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Abstract

Reconstruction algorithms for x-ray nanocrystallography via solution of the twinning
problem

by

Jeffrey J. Donatelli

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor James A. Sethian, Chair

X-ray nanocrystallography is an emerging technique for imaging nanoscale objects that
alleviates the large crystallization requirement of conventional crystallography by collecting
diffraction patterns from a large ensemble of smaller and easier to build nanocrystals, which
are typically delivered to the x-ray beam via a liquid jet. In order to determine the structure
of an imaged object, several parameters must first be determined, including the crystal sizes,
incident photon flux densities, and crystal orientations. Autoindexing techniques, which
have been used extensively to orient conventional crystals, only determine the orientation
of the nanocrystals up to symmetry of the crystal lattice, which is often greater than the
symmetry of the diffraction information, resulting in what is known as the twinning problem.
In addition, the image data is corrupted by large degrees of shot noise due to low collected
signal, background signal due to the liquid jet and detector electronics, as well as other
sources of noise. Furthermore, diffraction only measures the magnitudes of the Fourier
transform of the object and, thus, one must recover phase information in order to invert the
data and recover a three-dimensional reconstruction of the constituent molecular structure.
Previous approaches for handling the twinning problem have mainly relied on having a known
similar structure available, which may not be present for fundamentally new structures. We
present a series of techniques to determine the crystal sizes, incident photon flux densities,
and crystal orientations in the presence of large amounts of noise common in experiments.
Additionally, by using a new sampling strategy, we demonstrate that phase information
can be computed from nanocrystallographic diffraction images using only Fourier magnitude
information, via a compressive phase retrieval algorithm. We demonstrate the feasibility of
this new approach by testing it on simulated data with parameters and noise levels common
in current experiments.
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Chapter 1

Introduction

A traditional method for obtaining high resolution atomic structure information from nano-
scale objects is through conventional x-ray crystallography. In this technique, a large number
of copies of the target object are arranged into a large, typically about 1 mm in size, periodic
crystal structure, in order to increase the strength of the collected signal, and diffraction
images are collected from the sample as it is rotated. In general, the pixel intensities of a
diffraction pattern measure the magnitude of the three-dimensional Fourier transform of the
sample’s electron density along a spherical slice in frequency space. Due to the translational
property of the Fourier transform, the periodic crystal structure induces the formation of
several sharp bright spots of intensity, known as Bragg peaks, whose location and intensity
values are used to ultimately invert the data and reconstruct the electron density. The
missing phase information in the data is commonly recovered through phasing techniques
such as anomalous diffraction, where the wavelength is varied through an absorption edge;
isomorphous replacement, which requires a duplicate crystal to be made with the inclusion
of heavy atoms in the crystal structure; or molecular replacement, which attempts to modify
a previously known structure to match the collected diffraction data.

While conventional x-ray crystallography has been successful in determining the struc-
ture of numerous objects, it is limited to samples which can be formed into large crystals,
a laborious process that can take up to several years to perform for certain structures. Ad-
ditionally, the crystal samples are commonly plagued with imperfections that may hinder
the reconstruction process. An appealing alternative, made possible by recent advances in
light source technology, is x-ray nanocrystallography, which uses a large ensemble of easier
to build nanocrystals, typically less than 1 µm in length, which are, for example, delivered
to the x-ray beam via a liquid jet [4, 6, 12, 39, 44], as illustrated in Figure 1.1. In partic-
ular, x-ray nanocrystallography allows one to image structures which are resistant to large
crystallization, such as membrane proteins. However, the beam power density required to
retrieve a sufficient amount of signal from nanocrystals is large enough to destroy the crystal
during the imaging process. Therefore, ultrafast pulses, typically under 70 fs, are required
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to ensure that the data is collected before damage effects come into play.

The use of nanocrystals introduces several practical difficulties into the reconstruction
procedure. For instance, due to the small crystal sizes, the Bragg peaks are smeared out
and signal between peaks becomes noticeable. Due to the delivery system and short pulses,
we cannot integrate out the shape transform via rotational averaging methods, as is done in
conventional crystallography. Therefore, only partial peak reflections are typically measured,
resulting in reduced and noisy collected intensities. Further sources of uncertainty and error
are caused by large variations in crystal sizes, shot noise, background signal introduced by
the disordered water molecules in the liquid jet, changes in signal intensity induced by beam
fluctuations and partial collisions of the nanocrystals with the x-ray beam, and the fact that
orientations of the crystals are unknown during the data collection process.

Rear detector

Liquid jet

X-ray pulse

Interaction point

Front detector

Figure 1.1: Set up of an x-ray nanocrystallography experiment. A liquid jet (blue) is often
used to delivery the nanocrystal samples to the x-ray pulse (red). Wide and small angle
diffraction data can be collected by utilizing both front and rear detectors.

If the crystal orientations were known, then the noise and variation in the peak mea-
surements could be averaged out, allowing one to proceed to invert the data to retrieve the
electron density of the object. In theory, location of a sufficient number of Bragg peaks
in an image can be used to determine the orientation of the crystal up to symmetry of its
periodic lattice, a process known as autoindexing. While autoindexing has been performed
extensively to increase the accuracy of the orientations of conventional crystals, a few fun-
damental issues still remain in its use for the orientation of nanocrystals [47]. One issue is
the robustness of autoindexing in the presence of partial and non-Bragg reflections. Further-
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more, autoindexing only narrows down the orientation of an image to a list of possibilities,
whose size is the order of the crystal’s lattice rotational symmetry group. This leads to an
ambiguity in orienting the images when the diffraction pattern does not posses the same
symmetry, known as the twinning problem. Additionally, phase information is missing from
the images and must be retrieved. While there are many techniques to recover the missing
phase information, most of them become infeasible without knowledge of the orientations up
to symmetry of the diffraction data. Consequently, in the presence of the twinning problem,
current use of nanocrystallography data has been mainly limited to approaches that can
work with this twinned data, such as molecular replacement, which requires comparison to a
similar known structure, and, thus, cannot be used to discover fundamentally new structures
ab initio. Previous attempts at removing the twinning ambiguity have proven unsuccessful,
largely due to the excessive variance in intensities over the ensemble of images [68, 74].

In this thesis, we develop a new approach to x-ray nanocrystallography reconstruction
which relies on solving the twinning problem. Our approach is robust to the amount of noise
and uncertainty common in experiments. In particular, our framework directly seeks out the
unknown image parameters in order to decrease the amount of variance in the magnitude
values. We begin by developing a new technique to increase the precision of the partial
orientation information computed in autoindexing, by utilizing reflections between Bragg
peaks in order to increase the accuracy of the computed ambiguous orientations in the face
of partial reflections and low peak counts. Then, by using a high-resolution low angle image,
such as from the rear detector in Figure 1.1, we compute the approximate crystal sizes by
using a combination of Fourier analysis and image segmentation. Next, we model the dis-
tribution of Fourier magnitudes for each peak via a multi-modal Gaussian distribution by
using a multi-stage expectation maximization algorithm that alternates between correcting
for the unknown incident photon flux densities and calculating the model parameters. We
then use these multi-modal models to build a weighted graphical model of the magnitude
concurrency, which describes how often two magnitudes occur within the same image. Solv-
ing the twinning problem is formulated as finding the maximum edge clique in this graphical
model. Although the maximum edge weight clique problem is, in general, NP-hard, we
develop an approximate greedy approach which runs in quadratic time, is exact for the twin-
ning problem in the absence of noise, and highly accurate in the presence of large amounts
of noise. The solution to this clique problem then determines the detwinned orientations, up
to symmetry of the utilized diffraction data. Additionally, we show that if one determines
the orientations up to symmetry of the data on lines connecting adjacent Bragg points, then
phase information can be recovered by only utilizing Fourier magnitude information via a
compressive phase retrieval algorithm.

This work has the potential to enhance x-ray nanocrystallography experiments by in-
creasing the accuracy of the processed data, decreasing the total number of images required,
and allowing for the use of additional phasing methods in the presence of the twinning prob-
lem. In particular, this framework allows phase recovery with conventional techniques that
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typically require knowledge of the orientations up to symmetry of the data, such as anoma-
lous dispersion and isomorphous replacement. This approach can also aid in the current use
of molecular replacement by allowing one to test models against the full set of detwinned
data. Alternatively, this framework allows one to compute the phases with only Fourier
magnitude information, which does not require the extra setup and measurements needed
for experimental phasing nor knowledge of a similar structure.

In Chapter 2, we discuss relevant background information including basic notation and
theorems, the mathematical formulation of elastic scattering, autoindexing, techniques and
theory for phase retrieval, and the x-ray nanocrystallography reconstruction problem. In
Chapter 3, we describe the theory and algorithms behind our x-ray nanocrystallography re-
construction framework. Finally, in Chapter 4, we present a detailed analysis of our methods
and demonstrate the feasibility of our approach by reconstructing molecular structure from
realistic simulated data.
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Chapter 2

Background

2.1 Overview

In this chapter we discuss background material relevant to x-ray nanocrystallography recon-
struction.

First, in Section 2.2, we establish some basic notation and theorems that will be com-
monly referred to throughout the thesis.

Next, in Section 2.3, we present a mathematical formulation of x-ray diffractive imaging.
We begin by formulating the basic equations for diffraction due to elastic scattering. Then
we discuss various symmetries present in crystals and describe how this affects diffraction
from nanocrystals. Additionally, we show how diffraction can be modeled in terms of atomic
scattering factors and various noise processes.

Then, in Section 2.4, we discuss current autoindexing techniques, which allow one to
deduce the lattice properties and orientations, up to lattice symmetry, of a crystal, by ana-
lyzing the periodicity of the recorded reflections in its diffraction pattern. In particular, we
describe how this results in an ambiguity in determining the orientations in x-ray nanocrys-
tallography, which leads to the twinning problem when the diffraction pattern displays less
symmetry than the lattice.

Afterward, in Section 2.5, we give an overview of the phase problem, which must be solved
in order to reconstruct a sample’s molecular structure from its diffraction data. Moreover,
we present theory and algorithms for the technique of computational phase retrieval, which
allows one to solve the phase problem using only Fourier magnitude information. While this
computational phase retrieval approach has largely been infeasible in conventional crystal-
lography, we describe how it may be applicable to solving the phase problem in nanocrys-
tallography, due to the increased sampling rate of the Fourier magnitudes provided from the
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measurable non-Bragg peaks in nanocrystal diffraction images.

Finally, in Section 2.6, we formulate the reconstruction problem in x-ray nanocrystallog-
raphy and describe the algorithmic challenges in solving it. In particular, we discuss how,
in presence of the twinning problem, reconstruction has been limited to techniques that
rely on having a similar known structure available, which may be infeasible for studying
fundamentally new objects.

2.2 Basic Notation and Theorems

Here we describe our notation and several key theorems that will be used.

We denote the group of real-valued orthogonal matrices in d dimensions by O(d) and
the group of real-valued orthogonal matrices with determinant one by SO(d). Given N =
(N1, . . . , Nd) ∈ Nd, we define |N| =

∏d
j=1Nj and ZN = ZN1 × · · · × ZNd , where ZNj =

{0, 1, . . . , Nj − 1}. We use the following conventions for operations between two vectors

x = (x1, . . . , xd) and y = (y1, . . . , yd): xy =
∏d

j=1 x
yj
j and x

y
= (x1

y1
, . . . , xd

yd
).

We will refer to the following function spaces: L1(Rd) denotes the Banach space of
complex-valued Lebesgue integrable functions on Rd with norm ||f ||L1 =

∫
Rd |f(x)|dx, L2(Rd)

denotes the Hilbert space of complex-valued square integrable functions on Rd with norm
||f ||L2 =

∫
Rd |f(x)|2dx, `2(Zd) denotes the Hilbert space of complex-valued square summable

functions defined on Zd with norm ||f ||`2 =
∑

n∈Zd |f(n)|2, and `2(ZN) denotes the Hilbert
space of complex-valued functions defined on ZN with norm ||f ||`2 =

∑
n∈ZN

|f(n)|2.

We will make use of functions f : Rd → C, f : Zd → C, and f : ZN → C. In each of
these cases, we define the Fourier transform as a unitary operator. We will typically refer to
the domain of the original function as real space and the domain of the Fourier transformed
function as Fourier space or reciprocal space.

Definition 1. The Fourier transform of f ∈ L1(Rd) ∩ L2(Rd) is given by

(Ff)(ξ) = f̂(ξ) =

∫
Rd
f(x)e−2πix·ξdx, for all ξ ∈ Rd (2.1)

with inverse given by

(F∗f̂)(x) = f(x) =

∫
Rd
f̂(ξ)e2πix·ξdξ, for all x ∈ Rd. (2.2)

The above definition of the Fourier transform can be extended to L1(Rd) +L2(Rd) by using
the density of L1(Rd) in L2(Rd).
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Definition 2. The discrete-time Fourier transform (DTFT) of f ∈ `2(Zd) is given by

(Ff)(ξ) = f̂(ξ) =
∑
n∈Zd

f(n)e−2πin·ξ, for all ξ ∈ [0, 1]d, (2.3)

with inverse given by

(F∗f̂)(n) = f(n) =

∫
[0,1]d

f̂(ξ)e2πin·ξdξ, for all n ∈ Zd. (2.4)

Definition 3. The discrete Fourier transform (DFT) of f ∈ `2(ZN) is given by

(Ff)(k) = f̂(k) =
1√
|N|

∑
n∈ZN

f(n)e−2πin·(k/N), for all k ∈ ZN, (2.5)

with inverse given by

(F∗f̂)(n) = f(n) =
1√
|N|

∑
k∈ZN

f̂(k)e2πin·(k/N), for all n ∈ ZN. (2.6)

Theorem 1 (Parseval’s Theorem). For f, g ∈ L2(Rd), f, g ∈ `2(Zd), or f, g ∈ `2(ZN),
we have that

||f || = ||f̂ || and 〈f, g〉 = 〈f̂ , ĝ〉. (2.7)

By realizing that a compactly supported function is the DTFT of some `2 function, we
arrive at the following result.

Theorem 2 (Shannon-Nyquist Theorem). If f ∈ L2(Rd) satisfies supp(f) ⊆ [−L1

2
, L1

2
]

× · · · × [−Ld
2
, Ld

2
] then f is uniquely determined by {f̂(n1

L1
, . . . , nd

Ld
) : n1, . . . , nd ∈ Z}.

The squared norm of the Fourier transform of a function |f̂ |2 is known as the power
spectrum of f . The power spectrum of a function is related to its autocorrelation, which we
now define.

Definition 4. The autocorrelation of f ∈ L2(Rd) is given by

(Af)(x) =

∫
Rd
f(y)f(y − x)dy, for all x ∈ Rd. (2.8)

Definition 5. The autocorrelation of f ∈ `2(Zd) is given by

(Af)(n) =
∑
m∈Zd

f(m)f(m− n), for all n ∈ Zd. (2.9)
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Definition 6. The autocorrelation of f ∈ `2(ZN) is given by

(Af)(n) =
1√
|N|

∑
m∈ZN

f(m)f(m− n), for all n ∈ ZN. (2.10)

Theorem 3 (Wiener-Khinchin Theorem). For f ∈ L2(Rd), f ∈ `2(Zd), or f ∈ `2(ZN),
we have that

Âf = |f̂ |2. (2.11)

Note that the DTFT or DFT of a function can be realized as a complex analytic function
restricted to the torus Td by identifying z = e2πiξ or z = e2πik. In particular, we may
analytically continue the DTFT and DFT to a function defined on Cd \ {0}, known as the
Z-transform.

Definition 7. The Z−transform of f ∈ `2(Zd) is given by

(Z[f ])(z) =
∑
n∈Zd

f(n)z−n, for all z ∈ Cd. (2.12)

Definition 8. The Z−transform of f ∈ `2(ZN) is given by

(Z[f ])(z) =
1√
|N|

∑
n∈ZN

f(n)z−n, for all z ∈ Cd. (2.13)

The x-ray transform projects a function to a lower dimensional space and is related to
the restriction of the function’s Fourier transform.

Definition 9. The x-ray transform of f ∈ L1(Rd), with d ≥ 2, to a hyperplane Σ passing
through the origin with normal ` is given by

(P`f)(x) =

∫ ∞
−∞

f(AΣx + z`)dz, for all x ∈ Rd−1, (2.14)

where AΣ : Rd−1 → Rd parametrizes Σ.

Theorem 4 (Fourier Projection-Slice Theorem). For f ∈ L1(Rd) and ` = (0, . . . , 0, 1),
we have that

P̂`f = f̂ |Rd−1×{0}, (2.15)

using the canonical parametrization of Rd−1 × {0}.

We will also make use of generalized functions, such as the Dirac delta function δ. The
above definitions and theorems can be extended to many of these generalized functions, e.g.,
tempered distributions.
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2.3 Mathematical Formulation of X-ray

Nanocrystallography

2.3.1 Elastic Scattering

The continuous diffraction pattern Ic : R2 → R due to elastic scattering from an object
with electron density ρ : R3 → R, rotated by R ∈ SO(3), using a fully coherent x-ray beam
with wavelength λ and incident photon flux density J at a plane with distance D from the
interaction point and normal in the direction of the incident beam, is described by [72]:

Ic(x, y) = J r2
eP (x, y)|ρ̂(Rqλ(x, y))|2dΩ(x, y), (2.16)

where qλ : R2 → R3 maps the detector plane onto a spherical slice of frequency space, known
as the Ewald sphere, depicted in Figure 2.1, and is given by

qλ(x, y) =
1

λ


x√

x2+y2+D2

y√
x2+y2+D2

D√
x2+y2+D2

− 1

 , (2.17)

r2
e is the electron cross-section, dΩ(x, y) = D

(x2+y2+D2)3/2
is the solid angle subtended by a

point, and P : R2 → R is a polarization factor that depends on the polarization type of the
beam. For example, for horizontal polarization, P (x, y) = 1− x2

x2+D2 . For elastic scattering,
the values of ρ̂ are often called the structure factors. Since the Fourier transform of a real
valued function displays Friedel symmetry, ρ̂(ξ) = ρ̂(−ξ), the associated magnitudes are
inversion symmetric, i.e., |ρ̂(ξ)| = |ρ̂(−ξ)|.

Figure 2.1: The detector plane (left) measures power spectrum information along a spherical
slice of reciprocal space (right).
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In practice, a detector measures the integral of (2.16) over pixels of size dx×dx, yielding
I : Z2 → R

Im,n = I(x, y) =

∫ x+dx

x

∫ y+dx

y

J r2
eP (a, b)|ρ̂(Rqλ(a, b))|2dΩ(a, b) (2.18)

≈ J r2
eP (x, y)∆Ω(x, y)|ρ̂(Rqλ(x, y))|2 (2.19)

where ∆Ω(x, y) = Ddx2

(x2+y2+D2)3/2
is the solid angle subtended by a pixel, x = mdx, and

y = n dx. We will slightly abuse notation by treating (2.19) as equality.

