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Abstract of the Dissertation 

A Unifying Approach For Queries and Updates in Deductive Databases 

by 

Wang-chan Wong 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1991 

Lubomir Bic, Chair 

This dissertation presents a unifying approach to process (recursive) queries 
and updates in a deductive database. To improve query performance, a combined 
top-down and bottom-up evaluation method is used to compile rules into iterative 
programs that contain relational algebra operators. This method is based on the 
lemma resolution that retains previous results to guarantee termination. 

Due to locality in database processing, it is desirable to materialize frequently 
used queries against views of the database. Unfortunately, if updates are allowed, 
maintaining materialized view tables becomes a major problem. We propose to 
materialize views incrementally, as queries are being answered. Hence views in our 
approach are only partially materialized. For such views, we design algorithms to 
perform updates only when the underlying view tables are actually affected. 

We compare our approach to two conventional methods for dealing with views: 
total materialization and query-modification. The first method materializes the 
entire view when it is defined while the second recomputes the view on the fly 
without maintaining any physical view tables. We demonstrate that our approach 
is a compromise between these two methods and performs better than either one 
in many situations. 

It is also desirable to be able to update views just like updating base tables. 
However, view updates are inherently ambiguous and the semantics of update 
propagation on recursively defined views were not well understood in the past. 
Using dynamic logic programming and lemma resolution, we are able to define the 
semantics of recursive view updates. These are expressed in the form of update 
translators specified by the database administrator when the view is defined. To 
guarantee completeness, we identify a subset of safe update translators. We prove 
that this subset of translators always terminate and are complete. 

xi 





CHAPTER 1 

Introduction 

This dissertation deals with the issues of integrating logic programming, as 

represented by the language Prolog (PROgramming in LOGic), and relational 

databases to generate an intelligent database system. In particular, we address 

the issues on improving the expressiveness of a query language, efficiency of query 

processing, updates on base tables, and updates on view tables. In recent years, 

there have been many studies devoted on combining logic programming with a 

relational database system. These research efforts were accelerated by the fact 

that Prolog was selected as the language for the intelligent inference engine and 

relational database was chosen for storing large collections of data by the Japanese 

Fifth Generation Project [ITOH86]. 

The research of combining Logic Programming with the relational model is 

by no means coincidental. The relational model as expressed by relational algebra 

is not expressive enough for some applications. For example, a view that is a 

transitive closure of a base table cannot be expressed with a single stand-alone 

relational algebra expression without using a loop. This deficiency is a major 

handicap of the relational model. Transitive closure can be expressed simply 

as a single recursion. Since logic programming is good at expressing recursive 

definitions, it becomes a good candidate for a relational query language. Therefore, 

the first issue to improve the expressiveness of a query language can be achieved 

by using logic programming as a query language. 

The studies on combining logic programming with relational systems are 

mainly focused on recursive query processing, ignoring the necessity to solve the 

update problem at the same time. From our experience, the performance of a 
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database system is closely related to both query and update processes. Using logic 

programming to handle recursive query processing is fine but it only addresses half 

of the problem. We believe that there should be a unifying approach that allows us 

to address both queries and updates within the same framework while at the same 

time maximizing the overall performance. This is the primary motivation of this 

research. In this dissertation, we demonstrate that such an approach exists. The 

approach is based on a modified SLD resolution by retaining materialized queries 

as lemmas [VIE87]. With lemma resolution, we show how a recursive query can be 

compiled. We further show that the derived results of a query should be retained 

permanently (as materialized views) in order to speed up future query processing 

time. However, the materialized views would cause trouble if updates were allowed. 

Within the same framework of lemma resolution, we show that the views can be 

materialized and updated incrementally. Hence it is a compromise between a 

completely materialized scheme that materializes the total views when views are 

defined, and the on-the-fly approach that does not materialize a view all at once 

but derives the view whenever it is needed. Combining lemma resolution, query 

compilation and dynamic logic programming, we further propose the semantics of 

view updates. 

The lemma resolution provides us with a framework that allows us to address 

the problems in both query and update processing. First, based on lemma reso­

lution, we design our incremental query and base update processing algorithms. 

Second, by expanding the lemma resolution, we define the semantics of recursive 

view updates. 

In the remainder of this chapter, we shall first describe the fundamentals and 

the background on the subject matters. 
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1. Deductive Databases - What are they? 

In this section, we informally define what a deductive database is and also 

define the terminology used in this dissertation. 

A database is a collection of data organized to provide information necessary 

for the operation of the enterprise that it is supposed to serve. According to 

the ANSI/SPARC architecture of a database [JAR77], there are three levels of a 

database system: the external model that describes the views of different users to 

the database; the conceptual model (logical model or data model) that captures 

the semantics of the application domain; and the internal model that specifies 

the storage methods, the access path, the communication network (if the data 

are distributed). The basic principle in a modern database is to make the users 

data independent. That is, when using a database system, the user should not 

be concerned with the data storage or the access paths taken when a piece of 

information is needed. 

The relational database was designed with this objective in mind [CODD70]. 

As a matter of fact, the relational model was born as a simplification of complex 

hierarchical and network models, in which the users have to know the pointers, the 

access path, and the storage methods in order to use the data. In the relational 

model, facts are organized in a finite collection of relations (i.e. tables) with the 

relational operators such as insertion, deletion, selection, projection, product, join, 

union, intersection and difference [CODD72]. Every relation (table) is represented 

by a finite set of tuples. A database user accesses the information stored in these 

tables by means of queries expressed in a query language (e.g. SQL, Structural 

Query Language). The database management system plays the role of an interface 

between the user and the physical database, and is responsible for accepting the 

user's queries and updates as well as returning answers to the user. 



1) P1(a,b). 

2) P1(b,c). 

3) q(X, Y) : -p1 (X, A), q(A, Y). 

4) q(X, Y): -p1(X, Y). 

5) d(X, Y) : -p2(X, A), l(A, Y). 

6) l(X, Y): -p3(X, A),f(A., Y). 

7) f(X, Y): -d(A, Y),p3(X, A). 

8) d(X, Y) : -p4(X, Y). 

9) (query):- q(a,Ans). 

Figure 1 

An Example of Horn Database 

Conceptually, a deductive database can be viewed as a relational database 

with an inference engine that is capable of complex reasoning from the content of 

the relational database. Logic programming is viewed as a better query language 

than conventional relational languages such as SQL because of its expressiveness. 

The following is a brief description of the syntax of a logic program. We assume 

readers are familiar with logic programming, specially, the concepts of unification 

and resolution as described in [KOW79B], [11084], [CGT90] and [CM81]. 

A logic program is a collection of clauses of the form: 

Pn : -po,p1 .. ·Pn-1 

Each Pi is called a literal and has the form p( ti, ... , tm), where p is a pred­

icate symbol and t1, ... , tm are terms. The semantics of this clausal form can be 

interpreted procedurally [KOW79A, KOW79B]: if po and Pl and .... Pn-1 are true 

then the literal Pn is true. The literal Pn on the left hand side, which is a positive 

literal, is called the head of the clause; the remaining literals form its body and are 

negative. 1 A Horn clause contains at most one positive literal. A database that is 

1 The words negative and positive refer to the situation when the implication of 
the clausal form is rewritten in its disjunction form. For example, the above clause 
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comprised of nothing but Horn clauses is called a Horn database. A Horn database 

is function-free if the terms are restricted to either constants or variables (i.e. no 

functions or structures.) In this dissertation, we are interested in function-free 

Horn programs. A clause with an empty body is called an assertion and is used to 

represent explicit facts. Clauses with a non-empty body are called rules. A query 

is a goal clause that has an empty consequent (i.e. a clause with only a body but 

no head.) For instance, clause (9) in Figure 1 is a query. In the logic programming 

sense, the goal is to prove the satisfiability of q( a, Ans). If the goal is satisfiable, 

the bindings of variable Ans from the unification are returned. 

The relationship between logic programming and the relational database is 

very close. A literal in a Horn database is a relation of the terms of that predicate. 

Relations defined by assertions (EDB) are called base relations while relations 

defined as the head of a rule will be referred to as virtual relations or, in a relational 

model, views, For example, Pl in Figure 1 is a base relation and q, d, l and f are 

virtual relations, or derived relations, or views. 

The query in Figure 1 can be implemented with the following relational 

algebra expression: 

7r2 ( 0"1=' a' Q) 

where Q is the view table (defined by q), 7r2 denotes the projection of the sec·ond 

attribute of Q, and O"l='a' is a selection of tuples of Q where the first attribute is 

equal to the constant a. The entire exf>ression simply means to select the tuples 

of Q where the first attribute is equal to 'a'. The resulting table of the selection is 
-

then projected to return only the second attribute. 

Non-recursive views expressed by logic programming can be translated to 

relational algebra expression directly. Consider the following rule as an example. 

t(X, Y): -p(X, A), q(A, Y). 

can be expressed as: •po V 1p1 V ... V •Pn-1 V Pn, where po, pi, ···Pn-1 are negative 
literals and Pn is a positive literal. 
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If the literals p and q are non-recursive, the rule is identical to the following 

relational algebra expression that defines the view t: 

7rX,Y p t><l2,1 Q 

where 7r is a projection and t><l denotes a join. The expression then says to join the 

tables P (defined by literal p) and Q (defined by literal q) on the second attribute 

of P with the first attribute of Q; the join results are then projected out to the pair 

of X and Y attributes. A view of this type is called Select-Project-] oin or simply 

an SPJ view. 

In a deductive database, a relation is defined either as a base or a virtual 

relation, but not both. This divides the database into two parts: the extensional 

database (EDB), comprising all base relations, and the intensional database (IDB), 

comprising all rules. 

2. Mismatch Between Logic Programming and Relational Databases 

Even though logic programming and relational databases are closely related, 

there exists two major discrepancies between them. These make it very difficult to 

combine them in an efficient way. In this section, we describe these differences. 

2.1. Functionality Mismatch 

The first mismatch concerns the functionalities of logic programming and the 

relational database. These two formalisms were designed for very different purposes 

and, as a result, a.e quite different in their behavior. 

We list the differences between them as follows: 

( 1) Relational algebra, which defines operations in a relational database, is 

procedurally oriented, while logic programming tends to be specification ori­

ented. The relational algebra basically describes the procedures to compute 

the results. For example, the expression {?Tx,y(aX='a'P t><l Q)} prescribes 
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the following steps. First, select tuples in table P if the attribute value of 

X is equal to a. Then the resulting table is naturally joined with table Q. 

Finally, the joined results are projected to the X and Y columns. On the 

other hand, a logic programming clause is just descriptive. For example, 

the clause p(X, Y) : -q(X, A), r(Y, A). means the following: to conclude 

the fact that there is a relation p between X and Y, one has to show that 

q(X, A) and r(T, A) are true. The variable names X, Y, A will eventually 

be bound to some constants if the query is successful. However, the clause 

does not include any instructions on how to compute these bindings. In 

fact, the procedure is already built-in in the resolution process, for example, 

the interpreter of the depth-first SLD resolution. Thus, to integrate logic 

program to relational database, it is necessary to integrate the resolution 

method with the relational database. 

(2) In a relational database two major operations are r~quired, query processing 

and updates. Unfortunately, update in logic programming (e.g. Prolog) are 

not quite well understood. For example, insertion and deletion in Prolog 

are implemented with non-logical predicates such as asserta, assertz, and 

retract. These predicates are ad hoc in nature and their semantics are not 

well defined. (The details of these problems are discussed in Chapter 5.) 

(3) A relational database typically deals with large quantities of data while in 

logic programming, data occurs in much smaller quantities. On the other 

hand, rules in logic programming are much more frequent than views in a 

relational database. A useful deductive database must be able to handle 

fairly large amounts of rules and data at the same time. This implies that 

both the inference engine and the database manager have to cooperate in a 

way that neither component becomes the bottleneck of the other. 
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( 4) In a relational database, recursive views cannot be expressed in terms of 

relational calculus or algebra. However, recursion is the second nature 

of logic programs. Therefore, any integration of logic programming and 

relational databases has to solve the problem of how to represent recursion, 

including complex recursion. 

2.2. Performance Mismatch 

The second mismatch concerns performance. Logic programming derives 

results in a tuple-at-a-time manner while a relational database works in a set-at-a­

time manner. Logic programming further suffers from poor performance, mainly 

due to its use of depth-first search and backtracking. Since there are large quantities 

of data in any real-life application, combining logic programming with a relational 

database magnifies the performance problem if the method of computation does 

not change. 

There are basically two approaches to coupling of logic programming with 

a relational database: loose-coupling, and tight-coupling. In a loosely-coupled 

deductive database system, the inference engine is no more than a front end query 

processor. In this case, the inference engine will process the rules and the database 

will handle the usual database operations on the base tables, separately. The 

inference engine can still work a tuple-at-a-time with backtracking. Whenever it 

wants a tuple, it sends a request to the database manager for retrieval. The results 

of the request (in a set) are returned to the inference engine. The resolution resumes 

by taking the required tuple. Hence the interaction between the inference engine 

and the database is minimal. This is the easiest way to integrate logic programming 

and relational database but, obviously, not an efficient one. 

With a tightly-coupled integration, either the logical inference engine is ex­

panded to include database operations or, the relational database is extended to 

include the inference engine. For the first case, several studies have been done in 
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this direction. The most notable one is the LDL project of Microelectronics and 

Computer Technology Corporation (MCC) (TSUR86, BEER87). The LDL project 

had two specific goals: (1) design a new language LDL (Logic Data Language) 

which is a declarative language for data-intensive applications. The language is 

an extension of the function-free Horn logic and is able to work with set-at-a-time 

data retrieval, negation and some base updates. (2) develop a system supporting 

LD L, which integrates the language with all the necessary database operations 

such as transaction management, secondary memory access, integrity constraints 

and recovery. 

The other type of tightly-coupled integration is to put the inference engine 

inside the relational database. This approach is sometimes referred to as rule 

compilation. The idea originated with Henchen and Naqvi [HN84] who suggested 

that a recursive rule can be compiled into an iterative program containing relational 

algebra expression. The compiled program is then placed inside the relational 

system like a procedure. Upon receiving a recursive query from the user, the 

appropriate procedure is invoked. Hence, the compilation of a query has only 

a one-time cost. Once the queries are compiled and placed inside the database 

system, the external inference engine is no longer needed. 

3. Background and Related Work 

As noted above, past studies on relational databases and deductive databases 

have concentrated on query processing or updates, but not both. It is our intention 

to unify these two issues in a single framework to generate an intelligent database 

system. Nevertheless, there are many separate and independent studies on which 

our studies are based. In this section, we describe some of the important results 

and the major principles which influenced our studies. 
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3.1. Recursive Query Compilation 

Gallaire, Minker, and_ Nicolas [GM78, GMN84] laid the groundwork for of 

deductive databases. Following the pioneering work by Chang [CHANG81], McKay 

and Shapiro [MS81], and Henschen and Naqvi [HN84], numerous methods have 

been proposed to evaluate recursive queries more efficiently by compiling the rules 

into iterative programs. In general, there are two types of evaluation methods, 

top-down and bottom-up. Top-down evaluation or backward chaining tries to verify 

the premises which are needed in order for the conclusion to hold. In a top-down 

evaluation, the initial goal is unified with the left-hand side of some rule (i.e. the 

head), and generates a resolvent that corresponds to the right-hand side literals (i.e. 

the body of the matched rule.) A resolvent contains more goals to be resolved. The 

process is continued until the proof tree is completed. 

Top-down evaluation can further be distinguished into breadth-first or depth­

first. In a depth-first top-down evaluation, the generation of resolvents is governed 

by the ordering of the right-hand side subgoals (the so-called selection function.) 

Most commonly, the left-most literal becomes the next goal to be resolved. Hence, 

this process produces a search tree that grow in a depth-first manner. The Prolog 

interpreter, for example, uses a top-down depth-first evaluation. In a breadth­

first top-down evaluation, resolvents are generated for all matched rules and thus 

produce the search tree one level at a time. In generating the next resolvents, 

top-down evaluation method takes advantage of the bound argument (i.e. the 

constants) of a given goal. Hence, the search in a top-down method is more focused 

than in a naive bottom-up method. 

Bottom-up evaluation or forward chaining starts from the existing facts to 

infer new facts, thus proceeding toward the conclusion. Bottom-up evaluations 

consider rules as productions that are applied to the facts to produce all possible 

consequences. A subset of these consequences that satisfy the goal become the 
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answer. A naive bottom-up approach (e.g. as in McKay and Shapiro [MS81]) does 

not take advantage of the bound arguments (i.e. the constants) of the goal and 

will generate far more consequences that may not be relevant to satisfying the goal. 

There are several variants of the bottom-up evaluation method, for example, the 

Magic Sets [BMSU86), or the Counting and Reverse Counting - a variant of Magic 

Sets [BR86]. These variants rewrite the original rules according to some algorithms 

and thus perform better than the naive bottom-up evaluation method. 

Details of the top-down and bottom-up evaluation methods plus several other 

variants can be found in the landmark study of Bancilhon and Ramakrishnan 

[BR86]. In this study, a specific application domain, i.e. a simple single recursive 

query, is chosen to evaluate each of these methods. Their results suggest that top­

down evaluation, such as the one by Henchen and Naqvi, performs best among 

all. 

3.2. Termination Problem of Top-Down Evaluation 

Unfortunately, the top-down evaluation method suffers a major drawback -

the termination of the search process. For instance, the compilation method of 

Hanchen and Naqvi only works for linear recursion. There have been many studies 

on how to terminate the search process of the top-down evaluation. For example, 

in [BW84], Brough and Walker identified two distinct approaches to solving the 

termination problem: a goal termination strategy and a rule termination strategy. 

With goal termination, a branch of a derivation tree is terminated if a goal is 

repeated in its own branch of the derivation tree. With rule termination, a branch 

of the derivation tree is 1 erminated if a rule (clause) with the same instances is 

repeated in the existing derivation tree. Unfortunately, as shown by Brough and 

Walker in that same study, any preorder search strategy (i.e. top-down left-to­

right) where termination is based on examining the current partial derivation tree, 
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is incomplete, i.e. it must miss some answers. That includes both rule termination 

and goal termination. 

We have also proposed a solution to the termination problem by transform­

mg all recursive rules into safe loops which are left-recursion free (WONG86, 

WONG87]. The goal termination strategy is then implemented using a simple and 

efficient coloring scheme by distributing the goal history containing all executed 

goals over the facts (the assertions), rather than maintaining it as a centralized 

data structure. Unfortunately, our scheme is also incomplete, i.e. it also suffers 

the termination problem for arbitrary rules. 

Several other methods were also proposed to terminate the search process 

by using the previously computed results in the resolution process, for example, 

the Extension Table Method [DW85, DW86] and the OLDT Method (TSP86]. 

These methods are based on the memoing idea as in the parsing algorithm by 

Earley (EAR 70]. Hence, they are sometimes referred to as Earley deduction. 

Unfortunately, they are also incomplete for arbitrary recursive rules. 

Finally, a method which we refer to as lemma resolution in this dissertation 

was proposed by Vieille (VIE87]. The lemma resolution is similar to the above 

memoing approaches. In fact, the lemma resolution combines both top-down 

and bottom-up evaluation approach in the resolution process and is proven to 

be complete (i.e. it terminates). (As a side note, we had also developed an idea 

very similar to the lemma resolution but were a step behind the work of Vieille 

in publication. The term Lemma Resolution was, in fact, coined in our paper 

[WONG87B].) 

With lemma resolution, we show in Chapter 2 that any recursive query can 

be compiled into an iterative program containing relational operations that can be 

executed in a relational database very efficiently. 
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3.3. View Materialization and Base Updates 

Since we need to retain previously computed results in order to guarantee 

termination of the search process, the next logical step is to retain them perma­

nently in the database. Retaining query results is called view materialization in 

the database literature. More studies have been done on this issue in database 

research than in logic programming. Researchers in databases have been aware 

of view materialization for quite some time, even though most relational systems 

still use the query modification method proposed by Stonebraker (STONE75]. The 

query modification method does not retain the results. All queries on views are 

computed on-the-fly when they are evaluated. 

Several studies have proposed to keep the materialized view m order to 

speed future repeated queries. However, maintaining the materialized view tables 

becomes a big problem if updating is allowed. As mentioned earlier, updates are 

the one of the weakest areas in logic programming. At the same time, updates 

are essential in databases and thus must also be supported in deductive databases. 

The main problem is that updating the base tables may affect the consistency of 

the view tables. 

Updates can further be divided into two types: base updates and view updates. 

Base updates refer to updates on the base tables. For example, the insertions and 

deletions in table P1 of the database of Figure 1 are base updates. On the other 

hand, users should be able to insert or delete tuples in the view tables themselves if 

they are kept per~anently. This type of update is called view update. For example, 

literal f in Figure 1 is a virtual literal. The materialized table of f is the view 

table F. Updates performed directly on the table F are called view updates. 

Several approaches have been proposed to address the base update issue, for 

example, immediate view maintenance and deferred view maintenance as described 

in [HAN87]. If every update were to trigger recomputation of the entire view, 
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then the cost of maintaining view tables would definitely outweigh the speedup 

of some potential future queries. Therefore, any view maintenance scheme must 

have an efficient screening test that determines if the update would affect the view. 

The screening test is important because it directly affects the overall performance. 

Several screening algorithms have been proposed, for example, in (BC79], (BLT86], 

and (HAN87). However, most of these studies apply to only a specific type of view: 

the so-called select-project-join view which is not recursive. 

View maintenance is also similar to the Truth Maintenance System (TMS) 

in AI research (DOY79). However, truth maintenance addresses the updates on 

both assertions (facts) and rules. Hence the system may become non-monotonic 

(MD80). In our approach, we only consider updates on facts. Rules are assumed 

to be fixed and are not updatable in our systems. 

In Chapter 3, we address these issues by linking query and base update into 

a single framework. 

3.4. Recursive View Updates 

If we allow users to update base tables, it would be desirable to also allow 

them to update the materialized view tables. However, updates on views must be 

propagated to all supportive tables so that the updated tuples are supported. For 

example, consider deleting a tuple from a view. If the tuple is simply deleted from 

the view table, it could be derived in the future, since the underlying supportive 

tables have not been updated. Unfortunately, propagation of update effects can be 

ambiguous. In gefieral, there are two distinct approaches to handle view updates: 

the theoretic approach and the heuristic approach. In the theoretic approach 

[FUV83, RN88], view updates are translated into new "theories" and are stored 

alongside the original rules. Undeniably, these newly added theories are complete 

and will entail the updates. Unfortunately, this approach has been shown to be 

intractable since the new theories are mostly non-Horn and contain large numbers 



of negations. Hence, such an inference engine is not suitable to be integrated with 

a relational system· containing large quantities of data. 

The heuristic approach, on the other hand, depends on the database admin­

istrator to designate the semantics of updates because view updates are inherently 

ambiguous. The ambiguity exists at two levels: at the rule level, and within the 

rule. At the rule level, if a view is defined by multiple rules, it is not clear which of 

the rules the update should propagate to. For example, consider the view q defined 

by rules (3) and ( 4) in Figure 1. If the user updates the view table Q, the effect 

could be propagated to rules (3) or ( 4) or both. 

Within a rule, the update propagation is also ambiguous due to multiple 

literals. For example, assume that we decide to propagate the update effects of q 

to rule (3). It is not clear which of the two literals (or both) should be updated. 

The heuristic approach, as in (KEL85) and [MW88), argues that the database 

administrator should be able to designate the update actions based on his /her 

experience and the users' requirements. 

Unfortunately, the semantics of logic programming are not sufficient to de­

scribe the dynamic nature such these update activities. However, based on dynamic 

logic programming proposed by Harel [HA 79], Manchanda and Warren defined. the 

semantics of update translators that allow the database administrator to designate 

the update effect propagation [MW88]. These translators serve as update proce­

dures to propagate the update effects i~to the designated tables. Unfortunately, 

their method camwt deal with recursive view updates, which, in their own words, 

are "not well understood" and hence, are not allowed. If the view is defined re­

cursively, and if the effect is propagated to the recursive literal, the meaning of 

such an operation is not well understood. For example, if the update effect of 

q is to be propagated to the literal q( A, Y) in rule (3) of Figure 1, what could 

happen? In Chapter 5, based on the lemma resolution, we propose an extension to 
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their update translators that define the semantics for recursive view update. The 

extended update translators, however, are incomplete in general since they may 

not terminate for arbitrary update requests. We further identify a subclass of safe 

update translators that terminate and hence are complete. 

