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ABSTRACT OF THE DISSERTATION

Accelerating HPC Applications Using Machine Learning-based Approximation

by

Wenqian Dong

Doctor of Philosophy in Electrical Engineering & Computer Science

University of California Merced, 2022

Associate Professor Dong Li, Chair

Historically, numerical analysis has formed the backbone of supercomputing for decades

by applying mathematical models of first-principle physics to simulate the behavior of sys-

tems from subatomic to a galactic scale. Recently, scientists have begun experimenting

with a new approach to understanding complex systems using machine learning (ML) pre-

dictive models, primarily Deep Neural Networks (DNN), trained by the virtually unlimited

data sets produced from traditional analysis and direct observation. Early results indicate

that these “synthesis models” combining ML and traditional simulation, can improve ac-

curacy, accelerate time to solution and significantly reduce costs.

In this thesis, we study how to enhance the usability of machine learning models to

accelerate HPC applications. We first study an application, the Eulerian fluid simulation.

The Eulerian fluid simulation is an important HPC application. The current methods that

accelerate the fluid simulation with Neural Networks (NNs) lack flexibility and generaliza-

tion. In this application, we tackle the above limitation and aim to enhance the applicability

of NNs in the Eulerian fluid simulation. We introduce Smart-fluidnet, a framework that au-

tomates model generation and application. Given an existing NN as input, Smart-fluidnet

generates multiple NNs before the simulation to meet the execution time and simulation

quality requirement. During the simulation, Smart-fluidnet dynamically switches the NNs

to make best efforts to reach the user’s requirement on simulation quality. Evaluating with

20,480 input problems, we show that Smart-fluidnet achieves 1.46x and 590x speedup com-

paring with a state-of-the-art NN model and the original fluid simulation respectively on an

NVIDIA Titan X Pascal GPU, while providing better simulation quality than the state-of-

xiii



the-art model.

Second, we explore another HPC application, the powergrid simulation. The basic

powergrid simulation is an electricity generation model to minimize cost with generation

constraints, line flow constraints, and bus voltage constraints. We use a machine learn-

ing model to generate a warm start startpoint solution for the power grid simulation, in

order accelerate the simulation. We develop a framework, Smart-PGsim, which gener-

ates multitask-learning (MTL) neural network (NN) models to predict the initial values

of variables critical to the problem convergence. MTL models allow information sharing

when predicting multiple dependent variables while including customized layers to pre-

dict individual variables. We show that, to achieve the required accuracy, it is paramount

to embed domain-specific constraints derived from the specific power-grid components in

the MTL model. Smart-PGsim then employs the predicted initial values as a high-quality

initial condition for the power-grid numerical solver (warm start), resulting in both higher

performance compared to state-of-the-art solutions while maintaining the required accu-

racy. Smart-PGsim brings 2.60× speedup on average (up to 3.28×) computed over 10,000

problems, without losing solution optimality.

Third, we build a tool that can help the domain scientist automatically apply machine

learning models to HPC applications. We introduce a framework, named AutoHPC-net,

to democratize the usage of machine learning-based approximation. AutoHPC-net is the

first end-to-end framework that makes past proposals for machine learning-based approx-

imation practical and disciplined. AutoHPC-net introduces a workflow to address unique

challenges when applying the approximation, such as feature acquisition and meeting the

application-specific constraint on computation quality. Evaluating with a set of HPC ap-

plications that previously cannot run on GPU, we show that using AutoHPC-net, those

applications can leverage NN and GPU to achieve 4.34× speedup on average (up to 7.39×
speedup and with data preparation cost included) while meeting the application-specific

constraint on computation quality.

As the future work, we propose the following two research tasks. First, we plan to

exploit another important HPC application, i.e., a DFT-based ab initio quantum chemistry

method(DQC). DQC is computation-intensive and involves frequent irregular memory ac-

cess, which is promising to be benefited from NN based approximation. Second, we plan to

implement a framework which can automatically identify and replace promising code re-

xiv



gions (which is time-consuming and frequently invoked), and automatically generate suit-

able NN models to approximate the code regions.
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Chapter 1

Introduction

Large-scale scientific simulations drive scientific discovery across many disciplines.

Those scientific simulations increasingly face performance problems, because of hardware

heterogeneity, deep memory hierarchy, and massive thread-level parallelism. Addressing

those problems often requires domain scientists to use sophisticated compiler and runtime

techniques to optimize High performance computing (HPC) programs. However, domain

scientists are often not skilled computer scientists, and may find program optimization

time-consuming and daunting. In this project, we study how to use an alternative approach,

machine learning (ML) to effectively improve performance of scientific simulation without

losing simulation quality.

Machine learning, as a tool to learn and model complicated (non)linear relationships

between input and output data sets, has shown preliminary success in some HPC problems.

Using machine learning, scientists are able to augment existing simulations by improv-

ing accuracy and significantly reducing latency. For example, scientists working to detect

neutrinos at Fermi National lab have realized a 33% improvement in neutrinos detection

using a convolutional neural network [129]; Scientists achieve Bose-Einstein Condensates

state in only 10-12 experiments using machine learning instead of 140 experiences using

traditional models, which reduces the simulation time by 10 times [4]. Other successful

examples of using machine learning for HPC include recognizing extreme weather events

in large-scale climate simulations at Lawrence Berkeley National Lab (LBNL) [127], and

precision medicine for cancer [3] at Argonne National Lab.

1
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1.1 Research Chanllenges

The current methodology to apply machine learning to scientific simulations faces

the following challenges. First, there is a lack of a systematic approach to ensure high

simulation quality when using machine learning. To be used as a scientific methodology

for common practice in scientific and engineering simulation, ML-based approximation

must be robust and reliable.

Second, the current construction of ML models pays special attention to model accu-

racy, but the execution time of ML models does not attract enough attention. The ultimate

goal of ML-based approximation is to reduce the execution time of HPC applications. How

to minimize execution time without impacting computation accuracy is a challenge.

Third, the current ML-based approximation (especially neural network (NN)-based

approximation) to accelerate HPC applications lacks a generalization ability. Typically,

once an NN has been selected, this NN model is used for all input problems, which either

leaves the performance opportunities on the table, have large simulation quality violations,

or both. Research is needed to improve the coverage of input problems, such that the NN

modeling can be generally applied to provide high quality approximation for various input

problems with minimized execution time.

At last, there is no systematic approach to automate the application of NN models

to scientific simulations. Traditionally, the NN model is manually constructed by com-

puter scientists without domain knowledge and without the awareness of the requirements

of domain scientists. Automating the model construction such that domain scientists can

easily build the model without caring about NN topology and data transformation is very

beneficial to enhance the usability of NN for HPC applications.

1.2 Research Focus

In particular, my research focuses on using NN-based computation approximation to

accelerate HPC applications. NN-based approximation is used to bring significant perfor-

mance improvement to the application without violating numerical simulation correctness

and stableness, by replacing a solver or an execution phase (e.g., PCG [165] and FFT [88])

in the HPC application while using the same input/output as the solver or the execution

phase. I design efficient ML algorithms and runtime systems. Those algorithms are inte-
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grated into HPC applications to approximate computation at runtime with provable guar-

antees on computation quality. My research includes parallel system designs and compu-

tational complexity analysis. My work has given new insights on NN approximability and

interpretability in the context of HPC applications. In particular, I work on the following

research topics.

1.2.1 Domain-Specific, NN-based Computation Approximation to HPC

Applications

By using NN as a tool to learn and model complicated (non-)linear relationships be-

tween input and output data sets, scientists have shown preliminary success in some HPC

problems (e.g., detecting neutrinos [130], climate simulations [128], and fluid dynamic

simulation [41]). Compared to domains such as image recognition and natural language

processing (NLP), scientific HPC applications require a level of precision and robustness

that may not be provided by most of the current ML methods employed in other domains.

My work takes a principled approach toward domain-specific, NN-based computation ap-

proximation, and focuses on adaptive approximation and incorporating physical informa-

tion to meet the precision and robust requirement of HPC applications. I depict the two

focuses as follows.

• Adaptive approximation. The current method of applying NN-based approxima-

tion to HPC applications lacks reliability and flexibility. Given a simulation code,

the current method usually generates and applies just one NN model to approxi-

mate computation. At runtime, this model is used throughout the whole execution

to approximate some target computation. This method ignores the fact that replac-

ing the target computation at different execution phases of the application can have

different implications on the simulation quality. At some execution phase, using a

different NN model may be able to generate higher simulation quality without losing

performance. Hence, using multiple NN models instead of one is a better strategy.

However, with just one single NN model, the current method lacks such flexibility.

• Incorporating domain knowledge. Traditionally, the NN model is manually con-

structed by computer scientists as a black box with limited or no domain knowledge

and without considering domain requirements. Domain knowledge, such as some
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physical laws (e.g. Nodal Power Balance law in power grid system), has been largely

ignored during the construction of NN models. However, including this knowledge

into the NN model can not only improve modeling accuracy but also improve inter-

pretability of the model.

Based upon adaptive approximation and the strategy of incorporating domain knowl-

edge, I studied two mission-critical HPC applications: the Eulerian fluid simulation and

power grid simulation, depicted as follows.

Application 1: Adaptive NN-Based Approximation to Accelerate Eulerian Fluid Simu-

lation. The current methods of using neural networks to approximate the Eulerian fluid

simulation have fundamental limitations: Given a fluid simulation code with the NN model

applied, there is no guarantee that the application can run the simulation to completion and

meet the requirement on simulation quality for every input problem. Also, using a single

NN model for all input problems either leaves the performance opportunities on the table,

have large simulation quality violations, or both.

In our work [165], we tackle the above limitation and introduce Smart-fluidnet [41],

a framework that automates NN model generation and application to the Eulerian fluid

simulation. Given an existing NN as input, Smart-fluidnet generates multiple NNs before

the simulation to meet the execution time and simulation quality requirement from the

user. During the simulation, Smart-fluidnet dynamically switches the NNs to make the best

efforts to reach the user’s requirement on simulation quality. Evaluating with 20,480 input

problems, we show that Smart-fluidnet achieves 1.46x and 590x speedup, compared with

a state-of-the-art NN model and the original fluid simulation respectively on an NVIDIA

Titan X Pascal GPU, while providing better simulation quality than the state-of-the-art

model.

Application 2: Using NN to Accelerate AC-OPF Power Grid Simulation. In this work [42],

we study the implication of using ML techniques to accelerate the power-grid simulations.

We study the structure of the NN model to be used, the relative importance of the model fea-

tures selected, and, most importantly, the impact of incorporating physics constraints on the

performance of the NN model. Specifically, we develop a framework, SmartPGsim [42],

which generates a multitask-learning (MTL) NN model to predict the initial values of vari-

ables critical to the convergence of the AC-OPF power grid simulation.

To study the importance of feature, we perform a sensitivity study to understand the
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impact of the NN output accuracy on execution time and convergence, by applying precise

or imprecise values to features. This sensitivity study provides guidance on choosing a cor-

rect and efficient NN topology. Based on sensitivity study, we build an MTL model. The

MTL model includes layers shared between multiple prediction tasks (i.e., predicting the

values of multiple initial variables with dependency), which allows information communi-

cation between tasks; The MTL model also includes separated layers to enable customized

design for each prediction task. Also, to achieve the accuracy required by the simulation,

Smart-PGSim embeds domain-specific constraints derived from the power-grid simulation

into the MTL model. In particular, Smart-PGSim imposes those constraints into the train-

ing objective function (soft constraints) or into the last layer of the MTL model based on

transformation of equality and inequality in the constraints (hard constraints).

SmartPGsim employs the initial values predicted by the MLT model as a high-quality

initial condition for the power-grid numerical solver, resulting in both higher performance

compared to state-of-the-art solutions while maintaining the required accuracy. SmartPGsim

brings 2.60× speedup on average (up to 3.28×) computed over 10,000 input problems,

without losing solution optimality. This work is based on the collaboration with the Pa-

cific Northwest National Laboratory (PNNL), and highlighted at the PNNL and DOE web-

sites [125, 39]. This work leads to results of both theoretical and practical impacts.

1.2.2 Automation of NN-based Approximation

Although using NN-based approximation to accelerate HPC applications is promising,

there is a lack of systematic tools that can democratize the use of NN-based approximation.

In practice, once the domain scientist selects a code region in an HPC application to be

approximated, he/she has to manually observe the code region, evaluate which variables in

the code region are good to be taken as NN features, and select an appropriate NN topology

based on selected features. This process is labor-intensive, and could be repeated multiple

times before the NN model is finalized. Even worse, the domain scientist may not have

sufficient knowledge on NN models. Specifically, the gap between domain scientist and

automatic NN-based approximation can be summarized as follows.

• Feature extraction. Identifying the inputs/outputs of the NN model is difficult. In

NN-based approximation, we determine the input/output variables of the approxi-

mated code region, and use them as inputs/outputs of the NN models. The input
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variables of the code region are read inside the code region to update other variables;

the output variables are updated in the code region and used after the code region.

Manually examining the code region to identify those variables is difficult, because

the number of variables could be large. There is no such a tool available to provide

end-to-end support to simplify the variable identification. Also, to reliably and effi-

ciently use the NN model in scientific applications, we require that the ML features

have the ability to represent the important but trimmed attributes to guarantee the

quality in the outcomes of scientific applications. The quality of outcomes include

the ML prediction accuracy and cost. Hence, our goal is to find “good” features keep-

ing important physical information to guarantee the simulation quality but removing

redundant features to reduce the overhead of NN computation in HPC applications.

• Coordination between feature extraction and NN topology construction. The

feature reduction and selection of NN model topology are tightly coupled, and how

to coordinate the two processes to minimize execution time and maximize accuracy

of the NN model is a challenge. The NN model topology refers to the number of

network layers, the type of each layer (e.g., fully connected, convolution, deconvo-

lution, or recurrent), and the number of neurons in each layer. Both the number of

features and NN model topology impact model execution time and accuracy. On

the one hand, the number of features determines the first layer in the NN model and

impacts the design of following layers; on the other hand, the topology selection of

NN model reflects feature eligibility. The existing Neural Architecture Search (NAS)

methods [72, 10, 116] do not consider such interaction between feature reduction and

NN topology.

Automatic feature extraction allows us to efficiently pave the way for domain scien-

tists who want to build their ML models but have limited experience of feature engineer-

ing. since deciding the input/output feature is the first step toward ML model construction.

We build a tool identifying the inputs/outputs of the NN model from the source code of

scientific application. Specifically, the tool constructs a dynamic data dependency graph

(DDDG) from an instruction trace. In the graph, edges are LLVM instructions (or oper-

ations) transforming input values into output values of variables. With DDDG, the root

nodes represent inputs and leaf nodes represent outputs. Such a tool provides end-to-end

support to simplify the variable identification process. Furthermore, we quantitatively ana-
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lyze the sensitivity of output variables of the source code to simulation execution time and

convergence. We introduce two data types, i.e., imprecise default data and precise simu-

lation data, to study the impact of noisy feature to simulation quality and execution time.

Based on the sensitivity analysis, we can remove some redundant output features (those

that do not impact the final simulation coverage) and their related input features (those that

have connections with redundant output features in DDDG).

To coordinate feature reduction and selection of NN model topology, we introduce

a two-level hierarchical Bayesian optimization. This strategy is automated. At the first

level (the higher level), this strategy uses a Bayesian optimization to decide the number

of input features; at the second level (the lower level), this strategy uses another Bayesian

optimization to decide the NN topology using an existing NN topology search mechanism

(particularly AutoKeras [72]). The second level is based on the decision (the number of in-

put features) of the first level. The two levels work iteratively and coordinately to consider

the impact of both feature reduction and NN topology. Furthermore, we consider both exe-

cution time and correctness of the approximated application during the two-level Bayesian

optimization. We use a user-given threshold as an application specific metric and incor-

porate this metric into the objective function of NN training, which uses the application

metric as a soft constraint to improves the correctness of ML prediction.

Putting together feature acquisition and two-level Bayesian optimization, we build

Auto-HPCnet, a workflow relieving the domain scientist from labor-intensive work to apply

NN-based approximation to HPC applications. Evaluating with a set of HPC applications

that previously cannot run on GPU, we show that using AutoHPCnet, those applications

can leverage NN and GPU to achieve 4.34× speedup on average (up to 7.39× speedup and

with data preparation cost included) while meeting the application-specific constraint on

computation quality.

1.3 Dissertation Roadmap

Chapters 2, 3, and 4 dive into the technical details of making scientific machine

learning approachable from the three aspects – ease to use, interpretability, and flexibility.

These techniques use machine learning to embed sensitivity study, physical information,

online quality monitoring into model construction that can then be used to guide each task.
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In particular, Chapter 2 studies an adaptive neural network-based approximation method

to accelerate the Eulerian fluid simulation Chapter 3 studies another HPC application, the

powergird simulation. Chapter 4 introduces an automatic tool to easy the use of NN-based

surrogate model for domain scientists. Chapter 5 lists my collaborated works and Chapter

6 summarizes my research contributions and proposes my future research topics.



Chapter 2

Adaptive Neural Network-Based

Approximation to Accelerate Eulerian

Fluid Simulation

2.1 Introduction

The fluid simulation aims to study the flow of fluid materials and has been widely

applied to multiple disciplines such as chemical physics and material science [12, 26, 135].

However, the simulation of fluid dynamics usually requires prohibitively high computa-

tional resources [175, 155] and thus limits its application in the related fields.

The neural network-based machine learning model, as a tool to learn and model com-

plicated (non)linear relationships between input and output datasets, has shown preliminary

success in HPC problems (e.g., detecting neutrinos [129], developing Bose-Einstein Con-

densates state [4], and recognizing extreme weather events [127]). Using neural networks,

scientists are able to augment existing simulations by improving accuracy and significantly

reducing latency. The neural network has been applied to accelerate fluid simulation as

well [77, 165, 179]. By replacing some execution phases with neural networks, the most

recent work reports 14.6× to 716× performance improvement [165].

However, the current methods to accelerate the fluid simulation using neural networks

have fundamental limitations. First, the current method to apply the neural work to the fluid

simulation lacks flexibility. In particular, given the simulation code, the current method

9
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usually generates just one neural network model. At runtime, this model is used throughout

the whole execution to approximate some target computation. This method ignores the fact

that replacing the target computation at different execution phases of the fluid simulation

can have different implications on the simulation quality. At some execution phase, using

another neural network model may be able to generate higher simulation quality without

losing performance. Hence, using multiple neural network models instead of one is a better

strategy. However, with just one single neural network model, the current method lacks

such flexibility.

Second, the current method to apply the neural network to the fluid simulation lacks a

generalization ability. In particular, given a fluid simulation code with the neural network

applied, there is no guarantee that the application can run the simulation to completion and

meet the requirement on simulation quality for every input problem. Using a single neural

network model for all input problems either leaves the performance opportunities on the

table (discussed in the last paragraph), have large simulation quality violations, or both.

Third, there is no systematic approach to construct and apply neural network models

to the fluid simulation. How to construct neural networks to meet the user requirement on

performance (execution time) and simulation quality is challenging. Currently, domain sci-

entists build neural networks intuitively. There is no systematic approach to help them build

and apply neural networks for HPC applications. The recent work on Auto-Keras [73] and

AutoML [46] aims to automatically generate a neural network model with high accuracy.

However, they lack concerns on high performance (execution time), and focus on image

processing or natural language processing. Hence, they are not directly usable by HPC.

In this paper, we tackle the above limitations and aim to enhance the applicability of

neural networks in HPC applications (particularly the Eulerian fluid simulation). Given an

existing neural network model as input, our system uses a systematic approach to construct

multiple neural network models and dynamically switches them at runtime during the exe-

cution of the fluid simulation to meet the user requirements on performance and simulation

quality.

In order to tackle the above limitations, we must address three challenges. First, we

must automatically generate multiple neural network models to enable high flexibility and

better generality when applying neural networks. Given the user requirements on perfor-

mance and simulation quality, we aim to generate multiple neural network models, each of
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which has different topologies and different implications on performance and simulation

quality. We should not expect the domain scientists to manually construct models.

Second, how to select neural network models at runtime to enable the best perfor-

mance without violating the quality requirement is a challenge. We must have a method to

predict the impact of applying a neural network model at a certain execution phase on the

final simulation quality.

Third, a neural network model can approximate the fluid simulation with high accu-

racy for some input problems but not for all. How to construct neural network models

to provide a high-quality approximation for a large number of input problems and ensure

overall performance benefit is another challenge.

In this paper, we focus on a Eulerian fluid dynamic simulation code (mantaflow [163])

and introduce a framework (named “Smart-fluidnet”) to address the above three challenges.

Smart-fluidnet has three major components. (1) It includes a model construction plugin for

Auto-Keras to extend its functionality to enable automatic construction of multiple neural

network models. (2) Smart-fluidnet also includes a multilayer perceptrons model (MLP) to

guide the model selection process to meet the requirement on performance and simulation

quality. The neural network models selected by MLP is able to cover more input problems

to ensure overall performance benefit. (3) Smart-fluidnet includes a runtime component

integrated into mantaflow and dynamically switches the neural network models to make

best efforts to meet the user requirement on simulation quality. The runtime component is

based on a metric and a lightweight runtime algorithm that can predict the final simulation

quality in the middle of the fluid simulation.

We summarize the major contributions of this paper as follows:

• A systematic approach and a framework (Smart-fluidnet) to accelerate the Eulerian

fluid simulation; Our evaluation shows that using 20,480 input problems for the sim-

ulation, Smart-fluidnet achieves 46% performance improvement over the Tompson’s

model [165] (a state-of-the-art neural network model) on average and 590× speedup

over the original fluid simulation on average, while providing better simulation qual-

ity than the Tompson’s model.

• A new methodology that constructs, selects, and applies multiple neural network

models (instead of one) to address the fundamental limitation of model flexibility and

generalization in the existing neural network-based approximation. We demonstrate
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great potential of using this methodology to meet user requirements on the simulation

quality and execution time.

2.2 Background

In this section, we provide background on the Eulerian fluid simulation and neural

network-based approximation. In the rest of the paper, the term performance means exe-

cution time, not prediction accuracy in the machine learning field. We also use the terms

approximation model and neural network model interchangeably.

2.2.1 Eulerian Fluid Simulation

The Eulerian fluid simulation, in essence, solves the Navier-Stokes equations. The

Navier-Stokes equations describe the fluid movement under a continuous velocity field u⃗

and a pressure field p. When the fluid has zero viscosity, one uses the incompressible

Navier-Stokes equations, which can be expressed as the Euler equations as follows:

∂u⃗

∂t
= −u⃗ · ▽u⃗− 1

ρ
▽ p+ g⃗, (2.1)

▽ · u⃗ = 0 (2.2)

Equation 2.1 is a vector equation called “momentum equation”. This equation can make

the velocity field stay divergence-free. Equation 2.2 is the incompressibility condition,

which enforces fluid volume to remain constant throughout the simulation. In the above

two equations, t is time, ρ represents fluid density, and g⃗ represents gravity.

Mantaflow performs fluid simulation by iteratively solving Equations 2.1 and 2.2. In

this paper, we use MAC (marker-and-cell) grids [61] to discretize fluid flows, and use the

finite difference (FD) method to calculate partial derivative on each grid [70, 182].

For each velocity component that borders a grid cell, the FD method iteratively applies

updates on velocity and pressure. In a grid cell, the pressure is sampled at the grid cell

center and the velocity is sampled at the centers of the vertical faces of the grid cell. The

above method is common and can simplify the handling of solid-cell boundaries conditions.

To solve Equations 2.1 and 2.2, mantaflow uses a standard operator splitting method [158,

178, 28] to split up Equation 2.1 (Equation 2.2 is used as a constraint) into three parts. The
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three parts are advection, adding external force, and pressure projection. Algorithm 1 de-

picts the implementation of the Eulerian simulation in mantaflow, which includes the above

three parts.

