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ABSTRACT OF THE DISSERTATION

Investing in Innovation: Evidence from the Pharmaceutical Industry

by

Kira Ellen Stearns

Doctor of Philosophy in Management

University of California, Los Angeles, 2020

Professor Melvin Keith Chen, Co-Chair

Professor Marvin B. Lieberman, Co-Chair

This dissertation explores the role that organizations play in bringing scientific innova-

tions to society. Chapter 1 situates this work in the current landscape of innovation research

and motivates the need for further research on this topic. Chapter 2 explores the role that

failure, both technological and regulatory, plays in understanding how organizations make

future investments in innovative projects. I find that following FDA rejection, biopharma-

ceutical firms become significantly less likely to further invest in unrelated products already

under development. However, they experience a higher proportion of future successes, as

they redirect investment into less risky innovations. In contrast, I find no evidence of these

effects in response to technological failures at the end of clinical trials, suggesting that this

effect is not driven by the loss of firm value nor does it support a traditional Bayesian updat-

ing framework. Rather, these findings are consistent with the idea that there is a difference

between failure at the technological level versus failure at the decision making level.

Chapter 3 illustrates how the boundaries of an organization influence the type of inno-

vations in which organizations do and not choose to invest following a sudden reshuffling
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of consumer demand. I demonstrate that a sudden increase in market size (and therefore

expected revenue) increases an established firm’s propensity to make larger investments in

products in their pipeline that are less likely to receive approval. However, I find that this

result only holds for those organizations that diversify into fewer therapeutic spaces and are

additionally more centralized. I theorize that, in line with findings from organizational eco-

nomics and internal capital allocation inefficiency, this is due to management having greater

control over resource allocation decisions in more centralized firms.

Finally, Chapter 4 studies how the type of innovation pursued may affect market outcomes

and competitive interactions between organizations. Using drug repurposing as a research

context, I explore how the repurposing of a pharmaceutical drug for a new disease impacts its

sales, and the sales of its competitors, for other approved uses. By leveraging variation in the

combination of diseases that one drug treats and the timing of those disease approvals, I find

a positive spillover effect of repurposing on sales of the drug for other diseases and this effect

also spills over into the drug’s close competitors. Furthermore, I find that this growth in

sales comes at the expense of competitors further away in therapeutic type. These findings

have important implications for a pharmaceutical firm’s R&D strategy and the strategic

responses to be made by competitors.
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Chapter 1 Innovation and the Organization

The links between innovation and economic growth are largely undisputed. From Schum-

peter’s discussions of creative destruction to Solow’s conception of technological progress,

scholars have stressed the importance of continual product and process innovations on a

dynamic economy. However, innovations do not magically appear within society. New in-

novations, both in products or in process, are the result of people or organizations making

deliberate choices about what they will explore and how they will explore it.

The literature on innovation spans many social science disciplines and encompasses many

research traditions. This research includes studies of lone inventors, studies of patents and

property rights, and studies of knowledge dispersion among communities. A subtopic re-

ceiving increased attention is the role of organizations, both for profit and not-for-profit, in

innovation. While charismatic visionaries receive the majority of media attention, a large

amount of invention and innovation takes place within the confines of an organization. In

these cases, the resources and capabilities of the organization play an important role in bring-

ing innovations from conception to market. Furthermore, these organizations have myriad

choices for how they will develop and market their next technology. They could develop it in

house or license the intellectual property from elsewhere. They can have their scientists and

engineers work together in centralized campuses or as smaller decentralized units. They can
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choose to build on a previous technology or develop something entirely new. These choices

have impacts not only for the fate of the organization, but for the well-being of a society.

This dissertation contains three studies that examine how organizations make decisions

regarding the types of innovation in which they will invest and the competitive outcomes

of such decisions. These studies are linked in the following three ways. First, all studies

concern the development of profit-enhancing medical innovations within a profit maximizing

firm. Secondly, all chapters acknowledge that choosing where to allocate innovative resources

represents a series of tradeoffs for firms. In choosing to pursue one line of research and

development, an organization is sacrificing gains that could be made in another line. And

lastly, all three chapters focus on the product development aspect of innovation. While many

studies in the innovation literature look at intermediate measures like patents or trademarks,

this study looks specifically at new consumer products right before or right after they reach

market.

Finally, the industry explored in all three chapters is the biopharmaceutical industry,

where the chief source of a firm’s competitive advantage is in its ability to bring innovative

new therapies to consumers. Therefore, efficient and effective decision making by managers

within these companies is an important capability. Though this industry follows a highly

regulated procedure for bringing products to market, I believe lessons learned in exploring

the decisions made can be applied broadly across innovative organizations. Issues explored in

the following three chapters, including responses to failure, the effects of demand reshuffling,

and the repurposing of technologies are topics any high-tech firm may find itself grappling

with.
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Chapter 2 Organizational Responses to Failure and

Rejection

2.1 Introduction

Failure is widespread in many important industries and interactions, and it can take many

forms. It can be highly detailed and personalized, as in a promotion rejection, or lack

thorough explanation, as in a prototype failure. It can signal to budding entrepreneurs how

they measure up against their peers when they win a business plan competition, or signal to

them how they measure up against a subjective threshold when they fail to receive funding

from venture capitalists.

One common type of failure that has received limited consideration despite its preva-

lence for innovative firms and entrepreneurs is rejection from an external party. For example,

firms will compete for consulting contracts that they either win or lose, inventors will submit

patents that are either accepted or rejected, and employees will apply for promotions that

are either granted or deferred. A unique aspect of rejection when compared to traditional

definitions of failure is that firms or individuals must explicitly solicit this feedback, often

through applications or proposals. Therefore, these individuals likely possess an a priori

3



belief about the quality of their product, invention, or application and therefore their chance

of success. For managers receiving negative feedback, or “failing”, they learn not just about

an external party’s assessment of the focal product or application, but about her own ability

to make accurate judgments about its likelihood of success. These ramifications are par-

ticularly interesting, and still unexplored despite evidence suggesting that people respond

differently to failure depending on the source.

This chapter will explore the role of regulatory rejection on a firm’s future investment

behavior in unrelated technologies that are currently under development within the firm. I

find evidence suggesting that rejection of an innovation changes a manager’s propensity to

make further investments in their next several projects. Additionally, I show that this shift

in decision making changes the type of projects a firm will invest in next. To my knowledge,

this is the first study exploring how rejection from regulators affects both future investment

behavior and future product development successes.

I explore these issues empirically in the context of the pharmaceutical and biotechnology

industries where firms must receive Food and Drug Administration (“FDA”) approval to

market their product in the United States.1 Because of the R&D-intensive nature of firms

in these industries, the pharmaceutical and biotechnology industries have been a popular

setting for studies on firm behavior in innovation (DeCarolis and Deeds, 1999; Henderson

and Cockburn, 1994; Krieger, 2018).2 Before applying for FDA approval, firms make a series

1Regulatory approval to market and sell products is common in many facets of the healthcare sector,
including medical devices.

2Additionally, the hesitancy of pharmaceutical firms to terminate lower-quality R&D efforts (leading to
inefficient resource allocation) has gained attention within the industry. A vice president of Novartis has
lamented that they “always cling to products a year longer than [they] should” ((Lam, 2004): 1). Ken
Kaitin, the director of the Tufts Center for the Study of Drug Development, suspects this failure to let go of
projects is built on what he calls “selfish-team syndrome,” defined as the situation in which “a group that is
developing a particular drug makes biased decisions - for example, trying to save the project when it should be

4



of investments in the development of their product. Furthermore, in these industries, the

majority of firms are developing many products at the same time and therefore are managing

a pipeline of potential products at various stages of development. This will be crucial for

this research in that it allows me to observe the trajectories of research projects already in

progress at the time of one product’s rejection. I begin by proposing a theoretical framework

that describes how firms make these series of investment decisions in their products that are

midway through development; that is, after the firm has already developed a belief about

the quality of the project following years of collecting information about its performance.

I then explore how unanticipated rejections by the FDA affect the firm’s beliefs about its

other pharmaceutical products under development and how the firm chooses to invest in new

rounds of product development.

To estimate the effects of rejection, I compile a large dataset on firm investment decisions

in drug development spanning nearly 20 years. These data include information on the firm

developing the drug and many characteristics of the molecule under development, including

the disease it is intended to treat. With these data, I am able to leverage within-firm variation

to explore firm behavior both before and after the negative event. In addition, I collect data

to control for demand conditions, product novelty, and other factors that may influence a

firm’s investment decisions. I also research and compile data describing regulatory decisions

by the FDA on every project submitted for review. While the vast majority of applications

eventually receive approval (95% of applications submitted in my sample), in some cases the

FDA identifies weaknesses that cannot be overcome and the project must be terminated. It

killed - because the team’s reputation is tied to the drug’s success or because the team members have become
emotionally attached to the project” ((Bonabeau, 2002): 115). Another biotechnology executive proclaims
that “questionable clinical data tends to get overlooked because there is such a push to do something” (Lam,
2004): 2).
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is these “terminal rejections” that I will use to explore the effects of negative feedback on

future investment decisions.

One challenge in estimating the effects of rejection on a recipient is in causal identifica-

tion. That is, the act of choosing to solicit feedback from an external party may be correlated

with future behavior patterns, causing the problem of non-random assignment to treatment.

Therefore, to causally identify the effects of the negative feedback, I modify an identification

approach first proposed by Blankshain et al. (2013). They argue that “surprising” nega-

tive regulatory feedback can be treated as an external shock. For this study, I will identify

surprise negative regulatory feedback by collecting data on industry experts’ predictions of

drug quality at the time of the FDA application. I then employ within-firm variation and a

difference-in-differences approach to estimate the effect of plausibly exogenous rejections on

future investment decisions. If I find no change in a firm’s propensity to continue investing

in other unrelated projects (while employing fixed effects and controls for relevant prod-

uct characteristics), one could conclude that this negative feedback does not fundamentally

change a firm’s investment strategies. A discrete change in the investment decisions of a firm

would imply that this type of negative feedback does have spillover impacts on innovation.

In the empirical analyses, I find that immediately following surprising regulatory rejec-

tions, managers become over 20% less likely to continue funding other, unrelated products

under development and that this effect persists for the next several projects that reach the

critical decision stage. In addition, I find a “raising the bar” effect. Because firms discon-

tinue the development of more risky (lower probability of approval) products, they experience

better overall performance of those future projects in which they do choose to invest. In

traditional studies in learning from failure, observing an increase in the probability of ap-
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proval for projects may lead one to believe the firm is “learning” from failure. Here, I can

demonstrate that what appears to be improved firm performance is actually the result of

more selective investing.

Finally, I show that the effect of negative regulatory feedback makes firms less likely to

invest in projects for more novel drugs, that is, those treating rare disease or demonstrat-

ing significant improvements over drugs already on the market. This finding demonstrates

that programs put into place to encourage more innovative investment do not mitigate the

retreat from investment seen following receipt of an FDA rejection. In additional analy-

ses, I demonstrate evidence for why these results are unlikely to stem only from financial

constraints experienced by a firm that has lost expected future revenue. I therefore con-

clude that this type of feedback leads to a change in a firm’s appetite for making late stage

investments in other innovations.

This study provides two important insights. First, I demonstrate that rejection from

entry regulators leads firms to become more conservative in future investments in unrelated

technologies. However, those in which they do invest are technologies that are much more

likely to eventually receive regulatory approval. I show that this change in behavior persists

for several projects in the future but does eventually revert back to normal patterns of invest-

ment when controlling for firm effects. This supports the hypothesis that entry regulation

may depress innovation, and especially more novel innovation, from the private sector. Sec-

ondly, while the firm does achieve a higher proportion of future products receiving approval

following full investment, these products are likely to be more incremental rather than novel

innovations. This is further illustrated in an analysis exploring post-rejection investment on

projects that have already received intermediate-stage positive regulatory feedback. Prod-
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ucts receiving early feedback from the FDA are more likely to be novel innovations (and

therefore qualify for early monitoring and often subsidized development). Following rejec-

tion, these novel products become over 60% less likely to receive important investments in

development, as compared to novel products in which the firm invested before rejection.

These findings have implications for both strategy and policy scholars. If the role of

policy makers is to incentivize innovation in the private sector, these findings suggest the

importance of developing mechanisms that mitigate the number of unanticipated rejections.

Additionally, these findings make important contributions to the strategy literature in learn-

ing from failure. Current empirical research has suggested that firms may respond to negative

feedback in several ways, and this may have heterogenous impacts on firm performance. In

this setting, I am able to demonstrate how negative feedback leads managers to update their

prior beliefs about the success of other unrelated projects and that this may lead to higher

perceived performance on certain dimensions. However, I am able to demonstrate that what

may appear to be learning in certain contexts is actually a function of increased selectivity

in the risks a firm is willing to take. In the next section, I will discuss these literatures in

more depth.

2.2 Related Literature

This paper makes several contributions to a research agenda that is of interest to both

management and public policy researchers. In this section, I present a cursory overview of

related work.
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2.2.1 Related literature on failure in innovation

This paper adds additional insight to studies on firm adaptation in response to failures in

innovation. The conditions under which firms can learn from failure constitute a research

stream that is growing in prominence (see, e.g., Guler, 2018; Khanna et al., 2016; Klingebiel,

2018; Maslach, 2016). However, conclusions regarding a firm’s ability to respond to failure

have been mixed. One of the difficulties in estimating responses, which may therefore lead to

these differences, is the inability to examine the responses to different types of failures both

within and across firms. The literature on firm responses to rare, publicly visible failures

often relies heavily on case studies (Christianson et al., 2009; Harding et al., 2002; Lampel

et al., 2009; Madsen, 2009). Additionally, although exploring firm responses to frequent but

small failures allows more data and for comparisons across firms, the definition of failure

in this case is narrow. Furthermore, in the case of frequent, small failures, it is often the

case that the manager itself had recognized the failure and not that it was decreed by an

external party. One may hypothesize that firms capable of understanding when they failed

likely have capabilities that make them different from firms that do not know when to admit

failure.

It is largely believed that organizations can learn more from failure than from success

(Haunschild et al., 2015; Madsen and Desai, 2010). Given the preponderance of failures

generated by experimentation and innovation, several scholars have explored whether and

how failures in innovation can lead to better future outcomes for the firm. Two papers

closely related to this one have explored how the nature of the failed product (whether it

was in a new or risky domain) leads to differences in the firm’s response. Using data from
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the mutual fund industry, Eggers and Suh (2019) find that failures of products launched in

new domains leads the firm to retreat, while failures of products launched in experienced

domains leads the firm to search both locally and distantly for solutions. Maslach (2016)

also explores how the type of failed products affects the firm’s adaptations. Using data from

the medical device industry, he finds that firms are more likely to persist with failed products

when they were incremental innovations. Both studies suggest that firm adaptation depends

on the firms ability to learn from failure, with the finding that firms are more likely able to

learn when the failure is in a domain with which they have had past experience.

Because of the prevalence of failure in innovative industries, there is a rich literature in

organizational learning that explores its effect on future search. However, for an outside

researcher to observe an innovation failure within an R&D department, it must be the case

that the manager has judged the product to be a failure. That is, personnel (often scientists

or engineers) must be able to recognize that the product will not be successful on the market

and then manage the termination of that product. There is no paucity of evidence that this

can be a difficult and often non-incentivized task for managers (Biyalogorsky et al., 2006;

March and Shapira, 1987; Simester and Zhang, 2010). Therefore, much of the literature on

nfailure in innovation explores the case where the firm recognizes that its product is low

quality and takes actions to terminate it.

One limitation of this literature has been the difficulty in compiling data on a firm’s inno-

vation failures. In previous literature, two main approaches have been used. One approach

has been to measure failures in innovation at the patent level by looking at metrics such

as patent discontinuations (Khanna et al., 2016; Serrano, 2010). While patents are a good

measure of early-stage innovation, they have limitations as a proxy for innovative product
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development. The other approach has been to look at failures of innovative products once

they reach the market and face the ultimate judgment by consumers or other external critics.

Literature in this realm explores firm responses to events such as the addition of a drug safety

label (Higgins et al., 2018), the count of adverse events (Maslach, 2016), or a product recall

(Freedman et al., 2012). While these events provide useful information on how firms react

to negative external criticism following market entry, the effect is likely tangled with effects

generated from changing consumer sentiment and changes in immediate revenue. Therefore,

it is difficult to disentangle exclusively the effect of the information inherent in the feedback.

2.2.2 Related literature on individual responses to feedback from

gatekeepers

Additionally, this study adds to the literature on responses to feedback from a “gatekeeper.”

Situations in which individuals receive performance feedback, and in which performance

must reach a certain threshold for continuation, are pervasive. Consultants pitch projects

to potential clients and government agencies. Engineers build prototypes and test them in

the lab. And actors audition for roles in front of small groups of producers. Owing to the

prevalence of negative feedback in these situations, a growing body of research is beginning

to address how this particular type of feedback may impact the future trajectories of its

recipient. In studying interim feedback in a tournament model, Ederer (2010) demonstrates

that negative feedback may be demotivating for individuals who therefore become aware of

asymmetries between themselves and their competitors.

Despite several theoretical contributions to the feedback literature, there is a paucity of
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empirical evidence of these predictions. In one of the few empirical studies, Gross (2017)

uses data from a commercial logo design tournament and finds empirical support for Ederer’s

theory. He finds negative feedback reduces future participation in the design contest but

improves the quality of future designs. Wooten and Ulrich (2017) come to similar conclusions

after implementing a field experiment designed to give artists different types of intermediate

feedback on their designs. In general, they find that directed feedback improves the average

quality of submitted entries, and the variance of quality declines.

Feedback also plays a role in entrepreneurship and the development of new ventures. In

new venture competitions, founders present their business plans to a panel of judges who

score and rank the competitors. In studying these data, Howell (2018) finds that negative

feedback regarding one’s intermediate rank in the competition leads to increased rates of

product abandonment among those ranked more poorly. In contrast, Wagner (2017) uses a

similar setting but finds that when some founders receive unsolicited qualitative feedback on

their ventures, they raise more money in the future and are more likely to survive. These sets

of studies are important in that they demonstrate how the nature of feedback an entrepreneur

receives prior to entering the market may lead to heterogeneous future outcomes.

2.2.3 Related literature on regulation and innovation

Finally, this study contributes to literature exploring the effects of regulation on innovation.

Since the early 1970s, economists and policy scholars have debated whether or not regulation

encourages or discourages firms to innovate. Many of the early scholars, including Peltzman

(1975) and Wardell and Lasagna (1975), argued that regulation inhibited innovation and
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therefore decreased consumer welfare. These conclusions were also suggested by comparisons

of the growth of countries with many regulations to those with few regulations (Crafts, 2006).

In his analysis of new drug introductions following the Kefauver-Harris Amendment (which

created the United States Food and Drug Administration as we know it today), Wiggins

(1981) explored the change in marketed new drugs and determined that these regulations

decreased new product introductions by 52%.

However, by the 1990s, scholars (including Michael Porter and Claas van der Linde in

1995) were suggesting that regulation may actually stimulate innovation. For example, regu-

lations including patent protections likely created incentives to invest in R&D because firms

knew they could appropriate value from their innovations. In addition, antitrust regulation

may also stimulate innovation if firms believe they must innovate to maintain a competi-

tive advantage. Furthermore, there is empirical evidence that regulation restricting entry

may also have a positive effect on firm innovation. In exploring the effects of environmen-

tal regulation on innovation, Jaffe and Palmer (1997) find that environmental compliance

expenditures have a significant and positive effect on future R&D expenditures, though not

on patent counts. Pickman (1998) and Newell et al. (1999) also find a positive effect of

environmental regulation on innovation. The current literature finds many differing effects

of environmental regulations on innovation depending on the regulation studied.

Additional studies of regulation on innovation have explored issues such as the possibility

of first-mover advantages or disadvantages in industries marked by regulated entry. If regula-

tory requirements of product entry become stricter as more products populate a therapeutic

class, firms may be discouraged from further innovating within a crowded class. Carpenter

et al. (2010) find that pharmaceuticals entering a certain therapeutic category first tend to
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have decreased time in regulatory review, suggesting the presence of a first-mover advantage.

However, Stern (2017) finds the opposite in the medical device industry.

2.3 Setting: The Biopharmaceutical Industry

The setting of this study is the pharmaceutical and biotechnology industries.3 I study this

industry for a few reasons. First, the chief source of a competitive advantage for a pharmaceu-

tical firm is its ability to innovate, that is, introduce new products that have been approved

by a government’s regulating body.4 Therefore, efficient and effective decision making by

managers within these companies is an important capability. Second, pharmaceutical firms

undergo a standardized routine of product development. This makes for ease of comparison

both among and within firms at various stages of product development. And finally, the

industry is important not only to the global economy but to the health and productivity of

its citizens. In the United States, the pharmaceutical industry alone made up 1.9% of GDP

in 2016 (United States Department of Commerce, 2016). Additionally, there is evidence that

the introduction of new pharmaceuticals can benefit the labor market (Garthwaite, 2012),

and decrease the burden on hospitals to provide care (Lichtenberg, 2001, 2007).

The ability to terminate low-quality projects quickly is an important capability for man-

agers overseeing drug development projects (Guler, 2018; Lendrem et al., 2015). The costs

of drug development have been increasing over time, and costs for developing a drug increase

exponentially as firms continue through each phase of research and development. Estimates

3While pharmaceutical and biotechnology companies differ in a few ways, for ease of exposition I will
consider all firms within these two industries to be pharmaceutical firms.

4In this paper, I will only consider approvals by the United State’s Food and Drug Administration, as is
common in the literature.
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for the total R&D costs of one approved drug now top over $1 billion in 2013 dollars (DiMasi

et al., 2016). The research and development of new molecules (which can eventually become

marketed drugs) consists of two distinct parts: discovery research and product development.

In the discovery research phase, scientists synthesize drugs and conduct preclinical testing.

Discovery research often takes between 3 to 6 years. The second part, product development,

is the longest and most expensive part of the drug creation process, and will be the focus of

this paper. It has been estimated to take an average of 6.5 years (Mestre-Ferrandiz et al.,

2016) and can cost upwards of $80 million (Sertkaya et al., 2016).

Drug development is broken out into three phases of clinical trials: Phase I, Phase II,

and Phase III. Phase I is the shortest and consists of a firm testing its molecule on 20-100

healthy volunteers to confirm the safety of the molecule. If that is found to be satisfactory,

the firm can move to Phase II. Phase II is the first real study of the drug’s effectiveness on

sick volunteers.5 Phase III trials are often longer and more expensive versions of Phase II

trials, involving up to 3,000 patients, and costing over three times as much (Lam, 2004).

A study by the Manhattan Institute suggests that Phase III trials can make up over 90%

of the drug’s total development costs and represents the largest contributor to the growing

costs of drug development (Roy, 2012). After having completed Phase III trials, the firm will

submit a New Drug Application (“NDA”) or a Biologics Licensing Application (“BLA”) to

the United States’ Food and Drug Administration for review. This application summarizes

all of the data generated during preclinical and clinical trials. The FDA is expected to

respond to most standard NDAs within 10 months of filing.6 Only after a drug has been

5By Phase II, issues around safety are generally resolved. However proving effectiveness can be more
difficult, with more ambiguous requirements (Pak et al., 2015).

6This follows the passage of the Prescription Drug User Fee Act of 1992 (Ciociola et al., 2014).
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approved by the FDA can it be sold and marketed in the United States.7

For this paper, I specifically consider a firm’s decision to invest in Phase III clinical trials,

that is, to move a product from Phase II to Phase III. Here, I am defining a product to be a

molecule-indication dyad. A molecule is the specific drug given to patients and the indication

is the specific disease the molecule is targeting (e.g. type II diabetes, non-small cell lung

cancer).8 Many molecules can treat one indication and one molecule can potentially treat

many indications. However, a firm must do a separate Phase III trial for every indication it

is trying to get approved for a certain molecule. Without an indication specific approval, a

firm cannot market that drug for a specific condition. Therefore, a firm may have a different

innovation strategy for a molecule it is trying to market for multiple indications than for a

molecule hypothesized to treat only one indication.

I choose to explore Phase III investment because it represents the largest resource alloca-

tion decision a firm will make in the drug development process. Firms that can terminate a

low-quality project before Phase III will still have refrained from making the most costly in-

vestment in the product’s development. Therefore, one could consider a firm that terminates

a product’s development before Phase III to be one that demonstrates more risk aversion

than a firm that chooses to continue with that same product. In addition, despite being

the final step in the drug development program, Phase III trials are still very risky. Recent

evidence finds the average probability of a molecule going from Phase III to FDA approval

is between 57-71% and can be as low as 34% for certain therapeutic categories (Wong et al.,

7While a firm cannot market a drug for a disease for which it has not been approved, a doctor can still
prescribe it to a patient for whichever disease she deems fitting. This is called “off-label” prescribing and
while it likely has some implications for firm strategy, they are outside the scope of this paper.

8An indication can sometimes be a smaller subset within what is commonly thought of as a disease. For
example, with the rise of gene-targeted therapies, an indication could be “Ovarian cancer on the BRCA-1
mutation.”
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2018). For biologics, the probability is even lower. However, these probabilities are more

optimistic than the overall success rate of a product beginning at preclinical trials, which

can be as low as 3%. This is certainly intuitive. As a drug development program transitions

through all of the phases of clinical trials, the researchers get clearer information signals and

will therefore only invest in Phase III trials for those molecules with the highest chances of

success.

While the majority of NDAs are eventually approved by the FDA, occasionally a firm

will be denied approval by the FDA. When the FDA rejects a New Drug Application, it

sends the firm a Complete Response Letter (CRL).9 Receipt of a CRL constitutes a large

setback for the firm. Companies are required by law to disclose to their investors if they

have received a CRL, however the exact contents of the CRL are rarely made public.10 Upon

receipt of a CRL, the firm has a few options. If possible, a CRL will detail the deficiencies of

an application and offer a path forward. In this case, the firm has the option to redo some

clinical trials and collect new data that will satisfy the concerns of the FDA. If the firm or

the FDA determines the deficiencies are insurmountable, the firm will withdraw the NDA

and terminate the project.11 While the first case may be interesting in some contexts, in

this study I am only interested in CRLs that result in termination of the project.