2.3.2 Crystal Lattice Theory

In x-ray crystallography, one collects a series of diffraction patterns from a periodic crystal
made up of the target object. The three-dimensional crystal lattice structure may be de-
scribed by its Bravais lattice characteristic (h1,h2,h3),hj ∈ R3, depicted in Figure 2.2. In
particular, the infinite lattice L consists of all points which are integer combinations of the
Bravais vectors:

L =

{
3∑
j=1

njhj : nj ∈ Z

}
, (2.20)

where (n1, n2, n3), known as the Miller indices, describe a position within the lattice.

h1
h2

h
3

Figure 2.2: Example of a crystal lattice generated from integer combinations of the Bravais
characteristic vectors (h1,h2,h3).
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Crystal lattices are categorized by their point groups, i.e., the set of linear operators that
map L to itself and leave some point fixed. In particular, we define the lattice symmetry
group S(L) of a lattice to be the set of orthogonal linear operators which preserve the lattice
structure:

S(L) = {Q ∈ O(3) : QL = L}. (2.21)

Similarly, we define the lattice rotational symmetry group to be restriction of the lattice
symmetry group to rotations, SR(L) = S(L) ∩ SO(3). In three dimensions, crystal lattices
can be classified by their symmetry groups into to one of 7 possible lattice systems [30]. For
each crystal lattice, we can define an associated Dirac comb ∆L, which is a sum of Dirac
delta functions supported on the lattice points:

∆L(x) =
∑
y∈L

δ(x− y), for all x ∈ R3. (2.22)

Each crystal lattice has a dual, known as the reciprocal lattice L̂, which is given by the support
of the Dirac comb’s Fourier transform ∆̂L. Note that the Fourier transform of the Dirac comb
of L is the Dirac comb of L̂ up to a multiplicative constant, i.e., ∆̂L = (|h1||h2||h3|)−1∆L̂.

The Bravais lattice characteristic (ĥ1, ĥ2, ĥ3) of the reciprocal lattice can be expressed in
terms of the original Bravais vectors:

ĥ1 =
h2 × h3

h1 · (h2 × h3)
, ĥ2 =

h3 × h1

h2 · (h3 × h1)
, ĥ3 =

h1 × h2

h3 · (h1 × h2)
. (2.23)

In practice, a crystal lattice LC consists of only a finite part of its associated infinite
lattice. In this case, the associated Dirac comb’s Fourier transform ∆̂LC , known as the shape
transform, is no longer a sum of delta functions, but, instead, is a smeared out version of
∆̂L. In particular, if we assume that the finite crystal lattice can be described as LC =
{
∑3

j=1 njhj : nj ∈ ZNj}, then its associated shape transform S : R3 → C is given by

S(ξ) =
3∏
j=1

e2πiNjhj ·ξ − 1

e2πihj ·ξ − 1
. (2.24)

In diffractive imaging, one typically works with the squared norm of the shape function,
which can be expressed as

|S(ξ)|2 =
3∏
j=1

sin2(πNjhj · ξ)

sin2(πhj · ξ)
. (2.25)

2.3.3 Space Groups

While the crystal lattice structure describes the translational symmetry of the crystal, the
arrangement of molecules may display extra symmetry within each periodic unit, known as
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the unit cell. The full symmetry of the crystal is described by the space group of the crystal.
In particular, within a unit cell, there are often multiple copies of the molecule, which can
be described in terms of rotations, reflections, improper rotations, translations, glide planes,
and screw axes applied to the molecule in some reference position, depicted in Figure 2.3.
In general, these symmetry operations can be described by mapping a reference ρ(x) to the
symmetry elements ρ(y) by

y = Mx +D, (2.26)

where M is a matrix and D is a vector.

Figure 2.3: A molecule (left) is arranged into a periodic unit cell (right) via a set of affine
transformations.

Combining the possible unit cell symmetries with the different lattice systems yields 230
possible space groups [30]. The point group symmetries of a crystal C with electron density
ρC , can be described by its crystal point symmetry group S(C):

S(C) = {Q ∈ O(3) : ρC(Qx) = ρC(x), for all x ∈ R3}. (2.27)

We also define the crystal rotational symmetry group as SR(C) = S(C) ∩ SO(3). Note that
while the point symmetry group of the crystal is a subset of the symmetry group of the
lattice, S(C) ⊆ S(L), they are not necessarily equal.

The space group of a crystal introduces another form of symmetry on its diffraction
pattern, known as Laue symmetry. In particular, the Laue symmetry group SL(C) of a
crystal C is given by the set of orthogonal operators which preserve the structure factor
magnitudes of the crystal at its reciprocal lattice points:

SL(C) = {Q ∈ O(3) : |ρ̂C(Qξ)| = |ρ̂C(ξ)|, for all ξ ∈ L}. (2.28)
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We also define the Laue rotational symmetry group as SL,R(C) = SL(C) ∩ SO(3). The Laue
symmetry group is at least as big as the crystal point symmetry group but never bigger than
the lattice symmetry group, i.e., S(C) ⊆ SL(C) ⊆ S(L).

2.3.4 Crystal Diffraction

For simplicity, we make the assumption that the crystal lattice can be expressed as LC =
{
∑3

j=1 njhj : nj ∈ ZNj}. In this case, the electron density ρC of a crystal can be expressed
in terms of the electron density ρ of one of its unit cells by

ρC(x) =

N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

ρ(x+ n1h1 + n2h2 + n3h3) (2.29)

= ρ(x) ∗∆LC . (2.30)

Therefore, by Equation (2.19), the diffraction pattern of a crystal due to elastic scattering
is given by

I(x, y) = J r2
eP (x, y)∆Ω(x, y)|ρ̂(Rqλ(x, y))|2|S(Rqλ(x, y))|2. (2.31)

For a large crystal, as is used in conventional crystallography, the shape function approaches
the Dirac comb associated to the reciprocal lattice, up to a constant factor. Therefore
the diffraction images of a large crystal consist of a series of bright spots, known as Bragg
peaks, concentrated at the reciprocal lattice points. However, for nanocrystallography, the
crystal sizes are small enough for one to notice the spread of the shape function, which are
approximately Gaussian around a peak and oscillate outward. In this case, measurements
close to, but not directly at, a Bragg peak are known as partial reflections and have a
decreased amount of collected signal. Additionally, the signal at pixels corresponding to lines
in between reciprocal lattice points is often noticeable in nanocrystal diffraction images. An
example of a nanocrystal diffraction image is given in Figure 2.4.

Figure 2.4: Simulated x-ray nanocrystallography diffraction image (log scale).
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2.3.5 Atomic Scattering and Dispersion Factors

The structure factors F for a molecule can be expressed as the superposition of the atomic
scattering factors {fo,ak} of its atoms {ak}:

F (q) =
∑
k

fo,ak(q)e
2πixk·q. (2.32)

The atomic scattering factors for each atom are well known and documented in [75].

In most cases, diffraction due to elastic scattering is the dominant signal in the collected
images. However, when the wavelength of the beam is near an absorption edge of one of
the atoms of the sample, effects from absorption of the x-ray photons, known as anomalous
dispersion, become noticeable. In particular, this phenomenon induces both a magnitude
and phase shift in the diffraction signal and, consequently, breaks Friedel and, partially, Laue
symmetry. Anomalous dispersion is often modeled via the addition of dispersion corrections
∆f ′ak + i∆f ′′ak to the Fourier transform of the electron density [29]. The dispersion factors for
an individual atom can, for most commonly used energies, be modeled as constants, which
depend only on the wavelength of the x-ray beam, and can be extended to the entire sample
via superposition:

F (q, λ) =
∑
k

(fo,ak(q) + ∆f ′ak(λ) + ∆f ′′ak(λ))e2πixk·q (2.33)

2.3.6 Noise Models in X-ray Nanocrystallography

Due to the quantum nature of light, only a discrete number of photons can be detected.
In particular, one can think of the measured magnitudes in Equations (2.19) and (2.31) as
representing the probability of a photon appearing at a pixel. Consequently, this discrete
behavior induces a type of noise, known as shot noise, which can be described in terms of
a Poisson distribution, see Figure 2.5b. More specifically, if the expected value at a pixel
with position (x, y) is v = I(x, y) then the probability of measuring p photons at that pixel
Pr(vm = p) can be approximated by

Pr(vm = p) =
vpe−v

p!
. (2.34)

In addition to the desired information from elastic scattering of the nanocrystal, the
detectors collect signal due to various background sources. This includes scattering from the
disordered liquid jet and solvent molecules, electronic noise from the detector, and inelastic
scattering effects. Apart from detector noise, which is typically correlated with specific pixels,
these sources induce a diffuse background on the detector. These background effects can,
for the most part, be measured over several blanks shots, where the nanocrystal sample fails
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to intersect the x-ray beam, and subsequently subtracted out from the desired nanocrystal
diffraction images. However, fluctuations in the background levels lead to another source of
noise, known as background noise, which is uncorrelated with the elastic scattering from the
nanocrystal, see Figure 2.5c. Background noise is typically modeled as an additive Gaussian
white noise term, in which the measured intensities Im are given as

Im(x, y) = I(x, y) +W (x, y), where W (x, y) ∼ N (0, σ), (2.35)

i.e., W is drawn from a normal distribution with mean 0 and standard deviation σ.

(a) Clean image. (b) Shot noise. (c) Shot and background noise.

Figure 2.5: Examples of the effects of noise in x-ray nanocrystallography diffraction images
(log scale). Shot noise largely removes pixels with low intensity while background noise adds
fuzziness uniformly throughout the image.

A major source of uncertainty is the large variation in the incident photon flux density J .
In particular, the liquid jet delivery system does not allow precise control over the position
of the nanocrystals with respect to the x-ray beam, which causes several partial hits along
with complete misses. The profile of the beam is often approximated as a Gaussian, i.e., the
photon flux density at a point x in the plane normal to the beam with peak photon flux
density Jo at its center xo is given by

J(x) = Joe
−
|x−xo|2
2σ2

J , (2.36)

for some σJ , which represents the width of the beam. If we assume that the liquid jet is
accurately aligned with the beam, then the position of the nanocrystals only vary along the
jet and can be modeled via a uniform distribution over some interval [-B,B], denoted by
U(−B,B), resulting in

J = Joe
−
x2

2σ2
J , where x ∼ U(−B,B). (2.37)
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More specifically, for a large ensemble of diffraction patterns, each image will be multiplied
by a random J drawn from (2.37).

Other sources of noise and uncertainty include effects from detector artifacts, crystal
imperfections, damage processes, vibrations, and limitations in beam tuning. However, the
noise processes above tend to serve as the biggest obstacles to processing x-ray nanocrystal-
lography data.

2.4 Autoindexing

In principle, one can use the location of Bragg peaks in a crystallographic diffraction image
to determine the lattice structure of the crystal along with partial orientation information.
In particular, the Fourier transform of the reciprocal lattice retrieves the lattice structure
of the periodic crystal, which determines the Bravais lattice vectors (h1,h2,h3), along with
the orientation R up to symmetry of the lattice. This fact is used in a class of techniques,
referred to as autoindexing, to retrieve the above information by analyzing the distribution
of Bragg peaks in the images. However, note that the two-dimensional images only contain
partial information about the three-dimensional lattice. While autoindexing has been used
extensively to increase the orientation information for conventional crystallography, where
diffraction images are collected through a rotational average to integrate out the shape
transform, its application to nanocrystallography is a current area of study [47].

2.4.1 Autoindexing Techniques

One method of autoindexing is based on embedding the Bragg points detected on the 2D
images into three-dimensional space and then taking the Fourier transform of this embedding
[13, 55]. In particular, a mask b : R2 → R with a tolerance τ is applied to the image to filter
out everything but the Bragg peaks:

b(x, y) =

{
1, if I(x, y) > τ and I(x, y) is a local maximum,

0, otherwise.
(2.38)

This is then embedded onto a 3-D Cartesian grid by forming B : R3 → R where

B(ξ) =

{
b(q−1(ξ)), if ξ ∈ q(R),

0, otherwise,
(2.39)

where some type of interpolation is used when the Bragg points don’t align with the grid. The
function B, used as an approximation to the reciprocal lattice, is then Fourier transformed
to retrieve B̂, which gives a 3-D approximation to the crystal lattice. The Bravais vectors
are then retrieved by analyzing the lattice structure of B̂. However, the crystal lattice
approximation, provided by B̂, becomes blurry and difficult to analyze when an insufficient
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number of peaks are used or if non-Bragg intensities are not filtered out, both of which are
prominent issues in nanocrystallography. A recent version of the above approach utilizes
compressed sensing techniques in order to reduce the number of required reflections and
achieves a sharper image of the crystal lattice at the cost of performing several iterations of
a nonlinear solver [47].

Another approach to autoindexing is based on the Fourier analysis of projections of the
Bragg data onto a series of one-dimensional lines, which are used to search for the individual
Bravais lattice vectors of the crystal [69]. For each line, represented by a unit vector ` coming
from a uniform distrubtion of the unit sphere, one creates a set of frequency bins f` : Z→ Z
of a set length L and computes the projections of the set of detected Bragg points Br:

f`(n) =
∣∣{x ∈ Br : nL ≤ x · ` ≤ (n+ 1)L}

∣∣. (2.40)

One can think of f as the x-ray projection operator being applied twice to B, i.e., it approx-
imates

f`(x) =

∫
`⊥
B(x`+ y)dy = (P`⊥1 P`⊥2 B)(x), (2.41)

where `⊥ = `⊥1 ⊕ `⊥2 is an orthogonal decomposition. One then proceeds by computing the
Fourier transform of f , which by the Fourier projection-slice theorem, applied twice, equals
the restriction of B̂ to `, i.e., f̂` = B̂|`. In particular, when ` is in the direction of a Bravais
vector, f̂` contains several peaks where ` intersects the crystal lattice points, which are
separated by the length of the Bravais vector. Therefore, the lines which correspond to the
function f̂` with largest norm are then used as candidates for the directions of the Bravais
lattice characteristic vectors and the associated Bravais vector lengths are computed as the
distance between the peaks of the function. The advantage of this approach over the 3-D
approach is that one has more direct control over the resolution of the search directions.

Another version of the 1-D projection approach focuses on directions which are orthogonal
to planes formed by triplets of reciprocal lattice points [20]. In particular, the normal to
such a reciprocal plane is of the form

n = a1h1 + a2h2 + a3h3, where ai ∈ Z. (2.42)

Instead of using a Fourier transform, the length of the corresponding lattice vectors are
computed by looking for the largest distance between consecutive projected peaks. The
directions are then analyzed and those which best fit the peak distribution are taken as the
Bravais vectors. While effective at handling complexities due to crystal anomalies, it requires
the presence of an appropriate set of measured peaks in order to ensure that true Bravais
lattice vectors are present in the list of the triplet normals.

2.4.2 Lattice Orientations and the Twinning Problem

Once the Bravais lattice characteristic vectors H = (h1,h2,h3), represented in a reference
frame, are known, one can proceed to compute orientation information for each image,
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but only up to symmetry of the lattice. In particular, note that the Bravais vectors V =
(v1,v2,v3) retrieved by autoindexing are only determined up to multiplication of the vi by
−1. Each choice of sign, consistent with det(V ) = det(H), corresponds to a different rotation
R̃ such that

V = R̃H. (2.43)

Note that the set of possible rotations in (2.43) is given by multiplying R̃ by elements of
the lattice rotational symmetry group, i.e., for every R ∈ SR(L), RR̃ is a another possible
rotation. Therefore, the orientation of the crystal, up to symmetry of the lattice, can be
retrieved by computing

R̃ = V H−1. (2.44)

The ambiguity in the calculation of R̃ is known as the autoindexing ambiguity. In conven-
tional crystallography, the autoindexing ambiguity can be resolved since one has control over
the crystal orientations up to a certain precision. However, due to the randomization of the
delivery system, this is not possible in nanocrystallography. In particular, if the diffraction
pattern does not have the same symmetry as the lattice, then autoindexing is unable to de-
termine complete orientation information, which is known as the twinning problem, depicted
in Figure 2.6. In such cases, there is an ambiguity in assigning the recorded intensities to
their corresponding locations in reciprocal space. For most crystals, the twinning problem
induces no more than a two-fold ambiguity in the Bragg data. However, the size of this am-
biguity can potentially increase in the presence of anomalous dispersion or when observing
non-Bragg data. We will refer to a quantity as being twinned when the twinning problem
leads to an ambiguity in its determination, and will refer to it as being detwinned when its
associated ambiguity is resolved.

Figure 2.6: Example of the twinning problem: The lattice points (blue) are symmetric
with respect to rotation by 90 degrees while the constituent molecule (happy face) is not.
Autoindexing techniques only utilize the lattice points and, thus, cannot distinguish between
these two orientations.
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2.5 Phase Recovery

As described in Section 2.3, diffraction images do not contain phase information, which
must be recovered in order to retrieve the electron density of the sample. Note that, due to
Friedel symmetry, the Fourier magnitude information can, at most, determine a structure up
to inversion through some point, i.e., chirality is lost. Moreover, in some cases, fundamentally
different structures can have the same Fourier magnitudes, as was originally discovered in
the x-ray crystallography study of the molecule bixbyite [58]. In particular, there exist
many examples of structures which demonstrate such non-uniqueness, known as homometric
structures [25, 57]. Fortunately, this non-uniqueness can be avoided by including additional
measurements or constraints in the inversion process, e.g., via anomalous dispersion, addition
of heavy atoms, and/or additional modeling requirements.

2.5.1 Techniques

One of the earliest developed phase recovery methods is Patterson map analysis [56], which
analyzes the Patterson map P : R3 → C of the structure factor magnitudes |F |:

P (x) =
∑
ξ∈L̂m

|F (ξ)|2e−2πix·ξ, (2.45)

where L̂m is the set of reciprocal lattice points whose intensities were measured. In partic-
ular, the Patterson map is an aliased version of the autocorrelation function, which reveals
information about the relative displacements between the atoms in a molecule. This infor-
mation can potentially be used, barring uniqueness issues, to determine the corresponding
atomic positions directly. Unfortunately, the displacements become difficult to determine
when a large molecule, with more than a few hundred atoms, is studied or if atomic resolu-
tion is not obtained. However, Patterson map analysis is often used to locate specific types
of atoms in other phasing methods.

Another class of phasing techniques, known as direct methods, attempt to exploit known
statistical relations between the phases of the structure factors [31]. For instance, if we have
a collection of reciprocal coordinates that satisfy

∑N
j=1 ξj = 0 then the sum of the phases of

the corresponding structure factors

N∑
j=1

−i log
(
F (ξj)

|F (ξj)|

)
, (2.46)

called structure invariants, are invariant with respect to translation of the solution. These
types of invariants, along with the known positivity of the solution, can be exploited via
probabilistic techniques in order to determine a likely set of phases for the solution. However,
this approach is typically only feasible for small molecules, containing no more than a few
hundred atoms, but it can be used to augment other methods.
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An additional way to determine phase information is through anomalous dispersion meth-
ods, where one uses x-ray wavelengths near an absorption edge of some of the atoms in the
sample, in order to exploit the behavior of the dispersion correction terms, discussed in
Section 2.3.5. In this case, assuming there is only one type of atom displaying anomalous
scattering, with known scattering factors fo + ∆f ′ + ∆f ′′ when placed at the origin, the
magnitude of the modified structure factors Fm, which depend on the x-ray wavelength λ,
can be expressed as

|Fm(ξ, λ)|2 =

∣∣∣∣∣F (ξ) +
K∑
k=1

FA,k(ξ)
∆f ′(λ) + i∆f ′′(λ)

fo(ξ)

∣∣∣∣∣
2

, (2.47)

where F is the unmodified structure factor, due only to elastic scattering, of the entire
sample and the FA,k are the unmodified structure factors of just the anomalous scatterers,
i.e., the atoms with absorption edges near λ. If we group wavelength-dependent terms, we
can rewrite (2.47) as

|Fm(ξ, λ)|2 = |F (ξ)|2 + a(ξ, λ)|FA(ξ)|2 + b(ξ, λ)|F (ξ)||FA(ξ)| cos(φ− φA)

+ c(ξ, λ)|F (ξ)||FA(ξ)| sin(φ− φA),
(2.48)

where FA =
∑K

k=1 FA,k, φ = −i log( F
|F |) and φA = −i log( FA

|FA|
) are the phases, and the a, b,

and c terms are functions of the known structure factors, along with dispersion corrections,
from the anomalously scattering atoms.