To summarize, we unify query processing, base updates, and view updates 

within the same framework of lemma resolution to make the relational system more 

intelligent. 

4. Major Contributions 

The deductive database framework proposed in this dissertation overcomes 

the two types of impedance mentioned in section 2 while integrating logic program­

ming with relational databases. The integration is in terms of rule compilation 

based on lemma resolution. We chose the rule compilation approach for two rea­

sons. First, it is not necessary to re-define the concepts of relational databases and 

logic programming since we do not need to augment either of these two formalisms. 

Second, the implementation is more straightforward, since compiled programs can 

be stored as data objects and can be called within the relational database. 

We propose a unifying approach that integrates both query processing and 

updates within the framework of lemma resolution. To be specific, we have accom­

plished the following: 

(1) Based on lemma resolution, we designed an algorithm for query compilation 

that allows us to incrementally materialize views. 

(2) . We designed a query process that works with the compiled queries and 

the partially materialized view tables with the ability to improve overall 

performance. 
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( 3) We designed an algorithm to allow incremental updates. Our algorithm 

does not require views to be computes in their entirety. Instead, smaller 

partially materialized views are maintained; 

( 4) We further demonstrated using empirical studies that our incremental view 

update method is superior to both the totally materialized method and the 

query modification (on-the-fly) method in many cases; 

(5) Based on lemma resolution and dynamic logic programming, we further 

defined the semantics of recursive view update translators to allow updates 

of recursive views; 

(6) Lastly, we proved that our view update translators are correct and complete 

and will terminate. 

5. Roadmap 

The organization of the dissertation is as follows: in Chapter 2, we describe 

the lemma resolution. We further propose a compilation method that transforms 

any complex recursive query into an iterative program using relational algebra 

expressions. 

In Chapter 3, we propose a query processing strategy that incrementally 

materializes the view tables. We further propose a method to efficiently implement 

this query processing strategy. Moreover, we propose to retain the lemmas even 

after the query is successfully answered in order to speed up repeated future queries. 

However, since the views are materialized, the view validation becomes an issue. 

We propose a method that allows updates on the base tables to be screened to 

decide if the update effects should be propagated to the view table or not. 

In Chapter 4, we compare the behavior of the method proposed in Chapter 3 

against the other two methods: total materialization and on-the-fly methods. We 

show that our method is a compromise between these two and, in many cases, 
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outperforms both of them. We also discuss the factors that are important in 

determining which method to use. 

In Chapter 5, based on lemma resolution and dynamic logic programming, 

we propose a new method to define the semantics of recursive view updates. We 

further propose the semantics of the view translators. We identify a subclass of 

view translators that is capable of updating recursive views, is complete, and will 

al ways terminate. 

In Chapter 6, we list the topics for future studies and give a general discussion 

regarding this dissertation. 



CHAPTER 2 

lemma Resolution and Recursive Query Compilation 

In the past five years, different methods have been proposed to integrate 

deductive rules expressed in function-free Horn clauses with existing relational 

database systems. From a performance point of view, the most desirable approach 

is to compile the given Horn clauses into a sequential program containing database 

operations expressed in a relational query language such as SQL. The main ad­

vantage of the compilation approach is that, once the program starts execution, it 

does not have to make any explicit references to the original Horn clauses. 

There exist two possible approaches to compilation, resulting in programs 

evaluated in either a top-down [HN84] or bottom-up [ULL85, ULL89, BMSU86, 

SZ86, MS81] manner. It has been shown that top-down evaluation of single 

recursion has better performance since the bindings of the original query are utilized 

to restrict the search space [WHA88, BR86J. However, the top-down evaluation 

method suffers from a serious drawback, namely termination. Consequently, all 

proposed top-down compilation methods are restricted to linear recursion only 

[HN84, WHA88]. 

The original bottom-up approach does not have the termination problem, 

however, its performance lags behind the top-down method, despite numerous ef­

forts to optimize the program evaluation by the so-called "sideways information 

passing" (ULL85, BMSU86, SZ87). Details of the arguments can be found in 

[WHA88, BR86, HN84]. Although Ullman recently argued that the bottom-up 

evaluation can be implemented more efficiently than most top-down evaluation 

methods for complex recursions (ULL89), the lemma resolution described in this 

19 
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chapter is proven to be equally efficient [VIE88]. Furthermore, the method pro­

posed in [ULL85A) needs to rewrite the original rules, which destroys the intuitive 

semantics of the rules. Lastly, the view update semantics defined in Chapter 5 are 

based on top-down evaluation. It is still unclear how the semantics of recursive 

view update can be intuitively defined for the bottom-up evaluation method. Thus, 

in this dissertation, we concentrate on the top-down evaluation method. 

Several closely related solutions to the termination problem for top-down 

evaluation have been proposed (VIE87, TS86, DW86]. We shall refer to this 

method as lemma resolution, since the basic idea is to retain previously resolved 

subgoals referred to as "lemmas", i.e., temporary results that contribute to solving 

the original query (goal). Lemma resolution essentially combines top-down and 

bottom-up evaluation, as will be explained in Section 1. 

In this chapter we present a method for processing recursive queries based on 

lemma resolution. It has the following properties: 

1. It is a compiled method and hence it preserves the efficiency of a top-down 

method; 

2. It is guaranteed to terminate and generate all possible answers in the pres­

ence of any form of function-free recursion, including non-linear recursion. 

The organization of this chapter is as follows: in Section 1, we briefly describe 

the lemma resolution. In Section 2, we present the compilation method that is 

based on the lemma resolution. In Section 3, we consider different methods for 

performance impr.ovement. 

1. lemma Resolution 

The process of resolution can conveniently be viewed as a tree, where each 

node represents a goal (the body of a clause) and each edge indicates dereferencing 

between two clauses. Each literal inside a node is called a subgoal. We first define 



( 1) ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y). 

(2) ancestor(X, Y) :- parent(X, Y). 

(3) parent(a,b). 

( 4) parent(b, c). 

(5) ?-ancestor(X, Y). 

Figure 2 

An Example of a Double Recursive Program 
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the concepts of a subgoal instance and an expandable node. Given two identical 

recursive subgoals Gi and G2, G2 is an instance of Gi if G2 = BGi, where B is a 

proper substitution. A node that begins with a subgoal instance will be called an 

expandable node. (The justification for this terminology will be given shortly.) 

With these definitions, we now give an intuitive description of the lemma 

resolution process. It starts with the given query and generates a sequence of 

trees as follows. The first tree is generated by trying all possible paths of the 

search tree (using SLD resolution2) until one of the following situations occurs: 

(1) the empty clause is derived, i.e., a solution is found, (2) the path fails, or (3) 

a recursive subgoal instance is encountered. As a result, a leaf of this first tree 

will be either the empty clause, a failure, or an expandable node (with a recursive 

subgoal instance as its left-most subgoal.) Solutions to any recursive goals in this 

tree become lemmas. 

To illustrate this first step, consider the program in Figure 2. Starting with 

the initial query ancestor(X, Y) as the root, we apply rules 1 and 2, which yield 

the two resolvents Ni and N2 as shown in Figure 3. (Note that we abbreviated 

the predicate names ancestor and parent to an and par, respectively.) Since the 

first subgoal of Ni is an instance of ancestor(X, Y) in No, Ni does not expand any 

2 In the following discussion, we assume that a breadth-first search strategy is used. 
The lemma resolution works for both breadth-first and depth-first search. 



No 

an(X, Y) 

an(X, Z), an(Z, Y) par(X, Y) 

Figure 3 

The First Tree of Lemma Resolution 

Lemma 

an(a, b) 
an(b, c) 
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further; it becomes a leaf of the first tree. N2 is resolved with the two assertions 

(line 3 in Figure 2); both succeed, yielding the two lemmas ancestor{ a, b) and 

ancestor(b, c). This completes the first tree. 

Subsequent trees are generated by expanding the immediately preceding tree 

as follows: the leftmost subgoal of each expandable node N is resolved with all 

unifiable lemmas that were generated in previous trees but have not yet been used 

to resolve the same node N. Similar to the first tree, each branch expands until 

one of the followiflg occurs: (1) the empty clause is derived, (2) a failure occurs, 

(3) the process encounters a recursive subgoal instance that is not unifiable with 

any lemmas generated in previous trees. New lemmas generated as a result of 

the expansion are added to the current set of lemmas. The resolution process 

terminates when there is no new lemma generated that could further resolve a.ny 

expandable node. 



No 

an(X, Y) 

an(X, Z), an(Z, Y) 

an( a, b) 

an(b, Y) 

an(b, c) 6 Lemma 

B 

an(c, Y) 

I 
I 
I 
I 
I 
I 
I 
I 

fail 

Figure 4 

"'2 

The Second Tree of Lemma Resolution 

par(X, Y) 
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Lemma 

an( a, b) 
an(b,c) 

Returning to our example, Figure 4 shows the tree derived by expanding the 

tree in Figure 3. In particular, the expandable node Ni is resolved with the two 

lemmas ancestor( a) b) ad ancestor(b, c) that were generated in the first tree. This 

yields the new resolvents N3 and N4, respectively. These two resolvents are both 

expandable. Since there is a unifiable lemma ancestor(b, c) for N3, the process 

continues. It derives the empty clause, which yields the new lemma ancestor( a) c }. 

The second path from Ni, on the other hand, leads to failure. 

Since a new lemma has been generated, the process continues as shown in 

Figure 5. The lemma ancestor( a, c) is used to resolve the expandable node N1, 

resulting in the new resolvent N5. This is also an expandable node but is not 

unifiable with any existing lemmas; hence the branch fails. 



an( a, b) 

an(b, Y) 

an~c) Lemma 

B 

an(X, Z), an(Z, Y) 

an(c, Y) 

I 
I 
I 
I 
I 
I 
I 

fail 

an(a,c) 

Figure 5 

an(X, Y) 

an(c, Y) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

fail 

The Third Tree of Lemma Resolution 

par(X, Y) 

Lemma 

an( a, b) 
an(b, c) 

At this point, there is no new lemma that could be used to expand the third 

tree (Figure 5) and hence the process terminates. The proof of completeness of the 

lemma resolution can be found in [VIE87). 

2. A Compilation Method Based on Lemma Resolution 

In this section, we describe how the lemma resolution is applied to the 

compilation of recursive rules. The general concept is depicted in Figure 6. The first 

step is to adorn the input set of rules as in [ULL85A) by denoting which variables 

are free and which are bound. The next step is to transform the bodies of these 

adorned rules into their corresponding relational expressions; various heuristics may 



Input set 

of rules 
Adornment adorne 

rules 

Figure 6 

Heuristics 

Transforma-

ti on 

relational 
expressions 

Compilation 

The Compilation Process 

programs for each 

adorned virtual 

literal 

be applied here to improve performance during execution. The last step takes the 

relational expressions of these adorned rules and synthesizes sequential programs 

for each of the adorned goals. These sequential programs contain only relational 

database operators. Once they are generated, the execution can be done entirely 

in the database system without having to alternate between the database (EDB) 

and the rules (IDB) for dereferencing. 

2.1. Basic Assumptions 

First, we state the assumptions and give some definitions to facilitate the 

discussion. 

(1) Rules are restricted to function-free Horn clauses. 

(2) We use the-terms "literal" and "predicate" in the traditional logic program­

ming sense; predicate names are represented in lower case. For example, 

p(X, Y) is a literal and the predicate name is p. However, in the database 

sense, the extension of a literal forms a table. We denote such tables by 

capitalizing the underlying predicate names. These tables contain columns 

identical to the variables of their predicate counterparts. For example, P 



2G 

is the ·'relational" table of literal p( X. Y) with two columns of attributes X 

and Y. 

(3) Base literals refer to tables of the Extensional Database (EDB). These tables 

are stored in secondary memory. Virtual literals or views are defined in 

terms of base literals and/ or other virtual literals. We further distinguish 

two types of virtual literals: non-recursive and recursive. Non-recursive 

virtual literals are defined using only base and/ or other non-recursive virtual 

literals. Recursive virtual literals (or simply recursive literals) are defined 

using base, non-recursive virtual and recursive literals. We further assume 

that these three types of literals are disjoint and their types are known at 

compile time. We allow rules to contain non-linear recursion, in particular, 

mutual recursion. 

( 4) Without loss of generality, we assume that any literal in the body of a 

rule shares one or more variables with at least one other literal in that 

rule. Hence, side-way information passing can be accomplished by a join 

operation between tables that share variables. As a matter of fact, such 

a join is a "projected join" which means that a projection is applied to 

the resulting joined table. (In database terms, this is the so-called select, 

project, and join, or simply SP J view.) If literals in the body of a rule do 

not share variables, the body may be separated into independent queries. 

2.2. Lemmas for Non-Recursive Virtual Literals 

Non-recursive virtual literals require that they be bound whenever they are 

referenced. To avoid recomputing the same results for repeated references, we can 

apply the same principles of retaining previously computed results in the form of 

lemmas as described in Section 1. Hence lemmas may be used not only to prevent 

infinite recursion but also to improve performance during execution by acting as a 

caching mechanism for virtual literals. Any future encounters of the same literal 



(1) ancestor(f/X,f/Y):- ancestor(f/X,f/Z), ancestor(f/Z,f/Y). 

ancestor(f/X,f/Y):- parent(! /X,f/Y). 

(2) ancestor(f/X, b/Y):- ancestor(f/X,J/Z), ancestor(J/Z, b/Y). 

ancestor(f/X, b/Y):- parent(f /X, b/Y). 

(3) ancestor(b/X,f /Y):- ancestor(b/X,J/Z), ancestor(j/Z,f /Y). 

ancestor(b/X,J/Y):- parent{b/X,f /Y). 

( 4) ancestor(b/X, b/Y):- ancestor(b/X,J/Z), ancestor{f/Z,b/Y). 

ancestor(b/X, b/Y):- parent{b/X, b/Y). 

·r _, 

The adornments f / X ancestord b/Y denote that variable X is a free variable while Y is a 

bound variable (i.e. a constant). 

Figure 7 

The Adornment for program in Figure 2 

then do not require re-computation. Instead, a simple search (i.e. selection) of the 

lemma table yields all possible answers. 

Note that retaining results of non-recursive virtual literals is not required to 

guarantee completeness but only to improve performance. Similarly, eliminating 

non-recursive virtual literals by program expansion and goal substitution represents 

a trade-off between memory requirements and speed. In this dissertation, we 

assume the most general case where results for both recursive and non-recursive 

virtual literals are-retained. As a result, there are three different types of tables in 

our system: base tables, lemma tables for recursive literals ( R-tables for short) and 

lemma tables for non-recursive virtual literals ( NR-tables for short). Both R- and 

NR- tables are incremental in nature because they are only partially materialized 

tables which will be built up to their entirety when the processing of the literals 

involved is completed. 



:28 

2.3. Predicate Adornments 

The first step of our compilation method is to adorn predicates as in [ULL85] 

by denoting which variables are bound and which are constants. The adornment 

of variables in the head are then propagated to the body of the rules. Adornment 

of predicates are used later on to generate compiled programs by focusing on the 

bound variables. For each n-ary goal, there are 2n distinct adornment patterns 

and hence that many distinct adorned rules. For example, consider the clauses 

of Figure 2. Since predicate ancestor is binary, four adornment patterns are 

generated as shown in Figure 7. The adornment simply denotes the types of variable 

names in the predicates. For example, ancestor(f/X,b/Y) means that variable Xis 

free while Y is bound to an input constant. For each set of these adornments, 

a program will be synthesized to take advantage of the particular bindings of 

variables. For this example, four programs are generated for the adornments 

ancestor(f/X,f/Y), ancestor(f/X,b/Y), ancestor(b/X,f/Y), and ancestor(b/X,b/Y), 

respectively. (Note that invoking these programs is comparable to procedural calls 

in a general programming language.) For instance, consider the second adornment 

ancestor(f/X,b/Y). To resolve any goal of this pattern (e.g. with X free and Y 

bound) is equivalent to invoking the synthesized program ancestor(/ /X,b/Y) where 

parameter Xis a variable and parameter Y is a constant. The program will evaluate 

the underlying database and return the value of X with respect to the constant Y. 

Note that this step of the compilation is optional. We could disregard adorn­

ments and create only one relational algebra expression (program) for every clause. 

Creating a separate expression for every combination of adornments is to increase 

performance since it takes advantage of the current bindings at run time: the more 

variables are bound in the expression, the more database select operations may be 

applied, rather than having to perform the less efficient join operations. 
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2.4. Generating Relational Expressions For Rules 

The second step of our compilation method is to generate the relational 

expressions for the body of each rule. Rules of the input set can be classified 

into two categories. The first type of rules are recursive since their bodies contain 

at least one recursive literal. The second type of rules are non-recursive since 

their bodies contain only base and non-recursive literals. (Note that a rule with 

a recursive head but non-recursive body is a non-recursive rule. These rules are 

sometimes called exit clauses [HN84] since they are the only rules through which a 

recursive goal is ever able to exit from a loop.) 

The basic idea of our compilation method is to generate programs for each pat­

tern of adornment of virtual literals (both recursive and non-recursive). According 

to the procedural semantics of Horn logic, resolving virtual literals is equivalent to 

resolving the bodies of their corresponding rules. We first transform these bodies 

of literals into relational algebra expressions. To resolve the heads of the rules is 

then equivalent to evaluating their corresponding relational algebra expressions, 

which is identical to the breadth-first search strategy in the SLD resolution. For 

example, consider the following two rules: 

(1) p(X,Y):- e(X,Y). 
(2) p(X,Y):- e(X,Z), f(Z,Y). 

There are four possible combinations of adornments for p(X,Y). They are p(b/X, 

b/Y), p(b/X, f/Y), p(f/X, b/Y), and p(f/X, f/Y). The four relational algebra 

expressions corresponding to rule 1 are: 

( 1) O' restriction E; restriction = { X = _, Y = -} . 
(2) O'restrictionE; restriction = {X = -}· 
( 3) O' restriction E; restriction = { Y = -} . 
( 4) a0E. 

where underscore represents the current binding (constant) and a0 is a selection 

with an empty restriction, i.e., a retrieval of the entire relation. 
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Similarly~ the four relational algebra expressions corresponding to rule 2 are: 

( 1) a restriction E t><l F; restriction = { X = _, Y = -} . 
( 2) a restriction E t><l F; restriction = { X = -} . 
(3) <JrestrictionE t><l F; restriction = {Y = _}. 
(4) a 0E t><l F. 

Assuming that e and f are base literals, answering the query p(a,Y)?, for 

example, would result in evaluating the following relational algebra expression: 

i.e., the union of the results obtained by evaluating the expressions corresponding 

to the adornment p(X/b,Y /f) of rule 1 and rule 2. 

To generate relational algebra expressions from rule bodies, the following two 

general rules apply: 

(1) Each bound variable corresponds to a possible select operation on the cor­
responding relation (e.g. ax=aE); 

(2) Each pair of literals sharing one or more variables corresponds to a possible 
join operation between the corresponding two tables (e.g. E t><l F). 

Given these two rules, it is always possible to transform any sequence of 

literals into a relational algebra expression comprising select and join (i.e. projected 

join) operations. However, which of the possible combinations of select and join 

operations should actually be used and in what order is a matter of optimization. In 

general, query optimization is an NP-complete problem and hence only heuristics 

can be applied. We shall return to this problem in section 3.1. For the purposes of 

this section, we assume the existence of a translator which takes the adorned literals 

of each clause body as input and returns the corresponding relational algebra 

expression (the query plan). This expression contains both base and virtual literals 

connected through select and join operations. Parenthesis may be used to indicate 

the desired order of execution. 
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2.5. Incremental Select and Join Operations 

The main problem in evaluating relational algebra expressions is that we 

may encounter virtual tables (R- or NR-tables ). In order to apply select or 

join operations, each such table must first be materialized. For NR tables, this 

can always be accomplished by evaluating the corresponding relational algebra 

express10n. (Recall that for each adornment pattern of a virtual literal there is 

one such expression containing select and join operations on only non-recursive 

relations.) For recursive relations, however, this approach would fail, smce, m 

general, the expression evaluation would not necessarily terminate. 

The solution to this problem is to apply the principles of lemma resolution 

explained in Section 1 (to guarantee completeness) and in Section 3.1 (to improve 

performance). This states that, when a virtual literal G2 is an instance of another 

literal G1 that occurred previously, G2 should not be resolved using rules. Instead, 

lemmas generated for G1 thus far can be used to resolve G2. The same principle can 

be applied in the context of executing the relational algebra expressions. Whenever 

we encounter an operand that is a virtual literal, its bindings depends on whether 

it is an instance of a goal encountered previously. If so, the current virtual literal 

is not bound by calling the corresponding sequential program. Instead we t8:ke 

advantage of the existence of any lemmas generated so far. For that purpose, we 

introduce two special kinds of select and join operations, called incremental select 

and incremental join, denoted by a1 and [XJJ, respectively. These are used instead of 

the regular select _and join whenever the associated operands are virtual relations. 

Assume we need to perform a select on a virtual relation R (i.e. a!R). Recall 

that R is the lemma table for the predicate r. Let's assume that a!R is equivalent to 

solving r(a,Y) and returning all possible bindings for the variable Y. All instances 

of r will be kept in R. To resolve r(a, Y), we distinguish two cases. First, if r(a, Y) 

is an instance of some previously occurred goal ro, then this goal is to be resolved 
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with the lemmas of ro (which are contained in R). To be able to determine that, 

we need to maintain an execution history list Hr, recording all occurrences of the 

goal r. Whenever r is to be resolved, we consult this list. If r is an instance of some 

previously resolved goal on this list, there already exists a partial materialization 

of the literal r - the lemma table R. In this case, the resulting table of r( a, Y) is 

bound by performing a select operation aaR, where the restriction a is given by the 

bound variables of r. We will refer to this operation as lemma select. Otherwise, R 

is bound by evaluating the appropriate relational algebra expression for the current 

adornment pattern of R, i.e. by invoking the corresponding synthesized program. 

This will be referred to as a call select. 

The following procedure summarizes the implementation of the incremental 

select a!R: 

if r of a!R is an instance of a goal on Hr 

then a a R; ( * lemma select *) 

else call [Ra]; (* call select, where [Ra] is a procedure call *) 

The incremental join operator A !><l1 Bis used if at least one of the operands 

is a virtual relation. Without loss of generality, we assume that A has already 

been bound through a previous select, join or call operation, or by being a base 

relation. Similar to the incremental select, Bis bound using either existing lemmas 

or by evaluating the appropriate expression (represented by a synthesized program), 

depending on whether B is an instance of a previous goal or a new occurrence. 

Unfortunately, to determine that is not as simple as with the incremental select 

because the bindittgs of B depend on those of A due to shared variables. 

To illustrate the incremental join A 1><11 B, let's assume that the underlying 

predicates are a( e,Z) and b(Z,Y). A can be bound by the select operation aeA, 

yielding a set of bindings for Z, which are passed to B. This divides B conceptually 

into two parts - the first, say B1, contains all tuples that are instances of some 

previous occurrences of b (and are contained in table B), while the second part, B2, 
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contains tuples that represent new goals. vVe propose that an incremental join be 

implemented by a projected group-by operation (i.e. a projection applied after the 

group-by operation) and an incremental select. The general form for the operation 

(A f><11 B) is as follows (assuming that A has already been bound). 

(1) Group A By the join column(s) Z'i; 

Z'i are projected out from the resulting table; 

(2) for each unique Z'i do a~jB. 

The materialized relation A is grouped by the join column of A (i.e. the 

variable Z). The join columns ( Z) of the resulting tables are projected out. For 

each distinct constant of Z, we implement an incremental select on B. The join of 

this kind builds up the resulting table in an incremental manner, hence the term 

"incremental" join. 

