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Poly(A) code analyses reveal key determinants
for tissue-specific mRNA alternative polyadenylation

LINGJIE WENG,1,2,3,4 YI LI,2,3,4 XIAOHUI XIE,2,3 and YONGSHENG SHI1
1Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
2Institute for Genomics and Bioinformatics,3Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA

ABSTRACT

mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated
in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to
computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this
goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over
600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning
algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can
predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different
RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS
within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code
provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular
mechanisms.

Keywords: mRNA 3′ processing; tissue specificity; post-transcriptional gene regulation; machine learning

INTRODUCTION

The 3′ ends of most eukaryotic mRNAs are formed by an en-
donucleolytic cleavage and subsequent polyadenylation
(Colgan and Manley 1997; Zhao et al. 1999). Recent global
studies revealed that∼70% of eukaryotic genes produce mul-
tiple RNA isoforms through the usage of different cleavage/
polyadenylation sites (PASs), a phenomenon called alterna-
tive polyadenylation (APA) (Di Giammartino et al. 2011;
Shi 2012; Elkon et al. 2013; Tian and Manley 2013). APA
has been increasingly recognized as a crucial mechanism
for eukaryotic gene regulation. Usage of alternative PASs lo-
cated in distinct terminal exons often leads to the production
of mRNAs that encode proteins with related, distinct, or even
opposing functions. On the other hand, APA involving PASs
in the same terminal exon produces mRNAs that share the
same coding region, but differ in their 3′ untranslated regions
(UTRs). The diverse 3′ UTRs generated by APA may confer
different stability, translation efficiency, or subcellular local-
ization to the mRNA isoforms (Mayr 2015). Importantly,
APA is highly regulated in development and in a tissue-spe-
cific manner, and deregulation of APA has been implicated
in a wide range of human diseases, including cancer and neu-

romuscular disorders (Di Giammartino et al. 2011; Shi
2012). Given the functional importance of APA, it is critical
to understand how PAS selection is regulated.
Both cis elements and trans-acting factors can influence

PAS selection (Di Giammartino et al. 2011; Shi 2012; Elkon
et al. 2013; Tian and Manley 2013). First, alternative PASs
within a transcript often have different intrinsic strengths,
which refer to the efficiencies by which these sites are recog-
nized and processed by the core mRNA 3′ processing ma-
chinery (Shi 2012). PASs whose sequences are more
consistent with the consensus PAS sequences tend to be
stronger sites, thus more likely to be selected (Takagaki
et al. 1996; Yao et al. 2012; Lackford et al. 2014). Second,
the efficiency of 3′ processing at any given site is also affected
by the overall activity levels of the mRNA 3′ processing ma-
chinery. For example, changes in the protein levels of 3′ pro-
cessing factors often lead to APA changes in a specific subset
of genes (Takagaki et al. 1996; Yao et al. 2012; Lackford et al.
2014; Li et al. 2015). Third, regulatory factors, including RNA
binding proteins, may promote or inhibit PAS recognition by
the core 3′ processing machinery (Shi and Manley 2015).
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Finally, the sequence context of alternative PASs may also in-
fluence APA outcomes. Promoter-proximal PASs have a nat-
ural advantage over the distal sites as they are transcribed
earlier. The magnitude of such advantage can be influenced
by the transcript structure (such as the distance between
the proximal and distal PAS) and the transcription elonga-
tion rate (Davis and Shi 2014). The combinatorial effects of
all the aforementioned factors and the stabilities of the
mRNA isoforms determine the steady-state APA landscape.
Given the highly complex interplay between these factors,
computational approaches are essential for integrating the ef-
fects of these factors in order to fully elucidate the regulatory
mechanisms of APA.

One of the ultimate goals of the APA field is to be able to
computationally predict developmental stage- or tissue-spe-
cific APA outcomes under physiological or pathological con-
ditions. Surprisingly, however, research progress in this area
has been limited. Most previous studies have focused on the
characterization and prediction of PASs in various genomes.
Based on known and computationally identified PAS-associ-
ated cis elements, a number of approaches have been proposed
for predicting PAS, including hidden Markov model or sup-
port vector machines (Tabaska and Zhang 1999; Cheng
et al. 2006; Akhtar et al. 2010; Kalkatawi et al. 2012; Hafez
et al. 2013; Xie et al. 2013). Although these approaches have
achieved considerable success in predicting PAS with
canonical features, they are not suitable for distinguishing
constitutive and tissue-specific PASs.AsRNA sequenceswith-
in the core PASs alone are not sufficient to account for tissue-
specific APA regulation, more sophisticated algorithms that
incorporate additional features are necessary for deciphering
the rules for PAS selection. In this report, we have developed
the first poly(A) code, amachine-learning algorithm that uses
a compendium of over 600 RNA features to accurately distin-
guish constitutive and tissue-specific PASs. Additionally, us-
ing this approach, we have identified novel molecular
features important for tissue-specific APA regulation.