In multi-wavelength anomalous dispersion (MAD), one collects diffraction patterns at a
few, typically 3-4, different wavelengths in order to compute |F |, |FA|, cos(φ − φA), and
sin(φ − φA) [34, 35, 40, 41]. The anomalous scattering factors FA can then be deduced by
performing a Patterson map analysis on |FA(ξ)|2 or ||Fm(ξ)|−|Fm(−ξ)||2. The corresponding
Patterson map consist of a few peaks that correspond to the relative displacements of the
anomalously scattering atoms and are simple enough that one can directly infer the locations
of the anomalous scatterers and, subsequently, deduce FA. The values of FA, |F |, cos(φ −
φA), and sin(φ − φA) can then be used to determine F . The MAD procedure is similar
in the case of multiple anomalous scattering types, except that Equation (2.48) has more
variables. An alternative to MAD is single-wavelength anomalous dispersion (SAD), which
only measures the sample with a single wavelength and solves for the variables in (2.48)
via other constraints, such as minimal support in solvent flattening or reinforcing certain
structure factor statistics in histogram matching [36, 71].

Another approach to phase recovery is isomorphous replacement, where one collects
diffraction patterns from a crystal along with additional versions of the crystal with heavy
atoms added [17, 27, 59]. In particular, the crystals must be isomorphic, i.e., they must have
the same crystal lattice structure and the same placement of the original sample in the unit
cell. If the structure factors of the heavy atom are given by FH , which are known a priori
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up to translation of the molecule, then the squared magnitudes of the measured structure
factors of the crystal with heavy atoms is given by

|Fm(ξ)|2 = |F (ξ) + FH(ξ)|2, (2.49)

where |F |2 is determined from the diffraction pattern of the unmodified crystal. Since |Fm|−
|F | will largely reflect the additional scattering from the heavy atoms, a Patterson map
analysis on ||Fm| − |F ||2 can be used to locate the positions of the heavy atoms and, thus,
determine FH . One can then compute

|Fm(ξ)|2 − |F (ξ)|2 − |FH(ξ)|2 = 2<(F (ξ)FH(ξ)). (2.50)

However, (2.50) only narrows down the possible phases for F to two possibilities for each ξ.

Multiple isomorphous replacement (MIR) resolves the phase ambiguity in (2.50) by using a
third crystal with a different heavy atom [10]. An alternative to MIR is single isomorphous
replacement (SIR), which only uses one crystal with heavy atoms and, similar to SAD,
removes the remaining phase ambiguity through other constraints such as symmetry, solvent
flattening, and histogram matching [11, 76]. Additionally, one can combine isomorphous
replacement with anomalous scattering as is done in single isomorphous replacement with
anomalous scattering (SIRAS) [60] and multiple isomorphous replacement with anomalous
scattering (MIRAS) [42].

If one already has a good model for the structure of the sample, then the phases can often
be deduced directly from the collected magnitude information with a technique known as
molecular replacement (MR) [65, 64]. However, depending on the space group symmetry of
the crystal, there are often several copies of the molecule sample placed at different locations
and orientations in a unit cell. Therefore, one must determine the orientation and translation
of the sample molecules with respect to the model. One can decouple the orientation and
translation search by first analyzing intramolecular information contained in the Patterson
map restricted to a sphere around the origin. Given a spherical shell S and the Patterson
maps P of the sample and PM of the model, the orientation step can be expressed as solving

max
R∈SO(3)

∫
S

P (Rx)PM(x)dx. (2.51)

The optimization problem (2.51) can be solved efficiently in reciprocal space by expanding
the structure factors and characteristic function of S onto a basis of spherical Bessel functions
and spherical harmonics [18]. Once the orientation of the reference molecule in the unit cell
is determined, the placement of molecules within the entire unit cell must be determined. In
particular, the arrangement is described by the space group of the crystal, which one may
have to first deduce, and is based on the position of the reference molecule within the unit
cell. Therefore, the translation step can be formulated as maximizing the inner product of
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the observed structure factor square magnitudes |F (ξ)|2 with a model |FM(ξ,x)|2 of the unit
cell U with the origin of the reference placed at x [19]:

max
x∈U

∑
ξ∈L̂m

|F (ξ)|2|FM(ξ,x)|2, (2.52)

where L̂m is the set of reciprocal lattice points whose intensities were measured. Once the
orientation and translation information is known, one can proceed to refine the model to
better match the observed intensities.

Alternatively one can, in principle, determine the phase information based solely on the
collected Fourier magnitudes if certain sampling requirements are met, in a process known
as computational phase retrieval. In particular, phase information can almost always be
uniquely determined, up to certain trivial operations, from Fourier magnitude information,
if one can sample the power spectrum of an object at twice the Nyquist rate of the object,
i.e., the sampling rate used in the Shannon-Nyquist theorem. Unfortunately, this sampling
requirement is infeasible in conventional crystallography, where diffraction data is only mea-
sured at reciprocal lattice points, which sample directly at the Nyquist rate.

Recall that, due to the noticeable effects of the shape transform, diffraction images from
nanocrystals typically contain a significant amount of intensity information between Bragg
peaks, e.g., see Figure 2.4. In particular, this inter-Bragg data may allow one to sample the
power spectrum at a rate which is sufficient for the use of computational phase retrieval.
In the following subsections, we explore this idea by discussing the theory of computational
phase retrieval and current algorithmic approaches. In particular, we describe the effective-
ness of computational phase retrieval when using different sampling strategies and discuss
how the sampling requirement might be reduced by seeking a solution with minimal support.

2.5.2 Computational Phase Retrieval: Theory

Well-posedness of the computational phase retrieval problem typically requires certain as-
sumptions about the solution’s support. In fact, solutions to the phase retrieval problem
with compact support have a very restrictive form [5, 63]:

Theorem 5. Suppose f ∈ L2(Rd) has compact support and define F : Cd → C to be the an-
alytic extension of f̂ to Cd. If g ∈ L2(Rd) satisfies |ĝ| = |f̂ | then ĝ(ξ) = ei(α+β·ξ)F1(ξ)F2(ξ),
where F = F1F2 is an analytic factorization of F over Cd, α ∈ R, and β ∈ Rd.

In practice, we will have to approximate the continuous electron density with discrete
functions, i.e., f : Zd → C. A result similar to Theorem 5 holds in the discrete case. The
main idea is that the analytic extension of the power spectrum of a compactly supported
function f , which can be assumed to have support only for nonnegative entries, to Cd \ {0}
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is a polynomial in 1
z
, given by Z[f ](z)Z[f ](z−1), and, thus, the Z-transform of any other

function with the same power spectrum must consist of a mix of factors from Z[f ] and its
conjugate inversion [32, 62]:

Theorem 6. Suppose that f, g : Zd → C have compact support. If |f̂ | = |ĝ| then ĝ(ξ) =
e2πi(α+τ )Z1(eiξ)Z2(eiξ), where Z[f ] = Z1Z2 is a polynomial factorization, α ∈ R, and τ ∈ Z.

Note that if the Z-transform of f has at most one nontrivial irreducible factor without
conjugate inversion symmetry, then Theorem 6 implies that a compactly supported function
is determined uniquely by its power spectrum up to translation, conjugate inversion, and
multiplication by a constant phase factor. In one dimension this is very common since, by the
fundamental theorem of algebra, all one-dimensional polynomials are reducible over C and
almost never display conjugate inversion symmetry. Fortunately, reducibility is extremely
rare in higher dimensions. While a few non-unique cases are known to exist in nature, such
examples typically exhibit very specific types of symmetry and, thus, non-uniqueness tends to
be rare for more complicated structures [38, 43]. Moreover, for d ≥ 2 and N = (N1, . . . , Nd),
if we define P (N) to be the set of polynomials over C in d variables of the form

p(z) =
∑
n∈ZN

anzn, (2.53)

where an ∈ C, then, when realizing P (N) as C|N| and using the Lebesgue measure, the
set of reducible polynomials in P (N) forms a set of measure zero [33, 66]. Therefore, for a
rectangular1 bounded region T , phase recovery for almost all discrete functions with support
contained in T has a unique solution up to these three trivial ambiguities, where we are
realizing our function space as C|T | and using the Lebesgue measure:

Corollary 1. For d ≥ 2, T ⊆ Zd rectangular and bounded, and almost all f : Zd → C with
supp(f) ⊆ T , if g : Zd → C satisfies |ĝ| = |f̂ | and supp(g) ⊆ T then for all n ∈ Zd either
g(n) = eiθf(n + τ ) or g(n) = eiθf(−n + τ ), where τ ∈ Zd and θ ∈ R.

Since the alternative solutions in Corollary 1 have the same basic structure we will con-
sider them to be equally valid solutions:

Definition 10. f : Zd → C and g : Zd → C are equal up to form if there exist θ ∈ R and
τ ∈ Zd such that g(x) = eiθf(x + τ ) or g(x) = eiθf(−x + τ ).

Note that uniqueness of the phase retrieval problem requires knowledge of |f̂(ξ)| for all
ξ ∈ Rd, while, in practice, one is only able to sample |f̂ | at a finite rate. Fortunately, full

1We take the convention that a rectangular region is not degenerate, i.e., it extends by at least two
elements in every dimension.
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recovery of |f̂ | is possible if it is sampled at a sufficiently high rate. In the continuous case, due
to the Wiener-Khinchin theorem, the Fourier transform of |f̂ |2 is the autocorrelation Af of f
and has support twice as large as that of f . Therefore, by the Shannon-Nyquist theorem and
finite support of f , |f̂ | can be recovered exactly by sampling at the Nyquist rate for Af , i.e., by

obtaining {|f̂( n1

2L1
, . . . , nd

2Ld
)| : n1, . . . , nd ∈ Z}, where supp(f) ⊆ [τ1, τ1+L1]×. . .×[τd, τd+Ld]

for some τ1, . . . , τd ∈ R. In the discrete case, the Fourier transform of a signal with bounded
support is a polynomial over Td with finite degree and, thus, it can be retrieved with a finite
number of samples:

Theorem 7. For all d ≥ 2, T ⊆ Zd rectangular and bounded, and almost all f : Zd → C
that satisfy supp(f) ⊆ [τ1, τ1 + L1] × · · · × [τd, τd + Ld] ⊆ T , for τi, Li ∈ Z, f is uniquely
determined, up to form, by {|f̂ |( n1

2L1
, . . . , nd

2Ld
) : ni ∈ Z2Li}.

The number of samples required in Theorem 7 is 4 times what is required to recover f
from f̂ , known as the Nyquist density of f . More generally, the required sampling rate in d
dimensions corresponds to sampling with 2d times the Nyquist density. This suggests that
the same sampling procedure in higher dimensions may be redundant. In fact, in [53], it
was shown that it is possible to reduce the sampling requirement in higher dimensions. In
particular, if another constraint, such as positivity, is used then we have:

Theorem 8. For all d ≥ 3, T ⊆ Rd rectangular and bounded, and almost all f : Zd → R≥0

with supp(f) ⊆ T , there exists a set of sample points {xi} with density 4 times the Nyquist
density of f such that f can be retrieved uniquely, up to form, from {|f̂(xi)|}.

While Theorem 8 implies that the Fourier magnitudes require less sampling in higher
dimensions, it has only been shown for specific sampling strategies. For example, in three
dimensions, {xi} = {( n1

2L1
, n2

2L2
, n3

L3
) : n1 ∈ Z2L1 , n2 ∈ Z2L2 , n3 ∈ ZL3}, i.e., one of the dimen-

sions is sampled at half of the rate of the others. Nevertheless, this suggests that phase
retrieval may still be possible with a reduced sampling requirement.

Note that the Nyquist sampling rate for f is based on the smallest box that contains the
support of f . However, it is possible that the support of f only takes up a small percentage
of its containing box, which suggests that it may be possible to further reduce the sampling
requirement needed for phase recovery. In fact, in [15] it was shown that one can recover a
sparse discrete function from its Fourier values sampled far below the Nyquist rate, if the
sampling is random:

Theorem 9. Let f : ZN → C have support T and let Ω be a set of sampling points from
a uniform random distribution on ZN. For every M > 0, there exists CM such that if
|T | < CM(log |N|)−1|Ω| then with probability at least 1−O(|N|−M) the solution to

min
g:ZN→C

||g||`1 , where ĝ|Ω = f̂ |Ω (2.54)
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is unique and equal to f .

Note that for a discrete function f supported on T , its autocorrelation Af has support of
size at most |T |2. Since uniqueness in the phase problem is tied with being able to determine
the autocorrelation from a set of measurements of the power spectrum a function, Theorem
9 implies that a function with support T can be recovered with O(|T |2 log(|N|)) random
measurements of its Fourier magnitudes [54]:

Theorem 10. For N = (N1, . . . , Nd) with d ≥ 2 and M > 0, almost all f : ZN → C can
be uniquely determined up to form by O(|T |2 log(|N|)) random measurements of |f̂ | with
probability at least 1−O(|N|−M), where T is the support of f .

While the random sampling requirement of Theorem 10 may be difficult to realize in
practice for diffractive imaging, without throwing away useful data, it suggests that it may
be possible to reduce the sampling requirement by seeking a compressed solution. More
specifically, note that the `1 minimization in Theorem 9 attempts to retrieve the sparsest
solution that matches the random Fourier measurements, i.e., it is a convex relaxation of
the minimization of the “`0 norm”, which measures the support size of a function. In par-
ticular, this idea of reducing the required number of sample points by seeking a solution
with minimal support has the potential to make computational phase retrieval feasible for
nanocrystallography images, where sampling is limited by the scaling from the shape func-
tion.

2.5.3 Computational Phase Retrieval: Algorithms

Many phase retrieval algorithms are based on having an estimate of the solution support, or
at least knowledge of a containing region. In this case, the phase retrieval problem may be
formulated as follows: Given Fourier magnitude values a : ZN → C and a support T ⊆ ZN,
find ρ ∈ M ∩ S, where M = {y ∈ `2(ZN) : |ŷ| = a} and S = {y ∈ `2(ZN) : supp(y) ∈ T}.
Given ρ : ZN → C, we define the projector PM onto M by

P̃M ρ̂(k) =

{
a(k) ρ̂(k)

|ρ̂(k)| , if ρ̂ 6= 0,

a(k), otherwise,

PMρ = F∗P̃MF ,
(2.55)

and the projector PS onto S by

PSρ(x) =

{
ρ(x), if x ∈ S,
0, if x /∈ S.

(2.56)

Note that while these projectors preserve real-valuedness if seeking a real-valued solution,
one may have to, in practice, take the real part of the projection to remove complex terms
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introduced by floating point arithmetic. We can represent the error in each set as εM(ρ) =
||PMρ − ρ||2 and εS(ρ) = ||PSρ − ρ||2. The projection operators can then be realized as a
gradient descent step in minimizing its associated square error:

PMρ = ρ− 1

2
∇ρε

2
M(ρ), PSρ = ρ− 1

2
∇ρε

2
S(ρ). (2.57)

Since the support projector is a linear operator, while the modulus projector is nonlinear, a
natural minimization algorithm is projected gradient descent on the modulus error:

ρ(n+1) = PSρ
(n) − 1

2
∇Sε

2
M(ρ(n)) = PSPMρ

(n), (2.58)

where ∇S = PS∇ρ is the gradient projected onto S and ρ(n) is the n-th iterate, starting
with some initial guess ρ(0). The update rule in (2.58) is known as the error reduction (ER)
algorithm, alternating projection method, and the Gerchberg-Saxton algorithm [26]. One
can show that every iteration of ER reduces or maintains the total error [23], i.e.,

ε2
S(ρ(n+1)) + ε2

M(ρ(n+1)) ≤ ε2
S(ρ(n)) + ε2

M(ρ(n)). (2.59)

However, ER tends to slow down and get trapped into local minimum as ∇ε2
M becomes

orthogonal to S.

An alternative phase retrieval technique, based on nonlinear feedback control theory, is
the hybrid input-output (HIO) method, which is expressed as

ρ(n+1) =

{
PMρ

(n)(x), if x ∈ T,
ρ(n)(x)− βPMρ(n)(x), if x /∈ T,

(2.60)

where β ∈ (0, 1] is a feedback parameter [22]. As shown in [49], HIO seeks the saddle point

min
ρS

max
ρSc

(ε2
m(ρ)− ε2

S(ρ)), where ρS = ρ|S and ρSc = ρ|Sc . (2.61)

Consequently, HIO is able to escape most of the local minimum that plagues the ER algo-
rithm. However, since HIO does not directly seek a minimum of the error, in practice, it is
best to combine HIO and ER, e.g., by alternating between several HIO steps and several ER
steps.

There are several other related phase retrieval algorithms, each with their own strengths
and weaknesses, including difference maps [21], solvent flipping [2], average successive reflec-
tions [7], hybrid projection reflection [8], relaxed averaged alternating reflectors [46], saddle
point optimization [48], and alternating direction methods [73].

A major drawback to the algorithms mentioned above is that they typically require a tight
approximation of the support of the solution, such as from a low resolution image, in order
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to be effective [52]. However, obtaining support information a priori is infeasible in many
situations. A potential way to solve to this problem is based on searching for a solution that
agrees with the diffraction the data and has minimal support, similar to the minimization in
Theorem 9. One version of this approach, known as the shrinkwrap algorithm, periodically
refines an estimate of the support after several phase retrieval iterations [51]:

Algorithm 1 (Shrinkwrap)
1. Start with an initial guess T for the support, e.g., the support of the autocorrelation.

2. Apply several iterations of a phase retrieval algorithm, e.g., ER or HIO.

3. Convolve the current iterate with a Gaussian of width σ, G(x) = 1
σ
√

2π
e−
|x|2

2σ2 .

4. Set T to be the set of all points where the current iterate is larger than τ times its
maximum value.

5. Decrease σ and/or τ .

6. Repeat steps 2-5 until convergence.

In the process of seeking a tight estimate of the support, the Shrinkwrap algorithm
essentially produces, assuming convergence, a solution with minimal support. We refer
to methods that attempt to find a solution with minimum support as compressive phase
retrieval methods. In particular, these compressive phase retrieval methods may have the
potential to reduce the sampling requirement for computational phase retrieval, similar to
how the minimization in Theorem 9 is able to retrieve a function with sub-Nyquist sampling
of its Fourier transform. Other strategies for compressive phase retrieval abandon the use
of a strict support and instead use techniques to promote sparsity. Such approaches include
charge flipping and Espresso [50], which use a sparsity promoting operator in place of the
typical support projection, and methods which constrain the `1 norm of the solution [54].