There are many reasons one may believe that firms receiving rejections from the FDA

9The FDA did not begin using CRLs for small molecules until 2008, to replace what had previously
been either “Approvable” letters or “Non-approvable” letters. They had been standard for biologics since
1998. For consistency throughout this paper, I will refer to a Non-approval letter received before 2008 to be
analogous to a CRL.

10This is illustrated in the rejection of ImClone’s cancer drug Erbitux, which received a “Refuse to File”
letter from the FDA given the badly flawed application. While the CEO tried to downplay the FDA’s
concerns to investors, when excerts from the letter were leaked to the press, detailing the many deficiencies
of the clinical trial design, the company found itself in turmoil (Prudhome, 2013).

11The firm also has a third option to schedule a hearing with the FDA. Within 60 days of the hearing, the
FDA will either approve or reject the application.
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had submitted an NDA or BLA while expecting approval. The process of filing an NDA

or BLA is time consuming and can even involve the hiring of consultants. Therefore, it

is not a decision that the firm makes haphazardly. Additionally, because the receipt of a

CRL can impact firm value, it is unlikely a firm would consume resources or undergo this

risk if they did not believe their drug at least had a very good chance of being approved.

Interviews with industry insiders and company press releases suggest this is largely true.

For example, when the company PTC Therapeutics received a CRL for a drug used to treat

Duchenne muscular dystrophy, the CEO stated that he was “extremely disappointed for

the Duchenne community” and “strongly disagree[d] with the agency’s conclusions” (Press

release, 11/28/2018). However, to be conservative, in Section 2.5.4, I will explain the method

used to segment out FDA rejections that are plausibly truly surprising to the firm and

industry.

Industry experts have expressed in interviews that rejection from the FDA can be hum-

bling for both the scientists and the senior management within the firm. Even large and

experienced firms can make fundamental errors resulting in the non-approval of their prod-

uct.12 For example Astrazeneca received a CRL for their product Numax to treat respiratory

syncytial virus due to issues in trial design that resulted in uncertainty regarding the effi-

cacy results (Press Release, 2010). In fact, I will demonstrate evidence that the majority

of these rejections are to large firms with vast amounts of experience developing drugs. Ac-

cording to a former Vice President at Bristol-Myers-Squibb, the receipt of a CRL can “beget

soul searching” within the firm. Therefore, there is reason to believe, and as suggested by

12As one decision maker in a pharmaceutical company explained, “Project teams can be very possessive
and defensive of their project that can make it a very challenging situation when tough decisions need to be
made on the continued viability of the project” (Donelan et al. (2015): 325).
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Haunschild and Rhee (2004), that firm adaptations made in response to a CRL may be

different from adaptations made in response to different types of innovation failures, such as

late-stage project terminations handled internally.

2.4 Data

2.4.1 Data on Product Development Decisions

To empirically explore the effect negative feedback has on future firm risk taking, I first

create a dataset that includes pipeline-level information from Informa’s BioMedTracker. The

BioMedTracker database provides a timeline of a drug’s development from Phase II trials to

either approval or termination. This is where I collect data on relevant event dates (here,

date the Phase II clinical trials ended, date the project was fully terminated, and/or date of

FDA approval). Because I assume FDA approval to be the firm’s end goal in this analysis, I

treat clinical trials that were terminated in the United States but moved toward development

for another country’s market as terminated. I am also able to collect a rich amount of data on

product characteristics, such as intended indication and inclusion in government sponsored

programs from this database. The BioMedTracker database contains data on Phase II and

Phase III clinical trials for a wide range of firms, both public and private, from around the

world.13

Given the vast amount of mergers and acquisitions among pharmaceutical and biotechnol-

ogy companies, it is important to determine which company owned and was making decisions

13While there is some information on Phase I trials and preclinical research, the data on the exact dates
of initiation or termination is less complete. This is because not all Phase I clinical trials are required to be
registered.
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about the molecule at the end of Phase II clinical trials. To correctly match the owner of

a drug to the decision maker at Phase II, I create a dataset of mergers and acquisitions

(including product acquisitions) as gleaned from EvaluatePharma, another competitive in-

telligence database. Additional information regarding how I cleaned the data and accounted

for missing information can be found in Appendix A.1.

Average and total R&D expenses for publicly traded firms in the sample, as reported by

Compustat, are displayed in Figure 2.1. From Figure 2.1(a), it is evident total R&D spending

increases over the time period but average spending appears to fall around 2010. Figure

2.1(b) displays the average R&D expenditures for the top ten largest firms (by spending)

in the sample. For these firms, average R&D spending appears to be increasing over time.

However, the fact that average spending stays relatively constant between 2010 and 2015

may suggest the dip in average spending among the full sample may also be a function of

macroeconomic factors like the global recession.

Despite a non-decreasing level of R&D expenditures by pharmaceutical firms, the average

number of FDA approvals for firms in the sample has not monotonically increased over time.

Figure 2.2 illustrates these trends for both the full sample, and the averages for just the top

ten biggest spenders.

Given the importance conditional transition probabilities will play in the regression spec-

ifications, I first explore what these data suggest regarding the probability of investment in

Phase III clinical trials and the probability of approval, given the firm has completed Phase

II clinical trials. Figure 2.3 illustrates these average probabilities for the year in which the

Phase II clinical trial concluded. Interestingly, the probability of investment in Phase III and

the probability of FDA approval appear to move together over time. While one may initially
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Figure 2.1: This figure plots (a) Average and total R&D expenses for the publicly traded
firms in the sample (b) Average R&D expenditures for the top ten largest firms (by spending)
in the sample. Data from Compustat.

hypothesize that the probability of investing in Phase III clinical trials has decreased over

time due to improved technologies leading to better decision making, the fact that average

approval rates have not increased suggest that this may not be the case.

One weakness of a simple graphical approach is that it does not take into account how

characteristics of the drugs pursued over time change. As described above, transition prob-

abilities are historically different depending on the therapeutic class and are often heteroge-

neous within class, given the indication pursued and the drug’s mechanism of action.14 In

14The mechanism of action (MOA) is how the drug “works.” Oftentimes, this is consequence of the
drug-receptor interaction.
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Figure 2.2: This figure plots the average number of FDA approval by firm and year for
(1) All Companies in the Sample and (2) Only the Top 10 Firms by R&D Expenditures.
Approvals include NMEs, BLAs, NDAs, and sNDAs. On the x-axis is the year of FDA
approval. Data on R&D expenditures from Compustat. Data on FDA approvals from
BioMedTracker and FDA.gov.
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Figure 2.3: This figure plots the probability over time of (1) investing in Phase III clinical
trials and (2) receiving FDA approval for each molecule having completed Phase II trials for
a specific indication. Data from BioMedTracker and FDA.gov.
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addition, the types of products being developed by an organization, or the number of orga-

nizations which specialize in certain therapeutic classes, may change over time. To explore

this further, I consider four of the largest therapeutic classes in the dataset: Cardiovascu-

lar, Neurology, Oncology, and Endocrine Systems. Figure 2.4 illustrates how the number of

Phase III clinical trials (and the percentage of those resulting in approved products) changes

over time. These graphs illustrate that while oncology was the largest class in 2004, it grew

by nearly 50%, and a larger percentage of those achieved FDA approval. In contrast, the

number of Phase III clinical trials in neurology decreased over time, and the percentage of

those approved became smaller as well.

I also consider the change in transition probability from Phase II to III for those four

classes over time in Figure 2.5. Despite a growth in the number of oncology products reaching

Phase III, the percentage moving from Phase II to Phase III actually decreases over time,

and this is true with nearly all classes. This is likely because as knowledge about the disease

increases over time, firms are able to make better decisions about Phase III investments.

2.4.2 Data on FDA Rejections

As an important addition to these data, I collect information on receipt of Complete Response

Letters (or “Non-Approvables” if it is before 2008) and other forms of rejection by the

FDA that result in termination of the project. Following the collection of historic data on

company interactions with the FDA (and confirmed by interviews with a consultant to this

industry), it becomes clear there a few reasons a company may terminate a project following

an NDA or BLA filing. First, a company may receive a CRL requesting more data to be
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Figure 2.4: This figure illustrates the heterogeneity in the number of Phase III clinical
trials and FDA approvals over time and by therapeutic classes. Those for the four largest
classes are displayed here. Therapeutic class is defined by BioMedTracker. On the x-axis is
the year at the start of Phase III clinical trials. Data from BioMedTracker and FDA.gov.
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Figure 2.5: This figure illustrates the heterogeneity in the proportion of (1) Phase II
clinical trials that continue to Phase III clinical trials and (2) FDA approvals over time and
by therapeutic classes. Those for the four largest classes are displayed here. Therapeutic
class is defined by BioMedTracker. On the x-axis is the year at the end of Phase II clinical
trials. Data from BioMedTracker and FDA.gov.
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collected before the possibility of approval. A firm that is unable to then demonstrate that

the product is approvable (or determines it is too costly) will terminate development of that

drug.15 Secondly, the firm may terminate the project (and withdraw the NDA) if they receive

negative feedback from the FDA advisory committee. The advisory committee is comprised

of external experts who offer advice to the FDA, but do not make finals decisions regarding

product approval. However, a “no” vote from the advisory committee sends a negative

signal about its probability of approval. And finally, the FDA may issue a “Refuse to File”

notice following an NDA or BLA application. The FDA will usually file an application

within 60 days of receipt if the application is complete. A Refuse to File notice is issued

if the application is incomplete. Some application deficiencies are easily correctable, others

are more complex. In the case of insurmountable deficiencies, the company may choose to

terminate the project.

Despite playing an important role in the innovation process in this industry, there have

been few studies done on the role of CRLs, and this is likely because they are not available to

the public. The FDA currently treats them as confidential. Any public knowledge of CRLs

often comes from a firm’s own press release, which many are compelled to make due to US

securities laws requiring companies to disclose any information that may impact an investor’s

decision. However, even press releases are unlikely to give complete information as to why the

FDA rejected a marketing application.16 A study conducted by FDA researchers (who have

access to historical CRLs) find that press releases documenting the failure of an application

15In some instances, firms will re-do trials many times and still not receive an approval from the FDA.
While interesting, these cases are outside the scope of this paper.

16Following Abbvie and Abbot’s receipt of a CRL for Certriad, the investing advice website The Motley
Fool noted that “in typical pharma fashion, the companies didn’t give any indication what problem the FDA
had with Certriad.”
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often omit or give incomplete information regarding the reasoning for that rejection (Lurie

et al., 2015). For example, they find while 48% of issued CRLs note deficiencies in both safety

and efficacy of the product, only 13% of matching press releases divulge this information.

These issues highlight the difficulty in determining the exact characteristics of the product

that caused it to fail.

For this study, I treat all terminations by the firm due to regulatory feedback as effectively

the same. Because the receipt of a CRL is the most common reason for the termination of a

project following an NDA or BLA application, for ease of exposition I will refer to all of these

cases as “terminal CRLs” or “rejections.” I will identify these as cases in the data where one

can see the filing of an NDA followed by the termination of the project without approval.17

Because the data on these types of terminations is not as complete in the 1990s, I subset the

data to only those products for which their Phase II trials were completed between 2000-

2018. However, I find in robustness checks (not presented here) that these results are robust

to various expansions and contractions in the considered time period. Figure 2.6 illustrates

the number of FDA rejections and approvals over time.18 As illustrated, full rejections by

the FDA are very rare in comparison to approvals and appear to be heterogeneous across

time. Wong et al. (2018) similarly find they account for roughly 3% of all NDA applications.

Of the 1,929 companies on which I have collected pipeline data, only 78 have ever received

a terminal CRL (or other negative feedback from the FDA) on a project for which they were

17The FDA may initially reject an application only to have the firm redo the trials and eventually receive
approval. While a potentially interesting phenomenon, I do not include those as failures for the purposes of
this paper.

18The number of approvals is higher than normally discussed in the popular press because these tables
include counts of NMEs (new molecular entities), sNDAs (which include new indications or reformulations
approved for an already approved NME) and biologics. In discussions regarding the number of FDA approved
drugs by year, often just NMEs are reported.
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Figure 2.6: This figure displays the aggregate number of FDA approvals and rejections
over time. Approvals include NMEs, BLAs, NDAs, and sNDAs. On the x-axis is the year of
either FDA approval or rejection. Data from BioMedTracker and FDA.gov.
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the lead developer. When looking at failures for the companies involved in development at

any capacity, 142 ever received a terminal CRL. Though initially counter-intuitive, companies

included in this group consist of nearly all of the largest “big pharma” companies that have

had extensive experience compiling NDAs and BLAs. One-hundred percent of the top 10

companies by FDA approved products have received a terminal CRL and over half of the

top 50 firms have received one. This provides some evidence that terminal CRLs are not

necessarily driven by inexperienced firms being unable to meet the FDA requirements for

approval. This is a boon for the researcher though, because these large and experienced

companies provide enough data on investment decisions to make using within-firm variation

feasible for the empirical analyses.

Table 2.1 displays the number of CRLs and approvals by therapeutic class. In comparing

the two, they appear positively correlated. For example, the highest number of CRLs were

issued for oncology products, and this therapeutic class also saw the largest number of

approvals. Additionally, 4.2% of all CRLs were on drugs with “Breakthrough” status, which

is nearly equivalent to the number of Phase II products with Breakthrough status (4.4%).

A slightly higher percentage of products being terminated following rejection were orphan

drugs (24.4%) than the percentage of orphan drugs at Phase II (12.6%). However, given the

benefits that accrue with approval of an orphan drug (namely, extra years of exclusivity) it

is not surprising that firms would be more likely to take bigger risks with those products.

In the regressions, I will control for all of these characteristics of the product.

30



Table 2.1: Number of CRLs and Approvals by Therapeutic Class
2000 - 2018

Therapeutic Class Number of CRLs Number of Approvals

Allergy 1 44
Autoimmune/immunology 11 254

Cardiovascular 14 213
Dermatology 14 60
ENT/Dental 0 2

Endocrine 14 265
Gastroenterology 3 66

Hematology 7 111
Infectious disease 13 442

Metabolic 6 55
Neurology 25 320

Obstetrics/Gynecology 0 20
Oncology 28 374

Ophthalmology 8 92
Orthopedics 0 3
Psychiatry 6 142

Renal 0 15
Respiratory 2 86

Rheumatology 1 8
Urology 1 33

This table compares the number of FDA Rejections (CRLs) to the number of FDA
Approvals by Therapeutic Class across the time period of this study. Therapeutic
Class is defined by BioMedTracker.
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2.5 Methods

2.5.1 Main Empirical Model

If firms become more risk-averse following rejection by the FDA, one should see a decrease

in the probability of investing in Phase III for the next several products that reach the end

of Phase II clinical trials, the stage at which the firm must decide if it wants to make a large

investment in continuing development. If firms become less risk averse, one should see an

increase in the probability of continuation, ceteris paribus.

To test this finding rigorously, I collect data on investment and termination decisions for

all firms in the data, regardless of whether or not they receive a CRL during the time period.

(However, once I include firm fixed effects in the specifications, the “control” firms should

not impact the coefficient estimate.) I then construct a difference-in-differences econometric

model to estimate the probability of continuation to Phase III clinical trials. I consider this

decision to be a function of properties of the drug, the experience level of the firm, and the

current competitive landscape. The empirical model is described in detail below.

Pr(Phase III|Phase II)ijrt = α0 + βPost-rejectionijrt + ΘXijt + δr + µt + εijrt (2.1)

where X is a vector of Project-time controls. δr and µt represent fixed effects for firm-

therapeutic department and year respectively. Detailed information on variable definition

and construction is in Appendix A.2.
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To construct a dataset for this estimation, I collect the date for when each Phase II trial

for a molecule-indication ended. This is the date that a firm must make a continuation

or termination decision. I consider the continuation decision for the next product within

that therapeutic research group, so long as it is not the same molecule being applied to

a different indication or affecting the same target. Because many large pharmaceutical

firms have a different key decision maker within each therapeutic class (and are occasionally

even located in separate cities), it is more plausible that failures only impact decisions

made within a therapeutic class. Research by Gaba and Joseph (2013), in a study on

M-form organizations, also finds that negative feedback at the business unit level leads to

improved future performance within that business unit. This assumption will likely not make

a difference for smaller, centralized firms that are likely to specialize in only one therapeutic

class.

If a firm is pursuing several indications for the same molecule, a substantial failure for

one indication may impact the nature of trials for other indications due to information

spillovers about the particular technology. To be as conservative as possible, I throw out

cases of additional work on the same molecule and other drugs that have the same intended

biological target as the rejected drug. Most results are robust to additionally considering

only those next projects in different therapeutic subclasses as well.19

19In these data, a therapeutic class contains on average, five therapeutic subclasses. For example, the
therapeutic class “ophthalmology” contains eight subclasses, including “retinopathy,” “uveitis,” “glaucoma,”
and “corneal conditions.”
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2.5.2 Endogeneity and Identification

One of the challenges in the organizational learning and feedback literatures is the difficulty

in identifying a true causal relationship between the feedback and subsequent firm decisions

(Certo et al., 2016; Hamilton and Nickerson, 2003). This is difficult for many reasons. First,

is the issue of non-random assignment to “treatment” or sample selection bias. At the end

of Phase III clinical trials, a firm forms the final assessment of its product based on its

expectations about the FDA regulators. A firm that does not believe their product will be

approved does not submit an application to the FDA. However, for those who do submit an

application to the FDA and receive a rejection, it is unclear what their beliefs were when

they chose to solicit FDA feedback. This makes the demand of feedback endogenous. Filing

an application is very cheap when compared to the costs of development20 and firms may

have different quality threshold requirements before filing.21 One example of a situation

that would lead to endogeneity in the model is if there was reverse causality or simulteneity.

Imagine a firm with one product in Phase III and a second in Phase II. The firm must decide

whether or not to submit an NDA for the first project but the firm believes rejection is likely.

Imagine also that the firm believes the second project is of low quality. It is straightforward

to conjure up a scenario in which the firm is more likely to submit an NDA for their first

project if it believes the second project is also a dud. This would result in a firm appearing

to become more risk averse following rejection, though it would not be caused by rejection.

20One may wonder why all firms do not submit an application even if they believe their chance of approval
is low. Based on my interviews with managers at several pharmaceutical firms, this can be attributed to
the fact that these interactions with the FDA are not one-shot games. Nor are they anonymous. Managers
therefore are not inclined to “clog up” the FDA with applications for drugs that they believe will have slim
chance of approval.

21For a game theoretic model demonstrating this these trade-offs, see Carpenter and Ting (2007).
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To adequately identify firm responses to FDA rejection, I modify a strategy undertaken by

Blankshain et al. (2013). They propose that the trick to eliminating the endogeneity between

regulatory decisions and firm decisions is to “focus on firm reactions to unanticipated changes

in regulation, or to ’surprise’ regulatory decisions” (pg. 3).22 Their strategy is to look at

changes in asset prices following negative regulatory decisions, under the assumption that

larger relative drops signaled more surprising decisions. Under the assumption that market

prices reflect full information, one would assume no abnormal return following a rejection if

it was not truly surprising. This is because the knowledge that the product would not be

approved would be already baked into the price prior to the announcement.

Despite a substantial history of looking at cumulative abnormal returns in the strategy

and economics literature, this method has many limitations in the context of this setting.

First, a number of firms in my data are private companies, or were when they received

an FDA rejection. And secondly, the probability of seeing a statistically significant asset

price dropped will be correlated with the value of the product that was under development.

A rejection of a potential blockbuster product would then likely result in a larger price

drop compared to an application for an indication extension even if the latter rejection

was more “surprising” to managers than the former. For example, consider the case of

the CRL issued for Amgen’s Xgeva in treatement for castration-resistant prostate cancer.

According to Amgen, the FDA suggested the reason for non-approval was that the provided

data didn’t show that the drug’s benefits were great enough to outweigh the risks in the

intended population. However, following this announcement on April 27, 2012, there is no

22The role of surprise to facilitate causal inference between inputs and outputs is a common strategy in
other groups as well. See e.g., Atanasov and Black (2016) and Azoulay et al. (2010).
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statistically significant decrease in returns. This may be because Xgeva was already approved

for a related indication, which the firm was clear to stress in their announcement.

Finally, the way in which FDA rejections are timed and responded to makes it difficult

to even find cumulative abnormal returns following FDA rejection.23 At the receipt of the

first CRL, firms issue a press release, often while maintaining conviction that the drug

will be approved after meeting with the FDA. As described above, these statements often

obfuscate the true nature of the CRL. In many cases the firm will go back and conduct more

trials or collect more data, occassionally collecting several CRLs as they work to ameliorate

the concerns of the FDA. This process could take months to years before the firm finally

terminates the project. Any beliefs about the project’s probability of success has likely been

decreasing over time in these cases. It is therefore unlikely that a research would see a strong

negative stock response at the time of termination.

To combat the limitations mentioned, I propose the following strategy for identifying

plausible unanticipated regulatory decisions. The pharmaceutical industry relies on many

private Pharma Intelligence companies who gather data on projects under development and

regulatory decisions. Many of these companies also provide the service of industry analysts,

who make predictions given all available information about the drug’s probability of success.

These include predictions regarding the probability of approval once a firm submits an NDA.

I collect data on these predictions from the industry analysts at BioMedTracker. Following

conversations with these analysts, I learn that these predictions are composed of two pieces:

a disease group “baseline” score given historical success rates of other drugs in that disease

23In exploring this on the subset of public firms in this study, I find only a handful of statistically significant
instances of abnormal returns following receipt of the first CRL. In exploring the cases where the drop in
return is statistically significant, I find that these constitute nearly all cases where the receipt of the CRL
resulted in immediate termination (that is, the date of the CRL and the date of termination were the same).
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group and an “Analyst Opinion Subjective Score” that is updated following every piece

of new information (including all trial data) as it is released. A score above the average

baseline indicates that analysts believe the drug is likely to be approved. In evaluating

their prediction performance, BioMedTracker determined that 99% of their predictions were

correct in recent years.

As my identification strategy, I consider only those rejections for which analysts believed

were highly likely (probability above average for the therapeutic class) to be accepted. The

assumption underlying this strategy is that firms will always submit a New Drug Application

for review if there is reason to believe that their product had a very high (usually at least

over 90%) probability of approval. This allows me to treat the subsequent rejections as

exogenous, or unanticipated, shocks.

Table 2.2 provides descriptive statistics of characteristics of the products that meet this

criteria. Over a quarter are “secondary indications”, which suggest that the product has

already been approved for, or extensively studied for, another indication.24 And those re-

jected products that were nonetheless approved in another country make up 28% of FDA

rejections. Counterintuitively, a large majority of these products were neither biologics (for

which approval has historically been more difficult to achieve) or the novel set of products

that achieve preliminary advantages (“Receiving Gov Subsidies”).

A list of all drugs treated as “surprise” rejections is presented in Table 2.3.

24The exploration of already approved drugs is often called “drug repurposing” and is an important
innovation strategy in the biopharmaceutical industry. To repurpose a drug often results in cheaper Phase
I and II clinical trials as the product has already been shown to be safe (Pushpakom et al., 2019).
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Table 2.2: Descriptive Statistics of Rejected Projects
2000-2018

Proportion of Proportion
Characteristic of Rejected of Approved

Biologic 19.1% 17.4%
Receiving Gov Subsidies 31.1% 21.5%
Secondary Indications 25.7% 34.6%

Approved Outside USA 27.7% 48.4%

Public Company 90.0% 88.2%
Headquartered USA 46.6% 42.1%

This table presents descriptive statistics of the 43 FDA rejected
products that are treated as exogenous shocks in this research.

Table 2.3: Full List of Treated Rejections
2000-2018

Drug Name Company Therapeutic Class

Acapodene GTx Inc. Oncology

Arcalyst Regeneron Pharmaceuticals Inc. Immunology

Arixtra Mylan Inc. Cardiovascular

Arxxant Eli Lilly & Company Ophthalmology

Asunaprevir Bristol-Myers Squibb Company Infectious disease

Avodart GlaxoSmithKline Plc. Oncology

Buprenorphine Spray INSYS Therapeutics Inc. Neurology

Certriad AbbVie Inc. Cardiovascular

Ciltyri Sanofi Neurology

Erbitux Eli Lilly & Company Oncology

Exanta AstraZeneca PLC Hematology

Fentora Teva Pharmaceutical Industries Ltd. Neurology

Genasense Genta Inc. Oncology

Ilaris Novartis AG Immunology

Indiplon IR Neurocrine Biosciences Inc. Neurology

Indiplon XR Neurocrine Biosciences Inc. Neurology

Kengreal Chiesi Farmaceutici S.p.A. Cardiovascular

Lyrica CR Pfizer Inc. Neurology

Continued on next page
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Table 2.3 – continued from previous page

Drug Name Company Therapeutic Class

MoxDuo IR QRxPharma Limited Neurology

Naproxcinod Fera Pharmaceuticals Rheumatology

Natpara Shire Pharmaceuticals Group PLC Endocrine

Numax AstraZeneca PLC Infectious disease

Provigil Teva Pharmaceutical Industries Ltd. Psychiatry

Reasanz Novartis AG Cardiovascular

Rekinla Jazz Pharmaceuticals plc Neurology

Remoxy Pain Therapeutics Inc. Neurology

Restanza Advanced Life Sciences Holdings Inc. Infectious disease

Rocilentinib Clovis Oncology Inc. Oncology

Samsca Otsuka Holdings Co. Cardiovascular

Satraplatin Agennix AG Oncology

Sirukumab Johnson & Johnson Immunology

Solithera Melinta Therapeutics Inc. Infectious disease

Taltorvic Takeda Pharmaceutical Company Ltd Oncology

Thelin Pfizer Inc. Cardiovascular

Tipifarnib Kura Oncology Inc. Oncology

Velcade Takeda Pharmaceutical Company Ltd Oncology

Visamerin Sanofi Hematology

Xarelto Johnson & Johnson Cardiovascular

Xeljanz Pfizer Inc. Immunology

Yondelis Johnson & Johnson Oncology

Zalbin GlaxoSmithKline plc Infectious disease

Zemdri Achaogen Inc. Infectious disease

Zimulti Sanofi Metabolic
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2.6 Results

2.6.1 Effect of Rejection on Future Investment

To explore the effects of negative feedback on future investment, I first consider how negative

feedback affects likelihood of investment in the project immediately following termination

(provided it is not the same molecule or pursuing the same biological target). To do this, I

estimate Equation 2.1 using a linear probability model with fixed effects. All specifications

use robust standard errors clustered at the Firm-Therapeutic Class level. In robustness

checks, I find that all specifications in this paper are robust to logit specifications.25 However,

for ease of interpretation, I will only formally report results from the linear probability

models. The results, presented in Table 2.4, suggest that firms become much less likely

to invest in the very next project following rejection. Because the dependent variable is

binary, we can interpret the coefficients as the change in the probability of investment,

controlling for drug and indication characteristics. The coefficient on the relevant variable,

Post-rejection is negative and significant at at least the ≤ 5% significance level under cluster-

robust standard errors in all three specifications. The preferred specification, number 3,

suggests that immediately following a failure, the firm will be 30 percentage points less

likely to take their next project to Phase III, when controlling for project characteristics.