To summarize, results of previously solved recursive literals are retained as 

lemmas. When select and join are applied to a recursive or non-recursive virtual 

literal, we need to determine if the recursive literal is an instance of a previous 

goal or not, and act accordingly (either use lemmas or invoke another procedure). 

This is the major step that guarantees the termination of recursion (for the case 

of recursive literals) and that improves the performance by avoiding repetitive 

computations (for the case of non-recursive literals). 

An Example 

Consider the first adornment pattern in Figure 7. The rule with body par­

ent(! /X, f/Y) can be transformed into the relational operation a0Parent to retrieve 

the entire table of PARENT . The other clause body for this adornment is an­

cestor(! /X, f /Z), ancestor{f/Z, f /Y), which comprises two recursive literals both 

referring to the same R-table ANCESTOR. The conjunction of these two literals 

can be transformed to the relational algebra expression: (a~ ANCESTOR f><1
1 

ANCESTOR), which means that an incremental select on R-table ANCESTOR 
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is performed first, followed by an incremental join. Since the select does not have 

any selection constants, the entire current ANCESTOR table is selected. This is 

then incrementally joined with itself. 

2.6. Compilation of Relational Expressions 

The third step of the compilation takes the set of relational algebra expres­

sions generated in the previous step as input and compiles a sequential program 

for it. The general structure of the program is shown in Figure 8. The following 

data structures are required: a lemma table Lg for each virtual predicate g, an 

E_list whose functions will be elaborated in detail later, and the history list Hg 

of execution of every recursive goal g. Note that for every virtual goal g (either 

non-recursive or recursive), there is a lemma table Lg. However, a history list Hg 

is needed only for recursive goal. 

In general, the input set of relational algebra expressions I can be partitioned 

into two sets, N and Q, of clauses: the set N does not contain any virtual tables 

(e.g. R or N R-tables) in the clause bodies while the set Q does. The set N is 

sometimes called the set of exit clauses [HN84]. They are required in any recursion 

to generate the first-level results. Hence, they generate the initial set of lemmas 

for the recursion. This is reflected by the loop starting on line 1 of Figure 8. 

As illustrated in section 1, new lemmas can be generated by evaluating the 

recursion through an expandable node. Therefore, an expandable node is both a 

producer and a consumer of lemmas. In other words, expandable nodes need to be 

re-evaluated agaiD:Bt lemmas generated from the previous stages. The list structure 

E_list is used to hold those paths that contain expandable nodes. Recall that an 

expandable node begins with a recursive literal. Since the expressions in the set of 

Q represent all paths that contain some R-tables, they are placed on the EJist as 

shown in line 2. The program terminates when none of the elements on the EJist 

generates any new lemmas. The main processing is done by the procedure EVAL 



Notations: I= input set of relational expressions of Adorned g; 
N = relational expressions that do not contain recursive tables; 
Q= relational expressions that contain recursive tables; 
I= N UQ; 

Data Structures: 
Lg: Lemma table for for each virtual predicate g; 
EJist: list to hold expandable nodes; 
Hg: history list of recursive goal of predicate g; 

1. for each n E N do 
Lg:= Lg U EVAL(n); 

2. for each q E Q do 
put q in EJist; 

3. repeat 
for each q in EJist do 

Lg:= Lg U EVAL(q); 
until no change in Lg 
return (Lg); 

Procedure EVAL(E) 
4. while E is not completely parsed do 
5. begin 
6. token:= parser(E) (*token in the form of <7 X or A 1><1 B*); 
7. if no incremental operator in token 
8. then token_table:= dbperform(token) 
9. else (*token is either <71 R or A 1><11 R *) 
10. case token of: 
11. <71: 

12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. end if; 

A 1><11 R: 

end case; 

27. reduce(token_table, E); 
28. end while; 
29. return( tokerdable); 

if R is non-recursive virtual table 
then token_table:= <7 LR; 

if token_table = 0 then call [ R]; 
else (* R is recursive*) 

convert <71 R into predicate form g; 
if g is an instance of some element in Hg 

then token_table := <7 LR 
else put g in Hg; 

call [R]; 
A_table:= EVAL(A); 
Group A_table By join column(s) into Z's; 
for each Zi in Z do 

tmp:= EVAL(<7k,R); 
token_t.able:= token_table U assemble(A_table, tmp ); 

Figure 8 

General Framework for the Compiler 

which invokes four other procedures, parser, dbperform, assemble, and reduce. We 
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will explain these procedures along with the explanation of the algorithm of EVAL. 

Given a relational expression, the procedure EVAL will evaluate it in an inside-out 

manner, according to the order denoted by parentheses. For this purpose the parser 

procedure always returns the next appropriate relational operation, together with 

the corresponding operands (line 6). For example, if the relational expression is 

a(X [><l aY), the first token returned by the parser would be aY, because it is the 

inner-most operation. Note that any token extracted by the parser has the form 

of either a selection or a join. 

If the token does not contain any incremental operator, the procedure dbper­

form is invoked to evaluate the operation directly. This procedure dbperform simply 

performs the corresponding select or join operation on the database and returns 

the resulting table as the token_table (line 8). If the token contains an incremental 

select operator, a1 R, the procedure tests if R is a recursive virtual table. If that is 

not the case, a select on the lemma table LR is carried out. If the selection results 

in an empty table, it implies that R is not an instance of a previous goal (we 

have not encountered R with such a binding before). In that case, a call select is 

carried out with the constant bindings of the incremental selection. These choices 

are reflected in lines 11 to 13. 

Note that the incremental select can be implemented in this way only for 

the case of non-recursive virtual tables because these tables are not expandable 

as discussed in section 3.2. Once a non-recursive virtual literal is encountered, all 

derivable tuples are obtained at the same time and they will not be the producers 

of further results. 

If R is recursive, it is necessary to implement the instance test explicitly as 

shown on lines 15 and 16. First , we convert the relational algebra expression a 1 R 

back into predicate form g. We then test if g is an instance of some element in 
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Hg. 3 If this is the case, then a lemma resolution is performed simply by carrying 

out a selection on LR· 

If the token is an incremental join between two tables A and R, the incre­

mental join is implemented by the group-by and incremental select as described in 

section 3.5, which is shown in lines 21 to 24. Since the group-by operation and the 

incremental select are done separately, a procedure called assemble is invoked to 

put the results of the A-table and the tmp table which is result of the incremental 

select, into a table that represents the result of the original incremental join of 

A and R. Finally, a procedure reduce is invoked to reduce the resulting table 

(i.e. token_table) with the original relational expression E. For example, given the 

expression a(X !><l aY), the procedure reduce takes the results of o.Y and renames it 

to resulL1. The expression E thus becomes a(X l><l resulLl). By parsing E again, 

the token X l><l resulLl is extracted and processed. Parsing of an expression is 

done when the original expression is reduced to one single table (possibly empty). 

3. Performa nee Considerations 

The ultimate purpose of this approach is to integrate an inference mechanism 

into a relational database system such that large quantities of facts can be deduced 

efficiently. The compilation method based on the lemma resolution described in 

previous sections is aimed in this direction. As noted in section 2.4, while forming 

relational algebra expressions from rules, optimization can only be done through 

heuristics. There are two basic rules in forming a relational algebra expression 

from the conjunctions of literals: bound variables of a literal may be potentially 

translated into a select operation of the underlying relational· table while shared 

variables between literals indicate candidate join operations between tables. As 

such, classical query optimization techniques [ULL89] can be applied here. In this 

3 In practice, the conversion step is not really necessary. If the history list is 
maintained as a table, the instance test then can be implemented as a select on 
that table. 
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section, we address mainly heuristics for query plan optimization related to lemma 

resolution. 

3. 1. Heuristics for Query Optimization 

There are two major inefficiencies in our current compilation method. The 

first type occurs within a single recursive rule. We call it inter-rule redundancy. 

This inefficiency derives from the fact that non-recursive literals that are part of a 

recursive rule are re-evaluated each time the rule is invoked. This is because the rule 

is kept in the EJist and is evaluated against any newly derived answers. Consider, 

for example, the following conjunction of literals: p(a, B), d(B, Z), q(Z, Y) where 

p and d are base literals while q is recursive. This corresponds to evaluating the 

relational expression aaP !><l D !><11 Q. From section 2, we know that, by the 

time the literals p and d are resolved, the node containing q( Z, Y) becomes an 

expandable node and will be evaluated against the lemma table Q for further 

expansion. Lemmas are then fed back to the expandable nodes until no further 

lemmas are generated. Note that each time the expression aaP !><l D l><l 1 Q is 

evaluated, the operation aaP !><l D yields the same answers. This, obviously, is 

unnecessary. Instead, any leading conjunction of base or non-recursive literals 

can be retained as "wavefront" or "frontier" which is basically the collection ·of 

immediate results of these non-recursive literals. 

The second inefficiency occurs between different rules with the same head; it 

is called inter-rule redundancy. Consider the following two rules: 

(1) q(X,Y): -p(X,A),d(A,B),e(B,C),q(C,Y). 
(2) q(X,Y): -p(X,A),d(A,B),f(B,C),q(C,Y). 

Our compilation method will evaluate these two rules independently. Since 

the leading predicates p(X,A),d( A,B) appear in both rules, if p and d are base 

relations, it means that the tables P and D are retrieved twice from the secondary 

storage. In order to minimize disk access, these two tables can be retrieved only 
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once and kept in primary memory. If the predicate q(X, Y) is defined over a set 

of rules which share some predicates, it is possible to "pre-compile" these rules 

by finding common structures sharing these predicates. The general principle is 

simple: for each adornment pattern, the bodies of the goal form a graph whose 

vertices are the distinct adorned variables and edges are the predicate names. 

Two graphs are then connected by identifying the intersection between them. By 

joining all the graphs together, a supergraph is formed. With this resulting graph, 

heuristics are applied to decide the execution order of the graph. The shared 

subgraphs are the common substructures of the original rules. Therefore, their 

bindings are retained in order to minimize disk access. The details of this pre­

compilation should be investigated in details in the future. 

3.2. Sliding Window of Lemma Tables 

Another possible inefficiency lies in the manner in which the expandable nodes 

are evaluated against their lemma tables. For example, consider the recursive 

relational expression O'I Q where Q is a recursive lemma table. O'I Q will be evaluated 

repeatedly as long as there are new tuples generated in Q. Obviously, it is not 

necessary to evaluate the entire Q. Only the newly added tuples of Qare of interest. 

With this observation, we can improve the performance by using a pointer for each 

element in the EJist. This points to the first lemma in the lemma table that has 

not yet been used for the current EJist element. When the lemma is applied, the 

pointer is advanced accordingly. Hence, each pointer denotes the beginning of the 

subtable of Q that is still relevant to that particular EJist element. 

4. Chapter Summary 

In this chapter, we propose a compilation method for recursive queries based 

on lemma resolution which is both complete and terminates in all cases. Our 

method combines both top-down (the binding information of the query determines 



the compiled program) and bottom-up (the lemmas) methods. It is different from 

most bottom-up methods such as [ULL85, BMSU86, SZ86]. The features of our 

compilation method are listed as follows: 

1. Our method is based on the lemma resolution which is proved to be correct 

and complete for function-free Horn logic. 

2. When generating the relational algebra expressions, many conventional 

database optimization techniques can be applied. 

3. Our incremental join can handle complex recursions. 

4. Our way of implementing the incremental join resembles the hash join where 

the original table is decomposed into a set of small tables. Each of these 

small tables has the value from the join column. By doing the join with these 

small tables instead of larger tables, the performance can be improved. 



CHAPTER 3 

View Materialization and Base Updates 

In Chapter 2, we have shown how lemma resolution solves the termination 

problems of recursion and how deductive rules can be compiled into iterative 

programs containing relational algebra. The ultimate goal of compiling deductive 

rules is to improve the performance of processing view queries. In a conventional 

relational database system, a materialized view is a table of results after retrieving 

a view from the database. Usually, views are not materialized until they are needed 

and are discarded afterward. It is observed that query processing can be improved 

by keeping frequently needed views materialized. This is particularly true if these 

views are recursive since they will be more costly to recompute. 

Retaining results to improve further computations is not unique in database 

research. For example, it has been shown in programming languages research that 

retaining results can improve execution time of recursive programs. The notable 

studies are the tabulation method [BIR80], the memo functions method [MIC68] 

and other various approaches such as those shown in (CHAN73) and (COH83). 

However, the problem becomes unique in database research since, if views are to 

be kept permanently as view tables, then updates of base relations or other views 

will affect the integrity of these view tables. 

There are two distinct types of updates with different consequences: ( 1) 

updates of base tables, and (2) updates of view tables directly. Updates on base 

tables (this will be referred to as base updates) have two effects: first, the base 

tables get updated, which is identical to ordinary up~ates in relational tables. For 

instance, each update request is subject to the validation of integrity constraints 

that have been specified for that particular table. Second, updates on base tables 

41 
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( 1) ancestor('<, Y) :- parent(X, Y). 

(2) ancestor(:<, Y) :- parent(X,A), ancestor( A, Y). 

Figure 9 

Single Recursion Ancestor View 

may affect certain view tables if these base tables are supportive relations of those 

view tables. On the other hand, if views are kept physically as tables, a user 

should be able to update them just like base tables. Updating a view may affect 

its supportive relations which can be base relations or other views. Such an update 

is termed view update. To illustrate what the base and view updates are, consider 

the ancestor view in Figure 9. Note that this example is similar to the example 

in Figure 2 except that the ancestor is defined with a single recursion instead of a 

double recursion. 

A base update refers to the case when the base table PARENT is updated. 

From the second rule of the view definition, it is obvious that updates on PARENT4 

may affect the view table ANCESTOR. On the other hand, assuming that all 

views are materialized and kept as view tables, a user may directly update the 

ANCESTOR view table. Updates of the view table ANCESTOR are called view 

updates and their effects should be propagated into the body of its definition (the 

right-hand side of the rule). View updates will be covered in Chapter 5. 

In this chapter, we focus on base updates. In particular, we present a unifying 

approach, that is based on the lemma resolution of Chapter 2, to tie both the query 

and the update process of recursive queries together. The organization of this 

chapter is as follows: section 1 will describe what view materialization is and will 

also discuss related studies. In section 2, we describe our unique incremental update 

4 We use the same notation as in Chapter 2 that predicate name is expressed in 
lower case; the same name in upper case denotes the relational table. 
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and query processing strategies. With our incremental update and query processing 

techniques, in section 3, we discuss how the base updates can be implemented. 

1. View Materialization and Related Work 

Generating materialized views is straightforward if they are not recursively 

defined. For example, in the query modification method [STON75}, a query on a 

view is transformed into a sequence of subqueries on the base relations. Its limita­

tion is, of course, that it only allows non-recursive views. (In general, recursion is 

not supported in a relational system because the relational algebra does not support 

recursion.) If no view tables are to be maintained, updates on base relations do 

not require any view update since the view will be re-computed Ofl: .the fly when 

needed. However, if views are materialized and updates are allowed, integrity of 

the materialized views has to be maintained. 

In the relational database research, there are basically two different ap­

proaches to base updates: immediate view maintenance and deferred view main­

tenance [HAN87). In a naive immediate view maintenance approach, a view is 

materialized in its entirety and every update to the base relations triggers updates 

on the view tables immediately, mostly by re-evaluating the whole view table.· If 

every base update triggers the re-evaluation of the view tables, the cost to maintain 

view tables can be tremendous. Several refinements have been proposed. For ex­

ample, in [BC79], a method is proposed to analyze the base updates to determine 

if they affect any -view tables. If they do, or if the analysis fails to detect whether 

the view may be affected, the view will be completely recomputed. In [BLT86), 

Blakeley et al propose a two-step mechanism for maintaining materialized views. 

The first step checks if the base updates are relevant to the view. The second 

step gives a differential view update algorithm for the relevant updates. However, 

these approaches work only for so-called SP J (Select-Project-Join) views; they do 



not work for other combinations of relational operators, let alone recursive view 

definitions. 

For the deferred view maintenance approach, updates on the base tables are 

not propagated to the view table immediately. Instead, the affected views are 

updated just before data is retrieved from them. Hanson (HAN87] describes a 

similar approach, where the sets of tuples inserted and deleted are saved for a 

certain period of time. At the end of each period a differential update algorithm 

is applied to the whole group. Again, this approach works only for the SP J views. 

Another interesting but more restricted method is the snapshot approach 

(LHM86]. A database snapshot is a read-only table whose contents are derived 

from other tables in the database. Hence, it is a special case of a view which does 

not allow users to perform view updates. The snapshot contents can be periodically 

refreshed to reflect the current state of the database. When the snapshots are 

restricted to a simple restriction and projection (no join), a differential refresh 

technique was proposed. Their techniques can reduce the message and update 

costs of the snapshot refresh operation. 

An important issue to improve the performance of these two view material­

ization algorithms is the design of an efficient screening algorithm. A screening 

algorithm is used to test each inserted or deleted tuple from the base tables. If 

an update request fails the screening test, its effect may affect the integrity of its 

associated views, so the update has to be propagated to the view. Otherwise, it 

does not need to 1.'efresh the view. There have been several studies on designing 

efficient screening algorithm [BLT86, BC79, SSH87]. However, as in the case of 

designing view maintenance algorithms, these screening tests are restricted to SP J 

views. Since SP J views are non-recursive, these algorithms can statically analyze 

the effects of the updates and determine if the update has immediate effects or 

not. Unfortunately, these screening tests are not applicable if views are allowed to 



be recursive. In section 31 a simple screening test applicable to recursive views is 

described in detail. 

2. Incremental Materialization and Query Process 

One commonality of the above two view maintenance approaches (i.e. imme­

diate, or deferred) is that, in both cases, a view table is generated and maintained 

in its entirety. This can be very costly, especially if the view is recursive. It 

has been observed (KDC87] that, user queries exhibit a certain kind of locality in 

most database applications. This locality refers to the repetition of user queries. 

Typically, users of a given database tend to ask repeated queries. The implications 

of this observation are twofold. First, it implies that there is a definite need to 

retain the results of frequently asked view queries. Second, it implies that not all 

data of a particular view are needed. Thus, it would be a waste to materialize the 

entire view table at once if only a small fraction of it is needed. 

To improve the performance, we propose the following: 

( 1) the view table is not completely materialized; instead, materialization is 

done incrementally. That is, the bindings are substantiated progressively as 

user queries are evaluated. For example, consider the view ancestor again. 

It would be wasteful to materialize the complete ANCESTOR table, if, for 

instance, users are mostly interested in finding out the ancestor relationship 

of no more than three generations of a few families. 

( 2) It would be ideal if we could perform the deferred view maintenance by 

saving the sets of tuples inserted and deleted for a period of time, and then 

applying a differential update algorithm to the whole group. Unfortunately, 

the differential algorithms in (LHM86) are restricted to views of select, 

project and join (SP J). It is still unknown how to differentiate updates in 

a recursive view. Therefore, the immediate view maintenance is adopted in 
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our approach, in which, if the base update affects the partially materialized 

view table, then the view is updated immediately. Otherwise, only base 

tables are updated. 

In this chapter, we design, using the lemma resolution concepts, an mcre­

mental update process that will implement the above two principles. The idea is 

to maintain a set of smaller partially materialized view tables and to extend the 

query process to accommodate the incremental update process. 

In order to understand how base updates work, it is necessary to first describe 

how query processing is done in our approach. 

As mentioned above, our approach does not require the complete view tables 

to be derived. For example, let q(X, Y, Z) be a view. Initially, we do not materialize 

the view table Q at all. At a certain time, a user may issue the query q( a, Y,Z ), 

which is processed as discussed in Chapter 2. If the query is satisfiable, the bindings 

of Y and Z are returned. Only then are the tuples of these bindings retained and 

saved as the view table Q. In addition, all lemmas generated while processing 

the query are also retained. Note that the tuples retained are not identical to the 

complete materialized view table Q; it is only partially materialized. For instance, 

only view tuples of q that contain the constant a as the first attribute are in Q. 

By retaining the results, the time to process another query can be improved 

by first searching the view table using a simple relational operation (i.e., selection). 

Only if the query is not found in the view table, the query is evaluated in the usual 

manner: to call the relevant compiled programs according to its query adornment. 

As users query the database more often and with different constants and adornment 

patterns, the view table is built up incrementally. However, because our view 

tables are only partially materialized, this query strategy is not always complete. 

To illustrate the problem, let us assume that query q( m, Y, n) is asked and is 

satisfied. The view table Q now contains tuples that have the constants m and 



n as their first and last attributes, respectively. Suppose that the next query is 

q( m, Y, Z ). According to the above strategy, we would simply issue a relational 

operation (Jl=mQ, which would select tuples of Q (the partially materialized view 

table containing tuples with constants m and n as the first and last attributes) 

where the first attribute equals constant m. This particular selection will return 

all tuples of Q. However, if the query processing stops at this point, we have only 

returned a partial answer to the query. The reason is that q( m, Y, n) is an instance 

of q(m, Y,Z) (instances are discussed in Chapter 2, section 1). Therefore, the set 

of tuples returned by processing query q(m, Y,n) will always be a subset of those 

returned by the query q(m, Y,Z). 

To overcome the above deficiency, we propose the following modification: 

( 1) conceptually, there will be a separate Q table for each query adornment 

patterns. For example, after the query of q(m, Y,n) is processed, we will 

create a view table of that particular adornment pattern Q(b/ X, f /Y, b/Z) 

(the view table of Q in which the first and third columns are bound and the 

second column is free.) 

(2) the query will first be looked up in its relevant view table according to the 

query's adornment. If the lookup fails, then the compiled program of the 

specific adornment is called to process the query (as described in Chapter 2.) 

2.1. Table Subsumption 

There exists some redundancy among the many view tables created by step (1) 

above. Even though the adornment patterns are all unique, some of them are more 

general than others. By applying the same test to check if a predicate is an instance 

of another predicate, we can determine if a view table is a subset of the others. 

Hence, to reduce the number of partially materialized view tables we employ a table 

subsumption strategy. For instance, if table Qi is more general than an existing 

table Qj (e.g. Qi(b/ X, f /Y,J /Z) vs Qj(b/ X,f /Y, b/Z)), then Qi subsumes Qj. 



( 1) if Qi is more general than Qi then 

(2) if the constants of Qj are in Qi 

(3) then Q; subsumes Qi 

(4) else Q; = Qj U Qi 

Figure 10 

Table Subsumption Algorithm 

Unfortunately, subsuming tables by simply checking instances of adornments 

is still incomplete. It is incomplete because the adornment pattern does not reveal 

the actual constants for the bound variables. For the case of Qi(b/ X, f /Y, f /Z) 

and Qj(b/ X,f /Y, b/Z), Qj is an instance of Qi. However, if Qj contains constants 

for X that are not in Qi, then Qi cannot subsume Qj. For example, consider the 

following scenario: a query q( m) n)p) is posed and satisfied. The success of answer­

ing the query then generates a partially materialized view table Q( b / X, b / Y, b / Z). 

Next, another query q(t) s) Z) is asked and satisfied and hence a view table 

Q(b/ X, b/Y, f /Z) is created. Based on the adornment patterns, Q(b/ X, b/Y,J /Z) 

is more general than Q(b/ X, b/Y, b/Z). Unfortunately, Q(b/ X, b/Y, f /Z) cannot 

subsume Q(b/ X, b/Y, b/Z) because the tuples in Q(b/ X, b/Y, f /Z) are not a com­

plete set for the adornment Q(b/ X, b/Y, f /Z), but only a fraction of it; the resulting 

table contains only the tuples begin with constants t and s. Therefore, in order 

to guarantee the completeness of table subsumption, it is necessary to check if the 

constants of the new view table have been seen before. 

In general, assume that Qi and Qj are two view tables of the same predicate q, 

and Q j is the most recently materialized table. The table subsumption procedure 

is shown in Figure 10. First, the adornment pattern of Qj is compared to that of 

Qi. If Qj is more general, then it may be possible that Qj is a superset of Qi. To 

determine whether this is the case, it is necessary to check if all constants in the 



adornment of Q; appear in the same positions of Qi. For instance, the adornment 

of Q; is Qj(b/a, b/c, f /W, f /Y) and the adornment of Qi is Qi(b/a, b/c, f /W, b/d) 

where b /a, b / c denote the fact that the first and second terms in Qi and Q j are 

bound to constants a and c, respectively. In this case, Q j is more general than 

Qi and all constant bindings in Qj also occurs in the corresponding positions in 

Qi. If this is true, then Qj is indeed a superset of Qi and hence subsumes Qi. 