Even though the phase retrieval problem, in general, has a unique solution up to form, the
above algorithms are not guaranteed to converge to the correct solution. Common stagnation
scenarios include image twinning, where an iterate gets stuck near the average of a solution
and its conjugate inverse, f(x) + f(−x), which are both valid solutions by themselves, and
development of phase vortices, where the vector field formed by interpreting f̂ as a real
vector valued function contains false regions of vorticity that must necessarily contain a
point with 0 magnitude, which may be inconsistent with the true solution [24]. While a host
of new techniques based on compressed sensing have had some success in removing such
stagnation, they often require nontrivial changes to the imaging process, such as the use of
random binary masks, which are, in particular, infeasible for nanocrystallography imaging
[14, 70]. Consequently, practical phase retrieval algorithms may require some intervention
from a user in order to detect and overcome such stagnation issues.
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2.6 X-ray Nanocrystallography Reconstruction

The reconstruction problem in nanocrystallography can be stated as follows: Determine the
unit cell electron density ρ from a given ensemble of diffraction images

Im(x, y) = Jmr
2
eP (x, y)∆Ω(x, y)|ρ̂(Rmqλ(x, y))|2|Sm(Rmqλ(x, y))|2, (2.62)

where the incident photon flux density Jm, crystal sizes which determine the shape transform
Sm, and orientations Rm are unknown, and where the images are subjected to large amounts
of shot noise, background noise, and other sources of error.

The Monte Carlo approach handles the unknown quantities and noise in (2.62) by averag-
ing the intensities corresponding to each reciprocal lattice point ξ = qλ(x, y) [74]. However,
this requires a large number of images in order to effectively correct for the parameter
variances. Also, autoindexing algorithms are complicated by the presence of partial and
non-Bragg reflections and, furthermore, can only orient the images up to the symmetry of
the crystal lattice. Unfortunately, in many cases, the symmetry of the crystal lattice is larger
than that of the diffraction data, leading to the twinning problem, discussed in Section 2.4.2.
If the twinning problem is not resolved, then one cannot retrieve the correct structure fac-
tor magnitudes via this averaging, which severely complicates the use of many of the phase
recovery techniques mentioned in Section 2.5.

Current reconstruction methods deal with the twinning problem by twinning the data,
i.e., they work with the average W of the computed structure factor magnitudes |ρ̂| over all
of the rotational symmetries of the crystal lattice S(L):

W (ξ) =
∑

R∈SR(L)

|ρ̂(Rξ)|. (2.63)

However, the twinned data may not offer enough information to directly invert the image
information to retrieve ρ. Consequently, reconstruction has mainly been limited to molecular
replacement techniques, described in Section 2.5.1, which are able to test models of the struc-
ture against the twinned data. While many successful reconstructions from x-ray nanocrys-
tallography images have been performed with molecular replacement, [4, 6, 12, 39, 44],
fundamentally new structures cannot be determined this way, as this technique requires
knowledge of a similar structure in order to function.

In order to determine the structure of fundamentally new objects with x-ray nanocrys-
tallography, the twinning problem, if present, needs to be solved. This will be the goal of
the methods presented in Chapter 3.
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Chapter 3

Algorithms

3.1 Overview

Here we present a new algorithmic framework for x-ray nanocrystallography reconstruction,
which aims to accurately determine the unknown parameters in Equation (2.62) and, in
particular, solve the twinning problem, described in Section 2.4.2, in the presence of large
amounts of noise and uncertainty. Our approach is based on the following steps:

1. We determine the Bravais characteristic vectors and orientations, up to lattice symme-
try, with autoindexing techniques. While current autoindexing methods can accurately
compute Bravais vector and indexing information, which is the twinned coordinate
assignment of the observed Bragg peaks, they may not always calculate lattice orienta-
tion information to the precision that we will require in order to accurately deduce the
crystal sizes and evaluate the shape function. In Section 3.2, we develop a new autoin-
dexing technique, based on maximizing a cosine function, which enhances the precision
of the twinned orientations by allowing us enough flexibility to utilize non-Bragg peak
information.

2. Once the twinned orientations are determined, we infer the crystal sizes from a set of
high resolution images of the low angle Bragg peaks, which can be obtained by placing
a rear detector in the experimental setup, as in Figure 1.1. In particular, the Fourier
transform of the data surrounding such a peak yields the x-ray projected autocorre-
lation of the crystal shape. In Section 3.3, we describe how to retrieve the associated
crystal sizes by segmenting the image of this projected autocorrelated crystal.

3. The twinned orientation and crystal size information is then used to approximate the
structure factor magnitudes for each reciprocal lattice point. However, the approxi-
mated structure factor magnitudes are only valid up to multiplication by the, unknown,
incident photon flux densities, which differ for each image. Furthermore, due to the
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twinning problem, the exact coordinates for the structure factor magnitudes are am-
biguous, i.e., each reciprocal lattice point could correspond to several different structure
factor magnitudes. In Section 3.4, we develop a procedure to determine the unknown
incident photon flux densities and the possible structure factor magnitudes belonging
to each reciprocal lattice point by using a multi-stage expectation maximization algo-
rithm, which alternates between scaling the structure factor magnitudes and modeling
their possible values via a multi-modal Gaussian distribution.

4. In Section 3.5, we develop a method for solving the twinning problem by utilizing
the multi-modal models in step 3. In particular, we use these models to construct a
graphical model of the structure factor magnitude concurrency, which describes how
often pairs of magnitude values from different reciprocal lattice points occur within
the same image. The solution to the twinning problem is then formulated as finding
the maximum edge weight clique in this graph. While the maximal edge weight clique
problem is, in general, NP-hard, we develop a greedy approach which is exact for the
twinning problem in the absence of noise and still highly accurate in the face of large
amounts of variation in the computed structure factor magnitudes. This algorithm
yields detwinned structure factor magnitudes at each of the reciprocal lattice points,
which we then use to compute the full orientations for each image. We can then
assemble the three-dimensional volume of structure factor magnitudes by performing a
weighted average over all of the images at each reciprocal lattice point and, optionally,
for non-lattice points as well.

5. Now the phases can be recovered by using one of the techniques in Section 2.5.1.
In particular, in Section 3.6, we develop a sampling strategy, which utilizes non-Bragg
data, that allows computational phasing with only Fourier magnitude information if the
orientations are determined up to symmetry of the utilized non-Bragg data. However,
if the Laue symmetry of the Bragg data is greater than the symmetry of this non-Bragg
data, then our computational phase retrieval approach may still be viable if one also
solves the twinning problem data on the utilized non-Bragg data.

We now give a detailed description of the above steps.

3.2 Autoindexing

While the autoindexing techniques discussed in Section 2.4.1 have been used successfully
in conventional crystallography, their robustness in nanocrystallography is complicated by
the presence of partial reflections, non-Bragg reflections, and low peak counts. In particu-
lar, as the name suggests, autoindexing was originally intended to simply index the Bragg
reflections, i.e., determine what reciprocal lattice points they correspond to, instead of di-
rectly computing the twinned orientation associated to each image. However, we will require
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highly precise orientation information in order to determine the crystal sizes and evaluate
the shape function. Unfortunately, the images consist mainly of partial reflections, which
smear out the locations of the Bragg peaks and, thus, make it difficult to calculate precise
orientations unless one uses a large number of these reflections, which may not be present
in such quantities in nanocrystal diffraction images.

We now introduce an alternative approach for accurately determining nanocrystal diffrac-
tion image orientations, up to lattice symmetry, which is based on incorporating non-Bragg
reflections that occur on lines between adjacent reciprocal lattice points. In order to utilize
this approach we require a flexible autoindexing algorithm, which we present below.

3.2.1 Bravais Characteristic Vector Calculation

Our autoindexing approach starts by using one of the commonly used autoindexing methods,
mentioned in Section 2.4.1, to determine the crystal lattice system, consisting of the lengths
of and angles between the Bravais vectors, i.e., the vectors are determined for some reference
configuration. In particular, this reference Bravais vector information is very robust as it
takes into account the entire ensemble of images, as opposed to the orientation information,
which is calculated on a per image basis. We then use this information to orient the images,
up to lattice symmetry, with high precision.

Recall that for a crystal lattice L with Bravais characteristic vectors (h1,h2,h3), the
Bragg peaks occur at reciprocal lattice points ξ ∈ L̂, which can be represented in terms of
the Bravais vectors (ĥ1, ĥ2, ĥ3):

ξ =
3∑
j=1

njĥj, where nj ∈ Z. (3.1)

By Equation (2.23), we have the following property:

hi · ĥj =

{
1, if i = j,

0, otherwise.
(3.2)

Therefore, by combining Equations (3.1) and (3.2), for every reciprocal lattice point ξ ∈ L̂,
we have that

hj · ξ = nj. (3.3)

Note that we currently only know the lengths Lj and relative angles of the Bravais vectors,
but not their directions. Therefore, if we express the Bravais vectors as hj = Ljdj, where
|dj| = 1, our goal for each image is to find dj. In particular, by Equation (3.3), we have that

cos(2πLjdj · ξ) = 1. (3.4)
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Assume that for a given image we can determine the set of reciprocal space coordinates
Br for each measured Bragg peak, e.g., by applying a threshold to the image intensities and
then applying the q map in Equation 2.17 to the associated detector coordinates. Then, by
Equation (3.4), the Bravais vector directions dj can be recovered, up to multiplication by
−1, by seeking the maximizer of the sum of (3.4) over Br:

max
|d|=1

∑
ξ∈Br

cos(2πLjd · ξ). (3.5)

This Bravais direction recovery process is illustrated in Figures 3.1 - 3.3.

Figure 3.1: The Bragg peaks (blue) recorded in an image are mapped to the Ewald sphere
(gray) via the q map. The periodicity of the peaks, when projected onto the test directions
(black), is used to determine the directions of the Bravais characteristic vectors.

L−1
j

Figure 3.2: Example of Bragg peaks (blue) being projected onto a Bravais characteristic
vector (black). The projected peaks line up exactly with the local maxima of cos(2πLjx)
(red).
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L−1
j

Figure 3.3: Example of Bragg peaks (blue) being projected onto a non-Bravais vector (black).
The projected peaks do not line up with the local maxima of cos(2πLjx) (red).

As stated, the optimization problem in (3.5) is mainly a reformulation of autoindexing.
In fact, the methods in Section 2.4.1 can be seen as an efficient way to evaluate the sum in
(3.5) over several lengths and/or directions, but they are limited by the resolution of their
associated discretizations. However, we will directly solve this optimization problem, which
allows us to precisely control the lengths and directions we search over and gives us a way
to incorporate non-Bragg peaks, which we now discuss.

Consider a reflection located at a point ξ on the line between two reciprocal lattice points,
i.e.,

ξ =
2∑
j=1

nσ(j)ĥσ(j) + wĥσ(k), w ∈ R \ Z, (3.6)

where σ is some permutation of the indices. We will refer to a point satisfying (3.1) as a
primary reciprocal lattice point and one satisfying (3.6) as a secondary reciprocal lattice point.

For every secondary reciprocal lattice point ξ, we have that

hj · ξ =

{
nj, if j ∈ {σ(1), σ(2)},
w, otherwise.

(3.7)

Therefore, if incorporated into the sum in (3.5), each of these secondary lattice points can be
used to help determine the directions for two of the Bravais vectors, but not the third. Note
that for a Bravais direction dj we can separate the set Brs of reciprocal coordinates of the
measured primary and secondary Bragg peaks into the sets Bg = {ξ ∈ Brs : Ljdj · ξ ∈ Z}
and Bb = {ξ ∈ Brs : Ljdj · ξ ∈ R \ Z}. The sum in (3.5) now becomes∑

ξ∈Brs

cos(2πLjdj · ξ) =
∑
ξ∈Bg

1 +
∑
ξ∈Bb

ωξ, where ωξ ∈ [−1, 1). (3.8)

In most cases, for a given Bravais direction, only a fixed percentage of the primary and
secondary reciprocal lattice points will be in Bb. Even though the sum over Bb averages to
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zero if enough points are used, one can obtain better results by attempting to remove terms
belonging to Bb. In particular, we can filter out these terms by sorting the cosine values and
only considering the set Bp consisting of the p points with the largest cosine value. With
this framework, we now search for the Bravais directions by solving

max
|d|=1

∑
ξ∈Bp

cos(2πLjd · ξ). (3.9)

We illustrate the recovery of a Bravais direction with both primary and secondary reciprocal
lattice points in Figure 3.4.

L−1
j

Figure 3.4: Example of primary and secondary Bragg peaks being projected onto a Bravais
characteristic vector (black). The set of projected peaks in Bg (blue), consisting of primary

reciprocal lattice points and secondary reciprocal lattice points with an integer ĥj component,
line up exactly with the local maxima of cos(2πLjx) (red), while those in Bb (yellow),

consisting of secondary reciprocal lattice points that have a non-integer ĥj component, do
not. Removal of the yellow points allows one to still detect the Bravais vector.

In practice, most of the recorded reflections are partial reflections and, thus, will not
lie directly on a primary or secondary reciprocal lattice point. In this case, (3.9) seeks the
direction that best fits the reflections in the image. If multiple Bravais vectors have the same
length, one will have to search for multiple solutions which are separated approximately by
the known relative angles between these vectors.

3.2.2 Direction Sampling

In order to search for the Bravais directions, we will need to sample the half unit sphere. For
optimal efficiency we would like this sampling to be as uniformly distributed as possible. In
particular, we utilize the method in [45] to generate an approximately uniform distribution:

Algorithm 2
for i = 1 : Nt do

dt← π
Nt
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θ ← (i− 1
2
)dt

dp← dt
sin θ

for j = 1 :
⌊
π
dp

+ 1
2

⌋
do

ψ ← (j − 1
2
)dp

di,j ← (cos(θ), sin(θ) cos(ψ), sin(θ) sin(ψ))
end for

end for

After candidate Bravais directions are located, we generate a finer set of sample directions
around them, by restricting the angular range in Algorithm 2, and repeat the search process
on this finer sampling. This resampling strategy can be repeated several times, until the
desired precision is achieved. Also, note that if one of the Bravais directions is not found,
we can use the known relative angles between the other two Bravais directions to narrow
down the search for the missing one. For example, if the Bravais vectors are known to be
orthogonal, the missing directions can be retrieved as the cross product of the other two.

3.2.3 Computing the Lattice Orientations

Once the Bravais directions D = (d1,d2,d3) for an image are located, we can use Equation
(2.44) to retrieve an approximation R̃a to the orientation matrix by utilizing the known
reference configuration of the Bravais directions B = (b1,b2,b3):

R̃a = DB−1. (3.10)

If |det(R̃a)| is far from unity, this indicates that the autoindexing procedure failed to compute
accurate Bravais directions and, thus, we reject R̃a. In practice, R̃a might not be an exact
rotation matrix, i.e., it might not satisfy R̃T

a R̃a = I and det(R̃a) = 1. Therefore, we first
enforce the determinant to be positive, by multiplying a column vector by −1 if necessary,
and then find the closest rotation matrix R̃ by using the singular value decomposition of R̃a,

R̃a = UΣV T , where UTU = V TV = I and Σ = diag(σ1, σ2, σ3) with σj ≥ 0, (3.11)

to calculate R̃ via
R̃ = UV T . (3.12)

The matrix R̃ is then used as the approximation to the image orientation, up to lattice
symmetry.

3.2.4 Summary

We summarize our autoindexing approach as follows:



CHAPTER 3. ALGORITHMS 36

Algorithm 3
1. Compute the Bravais vectors for a reference configuration from the image ensemble

with one of the commonly used autoindexing algorithms in Section 2.4.1. In particular,
this yields the lengths (L1, L2, L3) and directions B = (b1,b2,b3) in a reference frame.

2. Determine the set Brs of the reflections on primary or secondary reciprocal lattice points
by locating reflections which are local maximums and whose measured intensities are a
set tolerance τ1 above the background.

3. Create an approximately uniform sampling of search directions on the half unit sphere
with Algorithm 2.

4. For each sample direction d perform the following:

4.1. For each lattice length Lj, compute Cj = {cos(2πLjd · ξ) : ξ ∈ Brs}.
4.2. Sort each Cj.

4.3. For each j, set sj(d) to be the sum of the top p elements of Cj.

5. The direction d with the largest value of sj(d) is taken to be a candidate for the Bravais
direction dj. However, if sj(d) < τ2p, for some fixed tolerance τ2, then reject d. If
two Bravais vector lengths are equal then, in order to avoid duplication, enforce their
corresponding candidate directions to have angles which differ by some fixed tolerance.

6. If a candidate for one of the Bravais directions is not found then approximate it with
the set of directions which have the correct angles in relation to the other candidates.

7. Repeat steps 3-6 by using a finer sampling supported around the candidate Bravais
directions and continue until the desired precision is reached.

8. Set the approximate Bravais directions D = (d1,d2,d3) to be the associated candidate
directions.

9. Form the candidate orientation R̃a = DB−1.

10. If |det(R̃a)| < τ3, for some fixed tolerance τ3, then report that the image has failed to
be autoindexed.

11. Ensure that det(R̃a) > 0 by multiplying a column by −1 if the determinant is negative.

12. Compute the singular value decomposition R̃a = UΣV T and return the rotation matrix
R̃ = UV T and associated Bravais characteristic vectors:

(h1,h2,h3) = R̃(L1b1, L2b2, L3b3).
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3.3 Crystal Size Determination

In order to compute the structure factor magnitudes from the measured intensities, the
squared magnitude of the shape function must be divided out of the intensity measurements
in Equation (2.62). Note that near a Bragg peak, the shape function grows quadratically
with the crystal size, which can vary by several orders of magnitude in the nanocrystal
ensemble. Therefore, in order to obtain highly accurate structure factors, the crystal sizes
need to be determined. We accomplish this by analyzing the intensities around low angle
Bragg peaks in a high resolution image, such as from a rear detector image, depicted in
Figure 3.5. The intensities around these peaks reveal the shape of the shape function, whose
Fourier transform determines the crystal sizes. We note that a similar idea was used in
[16] to gather statistics about the crystal size distribution by applying several iterations
of a phase retrieval algorithm on a few select images, but this information was not used
in the structure factor calculation. In comparison, our approach only requires one Fourier
transform calculation and is applied to every recorded low angle image.

