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A HYBRID 3D ELECTROMAGNETIC MODELLING SCHEME 

K. H. Lee,* D. F. Pridmore,+ and H. F. Morrison* 

Abstract 

This paper presents an efficient numerical method for the elec-

tromagnetic scattering of arbitrary three-dimensional local inhomo-

geneities buried in a uniform or two-layered earth. 

In this scheme the inhomogeneity is enclosed by a volume whose 

conductivity is discretized by a finite element mesh and whose boun-

dary is only a slight distance away from the inhomogeneity, The 

scheme uses two sets of independent equations. The first is comprised 

of finite element equations derived from a variational integral, and 

the second is a methematical expression for the fields at the boundary 

in terms of the electric fields inside of the boundary. The Green 1 s 

function is used in the derivation of the second set of equations. An 

iterative algorithm has been developed using these two sets of equations. 

The solutions are the electric fields at nodes inside the finite ele-

ment boundary, The scattered fields anywhere may then be obtained by 

performing volume integrations over the inhomogeneous region. 

This scheme has been used for modelling three-dimensional inhomo-

geneities in plane wave and magnetic dipole studies. The results con-

firm earlier model analyses using the finite element technique. 

'~Engineering Geoscience, University of California, Berkeley, California, 
+Western mining Corp., Exploration Division, 55 MacDonald Street. 
Kalgoorlie, W, A,, Australia 6430, 
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Introduction 

A limited number of numerical solutions for 3D electromagnetic (em) 

problems has been discussed in geophysical literature. These solutions 

have been obtained using either the integral equation or finite element 

(finite difference) techniques. Lines and Jones (1973) and Reddy et al. 

(1977) have presented solutions to 3D MT problems using finite difference 

and finite element techniques, respectively. Pridmore (1978) reported 

iterative solutions to 3D electric and em problems using the finite element 

technique. The drawbacks of this technique are: 1) the number of 

equations is so large that the computer cost is prohibitive, 2) numerical 

derivatives of the obtained solution are not always reliable. These 

difficulties can be avoided using the integral equation technique provided 

that the inhomogeneity is of finite extent. The application of the 

integral equation technique to 3D em problems has been reported by Hohmann 

(1975), Weidelt (1975), and Meyer (1977). In this technique the number 

of equations is basically the same as the number of inhomogeneous elements, 

but the matrix is full and generally asymmetric. 

A hybrid scheme was introduced by Scheen (1978) which uses a com~ 

bination of these techniques. A variational integral in terms of magnetic 

fields is initially formulated over a region discretized by a finite 

element mesh. A system of linear equations is derived from the 

variational integral. Using integral relations, a different set of 

equations is derived for the scattered magnetic fields at the finite 

element boundary positioned some distance away from the inhomogeneity. 

To derive the second set of equations the scattering current must first 

be found through a numerical 1./ x H operation. An algebraic substitution 

of the second set of equations into the first set leads to a combined 

set of linear equations, from which the magnetic fields inside of the 



finite element boundary are finally obtained. This is the direct 

hybrid scheme. The matrix for the combined set of equations is full and 

asymmetric. The size of the matrix is slightly larger than the one 

associated with the integral equation technique, but the scheme does not 

need to evaluate Green's functions between elements within the finite 

element boundary, thus avoiding the problem of singular cell integration. 

The second approach discussed by Scheen is an iterative scheme which uses 

the same sets of equations. Initial field values are assigned along the 

boundary and the first set of finite element equations is solved. Scat-

tered magnetic fields are then calculated using the second set of equa-

tions, These scattered fields are substituted for the boundary fields 

and the process is repeated iteratively until changes in the boundary 

values become insignificant. 

In the present approach we have solved the problem iteratively in 

terms of the secondary electric fields within the mesh. The scattering 

currents can then be obtained directly by adding appropriate primary 

electric fields to the finite element solutions and by multiplying the 

results by the anomalous conductivities. This process avoids the 

difficulty of taking the numerical curl operation which would otherwise 

be necessary when the solution is derived in terms of magnetic fields. 

Formulations of finite element equations and integral relations 

Initially, a set of finite element equations is derived from a 

variational integral. The variational integral may be formulated using 

either the total electromagnetic energy contained in the system (Morse 

and Feshbach, 1953) or a mathematical function defined by the minimum 

theorem (Stakgold, 1968). In this paper the minimum theorem has been 

applied to derive a system of finite element equations. 