In addition to the hypothesized effects on the coefficient of interest, the coefficients on the

control variables are all as expected. The coefficients on ODA, Fast-track, and Breakthrough

status (all government programs that reward novel innovations) are all strongly positive

25I also drop the project that was rejected from the data before running the regression. Including the
rejected project would bias the estimate toward seeing an effect post-rejection.
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and statistically significant. The measure for the possibility of spillovers (Lead Ind * Num

Inds) suggests products with a higher possibility of knowledge spillovers are also much more

likely to continue to Phase III clinical trials. The coefficient on number of competitors is

negative and significant when not using indication fixed effects and drugs within therapeutic

classes with higher approval probabilities are much more likely to continue as well. The

variable measuring the amount of experience a company has in conducting clinical trials, Past

Experience, is not statistically significant. Additionally, I do not find that firm capabilities

(as defined in several different ways) significantly affect a firm’s response to failure. See

Appendix A.4 for this analysis.

To initially estimate Equation 2.1, I had only considered the probability of continuation

for the first project immediately following rejection. As an additional possibility, I consider

the psychology literature on failure, which indicates that the negative emotions from project

failure, while felt strongly initially, will dissipate over time (Shepherd et al., 2011). This

phenomenon can also be explained by the availability heuristic (Tversky and Kahneman,

1973). For example, in the model of investment decisions proposed by Jehiel (2018), he

finds using data from the mutual fund industry that firm behavior only changes when failure

is salient, but returns to being more risk-seeking as that rejection gets further away in

the manager’s memory. Similarly, Haunschild et al. (2015) find that pharmaceutical firms

adapt most from errors in drug safety right after they happen, but are likely to return to

past processes as time passes. Therefore, I want to explore if the failure effect displays

persistence over time. To analyze this further, I consider the effect of rejection on the next

two through eight projects that reach an end-of-Phase II decision node. Results for the linear
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Table 2.4: Probability of Investing in Phase III Trials Following FDA Rejection
2000-2018

Dependent Variable: Investment in Phase III
(1) (2) (3)

Next Project Following Rejection

Post-Rejection -0.188∗∗ -0.241∗∗∗ -0.292∗∗∗

(0.08) (0.08) (0.10)

ODA 0.234∗∗∗ 0.248∗∗∗ 0.238∗∗∗

(0.02) (0.02) (0.04)

Breakthrough 0.384∗∗∗ 0.425∗∗∗ 0.402∗∗∗

(0.02) (0.03) (0.04)

Fasttrack 0.235∗∗∗ 0.242∗∗∗ 0.250∗∗∗

(0.02) (0.02) (0.03)

Lead Ind*Num Inds 0.0208∗∗∗ 0.0233∗∗∗ 0.0178∗∗∗

(0.00) (0.00) (0.00)

Num Competitors -0.000413∗∗ -0.000789 -0.000806
(0.00) (0.00) (0.00)

Past Experience 0.000173 0.000168 0.000192
(0.00) (0.00) (0.00)

Constant 0.592∗∗∗ 0.580∗∗∗ 1.098∗∗∗

(0.12) (0.19) (0.26)
Indication FE N Y Y
Year FE Y Y Y
Molecule Type FE Y Y Y
Drug Classification FE Y Y Y
Company*Therapeutic Class FE N N Y

Observations 5938 5938 5938
R2 0.272 0.397 0.662

The dependent variable is equal to 1 if a product began Phase III clinical trials. Post-
rejection is an indicator equal to 1 if it was the next product to finish Phase II following
the receipt of a CRL and is not the same molecule as the failed product. Robust standard
errors in parentheses and clustered at Company*Therapeutic Class level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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probability model are presented in Table 2.5. The coefficients are slightly attenuated from

those in Table 2.4, suggesting a decline in the effects of failure over the next few projects.

However, they remain negative and statistically significant at the ≤ 10% significance level

under cluster-robust standard errors.
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One potential concern is that I am picking up a change in the timing of terminations,

rather than a decrease in the propensity to invest. For an in-depth analysis suggesting that

this is not the case, see Appendix A.5.

2.6.2 Quality of Investments Immediately Following Rejection

So far, I have demonstrated that when firms experience a large, externally-driven failure,

they become more conservative in their assessments of the quality of subsequent projects and

this persists for the next several projects considered. These results imply that the projects a

firm takes to Phase III trials following rejection should be of higher quality (e.g. more likely

to be approved) than the product it took to Phase III just before the rejected product.26 If

this was not the case, it would imply that the investment effect could be driven by something

other than an effect on the firm’s decision on the marginal product. To test this hypothesis,

I subset the sample to only those drugs that continued to Phase III trials.

Equation 2.2 gives the regression specification. Using a fixed effects regression with

controls for product characteristics and time, I test the hypothesis that projects proceeding

to Phase III after the firm experienced a failure are more likely to receive FDA approval

than those projects in Phase III trials before the CRL. Here, Post-rejection is an indicator

equal to 1 if the product is within the next set of projects to continue to Phase III following

rejection. As in the previous regressions, I do not include the project if it uses the same

molecule as the failed product to exclude any obvious molecule-specific information spillovers.

26There is anecdotal evidence about a “raising the bar” effect as well. A year after the rejection of
Glaxosmithkline’s Avodart, the firm hired a new president of R&D and focused on implementing a “discovery
investment board” that would make funding decisions for research projects. The blogger notes that “the
company is spending less on R&D and has raised the bar for moving a drug candidate into late-stage
development.” (Jarvis, 2012)
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The dependent variable Approved is an indicator equal to 1 if the molecule i received FDA

approval for treating indication j.

Pr(Approved|Phase III)ijrt = α0 + βPost-rejectionijrt + ΘXijt + δr + µt + εijrt (2.2)

Results are presented in Table 2.6. Columns 1 and 2 provide strong support for the

hypothesis that firms are taking higher quality products to Phase III following the CRL.

The estimates suggest that, controlling for product and firm characteristics, the next two

projects continuing to Phase III following rejection are 22% more likely to be approved.

However, as was suggested in Table 2.5, the effects of rejection appear to attenuate over

time. When observing the set of the next four products to receive investment following

rejection, the coefficients are smaller and lose statistical significance.
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Because it takes many years for a product to transition from Phase III clinical trials to

FDA approval this subset of data may suffer from a censoring problem. Consider an FDA

rejection for Product A in June of 2015. Then consider a product B, that the same firm

begins Phase III trials for in July 2015. In order for this product to be included in the

regression, it would have to have either achieved FDA approval or been terminated by 2018

(when the data was collected). I argue that if anything, this censoring problem leads to

a more conservative estimate of the effect presented in Table 2.6. Because it takes longer

to achieve FDA approval after beginning Phase III than to terminate following Phase III,

the data is likely picking up more Phase III terminations in the later portion of the sample

period, therefore biasing the estimates downward.

To confirm this intuition, I subset the data to span only those products entering Phase

III before 2013 and rerun the regression in Equation 2.2. Table 2.7 present the results. As

intuited, the results in Table 2.6 were significantly more conservative due to censoring. The

results in Table 2.7 suggest that following FDA rejection, the next two products to receive

Phase III investments were nearly 50% more likely than the firm’s baseline to receive FDA

approval.

2.6.3 The Role of Rejection on Investment in Novel Innovation

In this section, I explore the types of products that are terminated early following FDA rejec-

tion. In particular, I consider how rejection affects investment into products that have already

received regulatory attention. As described in the variable descriptions above, products that

are targeting an unmet therapeutic need are eligible for receiving special designations from
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Table 2.7: Probability of Approval Following Phase III Trials
2000 - 2012

Dependent Variable: FDA Approval
(1) (2) (3)

Next Project Next 2 Projects Next 3 Projects

Post-rejection 0.515∗∗∗ 0.428∗∗∗ 0.257∗

(0.15) (0.16) (0.15)

Project-time Controls Y Y Y
Year FE Y Y Y
Molecule Type FE Y Y Y
DrugClass FE Y Y Y
Company*Therapeutic Class FE Y Y Y

Observations 1433 1433 1433
R2 0.802 0.802 0.802

The dependent variable is equal to 1 if a product was approved by the FDA and 0 if it was
terminated during or after Phase III clinical trials. Post-rejection is an indicator equal to
1 if it was one of the following products to enter Phase III (within the specified timeframe)
following the receipt of a CRL for a different molecule. Robust standard errors in parentheses
and clustered at Company*Therapeutic Class level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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the FDA. In these data, I identify those that have received Orphan Drug, Breakthrough, or

Fasttrack designations. These statuses allow the firm certain privileges, such as faster review

times, smaller Phase III clinical trials, and even additional market exclusivity if approved.

To receive these benefits from the FDA, a firm must submit additional documentation either

with the Investigational New Drug application or at some point during development. The

FDA then considers the preliminary evidence that the drug is likely to be safe and efficacious

in the specified disease, and grants the firm one of these coveted designations.

As seen in Tables 2.5 - 2.7, firms are more likely to take products that have received

these designations to Phase III and, at least for products designated as either breakthrough

or orphan drugs, are more likely to be approved. Unsurprisingly then, the receipt of one of

these special statuses also serves as a signal of product quality. Studies have shown that

investors are more likely to fund projects with either Fasttrack, Breakthrough or Orphan

drug designations (Kim et al., 2018; Meekings et al., 2012). Given the above, one may

hypothesize that even if firms are less likely to continue investing in certain products following

FDA rejection, these government subsidized products would not be in that subset. To test

this formally, I reproduce the regression from Tables 2.4 and 2.5 but with an additional

interaction between the indicator for Post-rejection and a dummy variable equal to 1 if the

follow product was obtained either Fasttrack, Orphan Drug, or Breakthrough designations.

Results are presented in Table 2.8.
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Surprisingly, these results suggest the opposite of my initial conjecture is more likely to

be true. Not only are those government subsidized products less likely to receive Phase III

investments following FDA rejection, but they appear to encompass a substantial part of the

negative effect. This result provides a more nuanced view of what exactly the firm’s managers

are “learning” following surprising FDA rejections. Despite the favorable incentives given to

firms to develop novel drugs for unmet needs, there is likely more uncertainty surrounding

their development and probability of getting approved. In fact, surprising FDA rejections of

this class of products account for 25% of the surprising rejections, which is greater than the

proportion of these products in phase II clinical trials (20%). Table 2.8 suggests that not

only are firms more likely to adapt their future investment strategy to discontinue marginally

lower quality drugs, but are also less likely to continue investing in more novel drugs for which

approval is less certain.

An additional possibility that is supported by these findings is that the managers of

these firms lose confidence in the regulators. One of the main incentives of programs like

Breakthrough designations or Fasttrack status is that the firm has more opportunities to

work with the FDA during clinical development to construct a plan on how to achieve

regulatory approval. Following surprising rejections, this incentive may be less appealing

to a manager, who already likely feels that they were treated unfairly by the FDA. For

example, consider the response by Doug Ingram, CEO of Sarepta in response to a CRL for

their drug golodirsen: “We are very surprised to have received the complete response letter

this afternoon. Over the entire course of its review, the Agency did not raise any issues

suggesting the non-approvability of golodirsen, including the issues that formed the basis of

the complete response letter” (Sarepta press release, August 19, 2019).
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2.7 Mechanism Exploration

2.7.1 Comparing Rejection to Phase III Failures

This paper demonstrates that when firms experience a large externally-driven failure after

investing in an innovation project they become more conservative in their investment deci-

sions immediately following FDA rejection and this often leads to investing in better quality

products following this event. This can be visualized as a firm increasing the quality thresh-

old that they require to continue investing in the development of a product. While I attribute

this to being due to the firm’s leadership re-calibrating its decision-making criteria, one could

still argue that this may be due to an information effect. Particularly for firms working on

one class of drug or one therapeutic area, experiencing a negative feedback may cause them

to re-evaluate other drugs in the same therapeutic class, or with the same target or mecha-

nism of action. While I control for this by including a variable measuring the probability of

spillovers and excluding cases where it is the same molecule being developed for a different

indication, one could argue that this may be insufficient. Krieger (2018) shows that firms

do terminate clinical trials based on negative information (as gleaned from a competitor’s

termination decisions) about similar drugs. If firms have multiple similar products in their

pipeline, then any information gleaned about one product could spill over to others.

If the information hypothesis was correct (or explained the majority of the effect) then

one should see changing investment decisions following not just rejections by the FDA, but

failures that occur late into Phase III clinical trials as well. A firm terminating a project at

the end of Phase III (and therefore deciding to not pursue an NDA or BLA) invests nearly the
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same amount of resources as a firm that received an FDA rejection. Recent studies show that

these Phase III abandonments can also be distressing for the firm financially (Hermosilla,

2020). However, the main difference between these two types of failure is the source of the

information. A firm terminating its Phase III trial has learned of its product’s deficiencies

internally, while a firm that receives an FDA rejection is informed of their errors from an

external judge. As explored by Haunschild and Rhee (2004) and Mody (1993), knowledge

gleaned from external arbiters can lead to different types of knowledge generated within the

firm and therefore may lead to a difference in future risk preferences. A firm that views its

Phase III data and determines that they will not have a successful NDA application will

have a different internal narrative of the failure, despite consuming nearly as many resources

(and receiving the same information about their product) as those receiving a CRL.

To explore how internally determined product failures can affect an organization’s future

decision making, I construct a dataset of Phase III trials for which the duration is in the top

75% of Phase III trials for that therapeutic class, but that were voluntarily terminated by the

firm. I assume that Phase III trials in the upper end of this distribution use approximately

the same amount of resources as a project failing at the NDA stage.27 However, these

situations differ in one key way: here the firm was able to ascertain that its product was

not of high enough quality following its review of the data and therefore terminated the

project on its own accord. In essence, these failures differ in that they did not experience

negative feedback from an outside critic. I then estimate Equation 2.3, which is analogous to

Equation 2.1, but with the relevant coefficient being the one on post-Phase III termination.

As in Equation 2.1, X is a vector of Project-time controls, and δr and µt represent fixed

27In robustness checks, I find these results are robust to a variety of cutoffs.
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effects for firm-therapeutic department and year respectively.

Pr(Phase III|Phase II)ijrt = α0 + βPost-terminationijrt + ΘXijt + δr + µt + εijrt (2.3)

Estimates for the coefficients in Equation 2.3 are provided in Table 2.9. The very small

and insignificant coefficients on the relevant variable, Post-termination suggest that the

effects shown in the previous regressions are likely not the result of only learning new in-

formation about a technology. These results suggest that following a voluntary late-stage

Phase III termination, firms do not appear to become more risk averse, and therefore the

following projects they bring are no more likely to be approved than they would without

the large failure. Note that these results cannot be interpreted causally but rather signify

an association. In addition, these results also lend more evidence contrary to the potential

hypothesis that the effect is driven by financial constraints. Phase III trials can cost upwards

of $80 million and easily make up the largest costs involved in drug development. If financial

constraints were the ultimate driver of the observed behavior change, then one would expect

see a similar effect on Post-termination in Table 2.9 to the one on Post-Rejection in Table

2.4. On the contrary, all coefficients on the relevant variables in Table 2.9 are close to zero

and statistically insignificant.

In addition, these results provide interesting insight into the role that the messaging of the

feedback plays on a firm’s future actions. While literature on feedback has often considered

all types of negative feedback to be similar for organizational adaptation, (e.g. whether it is

generated from an experiment failure in R&D or customer feedback) this analysis suggests
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Table 2.9: The Probability of a Product in Phase II Trials Continuing to
Phase III

Following Voluntary Phase III Termination

Dependent Variable: Investment in Phase III
(1) (2) (3)

Next Project Following Rejection

Post-termination 0.0229 0.0153 -0.0130
(0.06) (0.06) (0.07)

ODA 0.249∗∗∗ 0.256∗∗∗ 0.235∗∗∗

(0.02) (0.02) (0.02)

Breakthrough 0.379∗∗∗ 0.425∗∗∗ 0.424∗∗∗

(0.02) (0.03) (0.03)

Fasttrack 0.234∗∗∗ 0.247∗∗∗ 0.268∗∗∗

(0.02) (0.02) (0.02)

Lead Ind*Num Inds 0.0218∗∗∗ 0.0239∗∗∗ 0.0224∗∗∗

(0.00) (0.00) (0.00)

Num Competitors -0.000517∗∗∗ -0.000603 -0.000436
(0.00) (0.00) (0.00)

Past Experience 0.000107∗∗ 0.000138∗∗∗ 0.000135
(0.00) (0.00) (0.00)

Constant 0.475∗∗∗ 0.655∗∗∗ 1.049∗∗∗

(0.14) (0.18) (0.26)

Indication FE N Y Y
Year FE Y Y Y

Molecule Type FE Y Y Y
Drug Classification FE Y Y Y

Company*Therapeutic Class FE N N Y

Observations 6353 6353 6353
R2 0.281 0.402 0.560

The dependent variable is equal to 1 if a product began Phase III clinical trials.
Post-termination is an indicator equal to 1 if it was the next product to com-
plete Phase II clinical trials following the voluntary late termination of a Phase III
trial. I define a late termination as one that lasted longer than the average for
its therapeutic class. Robust standard errors in parentheses and clustered at the
Company*Therapeutic Class level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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that is not the case. The main difference between the feedback a firm experienced in this

section and in the prior sections is that in the latter, the decision to terminate was internally

decided. In the previous investigations, the termination decision was made by an external

regulating body. One interpretation of these most recent findings is that firms are more

sensitive to negative feedback when they become external, or public affairs. Because receiving

a CRL implies the firm did not interpret its own data correctly, this could be a bigger catlayst

for the firm to change its subsequent decision-making criteria.

Additionally, I find that these results hold when looking at only those Phase III termina-

tions that lead to a significantly negative cumulative abnormal return following announcment

of the trial’s termination. This is one way to subset the trials into only those Phase III fail-

ures that were truly surprising (as suggested by Blankshain et al., 2013). While this method

doesn’t come with all of the limitations as it would in the case of CRLs, namely the issue

of ascertaining the true timing of the failure, it does require me to restrict the data to only

those companies that were public at the time of termination. However, this method demon-

strates that these “non-results” hold under a few different methodological approaches. See

Appendix A.6 for more information.

2.8 Conclusion

In this paper, I have demonstrated empirically that firms react to unanticipated negative

outcomes in their decisions regarding mid-stage innovation projects. Using the setting of

the pharmaceutical industry, I examine a decision node in which a firm’s managers will

have substantial but incomplete information about the product under development. To
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empirically test the effect that FDA rejections play on managerial beliefs, I run several

models estimating the effect these failures have on investments in future R&D projects, while

controlling for many characteristics of the subsequent projects. I find that following these

rejections, firms become more conservative investors in future projects under development,

that this effect persists for at least several subsequent projects, and that this leads to better

outcomes (where “better” here refers to the proportion of successful Phase III investments)

for the firm when they do choose to invest further. The evidence suggests these firms are

discontinuing their marginally riskier products following failure.

These conclusions will be of interest to both policy makers and those who have personal

and financial interests in the commercialization of new drugs. From a policy standpoint, the

main conclusion suggested in this paper is that negative regulatory feedback can influence

firms to invest fewer dollars in projects that are less likely to succeed. However, this may come

at a cost to society if firms are eschewing the more novel products that could substantially

raise welfare and promote further innovation. Understanding the aggregate effects of this

trade-off is an important topic for future research.

In addition, managers at pharmaceutical firms can benefit from internalizing these re-

sults. Understanding how one’s competitors are likely to behave is a crucial component

of competitive strategy. And there is both anecdotal and statistically consistent evidence

that pharmaceutical firms closely watch and anticipate their competitors’ innovation devel-

opments in making decisions about their own strategies. Given this, these findings have the

ability to aid managers in further developing their competitive strategic responses.

And finally, these findings are important for furthering the strategy literature on orga-

nizational learning and resource allocation. If we are to think of a firm as a collection of
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resources and capabilities that are dependent on past investments in their development, this

paper speaks to ways in which that path dependency may be suddenly altered (Nelson and

Winter, 1982). This in turn, could have implications on the types of resources and capa-

bilities developed and have implications for firm performance that stretch beyond the short

term.

2.8.1 Limitations and Further Research

While the analyses provided here suggest that firms adapt their decision criteria following

certain types of negative feedback, there are several limitations to be addressed. One lim-

itation concerns the selection effect into the treatment. While I limit the treatment to be

those cases where a firm submitted an NDA or BLA and outside experts strongly believed

it would be approved, one could still argue that the type of projects that are rejected are

fundamentally different from those that are approved. In robustness tests not displayed

formally here, I find the stated results attenuate when including those rejections that were

deemed potentially non-surprising by industry analysts. This does provide further evidence

that it is the element of surprise, or learning that the firm’s beliefs did not coincide with

the FDAs, that leads to this change in firm behavior. However, additional research in other

industries could further bolster these findings. While I demonstrate that firms may adapt

their risk-taking preferences following the information received from FDA rejections, more

research on the precise mechanism is needed. Additionally, due to data constraints in this

industry, I am only able to observe the effect of rejection on changing investment strategies

for later stage clinical trials. Exploring the effect of negative feedback on early stage R&D
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would provide additional nuance to this story.

This paper has focused on the biopharmaceutical industry. Empirical research in other

industries would be a useful addition to the exploration of this effect. While CRLs are

unique to the pharmaceutical and biotechnology industries, there are many other industries

that require regulatory approval to market a product and for which it is important for firms

to terminate bad investments early. This valuable capability requires making sound intra-

firm judgments about an innovation project. Understanding if this could be “learned” from

rejection could continue to enhance theories of organizational learning.
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Chapter 3 Demand Shocks, Decentralization, and

Resource Allocation in Innovation

3.1 Introduction

How do firms adapt to demand-side shocks and why do we observe differences in these

adaptations? External shocks that shift demand, be it from policy changes, natural disasters,

or sudden changes in purchasing priorities, present complex challenges to firms, as they must

successfully adapt to maintain a competitive advantage. This is a question important to

strategy scholars as it pertains to the strength of dynamic capabilities within a firm (Helfat

et al., 2009).

There is a rich literature exploring how firms respond to both technological shocks and

negative external shocks like recessions. For example, in studying growth reconfiguration

among firms, Chakrabarti (2015) finds that growing firms are more likely to fail during a

negative economic shock than firms that responded to the shock by down-scaling. However,

despite the prevalence and importance of positive demand-side shocks, there has been limited

exploration of the different choices firms make in their responses. One noted exception is

Wang et al. (2020) who explore how firms adapt to increased demand for defense technologies
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following the attacks of September 11, 2001. They examine the effects of firm capabilities on

the direction of adaptation following a sudden increase in demand and find that pre-existing

customer relationships and the relevance of the firm’s technological capabilities play a role

in how firms adapt to the reshuffling of demand preferences.

There is substantial evidence in the economics and management literature that market

demand is positively correlated with the number of products developed for that market

(Griliches and Schmookler, 1963; Schmookler, 1966; Schumpeter, 1942). This suggests that

positive demand shocks should lead to the reshuffling of innovation priorities within the

economy as a whole. Much of the empirical work exploring this theory has used data from

the pharmaceutical industry, where innovation is both crucial for firm success while being

relatively easy to measure due to the regulated nature of drug development. For example,

Acemoglu and Linn (2004) show that an expected increase in a certain demographic leads

to an increase in pharmaceuticals that are marketed for that demographic. In a similar vein,

Dubois et al. (2015) estimate the elasticity of innovation for pharmaceuticals. They find

that a 10% increase in the market size for a drug results in a 2.5% increase in the number

of products for that market receiving approval from the US Food and Drug Administration

(“FDA”).

However, while exploring the effects of market size on the number of products available

is important for consumer utility, it largely obscures the role that firms play in bringing

the product to market. Because firms (rather than government agencies) are primarily

responsible for developing and marketing new drugs, the aggregate change in new drugs

available will be largely determined by how individual firms allocate resources. Innovation,

especially in the life sciences, is often a risky and expensive endeavor. In industries where
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product development takes many years, it requires managers to form expectations about the

state of the world many years in the future. And for firms that make many products for

different markets, changes in the expected demand of downstream consumers will lead to

increased trade-offs within an innovation pipeline.

Missing from these discussions is the way in which firm boundaries may influence how

firms adapt to a changing external environment, a topic that is prominent in strategic man-

agement. I argue that the boundaries of firms, and therefore the structure of their internal

capital market, provide an important and still unexplored determinant of innovative activi-

ties following external shocks. The logic is as follows: in the drug development process, where

costs of clinical trials increase exponentially as the product moves through development, re-

sources become particularly constrained in the later stages of development. Therefore, as

a product moves through clinical trials, firms must evaluate whether to continue investing

in one product in favor of another at a similar level of development. Factors that influence

this decision will include the likelihood of approval by the FDA (as is required for a product

to be marketed in the United States) and the expected revenue each drug could generate

(conditional on FDA approval). A sudden positive change in demand that affects one class of

drug over another would therefore change the calculation a firm makes in choosing in which

drug it will continue investing.

The pharmaceutical industry is especially relevant for this study due to ongoing concerns

regarding efficiency and quality in R&D (see e.g., Ruffolo, 2006; Scannell et al., 2012). The

costs of creating one FDA-approved drug have been increasing over the course of the decade

and are now expected to average $2.6 billion (DiMasi et al., 2010, 2016). Because these

costs are largely driven by the cost of failed innovations, understanding what drives firms to
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continue investing in products that will eventually fail may have broad efficiency gains for the

industry as a whole. This decrease in efficiency can be seen in the data. In the early aughts,

firms took an average of 0.34 products per year to Phase III clinical trials (the final most

expensive stage of development before FDA approval) and averaged 0.17 approvals per year.