Figure 3.5: Example of a low angle image. The shape of the shape function around the
Bragg peaks (circled) can be used to determine the crystal sizes.
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3.3.1 Fourier Analysis of the Shape Function

For an image I with orientation R, consider its restriction Ir to a small neighborhood Nb
centered at a low angle Bragg peak with detector coordinates xo ∈ R2 corresponding to the
reciprocal lattice point ξ ∈ L̂ where |ξ| is small. In Nb the q map in Equation (2.17) can be
approximated as a linear map by Taylor expanding q(x):

q(x) ≈ RTξ +
1

λD

(
x− xo

0

)
. (3.13)

Furthermore, in the neighborhood Nb, the structure factors, polarization factor, and angle
subtended by a pixel are approximately constant. Therefore, by Equation (2.31), the mea-
sured intensities in Nb are, up to a constant factor C, approximately equal to the squared
norm of the shape function S on a plane:

Ir(x) ≈ C|S(ξ +K R(x̃))|2, (3.14)

where K = (λD)−1 and x̃ = (x, 0). Since S is invariant to translation on the lattice, Equation
(3.14) can be rewritten as

Ir(x) ≈ C|S(K R(x̃))|2. (3.15)

Note that since S is symmetric with respect to rotation by elements of the lattice rotational
symmetry group SR(L), we only need to know the orientation modulo SR(L), i.e., we can
use the twinned orientations from the autoindexing process here. If we denote G(x) =
C|S(Kx)|2, then we can realize (3.15) as the restriction of G to the plane rotated by R:

Ir ≈ G|R(R2). (3.16)

Due to the Fourier projection slice theorem, the Fourier transform of (3.16) is given by

Îr(γ) ≈ (PR(3)Ĝ)(γ), (3.17)

where R(3) is the third column vector of R, which is the normal vector to R(R2). Now, by
applying the Wiener-Khinchin theorem to Ĝ in (3.17), we can represent the right hand side
as the x-ray projected autocorrelation of the Dirac comb ∆LC of the finite crystal lattice LC
in an unrotated reference frame:

Îr(γ) ≈ K−1(PR(3)A∆LC)(K
−1γ). (3.18)

An example of this Fourier transform is depicted in Figure 3.6. Note that the support of this
projected autocorrelation is given by the Minkowski sum of the rotated projected crystal,
i.e.,

supp(PR(3)A∆LC) = {x1 + x2, y1 + y2 : (x1, y1, z1), (x2, y2, z2) ∈ R(LC)}. (3.19)
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Figure 3.6: The Fourier transform of the shape function (left) around a low angle peak
reveals the projected autocorrelated crystal (right).

Now recall that the convex hull Conv(X) of a set X is defined by:

Conv(X) =

{∑
x∈X

αxx : αx ≥ 0 and
∑
x∈X

αx = 1

}
. (3.20)

If we approximate the crystal lattice as LC = {
∑3

j=1 njhj : nj ∈ ZNj}, where N =
(N1, N2, N3) are the crystal sizes for each Bravais direction, then the convex hull of the
projected autocorrelation can be expressed as

Conv(supp(PR(3)A∆LC)) = Conv

{
(x, y) : (x, y, z) = R

3∑
j=1

±(Nj − 1)hj

}
. (3.21)

Therefore, by computing Îr, we can almost always deduce the size of the crystal by analyzing
this convex hull. The one exception to this rule is when one of the rotated Bravais vectors
Rhj is orthogonal to the detector plane, in which case any value of Nj produces the same
convex hull. In general, the boundary of this convex hull consists of a series of line segments,
with three normals (n1,n2,n3) along with their three anti-parallel directions, which can be
found by computing the convex hull of the rotated projected autocorrelated reciprocal unit
cell, i.e., the right hand side of (3.21) with Nj = 2 for each j. Note that the extent of the
convex hull in the direction of nj must also be equal to the extent of the unprojected crystal
in this direction. In particular, if we set

bi = max
{
|ni · x| : x ∈ Conv(supp(PR(3)A∆LC))

}
, (3.22)
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then we have that

bi = max

{
|ni · x| : x ∈ Conv

{
(x, y) : (x, y, z) = R

3∑
j=1

±(Nj − 1)hj

}}
(3.23)

= max
3∑
j=1

|nTi Rhj|(Nj − 1). (3.24)

Therefore, if we define a matrix A by

Aij = |nTi Rhj|, (3.25)

then the crystal sizes N can be retrieved by solving

A(N− 1) = b, (3.26)

where 1 = (1, 1, 1).

In the above analysis, we assumed that image passed directly through a reciprocal lattice
point ξ, which may not always happen in practice. Now, suppose that ξ + ν is the closest
point to ξ, which the image samples. Define H(x) = C|S(Kx + ν)|2. In this case, Equation
(3.16) becomes

Ir ≈ H|R(R2). (3.27)

Then, by the translational property of the Fourier transform, (3.18) becomes

Îr(γ) ≈ K−1(PR(3)(eνA∆LC))(K
−1γ), where eν(x) = e2πiν·x. (3.28)

In almost every case, in the sense of measure theory, the inclusion of the exponential function,
eν , in (3.28) does not affect the support of the convex hull. Therefore, the methods described
above can still use Ir to retrieve the crystal sizes. However, if ν is too big, then there may
be large oscillations in Îr(γ), which can make detecting the convex hull difficult.

3.3.2 Image Segmentation

While the convex hull in Equation (3.21) is typically very pronounced, see Figure 3.6, we
require an accurate way of automating its retrieval. In particular, we would like to segment
the projected autocorrelated crystal, represented by |Îr|, from the background, which consists
mainly of small oscillations due to noise and approximation errors. In theory, for a grid
aligned image with sufficient resolution and signal, one could potentially see several sharp
spikes in the image corresponding to the peaks of the associated Delta comb. However, in
most practical cases, the Fourier transform of the intensities consists of a large peak, which
gradually fades into the background as one approaches the end of the convex hull, see Figure
3.7. Therefore, the main difficulty is finding a cutoff value, which separates the crystal from
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the background noise. We then approximate the support of the projected autocorrelated
crystal by the set C, which consists of all pixels with values above this cutoff.

Figure 3.7: Fourier transform of the shape function around a low angle peak, visualized as
a height function which maps the pixels to the Fourier magnitudes.

Note that if we start near the top of the peak and work our way down, the values decrease
monotonically until one reaches the bottom, where the oscillations begin. This idea moti-
vates the following approach. We initialize C to consist of all pixels whose value is greater
than a fixed percentage τ1 of the largest value vmax in the image, ignoring the origin. Here
we ignore the origin value since it tends to be uninformative as it picks up all of the noise
in the image. We then sort the remaining values and traverse the sorted list, adding each
traversed pixel to C, until we reach a pixel which is more than some threshold τ2, typically
a few pixels, away from all of the current pixels in C. Such a jump suggests that one has
reached the bottom of the peak and has begun to see the oscillations. This approach is
summarized in Algorithm 4, where we utilize a queue Q, formed by pairs (|Îr(i, j)|, (i, j)),
which we sort by the first element of each pair.

Algorithm 4
vmax ← maxi,j |Îr(i, j)|
C ← {(i, j) : |Îr(i, j)| ≥ τ1vmax}
for all i, j /∈ C do

Q.push( (|Îr(i, j)|, (i, j)) )
end for
Sort(Q)
loop

(|Îr(m,n)|, (m,n))← Q.pop()
dist← min(i,j)∈C |(i, j)− (m,n)|
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if dist > τ then
return C

end if
C ← C ∪ {(m,n)}

end loop

The result of the above segmentation is illustrated for an example in Figure 3.8. Algorithm 4
can be made to run in O(n log(n)) time, where n is the total number of pixels, with various
geometric data structures for determining if dist surpasses τ , e.g., by maintaining back
pointers from the grid to the elements of C. If |Îr| happens to contain several sharp peaks
from the delta comb then one can still use this segmentation technique by first applying a
low pass filter to |Îr|.

Note that C gives the set of unitless pixel coordinates which approximate the convex hull
of the projected autocorrelated crystal. Therefore, in order to determine the crystal sizes,
these coordinates should first be scaled by their corresponding units, which, for an image
with Np ×Np pixels of size dx× dx, are given by λD

Npdx
.

Segmentation

Figure 3.8: Segmentation of a projected autocorrelated crystal.

3.3.3 Summary

We now summarize our approach for determining the crystal sizes from a low angle high
resolution diffraction pattern I with pixel size dx× dx:

Algorithm 5
1. Search for the peak, with location xo, in I with the largest intensity.

2. Set Ir to be I restricted to Np ×Np pixels around xo.
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3. Compute the Fourier transform Îr.

4. Calculate the convex hull of the rotated projected autocorrelated reciprocal unit cell:

Conv{(x, y) : (x, y, z) = R(±h1 ± h2 ± h3)}.

5. Determine the three non-collinear normals (n1,n2,n3) of the convex hull edges.

6. Segment |Îr| via Algorithm 4 and denote the result as C.

7. Scale every element of C by λD
Npdx

.

8. Compute the extents (b1, b2, b3) for each normal direction, i.e.,

bi = max
x∈C

(|ni · x|).

9. Compute the matrix
Aij = |nTi Rhj|.

10. Solve the linear system A(N− 1) = b and return the crystal sizes N.

3.4 Structure Factor Magnitude Modeling

Once the twinned orientations R̃m and the crystal sizes Nm are known, we can proceed to
compute an approximation |F̃m|2 to the structure factor square magnitudes |Fm|2 from the
image Im by:

|F̃m(R̃mq(x))|2 =
Im(x)

r2
eP (x)∆Ω(x)|SNm(R̃mq(x))|2

. (3.29)

In particular, note that since we do not know the incident photon flux density Jm, which
varies between images, |F̃m| only determines |Fm| up to a constant factor, with a different
constant for each image. Furthermore, due to the twinning problem, one only knows the
corresponding reciprocal space coordinates associated to the values of |F̃m| up to symmetry
of the crystal lattice, i.e., the possible structure factor magnitudes for each reciprocal lattice
point take the form of a multi-modal distribution. Moreover, these two problems are strongly
coupled together since we cannot perform the scaling correction unless we know what modes
to scale to and the modes are indistinguishable in the unscaled data set. Hence, we will need
a method to simultaneously determine the scaling and the parameters in the multi-modal
distribution.
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3.4.1 Processing the Data

Since the majority of the signal is spread out in a small region around the Bragg peaks, it is
prudent to average over this region in order to obtain an approximation of the structure factor
magnitudes. In particular, for each image Im and for each reciprocal lattice point ξi ∈ L̂,
that Im potentially measures, we compute the approximate structure factor magnitudes by
averaging the numerator and denominator of (3.29) in the neighboring ball B(ξi, r) with
radius r:

vi,m =

∑
R̃mq(x)∈B(ξi,r)

Im(x)∑
R̃mq(x)∈B(ξi,r)

r2
eP (x)∆Ω(x)|SNm(R̃mq(x))|2

. (3.30)

However, if the intensity Im(x) is below some threshold, then its signal is most likely dom-
inated by noise, which will cause large errors due to the scaling provided by the shape
function. Hence, such intensities are dropped from the sum in (3.30). Note that since we
only know the orientation up to the twinning ambiguity, we also set vt,m = vi,m for every
t such that for some R ∈ SR(L), Rξt = ξi. In practice, {vi,m} can be stored efficiently
through a map data structure for each image, i.e., by using ordered pairs (ξi,m, vi,m) with an
efficient lookup construct on ξi,m. In order to simplify our notation, we will assume that any
unmeasured values and their corresponding indices are removed from all of the remaining
sets and summations.

One major difficulty in analyzing the multi-modal distribution of (3.30) is that the vari-
ance of the data scales with the size of the collected magnitudes. In particular, data generated
from a Poisson distribution with mean v, described in Section 2.3.6, is approximately equal
to a Gaussian distribution with a standard deviation of

√
v. Fortunately, we can modify the

data to have a standard deviation that is largely independent of the mean, in a technique
known as variance stabilization. In particular, if a set of data values {yi} is generated from
a Poisson distribution then {√yi} approximately has the distribution of a Gaussian with
standard deviation 1

4
[28]. However, in addition to Poisson noise, the data {vi,m} is also

contaminated with errors in the calculation of the shape transform, which again scales with
the mean. Therefore, we apply two steps of variance stabilization to the data and, instead,
work with

wi,m = v
1
4
i,m. (3.31)

3.4.2 Multi-Modal Analysis

For the moment, assume that the structure factor magnitudes are already properly scaled.
Due to the twinning problem, we currently only know the orientations up to the lattice
symmetry and, thus, for each reciprocal lattice point ξi, the values of wi,m could correspond
to K different structure factor magnitudes. In particular, for elastic scattering, K is the order
of the lattice symmetry group modulo the Laue symmetry group, i.e., K = |S(L)|/|SL(C)|,
and, in most cases, K ≤ 2. However, in the presence of strong anomalous dispersion from
certain crystals or when considering non-reciprocal lattice points, K can be larger, up to
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the order of the crystal rotational symmetry group |SR(C)|. Therefore, if one were to plot a
histogram of {wi,m} for ξi, one will see K different peaks, which are smeared out as noise and
uncertainty in the parameters is increased, see Figure 3.9. Our goal here will be to detect
these peaks and model the associated multi-modal distribution.

wi,m

fr
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u
en

cy

Figure 3.9: Histogram of the possible scaled variance stabilized structure factor magnitudes
at a reciprocal lattice point, corresponding to a four-fold twinning problem.

In order to retrieve the set of possible structure factor magnitudes, we will model the
computed values {wi,m} from each reciprocal lattice point ξi with a multi-modal Gaussian
distribution, see Figure 3.10. Specifically, the associated probability density functions can
be expressed in terms of multiple Gaussian distributions with means µi = (µi,1, . . . , µi,K),
ordered so that µi,1 ≤ µi,2 ≤ . . . ≤ µi,K , and standard deviations σ = (σi,1, . . . , σi,K) by

p(wi,m,µi,σi) =
1

K

K∑
k=1

G(wi,m, µi,k, σi,k), (3.32)

where

G(wi,m, µi,k, σi,k) =
1

σi,k
√

2π
e

(wi,m−µi,k)
2

2σ2
i,k . (3.33)

Given a set of data values {wi,m}Mm=1, which we model via (3.32), we can determine its
associated means and standard deviations through an expectation maximization algorithm.
In more detail, given some initial guess for the model parameters µ

(0)
i,j and σ

(0)
i,j , we perform

several iterations of the following:
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T
(n)
i,j,m =

G(wi,m, µ
(n−1)
i,j , σ

(n−1)
i,j )∑K

k=1 G(wi,m, µ
(n−1)
i,k , σ

(n−1)
i,k )

µ
(n)
i,j =

∑M
m=1 T

(n)
i,j,mwi,m∑M

m=1 T
(n)
i,j,m

σ
(n)
i,j =

√√√√√∑M
m=1 T

(n)
i,j,m

(
wi,m − µ(n)

i,j

)2

∑M
m=1 T

(n)
i,j,m

(3.34)

The initialization of (3.34) can be a very delicate issue, as poor initial conditions can lead
to the iterations getting stuck in local minimum far from the desired solution. In general,
each orientation will have approximately the same number of samples in the distribution.
Taking this into account, we initialize by separating the data into K equal bins, set µi,j to
be the location in the j-th bin with the greatest sampling density, and set σi,j to initially
be less than the typical size of a bin. Furthermore, some sort of outlier rejection is typically
required to make expectation maximization algorithms robust. We perform this outlier
rejection by removing any wi,m in which

√
2π
K2

∑K
j=1 σ

(n)
i,j

∑K
k=1 G(wi,m, µ

(n)
i,k , σ

(n)
i,k ) is below some

fixed threshold.
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Figure 3.10: Modeling a histogram with a multi-modal Gaussian distribution (red).

3.4.3 Scaling Correction

In practice, the variance in the incident photon flux density, noise, and errors in autoindexing
and crystal size determination smear out the peaks in the histogram, which makes them
difficult to locate via expectation maximization, see Figure 3.11. Hence, the data must
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be scaled in order to properly model the structure factor magnitudes. We will perform
this scaling by seeking a scaling factor which minimizes the variance in the histograms and
alternate this procedure with the expectation maximization step in (3.34).
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Figure 3.11: Histogram of the possible unscaled variance stabilized structure factor magni-
tudes for a reciprocal lattice point, corresponding to a four-fold twinning problem. The four
different peaks are too smeared out to distinguish.

The scaling problem can be formulated as follows. For every image Im we seek the scaling
factor cm which solves

min
cm

∑
i

|cmwi,m − µ∗i |2, (3.35)

where µ∗i is the mean of the Gaussian distribution closest to wi,m in the multi-modal model.
However, until we have accurate scaling factors, the closest Gaussian distribution may be the
incorrect one. Therefore, we weight (3.35) by the probability that each associated sample
belongs to any given peak in the current multi-modal model:

min
cm

∑
i,j

|(cmwi,m − µi,j)pi,j,m|2, where pi,j,m =
G(wi,m, µi,j, σi,j)∑K
k=1 G(wi,m, µi,k, σi,k)

. (3.36)

The solution to (3.36) is given by:

cm =

∑
i,j wi,mµi,jp

2
i,j,m∑

i,j w
2
i,mp

2
i,j,m

. (3.37)

Once cm is computed we use it to scale the image, i.e., we replace every wi,m with cmwi,m.
This scaling step is alternated with several iterations of (3.34) until the model parameters and
the scaling factors converge. In order to prevent numerical overflow/underflow, we normalize
each cm value after every step, e.g., so that

∑
m cm = constant.

3.4.4 Summary

We calculate the multi-modal model parameters {µi,j} and {σi,j} and scaling factors {cm}
with the following steps:
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Algorithm 6
1. For each image Im, compute the approximate unscaled structure factor square magni-

tudes around the recorded Bragg peaks, located at each reciprocal lattice point ξi:

vi,m =

∑
R̃mq(x)∈B(ξi,r)

Im(x)∑
R̃mq(x)∈B(ξi,r)

r2
eP (x)∆Ω(x)|SNm(R̃mq(x))|2

.

2. Set vt,m = vi,m for every t such that for some R ∈ SR(L), Rξt = ξi.

3. Perform variance stabilization:

wi,m = v
1
4
i,m.

4. For each ξi, compute the model parameters µi,j and σi,j via several iterations of expec-

tation maximization, starting with some initial guess µ
(0)
i,j and σ

(0)
i,j :

T
(n)
i,j,m =

G(wi,m, µ
(n−1)
i,j , σ

(n−1)
i,j )∑K

k=1 G(wi,m, µ
(n−1)
i,k , σ

(n−1)
i,k )

µ
(n)
i,j =

∑M
m=1 T

(n)
i,j,mwi,m∑M

m=1 T
(n)
i,j,m

, σ
(n)
i,j =

√√√√√∑M
m=1 T

(n)
i,j,m

(
wi,m − µ(n)

i,j

)2

∑M
m=1 T

(n)
i,j,m

.

5. Scale each wi,m with cm, which is given by

cm =

∑
i,j wi,mµi,jp

2
i,j,m∑

i,j w
2
i,mp

2
i,j,m

, where pi,j,m =
G(wi,m, µi,j, σi,j)∑K
k=1 G(wi,m, µi,k, σi,k)

.

6. Repeat steps 4-5 until convergence and then return the values of wi,m, µi,j, σi,j, and
cm.

If the number of modes is initially unknown, then it may be discovered by performing
Algorithm 6 with different values of K until the number of modes in the histogram matches
K. Additionally, we note that, if desired, non-Bragg peak data can also be modeled with
the above methods.