·wt 
Maxwell's equations for an eJ time dependent system become 
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A-

\1 X E zH M s (1) 

and 

\1 
A-

J X H yE + s 
(2) 

A 

where z jw~ and y ~ o+jwe, and M and J are impressed magnetic and 
s s 

electric sources. The domain equation for the electric field in the 

presence of J alone is derived from (1) and (2) as 
s 

J 
s 

The minimum theorem provides the corresponding functional to 

equation (3) as 

(3) 

(4) 

\IX A 

This is a variational integral where the operator (V x--;;:- + y) is self z . 

adjoint. It can be shown (Pridmore, 1978) that the solution to equation 

(3) corresponds to a stationary point of the functional F(E). Applying 

the vector identity, V·AXB = B•\/XA-A·VxB, and the divergence theorem, 

equation (4) becomes 

L [I (-VxE:VxE + yE·E + 2E·J )dv + J (ExH)· l 
. z s 
1 v. s. 

(5) 

1 ]_ 

where the volume has been divided into a number of smaller ones over 

which a is constant. The surface integrals along adjacent boundaries 

must cancel because the tangential components of E and H are continuous. 

At the external boundary, the surface integrals will not contribute to 

the variation of F(E). With proper boundary values prescribed, the 

tangential components of either E or H, the variation off (ExH)·ds 
s 

would vanish. Another useful condition commonly encountered is 
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ExH·n = 0, namely the natural boundary condition. If the electromagnetic 

fields are either symmetric or antisymmetric across a certain surface, 

this surface may be called a natural boundary, and no power is transmitted 

across this surface. Thus, the effective variational integral is the 

volume integral part of equation (5). 

(6) 

The functional is in terms of the total electric fields. If we know 

the primary electric field, the field that would exist in the presence 

of a horizontally layered half space alone, the functional could 

alternatively be formulated in terms of the secondary electric fields. 

According to the principle of superposition, E = EP+Es• we can derive 

the domain equation for the secondary electric field as 

VxE 
\7 X~+ yE 

z s 
(7) 

where subscripts sand p denote "secondary" and "primary," respectively. 

and 6y is the difference in y between the medium used for the primary 

field calculation and the inhomogeneity. The corresponding functional 

F(E ) can also be written as 
s 

F(E ) 
s 

Using hexahedral elements and a tri-linear base function which 

describes the field behavior in each element, the secondary electric 

(8) 

fields in a particular element e may be approximated by (Zienkiewicz, 

1971) 



T (N N ···N )(E E ···E ) 1 2 8 -sl-s2 -s8 

for each component of the electric fields. The shape function N.,j = 1~8, 
J 

are tri~linear, and E .,j = 1~8, are the unknown secondary fields at 
--sJ 

eight corners of a hexahedron. After substituting the approximation into 

(8), and carrying out volume integrations with continuous stacking of 

these elementary entries onto a system matrix K, we obtain the following 

matrix representation for the functional F(E ); 
--s 

(9) 

The stationary point of functional F can be found by setting the first 

derivative of F with respect of E to zero. The first derivative of 
-s 

F is equivalent to the first variation of F. In either case, a system 

of matrix equation 

KE -s 
~s (10) 

is generated. This is the finite element equation. The system matrix 

K is banded and symmetric. For a grid system of 10 x 10 x 10 nodes in 

each direction, the total number of equations is 3.000 with a maximum 

half bandwidth of 336 including the diagonal entry. The memory require~ 

ment for this system is roughly 1 million complex words. This is about 

the maximum size for the iterative hybrid scheme for which the economic 

aspects are practical. 

To solve equation (10) we must provide both the primary fields 

inside of the inhomogeneity and the secondary fields at nodes on the 

finite element boundary. The primary field solution for a layered 

half space has been given by Wait (1962). Quon (1963), Frischknecht 



(1967), Dey and Ward (1970), and Ryu et al. (1970), to list a few. 

Using A and F vectors, Pridmore (1978) derived a solution for a two-

layered half space. The hybrid scheme presented here uses the same 

primary field. 