RESULTS

Identify tissue-specific PASs

mRNA 3′-end sequencing not only maps PASs on the tran-
scriptome level, but quantifies the relative abundance of
each mRNA isoform, making it the ideal approach for APA
analysis (Shi 2012). Several 3′-end sequencing data sets
have recently been published that include different mamma-
lian tissues with variable coverage and depths (Derti et al.
2012; Lin et al. 2012; Lianoglou et al. 2013). For our initial
modeling, we chose to use the data set generated by the
Mayr laboratory that covers seven human tissues, including
naive B cells, brain, breast, embryonic stem (ES) cells, ovary,
skeletal muscle, and testis (Lianoglou et al. 2013). We used
the “cleaned alignment” version of their 3′ seq data set, in
which only uniquely mapped reads were kept and internal

priming or spurious antisense reads were computationally re-
moved. As sequencing depths vary for different tissues, we
normalized the read counts by sequencing depth (counts
per million) in each tissue. For each PAS located in an anno-
tated gene, we calculated its usage frequency (f) by dividing
the read counts for this PAS by the total read counts for the
gene. To remove extremely infrequently used PASs, we fil-
tered out PASs whose f values are <5% in all tissues. In total,
18,494 PASs covering 8202 genes met this criterion and were
used for subsequent analyses.
For our analyses of tissue-specific PAS selection, we have

focused on genes that have multiple PASs and are expressed
in multiple tissues. To identify PASs that showed tissue-spe-
cific usage, we calculated the Shannon entropy scores (H) of
the f values of each PAS across the seven tissues, which rang-
es from zero to log2(N), where N is the number of tissues.
Shannon entropy measures the uniformity of data across dif-
ferent samples and has been widely used in gene expression
analyses (Schug et al. 2005). The original Shannon entropy
scores are only suitable for identifying PASs that are highly
used in one or a few tissues, but fail to detect those that are
suppressed in one or a few tissues. In order to efficiently iden-
tify all types of tissue-specific PASs, we applied Tukey
biweight (Tbw) to obtain an adjusted entropy score (H′, see
Materials and Methods for details) (Grant et al. 2005).
PASs with H′ values close to zero are selected or avoided in
a single tissue, and PASs with high H′ are more broadly
used in different tissues. We have designated 2276 PASs as tis-
sue-specific (H′ < 1.8 and H < 2.2, red area) and 3903 PAS as
constitutive (H′ > 2.2 and H > 2.7, green area) (Fig. 1A).
These thresholds were chosen to obtain sufficient numbers
of both tissue-specific and constitutive PASs while maintain-
ing data quality (i.e., the tissue-specific and constitutive PAS
groups are sufficiently distinct). For all tissue-specific PASs,
we next identified the specific tissue(s) that have significantly
differentf values by using an outlier detection method called
ROKU (see Materials and Methods for details). The ROKU
method is based on Akaike’s information criterion (AIC)
(Kadota et al. 2006), and it can handle various situations, in-
cluding the “up-type” in which a PAS is highly used in a sin-
gle or small number of tissues, the “down-type” in which a
PAS is depleted in a single or a few tissues, and the “mix-
type” in which a PAS is highly used in some tissues and de-
pleted in others. For example, the proximal and intermediate
PASs in theMgea5 gene have H′ values of 0.98 and 1.01, and
their f values are significantly different in testis and B cells,
respectively (Fig. 1B). Thus these sites were designated as
testis- and B cell-specific PASs.