Algorithm 1 Velocity Update in the Euler Equation
Require: Simulation time step N ;

1: Start with an initial divergence-free velocity field u⃗0

2: Determine a good time step△t to go from time tn to time tn+1.
3: for n← 1 to N do
4: Advection. Set u⃗A = advect(u⃗n, ∆t, q);
5: Add body force. u⃗B = u⃗A +△tf⃗ ;
6: Pressure projection. set u⃗n+1 = Project(△t, u⃗B):

7: 1) Solve the Poisson eq. ▽ · ▽p⃗n = 1
△t
▽ ·u⃗B

8: //Use a PCG solver to to update p⃗n.
9: Set initial guess p⃗n=0 and residual vector r=d (if r=0, then return p⃗n)

10: Set search direction s⃗ = ApplyPreconditioner(r);
11: while residual doesn’t reach the convergence criteria
12: do
13: Set α = rT r

sTAs
;

14: Calculate the residual r = r − αAp⃗n;
15: Update the solution p⃗n = p⃗n + αs⃗;
16: Update the conjugated direction s⃗ = r + βs⃗;
17: end while

18: 2) Apply velocity update: u⃗n+1 = u⃗B −∆t1
ρ
▽ p⃗n;

19: end for
20: return 0

The Eulerian simulation in mantaflow includes N time steps. The first part (Lines 4-5)

of each time step is to solve the momentum equation to get an auxiliary velocity field u⃗B.

u⃗B is a velocity approximation which is not divergence-free, and the pressure-gradient term

(▽p) used during the solving process is computed in the previous time step. At Line 7, the

divergence-free pressure p⃗n is computed by solving a Poisson’s equation which includes

the divergence of u⃗B and a scaled gradient of the pressure. At Line 18, a divergence-

free velocity field, u⃗n+1 is calculated, by subtracting off the pressure gradient from the

approximate velocity field u⃗B. In the above process, solving the Poisson’s equation is the

most crucial and time-consuming step to preserve the divergence-free constraint on the

velocity and maintain simulation accuracy.

The process of solving the Poisson’s equation in mantaflow (Line 7 in Algorithm 1) is

based on the Preconditioned Conjugate Gradient (PCG) method, which involves large com-
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putation that iteratively converges to meet a convergence criteria (Lines 8-17). Mantaflow

uses a multi-grid approach [106] as a preprocessing step of the PCG method. The pre-

conditioner (Line 10) applied in mantaflow is the Modified Incomplete Cholesky L0 pre-

conditioner, called “MICCG(0)”. In this paper and the existing work [165], neural networks

are used to approximate this PCG method.

In this paper, we simulate a 2D smoke plume [52, 49]. The simulation output in

mantaflow is a smoke dense matrix of a rendered smoke frame. The smoke dense matrix

represents density blurring of the plume, which reflects fluid movement. After using neural

networks to approximate the computation in the fluid simulation, the output dense matrix

can be different from that in the original simulation (using the mantaflow’s PCG-based

solver), which means we have quality loss. The simulation quality loss (Qloss) is formally

defined by:

Qloss =
1

N ×M

N∑
i=1

M∑
j=1

∣∣ρ∗ij − ρij
∣∣, (2.3)

where ρ refers to the smoke density matrix generated in the original simulation, and ρ∗

represents the smoke density matrix generated after applying neural network-based ap-

proximation. ρij and ρ∗ij are matrix elements with the coordinate (i, j). In essence, Equa-

tion 2.3 calculates the average relative error of all matrix elements. After applying the

neural network-based approximation, we want to avoid quality loss (i.e., we do not want to

lose simulation accuracy).

2.2.2 Neural Network-Based Approximation

The neural network is a general-purpose method that can be used to learn and model

complicated linear and non-linear relationships between input and output datasets. Hence,

the neural network has been used to approximate some conventional algorithms in an ap-

plication to improve performance [77, 165, 179]. The neural networks are expected to

generate similar outputs as the conventional algorithms when fed with the same inputs as

for the conventional algorithms.

A neural network can be represented as a directed acyclic graph where nodes of the

graph are connected neurons. Embedded in the graph, there are a number of parameters (or

“weights”). Those neurons and weights are organized as layers. The process of obtaining

the values of those weights are called training. Once the neural network is trained offline
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using training datasets, it can be used online within the fluid dynamic simulation to improve

performance. During training, an objective function is used to calculate the model accuracy

loss, so that the weights can be adjusted to reach better model accuracy.

In this paper, we use Convolutional Neural Networks (CNN) to approximate com-

putation (i.e., using the PCG solver to solve the Poisson’s equation) in the Eulerian fluid

simulation. This computation is the most time-consuming part of the Eulerian fluid simu-

lation. Our profiling results reveal that this computation takes 70-80% of total simulation

time.

Recent work [165] introduces an unsupervised learning framework to generate a CNN

model with five stages of convolution and Rectified Linear Unit (ReLU) layers to approxi-

mate computation (the PCG solver) in the Eulerian fluid simulation. The inputs of the CNN

are the divergence of the velocity field, denoted as∇ · u⃗∗
t , and the geometry field, denoted

as gt−1. The output of the CNN is the pressure field, denoted as p̂t. The mapping fconv

from input to output by this CNN model can be represented as follows:

p̂t = fconv

(
∇ · u⃗∗

t , gt−1;W
)
, (2.4)

where W is the CNN model parameters. The predicted p̂t is used to update velocity u⃗t in

Equation 2.1. In our study, this CNN (named as the Tompson’s model) is used as input in

Smart-fluidnet to generate new neural networks for online fluid simulation.

The objective function of the Tompson’s model, i.e., DivNorm, is the sum of weighted

L-2 norm of the divergence of the predicted velocity u⃗t over all fluid cells (mesh volumes)

in the rendered smoke frame. DivNorm is defined as follows:

DivNorm =
∑
i

wi{▽ · u⃗t}2i , (2.5)

where wi is a weighting term for each fluid cell to emphasize the divergence of grids on

geometry boundaries, i.e., wi = max(1, k − di). di is the distance field. It takes the value

0 for solid cells or the minimum Euclidean distance to the nearest solid cell for fluid-cells.
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Figure 2.1: Distribution of quality loss for the Tompson’s model with different input prob-
lems [165].

Table 2.1: Execution time and simulation quality loss of three models for solving the Pois-
son’s equation.

Method Execution Time (ms) Avg. Quality Loss

PCG 2.34× 108 −−
Tompson [165] 7.19× 104 1.3× 10−2

Yang [179] 3.20× 104 4.9× 10−2

2.2.3 Motivation of Our Work

The existing work to solve the Poisson’s equation includes the PCG solver in mantaflow

and two neural network models (Tompson [165] and Yang [179]). We study the implica-

tions of the three methods on simulation quality and execution time. To study the impact of

each model, we evaluate 20,480 different input problems of the fluid simulation and report

the average simulation quality loss and execution time. The simulation quality loss Qloss is

calculated by comparing the simulation output and the real physical measurements on fluid

flow. Table 2.1 and Figure 2.1 show the results.

Table 2.1 shows that PCG achieves the highest simulation quality as an exact solution

but the worst performance (the longest execution time). On the other hand, the Yang’s

model performs 104× faster than PCG but causes about 102× loss in the simulation quality.

There is a clear trade-off between simulation quality and performance.

Figure 2.1 shows the distribution of quality loss for various input problems when we
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Figure 2.2: Workflow of the proposed Smart-fluidnet.

use the Tompson’s model. The figure reveals that given various input problems, the model

generates different simulation quality. For most input problems, the simulation quality loss

is between 0.01 and 0.02. Given a user-defined quality requirement (e.g., the quality loss

should be less than 0.01), the simulation may not meet the quality requirement for most

input problems (e.g., around 65.42% input problems can not meet user requirement when

the requirement is 0.01). We have the same observation for the Yang’s model.

The above results reveal that it is imperative to use multiple models to explore the

trade-off between performance and simulation quality and maximize the possibility of

reaching the user requirement on the simulation quality for various input problems.

2.3 Overview

Figure 2.2 gives the workflow of Smart-fluidnet. The workflow includes offline and

online phases. During the offline phase, Smart-fluidnet takes an existing neural network

model as an input and constructs a set of neural network models by model transformation.

We introduce four operations (deleting, narrowing, pooling and dropout) to transform the

input neural model into multiple neural network models. Then we choose neural network

models that are promising for high performance improvement and high quality based on

the Pareto optimality analysis.

After model construction, Smart-fluidnet further chooses models based on the user

requirement about simulation quality. Given various input problems of the fluid simula-

tion, we introduce an MLP-based model to predict the probability of each model to reach

the user requirement on the simulation quality. Considering the possible cost of restarting

the simulation when the simulation quality does not meet the user requirement, we choose
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those models that have a sufficiently high probability to benefit the performance improve-

ment. After the above offline phase, we have a handful of neural network models ready for

online approximation. At runtime, given an input problem of the Eulerian fluid simulation,

Smart-fluidnet dynamically switches neural network models with the most promising neu-

ral network to meet the user requirement on the simulation quality. The model switching is

based on a metric and a linear regression model to predict whether the current model can

reach the requirement on the simulation quality at the end of the simulation.

The Smart-fluidnet framework consists of three main modules: approximation model

construction (Section 2.4), offline output-quality control (Section 2.5), and quality-aware

runtime design (Section 2.6). Their relationships are depicted in Figure 2.2. We explain

them in detail as follows.

2.4 Approximate Model Construction

Given an input neural network, we transform it to construct multiple neural network

models with different network architectures.

The new neural network models can be more accurate or more efficient (i.e., using less

execution time) than the input neural network; Having such a mixture of different models

provides flexible computation approximation during the online fluid simulation.

To generate more accurate neural network models, the user can use an existing frame-

work such as Auto-Keras to generate and train models. Auto-Keras uses the Bayesian

optimization to generate a single model with the best accuracy. We change Auto-keras to

generate and train five models with the better accuracy. We generate five models, because

generating more than five highly accurate models often causes more than five models to

be selected after applying MLP (Section 2.5), which causes large runtime overhead when

making the decision on switching models; While generating less than five models will lead

to insufficient candidates after the model selection (Section 2.5).

Besides the above, we also aim to generate less accurate but faster models. We intro-

duce new transformation operations into Auto-Keras to simplify the neural network archi-

tecture, which will shorten the execution time. We describe our transformation operations

as follows.

Operation 1: deleting a layer of the neural network. This operation is denoted as shallow(G,L),
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Figure 2.3: Scatter plot of quality loss and time cost of different neural network models.

where G is the neural network graph of the input neural network and L is the layer to be

deleted. This operation not only shortens the depth of neural network but also reduces

memory consumption, thus makes the fluid simulation time shorter.

Operation 2: narrowing a layer of the neural network. This operation reduces neurons in

an intermediate layer. This operation is denoted as narrow(G,L, r), where r is the number

of neurons to be reduced at the layer L, and L can be either a fully-connected layer or a

convolutional layer.

Operation 3: pooling. This operation, denoted as pooling(G,L,m), downsamples a layer

L using a pooling matrix m. We can apply two pooling strategies, i.e., maxpooling and

averagepooling. A special case of m is a 2× 2 matrix which can discard 75% neurons in

the intermediate layers.

Operation 4: dropout. This operation, denoted as dropout(G,L, p), drops neurons at a

layer L with a given probability p. It offers a more flexible way to reduce the number of

neurons, compared with the second operation by controlling the value of p. This operation

is useful to increase the generalization capability of the model.

Based on the above four operations, we transform the input neural network into new

ones. Given an input neural network, we first apply a shallow(G,L) operation on each of

the intermediate layers. We do not apply the operation more than twice in the input model,

and hence do not delete more than one intermediate layers. After applying shallow(G,L),

we generate five new models.
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Second, we apply narrow(G,L, r) operation on the five new models. A big value of

r means a large number of neurons will be reduced. Based on our experimental results,

the simulation quality loss can be large (more than 20%) for most of the input problems,

if r > |L|
2

, where |L| is the total number of neurons. Therefore, we empirically use r =
|L|
10

. For each new model, we randomly choose r neurons to apply the narrow(G,L, r)

operation; Furthermore, for each new model, we apply narrow(G,L, r) ten times, each

of which generates a new model. In our case, in total, we have 55 new models (five new

models after applying shallow(G,L) and 50 more after applying narrow(G,L, r)).

Third, for the 55 new models, we apply pooling(G,L,m) operations. In particular,

for each new model, we randomly replace any of two neighbor-neurons with a new neuron

using max pooling. The total number of neurons to be replaced is constrained to be 10%

of the total neurons. After applying pooling(G,L,m), we have 55 more new models (110

models in total).

At last, to enrich our neuron network models, we randomly select 18 out of the 110

models to apply the dropout(G,L, p) operation. In particular, in each of the 18 models, we

randomly drop out neurons. The total number of neurons to drop is limited to 10% of the

total neurons. After applying dropout(G,L, p), we have 18 more new models. In total, we

have 128 models.

We apply the four operations in the above order, because the operation that tends to

reduce more neurons than other operations will be performed earlier. This method allows us

to efficiently generate new models. Using a different order can take longer time to generate

models or be prone to generate less accurate models.

After the above model generation and in combination with the accurate models gener-

ated by Auto-Keras (five models), we have 133 models in total. Afterwards, we use Pareto

optimality to reduce the number of models for online approximation. We select models that

have the lowest time cost, the lowest quality loss, or both.

To explain the idea of Parento optimality, we use Figure 2.3 to illustrate it. Figure 2.3

shows the result of our model selection approach. In this figure, each point represents

a model; The red points are those selected model for further analysis (Section 2.5); The

green points are discarded models. In Figure 2.3, the quality loss and execution time for

each model are collected during the model construction. This is a common method to

collect the model information in AutoML work [157, 87]. Section 2.7 gives details on the
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hardware platform and input datasets to collect the results in Figure 2.3. We can observe

that those models located in the leftmost part of Figure 2.3 either have the lowest time cost,

the lowest quality loss, or both. Those models (14 models) are selected based on the Pareto

optimality method (we name them “model candidates” in the later discussion).

Sensitivity Study. The above process of constructing neural networks involves a couple

of parameters. We summarize them as follows and change those parameters to study their

impact on the simulation quality. In our study, we use 100 input problems. Using the

simulation quality of PCG as the baseline, we calculate the average quality loss of all input

problems when using the Tompson’s model. This average quality loss is used as the user

requirement for quality loss in our sensitivity study.

(1) The number of layers to prune (Operation 1). Our current method prunes one layer

at most. For sensitivity study, We prune more than one layer, but find that it leads to a large

quality violation (20% quality loss on average), which is not good.

(2) The percentage of neurons to apply pooling (Operation 3). Our current method

applies pooling to 10% of total neurons. We set the percentage of neurons to apply pooling

as 5%, 20% and 30%, and evaluate the impact of this parameter on the simulation quality.

Our experiments show that using 20% and 30%, the fluid simulation has a large quality

violation (35% and 50% quality loss on average, respectively), which is not good. However,

using 5%, the fluid simulation has the similar quality loss on average as using 10%. In

addition, since using 10% can lead to better performance than 5%, we choose 10% in our

study.

(3) The dropout rate (Operation 4). Our current method drops out 10% of total neu-

rons. We also try 5% and 15% as the dropout rate. Our experiments show that 5% and 10%

outperform 15% in terms of the simulation quality loss. In particular, the quality losses

with 5% and 10% as the dropout rate are 0.156 and 0.164 respectively, while the quality

loss with 15% as the dropout rate is higher (0.239). Since 5% and 10% has the similar

quality loss and using 10% leads to less execution time, we adopt 10% as our dropout rate.

(4) The number of neural network models to apply the dropout operation. Our current

method chooses 18 models. Our study reveals that choosing 15-20 models are enough for

the Pareto optimality and MLP (see Section 2.5) to generate 2-5 models. Using less than 15

models to apply the dropout operation, however, we could generate no qualified model after

applying MLP. Using more than 20 models, we could have more than 5 qualified models
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Figure 2.4: The network architecture of our MLP model.

after applying MLP. Having more than 5 models means that the runtime system may suffer

from large runtime overhead for selecting a model to use. As a result, we choose 18 (in

between 15 and 20) as our parameter.

2.5 Offline Output-Quality Control

In many fluid simulation cases, users can have specific requirement on the simulation

quality and execution time. We use the notation, U(q, t), to represent the user requirement,

where q and t are the user requirement on the quality loss and execution time respectively.

The final quality loss and execution time of the fluid simulation should be less than q and

t, respectively. The quality control should be aware of the success rate of neural network

models, namely the ratio of those input problems with which the fluid simulation can reach

the simulation quality and time requirement to the total number of input problems.

The awareness of the success rate can be developed from statistical knowledge by

executing neural network models on various input problems. In this section, we design a

non-linear MLP model to develop such awareness. In the following subsections, we first

introduce the construction of training samples for training the MLP model and then give

details on how to construct and apply the MLP.
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2.5.1 Construction of Training Samples

We collect execution records (i.e., simulation quality and execution time) for the 14

neural network models after the construction of those models (Section 2.4). Based on the

execution records, we generate training samples to train the MLP model.

Collection of Execution Records. For each of the 14 neural network models, we get N

execution records by running N input problems (N = 20, 480 input problems in this paper).

Each of the N execution records includes the simulation quality qkn and execution time tkn,

where n ∈ [1, N ] and k refers to a neural network NNk from the 14 neural network models.

Each execution record is represented as ERk
n. Such execution record is collected during

the model construction (Section 2.4). Note that our model construction process, similar

to other AutoML work [157, 87], includes not only changing model architecture but also

training models. Hence we can collect execution records during the model construction.

Sample Generation. Given N execution records, we can generate samples to train the

MLP. Each sample is represented with a feature vector using Equation 2.6.

F =
(
q, t, lk,

−→
kerk,

−−→
chnk,

−−→
poolk,

−−→unpk,−→resk
)

(2.6)

In Equation 2.6, the feature vector F includes quality and execution time requirements

(q and t), and architecture information for the neural network NNk (i.e., lk,
−→
kerk,

−−→
chnk,

−−→
poolk, −−→unpk, and −→resk, representing the number of layers, kernel sizes, channel number,

pooling size, unpooling size, and residual connection of each layer respectively). Each of

the last five architecture information is a vector composed of nine components that indicate

properties of each layer of the neural network NNk. Therefore, each input feature vector

has 3 + 5 ∗ 9 = 48 components in total.

Given a neural network NNk, we generate a sample by randomly picking up a user

requirement (q and t), and then use Equation 2.6 to build the feature vector of the sample.

Based on the N execution records and the user requirement, we calculate that how many of

N execution records meet the user requirement. The ratio of those execution records to N ,

denoted as rk,q,t, is the label of the sample. By choosing different combinations of q and t,

we can generate as many samples as possible.
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Figure 2.5: Training losses of five MLPs.

2.5.2 MLP Model Construction and Loss Function

Given a neural network NNk and user requirement q and t, we can build a feature

vector F using Equation 2.6. Our MLP model (see Equation 2.7) takes such a feature

vector as input and generates an output r̂k,q,t, which is a floating point number indicating

the probability that NNk meets the user requirement for any input problem.

r̂k,q,t = fMLP

(
Fk,q,t

)
(2.7)

Figure 2.4 shows the network topology of our MLP. It includes six hidden layers and

a 48-neuron input layer. The numbers of neurons in the six hidden layers are 32, 32, 16,

16, 8 and 8 respectively. All the neurons in the hidden layers use ReLU as activation to

increase the non-linearity of the model. The neurons in the last hidden layer uses a sigmoid

function as activation. Using the samples constructed in Section 2.5.1 to train the MLP, we

aim to minimize the loss between the model output r̂k,q,t and the ground truth label rk,q,t.

Alternative MLP Topologies. Besides the above MLP topology, we try four alternative

MLP topologies, in order to find one for best accuracy. Among the four MLPs, two of

them are deeper than our current MLP, while the other two are shallower. When building

an alternative MLP, we follow the rule that in the topology of a neural network, a deeper

layer generally has less number of neurons than shallower ones (i.e., the number of neurons

gradually decreases across layers). Many discriminative neural networks, such as Alex-
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Net[81], VGG-Net[153], are constructed, following this rule. The architectures of the four

models plus our current MLP model are briefly described as follows:

• MLP1 has 4 layers with 48, 32, 16 and 1 neurons;

• MLP2 has 5 layers with 48, 32, 16, 8 and 1 neurons;

• MLP3 (our current MLP model) has 6 layers with 48, 32, 32, 16, 8 and 1 neurons;

• MLP4 has 7 layers with 48, 64, 32, 32, 16, 8 and 1 neurons;

• MLP5 has 8 layers with 48, 64, 64, 32, 32, 16, 8 and 1 neurons.

Figure 2.5 presents the training loss curves of the above five MLPs (MLP3 is our

current MLP model). We find that the convergence speed of MLP3 is faster than those of

MLP1 and MLP2, and offers lower training loss (i.e., higher prediction accuracy). Com-

pared with MLP3 model, MLP4 and MLP5 do not have significant advantages in terms of

convergence speed and loss, although they have deeper topologies. Hence, MLP3 exhibits

a balanced trade-off between prediction accuracy and model size, and is thus chosen as our

MLP model in this paper.

2.5.3 Usage of MLP

Given a user-specified simulation quality (q) and time cost (t), we use MLP to calcu-

late r̂k,q,t for a given neural network model NNk. A larger value of r̂k,q,t represents a higher

success rate. In other words, it is highly possible that NNk can meet the simulation quality

and time requirement on an input problem.

Given the user-specified simulation quality (q) and time requirement (t), the neural

network NNk and MLP prediction result (r̂k,q,t), we use the following method to decide

if NNk should be selected for the runtime system for the fluid simulation. In particular,

considering the probability that the user requirement on the simulation quality is violated

and the user has to re-run the simulation without using any neural network, the simulation

time is calculated based on Equation 2.8.

Ttotal = r̂k,q,t × TMk
+ (1− r̂k,q,t)× T ′, (2.8)



26

where T ′ is the execution time without using any neural network and TNNk
is the execution

time using the neural network NNk. We compare Ttotal with the user requirement on the

execution time t. Only those neural networks that have Ttotal less than t is selected.

The above selection method considers the impact of violating the simulation quality

requirement on the simulation time, and ensure that if NNk is repeatedly employed for

many input problems, there is performance benefit.

2.6 Quality-Aware Runtime Design

After applying MLP, multiple neural networks are selected. We use a runtime tech-

nique to schedule those neural networks to optimize performance and meet the simulation

quality requirement. In order to determine which neural network should be used at runtime,

we need to evaluate the model being used in terms of the final quality loss, and switch to a

suitable one if necessary. However, without running the simulation to completion, we can-

not know the final quality loss. Thus we construct a metric called CumDivNorm (defined

in Equation 2.9), which is used to set up a bridge between DivNorm (see Equation 2.5)

measurable at runtime and the final simulation quality loss Qloss (Section 2.6.1). Based on

CumDivNorm and the predicted final quality loss, we introduce a quality-aware model-

switch algorithm (Section 2.6.2) to select the best neural network to accelerate the fluid

simulation.

2.6.1 Prediction of Simulation Quality Loss

The objective function DivNorm provides a goal that our neural network aims to

achieve. Using DivNorm, we can know how the neural work performs in terms of pre-

diction accuracy. However, there is a missing link between the prediction accuracy of the

neural network and the final simulation quality loss Qloss.

CumDivNorm: A Metric for Runtime Quality Control. To explore the relationship be-

tween DivNorm and final simulation quality Qloss, we calculate CumDivNorm (i.e., the

accumulation of DivNorm) and Qloss at each simulation time step (denoted as Qts
loss). The

accumulation of DivNorm over n time steps is defined in Equation 2.9.
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Figure 2.6: Relationship between CumDivNorm and Qts
loss.