Otherwise, it implies that some tuples in Qj and Qi are disjoint (there is no set 

subset relationship between them). In this case, the correct result is to union both 

tables (line 3). Note that step (2) of the procedure can be further simplified by 

checking the indexed tree of Qi without doing any actual disk I/O since keys of 

these indexed trees have to be the composite of the constants in the adornment 

pattern. 

Note further that, if a for_all type query (i.e. q(f/X, f/Y, f/Z) is posed by the 

user, the results may supersede and subsume all other tables. Partial materializa­

tion would then be reduced to the case of the complete materialized view approach 

mentioned in section 1, which we try to avoid. One solution to this problem 

is to distribute the results of the for _all query to each possible adornment pat­

terns (if an adornment does not currently exist, then it would be created.) Future 

for _all queries would have to retrieve tuples from all disjoint adornment view tables 

with the union operator. To illustrate this situation, consider the ancestor view 

again. The view ANCESTOR has four distinct adornment patters: ancestor(! /X, 

f /Y), ance3tor(f/X, b/Y), ancestor(b/X, f/Y) and ancestor(b/X, b/Y). However, 

either ance3tor(f /X, b/Y) or ancestor(b/X, f /Y) would have subsumed ances­

tor(b/X, b/Y). It results in two disjoint subview tables (i.e. ancestor(! /X, b/Y) 

and ancestor(b/X, f /Y). Suppose that the for_all query (i.e. ancestor(! /X, f/Y) 

is successfully processed. Instead of retaining the results for ancestor(!,/), the re­

sults are distributed to ancestor(! /X, b/Y) and ancestor(b/X, f /Y) by: first, group 



( 1) if there exist an index file Iq with identical or more general adornment of q 

(2) then select Iq with constants in q 

(3) if empty then expand q 

( 4) else return bindin_gs for q 

( 5) else expand q 

;jQ 

( 6) if q succeeds (tuples returned in Q table and a new index file Iq is generated according to 

q's adornment) 

(7) then apply the table subsumption procedure to Iq with the other index files 

( 8) else q is not satisfiable 

Figure 11 

Query Process With Indexed Files 

ANCESTOR(f/X, f/Y) by the first attribute and replace the ANCESTOR(b/X, 

f/Y); second, group ANCESTOR(f/X, f/Y) by the second attribute and replace 

the ANCESTOR(f/X, b/Y). Note that the group-by is a common operation in 

relational databases. After the distribution, the ANCESTOR(f/X, f/Y) can be 

discarded. Any future for_all query is simply a union of ANCESTOR(b/X, f/Y) 

and ANCESTOR(f/X, b/Y), provided these two tables are maintained properly. 

2.2. Index Files and the Modified Query Processing Strategy 

If we assume that all partially materialized view tables are maintained as 

physically separate tables, then many tuples could be replicated across different 

tables. For instan£e, the same tuple (m, n, p) could be retained in Q(b/ X, f /Y, b/ Z) 

and Q(b/X,b/Y,f/Z) for the queries q{m)Y)p) and q(m)n)Z), respectively. 

In practice, it is not necessary to keep all these tables separately. Instead, we 

can maintain one Q table (with no duplicates) but with multiple index files, each 

representing a unique adornment pattern. The query process works with the index 

files instead of the real data file. To process query q with index files, the algorithm 
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is modified and shown in Figure 11. The index files are implemented as B+ trees 

which are balanced multiway trees with leaves located at the same level containing 

the keys and the addresses of location of the tuple on the secondary storage. Each 

node of the tree contains some number of keys. The keys are therefore the constants 

in the adornment pattern. The algorithm in Figure 11 is straightforward. For each 

query q, we first check if there already exists an index file for the adornment of q 

(i.e. Iq ). If it does not, this implies that it is the first time the adornment of q is 

encountered. Therefore, we expand q (line 5) by calling the compiled program as 

discussed in Chapter 2. If the index file Iq already exists, a selection with constants 

from q is applied to Iq (line 2). If the selection is successful, the results of matched 

tuples are returned (line 4). If the selection returns an empty table, it implies that 

the constants of q have not been processed. The compiled program for q is called 

to expand q (line 4). If the compiled program of q terminates without bindings, it 

means that query q is unsatisfiable (line 8). If the query q is successful, the bindings 

will be returned. At the same time, it is necessary to see if the newly derived table 

can subsume or can be subsumed by some other tables. Even though there exists 

only one table Q (with many index files), the table subsumption procedure in 

Figure 10 is still applicable, with slight modifications as shown below: 

Assume that Iq is the index file for the adornment pattern of query q, and 

Ij is each of the remaining current index files. For each Ij, 

(1) if adornment of Iq is more general than that of Ij then 

(2) if the constants in the adornment of Ij are in the adornment of Iq 

(3) then lq subsumes Ij 

( 4) else merge Iq and Ij 

The procedure is similar to the table subsumption discussed above except 

that there exists only one table Q with many index files. The index file Iq is the 

newly generated index file for the satisfied query q. If the query adornment of q 



is more general than another index file (e.g. Ij ), it is necessary to check if the 

constants in the adornment of Ij are all in the adornment of Iq (line 3). If this is 

true, index file Iq subsumes Ij. Otherwise, it means that Ij and lq do not have a 

set-subset relation. Therefore, these two index files are merged (line 4). Note that 

merging the index files is identical to the union operation applied to the partial 

view tables as in line 4 of Figure 10. 

3. Base Updates 

In this section, we discuss how base updates are accomplished with our 

incremental update and query processing techniques described in section 2. 

Without loss of generality, we make the following assumptions regarding base 

updates in our studies: 

( 1) update requests refer to insertions and deletions only. Modification can be 

implemented by a sequence of selections, deletions and insertions. 

( 2) update requests are atomic; null values and free variables are not allowed. 

Hence, an update request, such as a 10% raise in salary of all employees 

will have to translate into a 10% raise in salary of Xi where Xi is the ith 

domain value of employee names; 

(3) integrity constraints (ICs) for base and view tables are not considered here. 

We assume that there is a separate process to check for update integrity. 

Since not every base update request would update the views, screening the 

update requests for possible effects on views becomes a vital step toward improving 

performance. Our approach is similar to the immediate view maintenance approach 

mentioned in section 1. The main difference is that our view tables are not always 

completely materialized, which requires a different screening test. Consider a 

deletion of a tuple in the PARENT table in Figure 9. If the deletion affects 

any partially materialized view tables of ANCESTOR, those view tables will be 
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updated; otherwise, the update effects will not propagate. This is possible in 

our approach because view tables are partially materialized and also queries are 

incrementally processed. For example, if the deleted base tuples do not affect 

any ANCESTOR tables, the update is terminated without propagating to the 

ANCESTOR. Since there are no views affected, it means that the views derivable 

from those base tuples have never be asked. Now that the base tuples are deleted, 

future queries will never derive those view tuples. 

Similarly, if a tuple is inserted to PARENT and if it affects some of the 

ANCESTOR tables, the effects have to be propagated to these affected tables. If 

the update does not affect any ANCESTOR tables, the update effects do not need 

to propagate to ANCESTOR immediately. Note that this is very unique in our 

approach. When the screening test decides that the base update does not affect any 

existing view tables, it does not mean that these base updates cannot derive other 

view tables. It implies, in our approach, that either (1) these inserted base tuples 

would not derive new view tuples; or (2) they might be able to derive new view 

tuples but they have not yet been queried. Since our query processing strategy 

is incremental, those view tuples that are supposed to be generated by the newly 

inserted base tuples can always be derived when a query is posed. 

3.1. Screening Test 

As noted above, the incremental base update is affected significantly by the 

efficiency of the screening algorithm it employs. For example, consider the following 

view definition: 

v(X, Y, Z): -p1(X, A),p2(A, B), v(B, Y, Z). 

The view table V with view variables XJ YJ and Z is defined as a tail recursion 

using base tables P1 and P2. Suppose that the view has been incrementally 

materialized. That is, users have queried (directly or indirectly) this particular 



view successfully and the resulting bindings are retained. Updates on the P1 or P2 

tables have to validate the view table. Unfortunately, if updates on the base tables 

were to trigger updates on V, the total cost of maintaining the view table would 

definitely outweigh the benefit of speeding up future queries. Thus a screening 

test is necessary in order to cut down the frequency of updating the view table. 

Most of the screening tests studied in the past fall into one category: check if the 

update qualifier affects the selection qualifier of the view definition (BLT86]. In 

this approach, a PSJ view can be defined as: 

where C(Y) is a boolean expression and X and Y are sets of variables denoting 

some or all of the attributes of relations Ri 's. For example, assume that there are 

two relational tables R{A,B) and S{L,M) and a view is defined as: 

W(A, M) = 7rA,M(a(B=L)A(A>lO)R x S) 

where C(Y) can be expressed as C(A, B, L) t- (B = L) /\(A > 10). Then, if an 

update request is to insert (5, 12) to table R, the constants 5 and 12 substitute the 

variables A and B in C(Y), which results in the boolean expression C(5, 12, L) t­

(12 = L) /\ (5 > 10). This expression is obviously unsatisfiable and hence it can be 

concluded that the update request would not affect the materialized view V. 

This approach works only if the view is defined as a non-recursive one, since 

it is always possible to judge if C(Y) is satisfiable or not. Unfortunately, it is not 

applicable in our situation where a view may be defined recursively. For example, 

the above tail recursive view V can be rewritten as: 

v(X, Y, Z): - - P1(X, L),p2(M, N), v(S, Y, Z), L = M, N = S 

which can further be expressed as: 



(1): if none of the update attributes are view variables 

(2): then update the view table; 

(3): if some of the update attributes are also view variables 

and the actual binding constants of the update attributes 

also exist in the. current view table 

( 4): then update the view table; 

( 5): else the view is unaffected; 

Figure 12 

A Screening Test Algorithm 

v(X, Y, Z):- p1(X, A), P2(A, B), v(B, Y, Z). 

Figure 13 

An Example of Rule-Goal Graph 

The recursion will have a different C(Y) at each recursive level (due to the different 

bindings of V.) ~he satisfiability of C(Y) is difficult to obtain without actually 

executing the view. 

One viable screening test is to check the attribute of the update tuple against 

the view variables. The screening test algorithm is shown in Figure 12. Assume 

that the possible affected views are identified. This can be done easily by using 

the rule-goal graphs as suggested in [ULL85]. A rule-goal graph is a structure to 
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show the inter relationship of base tables and view tables. For example, consider 

the rule-goal graph in Figure 13, in which, P1 and P2 are two base tables and V 

is a view table. The rule-goal graph simply indicates that the view table V is 

supported by these two base tables P1 and P2. We further define the term update 

attributes to be those attributes that are being updated within the view definition. 

For instance, if the table P1 is being updated, the update attributes in respect to 

V are X and A. Similarly, if P2 is being updated, the update attributes are A and 

B. We also define the term view variables to be the input variables of the view. 

For example, X, Y and Z are view variable in respect to the view V. 

For each affected view candidate, the algorithm in Figure 12 determines if it 

needs to be updated or not. From the rule-goal graph, the candidate view table is 

identified. If none of the update attributes are view variables then it is not sure 

whether the base update will or will not affect the view. Therefore, we have no 

choice but to update the view to guarantee the data integrity (Lines 1 and 2). If 

some of the update attributes are also view variables and if the actual constant 

bindings of these shared attributes already exist in the current view table, it means 

that the view is affected and needs to be updated (Lines 3 and 4.) If some of the 

update attributes are also view variables but the actual constant bindings of these 

shared attributes do not exist in the current view, it implies that the view tuples 

have not been queried yet by the users. Therefore, updates on the base tables are 

sufficient and it is not necessary to update the view. 

To illustrate-this screening test, consider again the example in Figure 13. If 

an update on P2 is successful, it may or may not affect the current view table V. 

Unfortunately, it is impossible to tell whether the update would affect the view or 

not since the update attributes of P2 are free variables (i.e. A and B) that are 

not part of the view variables. The bindings of A determine the bindings of X, 

which may imply that the view V is affected. However, the update effect cannot 
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be decided statically. In order to guarantee the data integrity, we have to update 

the view table. 

On the other hand, for the case of P1, a successful update request may or may 

not affect the current view V. In this case, however, some of the update attributes 

are in the view variables. This implies that the actual binding of the first attribute 

of the update request of P1 (i.e. X in p1) will affect the current view if and only if 

the same binding exists in V. If this is the case, the current view table has to be 

updated. If the binding of the update request on P1 does not exist in the current 

view table V, it implies that the view with these particular bindings has not been 

derived yet (using the incremental query processing method) and hence the update 

has no effects on the current view table. 

Note that in order to determine if the update attribute constants exist in the 

current view, it is necessary to test for each adornment pattern of existing view 

tables. For instance, let us assume that the update request (insertion or deletion) of 

Pl (l, m) is successful. It is detected that the constant l is bound to variable X which 

is one of the view variables. Therefore, this update request may potentially affect 

the view V. The screening test then further investigates if the current partial 

view tables are affected. In this case, there are at most three current partial 

view tables: V(b/X,f /Y,f /Z), V(f /X,b/Y,J /Z) and V(f /X,f /Y,b/Z) (since 

V(f / X, f /Y, f /Z) will subsume all others; V(b/ X, b/Y, b/Z) will be subsumed by 

all others, and V(b/ X, b/Y, f /Z) will be subsumed by either one of the above three 

tables.) That is, the worst case scenario is to generate three separate selection 

operations to select l in the first column of V(b/X,f/Y,J/Z), V(f/X,b/Y,f/Z) 

and V (! / X, f / Y, b / Z). The view is not affected if all of these operations fail to 

return tuples (again, it can be implemented by just checking the relative index 

files instead of actually retrieving tuples.) In summary, each update request may 
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update many indexed files, depending on the adornment of existing partial view 

tables. 

3.2. Updating Affected Views 

Now that, given an update request, it can be determined if a view is affected 

or not by using the screening test. To derive the view tuples that are consequences 

of a base update (for example, a set of view tuples that are to be deleted or 

inserted), it has to work from the view definition (i.e. the right-hand side of the 

rule). The process is similar to querying the view. For example, in a regular query 

process, the bindings of input variables are passed to the literals of the body of the 

rule and each literal becomes a subgoal. Each subgoal is solved and its bindings 

will also be passed onto those remaining literals (i.e. unification). For the case of 

base updates, the updated base tuple contains the bindings and they are passed 

onto the other literals in the rule. Each of these literals becomes a subgoal. If all 

these subgoals are resolved successfully, then the bindings of the input variables 

are returned, which becomes the affected tuples of the view. If the update is an 

insertion, these derived affected view tuples are then unioned to the existing view 

table. If the update is an deletion, these derived affected view tuples should be 

deleted from the existing view table by applying the difference operation. 

For instance, assume that a tuple is successfully updated in P2 of the example 

in Figure 13. Conceptually, two join operations between P1 and P2, and between 

P2 and V are implemented to generate the set of view tuples related to this update 

(i.e. P11><1 P2 t>•i-V.) Since we assume only atomic update requests are allowed, 

only one update tuple in P2 can take place at any time. Therefore, these two joins 

can be separated into two operations. The first join (i.e. P1 !><I P2) is to select the 

P1 where its second column is equal to the constant binding of A, the first update 

attribute of P2. The other join (i.e. P2 1><11 V) is equivalent to posing the query 

v(b/B, f /Y, f /Z) since the constant binding of B in pz also bound the binding 



of B in v( B, Y, Z ). The query is evaluated by invoking the appropriate compiled 

program. If the query is satisfiable, the returned bindings of Y and Z are paired 

with X to become the tuples affected in view V. If the update is to delete, then 

the tuples with bindings of (X, Y, Z) int V are to be deleted. If the update request 

is an insertion, then the tuples of bindings of (X, Y, Z) are to be inserted in the 

view tables. All relevant index files are then updated accordingly. 

Similarly, assume that an update request to insert Pl ( l, m) is successful. With 

the above screening test, the insertion is potentially affecting the current view table. 

If the constant l is further found to exist as the first attribute of V(b/ X, f /Y, f /Z), 

V(f / X, b/Y, f /Z), or V(f / X, f /Y, b/Z) it implies that it is necessary to update 

these affected tables. By substituting the inserted tuple of Pi, the view can be 

expressed as: 

v(l, Y, Z): -p1(l, m),p2(m, B), v(B, Y, Z) 

which can further be translated into: 

The above relational algebra expression with the incremental join can be 

executed as discussed in Chapter 2. As described above, this can further be 

simplified as two separate steps: select on P2 to return the bindings of B. For each 

constant bindings of B, query v(b/ B, f /Y,J /Z). The results are then combined 

with the current view table using set union or set difference, depending on whether 

the update is an insertion or deletion. For example, if p1(l, m) is inserted, the 

resulting tuples will be unioned with V's that are affected. If the p1(l, m) is deleted, 

the above algebra will return a set of tuples that should be deleted from the V's 

that are affected. This can be accomplished by applying the difference operator to 

the V's and the results of the above expression. 
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Note that, since the screening test can be potentially pre-determined and the 

view definition is static, the update procedure can also be pre-compiled similar to 

the compilation of rules in Chapter 2. For example, updates on P2 will always 

trigger updates on the view while updates on P1 may affect the view but are 

dependent on the binding· of X. Hence, for each potential base updates, it is 

possible to generate a compiled program for the screening test. Conceptually, for 

each view definition, there are two sets of pre-compiled procedures. One contains 

the compiled procedures for each adornment pattern and is used for query purposes. 

The other set contains the compiled procedures for each potential update of the 

base tables and is used when the screening test indicates that the update is affecting 

the view table. The details to implement the compiled update request will be one 

of the future research directions of this dissertation. 

4. Heuristics to Improve Base Updates 

The approach discussed above suffers from two shortcomings. First, if the 

update variables are not view variables, the current screening test always fails 

(hence the view table has to be updated.) Second, if the update is a deletion, 

executing the expression with the incremental join operator finds all affected view 

tuples that will later be deleted by applying the difference operator. Since all 

these affected tuples have previously been derived (otherwise, they would not be 

in the current view table), this is obviously a redundant step. With some extra 

manipulation, as described below, the performance of deletion can be improved. 

4.1. The Complete Table Method 

To improve on the the first shortcoming, we modify the view mechanism by 

maintaining all variables without projecting out the unwanted ones. If all variables 

(including input variables and intermediate variables in the body of the rule) are 

kept without projecting out any unwanted ones, the screening test becomes more 



(1): if update constants are in the Complete view table 

update the Complete view table 

(2): if update constants are NOT in Complete view table 

do nothing (view unaffected) 

Figure 14 

Screening Test With Complete Table 
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efficient. In the original screening, if the update variables are not view variables, 

the screening test has to fail since there is not enough information to decide if 

the view is affected or not. However, if all variables are maintained, even though 

the update variables are not input variables, the screening test is able to decide if 

the deletion will affect the view by checking the existence of the constant bindings 

of the deletion. To illustrate the method, let's consider the same view definition 

agam: 

v(X, Y, Z): -p1(X, A),p2(A, B), v(B, Y, Z). 

To query the view with our incremental approach will, at a certain time, need 

to execute the pre-compiled program of the form: 

That is, the results from the joins will be projected into the view table by retaining 

only the attributes X, Y, and Z. Since other attributes (A and B in this case) 

are"projected out" from the view table, it becomes uncertain whether updates of 

P2 could affect V and hence it is necessary to update V. 

Our approach is to keep all attributes from the join operation. For each 

possible view adornment, instead of keeping the view table, a "Complete" table 

which contains all attributes is maintained. For instance, the Complete view table 
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of the above view V becomes Completev(X. A., B, Y, Z). The Complete view table 

is transparent to the user. A query on the view is then translated as a selection 

and a projection operation on the Complete view. For instance, the query v( a, Y,Z) 

is translated into the following relational algebra expression: 

TI" X,Y,za x='a'C ompletev 

The expression says to select tuples in the Complete table of view V where the 

first attribute equals constant a. The results of the selection are then projected 

into the X, Y, and Z columns. 

Since there are no view tables but Complete view tables, for each adornment 

pattern, the Complete view table is adorned. For instance, a Complete view table 

of V may be adorned as Completev(b/ X, A, B, f /Y,f /Z). The adornments are 

identical to the adornments before. For example, the adornment of this Complete 

view table implies that X is bound to a constant, and columns Y and Z are free. 

Note that we do not adorn the intermediate variables A and B since they are not 

input variables. 

Since a view can have multiple definitions (several rules define the same 

view) and every definition may have different intermediate variables, the final 

Complete view table contains input variables plus all intermediate variables. (Since 

intermediate variables can be always renamed, we assume intermediate variables 

are all distinct.) Therefore, it is not necessary that each tuple in the Complete 

view table will have values for every attribute. For instance, the view v might have 

an exit clause that contains no intermediate variables as follows: 

v(X, Y, Z) : -t(X, Y, Z). 

The Complete view table of v has the input variables (X, Y, and Z) and the 

intermediate variables (A and B) and is depicted in Figure 15. Note that if the 

tuple is generated via the exit clause, it does not have the values for A and B. 
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View V x A B y z 

1. a e f b c 

2. a e f b d 

3. a g h b c 

4. a b c 

Figure 15 

An Example of A Complete View Table 

The screening test algorithm can be improved for deletion requests as shown 

in Figure 14. The new screening test improves mainly on the lines 1 and 2 from 

the old one in Figure 12. In the original test, if none of the update attributes are 

view variables, we have no choice but to update the view. Therefore, if the update 

is to delete a tuple with update attributes that are not view variables, the view 

still needs to be updated. Since the Complete table includes all variables, this step 

is modified as shown in line 1 of Figure 14. In the new algorithm, we only check if 

the update constants (note, not update attributes) are in the Complete view table 

or not. If they are in the Complete view table, then the view has to be refreshed; 

otherwise, the view is unaffected. The advantage of this method lies in the fact 

that, in the case where the update is a deletion, and if the update constants are 

not in the Complete view table, the view is unaffected. This is not possible in the 

old screen test since the intermediate variables have been projected out. Note that, 

for insertion request, there is no such improvement. 
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To demonstrate the advantage of using the Complete view tables, let's assume 

that a query is processed successfully for the view v( a, Y, Z ). Therefore, a partial 

view table of V(b/X,f /Y,f /Z) is retained. With the Complete table method, 

let's assume that the Completev(b/ X, A, B, f /Y,f / Z) contains tuples as shown in 

Figure 15. The fourth tuple is a result of the exit clause above and does not have 

values for the attributes A and B. To derive the view table V(b/ X, f /Y, f /Z), it 

only requires to project out the A and B attributes to obtain the tuples {( a,b,c), 

(a,b,d)} (after the bindings (e,f), (g,h) are projected out, duplicates are elimi­

nated.) Furthermore, consider that an update request to delete a tuple p2( l, m) 

succeeds. The old screening test in Figure 12 fails since l and m are values of 

the intermediate variables. Hence the view has to be updated. However, if the 

Complete view table is used, the new screening test as shown in Figure 14 will 

detect that the view is not affected because the table does not contain tuples with 

bindings of l and m as the attribute values. 

4.2. Lemma Dependency Link 

The second shortcoming in the original scheme is the implementation of the 

deletion of view tuples. In order to delete all affected view tuples that have 

previously been derived, it is necessary to carry out the operation similar to a 

query to identify these tuples. In this section, we augment the Complete view 

table to further improve the performance if the update is a deletion. (Note that, 

however, the lemma dependency described in this section can be implemented 

without using the Complete view table.) Our method is based on the observation 

that there exists some data dependency among the view tuples (lemmas) when 

they are being derived. Therefore, by recording these dependencies in the view 

table, it is not necessary to call on the pre-compiled program to re-generate the 

affected tuples and then delete them from the current view table. 
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To illustrate this method, consider the resolution tree in Figures 3, 4, and 5 of 

Chapter 2. There exist two types of view tuples (lemmas): primary and secondary. 