3.5 Solving the Twinning Problem

After performing the structure factor magnitude modeling in Section 3.4, we have knowledge
of up to K possible structure factor magnitudes at each reciprocal lattice point. Solving the
twinning problem now amounts to deciding which of these K values belongs at each point.
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In particular, note that there are K equally valid solutions, which are related to each other
by applying a global rotation from the lattice rotational symmetry group. We solve this
by first using the multi-modal model parameters, computed in Section 3.4, to construct a
graphical model of the structure factor magnitude concurrency, i.e., the probability that two
structure factor magnitudes from different points occur within the same image. Then, the
solution to the twinning problem can be formulated as finding the maximum edge weight
clique of this graph, which we compute efficiently with a greedy approach.

3.5.1 Graphical Modeling of Structure Factor Magnitude
Concurrency

Given the scaled variance stabilized structure factor magnitudes {wi,m}, means {µi,j} with
µi,1 ≤ µi,2 ≤ . . . ≤ µi,K , and standard deviations {σi,j} for the m-th image and i-th reciprocal
lattice point, we define the occurrence probability of µi,j in image Im by

p(µi,j|Im) =
G(wi,m, µi,j, σi,j)∑K
k=1 G(wi,m, µi,k, σi,k)

(3.38)

and the concurrence probability of µi1,j1 and µi2,j2 in Im by

p(µi1,j1 , µi2,j2|Im) = p(µi1,j1|Im)p(µi2,j2 |Im). (3.39)

Now construct a graph G = (V,E) with vertices V = {(i, j)} and edges E given by

E =
{

((i1, j1), (i2, j2)) : (Rξi1 = ξi2 , R ∈ SR(L)) =⇒ (i1 6= i2 and j1 6= j2)
}
, (3.40)

i.e., only one value of j can be selected at each reciprocal lattice point ξi and each j can
only be selected once among its twin coordinates ξt = Rξi, where R ∈ SR(L). If there is
any known symmetry in the structure factor magnitudes, such as Friedel or Laue symmetry,
we can simplify the structure of G by merging the corresponding symmetric nodes. Conse-
quently, choosing a consistent set of structure factor magnitudes, where each possible value,
apart from symmetry, appears exactly once, is equivalent to finding a maximal clique in this
graph, i.e., a set C ⊂ V that satisfies for all v1, v2 ∈ C, (v1, v2) ∈ E and has no proper
superset C̃ ) C satisfying the same property.

We define a directed weight W : E → R on G by summing the concurrence probabilities
over the sets Ii1,i2 , consisting of all the images which potentially measure ξi1 and ξi2 :

W ((i1, j1), (i2, j2)) =

∑
m∈Ii1,i2

p(µi1,j1 , µi2,j2 |Im)∑
m∈Ii1,i2

p(µi1,j1|Im)
. (3.41)

This weight describes the likelihood that the values of µi1,j1 and µi2,j2 occur together in one
of the solutions. In fact, if for a fixed i2 all of the µi2,j2 are distinct, then, in the absence of
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noise and errors, W is exactly 1 when µi1,j1 and µi2,j2 are simultaneously part of one of the
detwinned solutions and is 0 otherwise. However, if for a fixed i2 there are B values of k
such that µi2,k = µi2,j2 , then W (µi1,j1 , µi2,j2) = 1

B
. Furthermore, in the presence of noise, the

asymmetry of the weight function serves to favor structure factor magnitudes which have a
strong signal and are well modeled in the expectation maximization step, as they provide
the greatest amount of orientation information.

We now formulate the solution to the twinning problem as follows. We seek the clique
in G with maximal edge weight, i.e., we solve

max
C

∑
v1,v2∈C

W (v1, v2), where for all v1, v2 ∈ C, (v1, v2) ∈ E. (3.42)

If a sufficient number of images are used then, in the absence of noise and error, the solution
to (3.42) retrieves one of the exact solutions to the twinning problem, i.e., the maximum
edge weight clique C assigns the correct structure factor magnitudes, up to a global rotation,
see Figures 3.12 - 3.14. In fact, there will be several maximal cliques which maximize (3.42),
each corresponding to a different valid solution. This remains true in the presence of noise
and error if the variations in the data can be sufficiently controlled in the calculation of the
multi-modal model parameters.

6

6

1 3

77

3 1

3

3

7 6

11

6 7 (3,6)

(1,7) (3,6)

(1,7)

Figure 3.12: The left and middle images are two valid arrangements of the variance stabilized
structure values wi,m on a square lattice, with the middle entry missing. Due to the twinning
problem, autoindexing is unable to distinguish the orientation of the lattice when it is rotated
by 90 degrees. Therefore, in this case, one will see two possible values, µi,1 and µi,2, for each
structure factor magnitude when plotting the histograms of wi,m. This is represented in the
right image, where the dots represent the reciprocal lattice points ξi, after merging Friedel
pairs, and the number pairs are the associated possible values (µi,1, µi,2). In order to resolve
the twinning problem, we must choose one of these numbers at each of the reciprocal lattice
points and each number must be chosen at least once.
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3
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Figure 3.13: Weighted graph associated to the arrangement in Figure 3.12. Each reciprocal
lattice point is split into 2 nodes, one for each of its possible values, and two nodes are
connected if they represent a consistent choice of values. The blue edges correspond to large
weight values and signifies high concurrency, which implies that the connected nodes likely
correspond to the same orientation, and the red edges correspond to small weight values
and signifies low concurrency, which implies that the connected nodes likely correspond to
different orientations.
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Figure 3.14: The two maximal cliques in Figure 3.13. These each correspond to one of the
valid arrangements in Figure 3.12.
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3.5.2 Greedy Approach to the Maximum Weight Clique Problem

In general, the maximum weight clique problem is NP-hard [3]. However, when this problem
is constructed from the twinning problem via (3.42), we can solve it in quadratic time with
a greedy approach. In particular, we accomplish this by starting at a node vs ∈ V and pro-
gressively add nodes which maximize the weight sum of the current clique. Also, in practice,
we remove any nodes which, due to symmetry, are known to have less than the maximum
amount of ambiguity, as they do not determine as much orientation information. For conve-
nience, here we use a single index for the nodes V = {vi}Ni=1 and we set W (v1, v2) = −∞ if
(v1, v2) /∈ E.

Algorithm 7
for j = 1 : N do

Yj = 0
end for
C ← {vs}
n← s
while C is not maximal do

for all j /∈ C do
Yj ← Yj +W (vn, vj)

end for
n← arg maxj /∈C Yj
C ← C ∪ {vn}

end while
return C

The elements of the set C, returned by Algorithm 7, are pairs of the form (i, j), which
corresponds to choosing the j-th modeled variance stabilized structure factor magnitude
µi,j at the reciprocal lattice point ξi. In particular, this induces the map w̃ : L̂ → R
where w̃(ξi) = µi,j. In the absence of noise and error, if a sufficient number of images are
collected then Algorithm 7 retrieves an exact solution to the twinning problem. In this case,
the algorithm will always prefer a node vn which has nonzero weighted edges connecting
it with all of the elements of the current clique, i.e., vn is only chosen if it is consistent
with the current choice of structure factor magnitudes in the clique. Furthermore, when
using imperfect data, this approach remains very robust as it takes into account all pairs of
measured intensities over all of the images in order to choose the structure factor magnitudes
at any single reciprocal lattice point.

3.5.3 Orientation Determination

Even though Algorithm 7 retrieves a good approximation of the detwinned structure factor
magnitudes, its accuracy can be improved by first using this information to directly orient
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each image, and then averaging the computed structure factor magnitudes for each of the
corresponding reciprocal lattice points. More specifically, for every image Im we compute its
full orientation Rm by minimizing

min
Rm∈SR(L)

∑
i∈NZ |wi,m − w̃(Rmξi)|∑

i∈NZ w̃(Rmξi)
, where NZ = {i : wi,m > 0}. (3.43)

If there are at least two orientations close to the minimum value, then this indicates that
the image might not have enough diverse information to be properly oriented and, thus,
we reject the computed orientation. Once the orientations for each image are known, we
can compute the structure factor magnitudes by averaging the data over the images. While
there are many possible ways to compute this average, we found that it is best to average the
numerator and denominator of Equation (3.30) over the images, with one level of variance
stabilization, and with the scaling factors applied to the numerator:

|F (ξi)| =

∑
m c

2
m

√∑
Rmq(x)∈B(ξi,r)

Im(x)∑
m

√∑
Rmq(x)∈B(ξi,r)

r2
eP (x)∆Ω(x)|SNm(Rmq(x))|2

, (3.44)

where we throw away terms in the sum that correspond to images that do not pass within
a distance of r from ξi.

3.5.4 Summary

We now summarize our approach to solving the twinning problem. We note that, if de-
sired, this approach can be extended to utilize non-reciprocal lattice points as well, if their
corresponding magnitudes are also modeled in the expectation maximization and scaling
steps. Given the variance stabilized structure factor magnitude calculations {wi,m}, the
multi-modal model parameters {µi,j} and {σi,j}, and the scaling corrections cm, which are
all described in Section 3.4.2, we perform the following.

Algorithm 8
1. Compute occurrence and concurrence probabilities

p(µi,j|Im) =
G(wi,m, µi,j, σi,j)∑K
k=1 G(wi,m, µi,k, σi,k)

, p(µi1,j1 , µi2,j2|Im) = p(µi1,j1|Im)p(µi2,j2|Im).

2. Construct the graphical model G = (V,E) via

V = {(i, j)},
E = {((i1, j1), (i2, j2)) : (Rξi1 = ξi2 , R ∈ SR(L)) =⇒ i1 6= i2 and j1 6= j2}.

3. Merge any nodes which are known a priori to have the same structure factor magni-
tudes.
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4. Compute the directed weights

W ((i1, j1), (i2, j2)) =

∑
m∈Ii1,i2

p(µi1,j1 , µi2,j2|Im)∑
m∈Ii1,i2

p(µi1,j1|Im)
.

5. Run Algorithm 7 on (G,W) to determine the placement of the approximate variance
stabilized structure factor magnitudes w̃ : L̂ → R.

6. Compute the orientations Rm for each image Im by solving:

min
Rm∈SR(L)

∑
i∈NZ |wi,m − w̃(Rmξi)|∑

i∈NZ w̃(Rmξi)
, where NZ = {i : wi,m > 0}.

7. Compute the detwinned structure factor magnitudes

|F (ξi)| =

∑
m c

2
m

√∑
Rmq(x)∈B(ξi,r)

Im(x)∑
m

√∑
Rmq(x)∈B(ξi,r)

r2
eP (x)∆Ω(x)|SNm(Rmq(x))|2

.

3.6 Computational Phase Retrieval for X-ray

Nanocrystallography

Once the detwinned structure factor magnitudes are computed, one can then proceed to find
the missing phases and, thus, determine the electron density of the molecules in a unit cell,
with any of the phasing techniques presented in Section 2.5.1. In particular, the methods
of the previous section can be used to enhance molecular replacement techniques, which
no longer have to work with a reduced data set, and, furthermore, allow for the use of
techniques involving anomalous dispersion and isomorphous replacement, which typically
require detwinned data in order to function effectively.

While these classical phasing techniques have been used extensively to reconstruct molec-
ular structure in x-ray crystallography, they each have limitations or introduce extra diffi-
culties into the experimental setup. For instance, molecular replacement requires one to
already know a structure similar to the sample, which may not available for fundamentally
new objects. Anomalous dispersion requires the presence of a sufficient number of anomalous
scatterers and restricts one to use x-ray wavelengths which are near the absorption edge of
these scatterers, which may not be possible to do at the desired brightness for nanocrystal-
lography. Isomorphous replacement requires one to create an isomorphic crystal with the
inclusion of heavy atoms, which may be particularly difficult to achieve for the types of sam-
ples one wishes to study with nanocrystallography, i.e., samples which are already difficult
to crystallize on their own.
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Alternatively, one can, in principle, use computational phase retrieval techniques to com-
pute phase information from the Fourier magnitudes alone, if they are sampled at a suf-
ficiently high rate, e.g., at least twice the Nyquist rate of the unit cell’s electron density.
While this approach has been infeasible for most conventional crystallography experiments,
as they only sample the Fourier magnitudes directly at this Nyquist rate, the signal from
nanocrystals contain a significant amount of information between Bragg peaks, and may
allow sampling at the rate required for computational phase retrieval.

3.6.1 Sampling Strategies

We now discuss how to make computational phase retrieval viable for x-ray nanocrystallogra-
phy by sampling non-Bragg data. In particular, the main obstacle in making computational
phase retrieval feasible is its required sampling density. Recall from Section 2.5.3 that the
well-posedness of the phase retrieval problem is largely based on being able to retrieve the
autocorrelation Aρ of the solution ρ from its power spectrum |ρ̂|2. By the Shannon-Nyquist
theorem, this is possible if one samples the power spectrum at twice the Nyquist rate of ρ,
since the support of Aρ is twice as large as the support of ρ. Unfortunately, the strongest
signal in the images occurs at Bragg peaks, which sample the power spectrum directly at
the Nyquist rate of ρ. Therefore, in order to make computational phase retrieval feasible
in diffraction images from crystals, one must also sample non-Bragg data, which have a
considerably smaller amount of signal. Specifically, in order to satisfy the Nyquist rate for
a crystal lattice with reciprocal Bravais characteristic vectors (ĥ1, ĥ2, ĥ3), one must sample
the power spectrum at points of the form

ξ =
3∑
i=1

ni
2

ĥi, where ni ∈ Z. (3.45)

If the crystal sizes in each Bravais direction are given by (N1, N2, N3), then the shape function
applied to these sample points will have the following orders of magnitude:∣∣∣∣∣S

(
3∑
i=1

niĥi

)∣∣∣∣∣
2

= O(N2
1N

2
2N

2
3 ), (3.46)∣∣∣∣∣S

(
2∑
i=1

nσ(i)ĥσ(i) +
(
nσ(3) + 1

2

)
ĥσ(3)

)∣∣∣∣∣
2

= O(N2
σ(1)N

2
σ(2)), (3.47)∣∣∣∣∣S

(
nσ(1)ĥσ(1) +

3∑
i=2

(
nσ(i) + 1

2

)
ĥσ(i)

)∣∣∣∣∣
2

= O(N2
σ(1)), (3.48)∣∣∣∣∣S

(
3∑
i=1

(
ni + 1

2

)
ĥi

)∣∣∣∣∣
2

= O(1), (3.49)
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where σ is any permutation of the indices. Note that the amount of signal collected in (3.48)
and (3.49) is several orders of magnitude smaller than what is seen at a Bragg peak.

We note that in order to compute the Fourier magnitudes at non-reciprocal lattice points,
needed in (3.45), one must obtain the orientations up to their associated symmetry, which
may be less than that of the Bragg peaks. For example, for a crystal with a space group which
contains screw axis operations, the Laue symmetry tends to be greater than the symmetry
of the non-Bragg points. In such cases, one may need to perform the detwinning techniques
discussed in Section 3.5 on the non-Bragg peaks, in addition to the Bragg peaks.

The feasibility of using the sampling points in (3.45) to sample with at least twice the
Nyquist rate was studied in [67], assuming knowledge of the orientations, small variations
in the crystal sizes, and constant incident photon flux densities. However, they found that
they required at least 106 images when using a beam with 1013 photons/pulse focused to a
full-width at half-maximum of 0.5 µm, which corresponds to a total collected signal which is
four orders of magnitude larger than currently , e.g., compared to what is collected in [16].

Alternatively, we would like to only consider sample points that satisfy (3.46) or (3.47),
depicted in Figure 3.15, which have a signal several orders of magnitude larger than those in
(3.48) and (3.49). While such a sampling no longer satisfies the hypothesis of the Shannon-
Nyquist theorem for retrieving the autocorrelation, it does have a sampling density which is
four times the Nyquist density for ρ. Note that this is the exact sampling density required
to solve the phase retrieval problem in Theorem 8. Even though this result was proven for
a different sampling strategy, it may still be valid in our case, especially if the molecular
arrangement in the unit cell has sufficiently small support. By using this sampling strategy,
we can potentially perform computational phase retrieval with far fewer images and beam
power than when sampling directly at the Nyquist rate.

Figure 3.15: Sampling strategy on a reciprocal unit cell: We sample at reciprocal lattice
points (blue) and halfway between two reciprocal lattice points (red).
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3.6.2 Compressive Phase Retrieval

Recall that for Fourier magnitude values a : ZN → C and some support T ⊆ ZN, phase
retrieval algorithms seek a function ρ ∈ M ∩ S, where M = {y ∈ `2(ZN) : |ŷ| = a} and
S = {y ∈ `2(ZN) : supp(y) ∈ T}. These algorithms typically make use of the projectors
PM and PS onto M and S, respectively, via (2.55) and (2.56). In order to accurately
and efficiently evaluate the Fourier transform in the definition of PM via the Fast Fourier
Transform, one requires information on a Cartesian grid. However, our sampling strategy
in Section 3.6.1 does not record values for a at all locations on this grid. Additionally,
information at the zero frequency is missing in experiments, as a hole in the detector is
placed here to allow the x-ray beam to pass through. Furthermore, sample points with small
structure factors may not have enough recorded signal to be used in the phase retrieval
process. Therefore, we need to augment the magnitude projection operator to take this lack
of information into account. In particular, if Ω is the set of points in reciprocal space where
a has a recorded value, then we use the augmented projection operator PM,Ω, defined by

P̃M,Ωρ̂(k) =


a(k) ρ̂(k)

|ρ̂(k)| , if ρ̂ 6= 0 and k ∈ Ω,

a(k), if ρ̂ = 0 and k ∈ Ω,

ρ̂(k), if k /∈ Ω,

PMΩρ = F∗P̃M,ΩF .

(3.50)

Since PM,Ω does not alter information outside of Ω, in a phase retrieval algorithm such points
serve as extra degrees of freedom in minimizing the support error εS(ρ). In particular, when
using PM,Ω, the ER algorithm, (2.58), can be expressed as

ρ(n+1) = PSPM,Ωρ
(n), (3.51)

and the HIO algorithm, (2.60), can be expressed as

ρ(n+1) =

{
PM,Ωρ

(n)(x), if x ∈ T,
ρ(n)(x)− βPM,Ωρ

(n)(x), if x /∈ T.
(3.52)

Recall, from Section 2.5.3, that the ER and HIO algorithms typically require a tight
estimate for the support of the solution. Therefore, we utilize the shrinkwrap method,
Algorithm 1, combined with the modified ER and HIO algorithms, (3.51) and (3.52), which
we alternate after several iterations, to iteratively seek out the unknown solution support
and retrieve the phase information. Here, we initialize the support to be the unit cell. By
seeking the solution with smallest support that is consistent with the data, this method has
the potential to further reduce the sampling requirement for computational phase retrieval,
beyond the sampling strategy presented in Section 3.6.1.
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3.6.3 Summary

Here we summarize our sampling and phase retrieval approach. We note that one can
extend this approach by also using sample points which lie anywhere on the line between
two reciprocal lattice points, instead of just the midpoint.

Algorithm 9
1. Create the set of sample points,

Ω =

{
3∑
i=1

niĥi : ni ∈ Z

}⋃{
2∑
i=1

nσ(i)ĥσ(i) +
(
nσ(3) + 1

2

)
ĥσ(3) : ni ∈ Z

}
,

where σ is any permutation of three elements.