Characteristics of tissue-specific PASs

We next characterized the tissue-specific PASs in detail and
made several interesting observations. First, different tissues
showed drastically different levels of tissue-specific PAS selec-
tion (Fig. 2A). Of the seven tissues in this data set, the breast
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and ovary had the lowest number of tissue-specific PAS
usage. On the other hand, 493 and 423 PASs showed tis-
sue-specific usage in naïve B cells and testis, respectively.
Surprisingly, brain and ESC have intermediate levels of tis-
sue-specific PASs (Fig. 2A). Second, we have carried out
gene ontology (GO) analyses of the genes that contain
tissue-specific and constitutive PAS in this data set. Tissue-
specific PAS-containing genes showed significant overrepre-
sentation of genes that function in protein modification, es-
pecially phosphorylation, and intracellular trafficking (Fig.
2B). In contrast, constitutive PAS-containing genes are
most enriched with genes that function in nucleic acid me-
tabolism and mRNA processing (Fig. 2B). Third, we have ex-
amined the relative positions of tissue-specific PASs within
their host genes and found that the proximal (blue bars)
and intermediate (green bars) PASs are more likely to be reg-
ulated in a tissue-specific manner than distal sites (brown
bars) (compare constitutive and tissue-specific columns,
Fig. 2C). Fourth, we have compared the sequence conserva-
tion levels based on phastCons scores of the 200 nucleotides
(nt) region spanning the cleavage sites of tissue-specific or
constitutive PASs (Siepel et al. 2005). Constitutive alternative
PASs showed similar conservation levels (Fig. 2D, bottom
panel). In contrast, tissue-specific PASs tend to be less con-
served than constitutive sites from the same genes regardless
of their relative positions (Fig. 2D, top and middle panels).
Finally, we compared the nucleotide composition between
tissue-specific and constitutive PASs. Constitutive PASs con-
tain a highly A-rich region centered around −20 nt and a U-
rich region at approximately +25 nt (relative to the cleavage
sites) (Supplemental Fig. 1A). Interestingly, although tissue-
specific PASs also contain an A-rich peak upstream of the
cleavage sites, there is a significant decrease in A-levels near
−10 nt and a concomitant increase of Us in the same region
(Supplemental Fig. S1B, marked by arrows). Consistently,
similar patterns were also observed in the nucleotide compo-
sition of B cell- and testis-specific PASs (Supplemental Fig.

S1C,D). Together, these results suggest
that tissue-specific PASs differ from con-
stitutive sites in multiple aspects and
such information may be harnessed for
building a computational model for dis-
tinguishing tissue-specific and constitu-
tive PASs.

Assemble the poly(A) code and define
key features for tissue-specific PAS
prediction

Using the tissue-specific and constitutive
PAS data sets that we have compiled, we
next set out to assemble a machine-learn-
ing algorithm for predicting whether any
given PAS is used in a tissue-specific or
constitutive manner. To this end, we

have compiled a compendium of 658 RNA features, covering
major parameters that are known to impact PAS selection or
have the potential to do so (the full list is included in
Supplemental Table S1, see Materials and Methods for de-
tails). They include the core PAS cis elements, known and
potential regulatory motifs within and adjacent to PASs, se-
quence conservation levels, secondary structures, nucleo-
some occupancy, and the PAS context. Based on these
features, we then carried out supervised classification to dis-
tinguish between tissue-specific and constitutive PASs using
various machine-learning algorithms.
As mentioned earlier, we have identified 2276 tissue-

specific PASs and 3903 constitutive PASs. To equalize the
number of PASs, we randomly sampled 2276 samples from
the pool of 3903 constitutive PASs. Given the relatively lim-
ited data, we used a 10-fold cross validation procedure. We
held out 552 samples for model testing, and used the remain-
ing PASs with 10-fold cross validation to learn the optimal
hyper parameters for each prediction model. We used both
accuracy and the area under the ROC curve (AUC) to evalu-
ate the classification performance. Accuracy is the proportion
of true results, including both true positive and true nega-
tives. AUC is determined by true-positive rate (TPR) and
false-positive rate (FPR).
We applied several classifier models, including logistic re-

gression (LR), linear support vector machine with regulariza-
tion (LSVM), SVM with WD-kernel (WDSVM), and
adaptive boosting (AdaBoost). The WDSVM model extracts
sequences around PAS and uses WD-kernel to compute sim-
ilarities between two sequences while taking positional infor-
mation into account (Hafez et al. 2013). In comparison,
AdaBoost builds a sequence of weak base estimators and
combines them in a weighted manner by iteratively refining
the weight assigned to each sample until optimal perfor-
mance is achieved (Freund and Schapire 1997). As shown
in Figure 3A, the cis element-based WDSVM model per-
formed poorly (AUC = 0.64), suggesting that PAS sequences

FIGURE 1. Identification of tissue-specific poly(A) sites. (A) A histogram of PASs at each adjust-
ed entropy score (H′). The red area corresponds to tissue-specific PASs (H′ < 1.8) and green to
constitutive (H′ > 2.2). (B) PAS usage frequency for the Mgea5 gene as determined by 3′ seq.
The proximal and intermediate PASs were identified as tissue-specific for testis and B cells,
respectively.