CumDivNorm =
n∑

i=1

DivNormi. (2.9)

In order to observe how these varibles are correlated, Figure 2.6 depicts how DivNorm,

CumDivNorm, and Qloss vary across all time steps of the fluid simulation using an in-

put problem with the grid size 1028*1028. We have the following observations. These

observations are valid for other input problems as well.

• Observation 1: DivNorm dramatically increases at the first few time steps and then

gradually converges to a stable value;

• Observation 2: Qts
loss and CumDivNorm have similar increasing tendency (except

the first few time steps).

The above observations indicate that CumDivNorm and Qts
loss calculated at each

time step are correlated. In order to quantify the relationship between CumDivNorm and

Qts
loss at each time step, we use the Pearson’s product moment correlation coefficient (rp)

[113] and the Spearman’s rank correlation coefficient (rs) [62] to statistically reveal the

correlation between the two variables.

The two coefficients are defined as follows. Given two input vectors x and y (the

vector length is n), the calculation of rp and rs to quantify the correlation between x and y
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is formulated as follows:

rp =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

, (2.10)

rs = 1− 6
∑

d2i
n(n2 − 1)

. (2.11)

where xi and yi are the values of x and y for the i-th component, and d counts the pairwise

disagreement (i.e., xi is not equal to yi) between the two vectors (see [8] for a more detailed

description). In general, the coefficients that belong to [0.10-0.29] represent weak associa-

tion, (0.29-0.49] represent medium association, and above 0.49 represent strong association

[27].

In our study, we use 20,480 input problems, each of which will have 128 simulation

time steps. The CumDivNorm and Qts
loss of each time step will be calculated to build

the two input vectors. Using Equations 2.10 and 2.11, we have rp = 0.61 and rs = 0.79,

which indicates a strong correlation.

Based on the above discussion, it is possible to use CumDivNorm to predict Qts
loss in

the final time step (i.e., the final quality loss Qloss). Note that we cannot calculate Qts
loss at

runtime, because it involves PCG, which is too expensive. In the following discussion, we

first discuss how to predict CumDivNorm in the final time step (CumDivNormfinal),

and then we discuss how to predict Qloss based on the predicted CumDivNormfinal.

Predicting CumDivNormfinal. We introduce a lightweight approach to predict the bridge

variable CumDivNormfinal. Our prediction approach is based on Figure 2.6. In this

figure, it is obvious that CumDivNorm quickly grows at first, and then the growth rate

remains stable. This trend is general across all 20,480 input problems we test.

The stable growth rate of CumDivNorm makes it possible to predict CumDivNormfinal

in the middle of the fluid simulation. In particular, we use five time steps to build a linear

regression model (fk(x) = ax + b), by the least square method, where x is the time step

and fk(x) is the predicted CumDivNorm. Note that the data used to build the linear re-

gression model must be collected after the growth rate becomes stable. Hence, we skip the

first five time steps and build the regression model after each five steps. Also, in each five

time steps (a check interval) to build the model, we skip the first two to make sure the trend

is stable and only use the remaining three to build the model. The above model-building

process happens every five time steps, and the model is used to predict and check Qloss (see
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Algorithm 2 The quality-aware model-switch runtime algorithm
Require: The user requirement U(q, t).

1: Choose a neural network model Mk with the highest success rate according to MLP.
2: while t does not reach the final time step do
3: Send Mk to predict the final simulation quality.
4: Prediction of quality loss:
5: 1) Build a linear regression model with DivNorm values measured in the last five time

steps;
6: 2) Predict CumDivNormfinal by the linear regression model;
7: 3) Predict Q′

loss of the current neural network model by the KNN algorithm;
8: Model Switch:
9: if Q′

loss is close to q then
10: Continue using the current neural network model for L steps;
11: else if Q′

loss less than q then
12: Switch to a faster (less accurate) neural network model;
13: else if Q′

loss is larger than q then
14: Switch to a slower (more accurate) neural network model;
15: else if Cannot find any model then
16: Restart by the PCG method;
17: end if
18: t← t+ L ; //L is the check interval.
19: end while
20: return 0

the following discussion). Hence, we fix the check interval to be five time steps in the rest

of the paper. In Section 2.7.4, we study the impact of the check interval on the simulation

quality.

Predicting Qloss based on CumDivNormfinal. We use a method based on the k-nearest

neighbor (KNN) algorithm to predict Qloss. Our method includes offline and online phases.

During the offline phase, we test the neural network models selected by MLP with 128

small input problems. For each test, we collect a pair of data (CumDivNormfinal, Qloss)

and put them into a historical database. The offline phase is fast, because we use small

input problems. During the online phase, at a time interval, to predict Qloss, we check

CumDivNormfinal in the database and find k pairs whose CumDivNormfinal are the

closest to the predicted CumDivNormfinal in the current time interval. We use the average

of Qloss in the k pairs as the predicted Qloss in the current time interval. In our evaluation,

we use different values for k, but find that k ∈ [4, 6] is usually sufficient to give accurate

prediction, hence we choose k = 4 to reduce runtime overhead.

For example, assuming that the predicted CumDivNormfinal in a time interval is
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108. To predict Qloss for this time interval, we select four pairs from the database, i.e.,

(101, 0.09), (112, 0.11), (105, 0.10), and (109, 0.11), whose CumDivNormfinal is closest

to the given CumDivNorm (108). Then the predicted Qloss for this time interval is 0.1025(
(0.09 + 0.11 + 0.10 + 0.11)/4

)
. We organize all data pairs as a binary search tree, such

that finding the four pairs is cheap.

2.6.2 Quality-Aware Model-Switch Algorithm

With the ability to predict the simulation quality loss, we introduce a quality-aware

model-switch algorithm. Algorithm 2 depicts this runtime algorithm. After applying MLP,

we have several promising neural network models and their probabilities to meet the user-

specified requirement. We also know the execution time (i.e., the inference time) of each

network model. During the simulation, the neural network with the highest probability to

meet user-specified requirement is selected as the first model to approximate computation

in the fluid simulation. Then we calculate CumDivNorms in the first check interval, build

a linear regression model, calculate CumDivNormfinal using the regression model, and

predict Qloss by the KNN algorithm. After that, we compare the predicted Qloss (annotated

with Q′
loss in the rest of the paper) with the user requirement q. If Q′

loss is close to q,

we predict that the current neural network model can meet the user requirement. The

runtime algorithm continues to use the current neural network model. But if Q′
loss is larger

(or smaller) than q, then the runtime algorithm chooses a accurate (or fast) model with

better (or worse) accuracy. If all the neural network models cannot meet q, we restart the

simulation and use the traditional simulation method (i.e., the PCG method). The above

model switch process happens periodically (the period is the check interval). We calculate

CumDivNorms at the end of every check interval to determine if the model switch is

necessary.

An Example. Figure 2.7 gives an example to further explain our runtime algorithm. In this

example, we have five neural network models and the user requirements on the simulation

quality loss and execution time are 0.013 and 6.64s respectively.

During the offline phase, five neural network models are constructed by the model

transformation (Section 2.4) and selected by MLP (Section 2.5); We record the possibility

and execution time of the five neural network models (shown as Step 1 in Figure 2.7).

At runtime, we use the first neural network (M1) which has the highest probability (91%)
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Model candidates
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Figure 2.7: An example to explain our runtime algorithm.

to meet the user requirement on the simulation quality. Then we skip the first five steps

and fit the values of DivNorms in the first check interval into a linear regression model,

and predict that the CumDivNorm closes to 395 at the final time step. Using the KNN

method, we predict Qloss as 0.019, which is much larger than the user requirement (0.013).

So we switch to a more accurate neural network model, i.e., M3 (a model with higher

accuracy than M1 and the highest probability among remaining neural network models).

After using M3 for another five time steps (one check interval), we predict Q′
loss of M3

as 0.015, which is still larger than the user requirement. So we switch to another more

accurate neural network model, i.e., M5. We predict Q′
loss of M5 as 0.013, which can meet

the user requirement, we then use M5 during the next check interval.

Compared with using a single neural network model, our runtime algorithm introduces

additional computation (i.e., predicting CumDivNorm and applying the KNN method).

However, the computation of the simple linear regression algorithm to predict CumDivNorm

and the traversal of the binary tree to apply the KNN method are lightweight. Such over-

head can be easily overweighed by the performance benefit introduced by adaptive neural

network-based approximation. We evaluate performance (including the runtime overhead)

in Section 2.7.2.

2.7 Evaluation

We evaluate our framework to examine its impact on performance and simulation

quality of the Eulerian fluid simulation.
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Figure 2.8: Performance (execution time) of the Tompson’s model and Smart-fluidnet.

Platform. We conduct all experiments on a high-end server with 24 Intel Xeon E6-2760 v3

CPU cores running at 2.30GHz. The server is equipped with an NVIDIA Titan X (Pascal)

GPU. We use cuDNN 5.0 on this GPU to run neural networks.

Fluid Simulation. During the fluid simulation, we run 128 time steps (the default number

of time steps in mantaflow) for each input problem. To comprehensively evaluate the per-

formance, we use multiple grid sizes for each input problem, including 128∗128, 256∗256,

512∗512, 768∗768, and 1024∗1024.

Input Datasets. We generate training and evaluation datasets by mantaflow, which is an

open-source framework for the fluid simulation. The training dataset is used to optimize the

parameters of the neural network models and MLP model, while the evaluation dataset is

used to evaluate the performance of the online algorithm during the fluid simulation. Each

of the two datasets contains 20,480 input problems. There is no overlapping between the

training and test datasets. To generate the total 40,960 problems, we initialize velocity by a

pseudo-random turbulent field [78], and generate occupancy grids with the border wall by

introducing some objects in the simulation domain. Those objects are from the NTU 3D

Model Dataset [126].

Neural Networks. We use Auto-Keras [73] with extension (Section 2.4) to search qualified

convolutional neural network architectures. Auto-Keras constructs neural networks using

Python, but the fluid simulation is implemented in Lua/Torch7. Hence we re-implement

and optimize the neural networks with the Torch7 package.

2.7.1 Model Speedup and Accuracy

We conduct experiments to measure performance. We take the PCG solver as the

baseline method. PCG is the traditional method used in the Eulerian fluid simulation and
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Figure 2.9: Variation of quality loss with various grid sizes for input problems.

Table 2.2: Percentage of input problems with which the simulation reaches the requirement
on quality.

Grid size 128*128 256*256 512*512 768*768 1024*1024
Tompson 68.22% 67.16% 85.27% 71.06% 46.38%
Smart-fluidnet 88.27% 87.14% 91.36% 86.47% 91.05%

does not include any neural network. Compared with neural network-based approximation,

PCG has the highest simulation quality but the performance is very bad. All performance

(execution time) reported in this section is shown as “speedup” with respect to the perfor-

mance of PCG.

Figure 2.8 shows the results for Smart-fluidnet and the Tompson’s model with dif-

ferent grid sizes. The Tompson’s model represents the state-of-the-art neural network to

accelerate the Eulerian fluid simulation. In all test cases, Smart-fluidnet performs better

than the Tompson’s model and is 1.46× better on average. The largest improvement over

the Tompson’s model is 2.25×. Besides the execution time, we also study the simulation

quality of the Tompson’s model and Smart-fluidnet. We use 20,480 input problems to eval-

uate each method. We use the simulation quality of PCG as the ground truth and study the

quality loss of the Tompson’s model and Smart-fluidnet. Since Smart-fluidnet requires the

user to specify a requirement on the quality loss, we use the average quality loss of all input

problems when using the Tompson’s model, as the user requirement (the target).

Figure 2.9 presents boxplots1 to show the results of the quality loss for all input prob-

lems with five selected grid sizes. We draw two observations from Figure 2.9: (1) The

outputs of Smart-fluidnet are closer to the target value than those of the Tompson’s model;

1In the boxplots, the boxes are bounded by 25th and 75th percentiles of the quality loss; The central marks
of the boxes indicate the median; The ‘+’ markers outside the boxes indicate the extreme outliers [33].
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Figure 2.11: Variation of simulation quality in different model candidates.
(2) The variances of Smart-fluidnet are smaller than those of Tompson’s model. These two

observations reveal that Smart-fluidnet can give more consistent simulation quality than the

Tompson’s model, which is crucial for dealing with largely diversified input problems.

To further study the consistency of simulation quality with various input problems,

we study how many input problems can lead to the simulation with satisfiable simulation

quality. Table 2.2 shows the results. Table 2.2 reveals that Smart-fluidnet leads to a larger

percentage of a high-quality simulation than the Tompson’s model in all cases. The differ-

ence between Smart-fluidnet and Tompson’s model is as large as 44.67% (when the grid

size is 1024*1024).

2.7.2 Analysis on Runtime System

In this section, we analyze the effectiveness of our runtime system. Taking the grid size

of 1024*1024 as an example, the average quality loss and execution time of the Tompson’s

model are 0.013 and 6.64 seconds respectively. We take this quality loss and execution

time as the target (i.e., the user requirement) of Smart-fluidnet.

Speedup. We show the performance (the speedup of execution time) of running the 14

neural network models alone without model switching. We use the performance of PCG
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as the baseline to calculate speedup. We also show the performance of Smart-fluidnet and

compare it with the 14 individual models. Figure 2.10 shows that the performances of the

14 neural network models are quite different, with the speedup ranging from 541.25× to

141.17×. The performance of Smart-fluidnet is close to the median performance (440.1×)

of the 14 neural network models. This is the result of dynamically using different neural

network models at runtime.

Quality. We compare the 14 neural network models, the Tompson’s model, and Smart-

fluidnet, in terms of quality loss. We calculate the quality loss using the method in Sec-

tion 2.7.1. Figure 2.11 shows the results. Similar to Figure 2.9 in Section 2.7.1, the figure

shows the distribution and variation using the boxplots. Figure 2.11 reveals that the vari-

ation of the quality loss in Smart-fluidnet with various input problems is much smaller

than any of the 14 neural network models alone. With Smart-fluidnet, 91.05% of the in-

put problems’ simulation quality meet the user requirement. With the shortest and longest

models (among the 14 neural network models), 12.52% and 92.71% of the input problems’

simulation quality meet the user requirement.

Figures 2.10 and 2.11 include the results for using only the fastest model M1 or the

most accurate model M14 throughout the simulation. M1 is 1.18× faster than Smart-

fluidnet, but achieves the user requirement on the simulation quality in only 12.52% of the

input problems (for Smart-fluidnet, it is 91.05); M14 achieves the user requirement on the

simulation qualtiy in 92.71% of the input problems, which is close to Smart-fluidnet, but

the performance of M14 is 3.12× worse than Smart-fluidnet.

Table 2.3 shows the time distribution of five neural network models used by Smart-

fluidnet for all input problems. The second row of the table shows the probability of reach-

ing the target when using each neural network model alone, which is predicted by MLP;

The third row shows the percentage of execution time of the fluid simulation for the five

neural network models (i.e., the time distribution). The table shows that the model with

the highest probability, M7, takes 50.56% of the total execution time, which is the longest

execution time among the five models. We also notice that M5, which is the fastest model

among the five neural network models, takes 18.1% of the total execution time (the second

longest execution time among the five models). These indicate that Smart-fluidnet makes

best efforts to reach the user requirement on the simulation quality and execution time.
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Figure 2.12: Success rate of reaching target quality with or without using MLP.

Table 2.3: Execution time distribution for the five neural network models used by Smart-
fluidnet at runtime.

Grid size M7 M5 M10 M2 M13
Prob.(MLP) 86.12% 82.16% 79.43% 74.60% 70.38%
Time Distr. 50.56% 18.10% 11.12% 4.07% 16.15%

2.7.3 Evaluation of MLP Effectiveness

In this section, we evaluate the effectiveness of MLP. We compare the success rate of

our runtime system with and without MLP. The success rate means using all input problems

for tests (20,480), how many of them reach the simulation quality requirement with our

runtime system. Similar to Section 2.7.1, we use the average quality loss when using all

input problems for the fluid simulation with the Tompson’s model, as the user requirement.

Without MLP, we have 14 neural network models to be used by the runtime before the fluid

simulation, while with MLP, we have five.

Without MLP, we use the fastest neural network model (but less accurate) in the be-

ginning and then switch to more accurate models until we find a model that can reach the

user requirement on the simulation quality. We use this model in the remaining of the fluid

simulation. Figure 2.12 shows the results. The figure reveals that Smart-fluidnet with MLP

causes higher success rates than without MLP. The success rate with MLP is 88.86% on

average and can be up to 91.36%. This result shows that without MLP, the runtime system

can use those neural network models that have a lower possibility to reach the quality tar-

get, in order to have better performance. With MLP, we avoid applying those models, hence

improving the success rate. We also compare performance with and without MLP. For the

grid sizes of 128∗128, 256∗256, 512∗512, 768∗768, and 1024∗1024, the corresponding

performance when we use MLP, which is normalized by the performance without MLP, is
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Figure 2.13: Impact of the check interval on the success rate.

97%, 84%, 92%, 79% and 83% respectively. With MLP, we perform better in all cases.

2.7.4 Sensitivity Study: Check Interval

We study the impact of the check interval on execution time and success rate. We

change the check interval, and Figure 2.13 shows the results. Figure 2.13 shows that the

success rate decreases when the interval increases. Such decrease is because the model

switching is too slow to achieve high simulation quality. We also observe an unusual in-

crease of the success rate when the interval changes from 14 to 16. We attribute such an

increase to the statistical variance of using the linear regression method to make the pre-

diction. Although using 16 seems to be useful to increase prediction accuracy for our input

problems, using 5 achieves the highest success rate.

Therefore, we use 5 as the check interval throughout our evaluation. We do not use a

check interval smaller than 5, because we have to skip the first two time steps to ensure that

the growth rate of CumDivNorm is stable and using less than three time steps to build the

linear regression model cannot give high prediction accuracy.

2.7.5 Evaluation of Resource Usage

We evaluate resource usage (FLOP and GPU memory consumption) by PCG, the

Thompson’s and Smart-fluidnet with the grid size of 512*512. Since all input problems

for such a grid size has the same resource usage, we randomly choose an input problem

and present the evaluation results in Table 2.4.

We find that Smart-fluidnet requires much less FLOP than PCG and the Tompson’s,

which explains why Smart-fluidnet has better performance. On the other hand, Smart-
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Table 2.4: Resource usage of different methods.

Methods FLOP (single step) GPU Memory
PCG ∼1,250 M 332 MB
Tompson 243.79 M 299 MB
Smart-fluidnet 110.97 M 1,069 MB

fluidnet consumes more memory than PCG and the Tompson’s, because Smart-fluidnet

uses five neural network models on GPU (but not running them simultaneously). However,

the memory consumption of Smart-fluidnet is still smaller than the GPU memory capacity

(12 GB). If GPU memory is not sufficient, then we may either use fewer neural network

models or run them on CPU.

2.8 Conclusions

Using machine learning (especially neural networks) to approximate computation in

HPC applications and improve performance has shown preliminary success recently. How-

ever, using this approach faces fundamental limitations due to the lack of model flexibility

and generality. In this paper, we focus on a specific HPC application and introduce a sys-

tematic approach to address the above limitation. In particular, we introduce a framework

(Smart-fluidnet) that automatically uses multiple neural network models at runtime to ap-

proximate computation and make best efforts to meet the user requirements on simulation

quality and execution time. The framework includes a series of techniques to construct

and select neural network models. Based on the comprehensive evaluation, we show that

Smart-fluidnet is 1.46× and 590× faster than a state-of-the-art neural network model and

the original fluid simulation respectively on an NVIDIA Pascal GPU, while providing bet-

ter simulation quality than the state-of-the-art model.



Chapter 3

SmartPGsim: Using Neural Network to

Accelerate AC-OPF Power Grid

Simulation

3.1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML) techniques are revolutionizing

the way researchers approach scientific and engineering problems. By employing reverse-

engineering and automatic learning methodologies it is often possible to solve complex,

unstructured problems with a fraction of the computing power and execution time required

by traditional direct and first-principle methods. ML provides researchers with a powerful

tool to learn the structure of physical phenomenon directly from Nature, rather than having

to explain the causal relationships through direct application of physics law. Many research

and engineering fields, from image recognition to autonomous driving, from health to nat-

ural language processing (NLP), have experienced a tremendous boost in performance and

efficiency over the last few years. Many problems that seemed impossible to be solved, can

now be tackled thanks to the use of ML methodologies.

The use of ML methodologies in scientific and engineering applications has been,

somehow, limited. By using Neural Network (NN) as a tool to learn and model compli-

cated (non-)linear relationships between input and output data sets, scientists have shown

preliminary success in some HPC problems (e.g., detecting neutrinos [129], climate simu-

39
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lations [127], and fluid dynamic simulation [41]). With NN, scientists are able to augment

existing scientific simulations by improving simulation accuracy and significantly reducing

latency [133, 4, 103, 7, 180, 95, 94]. However, although there have been successful studies

of applied ML to scientific applications, these fields have not experienced the double- or

triple-digit improvements seen in other domains. The reason for such discrepancy is the

fundamentally different characteristic of scientific and engineering applications compared

to domains such as image recognition and NLP: scientific applications require a level of

precision and robustness that may not be provided by most of the current ML methods

employed in other domains.

In this work we study the implication of using ML techniques to accelerate the power-

grid simulations, the structure of the ML model to be used, the relative importance of the

features selected, and, most importantly, the impact of incorporating physics constraints on

the performance of the application. The power-grid simulation [91] is a complex nonlin-

ear optimization problem for the management of power flow and is critical to the power

industry in electricity dispatch scheduling, reliability analysis, and maintenance planning

for power and generators [50, 19]. The alternating current optimal power flow (AC-OPF)

simulation is the most fundamental and time-consuming part of the power grid simulation.

The problem size of AC-OPF is generally large, in which the scale of the generator node

can vary from 103 to 106 [66, 59, 111]. Despite the large problem size, the AC-OPF simula-

tion requires near real-time updates during power scheduling. In a typical scenario, power

grid operators repeatedly solve the optimal power flow problem multiple times within ev-

ery minute throughout a day, every day of the year [143, 124, 38], for decades, to ensure

that the power grid system is operating reliably and safely. The high requirement on the

simulation latency and frequent usage of the simulation make the power grid simulation a

mission-critical application under active development in the HPC community and within

the U.S. Department of Energy (DOE) and the DOE Exascale Computing Project (ECP).

NN has been applied to solve the optimal power flow problem in the past [57, 6, 183,

35, 114]. However, existing efforts have focused on improving performance by entirely

replacing the simulation solver with an approximated NN model or facilitating existing

solvers by identifying active constraints. While these approaches provide considerable

speedups, NN provides only an approximation of the optimal solution or approximates

computation in the simulation. As a result, these approaches may not provide the desired
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precision for the solution or may provide a non-optimal solution. In the context of power-

grid simulation, the first case results in an infeasible solution (e.g., not being able to provide

the required power to satisfy the user demand) while the second case may results in a large

economic loss (i.e., solving the problem at a much higher cost.)

In this paper, we introduce a new method to apply NN to the AC-OPF simulation.

Unlike the existing studies, we employ NN to generate an initial solution and then inject

it to the AC-OPF solver. Because of the high quality of the initial solution and guidance

of other outputs generated by the proposed NN, the simulation can run faster (or converge

faster) without losing the solution optimality.

There are several challenges to apply our method to the AC-OPF simulation. First,

deciding which variables in the AC-OPF simulation should be used as NN output and

quantifying the sensitivity of simulation execution time and convergence to those variables

is a challenge. The AC-OPF simulation involves a set of variables, including power grid

information and multiple variables critical for the computation convergence. We cannot use

all of them as NN output because that largely increases network complexity and puts high

requirements on training efficiency and sufficiency of training samples. On the other hand,

using only the solution of the AC-OPF as NN output, we often lose simulation robustness

because of the limited guidance for the simulation from the initial solution. Furthermore,

understanding the sensitivity of simulation time and convergence to those variables is useful

for deciding NN topology and generating high-quality initial solutions.