2. Compute the Fourier magnitude values a(ξ) = |F (ξ)| for all ξ ∈ Ω.

3. Remove any elements ξ ∈ Ω where a(ξ) could not be computed.

4. Initialize the initial support T to be the size of the unit cell.

5. Retrieve the electron density ρ by using Algorithm 1 with the modified ER and HIO
algorithms, which use PM,Ω in place of PM . In particular, alternate between several
iterations of HIO and ER.
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Chapter 4

Results

4.1 Overview

Here we demonstrate our x-ray nanocrystallography reconstruction methodology on realistic
simulated diffraction data for three different crystal structures, described in Section 4.2, and
vary the peak incident photon flux density in each case, which can, for example, be achieved
by widening or narrowing the beam. Each data set consists of 33,856 diffraction images.
Here we assume knowledge of the Bravais vector lengths and the space groups, which, in
practice, may be deduced from autoindexing information and reflection conditions [30]. We
compute the structure factors of the unit cells with the atomic positions of real molecules
from the Protein Data Bank [9]. In particular, the intensity of every pixel is computed via
Equation (2.33), by using the Cromer-Mann coefficients for each atom listed in [75] and
tabulated in [1], along with dispersion factors listed in [37].

The orientation of each image is generated from a random distribution of unit quaternions
(w, x, y, z) where the components are sampled from a normal distribution and then normal-
ized, so that w2 + x2 + y2 + z2 = 1. The associated orientation matrices R are calculated
from the unit quaternions via

R =

1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2

 . (4.1)

The crystal sizes (N1, N2, N3) associated to the Bravais characteristic vectors, with lengths
(L1, L2, L3), are generated by first sampling random average crystal widths W from a normal
distribution and then randomizing the size along each dimension:

W ∼ N (µC , σC), Wj ∼ N
(
W,

W

10

)
, Nj =

⌊
Wj

Lj

⌋
, (4.2)

with different µC and σC chosen for each test case. For each image, we generate random
incident photon flux densities J , measured in photons per square Angstrom per pulse, from
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a peak density Jo, via

x ∼ U(−1, 1), J = Joe
−

x2

2(.25)2 . (4.3)

This corresponds to interactions which occur in a region whose width is up to 3.4 times the
full width at half maximum of the beam, resulting in incident photon flux densities as low
as about Jo

3000
. The image values I(x, y) are then computed via Equation (2.62) along with

shot and background noise. More specifically, we add Poisson noise and additive Gaussian
noise, with a standard deviation of 1.3 photons, which is similar to the noise levels observed
in [16]. We also use experimental parameters similar to [16]: 6.9 Å photon wavelength,
75×75 µm2 pixel size, a front detector with 1024 × 1024 pixels placed at a distance of 68
mm from the interaction point, and incident photon flux densities which vary around 218.4
Å−2. For each of our test cases, the rear detector, with 1024 × 1024 pixels, was placed so
that it could record at least 3 Bragg peaks along any given Bravais direction. We remove a
small region of the detectors around the center, with size a fourth of the smallest reciprocal
Bravais characteristic vector length, in order to allow the incoming beam to pass through.
For convenience, we replicate the rear detector data on the front detector images at the
appropriate resolution.

In Sections 4.3 - 4.7, we present results for each of the main steps in our algorithmic
framework, where the output of each step is used to initialize the next. Our main runs, which
each consist of autoindexing, described in Section 3.2; crystal size determination, described
in Section 3.3; structure factor magnitude modeling, described in Section 3.4; and solving
the twinning problem, described in Section 3.5, were performed on the Hopper Cray XE6
supercomputer, where each compute node consists of two twelve-core AMD ‘MagnyCours’
2.1-GHz processors. Each run took between 15-30 minutes when using 529 cores. In general,
this procedure scales linearly in the number of images and quadratically in the number of
reciprocal points used to solve the twinning problem. The main bottleneck is the amount of
memory required, which grows quadratically in the number of reciprocal points. The phase
retrieval step was performed in serial on a Dell Optiplex 755 with an Intel Core 2 Duo 3-GHz
processor and typically took between 30-180 minutes to converge, depending on the number
of Bragg peaks that are measured.

4.2 Description of Test Cases

4.2.1 Test Case 1: PuuE Allantoinase

In our first test case, we determine the structure of PuuE Allantoinase using the atomic
coordinates and crystal symmetry recorded in [61]. The associated crystal displays P4 space
group symmetry. More specifically, we place the unit cell at the vertices of a tetragonal
crystal lattice, with Bravais characteristic directions (1, 0, 0), (0, 1, 0), and (0, 0, 1) with asso-
ciated lengths 98.299 Å, 98.299 Å, and 62.393 Å, and apply the unit cell symmetry operators
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(x, y, z), (−x,−y, z), (−y, x, z), and (y,−x, z) to the atomic positions in a reference configu-
ration. Consequently, the diffraction pattern is symmetric with respect to 90 degree rotation
about the z-axis and inversion, due to Friedel symmetry. This leaves a two-fold twinning
problem corresponding to 180 degree rotation about the x-axis, which, due to the symmetry,
is equivalent to 180 degree rotation about the y-axis. In this case, the Laue symmetry of
the Bragg reflections matches the symmetry of the non-Bragg reflections, and, thus, the
orientations that detwin the Bragg data also detwin the non-Bragg data.

Here we place the rear detector at a distance of 141 mm from the interaction point. The
crystal sizes were generated from (4.2) with µC = 2948.97 Å and σC = 982.99 Å. We tested
peak incident photon flux densities Jo of 2.18, 4.36, 10.9, 21.8, 43.6, 218, 1009, 2180, 4360,
10900, and 21800 Å−2.

In Figures 4.1 - 4.5 we present typical diffraction images, colored by the logarithm of the
intensity, from the front and rear detector for test case 1. Note that we replicate the rear
detector data in the front detector image.

Figure 4.1: Simulated diffraction images for test case 1 with Jo = 21800. Left: Front
detector. Right: Rear detector.
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Figure 4.2: Simulated diffraction images for test case 1 with Jo = 2180. Left: Front detector.
Right: Rear detector.

Figure 4.3: Simulated diffraction images for test case 1 with Jo = 218. Left: Front detector.
Right: Rear detector.
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Figure 4.4: Simulated diffraction images for test case 1 with Jo = 21.8. Left: Front detector.
Right: Rear detector.

Figure 4.5: Simulated diffraction images for test case 1 with Jo = 2.18. Left: Front detector.
Right: Rear detector.
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4.2.2 Test Case 2: Photosystem II from Synechococcus
Elongatus Without Unit Cell Symmetry

In our second test case, we determine the structure of Photosystem II from Synechococcus
Elongatus using the atomic coordinates recorded in [77]. We place the molecule at the
vertices in a orthorhombic crystal lattice, with Bravais characteristic directions (1, 0, 0),
(0, 1, 0), and (0, 0, 1) with associated lengths 130.01 Å, 226.72 Å, and 308.29 Å. In order to
induce a four-fold twinning problem, we do not apply any unit cell symmetry operations,
which results in a twinning problem corresponding to 180 degree rotations about the x, y,
and z axes. Consequently, the measured signal is reduced by a factor of 4 and the associated
phase retrieval problem simplifies a bit since the molecule has a smaller support within the
unit cell. However, the main point of this example is test the robustness of our algorithmic
framework for solving the twinning problem in the face of four-fold twinning for structure
sizes similar to what is currently being studied in nanocrystallography experiments. In this
example, the orientations that detwin the Bragg data also detwin the non-Bragg data.

Here we place the rear detector at a distance of 564 mm from the interaction point. The
crystal sizes were generated from (4.2) with µC = 2600.2 Å and σC = 910.07 Å. We tested
peak incident photon flux densities Jo of 2.18, 4.36, 10.9, 21.8, 43.6, 218, 1009, 2180, 4360,
10900, and 21800 Å−2.

In Figures 4.6 - 4.10 we present typical diffraction images, colored by the logarithm of
the intensity, from the front and rear detector for test case 2. Note that we replicate the
rear detector data in the front detector image.
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Figure 4.6: Simulated diffraction images for test case 2 with Jo = 21800. Left: Front
detector. Right: Rear detector.

Figure 4.7: Simulated diffraction images for test case 2 with Jo = 2180. Left: Front detector.
Right: Rear detector.
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Figure 4.8: Simulated diffraction images for test case 2 with Jo = 218. Left: Front detector.
Right: Rear detector.

Figure 4.9: Simulated diffraction images for test case 2 with Jo = 21.8. Left: Front detector.
Right: Rear detector.
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Figure 4.10: Simulated diffraction images for test case 2 with Jo = 2.18. Left: Front detector.
Right: Rear detector.

4.2.3 Test Case 3: Photosystem II from Synechococcus
Elongatus With Unit Cell Symmetry - Detwinning
Non-Bragg Data

In our third test case, we determine the structure of Photosystem II from Synechococcus
Elongatus with the unit cell symmetry observed in [77]. In this case, the associated crystal
displays P212121 space group symmetry. More specifically, we place the molecule at the
vertices in a orthorhombic crystal lattice, with Bravais characteristic directions (1, 0, 0),
(0, 1, 0), and (0, 0, 1) with associated lengths 130.01 Å, 226.72 Å, and 308.29 Å, and apply
the unit cell symmetry operators (x, y, z), (−x + L1

2
,−y, z + L3

2
), (−x, y + L2

2
,−z + L3

2
),

and (x + L1

2
,−y + L2

2
,−z) to the atomic positions in a reference configuration. While the

Laue symmetry of the associated diffraction pattern is the same as the lattice symmetry, the
non-Bragg data has less symmetry, i.e., the Bragg data does not display twinning but the
non-Bragg data does. However, in order to perform computational phase retrieval, we require
detwinned non-Bragg data at the midpoint between adjacent reciprocal lattice points, given
by Equation (3.47). Consequently, we have a four-fold twinning problem when considering
these non-Bragg points, corresponding to 180 degree rotations about the x, y, and z axes.
However, the structure factor magnitudes which we are considering each only have two
possible values at each of the non-Bragg points. In particular, lattice points with Miller
indices of the form (n1 + 1

2
, n2, n3) have magnitudes which are symmetric with respect to 180

degree rotation about the z-axis, lattice points with Miller indices of the form (n1, n2 + 1
2
, n3)

have magnitudes which are symmetric with respect to 180 degree rotation about the x-axis,
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and lattice points with Miller indices of the form (n1, n2, n3 + 1
2
) have magnitudes which are

symmetric with respect to 180 degree rotation about the y-axis, where n1, n2, n3 ∈ Z. In
order to record sufficient information from the weaker non-Bragg reflections, this example
requires a larger amount of signal, but this can potentially be obtained by using larger
crystals or decreasing the beam width in experiments, albeit at the cost of possibly missing
more crystals with the beam.

Here we place the rear detector at a distance of 564 mm from the interaction point. The
crystal sizes were generated from (4.2) with µC = 3900.3 Å and σC = 1040.08 Å. We tested
peak incident photon flux densities Jo of 218, 1009, 2180, 4360, 10900, and 21800 Å−2.

In Figures 4.11 - 4.13 we present typical diffraction images, colored by the logarithm of
the intensity, from the front and rear detector for test case 3. Note that we replicate the
rear detector data in the front detector image.

Figure 4.11: Simulated diffraction images for test case 3 with Jo = 21800. Left: Front
detector. Right: Rear detector.
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Figure 4.12: Simulated diffraction images for test case 3 with Jo = 2180. Left: Front
detector. Right: Rear detector.

Figure 4.13: Simulated diffraction images for test case 3 with Jo = 218. Left: Front detector.
Right: Rear detector.
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4.3 Autoindexing

4.3.1 Test Description

Here we test the performance of our autoindexing strategy from Section 3.2 as we vary the
incident photon flux density for each test case. In these tests, for every image, we consider
the largest 100 peaks which are maxima in a neighborhood of 5 pixels and have a measured
intensity which is greater than τ1 = 10 photons, and use half of these peaks for the calculation
in (3.9). We set the rejection tolerances in Algorithm 3 to τ2 = .7 and τ3 = .95.

Recall that autoindexing only determines the orientations of the images up to symmetry
of the lattice, which is represented by the lattice rotational symmetry group SR(L). Hence,
given the correct orientation Rc we calculate the error of the computed twinned orientation
R̃ in the Frobenius norm, modulo SR(L):

min
R∈SR(L)

||R̃−RRc||F , where ||A||F =

√∑
i,j

A2
i,j. (4.4)

In the following subsections, we tabulate the number of images that were able to be au-
toindexed, the number rejected, and the error computed by (4.4). We also present frequency
plots of the autoindexing errors.

4.3.2 Test Case 1

Error
Jo Accepted Rejected <.001 .001-.004 .004-.016 .016-.064 >.064
21800 32678 1178 7912 21485 3196 56 29
10900 31649 2207 7686 20514 3351 75 23
4360 29833 4023 6993 19380 3327 109 24
2180 28251 5605 6583 17993 3496 149 30
1090 26683 7173 6002 16840 3566 239 36
218 22701 11155 4733 13588 3947 383 50
43.6 16640 17216 2868 8897 4233 599 43
21.8 12859 20997 1786 6224 4180 622 47
10.9 8942 24914 852 3621 3707 709 53
4.36 4884 28972 140 1268 2710 693 73
2.18 3926 29930 39 798 2290 736 63

Table 4.1: Autoindexing performance for test case 1.
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Figure 4.14: Autoindexing error for test
case 1 with Jo = 21800.
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Figure 4.15: Autoindexing error for test
case 1 with Jo = 10900.
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Figure 4.16: Autoindexing error for test
case 1 with Jo = 4360.
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Figure 4.17: Autoindexing error for test
case 1 with Jo = 2180.
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Figure 4.18: Autoindexing error for test
case 1 with Jo = 1090.
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Figure 4.19: Autoindexing error for test
case 1 with Jo = 218.
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Figure 4.20: Autoindexing error for test
case 1 with Jo = 43.6.
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Figure 4.21: Autoindexing error for test
case 1 with Jo = 21.8.
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Figure 4.22: Autoindexing error for test
case 1 with Jo = 10.9.
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Figure 4.23: Autoindexing error for test
case 1 with Jo = 4.36.
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Figure 4.24: Autoindexing error for test case 1 with Jo = 2.18.
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4.3.3 Test Case 2

Error
Jo Accepted Rejected <.001 .001-.004 .004-.016 .016-.064 >.064
21800 31883 1973 9814 22225 2662 151 31
10900 30988 2868 6724 21504 2529 189 42
4360 29466 4390 6563 20027 2584 238 54
2180 28000 5856 6293 18925 2469 256 57
1090 26045 7811 6018 17407 2247 308 65
218 21099 12757 5525 13018 2100 350 106
43.6 15227 18629 4641 8172 1992 328 94
21.8 12520 21336 3922 6358 1863 292 85
10.9 9871 23985 1999 4898 1636 249 89
4.36 6478 27378 1658 3248 1300 197 75
2.18 4277 29579 976 2200 905 145 51

Table 4.2: Autoindexing performance for test case 2.
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Figure 4.25: Autoindexing error for test
case 2 with Jo = 21800.
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Figure 4.26: Autoindexing error for test
case 2 with Jo = 10900.



CHAPTER 4. RESULTS 75

0

2000

4000

6000

8000

10000

12000

0 0.004 0.008 0.012 0.016 0.02 0.024 0.028

fr
eq

u
en

cy

error

Figure 4.27: Autoindexing error for test
case 2 with Jo = 4360.
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Figure 4.28: Autoindexing error for test
case 2 with Jo = 2180.
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Figure 4.29: Autoindexing error for test
case 2 with Jo = 1090.
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Figure 4.30: Autoindexing error for test
case 2 with Jo = 218.
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Figure 4.31: Autoindexing error for test
case 2 with Jo = 43.6.
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Figure 4.32: Autoindexing error for test
case 2 with Jo = 21.8.
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Figure 4.33: Autoindexing error for test
case 2 with Jo = 10.9.
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Figure 4.34: Autoindexing error for test
case 2 with Jo = 4.36.
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Figure 4.35: Autoindexing error for test case 2 with Jo = 2.18.

4.3.4 Test Case 3

Error
Jo Accepted Rejected <.001 .001-.004 .004-.016 .016-.064 >.064
21800 33791 65 12859 20703 226 2 1
10900 33732 124 13038 20422 269 3 0
4360 33541 315 13291 19931 310 6 3
2180 33325 531 13312 19667 329 15 2
1090 33014 842 13482 19089 424 17 2
218 31152 2704 12703 17902 517 29 1

Table 4.3: Autoindexing performance for test case 3.
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Figure 4.36: Autoindexing error for test
case 3 with Jo = 21800.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.004 0.008 0.012 0.016 0.02 0.024 0.028

fr
eq

u
en

cy

error

Figure 4.37: Autoindexing error for test
case 3 with Jo = 10900.
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Figure 4.38: Autoindexing error for test
case 3 with Jo = 4360.
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Figure 4.39: Autoindexing error for test
case 3 with Jo = 2180.
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Figure 4.40: Autoindexing error for test
case 3 with Jo = 1090.
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Figure 4.41: Autoindexing error for test
case 3 with Jo = 218.

4.4 Crystal Size Determination

4.4.1 Test Description

Here we test the performance of our crystal size determination technique from Section 3.3.
We set Np = 204, τ1 = .1, and τ2 = 1.5 in Algorithm 4 and reject any computed sizes which
correspond to lengths less than 700 Å or greater than 9000 Å. If the crystal sizes are rejected,
then we repeat the process at the next brightest Bragg peak, and repeat this process for up
to 5 peaks.
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Since the computed structure factors scale as a power of the reciprocal product of the
crystal sizes, a natural metric is the relative error in the geometric average. In particular, we
compute the error as the relative difference between the geometric averages of the computed
sizes (N1, N2, N3) and the correct sizes (Nc,1, Nc,2, Nc,3):

|(N1N2N3)
1
3 − (Nc,1Nc,2Nc,3)

1
3 |

(Nc,1Nc,2Nc,3)
1
3

. (4.5)

In the following subsections, we tabulate the number of images whose computed crystal
sizes were accepted, the number rejected, and the error computed by (4.5). We also present
frequency plots of the crystal size errors.