Deciphering the poly(A) code

www.rnajournal.org 3

 Cold Spring Harbor Laboratory Press on April 19, 2016 - Published by rnajournal.cshlp.orgDownloaded from 

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.055681.115/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.055681.115/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.055681.115/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.055681.115/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.055681.115/-/DC1
http://rnajournal.cshlp.org/
http://www.cshlpress.com


are not sufficient for predicting tissue-specific APA. The
two linear models with our assembled RNA features as
input yielded better performances (AUC ≥ 0.8). The best
performance was achieved with AdaBoost (accuracy =
85.3%, AUC = 0.92). In addition to the general tissue-specif-
ic PASs, we have also applied the same algorithm and feature
set to predicting PASs that are preferentially used or avoided
in B cells and testis, the only two tissues with a sufficiently
large number of tissue-specific PASs in our data set. As
shown in Figure 3B, our poly(A) code achieved similar accu-
racy levels in predicting B cell- or testis-specific PASs as it did
for general tissue-specific PASs. These results demonstrate
that our AdaBoost classification model outperformed the lin-
ear models, and can be used to distinguish between tissue-
specific and constitutive PASs with high accuracy.

We next wanted to use our poly(A) code to define the key
feature(s) for the prediction performance. To this end, we
carried out predictions with the same AdaBoost classifier
model using individual features and compared their predic-

tion performances. As shown in Figure 3B, these individual
features led to variable prediction accuracy levels. For exam-
ple, PAS context alone gave a prediction accuracy of over
80%. In sharp contrast, RNA secondary structure yielded
the lowest accuracy of ∼50%, similar to random selection.
Based on this analysis, the top four features for predicting tis-
sue-specific PASs are PAS context, 6-mer motifs, conserva-
tion levels, and PAS signal sequence (Fig. 3B).
To determine the robustness of our model, we have tested

it on another RNA 3′ sequencing data set. This data set was
generated using the Helicos Direct RNA sequencing platform
and covers five human tissues, including breast, colon, kid-
ney, liver, and lung (Lin et al. 2012). Using this data set,
our model gave a prediction accuracy of 78.6% (AUC =
0.83, Supplemental Fig. S2). Furthermore, PAS context was
again one of the top features for the prediction performance
(73.5% accuracy, AUC = 0.77, Supplemental Fig. S2).
Therefore, our poly(A) code gave comparable performance
on two independently generated data sets and consistently

FIGURE 2. Functional characterization of tissue-specific poly(A) sites. (A) A heat map of standardized usage frequency for all tissue-specific PASs in
all seven tissues. (B) Gene ontology analyses of tissue-specific and constitutive PASs. (C) The proportions of proximal, intermediate, and distal PASs in
constitutive PASs, or PASs that are specific to each tissue, or all tissue-specific (TS) PASs. (D) The average phastCons scores for tissue-specific (red
lines) and the corresponding constitutive PASs (blue lines) from the same genes.
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identified PAS context as a key feature for distinguishing tis-
sue-specific and constitutive PASs.
APA is subject to regulation by trans-acting factors, includ-

ing the core mRNA 3′ processing factors and various RNA-
binding proteins (Shi and Manley 2015). As these factors
are often expressed at different levels in different tissues,
they are expected to impact tissue-specific APA profiles. To
explore this, we first compared the expression levels (based
on the normalized 3′ sequencing read counts) of 106 trans-
acting factors in all seven tissues. They include 26 core 3′

processing factors and 80 RNA-binding proteins whose
RNA-binding specificities have been characterized (Shi
et al. 2009; Ray et al. 2013). Indeed, great variations were ob-
served in their mRNA levels (Supplemental Fig. S3).
Next we wanted to determine whether the expression pat-