To find the secondary field scattered by an inhomogeneity, let us 

-s first consider a point source of current, J , in the lower half space of a 

two~layered earth, Following Harrington (1961, p. 77), the divergenceless 

vector H is the curl of an arbitrary vector A, H = VxA, then, A satisfies 

the following inhomogeneous wave equation in rectangular coordinates; 

2~ 2- -s ~ -
VA+ k A= -J 8(r~r') 

2 AA - ~ 
where k = -zy, and r and r' are the positions of observation and 

source, respectively. The particular solution to (11) is given by 

and fields caused by the particular solution XP are also given by 

-p ~p 
H = \} X A • 

(11) 

(12) 

(13) 

{14) 

In the presence of horizontal interfaces, we must consider the secondary 

field caused by the reflections at these boundaries. An appendix is 

provided to show the derivation of electric field in a two-layered 

half space and magnetic field in the air. In the integral equation 

technique the conductive inhomogeneity is simulated by a collection of 

electric current sources distributed over the volume occupied by the 

inhomogeneity. This current is called the scattering current 

and is defined by the product of ~y and the total electric field 



(Harrington, 1961). The true boundary value of the hybrid scheme is 

the secondary field due to the inhomogeneity. Therefore, the boundary 

value is the volume integral of the electric field given by (A-18) with 

Js(r') replaced by 6y(r'){E (r') + E (r')}. Thus. 
p s 

(15) 

Using the same grid system that gives rise to the finite element 

equation (10), we can approximate the integral (15) by 

(16) 

where 6y(r 1
) is assumed to be a constant in each hexahedron. Then 

the scattered field at the boundary may be written in a matrix form as 

GEi + S 
-s p 

(17) 

where superscripts band i denote "boundary" and "inhomogeneous region," 

respectively, and S is an additional source vector due to the primary 
p 

field. G is an mxn matrix whose entries may be obtained by integrating 

rE(r;r') N(r') over each elementary volume. Here, N(r 1
) is the same. 

shape function used for the derivation of the finite element equation 

(10), and m and n are the numbers of nodal points on the boundary and 

inside of the boundar~respective1y. If we partition the finite element 

equation (10) into 

(18) 

then the upper part of equation (18) is 

i b 
K .• E + K.,JJ;. = -S .• 

11-s 1v S 1 
(19) 



Substituting equation (17) into (19), we find 

i and the solution for E becomes -s 

-1 
- (K .. +K.bG) (S .+K.bS ) , 

11 1 1 1 p (20) 

This is the direct hybrid scheme for the secondary electric fields inside 

of the boundary. The matrix (K .. +K.bG) is asymmetric and full, and of 
11 1 

order n. 

The iterative hybrid scheme is initiated by solving the finite 

element equation (19) using an initial guess for the boundary values. 

Thus, the initial secondary field solution becomes 

i -1 b E = -K .. (S.+K.~ ) , 
-s 11 1 1~s 

(21) 

A complex version of a direct solution algorithm developed by Reid (1972) 

has been used. With this initial solution inside of the inhomogeneity, 

the scattered field is computed at the boundary using equation (17). 

The volume integral of Green's function is carried out using one- or 

two-point Gaussian quadrature. The Green's dyadics computed during the 

first iteration are stored and repeatedly used as iteration is continued. 

The weighting associated with the evaluation of new boundary value has 

been a major problem in this scheme. The boundary value for the ith 

iteration is given by 

(22) 

* where E is the scattered field given by (17), and W is a weighting -s 

coefficient. A number of different values of W has been tested on a 

simple 3D model. The model is a brick of size 1 km x 2 km x 2 km in 



I Eyl 
b 
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Figure L Convergence diagram. 



x,y, and z respectively buried at a depth of 1 km in a uniform half space 

of 100 ohm-m resistivity. The resistivity of the body is 5 ohm-m, and the 

frequency used is 1.0 Hz. The incident field is a TE mode plane wave of 

amplitude E 
y 

1.0 volts/meter, Figure 1 shows the sum of the absolute 

changes in E versus the number of iterations for different weighting coef­
y 

ficients. For this particular model the solution converges fastest when the 

coefficient is 0.2. The test allowed us to deduce a general rule of thumb 

which may or may not be applied to another model of different conductivity 

contrast. All the model results presented in this paper have been obtained 

using a weighting coefficient of 4.0 divided by the conductivity contrast 

(20, for the test model) of each model. 