Primary view tuples are those generated by means of the exit conditions and hence 

are not dependent on other tuples in the same view. For example, the tuples 

an( a, b ), an(b, c) are primary view tuples. On the other hand, secondary view 

tuples are those dependent on some tuples of the same view. For example, the 

view tuple an( a, c) depends on the existence of the tuple an( a, b) and an(b, c ). 

With this dependency relationship, deletions in the view table can further be 

improved by augmenting the Complete view table with an extra field to record 

these dependencies. For example, after the query an(X, Y) is materialized (as 

shown in Chapter 2), the Complete table of ANCESTOR is depicted in Figure 16. 

Note that the table is augmented by recording the dependency relationship between 

view tuples in a separate field. For example, the third view tuple is dependent on 

view tuples 1 and 2, which is recorded by the link as shown. This link is created 

while tuples are being generated. With this extra link, deletion from the view table 
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becomes simple: upon a successful deletion request on a base table, and provided 

the screening test indicates that the deletion would affect the current view table, 

we can simply select all tuples with the binding constants, instead of calling the 

precompiled program to re-generate all derivable tuples. Then, for each selected 

tuple, we delete the tuple and follow the link to delete all other dependent tuples. 

For example, suppose the deletion of par( a, b) succeeds. Instead of calling the pre­

compiled program to re-generate the tuples, a simple selection on the complete 

view table with ( X = a, Y = b) will select the tuple 1. This tuple and all tuples 

reachable via the dependency links (e.g. tuple 3) are candidates to be deleted. 

However, the dependency of a lemma can be many-to-one, i.e. a secondary lemma 

can be derived from more than one lemmas. Therefore, it is necessary to keep a 

reference count for every secondary lemma. A lemma tuple can only be deleted 

when its reference count is reduced to zero. 

There are two disadvantages of adopting the Complete table. First, it is 

obvious that the Complete table is larger than the actual view table. Second, the 

query process against the view must perform an additional projection operation on 

the Complete view table. The main advantage of this method is that updating the 

Complete view table is much faster when the update request is a deletion. In this 

case, we don't need to call upon the pre-compiled program to generate all affected 

tuples. Instead, the process is simplified to delete all tuples with the particular 

update constants. 

5. Chapter Summary 

In this chapter, we have discussed how lemma resolution and rule compilation 

are used in the actual query /update situation. Both queries and updates are 

processed incrementally. In particular, instead of maintaining an entire view table, 

we proposed that a set of smaller, partially materialized view tables are to be 
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retained and maintained. To answer a query, instead of invoking the compiled 

program, the smaller and partially materialized view table is first searched. Only 

if the query cannot be satisfied should the compiled program be invoked. A query 

process such as ours can improve the performance if there exists some kind of user 

query patterns, in which users tend to pose repeatedly the same questions. In order 

to guarantee the partial table method to be complete, we define the concept of table 

subsumption that can eliminate redundant tables. We further demonstrated that 

it is only necessary to maintain one physical view tables but with many indexed 

files that correspond to each of the unique adornment patterns of the view. 

Materialization of views can improve query performance but, at the same 

time, the cost to maintain them can be high. If the view maintenance costs 

are higher, then the improvement of query performance may not be justifiable. 

In particular, we define two distinct types of updates: base updates and view 

updates. In this chapter, we define what base updates are and how they affect 

the materialized view tables. We designed a simple but effective screening test to 

determine if an update request affects the views or not. We also demonstrated how 

to generate the view tuples that are affected by the base updates so that they can 

be inserted to or deleted from the view tables. 

Finally, we described two methods to improve the update process should the 

update be a deletion. The first method is to retain all variables (input variables and 

intermediate variables) in a Complete View table. By doing so, the screening test is 

improved and is more efficient to determine if the deletion requests affect the view or 

not. The second method is to augment the query process by linking the dependency 

of primary and secondary lemmas (view tuples) in the Complete View table. Should 

the deletion of a base tuple affect the the view, those affected view tuples must 

exist currently in the view table. It will be redundant to re-generate all these view 

tuples while they can be linked together via their dependencies. Once the primary 
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lemma is identified to be deleted, all other lemmas that are solely dependent on 

this primary lemma can also be deleted without any further computation. We 

believe that these two methods would indeed improve the performance when update 

requests are to delete tuples in the base tables. 



CHAPTER 4 

Empirical Studies on Query Processing and Base Updates 

As we have seen in Chapter 3, query processing and base updates are closely 

related. One way to improve query processing time is to retain previously derived 

answers (hence, materialized views). However, if updates are allowed, maintaining 

materialized views becomes a major issue. In general, one cannot improve the 

overall performance by studying and designing algorithms to resolve these two 

problems separately as we have seen it in most of the past studies. All compi­

lation methods such as top-down and bottom-up evaluations were designed with 

a single-minded objective: to improve the query processing performance, without 

considering the effects of updates. For example, there are two major approaches to 

improve query processing performance. The first one is to materialize a complete 

view table when each view is defined. We shall call this the totally materialized 

approach. On the other hand, the second approach does not materialize any view 

tables at all. Instead, view tuples are derived only when they are needed by exe­

cuting its corresponding compiled program. It is called the on-the-fly or the query 

modification approach. Each of these two approaches may perform better than 

the other one in certain situations. One of the major factors is the frequency 

of updates. For example, if the update ratio is higher, the query modification 

performs much better than the totally materialized method because it does not 

need to maintain the consistency of the view tables. On the other hand, if the 

update ratio is low (or none), the totally materialized method is better because 

the view table is materialized at view definition time. Any queries on the view 

become simple table selection operations without computing the view at run time. 
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These two approaches are the two extremes that are based on the premises ei­

ther to have faster query response time (totally materialized method) or to have 

faster update response time (the on-the-fly method). We believe that, to improve 

the overall performance (average of query and update response time), we should 

design new algorithms based on the trade-off and inter-relationship of these two 

processes. Our incremental query and update approach introduced in Chapter 3 

provides the solution in this direction. To be more specific, the query processing 

strategy by maintaining smaller view tables as introduced in Chapter 2 is designed 

to be integrated with the base update strategy as discussed in Chapter 3 into one 

unified solution. 

In this chapter, we shall study the behavior of our incremental approach in 

comparison with the totally materialized approach and the on-the-fly approach. It 

is obvious that there will not be one single approach that outperforms the others. 

Rather, each of these three approaches will have their applications in different 

situations. We would like to identify the situations where our approach is more 

desirable than the other two. 

1. Cost Components of the Three Approaches 

In this section, we describe how these three approaches are different in 

processing queries and update requests. In particular, we show where major com­

putational costs occur. 

Given a set of requests that contains a mixture of queries on the view tables 

and updates to the base tables, we identify the different cost components of the 

totally materialized view approach, on-the-fly approach and our incremental update 

approach. 
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1.1. Costs of the Totally Materialized View Approach 

The Totally Materialized View Approach (MA for short) is to materialize a 

single complete view table at view definition time and maintain the view throughout 

base updates. The following cost components are identified: 

(1) (MAl): the cost to materialize the complete view table - this cost is 

basically the execution time of a compiled program that is based on a certain 

algorithm, e.g. top-down, bottom-up, magic sets, and so on. The efficiency of 

these methods have been studied thoroughly in the past. As shown in [BR86], 

the time is dependent on the selectivity of the supportive base tables which, in 

turn, determines (a) the depth of recursion and (b) the size of each intermediate 

resulting table. The time (MAl) is the major overhead of the total computation; 

it occurs only once when the view is defined. 

(2) (MA2): the cost to query the view table - this cost is a straightforward 

implementation of relational selection on the view table; the time (MA2) is the 

variable cost of the total computation time; it occurs every time a query on the 

specific view is processed. 

(3) (MA3): the cost to update the base tables - this cost is identical to 

inserting or deleting a tuple to a base table in a relational system; the time (MA3) 

is another variable cost of the total computation time. 

( 4) (MA4): the cost to maintain the view table integrity when the supportive 

base tables get updated; the time is determined by (a) the efficiency of the screening 

test; (b) the view_ maintenance algorithm as discussed in Chapter 3. The time 

(MA4) is also a variable cost of the total computation time; it is triggered every 

time when an update of a supportive base table is successful. 

Apparently, the major costs of this approach are to materialize the view table 

(i.e. MAl) and to maintain the view table (i.e. MA4). The materialization cost 

(MAl) is significant because it is the most expensive computation especially for a 



-·) ,_ 

recursive view. The maintenance costs (MA4) is significant since any base update 

may trigger the view maintenance mechanism to validate the view table. If the 

effects of update cannot be delayed (e.g. updates have to be done in real time), 

then the validation of the view table becomes significant. 

However, the potential gain of this approach is the speedup on processing 

queries. Therefore, intuitively, if the application involves infrequent updates or 

updates that can be done in batch, then the speedup of processing queries of this 

approach becomes attractive. 

1.2. Costs of the On-The-Fly Approach 

The On-The-Fly Approach (FLY for short) does not materialize any view 

tables. Therefore, there are no view maintenance costs. Instead, the view definition 

is compiled by a certain method such as top-down, bottom-up, magic sets, and so 

on. We identify the following cost components: 

(1) (FLYl ): the cost to query the view - the time is identical to the query 

evaluation which is, basically, the execution time of the compiled program of the 

query. For example, query on the view ancestor( a, X) is processed by executing 

the compiled program of ancestor for the adornment pattern of (b, f ). Similar to 

(MAl ), it is related to the selectivity and the recursion structure. 

(2) (FLY2): the cost to update the base tables - the time is the same as 

(MA3). 

In this approach, there is no fixed overhead cost. The major cost component 

is the query processing time (i.e. FLYl). Base updates are simply the time to spend 

on updating the affected base tables, which is identical in all three approaches since 

there is no need to propagate the update effects. The on-the-fly approach and the 

totally materialized approach are two extremes of a query processing strategy. In 

situations where update activities are heavy, the on-the-fly approach is apparently 

more attractive. As shown in [HAN87], if the selectivity and update ratio are high, 
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it is better not to materialize views. However, if no base update is allowed or if 

batch processing is allowed to process update requests and if the recursion of the 

view is shallow, the totally materialized approach may be better, especially when 

some of the queries are repetitive. As discussed in Chapter 3, there exists a locality 

of query processing, i.e. repetition of queries. We will investigate how these factors 

(e.g. selectivity and update ratio) will affect these two methods along with our 

incremental method. 

1.3. Costs of the Incremental Query and Update Approach 

Our incremental approach (INC for short) as described in Chapter 3 is a 

compromise between the totally materialized method and the on-the-fly method. 

When a view is defined, it is not materialized at once. Only when query on the 

view is posed by the user and is successfully retrieved, are partially materialized 

view tables created and maintained. We identify the following cost components: 

(1) (INCl): the cost to process view queries - the time parameter has two 

components. First, if the related view table exists, the view is processed identically 

to (MA2); if the answers are found then the query processing is finished. If there is 

no relevant view tables or the answers cannot be found, the query will be processed 

as in (FLYl ). That is, the related compiled program for the query is executed. 

After the query is processed, certain partially materialized tables are generated by 

retaining the bindings of the query. 

(2) (INC2): the cost to update the base tables - this time is the same as 

(MA3). 

(3) (INC3): the cost to maintain the view table integrity when the supportive 

base tables get updated. This is dependent on the screening test and the view 

maintenance algorithm as discussed in Chapter 3. 

Our incremental query and update processing is designed based on the exis­

tence of the so-called database locality in which users tend to ask certain queries 



repeatedly. It suggests that maintaining these often repeated views is justifiable. 

Neither the totally materialized approach nor the on-the-fly approach takes advan­

tages of this locality property. Our approach thus becomes a compromise between 

them because it retains only those queries users have asked before without the 

heavy costs of materializing and maintaining the entire view tables as in the totally 

materialized view approach. On the other hand, repeated queries can be simply 

answered via a table lookup, which may show significant improvement over the 

on-the-fly approach which does not take advantage of repeated queries. In this 

chapter, we will verify this intuition and identify the situations where our method 

renders better performance than the other two. 

2. Related Work 

As noted in the introduction of this chapter, research in the past seems to 

concentrate on studying query processing strategies and base update strategies 

separately. Query processing strategies focus on different algorithms to compile 

queries [BR86). Base update strategies concentrate on the differences among 

various view maintenance algorithms. Furthermore, all these view maintenance 

algorithms are designed with the select-project-join (SP J) views in mind and thus 

are not recursive [HAN87, BLT86, BC79). Even so, as shown in [HAN87], one 

conclusion that can be drawn is that if updates tend to be the major operation 

and the selectivity is high, it is better to use the on-the-fly approach instead of 

materializing and maintaining the views. Recursive views will surely increase the 

computational costs. The number of levels of recursion is directly related to the 

selectivity between the tables defining the view. Therefore, it can be speculated 

that the same conclusion still holds in a recursive view. 



To our knowledge, this is the first study that takes query repetition into 

consideration within a framework unifying query and update processes together to 

achieve a general performance improvement. 

3. Experiment Design· 

In order to test our intuitions on these three approaches, we experiment by 

studying their behaviors empirically. The major objectives of the experiment are 

to: 

( 1) compare only the query processing performance of our incremental method 

against the totally materialized method and the on-the-fly method; 

(2) compare these three methods in a more realistic situation where updates 

and queries are mixed. 

Rather than implementing the three methods to handle general rules, we 

decided to apply them to the ancestor view of Figure 9 in Chapter 3. The reason 

of picking the ancestor view is that it is a single recursion and is believed to have the 

most applications in practice. (For example, in [NS88] the Laguna Beach Database 

Report, the panelists tended to believe that double recursion or any other complex 

recursion have little to no practical use while the single recursion is significant in 

any deductive database applications.) 

3.1. The Query Process 

The ancestor view, as discussed in Chapter 2 contains one recursive view 

definition that ca~ be expressed in terms of the incremental join operator as follows: 

PARENT~1 ANCESTOR 

For our incremental method, we derived four procedures according to the 

four adornments of the ancestor view. They are, ancestor(! /X) f /Y), ances­

tor(! /X) b/Y), ancestor(b/X) f/Y), and ancestor(b/X) b/Y). As the query process 
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begins, partially materialized tables ANCESTOR(f/X, b/Y), ANCESTOR(b/X, 

f/Y), ANCESTOR(f/X, f/Y), and ANCESTOR(b/X, b/Y) are generated. The 

time (IN Cl) to process a query is either a table lookup in the related partially ma-

terialized table or, if it cannot be found, the time to invoke the compiled program 

corresponding to the query's adornment. Answers are incrementally accumulated. 

However, since ancestor(J/X, f/Y) would materialize the entire ANCESTOR table 

and thus reduce the case to the totally materialized approach, we decided not to 

allow this kind of for _all query in our test. 

For the totally materialized method and the on-the-fly method, the query 

processing times (MAI) and (FLYl) are basically the times to execute some com­

piled programs. However, as mentioned in Chapter 2, there are different methods 

to compile a recursive query. For example, the Henchen and Naqvi's linear com­

pilation has the best performance of all approaches (but is restricted to linear 

recursion; otherwise it has a termination problem.) In view of this, we decided 

to compute (MAl) and (FLYl) using this method which can be shown as in the 

following formula [HL86]: 

aaPARENT 1><1k PARENT 

where aaPA.RENT denotes a selection of a on the corresponding attribute of the 

relation PARENT, and 1><1k PARENT is the join operations on corresponding join 

attributes of the relation PARENT k - l times, where k ranges from 0 ton and n 

is the number of iterations up to the termination point. The termination point is 

reached when the formula generates no more new results. This is always guaranteed 

since, first, it is a single recursion and second, data are all non-cyclic in our test. 

To be specific, the formula is expanded as follows: 

n=O 
n=l 
n=2 

a PARENT 
(a PARENT) 1><1 PARENT 
(a PARENT 1><1 PARENT) 1><1 PARENT 



n=3 

n=k 

(o-PA.RE.:.VT 2 l><l PA.RENT) t><l PARENT 

(o-PARENTk-l t><l PARENT) t><l PARENT 

I I 

Note that the results of operations in parentheses are retained from each previous 

step; the strategy is called a single wavefront in (HL86). 

The time (MAl) for the totally materialized method is basically the time 

to execute this compiled program where the selection operation O-a is not needed 

(because it will select all tuples.) Results are retained as the view ANCESTOR 

table; this is done only once when the view is defined. Any future queries on the 

ANCESTOR table (hence time (MA2)) are simple table lookups implemented as 

o-yANCESTOR where y is the binding constants of the query. 

Similarly, for the on-the-fly method, each query is a call to this program with 

the specific selection operation corresponding to the query's bindings, hence the 

time (FLYl ). However, the difference between the totally materialized method and 

the on-the-fly method is that the intermediate results are not retained permanently 

for the on-the-fly method. They are discarded once the query is answered. 

3.2. The Update Process 

Since we are only concerned with base updates in this study, updates are 

on the PARENT table only. The cost to process an update request has two 

parts. The first one is the time to update the base table PARENT. This may 

be a straightforward insertion or deletion operation on PARENT. Therefore, it 

will be the same for all three methods. Hence, (MA3), (FLY2) and (INC2) are 

identical. The second one is the time to maintain the view tables that are affected 

by the base update. This only occurs for the totally materialized method and our 

incremental method; it is not applicable to the on-the-fly method since the latter 

does not retain any physical view tables. 

For the totally materialized method, an update request will definitely affect 

the ANCESTOR table if the base update is valid (i.e. if it causes tuples to be added 



IS 

to or deleted from the PARENT table successfully.) Therefore, the screening test is 

trivial and does not add on to the total cost: each valid update on PARENT table 

will trigger the maintenance of the ANCESTOR table. In this case a procedure 

similar to the query process discussed in section 3.1 is invoked. For example, if 

{add PARENT(123,456)} is a valid base update, then the compiled program is 

invoked where a a of the formula is to select those tuples whose column 1 and 

column 2 are equal to 123 and 456, respectively. The resulting tuples are then 

appended to the ANCESTOR table if they are umque. The same procedure 

is applied if the update is a deletion except that the resulting tuples are then 

eliminated from the ANCESTOR table. This constitutes the time (MA4). 

For our incremental method, a valid base update may not necessarily trigger 

the view maintenance process. However, the screening test is simple. If a base 

update is valid, a selection with the binding of the first attribute of the base update 

is invoked and applied to each of the currently existing partial view table. Then 

the view maintenance procedure described in section 3.2 of Chapter 3 is applied. 

This forms the time (INC3). Furthermore, tuples in these partial ANCESTOR 

tables are linked by the dependency pointers and reference count between them 

(as discussed in section 4.2 of Chapter 3), which improves the performance when 

the update request is a deletion. 

To summarize, if n is the total number of queries and updates in a single run 

of our experiment, the average performance for the three methods can be expressed 

as: 

iMA = 
iFLY = 
iJNC = 

(MAl + lv!A2 + MA3 + MA4)/n 
(FLYl + FLY2 + FLY3)/n 
(IN Cl+ INC2 + INC3)/n 
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3.3. Empirical Study Parameters 

By analyzing the cost components in section 3.2, we identify three maJor 

factors that affect the performance of the three approaches. They are ( 1) the 

selectivity between supportive base tables, (2) the repetition of queries, and (3) 

the frequency of updates. 

Selectivity refers to the join selectivity [HL86] between tables which, basically, 

defines the depth of the recursion. In the case of the ancestor view definition, the 

selectivity is the join selectivity of the PARENT table. Since the PARENT table 

has only two columns, selectivity is further defined as a percentage of attribute 

values in column two that also appear in column one. The higher the selectivity, 

the deeper of recursion and more costly the computation will be. 

Repetition of queries is the measure of how many queries are repeated. The 

repetition is not significant to the on-the-fly approach but can be very significant for 

the totally materialized approach and our incremental approach. Update frequency 

refers to how often the base tables are updated. 

The experiment was conducted as follows: 

( 1) a PARENT table containing 500 tuples of two integers was generated with 

a specific selectivity; 

(2) a query BATCH containing 1000 queries (e.g. Ancestor(lOO, Y)) and/or 

updates (e.g. {Add Parent(lOO, 312)} Or {Delete Parent(200,167)}) was 

generated according to the specific update ratio and/ or repetition ratio. 

( 3) for each test, the same PARENT table was used in each of these three 

methods. The actual execution time to finish each BATCH was recorded. 

Since an empirical study such as this will suffer from random noise, for each 

test, ten BATCHes were generated and run against the same PARENT 

tables. The averages of these ten results were computed and became our 

data points. 
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More specifically, the query BATCH ( B) is expressed as B = ( Q + U) where 

Q and U are the number of queries and updates, respectively. Update ratio is 

expressed as U /(Q + U). 

Repetition ratio determines how many queries are repeated. If the number 

of repeated query is q, then the repetition ratio is defined as q / Q. For example, 

a 10% repetition of 1000 queries means that 100 queries are repeated. Of these 

one hundred queries, however, it makes a big difference whether a single query gets 

repeated 100 times or 50 queries repeat one time each. Apparently, the latter is the 

worst case scenario. We decided to use the worst case in our experiment. Therefore, 

a 10% repetition means that for every 10 tuples the first query is repeated; 15% 

repetition means that every 20 tuples the first three queries are repeated, and so 

on. All repetitions are distributed evenly in the query BATCH. 

Furthermore, the timing of updates is significant. If the updates are all done 

at the beginning or at the end of the query BATCH, it may benefit a certain method 

over the others. To make the comparisons unbiased, updates are distributed evenly 

throughout the query BATCH and updates are divided equally into insertion and 

deletion. 

The compiled programs described in section 3.1 were implemented in "C" 

language. Two index files on the first and second columns of the PARENT table 

were generated and maintained with B+ index trees. Experiments were run on an 

i386 33MHz machine without cache in a single user mode. 

4. The Empirical Study and Its Results 

We carried out three separate tests in this study: 

(1) a comparison of all three methods by varying selectivity and repetition ratio; 

(2) a comparison of all three methods by varying selectivity and update ratio 

while holding the repetition ratio constant; 
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(3) a comparison of only the on-the-fly approach to our incremental method as 

in (2) but with a wider spectrum of update ratios; 

4.1. Comparisons of MA, FLY and INC With No Updates 

The first study is the most fundamental test to compare the performance of 

query processing ef the MA, FLY and our INC methods. Since the main objective 

is to investigate how well these three approaches behave in terms of answering 

queries, the query BATCH contains only queries without any update requests. 

The parameters to be tested are the selectivity and repetition ratio. The selectivity 

ranges from 0% to 15% while the repetition ratio is between 0 to 50%. The results 

are plotted in Figures 17,18, 19, 20 and 21. We make the following observations: 
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(1) No method is superior to the others in all circumstances. 
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(2) MA is better than FLY for low selectivity (up to 0.15) as shown in Figures 17, 

18, 19 and 20. It becomes worse for higher selectivities (Figure 21 ). 

(3) INC is worse than either MA or FLY when selectivity and repetition ratio 

are low buJ surpasses both methods as selectivity and/ or repetition ratio 

mcrease. 

To capture these observations quantitatively, we plot the data as pair-wise 

comparisons between the three methods in Figures 22 and 23. In each figure, the 

rectangular area represents the possible space of selectivity and repetition ratio 

pairs. The curve dividing the area into two represents the cut-off points between 
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the two respective methods. In particular, Figure 22 shows that FLY is superior 

to MA for selectivity 0.15 or higher, regardless of the repetition ratio. 

When comparing the totally materi.?'lized to our incremental method, we 

obtain the graph as depicted in Figure 23. In this graph, we notice the importance 

of both selectivity_ and repetition ratio for our incremental method. Notice that the 

curve divides the area almost diagonally. This implies that INC improves steadily 

over MA as either selectivity or repetition (or both) increase. 

Similarly, we compare our incremental method to the on-the-fly method and 

depict the results in Figure 24. As in the previous case, INC improves over FLY 

with increase in selectivity and repetition ratio. The former, however, is much 
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more significant, since even a small change in selectivity can tilt the scales in favor 

of one or the other method. 

These observations confirm some of our beliefs about the three methods. 