Second, how to apply NN to the AC-OPF simulation without disturbing the simula-

tion robustness is a challenge. Due to the non-convex and nonlinear nature of the AC-OPF

problem, the simulation process itself is at the risk of a failed convergence with the use of it-

erative numerical methods. The simulation must be robust enough to handle various power

flow cases with computation convergence. Using NN to generate an initial solution, we

must make sure that the initial solution makes sense and does not impact the computation

convergence in the original simulation.

Third, how to impose physical constraints on NN to ensure the validness of NN predic-

tion. Traditionally, the NN model is manually constructed by computer scientists as a black

box with limited or no domain knowledge and without considering domain requirements.

Although NN models can be adjusted as a nonlinear tool box to accommodate a change of

inputs and generate some approximation, the understanding of the model is lost. Instead
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of blindly trusting that the data mining algorithm will produce a correct model, we seek

for what variables physically mean and which physical laws are driving the interpretable

evolution of the analysis paradigm.

To address the above challenges, we introduce, Smart-PGsim, a framework that facil-

itates the construction of a NN model to accelerate the AC-OPF simulation. Smart-PGsim

is based on the following design principles. First, it generates an NN model that uses

power grid components as inputs and variables critical for the simulation convergence as

the model output. By using Smart-PGsim, we perform a sensitivity study to understand

the impact of the output accuracy on execution time and convergence, by using precise or

imprecise data for some variables. This sensitivity study provides guidance on choosing a

correct and efficient NN topology.

Second, Smart-PGsim uses a novel multitask-learning NN model to accelerate the AC-

OPF simulation. The model topology allows information sharing when predicting multiple

dependent variables while including customized layers for each variable. This multi-task

model improves the model accuracy, compared with the traditional single-task model, while

simplifying the training process.

Third, Smart-PGsim allows embedding physical constraints from the original formu-

lation of the AC-OPF problem into the NN model and imposes those constraints into the

training objective function or the last layer based on transformation on equality and in-

equality in the constraints. We summarize our major constitutions as follows.

• A systematic approach and a framework (Smart-PGsim) to accelerate optimization

problems in general and the AC-OPF power grid simulation in particular;

• A set of techniques to construct NN models for robust, accurate, and high-performance

numerical solvers;

• We show that Smart-PGsim achieves 2.60× speedup on average (with the consid-

eration of NN cost) and up to 3.28× over the original AC-OPF simulation method

(computed over 10,000 problems as the simulation input), without losing the opti-

mality of the final solution.
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3.2 Background

In this section, we review the problem formulation and the primal-dual interior-point

method in the AC-OPF problem.

3.2.1 Problem Formulation for AC-Optimal Power Flow

The AC-OPF problem aims at minimizing an objective function by optimizing the

power dispatch and transmission decisions. The objective function calculates the cost of

power generation, subjecting to physical, operational, and technical constraints including

Kirchhoff’s laws, operating limits of generators, voltage levels, and loading limits of trans-

mission lines [74]. The standard AC-OPF problem is formulated as:

min
X

f(X) (3.1a)

s.t. G(X) = 0 (3.1b)

H(X) > 0 (3.1c)

Xmin ≤ X ≤ Xmax. (3.1d)

where f(X) is the cost function to be minimized, and X is an optimization vector as the

simulation solution.

Eqn. 3.1b builds an equality constraint, which sets up power balance incorporating

variable bounds. The formulation 3.1c is an inequality constraint that sets up branch flow

limits. The optimization vector X is bounded by Xmin and Xmax which introduces the

constrains on reference bus angles, voltage magnitudes, and generator injections. The opti-

mization vector X consists of four variables, X = {Va;Vm;Pg;Qg}, i.e., voltage angles Va,

voltage magnitudes Vm, generator real power injections Pg and reactive power injections

Qg.

In power grid simulation, G(X) = 0 is an AC nodal power balance equation and

enables the AC-steady conditions of the power system, which can be split into real and

reactive parts:
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Pi(Cg, Pg) = Pd + Pbus(Ybus, Va, Vm) (3.2a)

Qi(Cg, Qg) = Qd +Qbus(Ybus, Va, Vm). (3.2b)

In Eqn. 3.2, Cg is the generator connection matrix reflecting generator locations in a power

grid network. Ybus is the bus admittance matrix including all constant impedance elements.

Pi and Qi refer to power real and reactive injection for the power system. Pd and Qd are

power loads. Pbus and Qbus are power consumption of transmission lines.

3.2.2 Primal-dual Interior Point Solver

The primal-dual interior point method [107, 171] is an efficient algorithm to solve the

non-convex optimization problem for AC-OPF. Matpower [185] is a widely used frame-

work for solving power flow and optimal power flow problems. Matpower uses a solver,

called MIPS, to solve those problems.

To solve the AC-OPF problem, MIPS first converts the inequality constraint in Eqn. 3.1c

into an equality constraint with a vector Z, H(X) + Z = 0 where Z is a vector of positive

slack variables. MIPS further uses a barrier function ln(Z) to bound Z. Based on that,

MIPS uses a Lagrangian formulation to formulate the AC-OPF problem as follows.

Lγ(X,Z, λ, µ) = f(X) + λ⊺G(X) + µ⊺(H(X) + Z)− γ

ni∑
m=1

ln(Zm) (3.3)

where λ is called the equality Lagrangian multiplier, µ is called the inequality La-

grangian multiplier, and γ is called the perturbation parameter. During the solving process,

γ is approaching zero. If γ = 0, the solution to this Lagrangian formulation equals to that

of the original form (Eqn. 1).

Matpower uses Newton method to solve Eqn. 3.3, which iteratively converges to a set

of convergence criteria (particularly four terminate conditions) [185]. The Newton Method

is computationally intensive and requires constant updates of input and output variables:

the method firstly updates X and λ, then Z based on X , and, finally, µ based on X and Z.

As we will see in the next Sections, this structure introduces internal dependencies on the

variables that our model exploits for better performance and accuracy.
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3.3 Related Work

OPF problems can be categorized into three forms: economic dispatch (ED) [30], Di-

rect Current (DC-OPF) [160], and Alternating Current (AC-OPF) problems [29]. The AC-

OPF problem is the original OPF problem, which is non-convex and the most challenging

one among the three. ED and DC-OPF problems are the relaxed version of the AC-OPF

problem, which is obtained by removing or linearizing some constraints in the AC-OPF

problem, respectively. Traditionally, numerical iteration algorithms are used to solve the

OPF problem [156, 97, 67, 22, 100]. However, the time complexity of these algorithms

might be significant, especially when the scale of the transmission power system becomes

large. To deal with this limitation, researchers have explored learning-based approaches to

accelerate solving OPF problems.

Vaccaro et al. [168] use the principal component analysis (PCA) to identify unknown

relationships among OPF variables, which reduces the number of variables to be solved for

a solution. Ng et al. [114] use a statistical learning-based approach to set up a mapping

between input power requirement and output dispatch scheme. However, the approaches

mentioned above consider only the prediction accuracy without taking into account the

correlation among OPF problem variables, which leads to a solution that can not satisfy all

of the problem constraints. Pan et al. [117] use the multilayer perceptron (MLP) to learn

the mapping between input and decisions for DC-OPF and apply it to obtain optimized

operating decisions upon arbitrary inputs. While this approach is effective for DC-OPF,

it has low generalization capacity and cannot be applied to a non-convex problem such as

AC-OPF. Previous works [57, 6, 183] have leveraged machine learning to accelerate the

AC problem. Zamzam et al. [183] develop an online method based on machine learning

to obtain feasible solutions to the AC problem by loading the optimal generator set-points

and enforcing generation limits. However, the AC grid contains more voltage phase angles

beyond magnitudes and reactive parts of power generation. Unlike these methods, the pro-

posed approach includes all the inputs of the AC problem and guarantees that the predicted

solution is optimal while providing significant performance improvement.

In this work, we use NN models to solve the AC-OPF problem. We follow a radi-

cally different approach compared to previous work in that we employ ML to estimate a

high-quality initial solution for the solver, greatly speeding up the entire computation, and

then leverage traditional AC-OPF solver to guarantee precision and robustness of the so-
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Figure 3.1: Workflow of the proposed Smart-PGsim

lution. We show in the next Sections that our approach can simultaneously provide large

performance improvement and high-precision solutions.

3.4 Overview

This section overviews our proposed framework “Smart-PGsim”. The Smart-PGsim

framework includes two phases: offline and online phases. Figure 3.1 shows the workflow

of Smart-PGsim.

The offline phase investigates the power grid simulation to find the most crucial fea-

tures to construct an efficient NN model for online acceleration. In particular, our sen-

sitivity study (Section 3.5) firstly identifies the most important features (in other words,

determining variables in MIPS as the output of the prediction model) and quantifies the

impact of the imprecise variables (i.e., variables with some accuracy loss) on the success

rate of simulation and performance in terms of execution time. The results in sensitivity

study are used to guide the NN topology design.

Then, Smart-PGsim constructs a multi-task learning (MTL) model (Section 3.6) guided

by the sensitivity study. The model shares domain information between prediction tasks,

while uses a customized topology design for each task. Smart-PGsim prioritizes features

to distinguish main tasks and auxiliary tasks and applies a physics-dependent hierarchy for

those features have domain specific dependency.

Next, Smart-PGsim incorporates physical domain knowledge during model training

to improve prediction quality (Section 3.7). The domain knowledge presents physical con-

straints providing explicit and implicit error bounds. Using the domain knowledge im-

proves prediction accuracy, interpretability, and defensibility of the MTL model, while

simultaneously augmenting physical data as complementary.

After the above offline phase, the well-trained MTL model can be used to generate a
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Table 3.1: Ablation study on the input signals

X λ µ Z
bus 5 bus 9 bus 14 bus 30 bus 39 bus 57 bus 118 bus 300

Observation
SR SU SR SU SR SU SR SU SR SU SR SU SR SU SR SU

I 0 0 0 0 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 baseline
II 0 0 0 1 0 – 10 0.67 0 – 89 0.66 0 – 6 0.99 0 – 0 –
III 0 0 1 0 100 1.04 100 0.73 100 0.92 100 0.93 95 0.95 88 0.60 99 1.03 100 1.24
IV 0 0 1 1 100 1.09 100 0.96 100 0.85 3 0.22 75 1.02 99 0.72 0 – 68 1.24
V 0 1 0 0 100 0.98 100 0.99 100 1.00 30 1.06 100 1.00 100 0.98 100 0.98 98 0.99 OBS 3
VI 0 1 0 1 0 – 8 0.73 0 – 79 0.70 0 0.61 9 0.90 0 – 0 –
VII 0 1 1 0 100 0.99 0 – 80 0.61 98 0.90 100 1.09 100 0.89 100 0.93 100 1.08
VIII 0 1 1 1 100 1.05 100 1.24 100 1.32 30 0.19 100 1.39 100 1.25 100 1.59 100 1.75 OBS 3
IX 1 0 0 0 100 1.17 100 0.99 100 0.99 100 0.95 100 1.06 100 1.01 100 0.99 100 1.08 OBS 1, 4
X 1 0 0 1 0 – 0 – 0 – 0 – 0 – 11 0.94 0 – 0 – OBS 2, 4
XI 1 0 1 0 100 1.28 100 0.85 100 0.88 100 1.33 95 1.48 100 0.67 90 0.84 96 1.24 OBS 4
XII 1 0 1 1 100 1.45 100 1.03 100 0.80 95 1.26 80 1.22 100 0.65 0 – 53 0.87 OBS 2
XIII 1 1 0 0 100 1.18 100 1.00 100 0.98 100 0.94 100 1.06 100 1.00 100 0.99 100 1.07 OBS 3, 4
XIV 1 1 0 1 0 – 0 – 0 – 0 – 0 – 10 0.97 0 – 100 1.18
XV 1 1 1 0 100 1.28 100 0.79 100 0.90 100 1.09 100 1.22 100 0.93 100 0.94 100 1.32
XVI 1 1 1 1 100 5.21 100 4.58 100 3.74 100 6.15 100 6.60 100 4.58 100 7.63 100 14.6 OBS 1, 3

warm-start point for MIPS as online prediction. The MIPS (or other numerical solvers) can

use these high-quality start points for quick convergence.

3.5 Sensitivity Study

The ability of NN to produce high-quality results is the key to improve simulation

performance (making the simulation quickly converged). In this section, we discuss the

opportunity available in NN with the assist of a sensitivity study tool that detects and ana-

lyzes those variables critical to simulation convergence and execution time.

We introduce two data types, i.e., imprecise default data and precise simulation data,

to study the impact of noisy feature to simulation quality and execution time. By doing so,

we can check the (lowest) highest performance brought by these (im-)precise data, which

demystifies the contribution of each feature to success rate and speedup.

1. Imprecise default data: The default value at the initial point in MIPS.

2. Precise simulation data: The exact solution collected in the numerical solver, i.e.,

MIPS. We take the ground-truth value as the precise data.

Our sensitivity study first checks the convergence criteria in the MIPS code and collects

those variables critical to the simulation converge, namely X,λ, µ, and Z. We use these

(im-)precise data as initial points to test the importance of each variable in two aspects,

i.e., the impact on success rate and speedup. Here, success rate refers to the ratio of those
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initial solution can reach the convergence criteria to the total number of input problems.

Speedup is time acceleration, namely the rate of actual solving time to the exact solving

time in MIPS.

Then, we include eight test systems1 and generate 10, 000 samples for each system

by varying input loads to analysis the impact of using different initial points. Initializing

the four variables with precise and imprecise types, we have 24 combinations to analyze

the contribution of each variable. Table 3.1 shows the results of 16 combinations. For

each combination, we use “0” and “1” to indicate the imprecise data and precise data re-

spectively. To calculate the success rate and speedup, we take a baseline, the combination

where all variables using imprecise default data.

Table 3.1 reveals that precision improvement on these initial variables does not always

bring benefits to simulation performance in terms of success rate and speedup. A high

improvement on precision might even decrease the success rate of the simulation. For

example, the baseline case I (using all default parameters) has a success rate of 100%,

while improving the precision on the feature Z (e.g., the case II) alone leads to failed

convergence at most input problems. Hence, blindly building a NN model to numerically

approach those precise values may reduce success rate and lose simulation performance.

We further analyze the performance results in Table 3.1 and summarize some interest-

ing observations.

• Observation 1: Using precise X leads to a 100% success rate (see case IX), while

the features X , λ, µ and Z jointly contribute to high speedup see case XVI).

• Observation 2: The contribution of Z to the success rate and speedup strongly de-

pends on whether µ use precise data. For example, the success rate is dropped down

when involve a precise Z without a precise µ (see case XII with respect to X).

• Observation 3: The contribution of λ to the success rate and speedup is independent

of whether the other features use precise data or not. For example, the success rate

of initialing with a precise λ does not change with/without a precise X or µ and Z

(see case V, VIII, XIII and XVI).

• Observation 4: Features X , λ, µ and Z have implicit dependency. Improving ac-

curacy of one feature cannot guarantee the overall performance improvement to the
1Refer to Table 3.2 for a more detailed illustration of test systems.
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success rate and speedup. For example, improving the accuracy of λ, µ, or Z on a

precise X can not guarantee the improvement of success rate and speedup (compar-

ing case IX with cases X, XI and XIII.)

Observations 1 and 4 indicates that the analyzed features are highly inter-dependent, which

can be targeted on multi-task prediction. We build a MTL model to enable the informa-

tion sharing for the inter-dependency. We decide feature priority by dependency between

features, namely, the contribution of a feature to success rate and speedup is changed with

a variation of another feature. For example, since λ, µ and Z have dependency on X , we

should make X very accurate. We give X the highest priority.

Observation 2 and 3 reveals features show differences on dependency. Some features

(e.g., λ) are relatively independent while others (e.g., µ and Z) have dependency, which

implies customized design for different feature prediction should be considered in model-

ing. Also, we observe that λ is an equality factor while µ and Z contribute to inequality

together in Eqn 3.3. Such information from physical law validates feature dependency and

maybe can be used to deal with the dependency in model training inversely.

Driven by these observations, we introduce an interactive learning model for multi-

objective modeling (discussed in Section 3.6) and impose domain knowledge to strength

physical understanding for prediction quality (discussed in Section 3.7).

3.6 An interactive learning model

In this section, we develop a MTL model to enable multitask prediction. Based on the

observation from sensitivity study, we implement domain specific design through prioritiz-

ing features and enforcing a physics-dependent hierarchy in the MTL model. After that,

we depict the details of MTL parameters.

3.6.1 Multitask Learning

Multitask learning is an inductive transfer learning method [17, 166]. A MTL model

is typically composed of shared layers and task-specific layers. Unlike using multiple sep-

arate models for each task, the MTL model enables us to share information from common

layers while customizing specific layers for corresponding tasks. The training signals of
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different tasks can be learned as inductive biases to facilitate the learning of all tasks, which

achieves a unification of the shared information and the task-specific information.

Information-sharing in shallow layers. Observation 1 reveals that there is correla-

tion among these four features and we would like to leverage these relations in our model.

To incorporate this correlation, we utilize information sharing in MTL by parameter sharing

and loss sharing.

• Parameter sharing. The common layers share the same weights and topology be-

tween tasks. By sharing parameters, tasks share low-level semantic information to

complement domain knowledge with each other. Meanwhile, parameter sharing can

alleviate the risks of overfitting due to the noise brought by multiple tasks.

• Loss sharing. The tasks to predict X,λ, µ, Z share a common loss function to up-

date training gradient in the MTL. The minimal loss of different tasks are usually in

different positions. By sharing losses, the MTL passes information and avoids being

trapped in a local optimal.

Task-specific learning in deeper layers. Besides the features X,λ, µ, Z being corre-

lated, observations 2 and 3 shows that specific design for different feature prediction should

be considered. In task-specific layers, we introduce specific model topologies (estimators)

for each task based on the task demands. For example, a task requires a positive output.

We apply a rectified linear unit (ReLU), a type of activation functions, at the last layer to

bound the output always positive.

Figure 3.2 shows the topology of the proposed MTL. Given a power network topology,

we use the power load (including both the active part Pd and reactive part Qd) as model

inputs and estimate seven tasks (four variables in X). In the MTL, the shared layers are ex-

tracting information from different tasks, while the task-specific layers (estimators) utilize

customized designs to generate their own dedicated results.

3.6.2 Domain-Specific Design

Besides using shared layers and task-specific layers, we introduce a domain-specific

design into MTL: this design is driven by our observations on (1) the contribution difference

of the four features to success rate and speedup and (2) the dependency between features.
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The domain-specific design includes two techniques, feature prioritization and a physics-

dependent hierarchy, discussed as follows.

Feature prioritization. Observation 1 shows that precise X guarantees the success

of simulation convergence, while precise λ, µ, and Z contribute to simulation accelera-

tion. We prioritize the four features by specifying the prediction of X as the main task

while the prediction of other three features as auxiliary tasks. The auxiliary tasks are used

as an augmentation to provide additional information for the main task. Through “eaves-

dropping” the main tasks, the auxiliary tasks interact with the main task implicitly. More

importantly, learning the direct solution X in the main task gives the user high simulation

quality while estimating the Lagrangian factors (λ, µ, and Z) in the auxiliary tasks max-

imize performance speedup. Technically, we apply “detach()” operation [120] for these

auxiliary tasks periodically. The detach operation blocks the gradient back-propagation to

the shared layers (which are contribute to the main task X). In other word, we set a knob

of detach operation to alternately train the main task or the entire model. In particular, the

MTL focuses on improving main tasks when we activate the detach operation, while facil-

itates the interaction between main tasks and auxiliary tasks when the detach operation is

disabled.

A physics-dependent hierarchy. Observations 2 and 3 reveal the dependence be-

tween Z and µ and the independence of λ, respectively. We find these observations are
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consistent with the computation order in the solving process. In particular, the simulation

process takes the order of (1) computing X and λ; (2) computing Z based on X; and (3)

computing µ based on X and Z. This is consistent with the existing work [147, 148].

To fully exploit the benefit of information sharing, we enforce a physics-dependent

hierarchy in MTL. As shown in Figure 3.2, we first infer the main task X(Va, Vm, Pg, Qg)

and an independent auxiliary task λ. Then, we predict task Z based on X . After that, we

estimate µ based on the predicted Z.

3.6.3 Details on Multitask Learning Model

In this section, we present details about the topology parameters, the loss function and

the pre-processing method of the MTL model. We use a power grid system of 300 buses

as an example, but the MTL modeling method is general for any other power grid systems.

Figure 3.2 generally depicts the model topology.

The shared layers take the power load Pd and Qd at each bus as input, totaling 600

inputs. There are five fully-connected layers as the shared layers. We set the numbers of

neurons in the five layers as 600, 720, 840, 960, and 1080 respectively. The five fully-

connected layers extract shared features and feed them to seven specific estimators (four

in X and λ, µ, Z), each of which is a fully-connected network customized for a task.

We use ReLU as the activation function to increase the model nonlinearity. We use a

variant of L1 loss [69], the Charbonnier loss, as our loss function. This is a supervised loss

function calculating the difference between each of the predicted output variables v and

the corresponding ground-truth value vgt collected in the MIPS solver. Our loss function is

defined as follows.

L =
1

|V|
∑
v∈V

Wv

√
(v − vgt)2 + ϵ2 (3.4)

where V is a set consisting of Va, Vm, Pg, Qg, Z, λ and µ; Wv is a weight for a task v and ϵ

is a small constant for numerical stability. We set ϵ as 1e− 9 in our study.

3.7 Physics-Informed Learning

The solution in power grid simulation must respect several physical constraints, such

as power generation, line flow, and bus voltage constraints. Incorporating these constraints
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into the MTL model not only improves model accuracy but also increases the model inter-

pretability.

In general, the constraints are classified into hard and soft constraints. The hard con-

straint includes some strict bounds on the variable ranges in applications; The soft con-

straint includes domain knowledge to improve model accuracy, such as physical princi-

ples, conservation laws, and others gained from theoretical or computational studies. We

introduce four objective functions to incorporate domain knowledge and impose those con-

straints by minimizing the objective functions.

3.7.1 Embedding AC Nodal Power Balance Equations

The power grid simulation includes a power flow equality constraint shown in Eqn. 3.2

to make the simulation of the power grid system stable and make the simulated solution

feasible. We integrate the AC nodal power balance equations (Eqn. 3.2) into the objective

function fAC to guide model training.

fAC = |Pd + Pbus(Ybus, Va, Vm)− Pi(Cg, Pg)|+

|Qd +Qbus(Ybus, Va, Vm)−Qi(Cg, Qg)|
(3.5)

The above objective function bridges model inputs (Pd, Qd), outputs (X , λ, µ, Z) and

the physics information (Cg, Ybus) of power networks to yield quantitatively better physical

connection. In particular, the generator connection matrix Cg and the bus admittance matrix

Ybus are critical information determined by the physical network of power system. Eqn. 3.2

shows the AC power system keeps stable only if the power generation equals to the power

load. In the objective function fAC , we calculate the differences between power load and

generation and minimize the difference approaching to zero.

Figure 3.3 shows how the objective function fAC works in MTL training. In the power

grid simulation, we utilize domain information Cg and Ybus, which provide power-grid

bus topology and resistance information respectively. Power loads (Pd and Qd) are the

input fed to the MTL to produce solutions Va, Vm, Pg, Qg. We integrate the AC power

balance law (Eqn. 3.5) to calibrate the training loss in fMTL. In particular, we calculate

the power generation based on the prediction solution X and domain information Cg and

Ybus, and subtract power generation from the power loads. We then calculate the difference
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Figure 3.3: Embedding AC physical laws in MTL training

between the power loads and power generation, and try to minimize the difference within

the objective function fAC . The only block with training parameters is the fMTL and all

blocks are differentiable.