For an additional convergence check, a number of solutions have been ob-

tained foran MT model by changing the number of cells employed. The model 

is a conductive brick of 1 km x 2 km x 2 km in size buried in a uniform 

half space of 100 ohm-m resistivity. The depth from the surface to the top 

of the body is 0.5 km, and the resistivity of the body is 0.5 ohm-m. The 

incident field is a plane wave with the electric field polarized either in 

they-direction (TE mode) or in the x-direction (TM mode). At a frequency 

of 0.01 Hz, the apparent resistivity profiles obtained for the TE mode 

incident and the TM mode incident have been plotted in Figures 2 and 3, 

respectively. Each figure contains three profiles obtained using a varying 

number of cells: 40, 105, and 168. The convergence is reasonably good even 

though the conductivity contrast of the model is relatively high. 

Results and applications 

The electromagnetic response of several models have been obtained 

with the iterative hybrid scheme. The source used is a magnetic dipole 

-10-
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Figure 3. Apparent resistivity, Pxy• for the conductive 
brick model. 
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located on or above the surface of the earth. The required number of 

iterations differs from one model to the other, but has been between 30 

and 50. 

The first model considered is a scale tank model, the analog result 

of which was reported by Frishknecht (1975). The model consists of a 

1.82 ohm-m conductor of size 500 m x 3,000m x 500 m buried in a uniform 

half space of 13.7 ohm-m resistivity. The depth to the top of the body 

is 200m. An array of horizontal loops separated by 2,000 m is moved on 

the surface of the earth across the top of the center of the body. The 

frequency used is 0.15 Hz. The in-phase and quadrature parts of the 

normalized H versus the array center have been plotted in Figure 4. The 
z 

hybrid solution appears to have a maximum in-phase anomaly of twice as much 

as that shown by the tank model. The symmetric peaks in the quadrature 

response on the sides of the anomaly are not observed in the hybrid solution. 

The integral equation solution obtained for the same model (Meyer, 1977) also 

failed to show these peaks. This may indicate a certain limitation of 3D 

numerical techniques in general. The current induced in the half space 

channels in and out of the body in a manner essentially similar to DC. 

Independent from the channelling current, an eddy current is induced in 

the body and tends to be concentrated along the surface of the body and 

may have a steeper gradient. Hence, using a limited number of elements 

simulating a three~dimensional body, accurate solutions for the fields 

associated with these induction currents would be difficult to obtain. 

Considering another aspect of interpretational geophysics, the typical 

numerical error shown in Figure 4 would not cause serious problems, i.e., 

the errors contained in field data would be usually greater than this, at 

least in the quadrature case. 

-13-
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The next model is a 1 ohm~m conductor of size 30 m x 120 m x 90 m 

buried at a depth of 30 m in a uniform half space of 30 ohm-m resistivity. 

2 
A vertical magnetic dipole of moment 4TI Amp-turn-meter is located on the 

surface of the earth 75 m to the left of the center of the body. The 

frequency used is 1,000 Hz. The vertical component of the secondary mag-

netic field,: Hs, was normalized by the free space vertical magnetic field, 
z 

HP, and the result has been plotted in Figure 5. At the end of the 30th 
z 

iteration the average change in the boundary values became less than 0.1 

percent. Along with the hybrid solution, a finite element solution has 

been plotted and compared. The electric field was initially obtained using 

the point iterative method on a system of finite element equations, and then 

the magnetic field was computed using Green's functions (Pridmore, 1978). 

The quadrature part of Hs shows good agreement between the solutions. The 
z 

agreement is relatively poor for the in-phase. 

The last model of interest is a 5 ohm-m conductive brick buried in 

an earth of 100 ohm-m resistivity with a 25m-thick overburden layer of 

30 ohm-m resistivity. The depth to the top of the body is 50 m and the 

size of the body is 50 m x 250 m x 200 m. A single coil, with its 

magnetic moment oriented in the x-direction, is flown 50 m above the 

ground across the center of the body in the direction parallel to the 

x-axis. The frequency used is 30 Hz. The solution for this model has 

been obtained for use in the study of an airborne superconducting 

single coil system (Morrison, et al., 1976). The outline of the 

theory is that the secondary field produced by a conductive half space, 

with or without inhomogeneities, can be measured in terms of the changes 

in input impedance, Z, of the transmitting coil itself. The secondary 

-15-
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magnetic field induces small voltage in the transmitter of 