By the end of the decade, firms were conducting an average 0.5 Phase III clinical trials per

year while only averaging 0.21 approvals. This suggests firms are investing more in expansive

and expensive development phases while not seeing the same increase in revenue-generating

outcomes.

This study will contribute to the literature on firm adaptation in the face of reshuffling

of consumer demand. First, I explore how demand shocks affect resource allocation in the

aggregate. Firms can adapt to demand-side changes via two channels: they can develop

completely new products that are aligned with these changing consumer preferences, or

they can adapt their existing routines to favor those technologies positively affected by the

demand shock. This study will look exclusively at the second phenomenon. Using pipeline

data from the pharmaceutical and biotechnology industry, I provide evidence that following

a sudden change in expectations about future demand, firms make several adaptations to

their investment protocols for product development. First, I identify the 2003 Medicare

Modernization Act as a policy that changed expectations about future demand for a certain

subset of pharmaceutical drugs. The expectation that Medicare Part D would increase

pharmaceutical spending for certain types of drugs treating certain types of diseases is the

exogenous shock that facilitates my identification strategy. Then, using a triple-difference

regression, I show that the average firm response following this positive demand shock was to

change its investment criteria for development projects at the most resource intensive stages
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of product development. I am able to show that this change in criteria lead to a decrease in

the proportion of developed products being approved, as firms find it more beneficial to take

bigger risks following an increase in expected revenues. Finally, I demonstrate that even

those products receiving FDA approval following the policy change spent longer in FDA

review. This suggests that even those approved products did not pass smoothly through the

regulatory process and could imply that they received less favorable indication (or disease)

designations.

Secondly, I consider how heterogeneity among firms may lead to deviations in this aver-

age affect. Both the capital budgeting and product diversification literature suggests that

the more diversified (and in this case, the more decentralized) a firm becomes, the more

distortions one will see in resource allocation at the firm level. To explore my above findings

in this context, I explore if large, diversified and decentralized “big pharma” firms respond

differently than their smaller counterparts. After dividing the sample into these groups,

I find that it is these smaller, more centralized firms that are driving the average result.

Larger, decentralized pharmaceutical firms do not appear to respond to the policy shock.

This study is novel for a few reasons. While several past papers explore how industries re-

act to changes in expected customer demand, this is one of the few to demonstrate how these

changes impact managerial decisions at the intensive margin. In addition, this study explores

and quantifies potential downsides of policies that suddenly shift demand expectations–

specifically that they incentivize investment away from marginally more promising products,

to marginally less promising products. Furthermore, this study adds to the literature on

organizational structure and resource allocation, and brings empirical data to Stein’s theo-

retical arguments of the headquarter’s role in “winner picking” and “loser sticking” (Stein,
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1997, 2002).

Finally, this study provides important insights regarding the pharmaceutical industry’s

ability to respond quickly to demand shocks. During the coronavirus outbreak of 2020, the

industry faced criticism for moving too slowly to begin developing vaccines to fight the virus

(Posner, 2020). This study demonstrates that, with the right incentives, certain types of

firms respond fairly quickly to changing incentives to develop drugs. Furthermore, while

there are likely many factors underlying the decrease in R&D efficiency in this industry

(changing approval standards, the increased cost of technology, the exhaustion of the “low

hanging fruit”) one plausible hypothesis is that as firms predict increased market sizes (from

aging demographics, expanded insurance access, or otherwise) it may be more profitable in

expectation for firms to continue investing in projects that, but for these expected increases

in demand, they would have terminated earlier. This study will address that hypothesis

by not only exploring if firms invested more in a certain project’s developments following

a sudden change in market size, but will also explore if that lead to lower overall approval

rates for those projects. Understanding these incentives may be the key in the face of future

health threats.

3.2 Industry Setting and Hypothesis Generation

To explore how changes in expected market size may impact resource allocation decisions

in innovation, I first develop a framework for how these decisions are made in equilibrium.

Pharmaceutical and biotechnology companies typically have many projects under develop-

ment at one time. Firm decisions on whether or not to proceed with or terminate a drug’s
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development plays an important role for influencing the type of projects that will eventually

reach market (Jekunen, 2014). The research and development of new molecules (which can

eventually become marketed drugs) is time consuming and expensive. Recent estimates put

the cost of bringing a drug from infancy to approval at $2.6 billion (DiMasi et al., 2003).

Additionally, drug development is a risky endeavor. Only 15% of products entering clinical

trials will ultimately be approved (DiMasi et al., 2010; Thomas et al., 2016).

The research and development of new molecules can broadly be divided into two parts:

discovery/research and product development. The second half of drug creation, the develop-

ment phase, is the longest and most expensive part of the innovation process and is the focus

of this study. It has been estimated to take an average of 6.5 years (Mestre-Ferrandiz et al.,

2016). Development is broken out into three phases: Phase I, Phase II, and Phase III. Phase

I is the shortest and consists of a firm testing its molecule on 20-100 healthy volunteers to

confirm the safety of the molecule. If that is found to be satisfactory, the product can move

to Phase II. Phase II is the first real study of the drug’s effectiveness on sick volunteers.

Phase III trials are often longer and more expensive versions of Phase II trials, sometimes

involving up to 3,000 patients. After having completed a Phase III trial, the firm will submit

a New Drug Application (“NDA”) to the Food and Drug Administration for review. Only

after a drug has been approved by the FDA can it be sold and marketed for that indication,

or disease, in the United States.

For this study, I specifically consider the decision to move a product (defined as both

the molecule and the indication it intends to treat) from Phase II to Phase III trials. The

transition from Phase II to Phase III makes a particularly good setting to study a firm’s risk

preferences under incomplete information. Despite being the final step in drug development,
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Phase III trials are still very risky. Recent evidence suggests the probability of transitioning

from Phase III to submitting an NDA application is between 57-71% from 2000-2015 and

can be as low as 34% for certain therapeutic categories (Wong et al., 2018). Additionally,

Phase III trials are the most expensive part of the drug development process, costing a firm

between $12 to $53 million dollars (Sertkaya et al., 2016). This is more than three times the

cost of Phase II clinical trials (Lam, 2004).

To understand the effect of a market size shock on decision making within a firm, I first

propose a model of how a firm’s managers decide to take a molecule to Phase III clinical trials

and then determine if an increase in market size results in a change in decision criteria. It has

some similarities to the one developed by Arora et al. (2009) in that a decision to continue is

a function of not only managerial subjective judgment of the likelihood of approval, but the

assessment of factors like expected demand. To begin, I assume that researchers within a

firm follow a multi-step Bayesian process of gaining and integrating signals about the quality

(and therefore the potential revenues) of a product. These revenues will only be realized if

the product is approved by the FDA, and therefore achieves “successful” Phase III trials.

Importantly, “success” in a clinical trial is interpreted by the firm. It is only after submitting

an NDA with the FDA that a firm can get an objective measure of the quality of their drug.

Products will only continue to the next phase if the researchers receive a positive signal from

the previous phase.
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3.2.1 Aggregate Responses to Demand-Side Shocks

In this section, I will describe the decision-making process within a firm as gleaned from

my interviews with industry professionals, including those within both small biotechnology

firms and their more traditional “big pharma” counterparts. The decision to terminate a

project at Phase II (that is, not continue to Phase III) is almost always made by the firm’s

upper management following input from the project’s lead scientist. In smaller firms, these

roles can be one and the same. Because the safety of the molecule is usually established by

Phase II, many projects are terminated in these later stages for efficacy-related or economic

concerns (Pak et al., 2015). In the empirical setting, I will simplify this interplay by referring

to “the firm” as the decision maker, as is standard in the industrial organization literature.

After completing Phase II trials for a product at time t, a firm r updates its belief

about the quality of molecule i for treating indication j such that Pijrt = P (). Without

loss of generality, I normalize Pijrt to be between 0 and 1 and reinterpret it as a probability

that this molecule i will be approved by the FDA for indication j after Phase III trials.

While this is a subjective measure, I can assume that it is a function of molecule and

indication characteristics such as the formulation of the drug, the mechanism of action

and the indication. I assume that all firms incorporate knowledge of historic transition

probabilities in their assessments of their projects.

If Pijrt is judged to be greater than some value E[Kj(T )|t], the firm proceeds to Phase III.

E[Kj(T )|t] is the firm’s expectation (at time t) of the potential revenue it can achieve at time

T , the time the molecule is approved for indication j (if it is approved). Here, E[Kj(T )|t]

can be interpreted as a threshold, and it is a function of the indication being pursued, the

69



number of competing products treating that indication and the costs to develop the product.

The prevalence of the disease and the number of already approved drugs to treat that disease

approximate the expected revenue of the product in the empirical specification. Additionally,

I will assume that the costs of Phase III trials can be approximated by both the indication it

is intending to treat and whether or not it is included in a cost-saving government program

(such as receiving Breakthrough or Orphan Drug status). I assume that E[Kj(T )|t] is an

objective value shared by all firms working on the same indication j at time t. That is, every

firm has roughly the same expectation of the returns they could accrue by developing a drug

to treat a certain disease.

At time t, firm r faces a choice set D = {Continue, Terminate}. The firm chooses to

continue when the expected quality Pijrt is greater than the indication specific threshold

E[Kj(T )|t]. While I do not calculate E[Kj(T )|t] explicitly, I assume that it is between 0 and

1 and that it is decreasing in market size and increasing in the number of substitutes on the

market. After Phase II trials, a firm develops its prior Pijrt. Again, if Pijrt > E[Kj(T )|t],

the firm chooses D = Continue and moves on to Phase III trials. These Phase III trials are

where firms gather the data to present to the FDA for approval. A firm that gets a signal of

“Success” in Phase III will then submit a New Drug Application (NDA). A firm that gets a

signal of “Failure” will terminate their efforts.1

According to the framework presented above, drugs intended to treat larger markets, all

else equal, should be more likely to be taken to Phase III clinical trials. Explicitly, this

implies the increase in the prevalence of indication j should lead to a decrease in the firm’s

1Occasionally, a firm will misinterpret the signal received at the end of Phase III trials and submit an
NDA application to the FDA. This is very rare (around 2% of cases in my data).
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continuation threshold, as expressed formally in Equation 3.1.

δE[Kj(T )|t]
δj

< 0 (3.1)

Additionally, because an increase in j has no effect on Pijrt as constructed here, one

should expect more positive continuation decisions for pharmaceuticals targeting larger mar-

kets. That is, firms should be more willing to invest in these risky (and costly) Phase III

trials for a product with the ability to generate greater returns. From a resource allocation

perspective, this implies that when deciding how to allocate resources between two drugs

under development, a firm may choose to allocate their R&D resources to the product with

a lower likelihood of approval if that product has a high enough profit potential. In this

study I will not consider sudden changes in the prevalence of a disease but sudden changes

in the likelihood of people with that disease purchasing treatment. This will be explained

further in the next section.

Hypothesis 1: Following a demand-side shock leading to increased demand for a certain

subset of technologies, there will be an increase in the proportion of that class of

technologies continuing to Phase III clinical trials.

Hypothesis 1 predicts that, following a demand shock, there is an increased propensity

to invest in technologies that otherwise would have been terminated in the counterfactual.

This implies that but-for the shock, the firm would have determined the product to be less

desirable than others in its pipeline. This could be because either the risk was too high (a

low probability of approval) or the benefits (expected profit) were too low. If, following the

shock, the firm determines more products in this class to be desirable investments, it is due
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to the increase in expected profit. By assuming that the demand-side shock only changed

the expect profit to this class of products (rather than the probability of approval Pijrt) it

follows that products that are now receiving Phase III investment have a lower potential for

approval than those in the class that would have received investment in the but-for world.

This leads to Hypothesis 2.

Hypothesis 2: Following a demand-side shock leading to increased demand for a certain

subset of technologies, there will be a decrease in the proportion of those affected

technologies coming to market following Phase III investment.

3.2.2 Heterogeneity in Responses to Demand-Side Shocks

While Hypotheses 1 and 2 speak to the average adaptation one would expect to observe

following a demand-side shock, it is likely that firm characteristics will moderate the direc-

tion and severity of the adaptation. I hypothesize that the results presented above will be

moderated by a firm’s capabilities in effectively reallocating resources among its development

projects. By resources, I am considering everything from financial resources to human capi-

tal. Generally, strategic management scholars have found a positive relationship between a

firm’s ability to reallocate resources and its performance (see e.g., Teece, 2007 and Lovallo

et al., 2020).

One possibility is that some firms are less able to more efficiently allocate resources

following a policy change. For example, for firms with a fixed amount of resources dedicated

to each therapeutic class (and particularly if those divisions are in separate cities) it may

be less likely that firms can easily transfer resources between divisions quickly following a

72



change. For example, suppose that following a change in health policy, firms were incentivised

to invest more resources in their neurology group – the therapeutic class that contains

disease like Alzheimer’s disease, dementia, multiple sclerosis, and sciatica. If a firm already

has an active division of neurology that is already at capacity, the firm may not have the

resources (lab space, scientists, etc.) to direct more research here in the short run. This

could be especially true if the firm cannot easily transfer resources from another division

(say, oncology) to neurology. This may be the case if the divisions are distinctly separate

from each other. This could be true if, for example, the divisions are separate geographically

or have different but powerful key decision makers.

In this industry, there is strong evidence in the data that the product diversification

(having ongoing products within multiple therapeutic classes) within a company is strongly

correlated with decentralization (having labs in multiple states and/or countries). Figure

3.1 plots the relationship between these two. As illustrated, the vast majority of firms in the

sample (to be discussed in more detail in Section 3.3) specialize in developing drugs within

one therapeutic division.

An example of what I will refer to as a more decentralized company is Pfizer. Pfizer

has at least nine R&D locations spread across the United States and the United Kingdom.

While their corporate headquarters is located in New York City, their oncology unit is in

Pearl River, NY, their biotechnology unit is in La Jolla, CA, their vaccine unit is in Saint

Louis, MO, and their unit for Pain and Sensory disorders is located in Cambridge, UK. I

hypothesize that a decentralized company like Pfizer may be less likely to reallocate resources

from, say, St. Louis to Pearl River in the short run. Pfizer is hardly unique in their R&D

structure– many of the large pharmaceutical firms are decentralized. And this is uniquely
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Figure 3.1: This heatmap demonstrates the positive correlation between number of product
divisions and number of locations within firms in the sample. Data from BioMedTracker and
Evaluate Pharma.
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distinct from smaller companies, which are largely located if not on one central campus, in

one city. As one would expect given evidence from Figure 3.1, Pfizer is also heavily diversified

in the types of therapies it develops.

While there has been some historical research on the role of organizational structure on

firm strategy (Friebel and Raith, 2010; Groves and Loeb, 1979; Harris and Raviv, 2002) and

the role of decentralization in resource allocation within countries (Marschak, 1968), few

papers have explored how organizational structure may impact resource allocation under

changing environments. One exception is Aghion et al. (2020), who explore how decentralized

vs. centralized companies fare following economic crises. They find that firms that were more

decentralized before the Great Recession out-performed their more centralized peers during

the crisis. However, they acknowledge that this is not initially intuitive. For example,

managers in more centralized firms may be better able to make tough decisions (such as

shuttering poorly performing divisions) in an economic crisis. They believe their results

are driven by the important role of knowledge of the local environment that guides a more

decentralized firm to weather a downturn.

The setting of this research is under very different conditions – one where firms realize the

existence of new profitable opportunities and therefore must decide how to properly reallocate

resources to capture them. As explored by Leiponen and Helfat (2011), the decision of where

to conduct R&D across a decentralized firm is an important strategic decision that may

have consequences for firm performance. And furthermore, the organizational economics

literature postulates that, due to economies of coordination and reduction of transaction

costs, centralized firms will have better innovation performance. In studying the effects of

organizational structure on the quality of R&D output, Argyres and Silverman (2004) find
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that centralized firms do better on this metric. In this study, I will explore the effects of

organizational structure on the propensity of firms to allocate resources following a demand

shock.

In properly formulating my hypotheses, I will turn to the literature on internal capital

allocation.2. Early work in organizational economics (notably Williamson, 1975) posits that

the role of corporate headquarters is to allocate scarce resources across its organizational

units. Work by Stein (1997, 2002) demonstrates that under capital constraints, firm bound-

aries play an important role in how resources are allocated within a firm. In particular,

he popularized the notion that headquarters are responsible for “winner picking” and “loser

sticking” among divisions. Depending on the opportunities within the firm, one division may

be resource constrained despite another being resource rich, and also despite the prevalence

of profitable opportunities within the “poor” division. In testing Stein’s theory, Gartenberg

(2014) finds that the orientation of a firm’s parent company leads to different types of loans

being issued during the lead up to the 2007 mortgage crisis and that this led to differential

performance of firms following the crash. The differences, she determines, were driven by

the presence of alternative uses (or lack thereof) of capital within the firm.

Following the work of Stein, scholars have continued to explore the conditions under which

corporate headquarters allocate resources efficiently. This has been referred to as the “dark

side” of internal capital markets (Ozbas and Scharfstein, 2010). Using data on Compustat

firms across a broad array of industries, Shin and Stulz (1998) find that firms are not efficient

at moving resources to their most valuable opportunities. This finding that managers are

bad at “winner picking” under diversification has also been found in work by Liebeskind

2For an extensive review of the recent literature and empirical findings, see Busenbark et al. (2017)
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(2000), Rajan et al. (2000), Bernardo et al. (2006) and Ahn and Denis (2004). Given this, I

hypothesize that an increasingly decentralized firm may be less likely to reallocate resources

from one project to another in the short run. This would be demonstrated empirically as

seeing no change in the propensity to take an affected class of therapies from Phase II to

Phase III, despite the sudden change in expected returns on the therapy. This leads to

Hypothesis 3.

Hypothesis 3: Following a demand-side shock leading to increased demand for a certain

subset of technologies, there will be a greater increase in the proportion of that class of

technologies continuing to Phase III clinical trials for firms that are smaller or more

centralized than seen in larger, decentralized firms.

3.3 Empirical Setting and Data

As a demand shock, I will consider the passage of the Medicare Modernization Act (MMA)

in the United States in December of 2003.3 The relevant part of the bill for this research was

the creation of the program that today is known as Medicare Part D. This program lead to

an increase in Medicare costs by 10% in order to provide additional coverage to recipients.

Prior to the creation of Medicare Part D, those covered by Medicare were only covered for

pharmaceuticals used in a hospital setting. As a result, seniors spent considerably more

on their prescription drugs than their employed counterparts. In 2002, the Congressional

Budget Office estimated that Medicare recipients spent an average of $2,500 per person on

3There are several papers in the economics literature that use increases in coverage by Medicare as a
proxy for an increase in demand (see e.g., Acemoglu et al., 2006; Blume-Kohout and Sood, 2013; Dranove
et al., 2014; Finkelstein, 2004). The assumption in all of these cases is that when the consumer is not bearing
the full cost for a pharmaceutical, they will be more likely to purchase that product.
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prescription drugs. Medicare Part D sought to give both the disabled and those aged 65 and

older prescription drug benefits to offset some of these costs. While enrollment in Medicare

Part D is voluntary it became very popular among both Medicare recipients and private

insurance companies who had the opportunity to offer plans– by 2008 there were over 1,800

different Prescription Drug Plans offering coverage through Part D (Hoadley, 2008).

While the bill was passed in December 2003, Medicare Part D coverage did not formally

begin until January 1, 2006. As hoped, the implementation of this program resulted in a

dramatic increase of Medicare beneficiaries enrolled in prescription drug coverage, from about

67% being enrolled in some prescription drug plan before 2006, to nearly 90% enrolled after

2006 (Yin, 2008; Duggan et al., 2008). Research on the effects of Medicare Part D on out-

of-pocket spending for pharmaceuticals also suggests a positive improvement for Medicare

beneficiaries. Yin (2008) estimate a decline in out-of-pocket costs of 13%, and Ketcham and

Simon (2008) find a similar decline of 17%. Furthermore, research in the health-services

literature also finds that Medicare Part D led to lower rates of hospitalization for seniors

with conditions that could be controlled through medication (Afendulis et al., 2011).

Additional research has found that the Medicare Part D program increased utilization of

prescription drugs in the home by the elderly (Engelhardt and Gruber, 2011). Lichtenberg

and Sun (2007) find that the program reduced costs among the elderly by 18.4% and increased

their use of prescription drugs by 12.8%. This resulted in an overall increase in prescription

drug usage in the United States by 4.5%. Additionally, this increase in demand led to an

increase in revenues for pharmaceutical firms (Duggan and Scott Morton, 2010). Given

these favorable outcomes, economic theory suggests following Medicare Part D, firms were

more likely to allocate resources to Phase III trials for prescription drug products that target
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illnesses commonly faced by seniors than they were before the announcement of the program.

3.3.1 A Case Study

An example of the response to Medicare Part D Legislation can be seen in drugs formulated

for in-home use targeting the treatment of Alzheimer’s disease. Alzheimer’s disease affects

nearly only those patients 65 and older (who would qualify for Medicare and Medicare Part

D) and nearly all potential therapies have been designed as small molecule capsules and

tablets for daily use in the home. And the disease is not rare, therefore making it a good

initial indication to explore when considering the responses of firms to Medicare Part D.

Using data from Informa’s BiomedTracker, I find that between 1995 and 2003 (the “pre”

MMA period), 16 compounds were taken to at least Phase II clinical trials and only four

of those were taken to at least Phase III (25%). In 2004 alone, immediately following the

announcement of the passage of the MMA, 5 of the 6 drugs in Phase II at the time were

taken to Phase III (83%). However, none of these drugs were ultimately approved.

In past studies of the effects of market size on innovation, this effect would have gone

unnoticed. Because it did not lead to any new drugs for Alzheimer’s disease, consumers

would not have benefited. Additionally, any study that just looked at patent creation would

not have seen the effect on the increase in investments in development. And finally, if

firms did not increase their innovation budget, one may have seen an aggregate decrease in

new products approved, as money was being shifted from other potentially more promising

products to the failed trials for Alzheimer’s disease.
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3.3.2 Data

To rigorously explore these investment decisions, I construct a dataset that contains proper-

ties of the drug (therapeutic classes and subclasses, indication, pharmacological class, target,

etc.) and the properties of the company developing the drug (public status, age, number of

successful past projects). The data on pipeline dates and decisions comes from Informa’s

BiomedTracker.

To begin, I explore how investment in clinical trials changes at the time of the policy

change. Figure 3.2 illustrates the number of Phase II and Phase III clinical trials for all firms.

It is immediately apparent that the number of Phase II clinical trials have been increasing

rapidly over the ten year period graphed. While the number of Phase III clinical trials

has also increased, they do not appear to be increasing at the same rate as Phase II trials.

Figure 3.3 confirms this. This graph illustrates the percentage of Phase II clinical trials that

continue to Phase III. There is some variation over the time period, but the general trend

appears to be moving downward.

However, looking only at these two charts provides only a limited perspective of how

firms are behaving. A researcher who estimates innovation using clinical trial counts may

conclude that firms are getting increasingly innovative over the time period, as observed by

the upward trend in Figure 3.2. By looking only at Figure 3.3, one may worry that firms are

becoming less capable over time, as the percentage of failed Phase II trials are increasing. In

the empirical section, I will demonstrate evidence that these trends are at least partly driven

by changing resource allocation strategies following the demand shock driven by Medicare

Part D.

80



Figure 3.2: This graph illustrates the number of Phase II and Phase III clinical trials for
all firms in the sample from 1998-2009.

.

Figure 3.3: This graph illustrates the proportion of Phase II clinical trials that continue
to Phase III over time.
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The collected sample spans 1998-2008 and includes companies that were active before the

passage of the MMA. I choose to truncate the sample at 2008 because I want to consider only

those projects that were begun prior to the announcement of the MMA, and it takes longer

than 4 years for firms to take a new drug to go from discovery to Phase III trials. That is,

I want to consider only how established firms treat projects already under development in

response to this external change. I do not want the results to be confounded with potential

changes in the early stage drug-selection strategy. Equally as important, I do not want the

results to be confounded with a revenue effect. If, as studies show, pharmaceutical companies

experienced increased profits from the implementation of Medicare Part D, then it could be

the increase in revenues driving riskier resource allocation decisions. By truncating the period

at 2008, I can obtain enough power for statistical inference while mitigating the potential

effects of increased revenues. As one would expect, the results become stronger and larger as

I extend the time period outward. Additionally, I find that the results are directionally and

statistically robust to contractions in the time period. As a limitation, one thing I cannot

control for is the possibility of cheaper financing available to firms immediately following the

passage of the MMA.

The sample consists of 659 companies that were active (e.g. had a project reach Phase

II) in the time period. The largest company in my data is Novartis, with 280 products that

reached at least Phase II from 1998-2008, followed by GlaxoSmithKline (260 products) and

then Pfizer (230 products). The mean number of products for the firms in this dataset is

26.87. They span 21 different therapeutic groups with the largest being oncology (1,627

products) followed by autoimmune/immunology (673 products). I include small molecules,

biologics, and vaccines. I do not include data on the development of any generic products
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Table 3.1: Descriptive Statistics
1998-2008

Companies 659
Average Age of Company in 2008 31 years
Median Age of Company in 2008 16.6 years

Divisions
Average Number of Divisions 2.28
Median Number of Divisions 1

Maximum Number of Divisions 15

This table outlines basic statistics regarding all
firms in the sample of data. Data from BioMed-
Tracker.

or biosimilars. Table 3.1 presents additional statistics regarding the sample.

3.4 Identification and Empirical Specification

Past studies on the role of aggregate innovation (measured often in either clinical trial counts

or FDA approvals) have often identified an econometric model by using a difference-in-

differences analysis. Since Medicare Part D was hypothesized to increase demand for pre-

scription drugs for the elderly, a researcher could categorize indications as either Medicare-

heavy (the average age of incidence of the disease was greater than 65) or non-Medicare-heavy

(the average age of onset was lower than 65). Then, using a difference-in-differences analysis,

they could estimate the effect of the policy on the change in clinical trials for Medicare-heavy

indications.

One critique of this method is that the parallel trends assumption may not hold, which

is crucial for identification (Besley and Case, 2000). If pharmaceutical firms develop drugs
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according to expected demographic trends, as suggested in work by Acemoglu and Linn

(2004) and Cerda (2007), then it could be that firms were already beginning to shift resources

towards pharmaceuticals for the elderly. Therefore, it is possible that development of drugs

for the elderly was already beginning to outpace development for the younger demographic,

and one may erroneously believe this was driven by the policy change. Fortunately, the

nature of the Medicare Part D legislation provides an alternative way to explore this this

issue to mitigate potential concerns about this difference-in-differences identification strategy.