terns of trans-acting factors could be used for predicting
tissue-specific APA. For this purpose, we implemented a ma-
chine-learning model for predicting whether a tissue-specific
PAS is utilized in a specific tissue or not. To train and test this
model, we used the expression levels of the 106 trans-acting
factors together with the original 658 features as input with-
out specifying the tissue source. Note that here we had to use
a distinct machine-learningmodel to study the effect of trans-
acting factors, because our original model was designed for
distinguishing between tissue-specific and constitutive PASs
as two general groups. In contrast, this new model has to
be able to predict PAS usage in specific tissues. To train the
new model, we determined the usage of each of the 2276 tis-
sue-specific sites in each of the seven tissues, labeling a site as
either positive if the PAS is utilized in that tissue, or as neg-
ative if the PAS is not used. The entire data set, consisting
of 15,932 samples, was then separated into a training data
set (3000 positive and 10,000 negative PASs) and a test data
set (762 positive and 2170 negative PASs). We applied
AdaBoost to train ourmodel using either the original 658 fea-

tures or these features plus the expression
levels of all trans-acting factors. We
found that the model using the original
658 features performed poorly (AUC =
0.359). Adding the trans-acting factor
levels to the feature set led to significantly
higher prediction accuracy (AUC =
0.807). These results suggest that the ex-
pression pattern of trans-acting factors is
a useful feature for predicting tissue-spe-
cific APA.

PAS context is a major determinant of
regulated APA

Our poly(A) code analyses revealed that
PAS context is a key feature for distin-
guishing tissue-specific and constitutive
PASs (Fig. 2B; Supplemental Fig. S2).
PAS context is a composite feature that

includes the relative position of a PAS within the gene, the
distance from neighboring PASs, the distance to neighboring
splicing sites, and the distance to the stop codon (see
Materials and Methods for details). One of the main features
in PAS context is the distance between a PAS and its nearest
neighboring PAS. We next compared the distance between
tissue-specific or constitutive PASs and their nearest neigh-
boring sites. As shown in Figure 4A, the median distance be-
tween constitutive PASs and their closest neighboring PASs is
∼680 nt. In contrast, tissue-specific PASs are 1∼1.4 kb away
from their nearest neighboring PASs, significantly greater
than that of constitutive PAS (P = 3.4 × 10−4–3.4 × 10−54,
K–S test) (Fig. 4A). Among the seven tissues, ESC-specific
PASs are the farthest from their neighboring sites with a
median distance of ∼1.4 kb. These results suggest that tis-
sue-specific PASs tend to be located farther away from their
neighboring PAS compared to constitutive PASs. Consistent
with this conclusion, when all tissue-specific PASs were con-
sidered together, we detected a positive correlation between
the distance of neighboring PASs and the percentage of tis-
sue-specific PASs (r2 = 0.56) (Fig. 4B).
As tissue-specific PAS selection is mediated, at least in part,

by trans-acting regulatory proteins, we next tested whether
the distance to the nearest neighboring PAS also plays a
role in APA control by known regulators. Recent studies
have characterized the APA regulation mediated by a number
of mRNA 3′ processing factors, including CPSF, CstF, and
CFIm (Martin et al. 2012; Yao et al. 2012; Lackford et al.
2014; Li et al. 2015). Although these factors are believed to
play a general role in mRNA 3′ processing, depletion of these
factors led to APA changes of a specific set of transcripts and
it remains unclear why certain APA events are more sensitive
to the protein levels of core mRNA 3′ processing factors.
Since our analyses suggest that longer distance between alter-
native PASs is a strong predictor of tissue-specific APA

FIGURE 3. Assembling and testing the poly(A) code. (A) ROC curves for random selection and
the four models tested, including linear regression (LR), linear SVM (LSVM), SVMwithWD ker-
nel (WDSVM), and adaptive boosting (Adaboost). Prediction accuracy and the area under the
curve (AUC) are listed. (B) The accuracy of predicting all tissue-specific (blue columns), or B
cell-specific (red columns), or testis-specific PASs (green columns) using different feature sets
as listed on the x-axis.
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regulation, we compared the distance between alternative
PASs that are regulated by specific 3′ processing factors and
those that are not affected. Remarkably, the mean distance
between alternative PASs that are regulated by CFIm68 (a
subunit of the CFIm complex), Fip1 (a subunit of the
CPSF complex), and CstF64/τ (subunits of the CstF com-
plex) are all significantly longer than those of nontargets
(Supplemental Fig. S4). Together, these results strongly sug-
gest that alternative PASs that are far from their neighboring
sites are more likely to be regulated. Therefore, the distance
between alternative PASs is a key determinant for the sus-
ceptibility of APA events to regulation.