d I - ~ ~v = -N-- B·ds dt 
s 

where N is the number of turns. Considering that the secondary field 

at the transmitter is locally uniform, and that only H contributes to 
X 

the dot product B·ds, the change in the voltage can be rewritten as 

I:!.V = ~J· W]JNAH 
X 

where A is the cross-sectional area of the coil. Since the secondary 

magnetic field is proportional to the magnetic moment (NIA)of the 

transmitter. the 6V may be computed by 

2 ~ 
-jw]J(NA) IH 

X 

where H is defined as the secondary H due to a unit magnetic moment. 
X X 

The change in the voltage in turn creates a change in the input impedance 

of the transmitter such that I:!.Z = I:!.R+jwi:!.L = ~V/I. Matching the real 

and imaginary parts of the I:!.V separately, we find 

and 

2 -
~L = -v(NA) Re(H ). 

X 

-The plots shown in Figure 6 are the in-phase and quadrature parts of H 
X 

computed at the transmitter, i.e., the magnetic moment used is 1.0 Amp-

2 tum-meter • or alternatively NA = I = 1. At operating frequency of 30 

cycles/sec. the single coil would experience a resistance change of 

3.15 x l0-13 ohms from the background level to the peak of anomaly in 

less than 100 m. The change in inductance, however, would be a maximum 

of 1.07 x lo-17 henries in roughly the same distance. Assuming that a 
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2 8 
superconducting coil possesses an (NA) of 10 and that the system is 

capable of detecting 10-6 ohms with a system noise of roughly the same 

-5 magnitude, the anomaly in ~R would be 3.15 x 10 ohms and the signal to 

noise would be approximately 30. It would be difficult, if not impossible, 

to measure the in-phase anomaly of 1.07 x 10-9 henries. 

Discussion of methods and conclusions 

A numerical solution for the 3D electromagnetic problem can be 

obtained using either the direct or iterative hybrid scheme. The same 

number of Green's functions has to be evaluated in either approach. For 

a typical iterative solution, more than a half of the total CP time was 

spent for the evaluation of Green's functions. The iterative scheme 

solves a system of finite element equations whose matrix is banded and 

symmetric, but it takes a considerable number of iterations to obtain 

a solution. Consider a finite element mesh consists of 20 nodes in each 

direction. The number of unknowns (n) inside of the boundary is 

17,496, and the number of unknowns (m) at the boundary is 6,504. The 

maximum half bandwidth (~) of the finite element system matrix is 1,266. 

The number of complex multiplications required for a direct solution 

would be 0.5 x n3 , or 2.68 x 10
12 , excluding the number for the evaluation 

of Green's functions. An iterative solution would require 0.5 x n 

x (Q,+l) x (.H2) operations for the initial decomposition of the finite 

element matrix, plus 2 x n x (Q,+l) + 3 x m x n operations for the back 

substitution and boundary value computation per each iteration. The sum 

10 8 th is roughly 1.41 x 10 + 3.85 x 10 x N at the end of the N iteration. 

Theoretically, the iterative scheme should be more cost-effective than 

the direct hybrid scheme if N is kept less than 6,900. Unfortunately, 

this is not the case in practice. Extensive use of extended memories 

-19-



(disk) forces the iterative scheme to be severely I/O bound, and conse-

quently the advantage of the scheme becomes much smaller than expected. 

In the direct hybrid scheme, the boundary values are initially expressed 

in terms of the internal unknowns using an integral relation and then sub-

stituted into the finite element equations resulting in a set of combined 

equations, The solutions to these combined equations are the fields 

inside the finite element boundary. 

Some analysis shows that a more cost~effective direct hybrid scheme 

can be easily formulated. i Substituting the internal unknowns !s• equation 

(21), into equation (17), we obtain 

-1 b 
-GK,.(K.~+S,) + S 

~~ ~I.Tb ~ p 

then the direct solution for the boundary value Eb becomes 
--s 

b -1 -l -1 
E = (I +GK, ,K.b) (S -GK, ,S.) --s m ~~ ~ p ~~ ~ 

where I is an mxm identity matrix. The scattered fields elsewhere 
m 

(23) 

(24) 

can then be obtained by initially calculating the fields inside of the 

boundary using equation (21) and then carrying out necessary volume 

integrations. In terms of the number of operations, the ratio of the 

earlier direct hybrid scheme to the one we have shown would be roughly 

3 (n/m) • Depending upon the ratio (n/m) of a given model, a substantial 

amount of computing time could be saved using the new scheme. For the 

same mesh described earlier in this section the ratio, (n/m) 3, would be 

approximately 19, a saving of at least a factor of 10. 

