play a sig-
nificant role in watershed response to rainfall. We
believe that through their direct linking to the hydrolog-
ical model, new insights can be acquired in understand-
ing the behavior of the rain and hydrological systems
and their interaction.

Fourteen air mass thunderstorm events over the
Walnut Gulch Experimental Watershed and the Phoenix
area in Arizona were analyzed. The rain cells center rain
intensity parameter (b) varied over a relatively large range
(mean = 61.5 mm/h, standard deviation = 42.3 mm/h),
while the distribution of the areal spread parameter (a)
showed small variability (mean = 0.39 km�1, standard
deviation = 0.08 km�1). Physically, these observations
indicate that at 2.5 km (2.1–3.2 km) distance from the cell
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center the rain intensity is reduced to 14% of its intensity
at the center. Rapid decline in rain intensity was previ-
ously reported in other studies of the Arizona region
[43]. Our estimation of a is supported by Eagleson et al.
[10], which reported an estimated mean value of
a = 0.43 km�1 and standard deviation of 0.17 km�1 over
a set of 426 storms. The referred work used a similar rain
cell model, but in a stochastic framework, for WGEW
gauge storm depth data. The objective was to produce
similar spatial distributions of total storm depth from
the model and the observed data. The relatively stable
and narrow range of a suggests its generality, possibly
as a climatic characteristic representing the areal extent
and spatial variability for air mass thunderstorms. This
assumption can be examined by applying the model to
radar data from thunderstorm rain events in other
regimes.

We explored the potential use of rainfall, represented
as rain cells, as input to a distributed hydrological
model. Although the original radar rainfall data pro-
duced a relatively similar computed runoff hydrograph
as the rain cells data, it is the added insights on the spa-
tial watershed response that makes this approach bene-
ficial. The retrieval algorithm process enables the
decomposition of complex rainfall patterns into rain
cells with defined parameters. The explicit representa-
tion of rainfall spatial patterns in hydrological model in-
put allows derivation of a more comprehensive link
between runoff response and spatial rainfall patterns.
Reviewing numerous studies that investigated the rela-
tionship between the two, revealed the general use of
two approaches: (1) Synthetic rainfall is used to simulate
different spatial patterns (e.g., [51,26,41]); or, (2) Spatial
characteristics of observed rainfall data are statistically
related to the associated runoff response [30,52]. Using
a rain cell representation of ‘‘real storm’’ data allows a
combination of the two approaches. As in the first ap-
proach, a spatial structure is assumed (the rain cell
shape), representing our a priori understanding, but
the parameters of the assumed structure are derived
from observed data and thus, as in the second approach,
real observations are integrated into the analysis.

While Syed et al. [52] employed the same model for
describing rain cells they only used this model to evalu-
ate several interpolation algorithms. This was accom-
plished by superimposing a theoretical rain cell
produced using Eqs. (3) and (4) over the center of the
Walnut Gulch Experimental Watershed; sampling the
theoretic rainfall at actual rain gauge locations, using
a number of interpolation schemes to produce a
100 · 100 m grid of the rainfall; and, evaluating how
well the interpolated rainfall field reproduced the theo-
retic field. After that, the selected interpolation ap-
proach (multiquadric), was only used to interpolate
rain gauge storm observations onto a 100 m grid from
which storm characteristics were numerically computed
(centroid, volume, distance of watershed outlet, etc.).
These observed storm ‘‘metrics’’ were regressed onto
runoff observations to investigate how well they could
statistically predict watershed runoff.

For the research described herein it is important to
understand the implications of using grided rainfall when
comparing the runoff response to the two rainfall inputs
(rain cells and grid). Grayson and Bloschl [19] pointed
out that a uniform assumption imposes a certain spatial
organization to the elementary unit structure. Assuming
uniform rain intensity over a pixel (the elementary unit in
this case) may considerably affect runoff response, in par-
ticular for semi-arid environments where runoff to rain-
fall ratios are small [11,18,5]. To retain small-scale
rainfall variability of rainfall input, the conventional ap-
proach uses high-resolution ‘‘noisy’’ rainfall data. In
contrast, the spatial fields induced by a set of rain cells
are smoothed by the procedure of Gaussian surface fit-
ting while still allow representation of sub-pixel variabil-
ity using the continuous mathematical function. It
should be emphasized however, that although rainfall
variability can be represented at small scales as we wish,
it cannot be confirmed without rain gauge data with
spacing at that scale or smaller.

When sufficiently long records of rainfall data are
available, the distributions of the rain cell characteristics
can be analyzed [12,53]. This will allow examination of
the return-period extremity in terms of the rainfall spa-
tial structure as compared to the conventional approach
using the frequency of rain accumulation for a given
duration (see for example, [7]). These distributions could
then be derived for ungauged regions assuming reliable
radar rainfall data are available. If corresponding runoff
data are also available, the extremity of the rainfall
event can be related to the associated runoff response di-
rectly or statistically (e.g., [48,64]). Such analyses have
the potential to provide new insights in estimating the
‘‘probable maximum precipitation’’, ‘‘probable maxi-
mum flood’’ and other related extremes of interest
[14,47,29].

Finally, the focus of this paper has been on spatial
patterns of rainfall. In further work, we plan to develop
a more general description that will incorporate repre-
sentation of the temporal and spatial rainfall structures
(e.g., [55,57]). Such descriptions should include: a rain
cell tracking algorithm (such as [23]), conceptual model-
ing of rain cell movement, and also changes in charac-
teristics. In addition, the cell model can be extended to
represent more complex structures such as ellipsoid or
a more general decay function (e.g., [3,40,13,59,53]).
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