The relative position of a PAS within the gene is another
important feature of the PAS context. When we compared
the relative positions of B cell-, testis-, and all tissue-specific
PASs, we found some interesting differences. Over half (56%)
of B cell-specific PASs are proximal or intermediate PASs
found within an intron, and usage of these PASs are expected
to produce an mRNA that encodes a distinct protein (Fig.
4C). For example, Cnst transcripts are primarily polyadeny-

lated at the annotated PAS within the ter-
minal exon to produce full-length
mRNAs inmost tissues (Fig. 4D, left pan-
el). However, in B cells, a PAS within the
penultimate intron is preferentially used,
and the resultant mRNA is predicted to
encode a different protein. In contrast,
78% of testis-specific PASs are proximal
or intermediate PASs within the annotat-
ed terminal exon (Fig. 4C). Thus, similar
to the Klf4 gene shown in Figure 4D and
the Mgea5 gene shown in Figure 1B, the
majority of testis-specific APA events
lead to shorter 3′ UTRs without affecting
the protein coding regions. These results
revealed that the PAS context signifi-
cantly differ for B cell- and testis-specific
PASs and indicated that APAmay be reg-
ulated by different mechanisms in these
tissues. Together, these results suggest
that PAS context, including the distance
between alternative PASs and the relative
positions of alternative PASs, is a critical
feature for determining tissue-specific
APA profiles.

DISCUSSION

In this study, we first identified thou-
sands of tissue-specific PASs based on
multiple published RNA 3′ sequencing
data sets. Using these data sets and over
600 RNA features, we trained and tested
various machine-learning algorithms
for predicting tissue-specific PASs and

achieved ∼85% accuracy using an AdaBoost algorithm.
Finally, we compared the contribution of different RNA fea-
tures to the prediction performance of our model and iden-
tified key features, including PAS context, for determining
tissue-specific APA regulation. These results represent an im-
portant step in deciphering the “poly(A) code” and their im-
plications are discussed below.
Computational prediction of APA has been a major goal

for the mRNA 3′ processing field, but surprisingly little pro-
gress has beenmade. Previous studies havemainly focused on
PAS prediction. For example, earlier studies identified a
number of cis elements using the EST-based PAS database,
and position weight matrices of these cis elements were
then used as input features for a hidden Markov model or
support vector machine (SVM) to predict PASs (Tabaska
and Zhang 1999; Cheng et al. 2006; Akhtar et al. 2010;
Kalkatawi et al. 2012; Xie et al. 2013). A recent study built
an SVM with string kernels based on high throughput se-
quencing data and improved the PAS prediction perfor-
mance (Hafez et al. 2013). Although these studies represent

FIGURE 4. Key features that distinguish constitutive and tissue-specific APA events. (A) A box
plot showing the distribution of the distance between neighboring PASs for tissue-specific and
constitutive PASs. The P-values (K–S test) are listed for the difference between tissue-specific
and constitutive PASs. (B) The relationship between x (the distance between neighboring
PASs) and y (the percentage of tissue-specific PAS when they are located at that distance from
its neighboring PAS). r2 = 0.56. (C) Percentage of proximal/intermediate PASs in the terminal
exon (blue bars) or proximal/intermediate PASs in an intron (red bars) in B cell-, testis-, or all
tissue-specific PASs. (D) Integrated Genome Viewer (IGV) tracks of 3′ sequencing results for
Cnst and Klf4 genes in seven tissues.
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important advances in the field, they also have multiple lim-
itations. For examples, all previous models used cis elements
near PAS as the sole or main feature. However, only several cis
elements have been experimentally shown to contribute to
PAS definition, and our current understanding of the rela-
tionship between RNA sequence and PAS strength remains
rudimentary (Tian and Graber 2012). In addition, similar
to alternative splicing (Barash et al. 2010), other features
are likely important for determining APA outcomes, but
were not considered in earlier studies. Finally, previous stud-
ies used an EST-based PAS data set or a very limited high
throughput-sequencing data set that only contained several
tissue types (Tabaska and Zhang 1999; Cheng et al. 2006;
Akhtar et al. 2010; Kalkatawi et al. 2012; Hafez et al. 2013;
Xie et al. 2013). As a result, although these earlier models
achieved reasonable performance in distinguishing constitu-
tive PASs from background genomic or UTR sequences, they
are not suitable for predicting tissue-specific PASs.
In this study, we took several steps to overcome the limita-