-20~ 
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Appendix 

Electromagnetic Fields Due to a Current Source Embedded 
in a Lower Half Space of a Two-Layered Earth 

Using the Sommerfeld integral, we can rewrite the particular 

solution AP, equation (12), as 

~s Joo -u lz-z' j ~ J A 2 Ap =- - e J (Ap)d:.\ 
4n 0 u

2 
o (A-1) 

2 2 1/2 
= {(x-x') + (y-y 1

) } The horizontal 

wave number A is given by A 
2 2 1/2 

= (k +k ) , where k and k are the wave 
X y X y 

numbers in x and y, respectively. Using relation (Banos, 1966) 

2 j{k (x-x')+k (y~y')} J . 
f(k2+k )e X y dk dk "' 2TI A.f(A) J

0
(:.\p)dA 

X y X y 0 

we find 

in Fourier transform space. The vertical components of corresponding 

primary fields are 

jk J " p X X a E (k ,k ,z) "'-"- -
2 
~ ..:::..._. ___ _ 

z X y Yz oZ u2 

Hp(k k z) = 
z x' y' 

for Js = i J , and 
X X 

-s ~ 

for J = i J , and 
y y 

-23-· 

(A-2) 

(A-3) 

(A-4) 



Ep(k ,k ,z) 
Z X y 

for Js "" i J . 
z z 

(A-5) 

In a homogeneous source-free region, the rectangular components of 

vector potential A and F satisfy Helmholtz equation (Harrington, 1961, 

p. 129) 

The electric and magnetic fields due to these potentials are given by 

H = 'VxA 

~- 1 -
zA +" \/('V·A) 

y 

(A-7) 

By inspection, there will be no E if we choose A = 0 and F = i e. On 
z z 

the other hand, if we choose A = i ¢ and F = 0, there will be no H • z z 

A field with no E
2 

is called transverse electric to z (TE), and a field 

with no H
2 

is called transverse magnetic to z (TM). Superposing these 

two independent modes, one can completely express an arbitrary field, 

E and H, in the source free region. 

In the presence of a two-layered half space, 8 and ¢ satisfy 

equation (A-6) and the solutions in Fourier transform space will be 

i = 0,1,2. (A-8) 

In its present coordinate system with z positive down, the supersign 

"+" denotes downgoing potential. Since there is no downgoing potential 

in the air, 8~ = ¢~ = 0. The upgoing potentials, e; and ¢;. in the 

-24-



lower half space are the primary terms due to the current element in 

that region. The electric and magnetic fields are then expressed in 

terms of 8 and ¢ as 

and 

E 
X 

E 
y 

E z 

H 
X 

H y 

H z 

=~+1A 
ax y ayaz 

2<~> +.!:.. 32¢ A2 
= -

dZ2 = T y 

=li+l_rr 
ay z axaz 

= _!i+l_rr 
ax z ayaz 

-ye 1 a2e A.
2 

= + ]" az2 = T e. 

<P 

Equations (A-9) and (A~lO) show that E
2 

depends only on ¢ 

e. Equating the primary fields Ep and Hp given by (A~3), 
z z 

and H only on z 

(A~4), and (A-5) 

to E and H in equations (A-9) and (A~lO) with potentials e and 
z z t 

~ u2z-u2z 
substituted by the upgoing primary potentials e2e 

we obtain 

-s for J = i J , and 
X X 

-s for J = i J , and 
y y 
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for J 8 I J . z z 

(A-13) 

The next step is to find coefficients e;, e;. e~. and e; for the TE mode, 

- + - + and $0• $1• ¢1 , and ¢2 for the TM mode, These coefficients are determined 

- -by matching boundary conditions for tangential components of E and H at 

layer boundaries, The principle of superposition suggests that boundary 

conditions may be applied to each mode separately, Thus, from the 

(A-14) 

u. 
where d is the thickness of the first layer and N. = ~. The coefficients 

1 zi 

for the TM mode have expressions identical to (A-14) with ei 

substituted by 
ui 3 

¢i and Ki (= y.). Replacing j kx by ox and j ky 
1 

and N. 
1 

d by-- and 
(Jy 

using equation (A-7) for E and H, we obtain the following electric and 
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magnetic fields in the region of interest. Hereafter, ¢. and 8. 
1 1 

represent only the coefficient part of the potentials given by equation 

a. Electric fields in the lower half space 

E2 Ep + _1, e 2 dA. · I
oo ~u (z+z') 