4.4.2 Test Case 1

Error
Jo Accepted Rejected <.1 .1-.2 .2-.3 .3-.4 .4-.5 >.5
21800 30506 2172 19652 9667 903 98 26 160
10900 29568 2081 18829 9546 924 97 26 146
4360 27750 2083 17376 9183 983 85 30 93
2180 26260 1991 16080 8996 992 71 21 100
1090 24711 1972 14867 8575 1029 74 16 150
218 20195 2506 10941 7681 1166 126 33 248
43.6 14056 2584 6150 6074 1343 171 45 273
21.8 10639 2220 4071 4626 1388 184 50 320
10.9 6699 2243 2255 2751 1113 184 64 332
4.36 2883 1991 828 906 645 139 50 325
2.18 1851 2075 458 458 387 115 54 382

Table 4.4: Crystal size determination performance for test case 1.
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Figure 4.42: Computed crystal size error for
test case 1 with Jo = 21800.
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Figure 4.43: Computed crystal size error for
test case 1 with Jo = 10900.
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Figure 4.44: Computed crystal size error for
test case 1 with Jo = 4360.
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Figure 4.45: Computed crystal size error for
test case 1 with Jo = 2180.
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Figure 4.46: Computed crystal size error for
test case 1 with Jo = 1090.
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Figure 4.47: Computed crystal size error for
test case 1 with Jo = 218.
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Figure 4.48: Computed crystal size error for
test case 1 with Jo = 43.6.
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Figure 4.49: Computed crystal size error for
test case 1 with Jo = 21.8.
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Figure 4.50: Computed crystal size error for
test case 1 with Jo = 10.9.
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Figure 4.51: Computed crystal size error for
test case 1 with Jo = 4.36.
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Figure 4.52: Computed crystal size error for test case 1 with Jo = 2.18.
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4.4.3 Test Case 2

Error
Jo Accepted Rejected <.1 .1-.2 .2-.3 .3-.4 .4-.5 >.5
21800 20923 10960 13279 5283 1414 572 203 172
10900 19114 11874 12398 4802 1218 426 147 123
4360 16650 12816 10880 4359 960 261 97 93
2180 14119 13881 9074 3912 795 194 79 65
1090 11726 14319 7544 3315 637 120 51 59
218 6174 14925 3482 2108 460 60 31 33
43.6 2439 12788 1120 970 310 27 4 8
21.8 1537 10983 591 683 239 16 4 4
10.9 874 8997 283 406 171 6 3 5
4.36 357 6121 80 156 113 6 0 2
2.18 152 4125 24 69 57 1 0 1

Table 4.5: Crystal size determination performance for test case 2.
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Figure 4.53: Computed crystal size error for
test case 2 with Jo = 21800.
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Figure 4.54: Computed crystal size error for
test case 2 with Jo = 10900.
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Figure 4.55: Computed crystal size error for
test case 2 with Jo = 4360.
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Figure 4.56: Computed crystal size error for
test case 2 with Jo = 2180.
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Figure 4.57: Computed crystal size error for
test case 2 with Jo = 1090.
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Figure 4.58: Computed crystal size error for
test case 2 with Jo = 218.
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Figure 4.59: Computed crystal size error for
test case 2 with Jo = 43.6.
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Figure 4.60: Computed crystal size error for
test case 2 with Jo = 21.8.
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Figure 4.61: Computed crystal size error for
test case 2 with Jo = 10.9.
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Figure 4.62: Computed crystal size error for
test case 2 with Jo = 4.36.
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Figure 4.63: Computed crystal size error for test case 2 with Jo = 2.18.

4.4.4 Test Case 3

Error
Jo Accepted Rejected <.1 .1-.2 .2-.3 .3-.4 .4-.5 >.5
21800 20443 13348 13484 5906 808 162 44 39
10900 19511 14221 12942 5629 724 136 42 38
4360 18209 15332 12182 5169 698 91 35 34
2180 16888 16437 11270 4826 663 75 28 26
1090 15351 15801 9972 4645 620 53 33 28
218 10687 22327 6465 3624 511 44 17 26

Table 4.6: Crystal size determination performance for test case 3.
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Figure 4.64: Computed crystal size error for
test case 3 with Jo = 21800.
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Figure 4.65: Computed crystal size error for
test case 3 with Jo = 10900.
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Figure 4.66: Computed crystal size error for
test case 3 with Jo = 4360.
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Figure 4.67: Computed crystal size error for
test case 3 with Jo = 2180.
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Figure 4.68: Computed crystal size error for
test case 3 with Jo = 1090.
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Figure 4.69: Computed crystal size error for
test case 3 with Jo = 218.

4.5 Structure Factor Magnitude Modeling

4.5.1 Test Description

Here we test our structure factor magnitude modeling technique from Section 3.4. For the
expectation maximization step, we perform outlier rejection by removing any of the variance
stabilized structure factor magnitudes wi,m in which 1

K2

∑K
j=1 σ

(n)
i,j

∑K
k=1 G(wi,m, µ

(n)
i,k , σ

(n)
i,k ) <

τc, with τc set to 10−5 for test cases 1 and 2 and 2×10−2 for test case 3. We initialized the
standard deviations σi,j to be .1 for test cases 1 and 2 and .05 for test case 3. For the scaling
correction step, we found that it was best to replace the standard deviations computed in the
expectation maximization step with a scaled average over all images σavg = 1

τMK

∑
i,k σi,k,
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where M is the number of images, K is the order of the twinning ambiguity, and τ is a
scaling constant. We set τ = 8 for test case 1, τ = 4 for test case 2, and τ = 2 for test case
3. We performed 50 iterations of alternating between expectation maximization and scaling,
and used 20 iterations for each of the expectation maximization steps. In practice, a good
choice of parameters can be found by examining their effects on a select few of the scaled
histograms.

In the following subsections, we present histograms of the initial unscaled variance sta-
bilized structure factor magnitude data along with the scaled data and multi-modal model
at select reciprocal lattice points.

4.5.2 Test Case 1
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Figure 4.70: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 21800.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.71: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 10900.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.72: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 4360.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.73: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 2180.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.74: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 1090.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).



CHAPTER 4. RESULTS 91
fr

eq
u

en
cy

wi,m

fr
eq

u
en

cy

wi,m

Figure 4.75: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 218. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.76: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 43.6. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.77: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 21.8. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.78: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 10.9. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.79: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 4.36. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.80: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (3,2,1), for test case 1 with Jo = 2.18. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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4.5.3 Test Case 2
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Figure 4.81: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 21800.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.82: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 10900.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.83: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 4360.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.84: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 2180.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).



CHAPTER 4. RESULTS 96
fr

eq
u

en
cy

wi,m

fr
eq

u
en

cy

wi,m

Figure 4.85: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 1090.
Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.86: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 218. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.87: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 43.6. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.88: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 21.8. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.89: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1), for test case 2 with Jo = 10.9. Left:
Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).

4.5.4 Test Case 3
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Figure 4.90: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1

2
), for test case 3 with Jo = 21800.

Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.91: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1

2
), for test case 3 with Jo = 10900.

Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.92: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1

2
), for test case 3 with Jo = 4360.

Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.93: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1

2
), for test case 3 with Jo = 2180.

Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).

fr
eq

u
en

cy

wi,m

fr
eq

u
en

cy

wi,m

Figure 4.94: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1

2
), for test case 3 with Jo = 1090.

Left: Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).
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Figure 4.95: Frequency plots of the possible variance stabilized structure factor magnitudes
at the reciprocal lattice point with Miller indices (1,1,1

2
), for test case 3 with Jo = 218. Left:

Unscaled data. Right: Scaled data with multi-modal Gaussian model (red).

4.6 Solving the Twinning Problem

4.6.1 Test Description

Here we test our approach to solving the twinning problem. We use up to 23 reciprocal
lattice points in each Bravais direction, which corresponds to graphical models with node
counts on the order of 103-104 and edge counts on the order of 106-108. We replace the
standard deviations computed from the expectation maximization step with a scaled average,
as was done in Section 4.5.1. A detwinned orientation is rejected if there is another possible
orientation whose error in (3.43) is less than a factor of 1.2 times the minimum error. This
tolerance controls the selectivity of the orientations: every computed orientation will be
accepted if it is too close to 1 and everything will be rejected if it is too large. However,
apart from these extremes, the accuracy of the orientation calculation is largely insensitive
to the value of this tolerance.

Note that, for K-fold twinning, there are up to K valid solutions for the set of detwinned
orientations, which are related to each other through multiplication by elements of the lattice
rotational symmetry group SR(L). Therefore, if {Rc,i}i is the set of correct orientations used
to generate the images and {Ri}i is a consistent choice for the set of computed orientations,
then there is an R ∈ SR(L) such that for every i, Ri ≈ RRc,i. Hence, we measure the number
of correctly detwinned orientations via

max
Ra∈SR(L)

∣∣{Ri : ||Ri −RaRc,i||F ≤ ||Ri −RbRc,i||F for all Rb ∈ SR(L)}
∣∣. (4.6)

Any orientations not part of the maximizer set are considered to be wrong.
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In the following subsections we tabulate the number of detwinned orientations that were
accepted, rejected, correct, and wrong.

4.6.2 Test Case 1

Jo Accepted Rejected Correct Wrong
21800 22645 9360 22629 16
10900 21355 9603 21340 15
4360 19420 9607 19400 20
2180 17844 9717 17829 15
1090 16274 9693 16258 16
218 11663 9757 11641 22
43.6 6109 8914 6081 28
21.8 3775 7409 3750 25
10.9 1774 5368 1746 28
4.36 273 2842 143 130
2.18 17 1969 10 7

Table 4.7: Orientation detwinning performance for test case 1.

4.6.3 Test Case 2

Jo Accepted Rejected Correct Wrong
21800 17607 3316 17554 53
10900 15399 3794 15323 76
4360 12292 4156 12227 65
2180 9976 4230 9915 61
1090 7581 4145 7542 39
218 1178 5106 1133 45
43.6 20 2427 15 5
21.8 0 1537 0 0
10.9 0 874 0 0
4.36 0 357 0 0
2.18 0 152 0 0

Table 4.8: Orientation detwinning performance for test case 2.
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4.6.4 Test Case 3

Jo Accepted Rejected Correct Wrong
21800 7438 13005 7384 54
10900 10178 9404 10082 96
4360 5441 12755 5358 83
2180 881 15983 841 40
1090 435 14765 237 198
218 316 10371 107 209

Table 4.9: Orientation detwinning performance for test case 3.

4.7 Reconstructions

4.7.1 Test Description

Here we test the feasibility of using data processed by our autoindexing, crystal size de-
termination, structure factor magnitude modeling, and orientation detwinning algorithms
to perform three-dimensional reconstructions of the molecular structure within a unit cell
using the computational phase retrieval strategy discussed in Section 3.6. For every sample
point in Ω, described in Algorithm 9, whose value was measured with at least 20 images,
we compute structure factor magnitude values via Equation (3.44) with the neighborhood
radius r set to 5% of the smallest reciprocal Bravais lattice vector length. We then search for
the electron density with the version of the Shrinkwrap algorithm described in Algorithm 9.
For test case 3, we also enforced the known set of reflection conditions for P212121, i.e., that
the structure factors are exactly 0 at Miller indices of the form (2n + 1, 0, 0), (0, 2n + 1, 0),
and (0, 0, 2n+ 1), where n ∈ Z.

We use the following set of parameters for Algorithm 1. We initialize the phases to 0
and reduce the cutoff τ and Gaussian width σ after every 10,000 HIO/ER iterations, up
to three times. In more detail, we use HIO until it has failed to decrease the total error
ε2
S(ρ(n)) + ε2

M(ρ(n)) after 200 iterations or until a support refinement step, and in both cases
we switch over to ER for 200 iterations. In test case 1, for Jo ≥ 43.6, we initially set τ = .2
and σ = 1.1 pixels and decrease σ by steps of .1 and for Jo < 43.6, we initially set τ = .25 and
σ = 1.8 pixels and decrease σ by steps of .1. In test case 2 we initially set τ = .15 and σ = 2.5
pixels and decrease τ by steps of .03 and σ by steps of .4. In test case 3, for Jo ≥ 4360,
we initially set τ = .15 and σ = 2.975 pixels and decrease τ by steps of .03 and σ by steps
of .4 and for Jo < 21.8, we initially set τ = .18 and σ = 2.975 pixels and decrease σ by
steps of .1. In particular, one should choose these parameters by studying the supports that
they induce, i.e., by choosing those which do not lead to the support completely vanishing
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or growing too far outside of the unit cell. In general, convergence was reached in between
60,000-100,000 iterations.

In the following subsections, we present contours of the reconstructed electron densities,
for cases where at least 1,000 images were oriented, along with the corresponding exact
solution, which is obtained by taking the inverse Fourier transform of the exact structure
factors at the same resolution measured by the diffraction images.

4.7.2 Test Case 1

Figure 4.96: Electron density contour of the exact solution for test case 1, displayed at two
different orientations.

Figure 4.97: Electron density contour of the computed reconstruction for test case 1 with
Jo = 21800, displayed at two different orientations.
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Figure 4.98: Electron density contour of the computed reconstruction for test case 1 with
Jo = 10900, displayed at two different orientations.

Figure 4.99: Electron density contour of the computed reconstruction for test case 1 with
Jo = 4360, displayed at two different orientations.

Figure 4.100: Electron density contour of the computed reconstruction for test case 1 with
Jo = 2180, displayed at two different orientations.
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Figure 4.101: Electron density contour of the computed reconstruction for test case 1 with
Jo = 1090, displayed at two different orientations.

Figure 4.102: Electron density contour of the computed reconstruction for test case 1 with
Jo = 218, displayed at two different orientations.

Figure 4.103: Electron density contour of the computed reconstruction for test case 1 with
Jo = 43.6, displayed at two different orientations.



CHAPTER 4. RESULTS 107

Figure 4.104: Electron density contour of the computed reconstruction for test case 1 with
Jo = 21.8, displayed at two different orientations.

Figure 4.105: Electron density contour of the computed reconstruction for test case 1 with
Jo = 10.9, displayed at two different orientations.

4.7.3 Test Case 2

Figure 4.106: Electron density contour of the exact solution for test case 2, displayed at two
different orientations.
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Figure 4.107: Electron density contour of the computed reconstruction for test case 2 with
Jo = 21800, displayed at two different orientations.

Figure 4.108: Electron density contour of the computed reconstruction for test case 2 with
Jo = 10900, displayed at two different orientations.

Figure 4.109: Electron density contour of the computed reconstruction for test case 2 with
Jo = 4360, displayed at two different orientations.
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Figure 4.110: Electron density contour of the computed reconstruction for test case 2 with
Jo = 2180, displayed at two different orientations.

Figure 4.111: Electron density contour of the computed reconstruction for test case 2 with
Jo = 1090, displayed at two different orientations.

Figure 4.112: Electron density contour of the computed reconstruction for test case 2 with
Jo = 218, displayed at two different orientations.
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4.7.4 Test Case 3

Figure 4.113: Electron density contour of the exact solution for test case 3, displayed at two
different orientations.

Figure 4.114: Electron density contour of the computed reconstruction for test case 3 with
Jo = 21800, displayed at two different orientations.
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Figure 4.115: Electron density contour of the computed reconstruction for test case 3 with
Jo = 10900, displayed at two different orientations.

Figure 4.116: Electron density contour of the computed reconstruction for test case 3 with
Jo = 4360, displayed at two different orientations.

4.8 Summary

The results presented in the previous sections demonstrate that our algorithmic framework
has the capability to effectively solve the twinning problem and determine molecular struc-
ture with current experimental parameters and noise levels seen in experiments.

Our autoindexing technique was able to accurately determine the orientations of the
images, up to lattice symmetry, with a typical accuracy of about 99.9%, for a large range of
incident photon flux densities. Its performance only starts to degrade when an insufficient
number of peaks are observed in the images.

The majority of the accepted crystal sizes were able to be determined to within about
10-20% relative error. Sizes were typically rejected when the low angle images did not pass
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close enough to a reciprocal lattice point. In principle, the rejection rate can be lowered by
either using a larger detector or by placing it closer to the interaction point, which would
allow detection of more Bragg peaks at high resolution. As was shown, the accuracy of the
calculated crystal sizes were sufficient to detwin the data and perform reconstruction.

Note that we were able to successfully scale and find the peaks in the structure factor
magnitude modeling step for all of the signal strengths that we tested. However, in order
to solve the twinning problem, one requires these models at a sufficient number of recipro-
cal points. Consequently, failure typically occurs when an insufficient amount of signal is
collected from the high-angle Bragg peaks, in which case we may no longer have enough
information to form these multi-modal models at higher frequency values. In theory, it may
be possible to lower the minimum incident photon flux density required for this approach
to work by using a larger number of images. Fortunately, when successful, the detwinning
algorithm is shown to be close to 99% accurate, and when it fails, instead of returning in-
correct results, it tends to reject most of the orientations, allowing one to determine if the
method was successful.

Test case 3 demonstrates that with a sufficient amount signal, well within proposed levels,
one may solve the twinning problem beyond Laue symmetry and up to symmetry of the non-
Bragg data. In particular, this allows for the application of computational phase retrieval
techniques, which typically require detwinned non-Bragg data, to these situations. The slight
drop in performance for Jo = 21800 Å−2 is likely caused by the inclusion of data where the
shape function is close to zero, now measurable from the larger signal, which makes the
calculation in Equation 3.30 more unstable. This could potentially be fixed by using a more
robust cutoff for filtering out weak signals.

We have also demonstrated that the orientation and crystal size calculation is precise
enough to allow reconstruction with relatively few images. In particular, our approach
converges much more quickly than the Monte Carlo approach, developed in [74], even when
utilizing non-Bragg reflections, since we remove most of the variation in our data. Moreover,
the reconstructions for test cases 1 and 3 show that the sampling strategy in Section 3.6
coupled with compressive phase retrieval techniques, make it feasible to computationally
solve the phase problem for x-ray nanocrystallography using only magnitude information.
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Chapter 5

Conclusion

We have presented a new algorithmic framework for reconstructing molecular structure ab
initio from an ensemble of x-ray nanocrystallography diffraction images in the presence of
noise, large variations in the incident photon flux densities, and the twinning problem. In
particular, our approach is based on accurately determining orientation and crystal size
information and, thus, allows for reconstruction with fewer images than the Monte Carlo
approach, developed in [74]. Furthermore, we have shown that this framework is able to suc-
cessively solve the twinning problem, even beyond Laue symmetry, and determine structure
with the parameters and noise levels seen in current experiments.

This framework may be applied to enhance current reconstruction techniques and may
allow for the use of additional methods that were previously infeasible in the presence of the
twinning problem. For instance, by using this approach, molecular replacement techniques
will be able to test models against the full detwinned diffraction information. Addition-
ally, this framework also allows for the application of techniques that do not require the
knowledge of an existing similar structure, such as anomalous dispersion and isomorphous
replacement, which typically need complete orientation information. Furthermore, we have
demonstrated that nanocrystallographic diffraction images provide sufficient oversampling
of the electron density power spectrum to solve the phase problem using only Fourier magni-
tude information, via a compressive phase retrieval algorithm. This computational phasing
offers the possibility to greatly simplify the experimental setup for imaging large molecules,
as it does not require an already existing model, beam wavelengths near absorption edges,
nor the creation of additional crystals loaded with heavy atoms.

This approach could be further enhanced with the development of post-refinement tech-
niques. In particular, once a sufficient number of images are fully oriented, one may be able
refine the orientation, crystal size, and scaling information of the rejected images, which
may then be included in the final structure factor magnitude calculation. This may even
allow one to repeat the steps in the reconstruction framework several times as an iterative
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refinement.

Additionally, while we have shown that sampling at and halfway between reciprocal
lattice points is sufficient to computationally solve the phase retrieval problem, one may try
to enhance this process by incorporating more samples on the line between adjacent lattice
points, which also tend to have a noticeable signal in the diffraction images. In particular,
this may help in the case when the molecular structure takes up a large percentage of the unit
cell, which, otherwise, reduces the effectiveness of seeking a solution with minimal support.
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