tions associated with earlier studies. First, we have trained
and tested our computational models using multiple high-
throughput sequencing data sets of tissue-specific PASs that
had higher coverage of different tissue types (Lin et al.
2012; Lianoglou et al. 2013). Indeed our model achieved
higher prediction accuracy with the Mayr laboratory data
set, which contains seven tissues, than with the John labora-
tory data set with only five tissues, further highlighting the
importance of data coverage. To further improve the perfor-
mance of the poly(A) code, it will be important for future
studies to generate high-quality and comprehensive 3′ se-
quencing data from normal tissues as well as patient samples.
Second, we have tested a number of different machine-learn-
ing algorithms, including those used in previous studies. Our
results demonstrated that AdaBoost, which has not been ap-
plied to APA analyses before, outperformed all of the previ-
ously used algorithms (Fig. 3A). Finally, we have compiled
over 600 features and used them for our modeling. Our
data suggest that, instead of the known cis elements within
the PAS regions, PAS context was the most informative fea-
ture in distinguishing tissue-specific and constitutive PASs
(Fig. 3B). Adding the expression levels of trans-acting factors
to the feature list can further improve the prediction accuracy
of the poly(A) code. Therefore, to improve the performance
of the poly(A) code, it will be critical to further expand and
refine the RNA feature repertoire.
Our poly(A) code predicts tissue-specific PASs based on

over 600 features. Through our computational modeling,
we have identified the PAS context as the most informative
feature for distinguishing tissue-specific and constitutive
PASs (Fig. 3B). As mentioned earlier, PAS context is a com-
posite feature that includes APA types and the distance from
neighboring splice sites and PASs. Importantly, our results
suggest that there is a positive correlation between the dis-
tance between neighboring PASs and the probability of tis-
sue-specific APA (Fig. 4B). This is due, at least in part, to

the fact that the alternative PASs that are located far from
each other are more likely to be regulated by trans-acting
factors such as the core mRNA 3′ processing factors
(Supplemental Fig. S2). This is consistent with a number of
published studies. For example, we first provided evidence
that the distance between neighboring PASs plays an impor-
tant role in determining the mode of regulation by an APA
regulator Fip1 (Lackford et al. 2014). This conclusion was
further substantiated by a large-scale analysis showing that
the APA events targeted by various regulators tend to have
longer distances between neighboring PASs (Li et al. 2015).
Although the underlying mechanism for this phenomenon
is still poorly understood, the effect of distance between
neighboring PASs on APA could be, at least in part, due to
the fact that promoter-proximal PASs have an intrinsic ad-
vantage over the distal sites as they are transcribed earlier
and thus have more time to be recognized by the 3′ process-
ing machinery (Shi 2012). The magnitude of such an advan-
tage is determined by the interval between the times when
these PASs are transcribed. Longer distance between neigh-
boring PASs would give the proximal sites a greater advantage
and, in turn, more room for regulation.
In addition to the distance between neighboring PASs, the

relative position of a PAS with the gene is another important
feature in PAS context. Our analyses revealed interesting dif-
ferences in APA types in different tissues. For example, naïve
B cells display higher usage of many intronic PASs, resulting
in the production of distinct protein product (Fig. 4C,D).
In keeping with this, usage of intronic PASs in B cells has pre-
viously been reported for the IgM transcripts (Alt et al. 1980;
Early et al. 1980; Rogers et al. 1980). In contrast, the majority
of testis-specific PASs are proximal/intermediate PASs within
the terminal exon, leading to the production of mRNAs
that encode the same proteins but have shorter 3′ UTRs
(Fig. 4C,D). Therefore, given the different PAS context, tis-
sue-specific APA profiles have distinct functional impact
and are likely regulated by different mechanisms. For exam-
ple, APA events involving intronic PASs, such as many B cell-
specific PASs, are more likely to be regulated by both 3′ pro-
cessing factors as well as splicing factors, such as U1 snRNP
(Kaida et al. 2010; Berg et al. 2012; Li et al. 2015).
In summary, we have assembled a poly(A) code for accu-

rately distinguishing tissue-specific PASs from constitutive
sites based on over 600 RNA features. Our results provided
evidence that computational modeling is a useful tool not
only for predicting tissue-specific APA patterns, but also
for studying the underlying regulatory mechanisms.