X X 4'1T O 

J [Jl {(~ 2(x~x') 2 
+ l) 

x Y2 P3 P 
Jl (A.p) + (x-~')2 A.JO(A.p)}¢;u2 

p 

+ z {(2(y~y')2 ~ l) J (A.p) ~ 
2 3 p 1 

p 

+ J [Jl {~ 2(x~x')(y~y') J (A. ) 
y y

2 
P3 1 P 

(y-y')2 A.J (A.p)}8+ JL] 
P2 0 2 u2 

+ (x~x') (y-y') 
2 

p 

+ (x-x') (y-y') 
2 

p 

1 (x-x') (y-y') (x-x' 2 (y-y') + J [~ {- Jl(A.p) + AJO (A.p) }¢2u2 
X Y2 3 2 

p p 

+ zz {- (x-x') (y-y') Jl (A.p) + (x-x') (y-y 1 ) + 1 
3 2 A.J 0 ( A.p ) } 8 2 u

2
] 

p p 

+ J rJL {(- 2(y-y')2 + l) J (A.p) + (y-y')2 + 
Y Yz 3 p 1 2 AJO(A.p) }<p2u2 

p 

+ z {(2(x-x')
2 

_ l) 
2 3 p 

+ J [J­
y Yz 

p 
Jl(A.p)-

-27~ 

p 
2 (x-x 1

) + 
2 AJO(:\.p)}e2 u

2 p 

(A-15) 



1 3 + 1 + J [,.-- >. Jo(i\p )¢2 -L 
z Yz u2 

where the primary fields EP, EP, and Ep are due to the primary potentials 
X y Z 

e; and ¢;. Since these potentials are identical to the primary potential 

Ap given by equation (12), the primary electric fields may be analytically 

obtained using equation (13). 

b. Electric fields in the layer 

E1 "' _L e 2 d i\ • J
oo -u z I 

X 4TI Q 

J [~ {(- 2(x~x') 2 
+ 

X Yl p3 p 

+ z {(2(y~y')2 ~ l) 
1 p3 p 

+ J [~{- 2(x-x')(y-y') 
y yl p3 

Jl(i\p) + 

(A-16) 
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J
oo ~u2z' 

El ~ d' e -"• 
z 4'IT 0 

1 
J r~ <­

x yl 

c. Magnetic fields in the air 

J [ {2 (x~x' )(y-~ 1 ) J (Ap) 
X 3 1 

p 
- ~~x')~~-y') AJo(Ap)}¢~ 

p 

2 (x~x') (v-y') + {~ 3 L -- J (A ) + (x-x')(~-y') AJ (Ap)}6- uO] 
1 p 2 0 0~ 

p p 2 

+ J [{(2(y-y')2 - l) J (Ap) ~ 
y 3 p 1 

p 

(~-~') 2 
AJ (Ap)}¢-

2 0 0 
p 

+ { (·2 (x-x' )
2 

3 
1 (x-x') 2 

- p) Jl (AP) - 2 
p p 

~-~2 + _Pl) Jl(Ap) + ~ AJ (;\p) }¢-
2 0 0 

p 

J [ { 
X 

+ { (- 2 (~-~ + l) 
3 p 

Jl(Ap) + (y~y')2 AJ (Ap)}6- uO] 
P2 o o u 2 p 

+ Jy[{- 2(x-x'~(y-·y')_ ·\ (Ap) 
p 

+ {2(x-x
1

) (y-y'l J (Ap) _ 
3 1 

p 

+ J [x-x' A2J (A )¢- Jl] 
z P 1 P o u

2 

+ (x-x')(y-~~ AJ (Ap)}~-
2 o ~o 

p 

(x-x')(y-~') 
2 

p 
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I 

+ J [ (- x-x 
y p 

+ J [0]. 
z 

The electric and magnetic fields due to a point source of current 

-s f J can alternatively be written in a compact orm as 

- - =E - - -s -E(r) = r (r;r')·J (r') (A-18) 

and 

""H - - -s -"" r (r;r')·J (r') (A-19) 

-where r is a tensor Green's function (Harrington, 1961). 
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