The above training process is driven by the predicted data and facilitates the prediction

inversely. Such a data-driven architecture fAC mitigates the risk of obtaining infeasible so-

lutions, such as those predicted solution misled by the noise of training data and violating

the basic AC power balance law. Embedding the objective function fAC has two significant

benefits. First, since the information of model inputs is limited to predict its outputs, we

incorporate non-trivial data-augmentation as a complementary to increase prediction accu-

racy. Second, we can efficiently perform transfer learning with fewer training data even

if the typology of power network is modified, e.g., a transmission line in the power-grid

bus is suddenly broken. With this, we can improve our MTL prediction and facilitate the

solution robustness.

3.7.2 Guarding Inequality Constraints

The AC-OPF formulation includes two inequality constraints: one is explicit, quanti-

tatively bounding X by Xmin < X < Xmax (Eqn. 3.1d), and the other is implicit, limiting

branch flow by H(X) > 0 (Eqn.3.1c). For the implicit inequality, we impose physics

information Cg and Ybus to calculate the branch flow state H(X) and check if the H(X)

violates the bounds. We utilize exponential functions to punish the overflow error in these

inequality constraints and force the prediction to be bounded by the expected, normalized

range. Eqn. 3.6 shows how we use the exponential functions. In the equation, we build an

objective function fieq to incorporate the inequality equations as a penalty loss.

fieq = e−H(X) + e(X−Xmax) + e(Xmin−X) (3.6)
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Where X is a predicted feature in MTL. Once the predicted X violates the inequality con-

straints, for example, H(Xk) < 0, the overflow error will be visibly shown up in the objec-

tive function fieq and calibrated through backpropagation in the training phase. Hence, the

main task X is restricted in a quantitative way to improve simulation quality.

Guarding inequality constraints in our model mitigates the overflow error in inequality

constraints while facilitates the feasibility of model prediction.

3.7.3 Optimization of Cost Function

The ultimate goal of the AC-OPF is to minimize the cost function f(X) (Eqn. 3.1a).

We explore the physics information in f(X) to construct an objective function ff(X) and

minimize the loss between the predicted cost and ground truth cost.

ff(X) = |f(X)− f0| (3.7)

where f0 is the ground-truth value of the cost collected by the numerical solver, MIPS.

Feature X is our model prediction. In f(X), we utilize the characteristics of energy con-

sumption on generators to calculate the predicted cost f(X). Then, the objective function

ff(X) calibrates the predicted cost f(X) with the ground-truth cost f0 to reach the optimal

solution.

3.7.4 Implying Lagrangian Conservation

In Eqn. 3.3, the AC-OPF problem can be solved as the equality constraints G(x) = 0

and slacked inequality constraints H(x) +Z = 0 approach zero. Here, we apply two ways

to imply the Lagrangian formulation into MTL training. First, we reconstruct the inequality

and equality constraints as soft constraints, which is imposed in the loss function to guide

the training. Then, we refer the variable bounds Z > 0 and µ > 0 as hard constraints and

apply an activation function to strictly bound model prediction. We construct an objective

function fLag to guide the training subject to the soft constraints.

fLag = |λ⊺G(X)|+ |µ⊺(H(X) + Z)| (3.8)

We incorporate the hard constraints during the training phrase by projecting predic-
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tions onto a region induced by the constraints. In particular, we first pre-process the raw

data of ground truth into the normalized range [0, 1]. Then, we apply a “sigmoid” acti-

vation function at the last layer to bound the output range of Z and µ to be positive and

into the same range [0, 1]. The above techniques provide hard upper and lower bounds on

prediction and guarantee its feasibility.

Incorporating fAC and fieq improves the feasibility and robustness of the simulation

solution X; Incorporating ff (X) improves the accuracy of X; Incorporating fLag can op-

timize auxiliary tasks λ, µ and Z. Hence, we arithmetically compose these objective func-

tions into the loss function L(Eqn. 3.4).

The Ltotal efficiently combines supervised learning (with ground-truth labels) and un-

supervised learning (without ground-truth labels) to guide the MTL training. By doing so,

we maintain the prediction accuracy while increase the model feasibility and interpretabil-

ity.

3.8 Evaluation

We evaluate our framework by examining its impacts on performance and simulation

quality of power grid simulation.

Platform.

We conduct all experiments on an NVIDIA DGX-1 cluster with 16 nodes, and each

node is equipped with two Intel Xeon E5-2698 v4 CPUs (40 cores running at 2.20GHz)

and 8 NVIDIA TESLA V100 (Volta) GPUs. We use CUDA 10.1/cuDNN 7.0 [21] to run

NNs on NVIDIA GPUs. We use Pytorch for model training and inference.

Matpower. Matpower 6.0 is an open-source Matlab power system simulation package [185],

which is used widely in research and education for AC- and DC- power flow simulations.

The default OPF solver, i.e., Matlab Interior Point Solver (MIPS), is a high-performance

primal-dual interior-point solver.

Load Sampling.

We sample the loads within [(1− t)× Pdi, (1 + t)× Pdi] uniformly at random, where

Pdi is the default power load at the i-th bus, and t is the variation percentage, i.e., 10% in

this paper, consistent with state-of-the-art [117, 57, 183].

Input Datasets. To comprehensively evaluate the performance, we use five power net-
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Table 3.2: Configurations in IEEE bus systems.

Problem size 14-bus 30-bus 57-bus 118-bus 300-bus
Buses 14 30 57 118 300
Generators 5 6 7 54 69
Branches 20 41 80 185 411
#λ 29 61 115 237 601
#µ(Z) 48 166 142 452 876

works in Table 3.2 as test systems. We generate 10,000 input problems for each test system,

in which 8,000 of them are for training and 2,000 for validation. These samples are fed into

Matpower to produce the optimal solutions as the supervision ground truth signal. Uniform

sampling is applied to avoid over-fitting issues common in generic DNN approaches [54].

3.8.1 Smart-PGsim Performance Evaluation

In our approach, we use Smart-PGsim to generate a high-quality initial condition for

the MIPS solver, thereby drastically reducing the overall time-to-solution. We introduce

the following performance metric to calculate the achieved speedups by Smart-PGsim:

SU =
TMIPS

TMTL + T ′
MIPS + TMIPS × (1− SR)

(3.9)

where TMIPS represents the solving time when using the traditional approach with MIPS,

TMTL represents the inference time of the MTL model, and T ′
MIPS represents the con-

vergence time in MIPS initializing with the output of Smart-PGsim. TMIPS × (1 − SR)

calculates the restart execution time with the default initial point in MIPS if the simulation

fails. SR represents the overall success rate, SR = Nsuc/Ntotal, where Nsuc represents

the number of problems successfully solved by MTL and Ntotal represents the total num-

ber of input problems. Whenever the initial condition provided by Smart-PGsim does not

lead to the simulation converge successfully, we fall back to the traditional MIPS solver to

guarantee the final convergence. Hence our method always provides 100% guarantee on

simulation convergence, though it might come at an additional cost of re-executing over-

head in the workflow.

Figure 3.4(a) compares the execution time of the traditional numerical simulation per-

formed with MIPS and that of our framework in terms of the SU metric described above.
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Each test system is run on 2, 000 input problems. Performance measurements of Smart-

PGsim comprise the end-to-end runtime, including the time to produce the warm-start

points in MTL, the convergence time in MIPS with the warm-start points, and the restart

execution time in MIPS if the simulation fails. In the Figure 3.4(a), we also label the

speedup at the top of Smart-PGsim bar. The Smart-PGsim speedups over MIPS observed

in the plot are considerable, ranging from nearly a 2.24× speedup up to over a 3.28×
speedup. Furthermore, the performance benefit of Smart-PGsim is more evident as the size

of power networks increases, which indicates a notable potential in accelerating large-scale

power grid systems. It is important to note that using Smart-PGsim as warm-start for MIPS

generates the same solution as produced by MIPS directly. Figure 3.4(b) presents the av-

erage iteration number of MIPS and Smart-PGsim across different test systems, in which

we only consider the iteration acceleration produced by Smart-PGsim. We measured the
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average iteration number during the convergence process until the terminate criteria are

reached. The iterative process is the most computationally intensive part of the power grid

simulation. We also label the ratio of the Smart-PGsim iteration number to the MIPS it-

eration number on Smart-PGsim bar. The results in Figure 3.4(b) show that Smart-PGsim

dramatically reduces the number of iterations required to converge, taking only 16.3% to

29.5% iterations of previous conduction (MIPS). The accelerated convergence drives the

overall performance improvement of Smart-PGsim.

3.8.2 Performance Breakdown

To further explore the performance improvement provided by Smart-PGsim, Fig-

ure 3.5 shows the runtime breakdown of MIPS and Smart-PGsim, normalized to the overall

runtime where the problems run with MIPS. The pre-processing refers the execution time

of problem construction and data preparing for power grid simulation, in which MIPS and

Smart-PGsim show almost the same processing time. The Newton update represent the

execution time spent in Newton iteration. Smart-PGsim have extra overheads about the in-

ference time of the MTL model for generating warm-start solution and the restart time with

failure cases. Note that we restart the failed cases with the default setting in the numerical

solver MIPS to guarantee the final convergence. As Figure 3.5 depicts, Smart-PGsim is ef-

fective at reducing the time spent on the convergence, i.e., Newton Update. Smart-PGsim

demonstrates significant performance improvement for the tested input problems despite

the extra overhead introduced by the MTL model.

3.8.3 Prediction Accuracy

Figure 3.4(c) compares MIPS and Smart-PGsim in terms of the success rate, in the

case in which we do not restart Smart-PGsim after a failed execution. As we discuss above,

Smart-PGsim guarantees 100% success rate in practice by re-executing those computations

that do not provide high-enough accuracy, while still considerably outperforming MIPS

execution. The success rate is how many input problems can converge successfully in the

simulation. Figure 3.4(c) reveals that Smart-PGsim leads to a high percentage of success

rate in all case. Smart-PGsim provides 100% success rate on 14-bus, 57-bus, 118-bus while

maintains a relatively high success rate as 97% and 92% on 30-bus, 300-bus respectively.
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Figure 3.6: Prediction accuracy of each feature used in the proposed MTL model.

Figure 3.6 presents the prediction accuracy of each feature used in Smart-PGsim. We

compare the accuracy of warm-start points predicted by Smart-PGsim with the exact solu-

tion in MIPS (Ground-truth). The prediction and ground-truth are normalized to the range

[0,1]. The x-axis is the predicted value of Smart-PGsim and the y-axis is the ground-truth

value. If the prediction of Smart-PGsim is perfect, all points should be lie on the y = x

line. There is negligible accuracy lost in the prediction of X.V a, X.V m, X.Pg, X.Qg, µ

and z. For λ, there is a larger variation in the predicted values representing over-prediction

and under-prediction. Such variation in λ is acceptable because λ is the equality constraints

factor in Eqn. 3.3, which will not affect the final convergence if the equality constraints are

satisfied.

3.8.4 Efficiency of Multitask Learning and Physical Constraints

In this section, we analyze the effectiveness of multitask learning and imposing physics

constraints. First, we develop a model of multiple separate NNs without information shar-

ing. For peer comparison, we use the same number of layers and neurons as MTL model in

the multiple separated networks. Then, to show the efficiency of physical constraints, we

remove physics constraints in MTL model as a comparison.

Figure 3.7(a) shows the speedup comparison with the multiple separated NNs, MTL

model and Smart-PGsim. Here, “MTL” refers to the multitask learning model without

physical constraints whereas “Smart-PGsim” refers the multitask learning model with phys-
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Figure 3.8: Accuracy comparison.

ical constraints. Note that all speedup are measured with our performance metric SU in

Eqn. 3.9. Figure 3.7 shows that the performance of the speedup SU and the success rate

SR are significantly improved by the multitask learning and incorporation of the physical

constraints. MTL provides notable speedup and success rate improvement over the mul-

tiple separated models, average speedup of 1.36× and 22.5% success rate improvement.

In particular, the multiple separated NNs show inefficiency on the test system 30-bus with

a 0.96× speedup, in which the 52.0% success rate produce a soaring overhead on restart.

Adding the physical constraints further improve the speedup and success rate by 40% and

18.3% over MTL. In summary, our proposed framework Smart-PGsim, a multitask model

with physical constraints offers the highest average speedup and solution feasibility.

Moreover, Figure 3.8 presents box-plots2 to show the results of the prediction accu-

2In the box-plots, the boxes are bounded by 25-th and 75-th percentiles of the variables; The central marks
of the boxes indicate the median [33].
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Figure 3.9: Scaling across many GPUs

racy in different models. We use relative error RE = |Vpredict − Vgt|/Vgt to measure the

prediction accuracy. Vpredict refers the prediction values of MTL and Vgt refers the exact

solution in MIPS (i.e., ground-truth). The lower relative error means the prediction is more

accurate and closer to the groud-truth. We draw two observations from Figure 3.8: (1)

The prediction provided by Smart-PGsim has the lowest average error with all five test

systems; (2) Most of the predictions in Smart-PGsim is under the error line of 10−2, which

shows Smart-PGsim consistently produces prediction within 1% relative error. These two

observations reveal that Smart-PGsim can provide more consistent acceleration than mul-

tiple separate models and MTL, which is crucial for dealing with widely diversified input

problems in real-time.

3.8.5 Scalability Analysis on Multi-Node Systems

As we stated earlier, the AC-OPF problem is solved many times per day by power op-

erators throughout the life of the power grid. Additionally, the real-life problem is further

complicated by the uncertainty involved by equipment security, the reliability of alterna-

tive power sources (solar, eolic, and hydro power), and the stability of power generators

and power transmission lines. Considering all those factors together is generally referred

to solving Security-Constrained ACOPF (SC-ACOPF) [24, 144] and it originates very large



63

and complex uncertain scenario trees that need to be analyzed to maintain the robustness

of the global solution, i.e, an optimal solution that survives under all uncertain scenarios.

From a computational perspective, these scenarios are largely independent (although some

similarities can be exploited to reduce computational requirements) and result in a com-

putational problem that is largely embarrassingly parallel and, thus, inherently scalable on

parallel computers (e.g., assigning a batch of scenarios to each compute node, and then

assigning a set of scenarios from the batch to each GPU).

While the focus of this work is mainly on accelerating each AC-OPF instance of a

larger SC-ACOPF problem by providing high-quality initial conditions for the numerical

solver, one can easily imagine that speedup similar to the ones reported in Section 3.8.1

can be expected for the SC-ACOPF problem. To verify such assertion, we conducted ex-

periments on a 16-node compute cluster, where each node is an NVIDIA DGX-1 equipped

with eight NVIDIA V100 GPUs (128 GPUs in total). We study both strong scalability and

weak scalability. Strong scaling is measured with a fixed number of scenarios, while weak

scaling linearly increases the number of scenarios with respect to the number of processors.

Smart-PGsim is expected to generate an initial solution for each scenario. In these exper-

iments, we use data parallelism for scaling out the Smart-PGsim workload, in which each

GPU has an identical copy of the entire network and each computes results for a separate

set (the local batch) of input scenarios. We focus on scaling Smart-PGSim, which emu-

lates the use case where there are needs to generate initial solutions for a large number of

scenarios for the SC-ACOPF problem.

Figure 3.9(a) shows strong scaling behavior for each of the five test systems with a

fixed problem size (10k scenarios) from 1 to 128 GPUs. The black dotted lines in the plots

represent ideal scaling for data parallelism. As expected, increasing the number of GPUs

naturally leads to a higher speedup and shows an almost linear tendency. However, the

speedup is not linear.

Such a non-linear speedup is caused by our work distribution strategy: While our

distribution algorithm has been designed to equally distribute scenarios between GPUs,

communication effects can skew this balance. Specifically, when running in a node with 8

GPUs, we first copy the MTL model and data to the first GPU device and then copy it to

the other GPUs leveraging GPUDirect and NVLINK, which generates some load imbalance

that translates into efficiency loss.
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Table 3.3: Prediction Performance Comparison.

Zamzam’s [183]
Test system – 39-bus 57-bus 118-bus –

SF – 15.38× 9.49× 7.97× –
Lcost – 0.326% 0.457% 0.821% –

Smart-PGsim
Test system 14-bus 30-bus 57-bus 118-bus 300-bus

SF 21.17× 40.19× 21.72× 36.15× 105.64×
Lcost 0.007% 0.074% 0.040% 0.003% 0.008%

Figure 3.9(b) shows similar results for the weak scaling experiments, where the num-

ber of scenarios increases from 10k to 1,280k when increasing the number of GPUs from

1 to 128 (10k scenarios per GPU). The scalability shown in the plots for weak scaling is

better, compared to that for strong scaling. This is because the weak scaling uses larger

problems which amortizes the load imbalance problem, but we still notice similar issues as

the strong scaling experiments.

Overall, Smart-PGsim scales up to 128 GPUs: for the test system of “300-bus” (the

largest system we evaluated), we achieve a peak performance of 604.7 TFLOPS and a

sustained performance of 326.1 TFLOPS, reaching 43% of the peak performance of Volta

V100 (double precision).

3.8.6 Comparison with Prior Work

Previous work [183, 57] use ML to directly replace the exact solver to achieve a

high speedup. For a fair comparison with the state-of-the-art method, i.e., Zamzam et

al.’s model [183] that leverages DNN for prediction, we assume that the prediction of

Smart-PGsim is the final solution, effectively replacing the entire solving computation.

In Table 3.3, we compare performance and optimality loss to what has been used in Za-

mzam’s model. Cost deviation measures simulation quality. We donate a speedup fac-

tor (SF) to measure the computational improvements: SF = 1
n

∑n
i=1 (T

MTL
i /TMIPS

i ),

where TMTL
i refers the execution time of the MTL and TMIPS

i represents the execution

time of the numerical solver (MIPS) for each input problem i. We measure the loss us-

ing the average fractional difference between the predicted cost C ′ and the true cost C:

Lcost =
100%
n

∑n
i=1 |1− C ′

i/Ci|. The results presented in Table 3.3 show that our frame-

work outperforms the state-of-the-art even in the case in which we directly use Smart-

PGsim output as final solution of the computation. Smart-PGsim achieves an average
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44.97× speedup which provides 310.7% improvement comparing the average speedup of

Zamzam’s model (10.95×). Moreover, Smart-PGsim decreases the cost loss 12.16× by

average comparing with Zamzam’s model. Although Smart-PGsim show significant im-

provement over the state-of-the-art, we remark that the solutions produced by both models

might not satisfy the strict requirements of power-grid simulations, hence our approach

further refines Smart-PGsim output in the traditional solver MIPS at the back end and

achieving high-quality solutions, although with reducing the speedup.

3.9 Discussions

In this section, we discuss the generality of our techniques and analyze solving pro-

cesses with and without convergence.

3.9.1 Generality of Proposed Approach

The three major techniques, including sensitivity study (Section 3.5), multi-tasking

learning (Section 3.6), and incorporating domain knowledge (Section 3.7), can be broadly

applied to many scientific HPC applications, and are not limited to the optimization prob-

lem in power grid simulations. In this section, we highlight some potential application of

our techniques to other scientific applications.

Fluid dynamic simulation aims to study the flow of fluid materials. Smart-fluidnet model [41]

is a convolutional NN model to accelerate fluid simulation. We can build a multitask learn-

ing model by predicting the output velocity filed u⃗ as a main task and pressure field p as

an auxiliary task since p impacts the fluid movement (u⃗). Moreover, we can incorporate

the incompressibility condition, ▽ · u⃗ = 0, as a physical constraint regularized as a soft

constraint Lloss = ▽ · u⃗.

Molecular Dynamics (MD) simulation. The DPMD model [98] is an NN model to ac-

celerate MD simulation. This model can be enhanced by using the techniques presented in

this work by developing a multi-task model where the main task predicts the potential en-

ergy and an auxiliary task predicts the symmetry-preserving descriptor. Also, the potential

energy should be positive, which can be enforced as a hard constraint.

Cosmology modeling. CosmoFlow [103] is an NN model to predict three cosmological pa-

rameters that can be directly implemented as multi-task learning. The Cosmic Microwave
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Figure 3.10: The asymptotic convergence of the tracking loss along the iterations

Background [2] can be enforced as a hard constraint to bound the projection range of mod-

eling.

3.9.2 Analysis of Diverging Cases

The solving process for the AC-OPF problem can fail to converge. Figure 3.10 shows

the inconvergence process given a bad initial solution and compares it with the convergence

process given a good initial solution. Figure 3.10 shows the variance of step size and

four convergence conditions across iterations. The step size |∆x| refers to the length of

the updating step during the simulation; The four conditions are used to determine if the

simulation is converged in each iteration.

Figure 3.10 shows that, for the case with bad initial solution, the step size rapidly

increases. Accordingly, the four convergence conditions remain relatively stable without

being able to converge. For the case with good initial solution, the step size and three con-

ditions (feasibility, gradient and complementary) decrease quickly. We notice that the cost

condition goes through great variance in both cases, which makes it difficult to correlate to

convergence.

The step size is critical to determine the direction to explore to find the optimal solu-

tion. If the initial solution is bad, the solving process aims to use a larger step size to find

a promising direction. However, using a large step size could lead a failure of convergence

(Figure 3.10.a).

As our results show, it is difficult to guess whether the numerical solver will converge

based on the first iterations: both good and bad initial conditions behave similarly during

the initial iterations of the power grid simulation and there is no clear indication that some

computation will later fail. Given this complexity, we resort to re-initialize and re-execute

the numerical solver from the beginning without employing the initial conditions generated
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by the MTL model. Overall, as our results demonstrate, even considering restart time,

Smart-PGsim still significantly outperforms state-of-the-art solutions.

3.10 Conclusions

Using NN to approximate and/or accelerate high performance computing applications

has shown promising results. However, how to effectively apply a NN to those applica-

tions is still an open question. The approximations introduced by the NN models need

to be carefully analyzed, so that the simulation quality in the application is not lost and

even improved; at the same time, the execution time of the application should be reduced

after applying NN. In this paper, we apply a NN to accelerate a specific power grid simula-

tion problem, AC-OPF. As a simulation to solve complex nonlinear optimization problems

based on iterative numerical methods, AC-OPF raises challenges on simulation robustness

(i.e., ensuring the optimality of the simulation solution for various input problems) and re-

specting the physical constraints imposed by the power flow. We introduce a framework,

Smart-PGsim, that facilitates the construction of a NN model by studying the impact of

the output accuracy on simulation convergence and execution time and automatically im-

posing the physical constraints. Using a novel multitask-learning NN model generated by

Smart-PGsim, we produce high-quality initial solutions for 10,000 input problems. Based

on those solutions, the AC-OPF simulation reduces simulation time by an average of 2.60×
(up to 3.28×) without losing the optimality of the solution.



Chapter 4

Auto-HPCnet: An Automatic

Framework to Build Neural

Network-based Surrogate Model for

HPC applications

4.1 Introduction

Solving many scientific computing problems involves complex computer simulations

to obtain accurate and high-fidelity information about physical systems. However, the sim-

ulations often involve physics-based algebraic equations that need to be explicitly solved

by closed-form optimization solvers. Those numerical solvers can be time-consuming and

difficult to be ported to emerging hardware (e.g., GPU-like accelerators).

The neural network-based surrogate model can address the above problem and re-

cently shows its power in a wide range of HPC applications, such as analyzing turbulent

flow [11], subsurface flow modeling, solid mechanics modeling of diverse materials [180],

and combustion modeling [40]. The neural network-based surrogate model replaces a nu-

merical solver or an execution phase (e.g., PCG [41] and FFT [88]) in the application with a

neural network (NN) model. The NN model uses the same input/output as the solver or the

execution phase, and but brings large performance improvement to the application without

violating numerical simulation correctness and stableness [99, 42, 88, 41]. Using NN-

68



69

based surrogate models, domain scientists are able to port the application to GPU (or other

accelerators) that can run NN workloads efficiently, even though the original application

does not have any accelerator-based implementation. Even better, the NN-based surrogate

models can be optimized by deterministic parameters of choices, such as the number of

layers in NN and neuron size, to balance prediction accuracy and cost.