MATERIALS AND METHODS

RNA 3′ sequencing data sets used in this study were downloaded
from the NCBI Sequence Read Archive (SRP029953) (Lianoglou
et al. 2013) or from http://johnlab.org/xpad/ (Lin et al. 2012). All
the collected PASs, associated features and source code for predic-
tion models are available at https://github.com/uci-cbcl/polyAcode.
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Identify tissue-specific and constitutive PASs

To identify tissue-specific and constitutive PASs, we first calculated
the usage frequency (f) for each PAS. Specifically, we normalized
the read counts by sequencing depth (counts per million) in each
tissue. We then calculated f for each PAS located in an annotated
gene by dividing the read counts for this PAS by the total read
counts for the gene. We filtered extremely infrequently used PASs,
whose f values are <5% in all tissues. Next, we normalized f values
across seven different tissues to obtain a probability vector and cal-
culated the Shannon entropy scores (H) as the measure of tissue-
specific usage:

H = −
∑7

t=1

pt log2( pt),

where pft is the usage frequency of the PAS in tissue type t. We in-
troduced one-step Tukey biweight (Tbw) to adjust the original,
f′
t = |ft − Tbw| (additional details on Tukey biweight calculation

can be found in Supplemental Methods). We then calculated the
adjustedH′ based on f′

t using the same formula. Finally, with strin-
gent thresholds, we have designated 2276 PASs as tissue-specific
(H′ < 1.8) and 3903 PASs as constitutive (H′ > 2.2).

To identify the tissues in which these PASs showed significantly
different usage frequency, we applied ROKU (Kadota et al. 2006).
We first normalized the f value of each PAS across different tis-
sues to be zero mean and unit variance, and ranked all tissues by
the normalized values in the order of increasing magnitude. For
each PAS, we considered three possible types of tissue-specific pat-
terns: (i) “up-type”: a PAS is highly utilized in one or a small
number of tissues compared to the rest; (ii) “down-type”: a PAS
is depleted in one or a few tissues; (iii) “mix-type”: neither (i)
nor (ii). We enumerated all possible outlier patterns with different
combinations of tissues. For each combination, we computed a
statistic:

U = 1

2
AIC = n log d+

��
2

√
× s× log n!

n
,

where s and n denote the number of outlier and nonoutlier tissues,
respectively, and δ denotes the standard deviation of the scores as-
signed with n nonoutlier tissues (Kadota et al. 2003). The first
term in the statistic measures the variance of nonoutliers, while
the second term measures the model complexity. The combination
with the lowest U was assigned to be the best tissue-specific
pattern.

Compendium of putative regulatory features

We assembled a compendium of 658 RNA features, covering all ma-
jor parameters known or with great potential to influence poly(A)
regulation, including motifs of known polyadenylation regulator,
unknown but potential motifs, evolutionary conservation level, sec-
ondary structure information, nucleosome positioning, and features
describing transcript structures. For trans-acting factors, normalized
3′ seq read counts for 106 factors were used to represent their ex-
pression levels. The 764 new features were jointly standardized by
subtracting by mean and dividing by standard deviation. The com-
plete list of features is available at https://github.com/uci-cbcl/
polyAcode/blob/master/features_annotation.xls.

Prediction models

We applied several classifier models to distinguish tissue-specific
and constitutive PASs based on the 658 RNA features and the se-
quence context of each PAS, including logistic regression (LR), lin-
ear support vector machine (LSVM) with regularization, SVM with
WD-kernel (WDSVM), and Adaboost (adaptive boosting).
Adaboost achieved the best performance and was used for down-
stream analysis. It is a boosting algorithm and has been shown to
solve many classification problems (Freund and Schapire 1997).
Specifically, Adaboost fits a sequence of weak learners, such as small
decision trees, on weighted training data. The predictions from all of
the weak learners are combined through a weighted majority vote,
thatweak classifierswith lower classification errorsusually have high-
er weights, to produce the final prediction. All the predictionmodels
were implemented using Python and Scikit-learn (http://jmlr.csail.
mit.edu/papers/v12/pedregosa11a.html). The WDSVM model was
implemented using shogun (http://www.shogun-toolbox.org/).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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