First, selectivity plays an important role with all three methods. However, the 

totally materialized method is affected by the selectivity more severely than the 

other two. For instance, examining Figures 17, 18, 19, 20, and 21, we notice that 

the gap between the totally materialized method to the incremental and on-the­

fly methods closes up more rapidly as the selectivity increases. As the selectivity 

increases up to a certain point, the totally materialized method actually performs 

worse than the other two. This confirms our belief that not all view tuples are 

queried by the users throughout the lifetime of the view. In this case, since there 
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are only one thousand queries m our test, it simply implies that many tuples 

generated and kept in the view table have never been used to answer these queries. 

The higher the selectivity, the deeper the recursion and hence the more costly the 

computation. 

Second, repetition does not significantly affect either the on-the-fly or the 

totally materialized methods. On the other hand, our incremental method benefits 

tremendously from an increase of repetition ratio. As mentioned in section 1, a 

primary motivation for designing the incremental method was to take advantage of 

the repetition of queries. A partially materialized view table is, in fact, very much 

like a cache when answering queries. The higher the repetition ratio, the higher 



Selectivity 
0.2 ...--~~~~~~~~~~~~~~~~~~~ 

0.15 

0.1 

0.05 

FLY 

MA 

0.2 0.3 0.4 0.5 
Repetition Ratio 

Figure 22 

FLY vs MA With Selectivity 

and Repetition (No Updates) 

86 

the hit ratio will be. Hence, the incremental method satisfies this important design 

goal. 

Lastly, both the totally materialized and on-the-fly methods are using the 

Henchen and Naqvi's linear compilation method that has been shown to be the most 

efficient way to answer single recursive queries. However, we demonstrated here 

that, when the repetition ratio factor is introduced, the linear compilation method 

is no longer superior to other approaches. Specially, with any non~trivial repetition 

ratio, our incremental method actually outperforms the other two methods that 

use linear compilation. 
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The second test was to compare these three methods with respect for both 

queries and base updates. Among the three major factors, namely, selectivity, 

update ratio and repetition ratio that affect the performance of the three methods, 

and in section 4.~ selectivity is identified to be very significant while repetition 

factor affects only our incremental method. Therefore, in this experiment, we held 

the repetition factor as a constant in order to study how selectivity and update 

ratio would affect the performance. 

From the data obtained in section 4.1, we discovered that when the repetition 

factor was about 20% and the selectivity was about 10%, these three methods 
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displayed performance very much close to the others, with a slightly advantage 

for the totally materialized method. With these two factors, we carried out the 

experiment by varying the update ratio and selectivity while holding the repetition 

ratio as a constant of 20%. The selectivity was varied between 10% to 30% while 

the update ratio r~nged from 0% to 10% which is on the lower side of most database 

applications. 

The results of this experiment are depicted in Figures 25, 26, 27, 28, and 29. 

It is obvious that the totally materialized method did not stand up to the test. It 

performed very much like the other two methods when there were no updates. 

However, even a small number of updates degrades this method to the worst 
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position. Relatively, both our incremental method and the on-the-fly method 

maintained a comparable performance. 

The results actually confirm our intuition that when updates are allowed, the 

totally materialized method suffers the most. There are two major factors that 

work against this method. First, as discussed in the previous section, the method's 

performance deteriorates as selectivity increases. Second, any base updates in the 

ancestor view will trigger the view maintenance procedure because the view is 

materialized in its entirety. Of course, with a more efficient screening test and 

view maintenance algorithms, this method could be improved. Unfortunately, 

most of the past studies focused on the improvement for the SJP views that are 

not recursive. Improving the screening test and view maintenance algorithms for 
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recursive queries (of which, again, the single recursive has special interest) is still 

an open problem. 

As noted in section 1.2, update ratio does not significantly affect the on­

the-fly method since it does not maintain any view tables. On the other hand, 

our incremental method does react to any increase in updates. When examining 

the data, we diseover that, with the rising update ratio and lower selectivity, 

our incremental method performs worse than the on-the-fly method. However, 

if the selectivity increases, our incremental method outperforms the on-the-fly 

method. In view of this behavior, we decided to carry out the next experiment that 

concentrates on the comparison between our incremental method and the on-the-fly 

method. 
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4.3. Comparisons of FLY and INC With Updates 

In this experiment, we studied how selectivity and updates would affect the 

performance of our incremental method and the on-the-fly method. From the 

previous experiment, we noticed that update ratio affected our incremental method 

while selectivity affected the on-the-fly method. However, the range of update 

ratios in that study was relatively small (e.g. from 0% to 10%.) In this study, we 

still kept the selectivity from 10% to 30% but the update ratios were varied from 

0% to 100%. Again, the experiment used a 20% query repetition ratio as before. 

The results are plotted in Figures 30, 31, 32, 33, and 34, and are summarized in 

Figure 35. 
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With these results, we notice that our incremental method performs better 

when the selectivity is high and the update ratio is low. We further notice that 

the on-the-fly method is more sensitive to selectivity than our incremental method. 

For instance, even the update ratio is high (e.g. 253 ), our method is better than 

the on-the-fly method if selectivity is high. This observation is quite intuitive. 

Since our incremental method does not generate the entire view table, not every 

update request triggers the view maintenance procedure. Therefore, even when 

the update ratio gets higher, it does not necessarily increase the time to process 

the whole BATCH. One can further observe from Figures 30, 31, 32, 33, and 34 

that, the higher the update ratio, the less time it will take to finish the BATCH. 
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This is because if there are more updates than queries, it has a higher chance that 

these updates won't affect those few partially materialized view tables. 

Since we held the repetition factor to 20% this experiment, we can further 

infer that a higher repetition ratio will be definitely in favor of our incremental 

method. 

5. Chapter Summary 

In this chapter, we implemented and compared three methods to study query 

and base update performance. Two of these methods, the totally materialized and 

the on-the-fly method, have been studied in the past in the relational database 

research. They represent two extreme approaches to improving performance of 
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both queries and updates. As demonstrated in [HAN87], when the selectivity and 

update is higher, views are better off not materialized. On the other hand, when 

the selectivity and update ratio are low, the materialized method becomes better. 

For example, a historical database would be an excellent candidate for the totally 

materialized method since update is rare. Furthermore, when it needs to update, 

the updates can be done in batch instead of real time. On the contrary, an airline 

reservation database may call for the on-the-fly approach since updates are very 

frequent in such an environment. 

We believe that our incremental method is a compromise between the totally 

materialized and on-the-fly methods. The motivation is the database locality of 

repeated user queries. It makes much sense to retain and maintain not every view 
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tuples as in the totally materialized method but only those that have been asked 

previously. None of the past studies has addressed this issue. 

The empirical results confirm that our method is indeed a compromise be­

tween the on-the-fly and the totally materialized method. Our method is more 

attractive when there are sufficient repetitions of queries and high selectivity while 

the update is relatively less frequent. There are applications that fit into this type 

of environment. For example, in a manufacturing database application (such as 

MPS (master production scheduling) ), the bill of materials may contain a single 

recursive part-subpart relation. It also needs updates on base tables but not too 

often. Queries regarding some derived views may repeat very often for a specific 

manufacturing project. Therefore, instead of creating an entire table as in the 
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totally materialized method or computing the view tuples on the fly, we could take 

advantage of the incremental method to achieve better performance. 
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1. Introduction 

CHAPTER 5 

Recursive View Updates 

In Chapter 3, we have shown that there are two kinds of updates: base 

updates and view updates. The details of base updates were also discussed. 

Furthermore, in Chapter 4, we demonstrated that our incremental method performs 

better than the totally materialized and on-the-fly methods for certain cases. It is 

very clear that maintaining materialized views (incrementally) is justifiable. 

In his controversial paper [CODD85], Codd defined twelve rules that test 

whether a database system is truly relational. The sixth rule is the so-called 

view updating rule. It states that all views that are theoretically updatable must 

be updatable by the system, i.e. the update effects should be automatically 

propagated to the supportive base tables. Thus, if views are materialized, users 

should be able to treat the view tables as if they were base tables and should be 

able to update them directly. We believe that view updates are important in any 

intelligent database systems for the following reasons: 

(1) Similar to their base table counterparts, view tables should be updatable 

as users' knowledge of the views is changed. For example, let us consider 

the ancestor view again. If a view table ANCESTOR is retained, and if the 

user ascertains that the relation ancestor(bill, john) is no longer true, the 

tuple should be deleted from the ANCESTOR table. Similarly, if the user 

wants to assert the fact ancestor(bill, mary), the tuple should be inserted in 

the ANCESTOR table. This is especially important since most views hide 

100 
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information from the users, e.g. the users would not know the underlying 

tables used to derive the view. Without a view updating capability, the user 

will not know how to assert facts that can help deriving the desired view 

tuple. 

(2) Interestingly, the view update mechanism can also be used to answer "what­

if" questions. That is, it can provide an explanation mechanism that is 

highly desirable in any intelligent systems. Again, consider the same ances­

tor example. A curious user may want to find out what would happen if, for 

example, ancestor(bill, mary) were not true. By deleting this tuple in the 

ANCESTOR table, it may trigger deletions in the PARENT table and/or 

even further deletions in the ANCESTOR table. These deletions need not 

take effect immediately in the database. Rather, they can be retained only 

temporarily and used to explain that, if bill were not the ancestor of mary, 

then for instance, john would not be the parent of mary, etc. 

In this chapter, we shall address the problem of updating views and shall also 

propose a recursive view update method that is complete, and also practical for 

integrating with relational database systems. 

2. Issues of View Updates 

There are essentially two major issues m view updates: first, why is it 

necessary to propagate view updates an~ second, why are view updates inherently 

ambiguous, and, finally, what would happen if the view is recursively defined? 

2.1. Need to Propagate View Updates 

If a view gets updated, its effect should be propagated to its supportive tables. 

First, let us examine why it is necessary to propagate view updates by considering 

the example of the views parent and coach that can be defined as follows: 

( 1) parent(X, Y):- father(X, Y). 



(2) parent(X,Y):- mother(X,Y). 

(3) coach(X,Y):- father(X,Y). 

102 

Let's assume that father(bill) john) is currently not in the database and 

1s to be added while the tuple parent(mary)susan) is to be removed from the 

database. As most experienced Prolog programmer would do, the update {add 

parent(bill, john)} may be satisfied by simply adding a new fact parent(bill, john) 

to the database and the update {delete parent( mary, susan)} may be satisfied 

by adding the fact -, parent(mary, susan) to the database. Hence, the database 

become: 

(1) parent(X,Y):- father(X,Y). 

(2) parent(X,Y):- mother(X,Y). 

(3) coach(X,Y):- father(X,Y). 

( 4) parent(bill, john). 

(5) • parent(mary, susan). 

However, this approach is not desirable. First, this implies that queries to 

the relation coach will not see the effects of the updates to the relation parent 

since the update to the view does not propagate down to its underlying supportive 

base table. For example, assume that the database currently contains the facts 

parent(bill john) and coach(bill, john). Later, if it is found that bill is not the 

parent of john, the tuple is deleted from the PARENT table. The action should 

be propagated to the FATHER table ( and should fail in updating the MOTHER 

table because of the integrity rule built-in for the MOTHER table. More details 

on integrity will be discussed in the following section.) 

Second, as discussed in section 1 of Chapter 1, a deductive database should 

contain two distinct components: the extensional database (EDB) or simply, the 

facts, which describe the world; and the intensional database (IDB), or the views 

(i.e. rules) that are used as reasoning mechanisms over facts to derive new facts. 

Since different users share the same database, we would like to change the facts 
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but not the rules for deriving views by adding ground rule predicate as clauses ( 4) 

and ( 5) above. Similarly, different users should be able to share the updates defined 

through these views. 

Therefore, it is necessary to propagate the view updates so that the state of 

the database can remain consistent through view updates from different users. 

2.2. Semantic Ambiguity of View Updates 

View update effects have to' be propagated to their supportive tables, but the 

semantics of the propagation is ambiguous. The ambiguity can be categorized into 

two types, namely, intra-rule and inter-rule ambiguities. 

Inter-rule ambiguity occurs when there are multiple view definitions. For 

example, the parent view in the previous section was defined either by rule (1) (i.e. 

father(X, Y)) or by rule (2) (i.e. mother(X, Y)). If the view update of parent has to 

be propagated, then which of these two definitions (or both) should be considered? 

That depends on the type of update. For instance, consider the view update 

request: {delete parent(a,b)}. In order to guarantee that the database can never 

derive the relation parent{a,b) again in the future, both rules (1) and (2) must be 

used to propagate the effect to delete the relevant base tuples so that it will never 

be able to derive the relation parent( a, b ). Therefore, for deletion requests, the 

update effect must propagate to each view definition and hence is not ambiguous. 

However, if the view update is an insertion such as { add parent(a,b )}, should we 

attempt to update only the FATHER table, or only the MOTHER table, or both 

FATHER and MO.THER tables? 

We distinguish two situations: weak propagation and strong propagation. In 

a weak propagation, the view update effect is propagated to any one of its view 

definition as long as the propagation is successful. If the view has to be derived 

from scratch, it only requires one successful branch in the SLD-tree (refer to 

Chapter 2) to define the bindings of the view. However, since there are multiple 
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view definitions, to decide on which definition should be used to propagate the 

effect becomes ambiguous. Strong propagation, on the other hand, refers to the 

situation where the view update effect is propagated to all view definitions. The 

justification is as follows: similar to the deletion, an insertion of a view tuple should 

be supported by as many paths as possible. If a view is defined by a set of rules, a 

strong propagation will attempt to propagate the view update into all rules. The 

rationale is that if the view tuple is believed to be true, it should be supported by 

all available supportive base tables. Therefore, in the future, if a certain branch of 

the SLD-tree gets pruned off due to the deletion of a certain base tuple, the view 

tuple is still supported by other alternate paths. 

It may seem that the strong propagation would generate a lot of base updates. 

However, this is not necessarily true since each of these updates is still subject to 

the integrity constraints (I Cs) specified by the database administrator (DBA ). 

For instance, consider the view update request {add parent(bill, john)}. With 

strong propagation, both rules (1) and (2) are used to propagate the update effect. 

However, the integrity constraint for the MOTHER table will fail the update 

propagation since bill is not female. In general, it is believed that, with integrity 

constraints for each domain and view, strong propagation will not increase the 

database dramatically by inserting too many tuples. 

Intra-rule ambiguity, on the other hand, refers to the following situation: after 

it has been decided to propagate a view update effect into one specific definition, 

it is ambiguous which of the underlying supportive base tables should be updated. 

For example, consider the following view definition: 

v(X, Y, Z): -p1(X, A),p2(A, B),p3(B, Y, Z). 

The view V is a many-to-many relation of the supportive base tables P1, 

P2 and P3. To process a view update request such as {add v(e,.hg)}, the update 

effect has to propagated to the body of the view's definition. Should the effects 
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be propagated to P1, or P2 or P3 or any combinations of these three tables? 

Furthermore, the semantics of the update effects is not well understood if the 

view v is recursively defined, as, for example, the following: 

v(X, Y, Z): -p1(X, A),p2(A, B), v(B, Y, Z). 

In this chapter, we provide recursive view updates, based on strong propaga­

tion, with proper semantics and a practical method to process them. 

2.3. Effects of Recursive View Updates 

If a view is recursively defined, updating the view has two effects: anterior 

view update, and posterior view update. Anterior view update implies that, in order 

to support the new database resulted from the recursive view update request, 

some underlying tables have to be updated so that the update request will be 

supported. Posterior view update refers to the situation that, if the update request 

is supported, the current database will be updated with these newly inserted or 

deleted view tuples resulted from the update request. Posterior view update are 

just the same as base updates, in which the view table is treated as if it was a base 

table. To illustrate these two effects, let's consider the ancestor view in Figure 9. 

Assume that the user wants to update the view table ANCESTOR. The anterior 

view update is to propagate the update effects to the underlying tables as discussed 

in section 2.1 and 2.2, in order to support the update request. If these supports can 

be generated (as we shall see later on that not every view update is satisfiable), the 

effect of updating-ANCESTOR may affect other ANCESTOR tuples. For instance, 

if the update is to delete a tuple in ANCESTOR and the tuple is a primary lemma 

to some other tuples, these tuples should also be deleted. Similarly, if the update 

is to insert a tuple in ANCESTOR, the new tuple may trigger derivation of some 

other tuples to be included int ANCESTOR. This posterior view update is identical 

to the base update discussed in Chapter 3. They are also subject to the screening 
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test. On the other hand, an anterior view update is to propagate the update effects 

so that the update request can be supported. To put it in a different way, posterior 

view update works its way from the right hand side of the rule up to the head while 

anterior view update propagates the view update effect from the head of the rule 

to its body. These two updates have to be done separately: anterior view update 

first, followed by the posterior view update. 

In this chapter, we address the anterior view update problem. That is, how 

to propagate the update effects from the head to the body of its rules. 

2.4. Related Work 

There are two distinct ways to update views: (1) the heuristic approach, and 

(2) the theoretic approach. The former is typified by [KEL85] and (MW88] while 

the latter can be found in [FUV83] and [RN88]. 

The theoretic approach argues that, since the mapping from a view to the 

underlying base· tables is not unique (ambiguous), we should generate all possible 

alternatives that entail the update. Accordingly, they proposed a method that 

defines an update as a mapping from the old "theory" to a disjunction of all 

possible new "theories". 

For example, consider the following tail recursive view v: 

(1) v(X) :- p(X), v(X). 

(2) v(X) :- q(X). 

In this approach [RN88), the update request add v( a) is translated into 

(p( a) /\ v( a)) V q( a); and the update request delete v(b) is translated into (...., p( b) V 

...., v(b)) /\....., q(b). Therefore, the database is transformed from the "old" theory into 

the following "new" theory which, unfortunately, is non-Horn: 

(1) v(X) :- p(X), v(X). 

(2) v(X) :- q(X). 

(3) (p( a) /\ v( a)) V q( a) 

( 4) ( 'P( b) V 1v( b)) /\ 1q( b) 
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While this approach does present a semantically consistent picture of view 

updates, it suffers the following drawbacks: 

( 1) In [FUV83], the authors noted that the approach is intractable. Even in 

[RN88], the improved method still suffers from the same problem. The 

new update theories generated by this approach (generally, non-Horn) are 

exponential to the number of definitions of the view. Hence, future query 

processing time deteriorates (there are more rules to process). Furthermore, 

a view deletion will generate a set of new update theories that contain mostly 

negation, which makes a database work harder while processing a query. 

(2) Since the update theories are mostly non-Horn, and they can only be re­

solved with the special type of resolution method, they will be difficult to 

integrate with any relational system. 

(3) If every update generates a new set of "rules", then it is necessary to 

re-generate the compiled query program as discussed in Chapter 2. This 

defeats the original motivation to compile queries (views) so that once the 

compilation is done at view definition time, we don't need to reference the 

inference engine again for future query or update operations 

In the heuristic approach, on the other hand, it is argued that a database 

administrator (DBA) should know what to update (by user requirements analysis, 

heuristics, experience, etc, similar to setting up integrity constraints.) Hence it is 

desirable for the DBA to designate the relations that will be updated when the view 

is updated. For example, in [KEL85], the author proposes a set of five criteria that 

should be satisfied by view updating algorithms. Through a structured interactive 

dialogue with the DBA, he designs different algorithms to choose a view translator 

at view definition time. In [MW88], a similar approach is proposed, except that it 

is treated in a more formal manner. In this approach, view translators are defined 

based on dynamic logic programming techniques. Then each view update request 
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is processed by its relevant view translator that acts like a procedure to implement 

the update request. The procedural semantics of update translators can be easily 

incorporated in a relational system. 

2.5. Our Contributions 

As noted in the introduction, our primary motivation is to improve recur­

sive query processing time by retaining materialized view tables. The heuristic 

approach is more appealing to us in this respect, since the update translators can 

be easily incorporated into a relational system. However, the approach proposed 

by [MW88] suffers from the following drawbacks: 

(1) no multiple rule definitions are allowed. 

(2) no recursive relations are allowed (views in their system are restricted to be 
non-recursive.) 

( 3) all variables have to appear in the head of a rule. 

In this chapter, we extend the heuristic approach such that it overcomes 

these drawbacks. In our approach, we use strong propagation to counter inter-rule 

ambiguity. This is necessary since recursive views must have, by definition, at 

least two rules: one to define the view recursively and the other as the exit clause 

that does not contain any recursion. Therefore, to implement any recursive view 

update, it is necessary to deal with multiple view definitions. 

3. The Heuristic Approach Based on Dynamic Logic Programming 

There are four situations that change the contents of a view table: ( 1) newly 

found view tuples resulting from our query process; (2) an indirect effect from 

inserting or deleting a base table, which triggers updates on the view table; the so­

called base updates; (3) a direct ADD request to the view table from the user, and 

finally, ( 4) a direct DELETE request to the view table by the user. The latter two 

situations are essentially the view update problems. As discussed in section 2.3, 

for each of these two update requests, it triggers an anterior view update and, if 
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this is successful, it further triggers a posterior view update. Since posterior view 

update is identical to base update, we shall concentrate on anterior view update 

in this chapter. 

Given a view update request from the user, it will be desirable to update 

the "appropriate" underlying tables (the so-called supportive tables) so that the 

requested view tuple is or is not supported. However, since a view is a many­

to-one relationship, it is inherently ambiguous to decide which of the supportive 

tables (or all of them) are to be updated. As already mentioned in section 2.3, 

one way to solve the ambiguity problem is to let the DBA decide which of the 

supportive tables should be updated. We believe that this is very reasonable since 

the designation of supportive tables to be updated is very similar to the setting 

up of integrity constraints, which can be done only thorough user requirements 

analysis, heuristics from experience and understanding of the application domain. 

We abandon the informal approach by [KEL85] but adopt the approach of (MW88]. 

Since this approach is based on the dynamic logic programming technique, we shall, 

in the following section, describe how dynamic logic programming works. 

3.1. The Basics of Dynamic Logic Programming (OLP) 

Dynamic logic [HA 79] is logic for reasoning about programs that test and 

change an environment. If update requests are to be translated into some form of 

procedures, it has been shown [MW88] that it is possible to construct a dynamic 

logic of update prggrams. That results in the so-called dynamic logic programming 

(DLP). In DLP, a database Dis a triple (EDE, IDB, U) where EDB and IDB are 

the extensional and intensional databases, analogous to those of the deductive 

database, which we have been discussing in the previous chapters. U is a set 

of update rules that are called update translators. Update translators define the 

semantics and also the procedure to propagate the update effects. 
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In dynamic logic programming, there are three types of literals (relations), 

namely, base literals, view (virtual) literals, and dynamic literals. The base and 

view literals are identical to those we have been using so far. A dynamic literal is 

to signal an insertion into or a deletion from some tables. It is enclosed in angle 

brackets and has a plus or minus sign to indicate the action to be taken. For 

example, consider the following query: 

: -father(bill,john), (-coach(bill,john)). 

Let's assume that father is a base relation and coach is a view, as in the 

example of section 2.1. The meaning of the query is as follows: if bill is the 

father of john, then delete the tuple (bill) john) in the view coach. The literal 

(-coach(bill,john)) is called a dynamic literal since it will change the state of 

the database. In this example, the dynamic literal (-coach(bill,john)) has a 

dual meaning. First, it means to physically delete the tuple from the view table 

if the view coach is materialized. Second, all supportive base tables that can 

regenerate the tuple coach(billJ john) should be updated such that it will not 

be possible to derive the tuple in the future. Similarly, if the dynamic literal 

is (+coach(bill,john)), the update procedure will first insert the tuple (bill) john) 

in the view table if it is not already there; then it will propagate the effects to 

the relevant underlying tables that support the newly added view. The reason for 

propagating the update effects was discussed in section 2.1. If the dynamic literal 

is to insert or dele_te a base tuple, then it is nothing more than a base update that 

we have discussed in Chapters 3 and 4. If the dynamic literal is to insert or delete 

a view t1:1ple, it is referred to as a view update. 

For example, consider the same database of parent and coach relations as in 

section 2.1. A complete dynamic database may look like the following: 

(1) parent(X,Y):- father(X,Y). 