Although using NN-based surrogate models to accelerate HPC applications is promis-

ing, there is a lack of tools that can automate the process of applying this method to the

HPC application. In practice, once the domain scientist selects a numerical solver in an

HPC application to be accelerated by NN techniques, he/she has to manually find the type

of NN-based surrogate model, determine its topology, train and test it with the application.

This process is labor-intensive, and could be repeated multiple times before the NN-based

surrogate model is finalized. Even worse, the domain scientist may not have sufficient

knowledge to efficiently deploy the surrogate model on different hardware. As a result,

there is a large gap between domain scientists and NN usage.

In this paper, we introduce a framework, named AutoHPCnet, to democratize the us-

age of NN-based surrogate models in HPC applications. AutoHPCnet is the first end-to-end

framework that makes past proposals for building NN-based surrogate models practical and

disciplined. AutoHPCnet is based on our observations on multiple challenges of applying

NN-based surrogate models in practice.

First, identifying the inputs/outputs of the NN-based surrogate model is difficult. In

a surrogate model, we must keep the same inputs/outputs as those of the replaced code

region. The input variables are read inside the code region to update other variables; the

output variables are updated in the code region and used after the code region. Manually

examining the code region to identify those variables is labor-intensive, because the number

of variables is greatly large.

Second, removing redundancy elements (e.g., zero elements) in sparse input variables

of the NN model to construct an efficient but accurate NN model is a challenge. In HPC

applications, we observe that input variables are usually sparse matrices stored in Coor-

dinate list (COO), Compressed Sparse Row (CSR), or Compressed Row Storage (CRS)

formats. However, the state-of-the-art DNN frameworks, such as PyTorch and TensorFlow,

cannot deal with these input variables very well. The existing DNN frameworks do not

provide gradient descent functions to process the sparse matrices in the common formats
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(e.g., CSR). Because of the lack of support for sparse matrices, it is inevitable to decom-

press sparse matrices and re-construct input variables using a format (i.e., the dense format)

recognizable by the DNN framework. The new format significantly increases memory con-

sumption because of the exponential volume of the sparse matrices after decompression.

Third, the feature reduction and selection of NN model topology are tightly coupled,

and how to coordinate the two processes to minimize execution time and maximize the

accuracy of the NN model is a challenge. The NN model topology refers to the number of

network layers, the type of each layer (e.g., fully connected, convolution, deconvolution,

or recurrent), and the number of neurons in each layer. Both the number of features and

NN model topology impact model execution time and accuracy. The number of features

determines the first layer in the NN model and impacts the design of the following layers;

on the other hand, the topology selection of the NN model reflects feature eligibility. The

existing Neural Architecture Search (NAS) methods [72, 10, 116] do not consider such

interaction between feature reduction and NN topology. Also, most of them consume text,

audio, and images as model input, and have difficulty consuming data structures in HPC

applications as input.

Fourth, how to enable the automatic construction of NN-based surrogate models and

allow users to efficiently explore the usage of surrogate models in a given HPC applica-

tion is a challenge. This challenge includes how to build the whole workflow of finding

NN models and making the workflow easy to use; this challenge also includes how to

maximize the performance benefit while minimizing the user efforts, and how to integrate

the automation into the user’s decision-making process of using the NN-based surrogate

models.

To address the above problems, we propose, AutoHPCnet, an automatic construction

framework to build NN-based surrogate models for HPC applications. Figure 4.1 depicts

AutoHPCnet. To address the first problem on the identification of input/output variables

of the code region to use the NN model, AutoHPCnet introduces a set of LLVM-based

tools (labeled as “Compiler-based Extractor” in Figure 4.1). Those tools instrument load

and store instructions to trace memory read/write operations and enable the generation of

a tree-based data dependency graph based on dynamic profiling; the tools also automati-

cally analyze the graph to identify input/output and generate training samples based on the

identified inputs/outputs.
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Figure 4.1: AutoHPCnet’s workflow

To address the second problem on the large sparse matrix of the NN model, AutoH-

PCnet introduces an autoencoder-based mechanism, i.e., “Customized Autoencoder” in

Figure 4.1. This mechanism applies customized designs to provide painless support for the

sparse matrix to reduce features. During the offline training, the autoencoder adapts a gra-

dient checkpoint technique to address the GPU memory limitation, which stores snapshots

of the autoencoder parameters at the forward time to save memory space. At online usage,

the autoencoder uses a “TensorFlow embedding API” to directly take sparse matrices as

input without decompression effort.

To address the third problem of coordinating feature reduction and selection of NN

model topology, AutoHPCnet introduces a “2D neural architecture search”. This strategy

is automated. At the high-level (input dimension tuning), this strategy uses Bayesian op-

timization to decide the number of features; at the low-level (model topology search), this

strategy uses another Bayesian optimization to decide the NN topology using an existing

AutoML framework (particularly Autokeras [72]). The low-level is based on the decision

of the high-level. The two levels work iteratively and coordinately to consider the impact

of both feature reduction and NN topology. Furthermore, we consider both execution time

and correctness of using the NN-based surrogate model during the 2D neural architecture

search. We formulate a user-given threshold as an application-specific metric and incorpo-

rate the metric into the search of the NN model, which guarantees the correctness of the

application final output.

Putting together a set of tools customized for HPC applications, AutoHPCnet builds a

workflow that relieves the domain scientist from labor-intensive work to apply NN-based

surrogate models to HPC applications. The paper makes the following contributions.

• We introduce a framework that enables an automatic construction and use of NN-based

surrogate models in HPC applications.
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Power Grid Simulation

void main (){  
double Pd[], Qd[];    
...  
MIPS_solver(Va,Vb);  
...  
Va,Vm,Pg,Qg…;

}

void MIPS_solver(double *Pd, *Qd){
...
P(Cg,Pg) = Pd + P(Ybus,Va,Vm);
...
G(Va,Vm,Pg,Qg)=0;
...

}

A code region to be replaced 

① Input/Output Identification
Input:Pd,Qd; Output:Va,Vm,Pg,Qg;

③ Code replacement

② Topology Selection and Training

Generated training dataset

Pd
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Qg

Pd,Qd Va,Vm,Pg,Qg

(80,..,80)
…

(84,..,87)

(18,22,…,112,0)
…

(17,22,…,102,6)

Figure 4.2: An example of applying the surrogate model.

• We introduce a workflow and a set of techniques in AutoHPCnet to address unique chal-

lenges when applying the NN-based surrogate method to HPC applications.

• We demonstrate the effectiveness of AutoHPCnet by applying it to a set of HPC applica-

tions. Our experiments show that with AutoHPCnet, the applications can achieve 5.50×
speedup on average (up to 16.8× and with data preparation cost included) without loss

in the final computation quality by replacing execution phases with an NN-based model.

We show that in terms of speedup, AutoHPCnet can generate NN models outperform

those models generated by the state-of-the-art methodologies including a competitive

AutoML framework (Autokeras), a manual NN construction tool (ACCEPT), and an

alternative approximation strategy (i.e., the loop perforation).

4.2 Background and Motivation

The NN-based surrogate model has shown tremendous performance benefits in HPC [43,

7, 104, 180, 40, 88]. Such a model introduce approximation to the original code in the

application. Many HPC applications can tolerate some level of approximation due to their

iterative nature [7, 104, 180, 99, 42, 115, 41, 88, 150, 75, 146, 102, 90, 15, 93, 89, 151]. For

example, some HPC applications have a threshold to determine when the solution is accept-

able or when the simulation should be terminated. Such a threshold-based approach allows

applications to tolerate approximate computation. We use the terms “surrogate model” and

“NN-based surrogate model” interchangeably in this paper.

Figure 4.2 shows three steps to generate a surrogate model for an application. The cur-
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rent state-of-the-art approaches for HPC applications performs these steps manually [99,

42, 115, 41, 165, 88, 71], which is labor-intensive and motivates us to create a framework

to automate this process. In more detail, the user first chooses a code region for replace-

ment and manually examines it to identify input and output variables of the code region.

The candidate code regions are generally identified by domain scientists through profiling.

There could be a number of code regions amenable to surrogate models in an application.

Ideally, one would accelerate through surrogate models where the application spends a

large percentage of time so that the final performance acceleration is maximized. The man-

ual identification of input and output variables is error-prone, especially when the number

of input/output variables is large. After identifying inputs/outputs, the user manually gen-

erates a training dataset by varying the input problems and collecting the results.

As a next step, the user manually constructs a surrogate model to replace the code

region. The surrogate construction is a process to select a network topology that balances

between accuracy and execution time. A larger, more complex surrogate model has the

potential to offer better model accuracy but is likely to be slower during inference than a

smaller model. Given a large number of parameters and their combinatorial combinations,

this step is, by far, the most complicated and time-consuming in the entire process and

specific to the application. There are existing tools to automate the ML model construction

process such as Autokeras [72], Google automl services [10], and Keras Tunner [116]

but they cannot meet the requirements of the scientific application in terms of application

outcome quality and performance improvement (of execution time).

Finally, once the surrogate model is built and trained, it is plugged into the HPC appli-

cation to improve application performance. The approximate nature of the surrogate model

might impact the application outcome (i.e., the final computation quality of the applica-

tion). Many HPC applications have a mechanism to determine the validness of application

outcomes. For example, LAMMPS (an atomic and molecular simulator) [82] examines a

set of invariants to determine the validness of LAMMPS simulation outcomes. Hence, the

impact of the surrogate model on application outcomes can be detected. Note that it is not

enough to verify the accuracy of the surrogate model that replaces the original code region.

Rather, the correctness of the entire application needs to be verified when employing the

surrogate model, as the application may consist of various components, some of which are

accelerated through the surrogate models. This is fundamentally different from traditional
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NN approaches, where the NN process generally represents the entire application.

We take Smart-PGSim [42] as an example to depict the above steps (see Figure 4.2).

Smart-PGsim applies a surrogate model to a power-grid simulation, an important HPC ap-

plication. Smart-PGSim uses the above three steps manually. In the power-grid simulation,

the “MIPS solver” is identified as the most time-consuming part and replaced with a sur-

rogate model. Once the surrogate model is added into the power grid simulation (Line 4

in Figure 4.2), the simulation runs to completion and uses a quality threshold to determine

the simulation validness.

The use of surrogate models for computation, like existing efforts in approximate com-

puting [48, 112, 161, 139, 83], does not guarantee that the application outcome is valid for

all input problems. If the application outcome is not valid, the application may restart using

the original code region [42, 161]. Restarting the application loses performance but pro-

vides an automated mechanism to produce correct results. AutoHPCnet makes best efforts

to improve the accuracy of the surrogate model while guaranteeing valid application final

output, which is discussed in Section 4.6 and evaluated in Section 4.7. With AutoHPC-

net, the human effort to ensure the validness of application outcome during the practice of

NN-based surrogates is reduced.

Even though introducing surrogate models for computation comes with the cost of

identifying features, building, and training NN models, such cost can be amortized during

the frequent execution of the HPC applications. The existing work has demonstrated the

performance benefit of using surrogate models [48, 112, 139]. AutoHPCnet enables the

use of surrogate models for HPC applications while significantly reducing human efforts

during the practice of augmenting NN technologies in HPC applications.

4.3 Data Acquisition

Given a code region selected by the user, AutoHPCnet classifies variables within the

code region as input variables, output variables, and internal variables. Input variables are

declared outside of the code region and referenced in the code region. Output variables

are written in the code region and read after the code region. Other variables that the

code region writes to or reads from are internal variables. Given a target code region,

AutoHPCnet uses the following steps to acquire input and output variables.
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(a) HPC Application
(b) Dynamic Trace

Void main (){  
int *a, *b, *c;
...  
triad(a, b, c, 3);  
...  

}

void traid(int *a, int *b, int *c, int s){
...
loop:  for(i=0; i<NUM; i++){

c[i] = a[i] + s*b[i];  
}

...
}

code region to replace 

“add”

“store”

%%%% LABEL MAP STRAT %%%%
Main/init
Traid/loop
…
0,6,traid,entry:0,0,30,0
1,64,0x1d91590,1,a,
r,32,680150156,1,0,
…
0,6,traid,entry:0,add,11,3
2,64,680150156,1,0,
1,32,652793477,1,mul,
r,32,1332943633,1,add,
…
0,6,traid,entry:0,0,31,0
2,64,0x1d915d0,1,c,
1,32,1332943633,1,add,

load

triad_reg_a

(id:0x1d91590)

triad_reg_b

(id:0x1d915b0)

triad_reg_s

(id:3)

triad_reg_0
(id:680150156)

triad_reg_1
(id:1649253591)

triad_reg_mul
(id:652793477)

triad_reg_add
(id:1332943633)

triad_reg_c
(id:0x1d915d0)

load

multiply

store

add

(c) Dynamic Data Dependency Graph (DDDG)

Source code

Label map

LLVM IR

LLVM pass

Machine code

Trace file

“load”

Figure 4.3: An example of acquiring input and output variables.

Trace generation. AutoHPCnet integrates an LLVM tool, LLVM-Tracer [13] which

is an LLVM instrumentation pass to generate a dynamic LLVM instruction trace. This trace

stores metadata for each instruction, such as the instruction type, names of registers, and

operand values. Figure 4.3 shows an example to depict trace generation. Figure 4.3(b)

shows the trace for an example code. AutoHPCnet extends LLVM-Tracer to reduce the

trace size to simplify the identification process of input/output variables. In particular,

during the trace generation, AutoHPCnet recognizes loop structures in the code region. If

a loop has no control flow divergence across iterations of the loop and accessed (array)

variables across iterations remain the same, then AutoHPCnet does not generate the whole

trace for the loop. Instead, only the trace for one iteration is generated.

Identification of input and output variables. We build a tool to construct a dy-

namic data dependency graph (DDDG) from the instruction trace based on the existing

method [58]. In DDDG, vertices are the values of variables obtained from registers or

memory; Edges are LLVM instructions (or operations) transforming input values into out-

put values of variables. With DDDG, the root nodes represent inputs, and leaf nodes repre-

sent outputs.

We extend the construction of DDDG in [58] to fit the needs of the surrogate model

from two perspectives. First, we group variables for effective feature reduction. In par-

ticular, the number of input variables recognized by DDDG can be large. Some of those

variables can come from the same array; The large number of input variables can come

from multiple arrays. During the feature reduction phase, some individual variables used

as individual input features can be selected together for reduction, even though they come

from different arrays. Using those variables as individual input features loses the array
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Input Matrix (COO) Dense Representation
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API
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Customized Autoencoding:
1. Ease use in DNN frameworks like TensorFlow, PyTorch;
2. Ease tuning of the dimension size in feature reduction;
3. Eliminate the unfolding overhead of input sparse matrix at runtime; 

Figure 4.4: The workflow of applying Autoencoder in AutoHPCnet

semantics, which leads to either ineffective feature reduction or lower accuracy in the sur-

rogate model. Hence, during the identification of input variables, if some variables come

from the same array, then the array (not individual variables) is used as the input feature

of the surrogate model. Second, we parallelize the construction of DDDG to shorten the

construction time and make the tool more user-friendly. In particular, instead of processing

instructions one by one, we process a group of instructions by multiple threads at the same

time, which allows us to explore thread-level parallelism to accelerate instruction analysis

when there is less dependence between instructions within the group.

Generating Training Samples. Training a surrogate model needs many training sam-

ples to ensure the model is sufficiently trained. A training sample is a pair of input features

and output features, where the input and output features come from the values of the input

and output variables of the target code region respectively. In cases that the user cannot

find enough input problems to generate training samples, AutoHPCnet introduces a tool

allowing the user to introduce perturbation into the values of input variables. The perturba-

tion follows a specific distribution, such as the Gaussian distribution, i.e, X ′ ∼ N (µ, σ2) ,

where X’ is the randomized new sample given a predefined mean µ and variance σ. The

distribution can be chosen by the user based on the application domain knowledge.

4.4 Input analysis

We depict how AutoHPCnet uses autoencoder with customized designs to reduce the

dimensionality of sparse input matrix in this section.
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4.4.1 Autoencoders for Feature Reduction

Autoencoders aims to use a deep learning architecture to capture key representational

information by mapping the high-dimensional data into a low-dimensional space [56].

Unlike traditional feature extraction technologies, Autoencoder provides an unsupervised

method to do feature reduction without requiring priori knowledge on application domains.

An autoencoder consists of an encoder and a decoder. ❶ Encoder. The encoder

typically has an hourglass-shaped architecture in which the high-dimensional data is com-

pressed into a low-dimensional latent space that preserves semantic relationships. The

encoder takes a whole matrix as input for feature reduction. ❷ Decoder. The decoder uses

a horn-shaped network to reconstruct the reduced features back to the original representa-

tion (raw inputs). The weights of the autoencoder (both encoder and decoder) are tuned

together to minimize a loss function, which typically penalizes deviations between the in-

put of encoder and the output of decoder. Once the autoencoder is trained, the encoder is

used to reduce features discussed in Section 4.5.

4.4.2 Customized Design for Sparse Input

Figure 4.4 depicts the workflow of applying the autoencoder. In Autoencoder, we

adapt the following designs to address problems when dealing with sparse inputs.

First, during offline training, we adapt a gradient checkpoint technique [18] to ad-

dress the GPU memory limitation. In particular, since the existing DNN frameworks do

not support DNN training on sparse matrix formats, if we unfold those sparse inputs to

dense representation during the autoencoder training, the memory consumption to store the

dense representation becomes a bottleneck. To address this problem, we adapt the gradient

checkpoint technique [18], which stores snapshots of Autoencoder parameters at a forward

time and recomputes those parameters at a backward time. The gradient checkpoint tech-

nique trades the computational cost (recalculation time) for GPU memory usage (parameter

storage).

Second, at online feature reduction, we provide an API for sparse matrix formats

without any decompression effort. After Autoencoder is trained and no optimization is ap-

plied at online usage, the user still has to take the input matrix with dense format (which

requires decompression). Here, we apply a “TensorFlow embedding API”. This API con-
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ducts matrix-multiplication in the format of sparse representation (e.g., CSR) and saves the

multiplication result into the dense format. Autoencoder takes this API to implement the

matrix-multiplication function at the first layer of Autoencoder, which helps the Autoen-

coder directly take the sparse matrix as an input without decompression. By doing so, we

provide painless support for sparse matrices in the HPC application by eliminating both the

temporal cost (format transformation of decompression) and spatial cost (memory usage of

storing the dense representation) in the feature reduction process.

Third, we develop a metric to quantify the quality degradation in real-time and the user

can define a lower bound of quality constraint to guide the encoding process. In traditional

methods like K-means and PCA, it is hard to quantitatively measure the quality degradation

before and after the feature reduction, because the size of the output matrix is not the

same as the size of the input matrix. Here, we take the advantage that the autoencoder

can reconstruct an output matrix (which has the same size as the input matrix) to do an

element-by-element comparison. We propose a metric to evaluate the difference between

the original input and the reconstructed matrix (i.e., the decoder output).

σy =
1

N

N∑
i=1

0 if |yi − xi| ≤ µ|xi|

1 otherwise
(4.1)

We donate the metrix σy, defined by comparing each element yi in the reconstructed

matrix to its corresponding value xi in the original sparse matrix and calculate the propor-

tion of those elements that are at least in a feasible range away from x. The user determines

a scaling factor µ based on the application domain requirement. Computing the similarity

σy is lightweight and can be done on-the-fly during the autoencoder training. Based on the

metric, the user can configure the lower bound (shown in Table 4.1) for different tasks.

4.4.3 Workflow of Applying Autoencoding

The workflow of autoencoder (shown in Figure 4.4) has two parts, (1) offline training

happened during the Bayesian optimization and (2) online usage when the HPC application

is running. The offline training happens in high-level Bayesian optimization. The high-

level Bayesian optimization is a loop structure (discussed in detail in Section 4.5.2).

In each iteration of the loop, AutoHPCnet trains a new autoencoder. Across iterations,

different autoencoders generate different numbers of features (the number of features is de-
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termined by the low-level Bayesian optimization and the Gaussian process in the high-level

Bayesian optimization). After an autoencoder is trained in an iteration of the high-level

Bayesian optimization, the encoder is then used in the low-level Bayesian optimization for

encoder-model inference to generate reduced features for the NN architecture search. After

the hierarchical Bayesian optimization is done, the autoencoder trained in the last iteration

of the high-level Bayesian optimization is used for online usage.

4.5 2D Neural Architecture Search

AutoHPCnet uses a two-dimensional neural architecture search to jointly decide NN

architecture (i.e., NN topology) and the number of features. In this section, we first for-

mulate our optimization problem. Then, we discuss algorithm details for the Bayesian

optimization.

4.5.1 Problem Definition

We describe the formulation of the 2D neural architecture search as follows: given an

input dataset and bound on the output error, find the best surrogate model that (i) meet the

error bound and (ii) minimize the cost. This can be formulated as the following constrained

optimization problem.

Problem Formulation. Given:

• K: a set of tunable input dimension, and

• θ: a set of tunable surrogate topology parameters.

Find the best K ′, θ′ such that

• fc(K
′, θ′) is minimized

• fe(K
′, θ′) ≤ ϵ.

where θ′ includes #kernel sizes, #channel, #pooling size, #unpooling size, and #residual

connection of each layer. We involve three functions here.

• Output: Let f(K ′, θ′) represent the function of the NN-based surrogate model to generate

output.
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• Quality degradation: Let fe(K ′, θ′) be the magnitude of the final computational quality

degradation of the application.

• Cost: Let fc(K ′, θ′) be the cost of computing the output at runtime. This can be the

running time, energy or other execution metric to be optimized.

A solution to the optimization problem is a point that lies within the feasible region fe(K
′, θ′) ≤

ϵ and minimizes the objective function fc(K
′, θ′).

4.5.2 Hierarchical Bayesian Optimization

The Bayesian optimization [122] has been used in architecture parameter tuning for

machine learning models [37], in which Bayesian optimization searches among different

combinations of architecture parameters. Many Bayesian optimization processes use a

Gaussian process model to model the objective function f and an acquisition function to

decide where to do the next evaluation. The traditional Bayesian optimization is an iterative

process consisting of three steps: update, generation, and evaluation; (1) Update: train a

Gaussian process model with a combination of an optimization vector and performance

(in the case of NN architecture search, the performance is the NN model cost fc and error

fe); (2) Generation: generate a new combination to observe by optimizing an acquisition

function; and (3) Evaluation: apply the new combination to the optimization target (in the

case of NN architecture search, this means we use the optimization vector to train an NN

model) and measure performance.

Algorithm. The optimization vector includes two types of parameters: (1) the feature

reduction knobs K and (2) the NN architecture parameters θ. In the Gaussian process used

in the Bayesian optimization, the optimization vector has to be vectorized in a Euclidean

space because the Bayesian optimization must measure the distance between different op-

timization vectors. Because of the difference in physical properties, arithmetically adding

the two types of parameters loses the parameter semantics, which leads to a suboptimal

selection of parameters. To address the above problem, we introduce a two-level optimiza-

tion strategy, which separates the optimization processes for the two types of parameters,

but coordinates the two separate processes for optimal selection of those parameters.

Algorithm 3 depicts the strategy in hierarchical Bayesian optimization. There is a two-

level loop in the algorithm. The high-level loop (Lines 2-13) searches the optimal setting
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Algorithm 3 Hierarchical Bayesian optimization
Require: Input dataset D; Acceptable quality degradation fe;

1: Given search space: θ = {θ1, .., θn} ∪K = {k1, k2, ..., km};
2: do // Outer Loop
3: ki = initRandom();
4: D(ki) = FeatureReduction(ki);

5: do // Inner Loop:
6: θi = initModel(D(ki));
7: fe, fc = problem.evaluate(θi);
8: model = GaussianProcess();
9: model.update();

10: while run out of searching time.
11: Return the performance of best NN model f ′ in terms of f ′

c and f ′
e).