There are two primary groups who purchase drugs. Hospitals purchase drugs to use for

inpatient and outpatient treatment. And consumers purchase drugs to use in the home. Since

drugs taken in hospitals were already covered under traditional Medicare and Medicare Part

B, Medicare Part D only extended coverage to those pharmaceuticals purchased by consumers

for home use. Therefore, if firms were organically increasing their rate of development for

Medicare drugs external to the incentives provided by Medicare Part D, this should have

been changing both in the rate they were developing drugs for hospital use by the elderly,

and those designed for in-home use by the elderly.

I can exploit this policy intricacy to create a difference-in-difference-in-differences (or

“triple difference”) econometric specification. The first difference comes from the time period

(pre or post MMA passage). The second difference comes from the difference in development

between drugs of which the majority of their users will be elderly United States citizens and

those for which this will not be the larger customer segment. I segment these drugs in the

data by doing the following: I consider a molecule-indication dyad to be part of the Medicare

relevant group if (1) it is not a pediatric, juvenile, or congenital condition (as determined by

average age of diagnosis) and (2) it treats a condition unrelated to fertility or child-bearing
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and (3) it is not being tested to treat a purely cosmetic issue which would likely not be

covered by insurance (eg. “wrinkles”, “photodamage”) and (4) it is not a tropical disease.4

The third difference comes from the intended final purchaser of the drug: the hospital

or the patient. One would expect the introduction of Medicare Part D to only incentivize

development for pharmaceuticals for which patients are the end purchaser. I use the following

criteria to classify the likely end purchaser of the pharmaceutical: I consider a molecule-

indication dyad to be developed for patient purchase if (1) the route of administration is

either topical or oral (2) the route of administration is injectable but it treats a chronic

condition (eg. type 2 diabetes). An example of drugs that would not be in this segment are

intravenous fluids and imaging agents.

Past literature in strategy and economics that employs the MMA as an exogenous shock

has used a slightly different measurement approach. Using the publicly available Medical

Expenditure Panel Survey (MEPS), researchers have scored diseases based on the proportion

of survey respondents that reported having the disease and benefiting from Medicare (Blume-

Kohout and Sood, 2013; Hermosilla and Wu, 2018). Then, using a difference-in-differences

specification, the researchers estimate changes in the DV following the MMA passage as a

function of the MMA score (a continuous value between 0 and 1). This approach has some

advantages over the one employed here, namely that it identifies Medicare-relevant diseases

using a continuous measure, rather than a discrete classifier. However, one downside of this

measure is that, due to the nature of the MEPS data, its classification of diseases must

remain relatively broad, and many disease will not be included.

4Tropical diseases are defined by the World Health Organization as disease that occur solely, or principally
in the tropics, and are therefore uncommon in the United States (where Medicare coverage would be relevant).
Examples of tropical diseases include malaria, African trypanosomiasis, Chagas disease, and dengue.
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Another potential downside of past approaches is the lack of consideration for the types

of drugs already covered by Medicare parts A and B. This is particularly true for cancer

drugs, which constitute one of the largest therapeutic classes in the pipeline data. The vast

majority of cancer treatments were already covered by Medicare Parts A and B prior to the

passage of the MMA and remain covered by those programs today (Centers for Medicare

and Medicaid Services, 2017). Only a few types of drugs, including anti-nausea and those

related to cancer pain are covered by Medicare Part D. Without carefully accounting for the

final payer of these drugs, these studies will classify many hospital-based drugs incorrectly

by using only the age distribution of patients taking those drugs (which are skewed toward

the elderly).

The final downside of past approaches is that pharmaceutical firms may have already

been anticipating an increase in the Medicare-relevant population even before the MMA

was passed. Acemoglu and Linn (2004) showed that pharmaceutical firms developed drugs

based on expectations of future demographics, and so found that there was already a pre-

MMA increase in the development of drugs for the elderly. Therefore, the parallel trends

assumption of these prior studies may not hold. By incorporating the third difference, I

can control for the fact that after the MMA, firms were incentivized to develop only those

drugs that would be taken by the elderly and covered by Medicare Part D. Therefore, I can

difference away any trend from an increase in drugs that generally targeted the elderly.

To model these changes in investment decisions, I assume that Pr(Phase III|Phase II)

takes the functional form in Equation 3.2, as is common in the consumer choice literature.

Here, the choice could be interpreted as the project manager’s (or CEO’s) decision to invest

in Phase III clinical trials or terminate the project given both the characteristics of the drug
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and the state of the competitive environment.

Pr(Phase III|Phase II) =
exp(Xβ)

1 + exp(Xβ)
(3.2)

Then using a logit transformation, I can rewrite the model as using a basic triple-

difference specification as is presented in Equation 3.3. I will estimate this as a first pass

(column 1 of all regression tables). The dependent variable, Pr(Phase III|Phase II) is then

the difference in the probability of continuing to Phase III for those products affected by

the policy change. Empirically, this is estimated using a binary variable equal to 1 if firm r

decides to invest in Phase III trials at time t for molecule i intended to treat indication j.

It is equal to 0 if at time t (the end of Phase II trials) the firm terminates the development

of that product. The parameter Λ represents the logit equation such that everything inside

is the score. The variable Medicare is equal to 1 if the disease being treated is one that will

be subject to any Medicare Part D reimbursement and the variable Market is equal to 1 if

the drug will be administered at a hospital or a physician’s office.

Pr(Phase III|Phase II) = Λ(β0 + β1Marketi + β2Medicarej + β3postt + β4Market*Medicareij

+ β5Market*postit + β6Medicare*postjt + β7Market*Medicare*postijt

+ εijrt)

(3.3)

While this equation estimates the effects of the policy on investment decisions, one may be

worried that it suffers from omitted variable bias. As described in the theoretical framework
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above, the decision to invest in Phase III clinical trials depends on a number of factors.

Most importantly, it depends on the firm’s estimate of its costs of developing the drug, the

potential benefits, and its subjective assessment of how likely it is to be approved. Therefore,

I want to control for additional factors that may influence a firm’s assessment of the project.

The full regression specification then becomes

Pr(Phase III|Phase II) = Λ(β0 + β1Payeri + β2Medicarej + β3Postt + β4Payer*Medicareij

+ β5Payer*postit + β6Medicare*postjt + β7Payer*Medicare*postijt

+ γXijt + µt + δr + τj + εijrt)

(3.4)

Here, X is a vector of project covariates, µt is a vector of 10 year fixed effects and δr

is a vector of company fixed effects. The year fixed effects are intended to control for any

macro-trends in the way in which companies make decisions about Phase III clinical trials.

For example, if techniques for judging the quality of drugs at Phase II get better over time,

this may result in all firms pursuing fewer Phase III clinical trials over time. Year fixed

effects are one way to keep from conflating these macro-level trends with the effects of the

policy.

Company fixed effects are another important control in this estimation given evidence

suggesting they are important for measuring firm-specific investment. Past research demon-

strates there is considerable heterogeneity among firms in how they make investment deci-

sions in clinical trials. There is a growing literature exploring how willing companies are
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to devote resources to products that they have incomplete information about (Arora et al.,

2009; Guedj and Scharfstein, 2004; Jekunen, 2014). Many of these differences are a function

of company size, funding, and the presence of viable outside options.

The number of Phase III trials initialized by the average firm stays relatively consistent

across the time period though hits its maximum just around the passage of the MMA (2003-

2004). These statistics are presented in Table 3.2.
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3.5 Results

3.5.1 Implication for Firm Investment Decisions

Figure 3.4 presents a simple bar graph of the total number of Phase III trials by type of

drug: those will likely be effected by Medicare Part D (“MMA Related”) and those that will

not (“non-MMA Related”). On the surface, it appears that the number of Phase III trials

for the MMA-related drugs is growing at a faster rate than for the non-MMA drugs, and

even surpasses the number by 2007. While this is suggestive of the effects of Medicare Part

D, it does not control for the many factors involved in drug development.

In exploring the trends of Phase III investment by drug type and year (either MMA-

relevant or Non-MMA relevant) a more nuanced picture emerges. This graph is presented in

Figure 3.5. Prior to the creation of Medicare Part D, the probability that a drug in Phase II

would continue to Phase III is very high, though slowly decreasing for both groups. However,

following the policy change, it appears the transition probability is decreasing at a fast rate

for those drugs not subject to potential revenue increases.

Results from estimation of Equations 3.3 and 3.4 are presented in Table 3.3. I find a

coefficient on the difference-in-differences measure of 25.70 on the preferred specification

(column 4). When calculating the marginal coefficients on the triple difference coefficient as

suggested by Ai and Norton (2003), I find this translates into a treatment effect of 44%.5

This suggests there is a substantial increase in the probability of one of the MMA-related

5This triple interaction effect is calculated as the discrete triple difference ∆3F (u)
∆x1∆x2∆x3

where F (u) =
1

1+e−β1x1+β2x2+β3x3+β12x1x2+β13x1x3+β23x2x3+β123x1x2x3
. Standard errors are calculated according to Cor-

nelißen and Sonderhof (2009). The treatment effect is nearly identical when assuming a probit functional
form or a linear probability model.
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Figure 3.4: This figure presents a simple bar graph of the total number of Phase III trials
by type of drug: those will likely be effected by Medicare Part D (“MMA Related”) and
those that will not (“Non-MMA Related”). A drug that is considered MMA Related has
both of the following: the majority of users will be elderly United States citizens and the
drug will be available for use in a hospital. I consider a molecule-indication dyad to be part
of the Medicare relevant group if (1) it is not a pediatric, juvenile, or congenital condition (as
determined by average age of diagnosis) and (2) it treats a condition unrelated to fertility or
child-bearing and (3) it is not being tested to treat a purely cosmetic issue which would likely
not be covered by insurance (eg. “wrinkles”, “photodamage”) and (4) it is not a tropical
disease. I consider a molecule-indication dyad to be developed for customer purchase (e.g.
NOT hospital purchase) if (1) the route of administration is either topical or oral (2) the
route of administration is injectible but it treats a chronic condition (e.g. type 2 diabetes).
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Figure 3.5: This figure presents a line graph of the average transition probability by type
of drug: those will likely be effected by Medicare Part D (“MMA Related”) and those that
will not (“Non-MMA Related”). A drug that is considered MMA Related has both of the
following: the majority of users will be elderly United States citizens and the drug will
be available for use in a hospital. I consider a molecule-indication dyad to be part of the
Medicare relevant group if (1) it is not a pediatric, juvenile, or congenital condition (as
determined by average age of diagnosis) and (2) it treats a condition unrelated to fertility or
child-bearing and (3) it is not being tested to treat a purely cosmetic issue which would likely
not be covered by insurance (eg. “wrinkles”, “photodamage”) and (4) it is not a tropical
disease. I consider a molecule-indication dyad to be developed for customer purchase (e.g.
NOT hospital purchase) if (1) the route of administration is either topical or oral (2) the
route of administration is injectible but it treats a chronic condition (e.g. type 2 diabetes).
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drugs continuing on to Phase III following the policy change. The coefficient is significant at

the 1% level under robust standard errors, clustered at the firm level (Bertrand et al., 2004).

Additionally, the relevant coefficient in all specifications is positive and highly significant

and is robust under contractions in the time period considered (see Appendix Table B1).

This provides evidence that firms do change their later-stage resource allocation criteria in

response to changes in expected demand.

3.5.2 Implication for Investment Performance

One implication of the framework developed initially is that products do not continue to

Phase III for one of two reasons: (1) the firm’s belief about the probability of approval is

low or (2) the expected revenue that the product will generate is not high enough. Because

all that has changed is the expected revenue for the firm (these products were already in

development when the law was passed) and one can assume that the firm’s beliefs about the

probability of approval did not systematically change for any of the drugs in development

following the passage of the MMA, it is likely that the relevant case is (2). This implies all

else equal, one should see a decrease in the probability of approval for these drugs following

the passage of the MMA. This would then imply that a firm is taking a bigger risk in their

innovation pursuits and possibly allocating more resources to lower quality products.

Consider Figure 3.6, which illustrates the probability of FDA approval, given investment

in Phase III clinical trials, over the time period. In general, the probability of being approved

by the FDA decreases slightly, and only hovers above 50% before 2002. This underscores

again how risky an investment Phase III trials can be for a firm. In breaking these out
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Table 3.3: Impact of Increased Demand on Change in Probability of
Investment in Phase III Clinical Trials

Logit DDD Model

Dependent Variable: Indicator equal to 1 if Received Phase III Investment
(1) (2) (3) (4)

Medicare*Payer*Post 12.07∗∗∗ 11.24∗∗∗ 11.83∗∗∗ 25.70∗∗∗

(0.98) (1.13) (1.15) (1.94)
Medicare 0.575 0.529 0.758 0.882

(0.67) (0.69) (0.70) (0.95)
Payer 12.70∗∗∗ 11.95∗∗∗ 12.82∗∗∗ 26.80∗∗∗

(0.78) (0.89) (0.95) (1.83)
Post -1.954∗∗ -0.913 -1.284 -0.901

(0.81) (1.06) (1.06) (1.27)
Payer*Post -12.00∗∗∗ -11.11∗∗∗ -11.69∗∗∗ -25.84∗∗∗

(0.89) (1.04) (1.06) (1.95)
Medicare*Post -12.36∗∗∗ -11.56∗∗∗ -12.31∗∗∗ -25.58∗∗∗

(0.79) (0.97) (1.00) (1.74)
Medicare*Payer -12.36∗∗∗ -11.56∗∗∗ -12.31∗∗∗ -59.15∗∗∗

(0.81) (0.97) (0.99) (3.41)

Year FE N Y Y Y
Drug Classification FE N N Y Y
Company FE N N N Y

Observations 1825 1779 1773 1365
R2 0.11 0.40 0.47 0.61

The dependent variable is equal to 1 if a product began Phase III clinical trials given
that it completed Phase II clinical trials. The variable Medicare is an indicator equal
to 1 if the disease being treated is one that will be subject to any Medicare Part D
reimbursement. This variable Payer is an indication equal to 1 if the drug is designed
for the pharmacy, rather than hospital, market. The variable Post is an indicator equal
to 1 if the Phase II trial ends after November 23, 2003, the date in which the MMA
was signed into law. Note that Medicare Part D did not go into effect until January 1,
2006. Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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.

Figure 3.6: The Probability of FDA Approval given Phase III Investment.

into MMA-relevant drugs and non-MMA relevant drugs, it is evident the proportion of

approved drugs begins skewing more towards the MMA market following the passage of

the law (Figure 3.7). This could be seen as confirmation of the common finding within the

economics literature that as markets grow, the number of innovations catering to that market

grows as well.

To test my hypothesis, I subset my sample to only those drugs that continued to Phase

III trials. The dependent variable, Pr(Approved|Phase III), then becomes the change in the

probability of FDA approval, and is estimated using an indicator equal to 1 if the product was

approved by the FDA and 0 if it was not. I then estimate the version of the triple-difference

regression presented in Equation 3.5.
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Figure 3.7: This figure presents a line graph of the number of FDA approved drugs by type
: those will likely be effected by Medicare Part D (“MMA Related”) and those that will not
(“non-MMA Related”). A drug that is considered MMA Related has both of the following:
the majority of users will be elderly United States citizens and the drug will be available
for use in a hospital. I consider a molecule-indication dyad to be part of the Medicare
relevant group if (1) it is not a pediatric, juvenile, or congenital condition (as determined by
average age of diagnosis) and (2) it treats a condition unrelated to fertility or child-bearing
and (3) it is not being tested to treat a purely cosmetic issue which would likely not be
covered by insurance (eg. “wrinkles”, “photodamage”) and (4) it is not a tropical disease.
I consider a molecule-indication dyad to be developed for customer purchase (e.g. NOT
hospital purchase) if (1) the route of administration is either topical or oral (2) the route of
administration is injectible but it treats a chronic condition (e.g. type 2 diabetes).
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Pr(Approved|Phase III) = Λ(β0 + β1Payeri + β2Medicarej + β3Post + β4Payer*Medicareij

+ β5Payer*postit + β6Medicare*postjt + β7Payer*Medicare*postijt

+ γXijt + µt + δr + εijrt)

(3.5)

The results of this estimate are presented in Table 3.4. The coefficient on the difference-

in-differences estimator is negative and statistically significant at the 1% level in all spec-

ifications and is robust under contractions in the time period considered (see Appendix

Table B2). This lends support for the hypothesis that firms were investing in marginally

lower quality drugs following the policy change, because these drugs were much less likely

to be approved. When calculating the marginal effect, I find an effect of -0.47, implying a

substantial decrease in the probability of approval for those drugs moving to Phase III.

These results provide a novel look at how sudden changes in demand may actually lead

firms to invest in less promising technologies. That is, the empirical evidence suggests the

introduction of the policy lead to the substitution away from possibly higher quality products

toward lower quality products (where quality is still defined here as the probability that the

drug will be approved). This can be seen by the increase is probability of undertaking

expensive advanced trials, followed by the decrease in the probability of receiving approval

to market the product.

As an additional test of the hypothesis that on average, lower quality or more marginally

beneficial products in this class were being pursued, one can look at the trajectory of those
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Table 3.4: Impact of Increased Demand on Change in Probability of
Approval Following Investment in Phase III Clinical Trials

Logit Model

Dependent Variable: Indicator equal to 1 if Received FDA Approval
(1) (2) (3) (4)

Medicare*Payer*Post -2.075∗∗ -2.032∗∗ -2.049∗∗ -3.134∗∗

(1.03) (1.01) (0.98) (1.48)
Medicare -1.203∗∗ -1.278∗∗ -1.024∗ -1.176

(0.58) (0.60) (0.61) (0.96)
Payer -1.764∗ -1.707∗ -1.505∗ -2.290

(0.97) (0.97) (0.90) (1.48)
Post -1.090∗ -0.881 -1.177 -1.258

(0.61) (0.76) (0.81) (1.05)
Payer*Post 2.172∗∗ 2.140∗∗ 2.242∗∗ 3.111∗∗

(1.05) (1.04) (1.00) (1.51)
Medicare*Post 0.732 0.838 0.838 0.969

(0.60) (0.59) (0.61) (0.77)
Medicare*Payer 1.728∗ 1.668∗ 1.561∗ 2.415∗

(0.95) (0.93) (0.84) (1.37)

Year FE N Y Y Y
Drug Classification FE N Y Y Y
Company FE N N N Y

Observations 1265 1265 1265 939
R2 0.02 0.48 0.52 0.58

The dependent variable is equal to 1 if a product was approved by the FDA
and 0 if it was terminated during or after Phase III clinical trials. The variable
Medicare is an indicator equal to 1 if the disease being treated is one that
will be subject to any Medicare Part D reimbursement. This variable Payer is
an indication equal to 1 if the drug is designed for the pharmacy, rather than
hospital, market. The variable Post is an indicator equal to 1 if the Phase II
trial ends after November 23, 2003, the date in which the MMA was signed into
law. Note that Medicare Part D did not go into effect until January 1, 2006.
Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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products that were actually approved following the MMA. Above, I had simplified the ap-

proval process by suggesting that firms that achieve good results in Phase III will submit

an NDA to the FDA and then, following the FDA’s review of the data, receive approval for

that indication. However, this relatively smooth process of moving from the end of clinical

trials to approval does not always happen. In addition, even if the drug is approved for some

subset of an indication, it may not be as broad as the firm had initially hoped for when

they filed the NDA. In the previous analyses, I had considered any approval related to that

molecule-indication to be a successful approval. This could have been overstating a firm’s

success because their drug may have actually been approved for a much less desirable market

than they had hoped for (for example, as a third line, rather than a first line, treatment for

cancer).

While I do not have data on how the exact nature of FDA approval differs from the

firm’s first drug or biologic application, I will explore the following as a possible proxy. I

will rely on the fact that the FDA maintains a strict review timeline process as directed by

the Prescription Drug User Fee Act (PDUFA). PDUFA, passed in 1992, allowed the FDA to

collect application fees from pharmaceutical firms in exchange for meeting review timeline

benchmarks. Under PDUFA, the FDA has ten months to review an NDA or BLA (six

months if the product received priority review).

If a firm’s application is not approved by the FDA after the set timeline, the firm will

receive a Complete Response Letter (CRL) from the FDA.6 In this case, the firm has the

option to redo some clinical trials and collect new data that will satisfy the concerns of the

6The FDA did not begin using CRLs for small molecules until 2008, to replace what had previously been
either “Approvable” letters or “Non-approvable” letters. They had been standard for biologics since 1998.
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FDA. If the firm or the FDA determines the deficiencies are insurmountable, the firm will

withdraw the NDA and terminate the project. According to my interviews with industry

experts, even if a firm is able to get an approval for this drug, it will often be for a smaller

subset of an indication, or for a population that does not respond to anything else on the

market. Sometimes a firm will receive many CRLs for one drug, as they keep repeating the

process of collecting new data and resubmitting the application. While not only harmful

to firm value (which usually declines with every CRL) this is incredibly costly in time and

resources. It can cost pharmaceutical firms up to $8 million for every extra day that a drug

is in Phase III clinical trials (Miseta, 2013), so having to redesign and execute new trials is

an unfortunate outcome, even if the firm does eventually receive FDA approval.

For my identification strategy in this analysis, I will assume that “lower quality” NDAs

will ultimately take longer to get eventual FDA approval, likely because it will require

more back-and-forth with the FDA to reach a consensus regarding for who the drug can be

approved. I can do this by collecting information on the first filing date of the NDA and

the eventual date of approval. If it is true that “lower quality” drugs targeting the Medicare

segment were being taken further in clinical trials, it may also be the case that even those

that were approved received designations for indications that were not as broad as originally

intended. While the FDA can grant itself review extensions, it is unlikely that they will

systematically grant themselves review extensions primarily on the MMA-relevant class post

2003.

The model I use is similar to that presented in Equations 3.4 and 3.5, except that I

consider only approved products and explore the time it took (in days) to move from the

filing of an NDA to FDA approval. The econometric equation I will estimate is presented
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below. Since the dependent variable is continuous, I use a standard OLS difference-in-

differences style regression presented in Equation 3.6.

Log(Days to Approval) = β0 + β1Payeri + β2Medicarej + β3Post + β4Payer*Medicareij

+ β5Payer*postit + β6Medicare*postjt + β7Payer*Medicare*postijt

+ γXijt + µt + εijrt

(3.6)

Results are presented in Table 3.5. The positive and statistically significant coefficient

(though only at the 5% significance level) in all specifications suggest that firms pursuing

MMA-relevant drugs following Medicare expansion spent considerably more time under re-

view by the FDA. This provides some evidence that even for products that were approved

in this class, they may have not received the most desirable designations.7

3.6 Organizational Structure and Resource Allocation

In this analysis, I test Hypothesis 3 by reconducting the above analyses on a sample of firms

that are more diversified and a sample of less diversified firms. A crucial component of this

analysis is in deciding a cutoff for in which to classify firms as more or less diversified. As

possibilities, I consider (1) those firms in the top 90% in number of therapeutic divisions in

which they have been active and (2) those firms with a presence in multiple states and/or

countries. While the results are robust to both methods, I will present results for method

7It is also possible that this result suggests that firms were more careless with their applications (perhaps
because they were hoping to beat competitors to market?)
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Table 3.5: Impact of Demand Shock on Change in Time Spent Under FDA
Review for Approved Products

Dependent Variable: Log(Number of Days from Application to Approval)
(1) (2) (3)

Medicare*Payer*Post 0.988∗∗ 1.030∗∗ 0.940∗∗

(0.40) (0.41) (0.40)

Medicare 0.328∗ 0.254 0.219
(0.18) (0.18) (0.18)

Payer 0.855∗∗ 0.899∗∗ 0.739∗∗

(0.36) (0.38) (0.37)

Payer*post -1.127∗∗∗ -1.204∗∗∗ -1.137∗∗∗

(0.38) (0.40) (0.39)

Medicare*Post -0.413∗∗ -0.331 -0.354∗

(0.20) (0.20) (0.20)

Medicare*Payer -0.838∗∗ -0.843∗∗ -0.723∗

(0.37) (0.38) (0.38)

post 0.336∗ -0.0138 0.0168
(0.18) (0.20) (0.19)

Therapeutic Group Y Y Y
Approval Year FE N Y Y
Drug Classification FE N N Y

Observations 1024 1024 1024
R2 0.145 0.227 0.249

The dependent variable measured in days between NDA submission and FDA ap-
proval. The number of observations is lower than in Table 3.4 because not all ap-
provals had retrievable NDA dates. The variable Medicare is an indicator equal to 1
if the disease being treated is one that will be subject to any Medicare Part D reim-
bursement. This variable Payer is an indication equal to 1 if the drug is designed for
the pharmacy, rather than hospital, market. The variable Post is an indicator equal
to 1 if the Phase II trial ends after November 23, 2003, the date in which the MMA
was signed into law. Note that Medicare Part D did not go into effect until January
1, 2006. Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3.6: List of Companies Active in Highest Number
of Therapeutic Classes

1998-2003

Number of Active Divisions
Company Name prior to 2003

Abbott Laboratories 6
Allergan 9

Astellas Pharma 7
AstraZeneca 9

Bausch + Lomb 8
Bristol-Myers Squibb 6

DRI Capital Inc. 9
Eli Lilly 7

Endo International 6
GlaxoSmithKline 10

Johnson & Johnson 10
Merck & Co. 10
Merck KGaA 7

Novartis 9
Otsuka Holdings 7

Pfizer 9
Roche 10
Sanofi 10

This table lists all companies flagged as “highly diversified” in
the analyses and gives the number of therapeutic divisions in
which the firm was actively developing products prior to 2003.
Data are from BioMedTracker.

(1) in Table 3.7. The list of companies classified as most diversified by this method (6 or

more divisions) are listed in Table 3.6.