(2) parent(X,Y):- mother(X,Y). 

(3) coach(X,Y):- father(X,Y). 

( 4) ( +parent(X,Y)):-father(X,Y). 

(5) ( +parent(X,Y)):-mother(X,Y). 

(6) ( -parent(X,Y)):-( - father(X,Y)). 

(7) ( -parent(X,Y)):-( - mother(X,Y)). 

(8) ( +coach(X,Y) ) :- ( +father(X,Y)). 

(9) ( -coach(X,Y)) :- ( -father(X,Y)). 
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The first three rules are the original view definitions. Rules ( 4) to (9) are 

the update rules that (based on the DBA's point of view) define the semantics 

of the updates. For example, rules ( 4) and ( 5) state that if one wants to assert 

the relation of parent(X, Y), either the relation father(X, Y) or mother(X, Y) has to 

be true. Similarly, if a tuple of parent( X, Y) is to be deleted, then all supportive 

tuples have to be deleted so that the tuple of parent(X, Y) can no longer be derived 

(rules 6 and 7.) Another way to interpret the update request is as follows: if 

the head of the update rule is an insertion, it can be interpreted as "update the 

database such that this fact is satisfiable". If the fact can be satisfied with many 

alternatives, let all those alternatives be known (strong propagation). If the head 

of the update rule is a deletion, then "update the database such that this fact 

becomes unsatisfiable by all means". The update rules that can guarantee tl;iese 

are semantically correct. (They are, in this case, the weak correctness conditions 

of the update rules.) Furthermore, if there are updates to insert tuples already in 

the view, or to delete tuples not in the ~iew, and if the update rules do not change 

the database, the -update rules are said to be semantically acceptable [BS81]. 

Specifying the update rules is the job of the DBA who, based on his experience 

and user requirements, generates these rules. Unfortunately, not every update rule 

specified by the DBA is correct and acceptable. For example, the update rule 

(+coach(X, Y)) : -(+ friend(X, Y)). 



(1) 

(2) 

(3) 

A(qb([)) 

A(qv([)) 

A(qr([)) 

= qb([) or (+qb(t))(true) 

= qv([) or (+qv([))(true) 

= qr([) 

Figure 36 

The Add Translator 

11:2 

where friend is an existing base relation. This update rule is neither correct nor 

acceptable. It is not correct because inserting a new tuple to the relation friend 

cannot derive the coach tuple since coach is defined only by the father relation (i.e. 

rule (3) ). Similarly, it is not acceptable because, even if the relation of coach(X, Y) 

were already in the view table, this update rule would still insert a tuple in the 

relation friend. This is a contrived example to illustrate the point, since updating 

the coach relation should have nothing to do with the friend relation; coach is 

not defined on friend. As a rule of thumb, to guarantee the correctness and 

acceptability of the update translator, the entire body of the view definition is 

included in the translator. 

In the following sections, we shall describe the add and delete translators sep­

arately. We follow the same terminology as in [MW88] to define these translators. 

3.2. The ADD Translator 

In this section, we summarize the semantics of the Add Translator defined by 

[MW88]. 

A view definition always has the following form: 

where the view v has a vector of variable names u and the qis literals have their 

own vectors of variable names. In [MW88], the qi is further distinguished as either 

a base literal, a rule literal, or a view literal. 
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An update rule for insertion based on this view can be expressed as: 

where ,\ is a mapping from the conjunction of qi ( t1), ... , qp ( tp) to a corresponding 

dynamic conjunction. The mapping,\ is distributive and has different transforma­

tions for different types of literals. Let qb, qv, and qr represent the base, the view, 

and the rule literals, respectively. Manchanda et al (MW88] define the semantics 

of the Add translator as shown in Figure 36. 

Rule (1) states that if the add translator is applied to a base literal, it succeeds 

if the base literal is already satisfiable (i.e. it already exists in the base table). 

Otherwise, the tuple is added to the base table. If the insertion into the base table is 

successful, then the entire update request becomes successful (i.e. (+qb(t))(true)). 

Similarly, rule ( 2) describes the add translator applied to a view literal. In this 

case, it will first check if that view tuple already exists. If not, it will try to add 

it. Finally, rule (3) states that when the add translator is applied to a rule literal, 

it simply checks if the rule literal is satisfiable (i.e. can be derived when queried), 

without inserting any tuple to make it satisfiable. Note that the view literals, as 

defined in [MW88), are basically the non-recursive view, while the so-called rule 

literal is actually a recursive view. 

To illustrate the Add translator, consider the following rules: 

(1) parent(X, Y) :- father(X, Y). 

(2) parent(X, Y) :- mother(X, Y). 

(3) grandparen1{X, Y) :- parent(X, A), parent( A, Y). 

( 4) ancestor(X, Y) :- parent(X, Y). 

(5) ancestor(X, Y) :- parent(X, A), ancestor( A, Y). 

where father and mother are base literals; parent and grandparent are view literals 

and ancestor is a rule literal. To derive the Add translator for parent, rule (2) of 

Figure 36 is applied. The resulting translator has the form: ,\(parent(X, Y)) = 



parent(X, Y) or (+parent(X, Y))(true). Suppose the transformation is applied to 

parent(bill, john). According to this rule, the Add translator will first examine 

if the tuple parent(bill, john) already exists in the view. If it does, then the 

insertion of the tuple succeeds. Otherwise, the Add translator will try to evaluate 

(+parent(bill,john))(true), which will try to insert the tuple parent(bill, john) 

into the view. Note that, for the purpose of brevity, the ,\ mapping is simplified as 

,\(parent(X, Y)) = (+parent(X, Y)). It has the identical meaning: if parent(X, Y) 

exists, then succeed; otherwise, try to insert the tuple of parent(X, Y). In order to 

support this newly added tuple, the update effect has to propagate to its supporting 

tables. The DBA must designate the tables affected when the view is defined. For 

example, the DBA may specify the following two update rules: 

(1) (+parent(X, Y)): -(+father(X, Y)). 

(2) (+parent(X, Y)) : -( +mother(X, Y)). 

The effect of (+parent(bill,john)) is propagated to the body of both rules, 

i.e. (+father(bill,john)) and (+mother(bill,john)). In turn, the Add translator 

will be applied to these two dynamic literals. The request of (+parent( bill, john)) 

becomes successful, if any one of these actions succeeds. If neither one of these 

two actions succeeds, the request is failed. Therefore a view update request is not 

always successful. Note also that adding a tuple to father or to mother is still 

subject to the update integrity constraints. 

The original transformations, as proposed in [MW88), are restricted to non-

recursive views such as the parent view. For recursive views, such as the ancestor 

view, the transformation rule (3) in Figure 36 simply checks if the tuple is currently 

supported by the database. If so, then the update becomes successful; otherwise, it 

fails, i.e. no insertion is performed. For the above example, (+ancestor(bill,john)) 

would simply be converted to a query to check if ancestor(bill, john) can be derived 

or not. This is a major drawback of such a translator. To correct the problem, the 

update effect on the recursive view should be propagated to the body of the original 
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rule, similar to the non-recursive ones. For example, the DBA might specify the 

following Add translator for the ancestor view: 

(1) (+ancestor(X, Y)) :- (+parent(X, Y).) 

(2) ( +ancestor(X, Y)) :- ( +parent(X, A)), ancestor( A, Y). 

An update request such as ( ancestor(bill, john) ) will trigger both of these 

rules. From rule (1), the effect is propagated to (+parent(bill,john)). From 

rule (2), the update is translated to the body ( +parent(bill, A)), ancestor( A,john). 

Syntactically, the translator says to insert the tuple parent(bill, A) to the PARENT 

table where A is a free variable. Then the next step is to query on ancestor( A, 

john) in the current database. 

Note that such recursive view updates are not possible in the original proposal 

of [MW88] simply because they could not solve the termination problem that exists 

in any recursive query process. It is different in our approach. Our method is based 

on the lemma resolution and will terminate for any recursive query. Therefore, 

propagating the update effects into the body of a recursive view becomes possible. 

Note further that the order of the two literals in the body of rule (2) above 

is sjgnificant. In the original rule, the AND connective between parent(X,A) and 

ancestor( A, Y) is commutative. However, in the update translator, it is not. In this 

example, it means "insert tuples parent(bill, A) first then, after the insertion, see if 

ancestor( A, john) can be satisfied or not"; if it can be satisfied, then the constant 

bindings of A will be combined with bill and be inserted in the PARENT table. 

Otherwise, the insertion on ancestor(bill, john) is failed. Note also that the free 

variable A in this case is short-lived. It is substantiated after the query ancestor( A, 

bill) is satisfied. 

In this chapter, we extend the original Add translator from [MW88] to cover 

recursive view updates. Our system has only two types of rules in the Add 

translator: 



(1) 

(2) 

(3) 

(1) 
(2) 

µ( Qb (t)) 

µ( Qv ([)) 

µ(qr([)) 

=true or (-qb(t))(true) 

=true or (-qv([))(true) 

=true 

Figure 37 

The Delete Translator 

= qb(t) or ( +qb(t))(true) 
= qv(f) or (+qv(l))(true) 
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The first rule is applied to base literals while the second rule is for view 

definitions, both recursive and non-recursive ones. The main problem with this 

extension is the need to guarantee completeness. Fortunately, this can be achieved 

using lemma resolution for a restricted class of update rules, the safe update rules. 

Details will be discussed in section 4. 

3.3. The Delete Translator 

The Delete translator is defined in [MW88] as shown in Figure 37. Similar 

to its Add translator counterpart, the µ is the mapping of the Delete translator 

and qb, qv, and qr are base, view, and rule literals, identical to those of the Add 

translator. For instance, the first rule in Figure 37 means that the mapping of 

the deletion request for a base dynamic literal is to first check if the base tuple 

currently exists. If it does not, the deletion request is complete. If the base tuple 

currently exists, then try to delete it from the base table. The mapping for the 

view is similar to-that of the base literal. The mapping of the rule literal simply 

checks if the rule tuple is not supported (i.e. it cannot be derived.) Similarly, the 

original translator is restricted to non-recursive views. In this chapter, we extend 

this to cover recursive views by defining the Delete translator as follows: 

(1) 
(2) 

=true or (-qb(t))(true) 
=true or (-qv(f))(true) 
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The extended delete translator now propagates the deletion effects t0 re­

cursive rules as well. For instance, the DBA may specify the following deletion 

operations for the parent, grandparent, and ancestor views: 

(1) (-parent(X, Y)): -(-father(X, Y)). 

(2) (-parent(X, Y)): -(-mother(X, Y)). 

(3) (-grandparent(X, Y)): -(-parent(X,A)), parent( A, Y). 

( 4) (-ancestor(X, Y)) :- (-parent(X, Y).) 

(5) (-ancestor(X,Y)) :- (-parent(X,A)), ancestor(A,Y). 

For brevity purpose, the µ mapping is also simplified as µ( q( f)) = (-q( [)), 

with the same meaning: if q(f) does not exist, the deletion operation succeeds. 

If q(f) exists, then try to delete it. In this example, the DBA specifies that if a 

tuple in the PARENT table is to be deleted, supportive tuples in both FATHER 

and MOTHER tables must be deleted so that the PARENT tuple will never 

be derived in the future (strong propagation requires all possible tables to be 

updated.) Similarly, to delete a tuple (bill, john) from the GRANDPARENT table, 

first deletion of tuples (bill, A) in PARENT is attempted, then parent( A,john) is 

queried. If it is satisfiable, the bindings of A will be combined with bill and deleted 

from the PARENT table. To delete a tuple from the ANCESTOR table, the 

supportive tuples in PARENT must be deleted. Both deletion rules (rules ( 4) 

and ( 5)) must be activated to eliminate all supportive tuples. 

4. Dynamic SLD Resolution (OSLO) 

In [MW88], -the semantics of view updates are defined. However, the update 

process is treated separately from the query process. Because of this separation, 

they fail to define the proper semantics for recursive view update. In the previous 

section, we extended the translators to recursive view update. In this section, we 

describe a modified resolution method, the dynamic SLD Resolution (DSLD) by 

combining the dynamic logic programming with the lemma resolution to describe 
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the update semantics. vVe demonstrate how this scheme works. We further show 

that the DSLD is incomplete for an arbitrary function-free Horn database. 

The Add and Delete translators described in the previous section can be 

incorporated into the SLD (with lemmas) resolution. The method based on both 

SLD (with lemmas) and the update translators is called dynamic SLD resolution 

( DSLD ). The resulting tree is called Dynamic SLD resolution tree. The dynamic 

SLD resolution is similar to the SLD resolution with lemmas except that when the 

goal is a dynamic literal, the relevant update rule is called, instead of the regular 

rule, to resolve the goal. 

Assuming that all update requests are ground literals (i.e. no free variables) 

and the goal is a dynamic literal, the procedure of the DSLD resolution, similar to 

that of the lemma resolution from Chapter 2, can be described as follows: 

(1) find relevant update rule for the update request in a top-down manner. If 

such rule is found, then expand the update rule. 

(2) all possible paths of the search tree are expanded until one of the following 

situations occurs: (a) all literals are resolved, i.e. the update request 

succeeds; (b) the path fails, i.e. update request cannot be satisfied; ( c) 

a dynamic literal that is identical to a previously resolved dynamic literal 

is encountered; ( d) a dynamic recursive literal is encountered; ( e) a regular 

recursive literal that is an instance of a previously solved goal (i.e. lemma 

resolution )-is encountered. 

When any of the cases (b) through ( e) occurs, the node is suspended. Then 

the process backtracks and tries other available rules. 

When all available branches are suspended, we have finished processing the 

current stage. 
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( 3) If the resulting resolution tree from ( 2) contains any suspended nodes, use 

the new database and view (lemma) tables to expand these nodes in the 

same manner as in steps ( 1) and ( 2). 

( 4) The process is terminated when the current stage does not insert or delete 

any more tuples. 

This resolution method provides a method of inserting facts to and deleting 

facts from the database. As we have discussed before, the update process may not 

always succeed. Therefore, it would be unwise to update the tables immediately 

while the resolution is still in progress. One way to handle this is to maintain 

two intentions lists, as suggested in (MW88]: the add set ( AddSet) and the delete 

set (DeleteSet ). These two sets are initially empty. As the resolution proceeds, 

tuples are inserted into these two sets dynamically. After the update request is 

performed successfully, these two sets are inserted or deleted from the database. 

To be specific, the unification process can be described as follows: 

(1) If qi, qz ... , qn is the current resolvent and qi is a base literal, then search 

AddSet or the EDB for a base fact that unifies qi with substitution s. If 

this can be done, then the new resolvent becomes [q2, ... , qn]s; otherwise, fail 

the node. 

(2) If qi in (1) is a view literal, use lemma resolution to search the IDB for a 

rule that unifies qi with substitution s. Then the new resolvent becomes 

[q2, ... , qn]s; otherwise, fail the node. 

(3) If the resohrent is (+qi), qz, ... , qn where qi is a dynamic base literal, then 

first search DeleteSet to check if it contains qi. Remove it from DeleteSet if 

it exists. Next, check if it exists in the EDB. If not, add it to the AddSet. 

The new resolvent becomes q2, ... , qn. 

(4) If the resolvent is (-qi),q2, ... ,qn where qi is a dynamic base literal, then 

first search AddSet to check if it contains qi. Remove it from AddSet if it 
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parent{X, Y) :- father(X, Y). 

parent(X, Y) :- mother('<, Y). 

grandparent(X, Y} :- parent(X, A), parent( A, Y). 

ancestor(X, Y) :- parent{X, Y). 

ancestor(X, Y) :- parent(X, A), ancestor( A, Y). 

(+parent(X, Y)): -(+father(X, Y)). 

(+parent(X, Y)) : -(+mother(X, Y)). 

(+grandparent(X, Y)) : -( +parent(X, A)), parent( A, Y). 

(+ancestor(X, Y)) :- (+parent(X, Y).) 

(+ancestor(X, Y)) :- (+parent(X, A)), ancestor{ A, Y). 

(-parent(X, Y)): -(-father(X, Y)). 

(-parent(X, Y)) : -(-mother(X, Y)). 

(-grandparent(X, Y)): -(-parent(X, A)), parent( A, Y). 

(-ancestor(X, Y)) :- (-parent(X, Y).) 

(-ancestor(X, Y)) :- (-parent(X, A)), ancestor( A, Y). 

Figure 38 

An Example of Query and Update Rules 

exists. Next, check if it exists in the EDB. If not, add it to the DeleteSet. 

If qi is neither in AddSet nor in the EDB, then ignore it since it is not 

derivable from the database anyway. The new resolvent becomes q2, ... , qn. 

After the update process is done, the AddSet and DeleteSet are used to update 

the actual EDB by applying the union and difference operators. These AddSet and 

DeleteSet can be used as intentions lists to answer the what-if questions without 

actually updating...the EDB. 

To illustrate the DSLD resolution, consider the rules with their update trans­

lators as shown in Figure 38 and also the current database contents as in Figure 39. 

The resolution with the dynamic literals works as follows: in order to satisfy a dy­

namic literal (i.e., to update the table), we propagate the update effects according 

to the translator. If there are regular literals, the SLD with lemma is called to 
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resolve these literals until it derives an empty clause. Let us look at two examples 1 

one with the Add translator and the other one with the Delete translator. 

Consider the update request (+grandparent(richard, david)). The DSLD 

resolution tree is depicted in Figure 40. For instance, the update request is ex­

panded by using rule 8. The next goal becomes (+parent(richard,A)) which: is, 

in turn expanded with rule 6. Note that the unbound variable A is unified to the 

body of the update rule identical to the usual resolution process. The next goal be­

comes (f ather(richard, A)) which is a base dynamic literal. According to the Add 

translator, this goal is true (satisfiable) if there exists an instance father( richard) 

A); otherwise, if the tuple father( richard) A) can be asserted, then the goal can also 

be asserted true. This dynamic base literal contains an unbound variable A. This 

variable can be temporarily assigned a distinct null value such as w1. Then the 

literal parent(w1 ) david} becomes the next goal. Similarly, to satisfy this goal, w1 

can be bound to the constants bill and susan as shown in Figure 40. The leftmost 
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branch thus terminates and returns a set of bindings, in this case, father( richard, 

bill), father( richard, susan ), parent( richard, bill), and parent( richard, susan ). This 

means that; if we like to insert the tuple grandfather(richard,david), we need to 

insert these new tuples. After the insertion, the query grandfather( richard, david) 
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is supported and will derive an empty clause in a resolution. Should the goal 

parent(w1, david) fail, the process backtracks and tries other alternatives. The 

backtracking will undo those tuples in the AddSet before branching out to other 

paths. Therefore, the actual inclusion of the dynamic literals in the AddSet takes 

place only for the successful branches. 

The rightmost branch will be processed in a similar fashion. Note that if there 

is no other information such as integrity constraints, then the translator will add 

facts that make bill and susan siblings! Similarly, richar¢ might become the mother 

of someone (from the rightmost branch). This shows that, in any update situation, 

integrity constraints are extremely important to guarantee that no nonsense data 

ever enters the database. If the integrity constraint specifies that no parents can 

be siblings then the facts parent(richard, bill) and parent(richard,susan) become 

mutually exclusive. The present case implies that the integrity constraints are not 

sufficient enough and the process becomes ambiguous. One way to handle the 

ambiguity is to interact with the user for additional information. Another way is 

to generate different branches for each of these exclusive bindings. For example, at 

the node marked (1) in Figure 40, the resolution could separate into two branches: 

one for the case where richard is the parent of bill, the other one for the case 

where richard is the parent of susan. Thus, the AddSet becomes { father( richard, 

bill), parent(richard, susan)} OR { father(richard, susan), parent{richard, susan) 

} . These two sets are the intent lists. Eventually, the user has to select one over the 

other. However, if cases such as this keep occurring, it implies that the integrity 

constraints have to be strengthened to preclude the ambiguity. In this chapter, we 

assume that integrity constraints are complete and sufficient enough to eliminate 

this type of ambiguity. 

As for the delete translator, consider the update request to delete a view tuple 

in the ancestor view, e.g. (-ancestor(john, david)). The DSLD resolution tree is 
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Example of The DSLD Resolution for A Delete Translator 

depicted in Figure 41. In this case, the delete rules were called to propagate the 

update effects. Parths 1 and 2 terminate because the tuples father(john) david) and 

mother(john) david) are not in the base tables. Paths 3 and 4 also terminate with 

the short-lived null value w bound to the constants john) bill) and susan. The final 

DeleteSet contains the three tables with their tuples as shown. Note that many of 

these tuples to be deleted from the original tables are not even there. Furthermore, 

if the database has a more comprehensive integrity constraint system, many of these 
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tuples won't even enter the DeleteSet. For example, the MOTHER table would 

not be affected and the tuple father(john) john) would not be generated. 

4. 1. Incompleteness of the DSLD 

The DSLD method described in the previous section is, unfortunately, in­

complete. The completeness here refers to the database completeness as defined 

in [VIE87). The database completeness or db-completeness states that if there are 

n successful branches in a resolution tree, the resolution process should be able 

to retrieve all n sets of bindings and the process should also terminate. In this 

section, we show what makes the method incomplete. 

In [MW88), the Add and Delete translators were shown to be semantically 

acceptable, correct, and complete. However, as we extended these to propagate 

the update effects to recursive rules, the resolution becomes incomplete. It is 

incomplete because of the possible infinite expansion of the search tree while there 

are alternative branches that can satisfy the update request. We can further 

distinguish two cases of infinite expansion. One results from expanding a regular 

recursive literal while the other comes from expanding a dynamic literal. To 

illustrate the former, consider the following update rule: 

( +v(f)) : -v( u), ( +p( w)). 

This rule states that to update the view v, the query v(u) has to be satisfied first 

before updating~ The query v in this case is recursively defined and suffers from 

the same termination problem as described in Chapter 2. However, as also shown 

in Chapter 2, the lemma resolution is able to terminate the recursion and returns 

all possible bindings. Therefore, this termination problem does not pose any threat 

to the DSLD resolution, since the expansion of the recursive literal can be handled 

by the lemma resolution. 
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The second source of infinite loops in the search tree is the expansion of 

dynamic literals. -We can further distinguish two cases: (1) a non-terminating 

branch resulting from expanding the dynamic literal (vertical loop), and (2) an 

infinite branching (horizontal infinite branching) as a result of newly added tuples. 

We shall discuss these two types of loop (or branching) in detail next. 

4.2. Vertical Loop 
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Vertical loop refers to the case where the DSLD resolution keeps expanding 

a dynamic literal without terminating. For example, consider the following Add 

translator: 

(1) (+v(X, Y, Z)) : -(+v(X, A, B)),p(A, B, Z). 

(2) ( +v(X, Y, Z)) : -( +q(X, Y, Z)). 

An update request ( +v( a, b, c)) may contain a non-terminating branch as 

shown in Figure 42. At each stage, expanding the suspended nodes will always 

change the state of the database. In this example, the node marked ( 1) is suspended 

the first time and hence the process backtracks and inserts q( a, b, c ). Then at the 

next stage, node (1) is expanded by using update rule (1). Variables A and B 

are temporarily assigned some null values. This process keeps on forever without 

terminating. This is also true even when breadth-first search is used. A DSLD 

resolution tree containing a non-terminating path such as this is said to have a 

vertical loop that makes the resolution incomplete. Vertical loops can occur for 

both Add or Delete requests. 

4.3. Horizontal Infinite Branching 

Horizontal infinite branching occurs only when the update request is an 

insertion. The DSLD resolution trees are generated in stages. At stage i of the 

resolution, the newly added tuples from stage i - 1 may expand a certain node, 

which results in adding yet more new tuples. In the worst case, a branch can 

be self-producing, where the branch produces tuples that can be fed back to the 

branch and thus generate new tuples indefinitely. 

For example, consider the following update translators and rules: 

(1) (+v(X, Y)) : -(+p(X, Y).) 

(2) ( +v(X, Y)) : -l(A, B), ( +v(X, C)). 