12: model = GaussianProcess(n, f ′);
13: model.update();
14: while fc∗ is minimized and fe∗ < ϵ.
15: return the optimal input size i∗ and topology parameters k∗.

Ki of input dimension. The low-level loop (Lines 5-10) searches the best architecture

parameters θi of surrogate model. These two loops can interact with each other: the high-

level loop generates an input sample with the dimension of Kn, which is then applied in the

low-level loop during the architecture parameter search (Line 6); the low-level loop returns

the performance (fc and fe) of the best model to the high-level loop (Line 11). Then the

high-level loop makes a response based on an acquisition function to determine the next

promising search point (i.e., kn+1) and trains a corresponding autoencoder.

In the high-level loop, we apply the customized autoencoder (in Section 4.4.2) to con-

duct the feature reduction. In the low-level loop, we apply Autokeras [116] for model

architecture search. In each iteration of the search (in either low-level loop or high-level

loop), we apply the regular Bayesian optimization, which iteratively searches the optimal

by the three steps: update, generation, and evaluation. The whole search process is termi-

nated, if the required performance fe and fc is achieved or a continuing search does not

lead to enough improvement of the performance.

4.6 Implementation

We discuss the implementation details in this section.
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4.6.1 Interaction with Users

To allow the user to annotate a code region for approximation with a surrogate model

without hassle, AutoHPCnet introduces two directives to mark the boundary of the code

region. The annotation controls the LLVM instrumentation for trace generation, which in

turns controls the usage of the surrogate model. After the annotation and building the ap-

plication with LLVM, the user is expected to run a script to trigger the following workflow:

(1) running the application to generate the LLVM instruction trace, (2) analyzing the trace

to identify input and output variables using a tool in AutoHPCnet, and (3) uses a script to

run the application N times to collect training samples (at each time, the script triggers a

perturbation of input variables to collect the output of the code region).

After collecting training samples, AutoHPCnet employs the 2D neural architecture

search (incorporating the customized Autoencoder). As shown in Table 4.1, AutoHPCnet

gives two sets of configurations to accommodate the needs of different users. The first

set, named as search-level, allows the user to easily configure the parameters of Bayesian

optimization algorithm. The initial model architecture (i.e., “searchType”) can be speci-

fied based on the user’s knowledge to accelerate the search process. Also, the user is able

to specify the initial sample size and the objectives of the Bayesian optimization (i.e., the

acceptable encoding loss and acceptable quality loss). The initial samples are used to gen-

erate a Gaussian process model for exploring the best solution in Bayesian optimization.

The second level, named model-level, is used to tune the hyperparameters (e.g., batch size

and learning rate) for the surrogate model training. Also, the user can search for a specific

type of neural network architectures (e.g., multi-layer perceptron or CNN).

Besides the above, AutoHPCnet has a checkpoint mechanism that allows the user to

stop and restore the model architecture search. AutoHPCnet also allows the user to easily

save and share the Autoencoder and the surrogate model across applications.

4.6.2 Quality-Oriented Optimizations

We summarize the implementation details in AutoHPCnet with the awareness of fi-

nal computational outcome quality in this section. Such awareness separates us from the

existing AutoML tools like Google AutoML [10] and Autokeras [72].

Final Computation Quality-Aware Surrogate Model Construction. During the
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Table 4.1: Configurations in AutoHPCnet.

Se
ar

ch
-le

ve
l

–searchType
(1) “autokeras” (start with the Autokera’s default topology)
(2) “userModel” (start with a user-given topology)
(3) “fullInput” (no feature reduction applied)

–bayesianInit Initial samples for bayesian algorithm
–encodingLoss Acceptable encoding loss
–qualityLoss Acceptable quality loss

M
od

el
-le

ve
l –initModel Surrogate model type (default=MLP)

–preprocessing Training data preprocessing
–numEpoch Number of epochs to train
–trainRatio Split dataset into training and validation
–BATCHSIZE Batch size
–lr Learning rate

model construction, AutoHPCnet considers not only the model prediction accuracy itself

but also the final outcome quality of the HPC application. This is achieved by integrating a

customized outcome quality metric during the surrogate model construction. Those users

who have clear knowledge on how to evaluate the final computational outcome quality

of the application can develop a quality metric and use it in the loss function to guide

the training of the surrogate model. For example, the surrogate model in fluid simulation

predicts the fluid velocity, while the condition of simulation convergence is the relative

error of the velocity divergence (REVD), which must be under a certain quality constraint

(e.g., 10%). Here, AutoHPCnet will take the REVD as the final outcome quality metric.

AutoHPCnet calculates REVD in the loss function of the surrogate model, using the

surrogate model prediction and ground truth (i.e., the exact solution collected using the nu-

merical solver). Inversely, the REVD is back propagated to the surrogate model to calibrate

the loss function and then the REVD is gradually minimized to zero in model training. With

this, AutoHPCnet incorporates the final outcome quality constraint in the surrogate model

and guarantees the solution of the surrogate model does not violate the simulation stability.

AutoHPCnet implements the API “Loss(#components,#metric)”, where the com-

ponents defines the model inputs/outputs those should be involved to calculate the simu-

lation metric (e.g., velocity in fluid simulation), and the metric defines the final outcome

quality metric. With our ‘Loss’ created, the user can add their final outcome quality metric

to guide the surrogate model training.

Final Computation Quality-Aware Feature Reduction. To meet the constraint

on quality degradation in the HPC application, the feature reduction, which is used to

optimize the surrogate model in our work (Section 4.4.2), must consider the impact of
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the feature reduction on the final computation quality. AutoHPCnet implements the API

”Autoencoder.evl(#inputs,#compaction)”. This API measure the quality degradation

before (#inputs) and after (#outputs) the feature reduction, using the metric defined in

Eqn 4.1. AutoHPCnet also has the innovation of coupling the feature reduction and surro-

gate model construction through the 2D neural architecture search (Section 4.5).

4.6.3 Online Inference Invocation

To allow the user to easily integrate the surrogate model into an application, AutoH-

PCnet provides two libraries: (1) a lightweight library working as a request client and

compiled into the application to request the surrogate inference, and (2) a server client li-

brary to conduct NN inferences on GPU. AutoHPCnet use SmartSim Orchestrator [119] to

set up a in-memory storage to enable data sharing between the HPC application written in

Fortran, C, C++, or Python, and NN models written with TensorFlow, Keras, or Pytorch.

AutoHPCnet and SmartSim Orchestrator are coupled to work together. When launched

through Orchestrator, applications using the AutoHPCnet clients are directly connected to

any Orchestrator launched in the same experiment.

This is because AutoHPCnet client adapts a Redis module (i.e., RedisAI [121]), pro-

vides the NN runtimes, creating a library agnostic middleware between the HPC applica-

tion and NN libraries. Because of this middleware, the user of AutoHPCnet can smoothly

switch between the NN framework and HPC application. This method greatly reduces the

deployment complexity and overhead of adding the surrogate model in the HPC applica-

tion.

Making Inference Call in AutoHPCnet. Listing 1 shows an example of requesting NN

inferences based on AutoHPCnet client in a C-based application. The client first sends the

input tensors to the inference server (Line 5) and then makes an inference call to the server.

Using the above approach simplifies implementations: the user only needs to change a few

lines of code in the application.

SmartSim Implementation of Inference Call. Listing 2 shows how to spin up a database

with SmartSim Orchestrator and invoke a CNN model using the AutoHPCnet client. In

Listing 2, the “exp.start(orc, block=Flase)” (Line 7) uses the SmartSim library to launch

a in-memory data storage. The server receives the inference request and fetches the input

data from the storage (Line 11). Then, the server loads the pre-trained autoencoder (Line
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from autoHPCnet import Client
from smartsim.database import Orchestrator
# import other packages …

# create and start a database
orc = Orchestrator(port=REDIS_PORT)
exp.generate(orc)
exp.start(orc, block=False)

# get input from database 
sparse_tensor = client.get_tensor(input_feature)

# feature reduction and format transformation
compact_tensor = client.autoencoder(sparse_tensor)

# load a pretrained model from file
client.set_model_from_file("AI-CFD-net", "./saved_net.pt", 
"TORCH", "GPU")

# Run model and retrieve outputs
client.run_model("AI-CFD-net", inputs=compact_tensor, 
outputs=output_tensor)

Listing 2: Example of invoking surrogate model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include “autoHPCnet_client.h”

// Initialize a Client object 
autoHPCnet::Client client(false);
// Put the input features on the database
client.put_tensor(in_key, autoHPCnet);
// Run model already in the database 
client.run_model(“AI-CFD-net”, {in_key}, {out_key});

// Get the result of the model
client.unpack_tensor(out_key, autoHPCnet);

Listing 1: Example of HPC simulation for surrogate request
1
2
3
4
5
6
7
8
9
10
11

from autoHPCnet import Client
from smartsim.database import Orchestrator
# import other packages …

# create and start a database
orc = Orchestrator(port=REDIS_PORT)
exp.generate(orc)
exp.start(orc, block=False)

# get input from database 
sparse_tensor = client.get_tensor(input_feature)

# feature reduction and format transformation
compact_tensor = client.autoencoder(sparse_tensor)

# load a pretrained model from file
client.set_model_from_file("AI-CFD-net", "./saved_net.pt", 
"TORCH", "GPU")

# Run model and retrieve outputs
client.run_model("AI-CFD-net", inputs=compact_tensor, 
outputs=output_tensor)

Listing 2: Example of invoking surrogate model
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include “autoHPCnet_client.h”

// Initialize a Client object 
autoHPCnet::Client client(false);
// Put the input features on the database
client.put_tensor(in_key, autoHPCnet);
// Run model already in the database 
client.run_model(“AI-CFD-net”, {in_key}, {out_key});

// Get the result of the model
client.unpack_tensor(out_key, autoHPCnet);

Listing 1: Example of HPC simulation for surrogate request
1
2
3
4
5
6
7
8
9
10
11

14) and surrogate model (Line 17) to make an inference on GPU (Line 21). Notably, despite

being written in Python, all surrogate models are executed in a C runtime.

4.7 Evaluation

Platform. We conduct all experiments on an NVIDIA DGX-1 cluster with 8 nodes, and

each node is equipped with two Intel Xeon E5-2698 v4 CPUs (40 cores in total running at

2.20GHz) and eight NVIDIA TESLA V100 (Volta) GPUs.

Applications. Table 4.2 lists applications we evaluate. We comprehensively cover three

types of applications, which have been widely studied in HPC. Type-I includes numerical

solvers that are often the most time-consuming in HPC applications. Type-II includes a

set of general applications from the PARSEC parallel benchmark suite [9]. Those applica-

tions are evaluated in previous efforts [139, 48, 101] for approximate computing. Type-III
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Table 4.2: Applications for Evaluation.

Type Application: replaced function Description Quality of Interest (QoI)

I
CG:CG solver Conjugate Gradient Solution of linear equations
FFT:FFT solver Fast Fourier Transform Output sequence of FFT
MG:MG solver Multi-Grid method The final residual of the solver

II

Blackscholes:BlkSchlsEqEuroNoDiv Investment pricing The computed price
Canneal:Annealing VLSI routing Routing cost
fluidanimation:NS equation Fluid dynamics Particle distance
streamcluster:Dimension reduction Online clustering Cluster center distance
X264:Encoding Video encoding Structure similarity

III
miniQMC:Determinant Quantum Monte Carlo Particle energy
AMG:PCG solver Solver of linear systems Solution of linear systems
Laghos: SolveV elocity Compressible gas dynamics Velocity Divergence

is the representative of large-scale HPC applications. Type-III comes from the Exascale

Computing Project (ECP) Proxy Applications Suite 4.0 [108].

Quality of Interest (QoI). To evaluate the final computation quality of the application,

we assume that the user provides application-specific QoI that can be used to quantify the

difference between the solution of the surrogate model and the exact solution. Table 4.2

lists the QoI of each application. The QoI differs among applications.

4.7.1 AutoHPCnet Effectiveness

We use two metrics to evaluate AutoHPCnet effectiveness: speedup and prediction hit

rate. The speedup is used to evaluate the performance of AutoHPCnet, and the prediction

hit rate is used to evaluate the quality of the surrogate models generated by AutoHPCnet.

Equation 4.2 defines the speedup. We report the speedup of the whole application

(instead of only the NN-replaced code region).

Speedup =
TNumerical solver

T ′
NN infer + T ′

Data load + TOther part
(4.2)

where TNumerical solver represents the execution time of the application using the original

code (e.g., a traditional numerical solver). T ′
NN infer is the inference time of the surrogate

model generated by AutoHPCnet and T ′
Data load is the data communication overhead for

loading the NN model input to GPU. TOther part refers to the execution time of the rest part

(the code regions without applying the NN surrogate model).

Equation 4.3 defines the prediction hit rate (i.e., HitRate), which refers to the ratio of

the number of input problems that can reach the quality requirement with the NN surrogate



87

Table 4.3: Compare the performance of AutoHPCnet on GPU with the performance of the
original code on GPU. The results are for AMG.

Methods CPU-only Original code on GPU AutoHPCnet on GPU

Floating-Point Operations 30.66G 72.82G 21.97G
L2 level cache-miss rate 37.47% 26.31% 17.81%
Mem Bandwidth (MB/s) 3523.15 7518.85 6735.54

Wall clock time (seconds) 2.47 2.11 0.51

models, to the total number of input problems (N ):

HitRate =
1

N

N∑
i=1

(1, if |V ′
i − Vi| ≤ µ|Vi|) (4.3)

Where V is the user-specified QoI, V ′
i is the calculated QoI after the surrogate model is

applied to the application with the ith input problem, and Vi is the calculated QoI without

applying the surrogate model to the application with the ith input problem. The difference

between V ′
i and Vi should be smaller than µ|Vi| in order to claim that applying the surrogate

model to the application with the ith input problem generates a high-quality application

outcome that meets the user’s quality requirement.∑N
i=1(1, if |V ′

i − Vi| ≤ µ|Vi|) in Equation 4.3 counts the total number of input prob-

lems that can meet the user’s quality requirement after applying the surrogate model. µ is

a parameter set by the user (see Section 4.5). In our evaluation, µ is set as 10%, which

is aligned with the existing efforts [139, 48, 112] for neural network-based computation

approximation.

Using the two metrics, we evaluate AutoHPCnet with 11 applications. Each applica-

tion use 2,000 input problems for evaluation. Figure 4.5 shows the results.

Performance. There is 1.89× - 16.8× speedup with a harmonic mean of 5.50× across

all three types of application, compared with the application performance on CPU (using all

40 cores). Among all applications, Blackscholes has the largest speedup. The large speedup

comes from the fact that the surrogate model removes all control flows in the original code,

and AutoHPCnet is able to offload BlkSchlsEqEuroNoDiv (the most computation-intensive

part) to GPU.

To further study the performance, we compare the performance of using the original
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Figure 4.5: Speedup and prediction hit rate in AutoHPCnet.

code on GPU and using the surrogate models generated by AutoHPCnet on GPU. Table 4.3

shows the results for AMG, a production code that can run on either CPU or GPU. To

run AMG on GPU, we use AMGX [145]. We observe that AutoHPCnet leads to 15.6%

better performance than AMGX. To look into why the surrogate model on GPU performs

better, we measure the number of Floating-Point (FP) operations, last-level cache miss

rate, and (global) memory bandwidth consumption, shown in Table 4.3. With the surrogate

model, the number of FP operations and last-level cache miss rate are reduced by 69.83%

and 52.47% respectively. Such reductions come from the fact that the surrogate model

on GPU, as an NN model, is highly optimized by the GPU vendor and able to run highly

efficiently on GPU. For other applications, the number of FP operations and L2 level cache-

miss rate are reduced by an average of 42.7% and 35.1% respectively. The main reasons

for this observation are the reduction of model size and excellent data locality of matrix

multiplication in neural network inference.

Quality. Figure 4.5 also reports HitRate. We observe that AutoHPCnet leads to

high HitRate: HitRate for MG, Canneal, streamcluster and AMG is 93%, 93%, 98%

and 94% respectively; for the other seven applications, HitRate is 100%. Note that for

an application where HitRate is not 100%, when running a specific input problem using

the surrogate model leads to the final output failing to meet the quality requirement, the

application has to restart and use the original code.
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4.7.2 Comparison with Existing Work

In essence, AutoHPCnet is a tool to apply NN-based approximation to accelerate ap-

plications. We compare AutoHPCnet with the following tool or research effort for approx-

imate computing.

• ACCEPT [139] is a tool to apply NN-based approximation to applications. ACCEPT

relies on the user to manually identify the replaced code region and generate NN models

without considering the impact of NN models on the final computation outcome quality.

• Loop perforation is a technique that selectively skips loop iterations to accelerate appli-

cations without causing significant quality degradation. Recently, loop perforation has

been applied to HPC applications successfully [118]. We apply loop perforation to the

11 applications according to the recent work HPAC [118]. In particular, we use HPAC

to decide how frequently the loop iterations can be skipped without causing significant

quality degradation.

• Autokeras [116] is a tool that automatically generates NN models given training datasets.

It has been reported [167] that Autokeras shows similar performance as other commer-

cial AutoML frameworks such as Google’s AutoML, H2O-AutoML, and Auto-sklearn.

Autokeras cannot be used for NN-based approximation. We compare AutoHPCnet with

Autokeras in terms of the NN model effectiveness of accelerating applications.

Note that we only apply ACCEPT to Type-II applications, but not Type-I and Type-III

applications, because ACCEPT heavily relies on the user to specify the NN model topol-

ogy. For those applications in Type-II, ACCEPT defines their NN model topology, but

not for other types of applications. To enable fair comparison, ACCEPT, loop perforation,

and Autokeras, and AutoHPCnet are used to accelerate the same code regions depicted in

Table 4.2. During the evaluation, we ensure that the final computation quality meets the

pre-determined requirement (i.e., 10%)

Figure 4.6 shows the application performance speedup after applying the above work

and AutoHPCnet. The speedup is calculated with respect to the execution time of the exact

execution (i.e., the original execution), using Equation 4.2. Figure 4.6 shows that AutoH-

PCnet consistently performs better in all applications than the other work. AutoHPCnet is

able to find simple but effective NN architectures for small applications (Type-II) and also

find more complicated NN architectures for larger applications (Type-III).
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Figure 4.6: Performance comparison of other representative methods

ACCEPT and the loop perforation method perform well on a few applications (i.e.,

Blackschole with ACCEPT, and fluidanimation and X264 with the loop perforation) with

more than 2x speedup. ACCEPT and the loop perforation perform poorly on other appli-

cations with less than 2x speedup, because of the following reason: (1) ACCEPT heavily

relies on the user to specify NN models, which limits its feasibility to explore a wide range

of NN models. (2) The loop perforation limits its performance improvement because its

approximation granularity is only at the loop’s iteration level.

Autokeras achieves 12.8x and 10.89x speedup on Blackschole and fluidsimulation re-

spectively, which is impressive. However, Autokeras cannot lead to better performance

than AutoHPCnet because of the following reasons. (1) Autokeras does not use feature

reduction and does not consider model inference time, hence the NN model produced by

Autokeras can have long inference time; and (2) Autokeras has problems handling sparse

matrices with many zero elements, because those zero elements will cause a gradient over-

flow problem during the NN model training. In fact, Figure 4.6 shows that using models

generated by Autokeras, there is even dramatically slowdown in those applications whose

inputs are high-dimensional sparse matrices (e.g., CG, FFT, MG, miniQMC and AMG).

AutoHPCnet does not have the above problems.

4.7.3 Effectiveness of AutoHPCnet Components

Effectiveness of Autoencoder. We measure the compression ratio after using a set of

feature reduction techniques, including Principal Component Analysis (PCA) [86], Latent

semantic analysis (LSA) [149], and autoencoder in AutoHPCnet. The compression ratio is

the ratio of the matrix size after applying feature reduction to the matrix size before apply-

ing it. Table 4.4 shows the results. In our evaluation, we ensure that the final computation

quality meets the pre-determined requirement.

Compared with PCA and LSA, AutoHPCnet is better by 37.6% and 26.1% for Type-I
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Table 4.4: Comparison of input compression ratio and model size.

Application Compression ratio Model size (#parameters)
PCA LSA Autoencoder Autokeras AutoHPCnet

CG 25% 22% 16% 3.6e8 1.8e7

FFT 47% 41% 30% 3.6e7 4.5e6

MG 67% 58% 42% 8.4e7 3.4e6

Blackscholes 76% 83% 52% 1.0e6 7.6e5

Canneal 38% 41% 26% 9.8e6 2.6e6

fluidanimation 72% 79% 49% 1.8e6 8.4e5

streamcluster 49% 53% 33% 2.9e6 9.7e5

X264 51% 59% 34% 7.4e5 6.3e5

miniQMC 37% 34% 17% 3.0e12 5.5e11

AMG 56% 52% 25% 8.6e10 2.2e10

Laghos 29% 27% 14% 1.2e12 1.0e11

applications, 31.4% and 37.2% for Type-II applications, and 52.7% and 50.4% for Type-III

applications, respectively. Autoencoder in AutoHPCnet reduces the input matrix size by

at least 25%, which in turn reduces the size of surrogate models and inference time. We

observe that Type-III applications have larger compression ratio, because the sparsity in

their input matrices is higher.

Effectiveness of Model Topology Search. AutoHPCnet is able to effectively con-

struct NN models smaller than those found by Autokeras, because of effective feature re-

duction. Table 4.4 shows the results. AutoHPCnet reduces the model parameters by 22.5%

(Blackcholes) - 89.5% (CG), compared with those constructed by Autokeras.

Effectiveness of Bayesian Optimization. AutoHPCnet uses the Bayesian optimiza-

tion to choose an NN model to replace the original code. The Bayesian optimization in

AutoHPCnet has three steps, i.e., update, generation, and evaluation. We compare the

Bayesian Optimization with a traditional approach, grid search [116], which simply makes

a complete search over a given subset of the topologies space of neural network search. We

use the default setting of grid search in AutoKeras.

We count the number of search steps per time unit (i.e., one hour) to reach the same

model quality, as an indicator of search efficiency. For Type-I, II, and III applications,

the average number of search steps per hour using the Bayesian optimization is 3.3, 6.5,

and 2.1 respectively, while using the grid search, it is 1.6, 3.2, and 1.9 respectively. The

Bayesian optimization has higher search efficiency, especially for Type-I and Type-II ap-

plications, because the quality-aware algorithm adopted by Bayesian optimization can ef-

fectively guide the search in the right direction compared with the grid search.
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4.7.4 Feasibility Analysis

AutoHPCnet includes offline and online phases. We quantify the time spent on the

two phases to analyze the tool feasibility.

Offline time. The offline phase of AutoHPCnet includes the trace generation, the

Bayesian optimization, and Autoencoder training. The execution time of the offline phase

differs from one application to another. In our evaluation, the trace generation, Bayesian

optimization, and Autoencoder training take 24-59 minutes, 6-13 hours, and 1.4-2.2 hours

respectively. Note that the overhead of the offline phase in AutoHPCnet, like other NN-

based approximation, can be amortized, because the offline phase happens only once, and

the NN-based approximation is expected to happen many times with performance benefit.

Online time. The online time includes (1) fetching input data to GPU memory, (2)

encoding input data to low-dimensional features, (3) loading a pre-trained surrogate model

from a file, and (4) running the surrogate model and retrieving the model output for the

application. (1), (2), (3) and (4) take 21.2%, 10.1%, 1.6% and 67.1% of the whole online

time on average. The online time is reported in Figure 4.5 and Figure 4.6.