After splitting the sample and rerunning the triple-difference regressions separately, I

find compelling support for Hypothesis 3. The coefficient on the relevant coefficient, Medi-

care*Payer*Post is positive and significant only for that sample consisting of firms that are

arguable more centralized and focus on fewer therapeutic classes than the sample with the

large, diversified/decentralized firms.
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Table 3.7: Impact of Increased Demand on Change in Probability of
Investment in Phase III Clinical Trials and Probability of Approval

Logit Model

Dependent Variable: Indicator equal to 1 if Received Phase III Investment
Fewer than 6 Divisions 6 or More Divisions

(1) (2) (3) (4)

Medicare*Payer*Post 12.95∗∗∗ 27.11∗∗∗ -1.106 -1.351
(1.49) (2.32) (1.58) (1.85)

Year FE Y Y Y Y
Drug Classification FE N Y N Y
Company FE N Y N Y
Observations 739 739 1001 1001

Dependent Variable: Indicator equal to 1 if Received FDA Approval
Fewer than 6 Divisions 6 or More Divisions

(1) (2) (3) (4)

Medicare*Payer*Post -3.026∗ -17.40∗∗∗ -1.620 -2.407
(1.68) (2.09) (1.62) (1.72)

Year FE Y Y Y Y
Drug Classification FE N Y N Y
Company FE N Y N Y
Observations 505 342 760 587

The dependent variable is equal to 1 if a product began Phase III clinical trials given
that it completed Phase II clinical trials. The variable Medicare is an indicator equal
to 1 if the disease being treated is one that will be subject to any Medicare Part D
reimbursement. This variable Payer is an indication equal to 1 if the drug is designed
for the pharmacy, rather than hospital, market. The variable Post is an indicator equal
to 1 if the Phase II trial ends after November 23, 2003, the date in which the MMA
was signed into law. Note that Medicare Part D did not go into effect until January 1,
2006. Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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There is some reason to be concerned that the changing nature of Medicare reimbursement

for oncology services at this time may be biasing the results. Because many all oncology

services will be classified as “Non-MMA”, it may be that part of the move away from Non-

MMA therapies toward MMA therapies may be mostly driven by less enthusiasm for investing

in Phase III clinical trials for cancer. After dropping all oncology projects and re-estimating

Equations 3.3 through 3.6, I find that the direction and statistical significance of the results

stay unaltered. These results are reported in Appendix Tables B3-B5.

3.7 Discussion

This study explores how a firm’s investment strategy responds immediately following chang-

ing expectations in future demand. It differs from past studies in the literature in that it

focuses not on the direct effect on the quantity of products reaching a market but rather

on how it changes the allocation of resources across an R&D department. When exploring

these effects in the aggregate, I find that when expectations about future demand suddenly

shift, firms increase their investments in products that are less likely to be approved, all else

equal. Using a standard economic model of investment decisions, I demonstrate why this

change in criteria may actually result in fewer approved products (or more “failed” prod-

ucts) as firms substitute resources away from higher quality products to lower quality ones.

This hypothesis is substantiated by my empirical results. Empirically, I find that firms in-

crease their propensity to invest in a certain segment of products after they believe there will

be an increase in demand from that segment. Additional empirical evidence demonstrates

that because of this, firms have lower total rates of approval than they would have in the
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counter-factual scenario. This may be one reason for decreased efficiency in pharmaceutical

R&D.

As an additional contribution, this study contributes to work on firm structure, decen-

tralization, and product diversification and furthers the conversation on how organizational

structure may lead to differing strategies following a positive shock. While there are known

benefits to decentralization, this study addresses some of the downsides of this structure

when there is a sudden change in priorities. While I observe smaller, centralized firms real-

locating resources towards the newly higher valued products, I find no evidence that their

larger counterparts were able to do the same.

One limitation of this study is that I cannot address whether or not this change in

behavior is either “good” strategy or “bad” strategy. There are reasons to believe that firms

were better off following the policy despite the effects on innovation. This is because even

if a firm brings fewer products to market following a change in criteria, those products that

they do develop may bring in more revenue, and therefore actually increase returns to the

firm. Duggan and Scott Morton (2010) find some evidence that revenues grew for those

Medicare-intensive drugs already on the market, however, there has been no attempts to

measure the causal effect of Medicare Part D on total value captured by the firm. However,

like much of the capital allocation literature, understanding the causal nature of allocation

and firm performance is outside the scope of this study.

However, the empirical results suggest one reason firms may not have behaved optimally.

By investing in Phase III trials for riskier molecules, firms were tying up scarce non-monetary

resources (lab space, scientists) for potentially more successful molecules. One industry pub-

lication stresses the importance of proper resource allocation by noting that “If doomed
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drugs can dodge Phase III, you save that money to reinvest in other potentially more suc-

cessful compounds” (Lam, 2004). From a consumer welfare perspective, the interpretation

is also mixed. On the one hand, these analyses suggest consumers may have had fewer new

therapies available following the passage of the MMA. On the other hand, because these

resources were being devoted to more novel innovations (though using a very conservative

definition of novel), some fraction of consumers may have indeed benefitted.

This study merely scratches the surface of how policy shocks may impact a firm’s innova-

tion strategy. While I provide evidence that it may effect a firm’s resource allocations in the

short run, these changes may also affect the future trajectory of innovation, organizational

learning and long run firm performance. I will leave these issues to future research.
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Chapter 4 Old Wine in a New Bottle: Market Effects

of Product Repurposing

4.1 Introduction

The COVID-19 pandemic has drawn increased attention to how pharmaceuticals are discov-

ered, developed and brought to market. As firms and government agencies try to quickly

develop an effective therapy, one strategy is receiving fresh attention: that of drug repur-

posing. Drug repurposing (or repositioning, reprofiling, or re-tasking) is being pursued in

this pandemic because it is both quicker and less risky than the traditional drug discovery

process. Repurposing involves taking a drug that is already approved or has been heavily

studied for another disease (or “indication”) and testing its therapeutic abilities in COVID-

19 patients. So far, over twenty compounds that have already completed Phase I clinical

trials have been identified as potential therapies, and many of the drugs being considered as

possible candidates are those already approved for other indications (Andersen et al., 2020;

Shah et al., 2020). These include older drugs that have already penetrated the over-the-

counter market, such as the active compound in the heartburn drug Pepcid (Borrell, 2020).

However, even recently developed drugs, including the Ebola vaccine, are being explored for
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their potential to treat the disease (Niarchos, 2020). This differs from developing a drug

“from scratch” in that the organization can bypass the discovery and preclinical process and

often the human safety trials. By repurposing an already approved drug, an organization

and shave years off the drug development process and save millions (to billions) of dollars.

The repurposing of drugs has often been a function of serendipity. This was true in the

case of Thalidomide, the notorious drug once used to treat morning sickness in expectant

mothers.1 Decades later, it was found to be an effective treatment of multiple myeloma

and later, leprosy (Oprea and Mestres, 2012; Singhal et al., 1999). Oftentimes, successful

repurposing can be a revenue boon for the developing firm, as was the case with Viagra,

which was initially approved to treat angina (Novac, 2013). However, repurposing old, off-

patent drugs to treat new diseases can also benefit consumers as well. If an off-patent drug

is repositioned to treat a new disease, the developing firm cannot charge monopoly prices for

its use. So given the high prices of pharmaceutical drugs the possibility of drug repurposing

as a welfare-enhancing strategy receives considerable attention from public policy scholars

and consumer advocacy groups. Indeed, there is currently an expanding amount of public

awareness about the possibility that new cures could be found in already established drugs

(Fedson and Rordam, 2015; Harris, 2018). Following recent outbreaks of deadly viruses,

there has been increased effort from the scientific community to test old drugs for treating

respiratory viruses (BenevolentAI, 2020; Mullin, 2014; Senanayake, 2020). Academic insti-

tutions have also taken an interest in this endeavor (Oprea et al., 2011). The Broad institute

at MIT has created specific resources to facilitate the discovery of new uses for old drugs.

1Thalidomide was heavily marketed for treatment of morning sickness in the 1950s though was never
FDA approved for treatment. Once it was discovered to cause severe birth defects, this led to increased
regulation of the pharmaceutical industry resulting in the current regulatory process present in the United
States today.
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Recently, scientists there tested over 4,000 drugs on human cancer cells and determined that

nearly 50 had undiscovered anti-cancer properties (Corsello et al., 2020).

One scenario that has received less attention by journalists and academics is the repur-

posing of a drug that is still under patent protection. There are several reasons why a

pharmaceutical company may actively seek to repurpose a branded, on-patent drug for a

new indication. With the high cost of bringing a brand new molecule to market and ev-

idence of slowing R&D productivity in traditional drug discovery (Pammolli et al., 2011),

repurposing an already approved drug for a new market can be cost efficient while simul-

taneously benefitting underserved patient populations. Furthermore, because the molecule

has already been deemed safe and its pharmacokinetic properties well understood, firms can

benefit from shorter and cheaper Phase I and II clinical trials, as all the firm must do is

prove the drug’s effectiveness in treating the new disease (Pushpakom et al., 2019). This is

considered a winning proposition for both suppliers and patients. Finally, it is considered an

effective lifecycle management strategy for a pharmaceutical company. With the additional

approval comes three additional years of exclusivity for the drug, making it one of the most

pursued line extension strategies (Tiene, 2017).

While there are clear revenue benefits to a firm that repurposes a patented drug, there

is also the possibility further benefits, in the form of spillover demand into a drug’s other

approved indications. This question of the market effects of product expansion has important

implications for a firm and a competitor’s strategy. There are obvious, and heavily studied,

reasons why a company may want to differentiate a product by increasing the number of

functions that product can perform. By doing so, the product’s value may increase to the

initial consumers who value both functions and the product will attract new consumers
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who especially value the second function. However, this study differs from other product

proliferation studies in that it will explore the effects of a product expanding into a new

market that is orthogonal to the initial one. That is, I will explore products for which

its repurposing for a different use will likely not increase the value to the consumers using

the product for the initial use, though it will allow the firm to capture demand from a

new market. This would be akin to, for example, a firm expanding a product’s ability to

be used in China after being developed initially for use in the United States. While this

change would likely not increase the value of the product to U.S consumers, this increase

in aggregate demand for the product could impact demand in the United States through

indirect channels.

This chapter will look explicitly at the case of repurposing of oncology drugs for other

uses within oncology. Focusing on this therapeutic class is ideal for this project due to the

amount of repurposing of patent protected drugs that occurs within this group. In 2014,

over half of marketed oncology drugs treated multiple indications. It is predicted that by

the end of 2020, the number of oncology drugs treating multiple indications will be three

times greater than those approved for one indication (Mestre-Ferrandiz et al., 2015). And

while many of the headline stories in drug repurposing focus on one drug that may treat

two very different diseases, most repurposing occurs among indications that are similar

therapeutically (Baker et al., 2018). Importantly, these approvals for new cancers are often

granted sequentially, allowing us to observe the sales of drugs competing in that disease both

before a competitor receives a new approved disease and afterward. Furthermore, there have

been calls for companies to consider exploring their repurposing opportunities in cancer given

the limited therapies available and the higher likelihood that one drug can effectively treat
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several different tumor types (Gupta et al., 2013; Pantziarka et al., 2014).

The repurposing of oncology drugs to treat new types of cancer may result in changes

to demand patterns for not just the new indication but also among the indications for

which the drug was previously approved. If I observe changes to demand in the market

which had no new entrants, then repurposing may also hold strategic implications for a firm

and its competitors. This will further the conversation on the strategic benefits of product

proliferation and this specific case of drug repurposing. In this study, I find strong evidence

that as firms find new approvable indications for one cancer drug, it leads to increased sales

of that drug for treatment of the initially improved indication. Furthermore, I find that

competing drugs treating the initial disease and are in the same chemical subgroup also

receive a small but positive boost in demand following their competitor’s repurposing. I

do not find evidence that these demand spillovers are a result of increased advertising or

decreased pricing by close competitors as they anticipate the effects of repurposing. Further

analysis suggests that these are gains from business stealing of competitors in other chemical

subgroups. These findings align with theories of information and advertising spillovers.

4.2 Prior Literature and Regulatory Setting

4.2.1 Product expansion, repurposing and business stealing

This article contributes to the literatures on product expansion, business stealing, and phar-

maceutical repurposing. Questions regarding the role of product expansion on firm and

competitor outcomes have been explored to some extent in the product proliferation litera-
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ture. Much of this literature is interested in how product strategies impact firm performance.

In particular, this study has similarities with those exploring the effects of within-industry

product proliferation – the case where a firm sells two products to different submarkets within

the same industry (Barroso and Giarratana, 2013). For example, Siggelkow (2003) explores

the effects of product diversification within one industry. In looking at the performance of

mutual fund families, he finds that there are performance benefits to those firms that “focus”

on one fund category. He postulates that one reason for this could be that focused companies

attract people with similar interests and values therefore leading to a well-defined company

culture and image.

However, in a different study exploring technology start-ups Stern and Henderson (2004)

find that those that diversify the products they offer within a business unit tend to fare better

so long as the competitive landscape remains relatively stable. They argue that these benefits

are likely due to learning effects and experience accumulation as employees explore different

approaches and master new skills that are crucial to survive in a high-tech landscape. While

early research has explored the benefits of product proliferation as it relates to economies

of scope (Markides and Williamson, 1994) or risk-reduction (Hill and Hansen, 1991), more

recent studies in this literature have explored issues of within-industry diversification from

the lens of resource development and managerial cognition. (One noted exception is Li and

Greenwood (2004), who explore how increased diversification may facilitate multi-market

contact and collusion among firms, leading to increased performance as measured by rate of

return.) However, there is limited research exploring if and how product proliferation can

impact consumer demand. This is an important and overlooked potential mechanism for

which product proliferation may lead to improved firm performance.
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This chapter will also add to the literature on firm competition and business stealing.

When a new product successfully enters the market, that product has captured market share

by either expanding demand (Cao et al., 2018), stealing demand from competitors (Bernheim

and Madsen, 2017), or some combination of the two (Davis, 2006). In the industrial organi-

zation literature, entry that leads to business stealing is considered to be socially inefficient

and has therefore generated a long and productive research agenda (Mankiw and Whinston,

1986). This research suggests that industries likely to have inefficiently excessive entry are

those with large fixed costs to entry (including costly R&D) and low marginal costs (Berry

and Waldfogel, 1999) and products that are somewhat substitutable.

Much of this empirical literature in product business stealing explores the entry of firms

creating (somewhat) homogenous goods including radio stations and movie theaters. Ini-

tially, this requirement may seem ill-suited to describe the cancer drug market, for which

competitors must show improved safety and efficacy over the current therapy protocol to

receive FDA approval. However, I assert that the cancer drug market is more like the radio

stations market, the setting of the influential empirical study of business stealing by Berry

and Waldfogel (1999).

Like radio stations, cancer patients can only consume one drug at a time and while there

is some diversification among radio stations (including the types of music played or the

quality of the hosts) they are likely not substantial differences in preference orderings for

most consumers, making them largely substitutable. And while the narrative offered by drug

developers that there are large differences in safety and efficacy among the different cancer

therapies, there is increasing concern among industry experts that the increased efficacies of

each new drug are too marginal to make them significantly superior to their counterparts
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(Hanahan, 2014; Leaf, 2014; Prasad, 2020). Recently, oncologists themselves have argued

that new entrants to the cancer market offer limited benefits. For example, when Fojo

et al. (2014) survey 71 recently approved drugs treating solid tumors, they find a median

improvement in longevity of only 2.1 months. And Raza (2019) has argued that the illusion

of improved rates of cancer survival over the past few decades are due to earlier detection,

rather than improved therapies.

This chapter also contributes to the literature on the competitive effects of drug repur-

posing.2 Presently, much of the academic literature on drug repurposing considers the case

where the drug to be repurposed is off-patent, and therefore unable to acquire monopoly

rents due competition from generic drugs. Because there is little incentive for pharmaceuti-

cal companies to explore new indications for off-patent drugs, economists and public policy

scholar have debated ways to encourage scientists and drug developers to undertake this sort

of welfare-enhancing research (Walson, 2012). The interested reader should refer to Roin

(2014) for an in-depth analysis of this “public policy failure” (Roin, 2014, p. 40).

This study is one of the first studies that, to my knowledge, explores the effects of

repurposing drugs that are still under patent protection. In this case, many of the benefits

derived from the reduced R&D risk of repurposing apply to this situation as well. Several

scholars within the industry have stressed the substantial costs and benefits to the firm that

chooses to focus its R&D efforts on repurposing already approved and/or heavily studied

drugs for new indications is a strategy that carries less risk that studying de novo molecules

(Ashburn and Thor, 2004; Novac, 2013). By exploring other opportunities for approved

2In the literature, drug repurposing can refer to the research of new indications for drugs that are ei-
ther already approved or failed in late stage (efficacy based) clinical trials. Here, I will only consider the
repurposing of drugs that have already been FDA approved.
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drugs, companies can skip the discovery and preclinical phase of R&D, saving hundreds of

millions of dollars (Sahoo, 2007). Furthermore, companies can harness already obtained

knowledge about the safety of the drug and its efficacy in a different disease, potentially

lowering the likelihood of a late-stage failure. However, there is no research yet that explores

the spillover and competitive effects of drug repurposing which could provide post-approval

benefits to the firm as well.

4.2.2 Regulatory environment in the U.S

The current regulatory environment faced by pharmaceutical companies in the United States

can be traced to the passage of the Drug Price Competition and Patent Term Restoration

Act in 1984, informally known as the “Hatch-Waxman” Act. The Act purported to provide

a delicate balance between easing the pathway for generic entry and continuing to provide

incentives for innovation (Grabowski, 2007). Under Hatch-Waxman, upon approval the FDA

grants each new drug regulatory protection lasting for five years (known as data exclusivity)

which runs concurrently with patent protection. During this data exclusivity period, regard-

less of the status of the underlying patent(s), no generic entry may occur. At the conclusion

of data exclusivity branded products are protected only by their patents; this period running

from the cessation of data exclusivity to patent expiration is commonly referred to as market

exclusivity.

Important for the current setting is the ability by firms to obtain three additional years of

data exclusivity for reformulations, which include: (a) reformulating the molecular entity; (b)

changing the manner of delivery; or (c) adding a new indication. Specifically, I am interested
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in the third type of reformulation focused on adding a new indication or repurposing. This

process includes additional clinical testing and another submission to the FDA for approval

but this is generally viewed as less expensive than the original approval.

Critically, the above discussion pertains only to chemical-based or small molecule drugs.

The Biologompetitics Products Cion and Innovation Act which was passed in 2009 governs

biologic-based or large molecule drugs. Biologic-based drugs receive 12 years of data exclu-

sivity (as opposed to the five-years for chemical-based drugs) but are ineligible for additional

data exclusivity protection for a new indication unless there are changes to the structure of

the biologic product that alter safety, purity or potency.

4.3 Theoretical Propositions

Consider two firms, Firm A and Firm B, that sell branded drugs, Drug A and Drug B within

the same 4-digit Anatomical Therapeutic Chemical (ATC4) market, respectively.3 While a

drug may be assigned to only one ATC code, approved treatments for a specific disease may

include drugs from several different ATC groups. Let’s assume that at time t = 0, both

drugs (Drug A and Drug B) treat the same indication, j. Firm A and Firm B compete

with each other in the market to garner patients (i.e., via price and/or direct-to-consumer

advertising) and by encouraging physicians to prescribe (i.e., via detailing or the practice of

sending sales representatives to physician offices).

Now, let’s consider what happens if at time t = 1, Drug B receives FDA approval for

a new indication k 6= j, which is in a different ATC4 therapeutic market. Drug B is now

3The ATC classification system, designed by the World Health Organization, divides drugs into groups
according to their anatomical annotation (https://www.whocc.no/atc_ddd_index/).
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Figure 4.1: A Diagram of the Research Question

approved to treat indication j and indication k 6= j while Drug A remains treating only

indication j. See Figure 4.1. While sales of Drug B will increase due to the treatment of

indication k 6= j, this research focuses on what, if anything, happens to both sales of Drug

B and Drug A for the treatment of indication j at time t = 1. I consider four plausible

competing explanations as to what may happen in the market.

Proposition 1: No Impact. The repurposing of Drug B into a new market to treat indi-

cation j 6= k has no effect on the market for indication j. I will consider this the baseline

case which implies that, ceterus paribus, physicians and patients do not prescribe or request

Drug A any differently. That is, when treating indication j, doctors do not prescribe Drug

A or Drug B at different rates than they had prior to the repurposing of Drug B.

Proposition 2: Business stealing from Firm B. The repurposing of Drug B into indi-

cation k 6= j spills over and increases the sales of Drug B for treating indication j thereby

lowering the sales of Drug A for treating indication j. This outcome could result for a num-

ber of reasons. First, Firm B increases its advertising and marketing efforts for indication

k 6= j or similarly, receives press coverage. This heightened awareness by physicians (and
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consumers) allows them to more easily recall Drug B’s name and benefits resulting in an

increased propensity to prescribe Drug B for indication j. The effects of pharmaceutical

advertising have been shown to be effective both in doctors Larkin et al. (2017)) and in

patients (e.g., Sinkinson and Starc, 2019). Moreover, these spillover effects are theorized to

be a driver behind brand extensions and are often observed empirically in other consumer

product markets (e.g., Aaker, 1996; Balachander and Ghose, 2003; Sahni, 2016). For exam-

ple, advertising spillovers help explain why demand increases for original flavor yogurt when

a firm increases its advertising for a new flavor.

Secondly, a halo effect might be created around Drug B because it now treats multiple

indications, has gone through additional clinical testing, and multiple FDA approval pro-

cesses. Drug B may also benefit from peer effects as other physicians begin to prescribe the

drug to treat indication k 6= j. These behavioral effects may make a physician feel more

confident and comfortable about Drug B thereby making them more likely to prescribe it

over Drug A for indication j. In either case, this would cause a business stealing effect from

Drug A to Drug B.

Proposition 3: Competitive pre-emption by Firm A. The repurposing of Drug B into

indication k 6= j leads to an increase in the sales of Drug A but a decline in sales of Drug

B to treat indication j, ceterus paribus. This could happen if Firm A, anticipating an

increase in advertising and marketing by Firm B, strategically responds by either increasing

their advertising and marketing or lowering the price for Drug A. The likelihood that a firm

retaliates via increased advertising and marketing is well documented in the economics and

marketing literature (e.g., Gatignon et al., 1989). Furthermore, if Firm B is focused on
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increasing advertising and marketing for its new indication k 6= j, Firm A could use this

distraction to better target physicians specializing in indication j. These effects have been

explored in the literature on scarce resource allocation and product cannibalization (e.g.,

Roberts and McEvily, 2005).

Proposition 4: Market-level halo effects. Finally, it is possible that when Drug B is

repurposed for indication k 6= j that both Drug B and Drug A experience increases in sales

in the treatment of indication j. This would suggest that the halo effects created by Drug

B as it expands to treat indication k 6= j spills over into the entire class of drugs treating

indication j. For example, if a physician learns that Drug B has been shown to be safe and

efficacious for a new indication, k 6= j, she may become more comfortable prescribing Drug

A to treat indication j because she associates that class of drugs as a whole as safe and

effective.

This kind of spillover would be predicted by the literature exploring the impact of in-

formation and peer effects on sticky demand. Much of this literature explores the effects of

marketing, endorsements, and media depictions on sales of the relevant product and spillovers

to sales of other products. For example, Garthwaite (2014) finds that book endorsements

lead to business stealing from other book titles and that demand also spills over into other

books written by the endorsed author. In the pharmaceutical industry, the setting of this

study, there is a growing literature that explores demand spillovers; scholars have shown that

demand for one drug can be influenced by new information, new publicity, or an increase in

advertising for another drug (Sinkinson and Starc, 2019). Additionally, Shapiro (2018) finds

that demand for any antidepressant increases when one firm increases its advertising. This
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suggests that new information (or simply an increased prevalence of information) about one

antidepressant makes consumers more likely to take any antidepressant.

4.4 Empirical Methodology and Data

4.4.1 Modeling drug repurposing and firm sales

When a firm receives approval for a new indication, I expect to see sales of the drug increase.

However, one may also see increased sales of the drug for its prior approved indications

as well. This could happen if there were spillover effects due to the announcement of the

approval for the new indication. To explore this, I consider the following regression specifi-

cation. For drug i treating indication j in quarter t, I explore the effect of sales for indication

j when the firm receives a new approval for indication k 6= j.

log(Quantity)ijt = α0 + β1Competitorsijt + β2Own Drug Repurposedijt

+ β3log(Lag Ad-spending)ijt + β4log(Price)ijt + β5Off-Patentijt

+ Year FEs + Indication FEs + (Indication x Year FEs) + εijt

(4.1)

where the dependent variable, Quantity, is the log of total standard units sold. Standard

units are determined by IQVIA and are meant to equate pills, tablets, capsules and liquid

doses. Competitors is a continuously updated count of the number of competing drugs for an

indication within a therapeutic market. I expect the sign of β1 to be negative; as the number

of competitors increase, they will begin to steal market share from incumbents. Own Drug
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Repurposed is an indicator equal to 1 if drug i treating indication j is approved for another

indication k 6= j, zero otherwise. β2 is the coefficient of interest and I expect a positive sign

if there is spillover effect to other indications treated by drug i.

Lag advertising includes direct promotion to physicians (otherwise known as detailing),

journal advertising and direct-mail advertising. Consistent with prior literature, β3 is ex-

pected to be positive. Price is the log of the price of drug i and β4 is expected to be negative.

To correct for the endogeneity of price, I use mean and median price of drugs within the

3-digit ATC therapeutic market as instruments and implement a 2SLS procedure.4 The

F-statistic on the first stage regression rejects the hypothesis of weak instruments. Off-

Patent is an indicator equal to 1 if drug i is subject to generic competition in time t. Again,

consistent with the literature, I expect β5 to be negative.

Finally, I include year and indication fixed effects along with an interaction between

the two to control for factors that vary within an indication over time. This is to control

for external factors that lead to changing rates of cancer treatment by type (location).

For example, there is evidence that rates of breast cancer were increasing over the period

(Schneider et al., 2014; Siegel et al., 2012). This could be for several reasons, including

increased early detection or a population that is living longer. By including indication fixed

effects, I can control for these external trends of treatment by type of cancer. The F statistic

on the first stage regression rejects the hypothesis of weak instruments. The variable Off-

Patent is an indicator equal to 1 if the drug has come off patent and is now subject to generic

competition. I expect β5 to be negative, as generic entry is shown to have a strong negative

impact the sales of its branded drug counterpart (Berndt, 2002; Grabowski et al., 2014).