(3) (+v(X, Y)) : -v(X, A), (+l(B, Y)). 
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Horizontal Infinite Branching of DSLD Resolution Tree 

Assume that l and p are base literals while v is the recursive view. The 

tables of l, p, and v are currently empty. Let us consider the update request 

( +v( a, b)). The resolution trees are depicted in Figure 43. (Since each resolution 

tree is a subject of the next one, only the final tree is shown explicitly here.) In 

the first tree, node (1) is suspended since l(A, B) fails (because table l is empty). 

The process backtracks to node (2) and the literal v( a, A) is unified with the newly 

established fact v( a, b) from the first branch. Then, the new goal becomes node ( 4): 

( +l( B, b)). This dynamic literal can be satisfied by simply asserting the fact ( w1, b) 

in the L table where w1 is a null value. At stage 2, node ( 1) is expanded since the 

literal l( A,B) is unifiable with the new fact l( wi, b ). The new resolvent becomes 

(+v(a, C)) and the resolution carries on. At some later point, new tuples may 



again be inserted into the L table; for instance, at node (5), a new tuple (u..13,w4) 

is added to L. Note that this newly added tuple will be used in the next stage to 

unify with node ( 1) again and to create another new branch. Hence, it is possible 

that there is an infinite number of new tuples added to L (if null values are allowed) 

and therefore, an infinite number of branches from node (1). (Note that, in this 

example, there is also an infinite vertical branch.) 

5. Safe OSLO Resolution 

When examining the vertical and horizontal branching, we discover that there 

is one common characteristic: there are escaping variables in the dynamic recursive 

literals. Escaping variables are simply free variables. They are "escaping" if they 

are still unbound by the time the dynamic literal is to be expanded. For example, 

consider the following update rules: 

(1) (+ancestor(X, Y)) : -(+ancestor(X, A)), ancestor(A, Y). 

(2) (+ancestor(X, Y)) : -(+parent(X, Y)). 

In this case, suppose the update request is to add ancestor(bill, john). Expanding 

the first rule is not terminating as explained in section 4. This is because the 

dynamic recursive literal contains an escaping variable A that is not bound when 

the literal is being expanded. In order to guarantee the completeness of the DSLD, 

it is necessary to require that there be no escaping variables in the dynamic literals 

of the translator. DSLD restricted in such a manner is called safe DSLD resolution. 

There are two approaches to make sure that there are no escaping variables: (1) 

as proposed in [MW88], all variables have to appear in the head; (2) the DBA 

designates the dynamic literals such that there are no escaping variables; this is 

verified by the system. The first approach is not desirable since one major reason 

to have views is to hide irrelevant information from users. To include all variables 

in the view definition violates this principle. Hence, we are interested in option (2). 
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To illustrate this, consider again the above ancestor view. The DBA could 

specify the following Add translator for the same view, in which the dynamic literal 

does not contain any escaping variable. Therefore, the DSLD resolution tree won't 

contain any non-terminating branches. 

(1) (+ancestor(X, Y)) : -ancestor(X, A), (+ancestor(A, Y)). 

(2) ( +ancestor(X, Y)) : -( +parent(X, Y)). 

In this case, the variable A in the dynamic recursive literal in rule ( 1) is not 

escaping any more. The query ancestor(X,A) will be evaluated first using the 

lemma resolution method as shown in Chapter 2. If the query is successful, then A 

is bound to a set of constants. Therefore, the next goal ( (+ancestor( A, Y)).) will 

become a concrete update request since both A and Y are constants. (We require 

that all user update requests be ground literals, i.e. no free variable in the literal 

such as ancestor(bill, Everybody) is allowed.) Hence, this update translator is safe. 

5.1. Completeness of the Safe DSLD Resolution 

Based on the discussion in the previous sections, it is relatively straightfor­

ward to show the completeness of the safe DSLD resolution. There are several 

restrictions necessary to guarantee the safe DSLD resolution to be complete. 

(1) update requests must be all ground literals; 

(2) Add and Delete translators are all separate in the following sense: an Add 

translator can contain only insertion requests and a Delete translator can 

contain only deletion requests. A translator cannot contain both insertion 

and deletion requests (neither in the same rule nor in different rules.) 

With these assumptions, we further identify the following two types of recur­

sive rules that can guarantee its dynamic literals free from escaping variables: 

(1) the body of a recursive rule that contains a dynamic literal that is mutu­

ally recursive with the head, with variables identical to all input variables 



(however~ they may be in different positions). For example, the rule: 

(+q(X, Y, Z)): -(+q(Y, Z,X)) is free from escaping variables and is safe. 

(2) Within the body of a recursive rule, there are some regular literals that 

behave as pre-conditions for the dynamic recursive literals so that by the 

time these regular literals are satisfied, all variables in the dynamic recursive 

literals are bound. 

Any update translators fall into these two types are safe translators. The 

DSLD resolution method described in section 4 applied to these translators are 

called safe DSLD and always terminates. If there are no escaping variables in a 

translator rule, there will be no escaping variables in the derivation of this rule. 

Since the bindings of variables in an update translator are static, detecting the 

existence of escaping variables is trivial. Next, we need to show how the safe 

DSLD always terminates. 

Lemma 1: If a repeated dynamic literal is identical to one of its predecessors in 

the resolution tree, it can be terminated. 

Proof: Obvious. 

Theorem 1: There is no infinite vertical branching in safe DSLD. 

Proof: The proof is straightforward. Let us consider the above two possible 

situations where dynamic literals are guaranteed to be free from escaping variables. 

Case 1: There is a dynamic literal that is mutually recursive to the head, and all 

variables of that dynamic literal are from the input variables. 

In this case, the original rule is either a tautology or a tautology loop as 

identified in [WONG86, WONG87]. A tautology rule is a rule that the head and a 

literal in the body are identical. For example, 

q(X, Y) : -q(X, Y). 
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is a tautology. The Add translator of this rule may be defined as below: 

( +q(X, Y)) : -( +q(X, Y)) 

A tautology can simply be terminated by Lemma 1. 

A tautology loop is defined as a rule that contains a recursive literal that has 

variables coming directly from input variables but they are in different positions 

in the literal. 

For example, the following update rules form a tautology loop: 

(1) q(X,Y,Z) :- p(X,Y,Z). 

(2) q(X,Y,Z) :- q(Y,Z,X). 

(exit clause) 

In this case, rule (2) forms a tautology loop, in which, the recursive literal in the 

body contains exactly the same variables as the head but in different positions. 

The different positions of the variables actually form a permutation cycles. A 

tautology loop has first been identified in [WONG86, WONG87]. It has also been 

shown that, by expanding the rule n times the next goal is identical to the original 

goal, where n is order of the permutation. For instance, the permutation order of 

rule (2) above is 3. Therefore, by expanding the rule three times, the next goal is 

identical to the original goal. Hence, a update translator defined on a tautology 

loop always terminates (by lemma 1.) 

For instance, the Add translator of the above tautology loop may be defined 

as follows: 

(1) (+q(X, Y, Z)) : -(+q(Y, Z, X)). 

(2) (+q(X, Y, Z)) : -(+p(X, Y, Z)). 

To illustrate this, let's assume that the update request is (+q(l, 2, 3)) where 1) 2, 3 

are constants. The DSLD tree is depicted in Figure 44. After expanding rule (1) 

three times, the next goal becomes identical to the original goal and hence, by 

using lemma 1, the goal can be terminated. 
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(+q(l, 2, 3)) 

terminated 

Figure 44 

Example of Terminating A Tautology Update Translator 

(+q(a, a, a)) 

terminated 

Figure 45 

Another Example of Terminating Tautology Update Translator 

Another variant tautology loop translator is when the dynamic recursive lit­

eral contains some constants but the variables are directly from the input variables. 

For instance, consider the update translator below: 

(1) (+q(X, Y, Z)) : -(+q(a, Z, Y)). 

(2) (+q(X, Y, Z)) : -(+p(X, Y, Z)). 

In this case, the dynamic recursive literal ( +q( a, Z, Y)) does not contain any 

escaping variables. Similar to tautology loop translator above, this type of update 
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Figure 46 

Terminating Vertical Loop in Safe Update Translator 

rule always terminates. The expansion of the update request ( +q(l, 2, 3)) is shown 

in Figure 45. In this example, the first term of the dynamic literal in the body 

is a constant. However, the other two terms are variables directly from the input 

variables. In a finite number of expansion, the goal is repeated and is identical to 

one of the predecessor goals in the resolution tree. 

Case 2: The dynamic recursive literals are preceded by regular literals that bind 

all free variables in the dynamic literals. 

Since there are some regular literals preceding the dynamic literals, if all 

variables in the dynamic literals will become constants before they are expanded, 

then the translator is safe and will terminate. The translator always terminates 

because the bindings of the dynamic literals are drawn from the finite domain of 

those preceding regular literals. 
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To illustrate the point, consider the following update translator: 

(1) (+ancestor(X, Y)) : -(+parent(X, Y)). 

(2) (+ancestor(X, Y)): -parent(X, A.), (+ancestor(A., Y)). 

The dynamic literal (+ancestor(A., Y)) in rule (2) does not contain any 

escaping variables since variable A. will be bound if the regular literal parent(X,A) 

succeeds. Since there are no escaping variables, there will be no null values 

generated in the expansion (as in the case discussed in sections 4.2 and 4.3) which 

could cause an infinite expansion of the dynamic literal. The literal parent{X,A), 

in this example, is the pre-condition to insert a tuple in the ancestor view. To 

expand the dynamic literal, the pre-condition has to be satisfied first. Note that 

there also exists a safety condition defined in [ULL89) that is applied to Horn 

database to guarantee the completeness. The condition states that all variables 

that occur in the head of a rule also occur in the body of that rule. This safety 

condition, combined with the requirement that each fact in the database has to 

be a ground fact, has been proven to guarantee that only a finite number of facts 

can be deduced from the database [ULL89]. The requirement of escaping variable 

free is, as a matter of fact, a stronger safety condition than the one proposed in 

(ULL89). In other words, because the number of domain values in a database is 

finite, the number of possible tuples of a specific relation is also finite. Therefore, 

the test of the pre-condition parent(X,A) will eventually fail and hence terminate. 

For example, the DSLD resolution tree of (+ancestor( a, b)) is shown in 

Figure 46. The leftmost branch of the tree contains the pre-condition parent(b/X, 

f/ A) which is the -adornment pattern with a bound and a free variable. This pre­

condition will eventually terminate since the domain of parent(b/X,f /A) is finite. 

Therefore, a safe DSLD resolution tree always terminates. 

Theorem 2: There is no infinite horizontal branching in safe DSLD. 

Proof: Theorem 1 states that there is no infinite vertical branching in safe DSLD. 

This implies that every branch will eventually terminate. From any expandable 
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node, a new branch could start only if the preceding literals (the pre-condition) 

were satisfied with some newly generated tuples. Since the number of domain 

values for a specific relation is finite in the case of safe DSLD, there is no infinite 

horizontal branching in safe DSLD. 

Theorem 3: The safe DSLD is db-complete. 

Proof: Lemma resolution (Chapter 2) is db-complete. The dynamic logic pro­

gramming in (MW88) is also complete. DLP becomes incomplete only when it is 

extended to define recursive dynamic literals because of the possibility of vertical 

and horizontal loops. Theorems 1 and 2 show that safe DSLD always terminates 

without any vertical and horizontal loops. Therefore, the safe DSLD is db-complete 

5.2. Termination of Anterior View Update and Posterior View Update Loop 

If a view is arbitrarily defined by multiple rules, base update (e.g. posterior 

view update to derive affected view tuples) and view update (e.g. anterior view 

update to generate supports of view update) may form a non-terminating loop. 

In this section, we shall show that this loop always terminates for safe update 

translators. 

To illustrate how anterior and posterior view updates may form a loop, 

consider the following set of rules: 

(1) v(X, Y, Z): -p1(X, A),p2(A, Y, Z). 

(2) v(X, Y, Z) : -p2(X, Y, A),p3(A, Z). 

Assume that the Add translator is defined as below: 

(1) (+v(X, Y, Z)) : -(+p1(X, A)),p2(A, Y, Z). 

(2) (+v(X, Y, Z)) : -(+p2(X, Y, A)),p3(A, Z). 

If a base update to p2(A, Y, Z) in rule (1) succeeds and if the view vis affected, 

the posterior view update may generate a set of tuples to be inserted to the view 

v. However, to insert each of these tuples in the view may need to generate all 

possible support tuples (due to strong propagation), which may trigger an anterior 
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view update, for example, propagating the request to the update rule ( 2) above. 

In this case, a new tuple has to be added to p2 in order to support this action. 

If the update rule succeeds (after (+p2(X, Y, A)) succeeds and the literal p3(A, Z) 

is satisfied), then the newly added tuple in pz takes effect and initiates another 

posterior update. The loop can be infinite if null values are allowed. 

Note that another potential loop occurs when the posterior view update 

generates unsafe view tuples (e.g. containing null values). In this case, the anterior 

view update is also not safe because it suffers from vertical and horizontal infinite 

branching as discussed above. 

Fortunately, under the same assumptions as in section 5.1 and assuming that 

update translators contain only safe rules (e.g. no escaping variables), these two 

potential loops do not occur. 

First, since all update requests are assumed to be ground literals, the posterior 

view update will generate a finite set of tuples to be updated in the view table. 

These tuples contain all bound terms without any null values. Therefore, each 

anterior view update triggered by these tuples fall into the safe DSLD clauses 

described above and will terminate as shown. 

Similar to the proof of Theorems 1 and 2, there are also a finite number of 

possible bindings generated by the anterior view update. For example, given a set 

of safe DSLD clauses and all update requests being ground literals, the number 

of tuples generated by (+p2(X, Y, A)) in rule (2) of the above update translator is 

finite. Hence, the loop between posterior view update and anterior view update 

always terminates. 

6. Chapter Summary 

In this chapter, we recognized that updating views is a desirable feature of 

any intelligent database systems. However, view updates are inherently ambiguous. 
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To solve this problem, we adopted the heuristic approach that allows the database 

administrator to designate the propagation of update effects. The theoretic ap­

proach is not practical since it generates mostly non-Horn clauses which make the 

problem intractable. Furthermore, generating new "rules" implies that query must 

be recompiled every time there is an update request. The heuristic approach is more 

attractive because it does not generate any new rules and can be integrated into 

a relational system easily. However, the system proposed earlier in (MW88] fails 

to define the update translators for recursive view updates. The major problem, 

we believe, is the fact that termination of neither regular nor dynamic literals can 

be guaranteed with arbitrary update rules. In this chapter, we proposed a new 

resolution method that is based on the lemma resolution and is combined with 

the dynamic logic programming method. Our approach identifies a subclass of 

recursive update requests that are safe in terms of termination and completeness. 

Our approach to view updates is superior to (MW88] in the following ways: 

(1) We defined the semantics for recursive view updates; 

(2) We extended the SLD resolution to accommodate dynamic logic program­

ming to define the dynamic SLD resolution; 

(3) We defined the strong propagation of update effects and hence are able to 

use multiple rules; 

( 4) We showed that the dynamic SLD resolution is incomplete for an arbitrary 

function-free Horn database; 

( 5) We further identified a subclass of safe recursive view update translators 

which, when restricted to dynamic literals free from escaping variables, 

always terminate and hence are complete; 

(6) Finally, we proved that the safe DSLD terminates and hence is complete. 
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Conclusions and Directions for Future Work 

This dissertation has presented a unifying approach to solve both query and 

update processing when logic programming is integrated (via query compilation) 

with relational databases. In the studies of deductive databases, these two issues 

have been investigated, most of the time, separately. However, when performance 

is of concern, it is necessary to have a general strategy that encompasses both 

query and update processing in a way that would improve the overall performance. 

Fortunately, using the principles of database locality and lemma resolution, we 

were able to develop our incremental methods for queries and updates. We believe 

that our study is the first to address these two issues within the same framework 

while at the same time, the overall performance is being considered. 

In this chapter, we first summarize our accomplishments. We then present 

several open issues that should be addressed in future research. 

1. Summary 

The work in this dissertation embodies the following major accomplishments: 

(1) Query Compilation. Based on lemma resolution, we designed a general 

algorithm that will compile any recursive query into an iterative program 

containing-relational algebra operators. Once a query has been compiled, 

it can be stored within the relational database as a procedure. Any future 

references to the deductive rules are then treated as invocations of this 

procedure. Hence, there is no need to have a separate inference engine; 

the inference rules are embedded in the relational system. This has been 

described in Chapter 2. 
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( 2) Partially Materialized Views. We proposed to keep the bindings generated 

by processing queries (view materialization). However, in our approach, 

views are materialized incrementally. They are materialized as the query 

progresses, instead of materializing the complete view table at once when 

the view is defined. This is discussed in Chapter 3. 

(3) Enhanced Query Processing. Based on the query compilation and partially 

materialized views, we designed a strategy that enhances the query pro­

cess by searching the partially materialized views first before invoking the 

compiled query procedures. The modified query process is designed with 

the principle of database locality in mind. If locality is present, the modi­

fied query process takes full advantage of it, since repeated queries are all 

retained. Therefore, answering a repeated query is reduced to a simple 

selection operation on these partially materialized tables. This is illustrated 

in Chapter 3. 

( 4) Base Update Processing. If views are materialized, updates will affect the 

validity of views. We first addressed the problems of base updates, i.e., 

updates on base tables. We designed algorithms for an efficient screening 

test to identify those base updates that affect the view tables, and, hence 

require immediate updating of the view tables. With the incremental update 

and query processing methods in (2) and (3) above, we then demonstrated 

that base Hpdates can be implemented efficiently. We further showed how 

heuristics can be applied to improve query and base updates. In particular, 

we demonstrated that the proposed Complete View table method, along 

with recording the lemma dependency links when views are materialized, 

can improve the performance of deletion requests on base tables. This is 

demonstrated in Chapter 3. 
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( 5) Empirical Studies on Q·ueries and Base Updates. We have implemented 

our incremental methods of base update and query processes for a specific 

application: a transitive closure relationship. We compared our methods 

against the totally materialized method and the on-the-fly method. We 

concluded that our method is a compromise between these two methods. It 

performs better when there are moderate levels of update activities while the 

repetition ratio and selectivity is high. This is demonstrated in Chapter 4. 

(6) Recursive View Updates and Dynamic Lemma Resolution. We have devel­

oped a solution for the recursive view update problem. We first defined 

the dynamic SLD resolution (DSLD) by combining the lemma resolution 

method with dynamic logic programming. With the DSLD, we defined the 

semantics of recursive view updates and showed how update translators 

can be defined with the DSLD. Unfortunately, the DSLD is still incomplete 

for arbitrary translators. Hence, we identified a subclass of safe update 

translators that contain no escaping variables in the dynamic literals. We 

proved that view updates are complete and will terminate with these safe 

translators. These translators are procedurally oriented and hence can be 

easily integrated with a relational system. 

2. Directions for Future Work 

Despite its many virtues, the approach presented in this dissertation suffers 

from a few limitations. We list several issues that should be addressed in the future 

to make the current approach more desirable. 

(1) Compilation of Base Update Requests 

As mentioned in Section 3.2 of Chapter 3, updates on a base table may be 

statically analyzed. Hence, the next logical step should be to compile the possible 

base updates into procedure calls. For example, in Figure 13 in Chapter 3, updating 
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P2 always triggers updates of the view v. However, updating P1 depends on the 

constants of the update attributes and the current view table contents. In any 

case, if the view has to be updated, it is analogous to answering a query. Hence 

we could use the updated base tuple to derive the affected view tuples. Therefore, 

for each potential base update, it is possible to generate a compiled procedure to 

implement all the necessary update activities. 

(2) Compilation of View Update Requests 

The update translators presented in Chapter 5 can also be compiled. Since 

the update translators are already algorithms indicating how and what to update, 

they can also be compiled. 

(3) Effects on Integrity Constraints 

As shown in section 4 of Chapter 5, integrity constraints are the most im­

portant vehicle to prevent non-determinism in the update translators. The full 

effect of the interactions of update translators and integrity constraints have to be 

studied in the future. Studies have shown that integrity constraints are not only 

useful in maintaining the data integrity during updates, but they also help to aid 

the search process and, hence, improve performance [CGM88]. 

( 4) Multiple Versions of Update Rules 

In Chapter 5, we show that the DBA can only designate a single form 

of each translator. However, the system would be more flexible if the DBA 

could specify multiple versions of a translator. For example, for the same rule 

v(t): -p1(u),p2(k), v(w), the DBA may designate the following two versions of an 

Add translator: 

(1) ( +v(f)) : -p1 ( u), p2(k), ( +v( w )) , OR 

(2) ( +v(f)) : -p1 ( u), ( +P2(k)), v( w). 

Note that the multiple versions are different from multiple rules. Multiple versions 

imply that the update requests can be done by either (1) or (2) or both. The main 
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questions are: How will this complicate our DSLD resolution 1 and 1 would it still 

be safe with multiple versions? 

( 5) Complexity Analysis of Recursive View Updates 

The complexity of implementing recursive view update would be an inter­

esting research problem. Since the theoretic approach of view updates proposed 

by [FUV83] and by [RN88] is intractable, it would be important to analyze the 

complexity of our current approach. It would also be interesting to perform some 

empirical studies of recursive view updates to reveal the more practical problems 

with this approach. 

(6) Parallel Query Processing 

As noted in [RS90], if recursive query evaluation is to be of practical use, it 

is important that the queries be evaluated efficiently against large database tables. 

From the empirical studies in Chapter 4, we notice that it is very costly to process 

a recursive query. One possible improvement of our current approach is to utilize 

multiple processors to evaluate recursive queries. Several proposals have already 

been made on how to evaluate the transitive closure with a bottom-up evaluation 

method. For example, in [ AJ88], the following algorithm has been given: 

1. 

2. 
3. 
4. 
5. 

5. 

In this scheme, Rb is initially partitioned on some attributes and is assigned to 

each processor. The superscript p indicates that the relation has been partitioned 

and assigned to the pth processor. The Rj is the resulting table of each processor 

p and the R~ is the immediate result of the bottom-up evaluation. The same 

algorithm is being executed on every processor independent from each other. The 

results of ea.ch Rj are then unioned together to become the final results of the 
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entire transitive closure. The advantage is that there is no communication or 

synchronization required between processors. With a good partition (i.e. making 

each processor is equally busy), it will perform well. However, it has to access the 

entire Ro relation in each iteration (line 4 above) and there may be redundancy in 

the computations of all the processors. 

Another similar approach was proposed in [VK88], in which the relation Ro 

is horizontally partitioned and each processor computes the bottom-up evaluation, 

corresponding to its partitions of Ro and R~, without accessing to the original 

Ro relation. However, the results of each processor must still be merged with 

one another. The two-way merges, unfortunately, perform worse than the above 

algorithm. 

Recently, in [RS90], a parallel pipelined strategy based on the top-down evalu­

ation method was proposed and shown to have better performance than the above 

algorithm. In this method, the recursive query is evaluated in the top-down manner 

similar to the example of expanding the formula in Section 3.1 in Chapter 4. For 

instance, the ANCESTOR view can be generated by the formula: 

aaPARENT t><lk PARENT 

The formula is expanded as shown below. 

n==O 
n==l 
n==2 
n==3 

n==k 

a PARENT 
(aPARENT) CXl PARENT 
(a PARENT t><l PARENT) t><l PARENT 
(aPARENT2 t><l PARENT) t><l PARENT 

(a P ARENTk-l t><l PARENT) t><l PARENT 

The results of operations in parentheses are identified as common structures, 

which are basically the same wavefront concept as in [HL86]. With these common 

structures, they identify possible parallelism in executing these operations and 

assign each operation to a processor for evaluation. 



We believe that the lemma resolution, especially, the dependency between 

lemmas as mentioned in Chapter 3, is a better way to identify the common struc­

tures. Moreover, since we retain results from previous operations, the performance 

will be better than the above method, which still requires the common structures 

to be evaluated more than once. We also believe that the different adornment 

patterns in our partially materialized view tables will provide us with hints on 

how the views or base tables should be partitioned in order to facilitate future 

query processing. Most importantly, we believe that both our incremental update 

and query processes can be implemented in a multiprocessor environment in which 

queries and updates can be processed in parallel with fewer concurrency control 

problems. 
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