4Results are robust to building instruments within the 2-digit ATC level.
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4.4.2 Modeling drug repurposing and competitor sales

Next, I model the impact of competitor repurposing into a new indication, k 6= j, on fo-

cal drug i sales in indication j. Competitors are defined as firms selling drugs within the

same ATC4 therapeutic market. For example, in the breast cancer market focused on aro-

matase inhibitors (ATC4 L2B3) the drugs Femara (Novartis), Arimidex (AstraZeneca), and

Aromasin (Pfizer) are all direct competitors. However, they do not compete directly with

Fareston and Nolvadex, which are estrogen modulators also approved to treat breast cancer.

In this case, interest is in the effect a repurposing of Arimidex has on sales of Femara. This

can be explored more generally in the following specification:

log(Quantity)ijt = α0 + β1Competitorsijt + β2Own Drug Repurposedijt

+ β3Competitor Drug Repurposedijt + β4log(Lag Ad-spending)ijt

+ β5log(Price)ijt + β6Off-Patentijt + Year FEs + Indication FEs

+ (Indication x Year FEs) + εijt

(4.2)

where all the variables remain the same as in Equation 4.1 except Competitor Drug

Repurposed which is defined as an indicator equal to 1 if competitor drug i treating indication

j is approved for another indication k 6= j, zero otherwise. The coefficient β3 thus represents

the possibility of a spillover from competitor repurposing on the sales of focal firm drug i

treating indication j.

In Equation 4.2, the “treated” sample contains a drug-indication dyad within an ATC4

124



therapeutic market that is also approved for an indication for which the expanding drug

has also been previously approved. For example, Treanda is a drug in ATC4 therapeutic

market L1A0 first approved for chronic lymphocytic leukemia before receiving an additional

approval for indolent non-Hodgkin’s lymphoma in October 2008. In this case, the “treated”

sample consists of the sales of competing drugs in ATC4 therapeutic market L1A0 that also

treat chronic lymphocytic leukemia but not non-Hodgkin’s lymphoma. Excluded are sales

of any drugs that treat chronic lymphocytic leukemia approved after October 2008 and any

drugs treating chronic lymphocytic leukemia that are not in ATC4 therapeutic market L1A0,

of which there are four.

4.4.3 Data

I am fortunate to have access to a range of unique and comprehensive data sets that provide

me with disaggregate level data that allows me to track variables by drug (i), therapeutic

market or indication (j), in quarter (t). Data on FDA approvals by molecule and disease

come from BioMedTracker, a competitive intelligence and investment analytics database

developed by the Business Intelligence Division of Informa PLC. Data on sales by molecule

spanning 2002-2010 are from IMS. Data is limited to those drugs in the IMS sales data that

can be matched to the BioMedTracker indication and regulatory approval data. Furthermore,

because I am interested in sales at the drug-indication level, this further limited the sample.

All drugs that had only one indication approved are included, as it is assumed that all United

States sales of these drugs are for the one approved indication. To include those drugs with

more than one indication, I relied on an IMS dataset that summarizes prescribing behavior
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for each drug. In divvying up the sales from the IMS data into sales by drug and indication,

I calculated the percentage of prescriptions by indication for that drug in that year and

applied this to the IMS sales data to calculated the total amount of sales by indication.

Prior to 2002 (the year the data begins), there were 70 unique molecules approved within

the L1, L2, and L3 ATC drug classes with several molecules treating more than one disease.

For example, Taxol was approved to treat ovarian cancer in 1992, breast cancer in 1994,

and non-small cell lung cancer in 1999. A list of all indications and the number of drugs

approved for treatment prior to 2002 is presented in Table 4.1. While the majority treat a

type of cancer, other related conditions (including endometriosis, uterine fibroids, and HPV)

are also within the L-class of drugs.

Furthermore, there is some heterogeneity in the way with which different ATC classes

grow over time. For example, the largest class of drugs, the Alkylating agents (L1A0) saw no

new FDA approvals between 2002-2010. This is likely because it is one of the older classes of

cancer drugs, many of which were already off patent or coming off patent during the relevant

time period. In contrast, the A-Neo Protein Kinase Inhibitors (L1X4) while still a relatively

small subgroup saw considerable growth during the time period. Despite having received

only one FDA approval prior to 2002, by 2010 there were 8 total approvals. See Table 4.2

for a timeline of approvals by ATC4 group.
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Table 4.1: Full List of Indications with Approval
Pre-2002

Indication Number Approved

Actinic Keratoses 1
Acute Lymphocytic Leukemia (ALL) 3
Acute Myelogenous Leukemia (AML) 2
Acute Promyelocytic Leukemia (APL) 2

Adrenocortical Cancer 1
Bone Complications (including bone metastases) 1

Bone Marrow Transplant and Stem Cell Transplant 1
Brain Cancer (Malignant Glioma; AA and glioblastoma (GBM)) 2

Breast Cancer 11
Chronic Lymphocytic Leukemia (CLL) 3
Chronic Myelogenous Leukemia (CML) 3

Colorectal Cancer (CRC) 3
Cushing’s Syndrome 1

Cutaneous T-Cell Lymphoma (CTCL) - NHL 2
Endometriosis 4

Hairy Cell Leukemia 1
Hematologic Cancer 1

Hodgkin’s Lymphoma 4
Human papillomavirus (HPV) Treatment (Antiviral) 1

Kaposi’s Sarcoma 2
Multiple Myeloma (MM) 3
Multiple Sclerosis (MS) 3

Non-Small Cell Lung Cancer (NSCLC) 3
Ovarian Cancer 4

Pancreatic Cancer 1
Prostate Cancer 10

Renal Cell Cancer (RCC) 1
Rheumatoid Arthritis (RA) 1

Sickle Cell Anemia 1
Skin Cancer - Basal Cell Carcinoma (BCC) 1

Small Cell Lung Cancer (SCLC) 1
Solid Tumors 1

Testicular Cancer 1
Uterine Fibroids 3

This table presents a list of all indications and the number of molecules approved for their treat-
ment prior to 2002. Data from BioMedTracker.
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There is considerable heterogeneity in the proportion of sales captured by an ATC4 class

during the time period as illustrated in Table 4.3. Demand for branded Alkylating agents

(L1A0) shrunk over time as these drugs faced increased competition by generic manufacturers

and new technologies in other classes. Class L1X4 grew as expected given the large increased

of approved drugs joining the sample. But demand for drug classes that did not see new

entrants over the time period also grew. For example, the Cytostatic Aromatase Inhibitors

(L2B3) saw substantial demand increases despite a lack of new entrants.

4.5 Empirical Results

4.5.1 Impacts of drug repurposing on focal firm sales

As a firm receives a new indication approval for an already approved drug, one expects

to see all sales of the drug increase, due to new prescriptions for the drug to treat the

newest approved disease. However, one may also see increased sales of the drug for its other

approved indications as well. This would happen if there were spillover effects from the

announcement of the new approval, as explained in Proposition 2. To explore this, I look

at sales of exapanded drugs by indication over time. Here, I am constrained to those drugs

which have the data by indication.
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Table 4.4 presents regression results from Equation 4.1. The dependent variable across

all four models is Quantity or the log of total standard units sold by firm i, treating in-

dication j, in quarter t. Standard errors are clustered at the drug-indication level. The

coefficients on Price and Off-Patent are negative, as expected. Likewise, the coefficient on

Lag Advertising is positive, again, as expected. Across all four models the coefficient on the

variable of interest, Own Drug Repurposed, is positive and significant at the 1 percent level.

This suggests that sales for indication j increase when the firm receives a new approval for

indication k 6= j. In other words, there are positive spillovers within a drug when it receives

additional approvals for new indications. In my prior rubric, the sales of Drug B treating

indication j increase after Drug B receives approval to treat indication k 6= j.

4.5.2 Impacts of repurposing on competitors

In the previous section I determined that when Drug B was repurposed to treat indication

k 6= j, there were positive spillovers in the treatment of indication j. Are these spillover

effects self-contained to Drug B or do these spillovers impact competitor drugs that also treat

indication j? I define direct competitors as those drugs within the same ATC4 therapeutic

market that have been approved by the FDA for the same indication. For example, in the

breast cancer market (ATC4 market L2B3) the three aromatase inhibitors Femara (Novartis),

Arimidex (AstraZeneca), and Aromasin (Pfizer) are all direct competitors. Thus, I am

interested in whether a repurposing of Arimidex into a new indication has any spillover

effects on Femara or Aromasin in the aromatase inhibitor market.

Table 4.5 presents regression estimates from Equation 4.2. The dependent variable across
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Figure 4.2: Sales data from IMS.

Figure 4.3: Sales data from IMS.
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Table 4.4: Effect of Drug Repurposing on Quantity Sold
2002-2010

Dependent Variable: Log(Quantity Sold)
(1) (2) (3) (4)

log(Price) -0.829∗∗∗ -0.844∗∗∗ -0.726∗∗∗ -0.758∗∗∗

(0.07) (0.07) (0.08) (0.08)

Own Drug Repurposed 2.125∗∗∗ 2.206∗∗∗ 2.077∗∗∗ 1.927∗∗∗

(0.23) (0.23) (0.51) (0.50)

Number of Competitors 0.304∗∗ -0.0878 0.131
(0.14) (0.16) (0.15)

log(Lagged Ad Spending) 0.362∗∗∗ 0.302∗∗∗

(0.06) (0.05)

Off Patent -1.396∗∗∗

(0.25)

Indication FE Y Y Y Y
Year FE Y Y Y Y
Indication x Year FE Y Y Y Y

Observations 3153 3153 2327 2327
R2 0.643 0.644 0.709 0.731
First-stage F-stat 14.68 14.63 12.78 13.40

Robust standard errors in parantheses are clustered at the Drug-Indication
level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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all four models remains Quantity or the log of total standard units sold by firm i, treating

indication j, in quarter t. Standard errors are clustered at the drug-indication level. All

coefficients on the controls continue to have the expected sign. The coefficient on the variable

of interest, Competitor Drug Repurposed, is positive and significant. This suggests that as

a firm repurposes their drug in market k 6= j, this leads to an increase in sales of their

competitors in the original market j. In the context of the above example, as Arimidex

expands into market k 6= j, sales of Femara increase in market j.

Combined with the results in the prior section, it appears that as a drug is repurposed

into market k 6= j, there are positive spillovers to the both the focal drug and competitor

drugs within the original market j. Thus, Proposition 1 is not supported and while I see an

increase in sales of Drug B for indication j, they do not appear to come at the cost of sales

of Drug A. As such, Proposition 2 is also not supported.

4.5.3 Strategic preemption by competitors

While both the sales of Drug B and Drug A have been shown to increase for the treatment of

indication j, they could be doing so for different reasons. With the expansion of Drug B into

the treatment of indication k 6= j, it is possible that Firm A engaged in some type of strategic

preemption. To investigate this possibility, I consider two additional analyses exploring the

effect of a drug’s repurposing on price and advertising spend of their competitors. First,

I explore if the acquisition of a newly approved indication leads competitors to lower their

price. In Table 4.6, Model 1 I re-estimate Equation 4.2 replacing the dependent variable with

log(Price)ijt or the log of drug price for indication i, in market j at time t. The variable
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Table 4.5: Effect of Competitor Repurposing on Quantity Sold
2002-2010

Dependent Variable: Log(Quantity Sold)
(1) (2) (3) (4)

log(Price) -0.858∗∗∗ -0.868∗∗∗ -0.764∗∗∗ -0.800∗∗∗

(0.07) (0.08) (0.08) (0.08)

Own Drug Repurposed 2.399∗∗∗ 2.442∗∗∗ 2.433∗∗∗ 2.300∗∗∗

(0.28) (0.27) (0.61) (0.53)

Competitor Drug Repurposed 0.602∗ 0.538∗ 1.168∗∗∗ 1.258∗∗∗

(0.32) (0.32) (0.34) (0.33)

Number of Competitors 0.272∗ -0.173 0.0494
(0.14) (0.17) (0.16)

log(Lagged Ad Spending) 0.381∗∗∗ 0.320∗∗∗

(0.06) (0.05)

Off Patent -1.463∗∗∗

(0.25)

Indication FE Y Y Y Y
Year FE Y Y Y Y
Indication x Year FE Y Y Y Y

Observations 3153 3153 2327 2327
R2 0.642 0.643 0.713 0.736
First-stage F-stat 14.63 14.58 12.77 13.40

Robust standard errors in parantheses are clustered at the Drug-Indication level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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of interest is Competitor Drug Repurposed and the coefficient is expected to be negative if

firms preemptively act by lowering price.

Instead of changing price, firms could decide to increase their advertising expenditures,

which has been shown to be effective both in doctors (e.g., Larkin et al., 2017) and in patients

(e.g., Sinkinson and Starc, 2019). In this case, as Drug B expands to treat indication k 6= j

(along with the original indication j), Firm A increases their advertising spend on Drug A

for the treatment of indication j. I explore this possibility in Table 4.6, Models 2 and 3 where

I again re-estimate Equation 4.2 replacing the dependent variable with Advertising and Lag

Advertising, respectively. The variable of interest is Competitor Drug Repurposed and the

coefficient is expected to be positive if firms preemptively act by increasing advertising.

Results are presented in Table 4.6. The coefficients on the control variables are as one

would predict. The coefficient estimates for Off-Patent are worth mentioning as they may

seem counterintuitive. In Model 1, I see that effect of generic entry has a positive effect on

price. This effect is well documented in the literature (Frank and Salkever, 1997; Regan,

2008); firms often raise price to capture increased rents from the price-insensitive customers

who prefer branded products. In Models 2 and 3, I see negative effects on advertising; as

generics enter the market, firms begin to decrease advertising since substitution laws will

allow insurance companies to move patients to generic products.
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I do not see, in any of the models, the coefficients for the variable of interest, Competitor

Drug Repurposed, respond in a way that is predicted above. It suggests that the demand

expansion for Drug A as Drug B is repurposed into indication k 6= j is not due to preemptive

activities by Firm A. In short, Proposition 3 is not supported. Interestingly, the coefficients

were both the opposite of what would have been predicted. In Model 1 I see that the price

of Drug A increases as Drug B expands into indication k 6= j. Additionally, in Models 2

and 3, it appears that advertising expenditures decline. Combined with my prior results,

an interesting picture is beginning to emerge for Drug A as Drug B is repurposed. That is,

one observes increases in demand and price and decreases in advertising for Drug A in the

treatment of indication j as Drug B expands into indication k 6= j. In the next section I

discuss a scenario that can lead to this result.

4.5.4 Business stealing from distant (non-market) competitors

Thus far, I have documented both an expansion of Drug A and Drug B for the treatment of

indication j as Drug B expands into market k 6= j. This supports a halo effect for the entire

class of drugs that treat indication j. In other words, doctors or patients may have increased

demand for a class of drugs given the positive news surrounding alternative approved uses for

just one of the drugs. Importantly, this kind of spillover effect is supported in the literature

(e.g., Garthwaite, 2014; Shapiro, 2018; Sinkinson and Starc, 2019). This implies, however,

that the results are implying either an increase in new consumers or from business stealing

from among other drugs that treat the same indication but are in a different class of drugs

(i.e., the halo effect does not extend to them).
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Recalling that the focus of this study is on markets that treat cancer, it is sensible to

assume that most rationale people diagnosed with cancer are likely to seek treatment. As

such, I believe it is less likely that this increase in demand is coming from patients who would

not have otherwise been treated for their cancer. This leaves us with the possibility that this

class of drugs is stealing business from other classes of drugs that treat the same indication.

For clarity, consider the following five drugs: Femara (Novartis), Arimidex (AstraZeneca),

Aromasin (Pfizer), Fareston (Kyowa Kirin) and Nolvadex (AstraZeneca). The first three

drugs are aromatase inhibitors while the last two drugs are anti-estrogens; all five drugs treat

breast cancer. Importantly for this analysis, the first three drugs are in ATC4 therapeutic

market L2B3 and the last two drugs are in ATC4 therapeutic market L2B1.

To test whether business stealing is occurring from other classes of drugs that treat the

same indication, I re-estimate Equation 4.2 in Table 4.7. The variable of interest is Same

Indication/Different Class Repurposed and an indicator that equals 1 if a drug treats the

same indication as drug i but resides in a different therapeutic class than the drug being

repurposed. In the above example, if Femera (ATC4 L2B3) was repurposed, then the variable

would equal one for the two drugs in market ATC4 L2B1 (i.e., Fareston and Nolvadex). In

the complete specification, Model 3, the coefficient on the variable of interest is negative and

significant at the one percent level, suggesting that the demand expansion I documented

previously is coming at the expense of these more distant or non-market competitors.
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4.5.5 Does drug repurposing impact firm performance?

The extent to which these demand changes impact firm performance should be reflected in

focal firm equity performance. As such, I follow McWilliams and Siegel (1997) and use an

event-study analysis to compute cumulative abnormal returns (CAR). I estimate a market

model over a period of 250 days prior to the event date, t = 0, defined as the approval date

by the FDA for a new indication. Over a three-day event window (t-1 to t+1) I find an

average CAR of 1.52 percent, significant at the 1 percent level. When I multiply this by

market capitalization data from Compustat this translates into approximately $1.4 billion.

I argue that this monetized value of the abnormal return represents the unexpected

change in the discounted value of future cash flows of the focal drug, Drug B. These cash

flows are anticipated to come from several sources. First, there will be the direct impact on

the focal firm, Firm B, as they repurpose Drug B for a new indication, k 6= j. Second, given

the regulatory structure in place, a new indication provides three additional years of data

exclusivity thereby directly increasing the value Drug B in treating the original indication

j. Finally, as discussed above, there can be positive spillovers for Drug B in treating the

original indication j as well as increases in sales due to business stealing from firms outside

of the ATC therapeutic market that sell drugs for indication j.

4.6 Robustness Tests

One possible concern of this study is that the results I am seeing are capturing unobservable

changes of use within the ATC-4 class over time and that these results unrelated to one class
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member’s repurposing. To explore this further, I re-estimate the regression specifications

using a set of “placebo” indications within the relevant ATC-4 class. These placebo groups

include all indications within the relevant ATC-4 class that are unrelated to the newly

repositioned focal drug. For example, consider Erbitux, a drug initially approved for the

treatment of colorectal cancer which was later approved in 2006 to treat Head and Neck

cancer. Since Erbitux resides in ATC class L1X3, I would initially have been interested in

the growth of sales for colorectal cancer for both Erbitux and its competitors in class L1X3

following the drug’s reposition.

To test the robustness of my findings, I consider what happens to sales of unrelated

drug-indications within the relevant ATC class. A finding of positive sales growth among

unrelated indications would suggest that the above findings were driven by factors beyond

the effects of repurposing. To do this, I create a placebo “treatment” group where a drug

is treated if it is approved for indication l 6= j 6= k but in the same ATC4 class as drug i

that expanded into indication k. I then rerun Equation 4.2 on this new “treatment” group.

Results are presented in Table 4.8. The small and statistically insignificant coefficients on

Placebo Competitor suggest that the key results are not driven by unobserved changes within

the competitor class.

4.7 Concluding Remarks

This article provides fresh insight into how an increase of a product’s scope can change

demand for both it and its close competitors. This study looks specifically the repurposing

of a pharmaceutical drug, that is, the case where a company finds new uses for an already
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Table 4.8: Effect of Competitor Expansion on Quantity Sold
With “Placebo” Competitors

2002-2010

Dependent Variable: Log(Quantity Sold)
(1) (2) (3) (4)

log(Price) -0.778∗∗∗ -0.790∗∗∗ -0.790∗∗∗ -0.738∗∗∗

(0.07) (0.07) (0.07) (0.07)

Placebo Competitor -0.153 -0.114 0.143 -0.129
(0.20) (0.20) (0.19) (0.21)

Number of Competitors 0.222 0.390∗∗∗ 0.153
(0.14) (0.15) (0.15)

Off Patent -1.095∗∗∗ -1.208∗∗∗

(0.23) (0.26)

log(Lagged Ad Spending) 0.295∗∗∗

(0.05)

Indication FE Y Y Y Y
Year FE Y Y Y Y
Indication x Year FE Y Y Y Y

Observations 3278 3278 3278 2346
R2 0.641 0.641 0.659 0.734

Robust standard errors in parantheses are clustered at the Drug-Indication
level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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approved therapy. I find that as the company provides proof of additional uses it not only

leads to increased sales for its original uses, but that this excess demand spills over to its

closest competitors. Additional exploration suggests that this excess demand is from business

stealing from its competitors further away in compound similarity.

These findings certainly have implications for drug development and the strategies of

pharmaceutical firms. While the approval of a new use for an already marketed drug does not

generate as much attention as the approval of a new molecule, I find that these supplementary

approvals appear to make doctors and patients more likely to choose that therapy for its

other approved diseases than they were prior to the supplementary approval. Furthermore,

their close competitors appear to also achieve some benefits from this. One hypothesized

reason would be that additional approvals to even one drug in the class leads to greater

legitimacy of that chemical subgroup.

While I believe these results will generalize to industries beyond the pharmaceutical

industry, it will be important to better understand when these positive demand spillovers do

and do not apply to increases in product scope. I will leave these issues to future research.
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Appendix A

A.1 Data Description

The main data source used in this study comes from BioMedTracker, a competitive intelli-

gence and investment analytics database developed by the Business Intelligence Divison of

Informa PLC. BioMedTracker is a subscription service marketed to pharmaceutical compa-

nies and investment analysts seeking a centralized service tracking product development and

regulatory events in the industry.

To access and clean the data for this study, I used BioMedTracker to search for any

drug development events that occured between 1990 to present day. While this study uses

the date of completition of Phase II clinical trials as the relevant date for most analyses,

because the BioMedTracker database does not always have complete date information about

every drug, by searching for any event this allowed me to collect information on any drug

developed by any company with any date-based information. I then dropped any generic

products. This resulted in a dataset of over 41,000 drug-indication observations.

If a product was missing information on the date in which is Phase II trials ended and it

began Phase III clinical trials, I used the start of Phase III clinical trials as the relevant date.

For those that did not continue to Phase III and had a missing end of Phase II date, I used
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additional sources including EvaluatePharma, ClinicalTrials.gov, and textual information

from BioMedTracker to search for and fill in missing dates. In total, I supplemented dates

for 3,230 projects.

A.2 Variable Definitions and Construction

Dependent Variable

Pr(Phase III | Phase II). This is a binary variable equal to 1 if the molecule i went to

Phase III trials for indication j given it had been in Phase II. As described in the framework

above, Phase III trials are often just larger (but much more expensive) versions of Phase II

trials. By conditioning on Phase II participation, one can control for some of the selection

effects occurring up until Phase II. In particular, molecules beginning Phase II are generally

considered safe in the therapeutic dose.

Independent Variables

Post-rejection. This is the coefficient of interest: an indicator equal to 1 if the project (on

a unique molecule) completes Phase II clinical trials following an FDA rejection. I consider

only those projects using a different molecule to mitigate any effects from direct knowledge

spillovers. To explore the effects of rejection over time, I will first consider only the projects

immediately following failure, and then consider the effect on several projects in the future.

Leading Indication. This is an indicator equal to 1 if the indication being pursued

is the “leading indication” for that drug. Firms designate leading indications to be the one

they believe is most promising for the molecule, and therefore, it is the project to first begin
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extensive clinical trials. One would expect a higher probability of continuation for products

containing leading indications, all else equal.

Number of Indications. This is a count of the number of indications a firm is pur-

suing for the molecule. As described previously, a firm expecting to benefit from knowledge

spillovers may be less likely to terminate following Phase II. In the estimation, I consider the

product of Leading Indication and Number of Indications as measuring the full potential for

knowledge spillovers.

ODA. This is an indicator equal to 1 if the drug has received an Orphan Drug desig-

nation. Because designated orphan drugs accrue additional benefits (like shorter Phase III

trials and tax credits on R&D expenditures), a firm may be more likely to pursue a drug

with that designation than the same drug not receiving a designation. However, orphan

drugs by definition are targeting smaller markets, which may make them less desirable than

a molecule targeting a large but under-served population. Orphan drugs constitute 12.6%

of drug-indication pairs in this sample.

Fasttrack. This is an indicator equal to 1 if the drug has been designated for fast-track

approval by the FDA. These drugs are potentially of higher quality and will often have shorter

Phase III trials and faster review times (Thaul, 2008). They also may command higher

revenues because they are serving an unmet need. To receive a Fast-track designation, the

drug must both address a serious or life-threatening condition and address an unmet medical

need. I expect the coefficient on this variable to be positive and significant. 12.2% of this

sample contains drugs with Fast-track status.

Breakthrough. This is an indicator equal to 1 if the drug has received a Breakthrough

Therapy Designation. Products receiving a Breakthrough Therapy Designation have dis-
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played clinical evidence to provide noted improvement over already marketed therapies. Like

Fasttrack products, benefits include shorter clinical trials, shorter regulatory review times,

and increased interaction with the FDA. Preliminary evidence suggests products receiving a

Breakthrough Therapy Designation have shorter clinical development times by nearly 30%

(Chandra et al., 2019). Breakthrough designations are difficult to obtain, and constitute

4.4% of this sample. I expect the coefficient on breakthrough drugs to be positive and

significant.

Num Competitors. This is the number of approved drugs on the market to treat

indication j at time t. Because there is a strong first-mover advantage in this industry,

many firms consider their expected market share when considering the upside of investment.

Past Experience. This is a cumulative count of total Investigative New Drug Applica-

tions (INDs) that firm r has filed at time t. This controls for a firm’s experience level, given

past research has demonstrated that less experienced firms can be less likely to terminate

development projects (Guedj and Scharfstein, 2004) and that past experience is valuable for

clinical trial success (Danzon et al., 2005; Macher and Boerner, 2006). INDs are usually filed

right before a firm conducts Phase I clinical trials. This is similar to a measure employed by

Allain et al. (2016) to control for experience between pharmaceutical firms in their study on

the timing of molecule licensing.

Avg Approval Phase III. This is the average probability of approval for a drug in

its therapeutic class as collected and reported by BioMedTracker. Drugs with historically

higher average probabilities of approval should be more likely to continue to Phase III trials,

all else equal. This will fall out of the specifications containing indication fixed effects.

Molecule Type. This is a vector of fixed effects for 20 different types of molecule
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formulations, ranging from traditional small molecules, to peptides and gene therapies.

Indication. This is a vector of 546 indication fixed effects. Because an indication is

directly linked to demand, these fixed effects (along with the number of competitors) will

proxy for potential revenue. A firm can expect to sell more drugs if they are developing a

drug for a more common indication.

Year. This is a vector of fifteen year-specific fixed effects for the year at the end of

Phase II clinical trials. These control for any macro-trends in the way in which companies

make decisions about Phase III clinical trials. For example, if techniques for judging the

quality of drugs at Phase II get better over time, this may result in all firms pursuing fewer

Phase III clinical trials over time. Year fixed effects mitigate the possibility of conflating

these macro-level trends with the effects of the treatment.

Drug Classification. This is a vector of fixed effects for three types of drug classifica-

tions: new molecular entities (NMEs), NDAs and sNDAs, biologics, and vaccines.

Company. This is a vector of 1,571 company fixed effects including both pharmaceuti-

cal and biotechnology companies. These control for unobserved heterogeneity in initial risk

attitudes for firms in my sample. This is important given past research on the heterogeneity

among firm capabilities in innovation (Arora et al., 2009; Eggers, 2012), capabilities in termi-

nation (Guler, 2018), and the potential for resource redeployment (Lieberman et al., 2017).

Additionally, research exploring investment decisions on characteristics of pharmaceutical

firms has demonstrated certain firms are inherently more risk averse than others (Guedj and

Scharfstein, 2004).1

1See Appendix A.3 for an analysis demonstrating a positive correlation between firm experience and the
capability of “failing fast” in this sample.
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A.3 Ability to Terminate as a Capability

In this paper, I provide evidence that large failures driven by feedback external to the

firm can impact a firm’s future innovation investment decisions. In particular, I show that

they terminate future projects earlier and this leads to higher rates of approval for those

projects that they do pursue. These findings may suggest that the ability to know when

to terminate is a dynamic capability that, if executed properly, could free up firm resources

for other projects. Therefore I want to explore the evidence that the ability to recognize

early on that a project will not be successful is a dynamic capability that can be acquired

and cultivated. The acquisition of capabilities has long been of interest to strategy scholars

(Barney, 1991; Ethiraj et al., 2005) and very recently, scholars have become interested in

the “capability to terminate.” In what may be the first paper to explore this capability,

Guler (2018) notes that the detection of failure itself is a capability often unaccounted for

in literature on organizational learning. Using data on venture capital firms, she finds firms

with a higher termination capabilities are also higher performers. To observe if this holds

within the pharmaceutical industry, I explore associations between termination capabilities

and innovation performance.

To analyze the associations between firm performance and the ability to terminate early,

one must first determine how to measure this capability. For this analysis, I examine how

long it takes a specific firm to terminate a project trial for a product in which they determined

to be unsuccessful. To do this, I consider all projects that reach at least Phase II clinical

trials. Recall that by Phase II, the firm has already determined that its product is not toxic
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to a small sample of healthy volunteers, but are looking to collect data on safety and efficacy

for sick volunteers. The choice to consider projects that made it at Phase II is largely one of

necessity because the data is more complete beginning in Phase II. As the dependent variable

in an OLS regression, I calculate how long it takes, in days, for the firm to terminate this

project. To measure firm performance, I consider the number of FDA approvals the firm has

within the disease class at the year of termination. I then classify high performing firms as

those that have a number of approvals above a certain threshold in that disease class in that

year. The estimated ordinary least squares model is presented in Equation A.1.

log(Time to Termination|Phase II) = α0 + βCapability + ΘX + τm + Φj + µt + εijrt (A.1)

Here, X is again vector of Project-time controls, and τm, Φj, and µt represent fixed effects

for molecule type, indication, and year respectively.

I consider four different measures for a firm’s capabilities at time t in a given therapeu-

tic class. I first consider the log of the number of approvals the firm has in the relevant

therapeutic class at start date of Phase II clinical trials (column 1). Secondly I consider

an indicator for whether or not, at time t, the firm is in the top 75% of firms by number

of FDA approved drugs in that class (column 2). Column 3 employs an indicator for firms

in the top 90% by therapeutic class. And finally, in column four I look at whether or not

the firm is public, and therefore likely has more aggregate experience and success in taking

drugs through clinial trials.

In addition to these measures of firm capabilities, X is a vector of project characteristics
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that include indicators for whether or not the drug has received any beneficial status from

the government (Orphan Drug, Fasttrack, or Breakthrough), the number of indications it is

pursuing, and whether or not it is the first indication to enter Phase II trials (if it is targeting

multiple indications). All of these factors could potentially impact a firm’s incentives to

terminate a project, all else equal. Molecule Type, Drug Classification, and Indication

are all product-level fixed effects. Also included is a vector of year fixed effects for the

year of termination. This should control for any macro-level conditions or information that

incentivised firms to terminate.

Table A1 presents the results from this estimation, under the four different measures of

a high performing firm. These estimates provide some evidence that there is an association

between firm performance (as measured in FDA approved products) and its ability to ter-

minate a project more quickly. Specifically, a 1% increase in approved molecules for that

therapeutic class leads to a 2.5% reduction in days in advanced clinical trials. Firms in the

top 75% of the distribution of FDA approvals for a therapeutic class spend nearly 8% less

time in clinical trials, and those in the top 90% spend over 10% less time. Public firms in

general spend 12% fewer days in advanced clinical trials. In addition, the coefficients on all

other variables coincide with what one would expect. Molecules that have beneficial status

(Orphan Drug, Breakthrough Designation, or Fasttrack Designation) spend a longer time in

clinical trials all else equal, likely because the benefits of approval are greater or the costs

of development are lower. Leading indications and molecules with multiple indications also

spend significantly longer, likely because the learning benefits of clinical trials are greater

for these products.

While these findings cannot be interpreted causally, they add additional evidence to the
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Table A1: Time to Termination
2000-2018

Dependent Variable: Log(Number of Days in Phase II)
(1) (2) (3) (4)

Capability Definition: log(Approvals) Top 75% Top 90% Public

Capability -0.0242∗∗∗ -0.0766∗∗∗ -0.104∗∗∗ -0.120∗∗∗

(0.01) (0.02) (0.03) (0.03)

ODA 0.252∗∗∗ 0.293∗∗∗ 0.292∗∗∗ 0.299∗∗∗

(0.05) (0.04) (0.04) (0.04)

Breakthrough 0.302∗∗ 0.270∗∗ 0.259∗∗ 0.261∗∗

(0.15) (0.12) (0.12) (0.12)

Fasttrack 0.347∗∗∗ 0.327∗∗∗ 0.324∗∗∗ 0.325∗∗∗

(0.06) (0.04) (0.04) (0.04)

Lead Ind*Num Inds 0.0616∗∗ 0.0687∗∗∗ 0.0695∗∗∗ 0.0716∗∗∗

(0.03) (0.02) (0.02) (0.02)

Constant 5.221∗∗∗ 5.503∗∗∗ 5.635∗∗∗ 5.486∗∗∗

(0.43) (0.40) (0.40) (0.40)

Indication FE Y Y Y Y
Year FE Y Y Y Y
Molecule Type FE Y Y Y Y
DrugClass FE Y Y Y Y

Observations 4582 6058 6058 6058
R2 0.353 0.342 0.343 0.343

The dependent variable is the log of the number of days a product was in Phase II clinical
trials before voluntary termination by the firm. Capabilities are measured as follows: (1)
The log of the number of approvals the firm has in the relevant therapeutic class at start
date of Phase II clinical trials; (2) An indicator for whether or not, at time t, the firm is
in the top 75% percent of number of FDA approved drugs in that class; (3) An indicator
for the top 90% of number of FDA approved drugs in that class; (4) Whether or not the
firm is public, and therefore likely has more experience taking drugs through clinical trials.
Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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results presented by Guler (2018) showing the ability to terminate quickly may be a dynamic

capability associated with a competitive advantage. Furthermore, it supports findings by

Guedj and Scharfstein (2004) that younger firms (who have possibly not yet developed this

capability) will hold onto innovation projects longer for lack of a better outside option.

A.4 Effect of Failure Given Capabilities

One characteristic of the pharmaceutical and biotechnology industries is the tendency for

firms to gravitate towards specializing in certain therapeutic areas. For example, large phar-

maceutical firm Allergan does the majority of its research in ophthalmology and neurology,

while small biotechnology firm SillaJen Biotherapeutics specializes exclusively in oncology.

Even large and historically successful pharmaceutical firms can terminate research for dis-

eases in which they grow to believe they lack capabilities. In 2018, the pharmaceutical com-

pany Pfizer garnered attention when they terminated all of their projects for Alzheimer’s

Disease, laying off over 300 people in their neuroscience division. In a statement, the com-

pany described it as “an exercise to re-allocate spending across our portfolio, to focus on

those areas where our pipeline, and our scientific expertise, is strongest” (Reuters, 2018).

There has been some recent significant research on the role that failure may play on

future firm behavior depending on whether or not the failed product was within a class in

which the firm had experience. Using data from the mutual fund industry, Eggers and Suh

(2019) find that failure in domains in which the firm is particularly inexperienced results in

retreat from creating new products in this domain, and toward those which they have more

experience. Conjointly, they find that failure in areas where the firm has experience does
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not cause these changes, likely because the firm may have a better understanding of what

caused the failure.

In this analysis, I explore if the effect of an FDA rejection is more pronounced on projects

in which the firm has had significant experience. To do this empirically, I create a variable

that flags the therapeutic class where the firm has most success. Recall that the data

divides up indications into 20 therapeutic classes. To determine where a firm is likely most

capable, I consider all of its Phase III clinical trials prior to receipt of the CRL and calculate

the percentage of those that were approved by class. I assume the two therapeutic classes

in which firms have the most approvals are their specialties. In the event of a tie, the

specialty is flagged as the therapeutic category with the highest percentage of Phase III

clinical trials that were approved. For example, this algorithm indicated Merck & Company’s

specialties to be “Infectious diseases” (where they had 11 approvals prior to their CRL) and

“Autoimmune/immunology” (six approvals). FDA rejections for drugs in a firm’s specialty

class account for roughly half of all rejections in the data. Table A2 displays the list of

therapeutic classes with the corresponding number of firms in my sample that have it flagged

as their specialty.

To test this, I re-estimate Equation 2.1 but with the addition of an interaction term for if

the firm’s FDA rejection was within a therapeutic class in which the majority of its approvals

are from. Table A3 displays the estimated coefficients.

These results do not completely coincide with those found in Eggers and Suh (2019) who

argue that “negative feedback in experienced domains... will not lead to a significant ad-

justment” (312) because organizations can rationalize those failures as aberrations. In Table

A3, the coefficients on Post-rejection x specialty are slightly positive though statistically in-
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Table A2: Number of Companies by Specialty

Therapeutic Class Number of Companies

Allergy 10
Autoimmune/immunology 50

Cardiovascular 47
Dermatology 14
ENT/Dental 1

Endocrine 52
Gastroenterology 17

Hematology 32
Infectious disease 70

Metabolic 25
Neurology 102

Obstetrics/Gynecology 3
Oncology 121

Ophthalmology 26
Orthopedics 2
Psychiatry 34

Renal 5
Respiratory 11

Rheumatology 6
Urology 6

This table counts the number of companies in the sample that
have the specified therapeutic class as their specialty given the
following algorithm: I assume the two therapeutic classes in
which firms have the most approvals are their specialties. I
also consider all of a firm’s Phase III clinical trials and cal-
culate the percentage of those that were approved by class.
In the event of a tie, the specialty is flagged as the therapeu-
tic category with the highest percentage of Phase III clinical
trials that were approved. Therapeutic Class is defined by
BioMedTracker.
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Table A3: The Probability of a Product in Phase II Continuing to Phase III
When Rejection is for Therapeutic Class in Firm’s Specialty

2000-2018

Dependent Variable: Continue to Phase III
(1) (2) (3)

Post-rejection x specialty 0.0915 0.0631 0.0509
(0.06) (0.06) (0.06)

Post-rejection -0.112∗∗∗ -0.0950∗∗∗ -0.0994∗∗∗

(0.04) (0.04) (0.04)

Indication FE N Y Y
Year FE Y Y Y

Molecule Type FE Y Y Y
Drug Classification FE Y Y Y

Company*Therapeutic Class FE N N Y
Observations 5938 5938 5938

R2 0.275 0.395 0.554

The dependent variable is equal to 1 if a product began Phase III clinical trials. Post-
rejection is an indicator equal to 1 if it was the next product to finish Phase II following
the receipt of a CRL for a different molecule in the therapeutic category for which it
has the most FDA approvals. Specialty class is an indicator equal to 1 if the rejection
was for a project within one of the two therapeutic classes in which firms have the
most approvals at time t. Robust standard errors in parentheses and clustered at the
Company*Therapeutic Class level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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significant. This suggets that a firm’s experience or capabilities may not insulate it from the

average effects of rejection on firm behavior. Given the setting of this study, this effect is not

entirely surprising. A firm likely expects occasional poor performance in the mutual fund

industry, where they have little control over external forces. However, in this study, firms

submit an application to the FDA explicitly because they (and outside analysts) believe it

will be approved. This tension between beliefs and reality will likely cause a bigger response

from the firm regardless of whether or not the rejection was within a therapeutic class in

which they had considerable experience.

A.5 Timing of Termination Following Rejection

If the effect seen on future investment decisions following FDA rejection was a function of

only financial considerations, it is plausible that firms would begin terminating Phase II

clinical trials very shortly after the FDA rejection. Recall that the mechanism for the effect

proposed here is that following rejection, firms become less likely to continue in investing in

a product after seeing the Phase II data. To explore this rigorously, I analyse if the time

that terminated projects spent in Phase II after FDA rejection is statistically equivalent to

the time spent in Phase II clinical trials before rejection, ceteris paribus.

To test this, I consider how long it took a firm to terminate a project in Phase II trials,

provided that it was eventually terminated. I subset the data to those eventually terminated

Phase II clinical trials and calculate the log of the number of days spent in Phase II clinical

trials. I then run a regression with Log(Days in Phase II) as the dependent variable and an

indicator equal to 1 if the project was the next Phase II termination immediately following
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the FDA rejection. The fixed effects and relevant controls from the previous regressions are

also included. Results are presented in Table A4.

The coefficients on Post-rejection are all statistically insignificant from zero, suggesting

that there was no observable difference in the time to terminate Phase II projects just

following rejection from the FDA. In addition, the coefficients on the controls are directionally

as one would expect. For example, the coefficient on Lead Ind*Num Inds is positive. If a

firm is pursuing other indications for the same molecule, it will be more likely to hold onto a

project longer due to the possibility of acquiring additional information about the molecule

to be applied to other indications.

A.6 Exploring the Effect of Phase III Terminations fol-

lowing Abnormal Returns

In exploring the effects of phase III failures on future investment in product development,

I had considered all failed trials that had lasted longer than a certain threshold of time.

However, the endogeneity problems described in Section 2.5.2 could still be of concern in

this case and perhaps driving the “non-result” seen in Table 2.9. In this section, I will test

the robustness of this result by looking at those trials that lasted over 50% of the average

length of time within the class and resulted in abnormal negative returns to the company’s

stock. As described in Section 2.5.2, those failures that lead to a signifcantly large drop in

a company’s value may be plausibly the most “surprising”, both to investors and the firm.

To probe the robustness of the Phase III failure results, I first limit the sample to only
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Table A4: Time Terminated Projects are in Phase II Following FDA Rejection
2000-2018

Dependent Variable: log(Days in Phase II)
(1) (2) (3)

1 Product Later 2 Products Later 3 Products Later

Post-Rejection -0.00519 0.110 -0.0336
(0.15) (0.12) (0.12)

ODA 0.0923 0.0931 0.0930
(0.12) (0.12) (0.12)

Breakthrough -0.215 -0.220 -0.216
(1.04) (1.04) (1.04)

Fasttrack 0.0874 0.0900 0.0870
(0.14) (0.14) (0.14)

Lead Ind*Num Inds 0.0367∗∗∗ 0.0366∗∗∗ 0.0367∗∗∗

(0.01) (0.01) (0.01)

Num Competitors 0.00130 0.00132 0.00130
(0.00) (0.00) (0.00)

Past Experience -0.0168∗∗∗ -0.0168∗∗∗ -0.0168∗∗∗

(0.00) (0.00) (0.00)

Constant 8.474∗∗∗ 8.525∗∗∗ 8.500∗∗∗

(0.68) (0.68) (0.67)
Year FE Y Y Y
Molecule Type FE Y Y Y
DrugClass FE Y Y Y
Company*Therapeutic Class FE Y Y Y

Observations 3054 3054 3054
R2 0.724 0.724 0.724

Post-rejection is an indicator equal to 1 if it was the next 1, 2 or 3 products to finish Phase II
following the receipt of a CRL and is not the same molecule as the failed product. Robust standard
errors in parentheses and clustered at Company*Therapeutic Class level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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those publically traded firms and the failed Phase III trials that lasted over 50% of the

average length of time within the class. By including only those failed trials that plaubily

lasted the full length of time, the amount spent on the drugs development will be nearly

in line with those drugs that received a CRL. This allows for a closer “apples to apples”

analysis of the differential effects of failure and rejection.

To build a dataset of surprising terminations, I use stock market data from CRSP and

consider only Phase III terminations that resulted in statistically significant negative ab-

normal returns. This results in a sample of 23 terminations. Then, using this sample of

terminations, I estimate regression Equation 2.3, where Post-termination = 1 if molecule i

treating indication j was the next project in the pipeline to finish Phase II clinical trials.

Table A5 displays the results. As in Table 2.9, the coefficient statistically insignificant from

0, suggesting no change in propensity to continue investing following these surprising Phase

III failures.
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Table B1: Impact of Increased Demand on Change in Probability of
Investment in Phase III Clinical Trials

Logit DDD Mode
2000 - 2008

Dependent Variable: Indicator equal to 1 if Received Phase III Investment
(1) (2) (3) (4)

Medicare*Payer*Post 11.71∗∗∗ 11.24∗∗∗ 11.83∗∗∗ 25.70∗∗∗

(1.01) (1.13) (1.14) (1.94)
Medicare 0.617 0.529 0.758 0.882

(0.68) (0.69) (0.70) (0.95)
Payer 12.31∗∗∗ 11.95∗∗∗ 12.82∗∗∗ 26.80∗∗∗

(0.83) (0.89) (0.94) (1.82)
Post -1.771∗∗ -0.913 -1.284 -0.901

(0.82) (1.06) (1.06) (1.27)
Payer*Post -11.61∗∗∗ -11.11∗∗∗ -11.69∗∗∗ -25.84∗∗∗

(0.95) (1.04) (1.05) (1.95)
Medicare*Post -0.503 -0.268 -0.233 -0.378

(0.79) (0.81) (0.82) (1.10)
Medicare*Payer -12.01∗∗∗ -11.56∗∗∗ -12.31∗∗∗ -25.58∗∗∗

(0.86) (0.97) (0.99) (1.72)

Year FE N Y Y Y
Drug Classification FE N Y Y Y
Company FE N N N Y

Observations 1779 1779 1773 1365

The dependent variable is equal to 1 if a product began Phase III clinical trials given
that it completed Phase II clinical trials. The variable Medicare is an indicator equal
to 1 if the disease being treated is one that will be subject to any Medicare Part D
reimbursement. This variable Payer is an indication equal to 1 if the drug is designed
for the pharmacy, rather than hospital, market. The variable Post is an indicator equal
to 1 if the Phase II trial ends after November 23, 2003, the date in which the MMA
was signed into law. Note that Medicare Part D did not go into effect until January 1,
2006. Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B2: Impact of Increased Demand on Change in Probability of
Approval Following Investment in Phase III Clinical Trials

Logit Model
2000 - 2008

Dependent Variable: Indicator equal to 1 if Received FDA Approval
(1) (2) (3) (4)

Medicare*Payer*Post -2.053∗ -2.153∗∗ -2.217∗∗ -2.738∗

(1.08) (1.08) (1.08) (1.55)
Medicare -1.042∗ -1.118∗ -0.892 -0.930

(0.62) (0.64) (0.65) (1.05)
Payer -1.522 -1.578 -1.390 -2.155

(0.99) (1.00) (0.93) (1.53)
Post -0.937 -0.938 -1.224 -1.109

(0.63) (0.78) (0.83) (1.13)
Payer*Post 2.141∗ 2.199∗∗ 2.353∗∗ 2.755∗

(1.11) (1.10) (1.08) (1.54)
Medicare*Post 0.814 0.935 0.917 0.730

(0.64) (0.63) (0.64) (0.84)
Medicare*Payer 1.390 1.489 1.416 2.227

(0.98) (0.97) (0.89) (1.48)

Year FE N Y Y Y
Drug Classification FE N Y Y Y
Company FE N N N Y

Observations 994 994 994 846

The dependent variable is equal to 1 if a product was approved by the FDA
and 0 if it was terminated during or after Phase III clinical trials. The variable
Medicare is an indicator equal to 1 if the disease being treated is one that
will be subject to any Medicare Part D reimbursement. This variable Payer is
an indication equal to 1 if the drug is designed for the pharmacy, rather than
hospital, market. The variable Post is an indicator equal to 1 if the Phase II
trial ends after November 23, 2003, the date in which the MMA was signed into
law. Note that Medicare Part D did not go into effect until January 1, 2006.
Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B3: Impact of Increased Demand on Change in Probability of
Investment in Phase III Clinical Trials

Logit DDD Mode
Dropping Oncology Projects

Dependent Variable: Indicator equal to 1 if Received Phase III Investment
(1) (2) (3) (4)

Medicare*Payer*Post 12.13∗∗∗ 11.00∗∗∗ 12.11∗∗∗ 26.55∗∗∗

(0.95) (1.34) (1.37) (2.00)
Medicare 0.396 0.330 0.560 0.500

(0.66) (0.73) (0.76) (0.98)
Payer 13.24∗∗∗ 12.15∗∗∗ 13.48∗∗∗ 27.87∗∗∗

(0.74) (1.01) (1.08) (1.95)
Post -1.919∗∗ -1.209 -1.521 -1.348

(0.81) (1.17) (1.17) (1.41)
Payer*Post -12.58∗∗∗ -11.35∗∗∗ -12.37∗∗∗ -27.12∗∗∗

(0.84) (1.15) (1.18) (2.07)
Medicare*Post -0.0408 0.168 0.171 0.0790

(0.78) (0.84) (0.86) (1.09)
Medicare*Payer -12.49∗∗∗ -11.40∗∗∗ -12.66∗∗∗ -26.40∗∗∗

(0.81) (1.22) (1.24) (1.80)

Year FE N Y Y Y
Drug Classification FE N Y Y Y
Company FE N N N Y

Observations 1341 1303 1297 963

The dependent variable is equal to 1 if a product began Phase III clinical trials given
that it completed Phase II clinical trials. The variable Medicare is an indicator equal
to 1 if the disease being treated is one that will be subject to any Medicare Part D
reimbursement. This variable Payer is an indication equal to 1 if the drug is designed
for the pharmacy, rather than hospital, market. The variable Post is an indicator equal
to 1 if the Phase II trial ends after November 23, 2003, the date in which the MMA
was signed into law. Note that Medicare Part D did not go into effect until January 1,
2006. Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B4: Impact of Increased Demand on Change in Probability of
Approval Following Investment in Phase III Clinical Trials

Logit Model
Dropping Oncology Projects

Dependent Variable: Indicator equal to 1 if Received FDA Approval
(1) (2) (3) (4)

Medicare*Payer*Post -2.583∗∗ -2.539∗∗ -2.487∗∗ -3.564∗∗

(1.06) (1.05) (1.02) (1.52)
Medicare -1.056∗ -1.165∗ -0.913 -1.354

(0.61) (0.65) (0.66) (1.12)
Payer -1.764∗ -1.728∗ -1.460 -2.350

(0.97) (1.00) (0.92) (1.59)
Post -1.179∗ -1.267∗ -1.483∗ -1.666

(0.62) (0.75) (0.80) (1.15)
Payer*Post 2.383∗∗ 2.319∗∗ 2.414∗∗ 3.077∗

(1.10) (1.10) (1.07) (1.59)
Medicare*Post 1.199∗ 1.310∗∗ 1.193∗ 1.246

(0.63) (0.63) (0.63) (0.86)
Medicare*Payer 1.674∗ 1.653∗ 1.483 2.780∗

(0.97) (0.98) (0.90) (1.54)

Year FE N Y Y Y
Drug Classification FE N Y Y Y
Company FE N N N Y

Observations 808 808 808 685

The dependent variable is equal to 1 if a product was approved by the FDA
and 0 if it was terminated during or after Phase III clinical trials. The variable
Medicare is an indicator equal to 1 if the disease being treated is one that
will be subject to any Medicare Part D reimbursement. This variable Payer is
an indication equal to 1 if the drug is designed for the pharmacy, rather than
hospital, market. The variable Post is an indicator equal to 1 if the Phase II
trial ends after November 23, 2003, the date in which the MMA was signed into
law. Note that Medicare Part D did not go into effect until January 1, 2006.
Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B5: Impact of Increased Demand on Change in Probability of
Investment in Phase III Clinical Trials and Probability of Approval

Logit Model
Dropping Oncology Projects

Dependent Variable: Indicator equal to 1 if Received Phase III Investment
Fewer than 6 Divisions 6 or More Divisions

(1) (2) (3) (4)

Medicare*Payer*Post 11.68∗∗∗ 27.98∗∗∗ -14.27∗∗∗ -14.39∗∗∗

(2.14) (3.13) (2.25) (1.43)
Year FE Y Y Y Y
Drug Classification FE N Y N Y
Company FE N Y N Y
Observations 413 287 562 555

Dependent Variable: Indicator equal to 1 if Received FDA Approval
Fewer than 6 Divisions 6 or More Divisions

(1) (2) (3) (4)

Medicare*Payer*Post -1.876 -0.771 -3.326∗ -3.885∗∗

(1.74) (2.02) (1.73) (1.80)
Year FE Y Y Y Y
Drug Classification FE N Y N Y
Company FE N Y N Y
Observations 331 200 477 477

The dependent variable is equal to 1 if a product began Phase III clinical trials given
that it completed Phase II clinical trials. The variable Medicare is an indicator equal
to 1 if the disease being treated is one that will be subject to any Medicare Part D
reimbursement. This variable Payer is an indication equal to 1 if the drug is designed
for the pharmacy, rather than hospital, market. The variable Post is an indicator equal
to 1 if the Phase II trial ends after November 23, 2003, the date in which the MMA
was signed into law. Note that Medicare Part D did not go into effect until January 1,
2006. Robust standard errors in parentheses and clustered at firm level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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