4.8 Related Work

Scientific Machine Learning. Scientific machine learning [150, 75, 146, 102, 90, 15,

93, 89, 151] aims at using machine learning methods to solve scientific and engineering

problems. There are many successful cases in scientific machine learning, such as using

machine learning to reproduce molecular energy surfaces [154] and simulate infrared spec-

tra for molecular dynamics [51]. In [154], researchers use a DNN to approximate Discrete

Fourier Transform (DFT). By doing so, the Quantum chemistry (QC) simulation achieves

104× speedup with a high accuracy. After that, developing new drugs can be accomplished

in minutes that would have taken more than 10 years before. NN potentials can achieve

the same simulation accuracy as the traditional quantum chemical method, but is several-

orders-of-magnitude faster than using several hundreds of electronic structure points for

simulation. In our work, we introduce a framework to automatically construct surrogate

models to approximate computation in HPC applications. Different from the existing ef-

forts, the tool development does not assume any prior knowledge on application domains.

Approximate Computing. Our work, in essence, belongs to approximate computing. Ap-
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proximate computing can be leveraged to shorten execution or save energy by trading com-

putation accuracy. Approximation computing methods use machine learning-based approx-

imation to approximate computation The computation approximation usually happens at a

coarse granularity (e.g., the whole application or multiple functions). Approximate com-

puting has been explored in many fields, including hardware accelerators [47, 60, 140],

compiler optimization [5, 109, 138, 152], programming language designs [25, 134, 137,

141], and runtime system designs [14, 55, 63]. Approximate computing has also been

applied to many applications, such as streaming applications [76, 80, 136].

4.9 Conclusions

Using the surrogate models to replace computation in HPC applications is promising,

but is difficult to be applied in practice, because of a series of challenges on feature acqui-

sition, feature reduction, and NN model construction. Relying on the domain scientist to

manually use those steps to apply the surrogate models is time-consuming, and fundamen-

tally prevents the popularity of using this promising method to accelerate the performance

of HPC applications. This paper aims to address the above problem and introduces an

end-to-end framework (named AutoHPCnet) that democratizes the usage of NN-based ap-

proximation in HPC applications. The design of AutoHPCnet is driven by the observations

on the major challenges of applying the surrogate models in practice. Built upon a novel hi-

erarchical Bayesian optimization, customized autoencoder for sparse matrix and NN model

construction, and compiler-assisted feature acquisition, AutoHPCnet can effectively ease

and accelerate the exploring process of applying the surrogate models to HPC applications.
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Other work

Besides the research on NN-based approximation to HPC applications, I study other

interesting research topics related to machine learning by collaborating with my colleagues.

These topics include system optimization for decision tree on GPU [177], ML-assisted

query optimization on database [92], and ML-assisted reliability prediction for large-scale

programs [173].

• System Optimization for Decision Tree. Decision trees are widely used as ML

algorithm and often assembled as a forest to boost prediction accuracy. However, us-

ing decision trees for inference on GPU is challenging, because of irregular memory

access patterns and imbalance workloads across threads. In work [177], we pro-

pose Tahoe, a tree structure-aware high performance inference engine for decision

tree ensemble. Tahoe rearranges tree nodes to enable efficient and coalesced mem-

ory accesses; Tahoe also rearranges trees, such that trees with similar structures are

grouped together in memory and assigned to threads in a balanced way. Besides

memory access efficiency, we introduce a set of inference strategies, each of which

uses shared memory differently and has different implications on reduction overhead.

We introduce performance models to guide the selection of the inference strategies

for arbitrary forests and data set. As a result, Tahoe consistently outperforms the

state-of-the-art industry-quality library FIL by 3.82x, 2.59x, and 2.75x on three gen-

erations of NVIDIA GPUs (Kepler, Pascal, and Volta), respectively.

• NN-based application in Database. Cardinality estimation is a fundamental and

critical problem in databases. Recently, many estimators based on deep learning

94
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have been proposed to solve this problem and they have achieved promising results.

However, these estimators struggle to provide accurate results for complex queries,

due to not capturing real inter-column and inter-table correlations. Furthermore, none

of these estimators contain the uncertainty information about their estimations. Our

work [92] present a join cardinality estimator called Fauce, which uses NN to learn

the correlations across all columns and all tables in the database. Fauce is the first

estimator that incorporates uncertainty information for cardinality estimation into a

deep learning model. By leveraging NN model, Fauce is light-weighted and robust:

it has 10× faster inference speed and it provides 1.3×-6.7× smaller estimation errors

for complex queries compared with the state of the art estimator.

• Large-scale Parallel System Resilience. In the work [173], we introduce a new

methodology to evaluate the resilience of the application running in large scales.

Instead of injecting errors into the application in large-scale execution, we inject

errors into the application in small-scale execution and serial execution to model and

predict the fault injection result for the application running in large scales. Evaluating

with four NAS parallel benchmarks and two proxy scientific applications, our results

are promising: we demonstrate that using the fault injection result to predict for 64

MPI processes, the average prediction error is 8%. While using the fault injection

result to make the same prediction for eight MPI processes, the average prediction

error decreases to 7%.

• Applying Persistent Memory-based Optimization for HPC applications (LAMMPS).

Molecular dynamics (MD) simulation is a fundamental method for modeling en-

sembles of particles. In this direction [176], we introduce a new method to im-

prove the performance of MD by leveraging the emerging TB-scale big memory sys-

tem. In particular, we trade memory capacity for computation capability to improve

MD performance by the lookup table-based memoization technique. The traditional

memoization technique for the MD simulation uses relatively small DRAM, bases

on a suboptimal data structure, and replaces pair-wise computation, which leads to

limited performance benefit in the big memory system. We introduce MD-HM, a

memoization-based MD simulation framework customized for the big memory sys-

tem. MD-HM partitions the simulation field into subgrids, and replaces computation

in each subgrid as a whole based on a lightweight pattern-match algorithm to recog-
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nize computation in the subgrid. MD-HM uses a new two-phase LSM-tree to opti-

mize read/write performance. Evaluating with nine MD simulations, our approach

shows that MD-HM outperforms the state-of-the-art LAMMPS simulation frame-

work with an average speedup of 7.6x based on the Intel Optane-based big memory

system.

In these projects, I contribute to GPU profiling (from the perspective of memory and

thread synchronization) and system evaluation (including identifying performance bottle-

neck and comparing with existing work).
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Conclusions

6.1 Summary of Contributions

In Chapter 2, we studied an adaptive neural network-based approximation method to

accelerate the Eulerian fluid simulation. The Eulerian fluid simulation is a highly computation-

intensive HPC application. The NN model has been applied to accelerate it in the existing

work [165]. However, the current methods lack flexibility and generalization. We tackle

the above limitations and aim to enhance the applicability of NN in the Eulerian fluid sim-

ulation. We introduce Smart-fluidnet, a framework that automates model generation and

application. Given an existing neural network as input, Smart-fluidnet generates multiple

neural networks before the simulation to meet the execution time and simulation quality

requirement. During the simulation, Smart-fluidnet dynamically switches the neural net-

works to make the best efforts to reach the user’s requirement on simulation quality. Eval-

uating with 20,480 input problems, we show that Smart-fluidnet achieves 1.46x and 590x

speedup comparing with a state-of-the-art neural network model and the original fluid sim-

ulation respectively on an NVIDIA Titan X Pascal GPU, while providing better simulation

quality than the state-of-the-art model.

In Chapter 3, we studied another HPC application, the powergird simulation. The

traditional powergrid simulation that optimizes power flow suffers from high computational

cost of numerical optimization. For the powergrid simulation, we introduce a multitask

learning model to reduce the computation cost of the powergrid simulation. In particular,

we analyze intermediate results in the original numerical optimization procedure (i.e., the

MIPS solver) and discover several critical variables that are most influential to the final

97
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simulation quality. Then, we study the sensitivity of the correctness of modeling output to

the final simulation quality. Third, we propose a multi-task learning model to generate a

warm startpoint solution for the powergrid simulation. The multitask-based model allows

the prediction of the startpoint solution and simulation parameters to share knowledge,

hence improves prediction accuracy. Extensive experimental results demonstrate that our

method achieves comparable accuracy with the original numerical optimization algorithms

while achieving 2.60× speedup (in terms of execution time).

In Chapter 4, we developed an automatic tool to easy the use of NN-based surro-

gate model for domain scientists. NN has been widely used to approximate computation

in HPC applications. By replacing an execution phase in the application, NN can bring

significant performance improvement to the application. However, there is a lack of tools

that can help the domain scientist automatically apply NN-based approximation to HPC

applications. We introduce a framework, named AutoHPC-net, to democratize the usage

of NN-based approximation. AutoHPC-net is the first end-to-end framework that makes

past proposals for NN-based approximation practical and disciplined. AutoHPC-net intro-

duces a workflow to address unique challenges when applying the approximation, such as

feature acquisition and meeting the application-specific constraint on computation quality.

Evaluating with a set of HPC applications that previously cannot run on GPU, we show

that using AutoHPC-net, those applications can leverage NN and GPU to achieve 4.34×
speedup on average (up to 7.39× speedup and with data preparation cost included) while

meeting the application-specific constraint on computation quality.

The key takeaway from this dissertation can be summarized as follows:

AI4Science is becoming the future of HPC, and we have seen in the above instances where

these mission-critical HPC application can be dramatically improved by deep learning

methods. AI4Science helps scientist to improve the program portability on GPU accelera-

tors, even for the next generation AI accelerators. However, ensure the final computation

quality is the key for the success of AI4science. The NN model should be fair and ac-

ceptable to scientific applications. Meanwhile, we need to take care of the uniqueness of

HPC applications, for instance, how to absorb efficient information from high-dimensional

scientific dataset and how to guarantee our solution satisfy simulation physical constraints.
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6.2 Future Work

In future study, my overarching goal is to democratize the usage of ML-based approx-

imation in HPC applications, and make ML models more approachable. Specific topics of

interest currently include (but are not limited to) (1) constructing an robust surrogate mod-

eling workflow based on runtime feedback; and (2) enabling energy-efficient ML training

on heterogeneous accelerators. Needless to say, I always seek new collaborations, chal-

lenges and ideas from related fields.

Robust Surrogate Modeling Based on Runtime Feedback. Expanding on my prior

works [41, 42], I want to further improve the scientific surrogate modeling in terms of

robustness, explainability and feasibility. A significant challenge that these systems en-

counter lies in the drift in real-world input problem. In many of the most successful ML

examples, such as image recognition, system developers assume that all the input data stem

from a static distribution. Almost by definition, the most interesting scientific applications

of SciML are those, such as ocean modeling or climate pattern recognition, where the in-

put data drifts over time because it comes from a dynamic, time-evolving distribution, often

even the answers (“ground-truth”) are unknown beforehand. My future work will exploit

an end-to-end workflow to construct trustworthy surrogate models for the drift detection

and recovery with three steps:

• Drift detection and sample collection. Traditional drift detection algorithms focus

on detecting input data distribution shifts. They detect the domain drift, but do not

help in selecting the most important samples for labeling and retraining. In HPC

domain, retrain ML model is essential, especially for those time-evolving simulations

where labeling samples by domain experts is labor-intensive. Therefore, developing

methods for selecting the most important samples before labeling may significantly

help the scientific domain community. In the future, I am going to propose using

uncertainty quantification-based drift and outlier detection method (a unsupervised

algorithm) that helps selecting key samples for retraining based on inference output

uncertainty (possibly combined with other quantification metrics).

• A specialized ensemble tailored towards the unseen input problem. Numerical solvers

in HPC applications can be time-consuming and an order of magnitude slower than

an ML-based solver. Before directly using the numerical solver to solve an unseen
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input problem, it is promising to first try ML models. Here, we construct a special-

ized ensemble model through clustering appropriate ML models, to recover from the

detected drift problem. Specifically, we have a family of models in hand for diversi-

fied input problems. At runtime, based on the attributes of the input problem, we pick

the appropriate models for online prediction. For instance, in case of a ocean model-

ing dataset, we can uses an ensemble of expensive, more accurate models for object

detection under high resolution problem and an ensemble of slower, less accurate

models otherwise. The policy of model selection will be interesting to exploit.

• Drift recovery through active learning. A specialized ensemble improves the predic-

tion accuracy on a novel input problem (outlier), but maybe still failed in the runtime

simulation (not accurate enough). If the ensemble model fails, we need to collect

more representative samples (measured with distance metric, and those representa-

tives should fall into the same category as the input outlier) to retrain the model

family. However, for HPC applications, it is unpractical to manually search those

representative samples, because the number of samples too huge to take a exhaust

exploration. For this problem, active learning can collect efficient representatives

while minimizing labeling overhead. Furthermore, active learning does not require

the ground truth when selecting samples (no labeling required before sample se-

lection). This dramatically alleviates the overhead of sample labeling for domain

experts.

Enabling Energy-Efficient DNN Training on Heterogeneous Hardware. DNN training

is quickly emerging as a common yet heavy workload in HPC data centers. However,

training DNNs often involves large data sets, high computation power and long training

time. As a result, DNN training can be extremely energy-consuming. For example, training

BERT (a large natural language processing model) with eight NVIDIA V100 GPUs for 12

days takes nearly 2.5 billion Joules [36]. Unfortunately, the situation only gets worse as

more complex DNN models are being developed. Therefore, it is imperative to explore

novel approaches to effectively reduce energy consumption during DNN model training.

For this research topic, we have the following two research questions.

• How to reduce energy consumption and production cost without impacting the DNN

training throughput?
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• How to schedule training operations (on different components of heterogeneous hard-

ware) to minimize energy consumption or meet an enforced power cap?

Indeed, the main reason for the large energy consumption of DNN training is the use

of GPUs. Leveraging the massive thread-level parallelism, GPUs have become the pre-

dominant processing platform for DNN training. However, GPUs are very power hungry.

NVIDIA GPUs, such as V100 and P100 with thermal design power (TDP) of 300 Watts and

250 Watts, respectively, can easily account for more than 90% of the total system power

during DNN training [79]. Nevertheless, it is challenging to reduce GPU power and energy

without impacting training throughput. The prevalent method of scaling down GPU core

frequency to save power may degrade training throughput [172].

Meanwhile, heterogeneous architectures are recently deployed to boost promising per-

formance with lower energy consumption. For example, Field-Programmable Gate Arrays

(FPGAs) are highly customizable and especially good at handling streaming workloads in

a pipeline fashion. Compared with GPUs, FPGAs have much lower power consumption

(e.g., 90W in Intel S10 FPGA vs. 300W in Nvidia V100 GPU). This hinders the potential

power of heterogeneous architectures in terms of the energy-friendly DNN training.

In my preliminary work, I take some first steps to explore new opportunities and viable

solutions to schedule efficient DNN training on hybrid GPU-FPGA accelerators. A surpris-

ing corollary of our work is that, using memory bandwidth utilization and IPC of operations

on GPUs as indicators, we identify those operations that can perform comparably or even

better on FPGAs than on GPUs (FPGA is more flexible and energy-efficient).

Based upon the preliminary work, I will study more specialized architectures, like

Sambanova [45], Xilinx Versal [169] and NVIDIA A100. My future work towards answer-

ing the questions of 1) which ML operation should run on which hardware component to

maximize the production performance; 2) how to hide data movement overhead with task

scheduling. Overall, this research direction will uncover new techniques at the intersection

of DNN computation scheduling and hybrid accelerators.

Broader Vision

I have been working on how to make the ML model easier to use from both of the

algorithm and system perspectives, including physics-informed machine learning for sci-

entific applications, adaptive online approximation toward a rigorously quality guarantee,
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and an end-to-end framework to democratize NN usage in HPC applications. These study

makes past proposals for NN-based approximation practical and disciplined.

In conclusion, a general theme across much of my work and what has developed into

my research philosophy has been to draw unexpected connections between seemingly dis-

tant areas or to look for challenges and ideas in fields adjacent to high performance com-

puting. Examining the same problem from different angles has allowed me to give “fresh”

perspectives on fundamental questions. For example, the observation in feature extraction

led me to contributions in NN model construction via domain specific designs. In the future,

I hope to continue on this path through my research pursuits and my active collaborations,

especially with colleagues in scientific computing fields.
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Related Work

Machine learning has been used to enhance and augment scientific applications to an-

alyze very large data sets to reveal properties that are too complex to be discovered by

previous systems. From predicting Molecular energetics to tracking neutrinos, machine

learning-driven enhancement dramatically advances the efficiency and accuracy of the so-

lution of well-known scientific problems [1]. There are couples of simulation examples

that successfully apply enhancement methods to their research field.

In weather prediction, Racah et al. [127] use a semi-supervised multichannel spa-

tiotemporal CNN model to realize a better localization of extreme weather. In cancer

treatment, U.S. DOE laboratories, as well as the National Institutes of Health (NIH), have

recently launched a synthetic project, CANDLE [159], targeting the top challenges in can-

cer diagnosis and treatment. At the current stage, researchers are leveraging information

of millions of cancer patient records to diagnose cancer and figure out the best treatment

strategy using a scalable DNN for modeling.

Moreover, in particle physics, George and Huerta [53] use GPUs to accelerate training

DNN for fast detection and processing gravitational wave data; the new machine learning-

based approach is much efficient and resilient to noise than established gravitational wave

detection algorithms. Seismologists and geophysicists recently reveal that machine learn-

ing techniques can help them identify earthquake patterns from three years of earthquake

records at The Geysers in California, one of the world’s oldest and largest geothermal reser-

voirs [64]. This is an unprecedented achievement. The subtle difference between patterns

is unseen by traditional methods, which are less accurate. The patterns help researchers

find the fluctuating amounts of water injected below ground during the energy-extraction

103



104

process.

Modulation Methods. Besides that, machine learning has also be used to create

refined input data for the next iteration round in a scientific simulation to modulate the

simulation process. There are several successful examples. B. Wigley et al. [4] propose

a machine learning-based online optimization process for the production of Bose-Einstein

condensates (BEC). With the repeated machine learning led learning, the optimization pro-

cess finds the optimal evaporation ramp for BEC production shortly in fewer iterations. In

Thermal–hydraulic modeling [16], an NN is trained using the output from simulations and

then used to learn the dynamic behavior of the heated line. The NN is then added to the

4C circuit model as a new part. The NN model enables online control and fast assessment

of the dynamic thermal-hydraulic system. Similarly, Richard et al. [133] apply an NN to

ITER magnets aiming to predict when a disruption will occur in order to avoid damage to

ITER and to adjust the reaction to keep generating power. The NN-based approach exceeds

the best traditional methods in accuracy (95% v.s. 85%).

Approximation Methods. Approximation Methods becomes a favorite field in the last two

years. Our work, in essence, belongs to approximation methods. Approximation methods

can be leveraged to shorten execution or save energy by trading computation accuracy. Ap-

proximation Methods use machine learning approximation to replace scientific simulation

Those code replacements happen at a coarse granularity. Typically the whole scientific

simulation (instead of the fine-grained code regions) is replaced.

There are a couple of successful cases, such as using machine learning to reproduce

molecular energy surfaces [154] and simulate infrared spectra for molecular dynamics [51].

In [154], researchers use a DNN to replace Discrete Fourier Transform (DFT). By doing

so, the Quantum chemistry (QC) simulation achieves 10e4x speedup with a high accuracy.

After that, developing new drugs can be accomplished in minutes that would have taken

more than 10 years. Similarly, in [51], an NN is used to reproduce the potential energy sur-

face (PES) of a chemical system using the data computed by quantum chemistry methods.

NN potentials can realize the accuracy of the underlying quantum chemical method, but

also can be several-orders-of-magnitude faster using only several hundreds of electronic

structure points.

Machine learning approximation is also managed to be used to speed up quantum

computing kernels [15], in which Carleo and Troyer apply machine learning approximation
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on one of greatest challenges in quantum physics: the many-body problem, which describes

the complex correlations within the many-body wave function. Carleo and Troyer use an

NN to reproduce the quantum many-body wave function. This forces the neural network

to learn properties of the ground state of the wave function. This machine learning-based

approach outperforms the state-of-the-art numerical simulation methods in accuracy.

In Computer Science, Approximation methods has been explored in many sub-fields,

including hardware [47, 60, 131, 140], compilers [5, 109, 138, 152], programming lan-

guages [25, 134, 137, 141], and runtime systems [14, 55, 63]. Approximate methods have

been applied to many applications, such as streaming applications [76, 80, 136], However,

there are only a few cases in HPC applications (e.g., molecular dynamics simulation [15],

atmospheric modeling [44] and large-scale eigen decomposition [184]). We want to test

more HPC applications to extend approximation methods in HPC.

Applying neural networks to HPC applications. Neural networks (especially deep

neural networks (DNNs)) have been employed in HPC applications recently. In [133], a

neural network is used to generate input data for modulating the simulation process. Wigley

et al. [4] propose a neural network-based online optimization process for the Bose-Einstein

condensates (BEC). In [16], neural networks are used to accelerate thermal–hydraulic mod-

eling and enables faster assessment for the dynamic thermal-hydraulic system. Richard et

al. [133] apply a neural network to ITER magnets to predict the occurrence of the interrup-

tion, which can be used to adjust the reaction to continue generating power and avoid ITER

damage. Mathuriya et al. [103] build a CNN model to determine the physical model that

describes our universe.

In our work, we use neural network models to approximate computation in an HPC

application. Different from the existing efforts, we aim to address the limitation of model

flexibility and generality in the existing work [165].

Acceleration of the fluid simulation. Since the fluid simulation is an important

HPC application, many research efforts have been focusing on improving its performance.

Popovic et al. use a multi-grid approach to pre-process data for the PCG method in the

traditional fluid simulation [105].

Molemaker et al. use iterated orthogonal projections and Michael Lentine et al. apply

a coarse-grid correction method [84] to approximate the Poisson’s equation. These two ap-

proaches are effective, but both of them are inexact and only competitive in low-resolution
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settings. Some recent efforts [34] address the above limitation by using a data-driven ap-

proach or leveraging some useful statistical characteristics in the data distribution. Our

work is different from them, because we use neural network models (not traditional solvers)

to improve performance of the fluid simulation.

Some recent efforts attempt to build a neural network model that makes prediction for

stability, collisions, forces and velocities of data objects in images or videos [85]. Given

pressure data from previous frames, voxel occupancy, and velocity divergence, Yang et al.

use a patch-based neural network to predict the next pressure [65]. Jonathan et al. use

a convolutional neural network to predict the pressure value in the Eulerian fluid simula-

tion [165]. The existing NN-based approximation approaches lack flexibility and general-

ization, discussed in Section 2.1.

Model compression. During the process of model construction, we use some op-

erations to generate simpler neural network models. The recent work using model com-

pression aims to generate simpler models [20]. There are multiple techniques for model

compression, including quantization parameters [68, 174], layer pruning [181, 110], bina-

rized networks [132, 32], low rank approximation [162], and knowledge distillation [142,

96]. Different from the existing work that focuses on resource-constrained execution envi-

ronment (e.g., mobile devices), we focus on simplifying model without resource constrains

and study how to build the models to meet the simulation quality for an HPC application.

Clustering Algorithms for stochastic programming. Scenario clustering has been em-

ployed in stochastic programming recently [24, 123, 164] to reduce scenarios or warm-up

an approximation prior to the true solution. Scenario reduction [170, 23] performs clus-

tering on scenario data and generate a representative small-scale problem. These existed

approaches to eliminate scenarios(either by sampling or by measuring strong/weak influ-

ence) will leave a gap between the true solution and the solution from the reduced KKT

structure.

Warm-up strategies [31] solve the large-scale problems by warm up through getting

approximate solutions from a smaller reduced one. While the warm-up strategies lack of

knowledge about the importance of different scenarios. We can’t measure the strong or

weak influence on the solution. Some outliers are also not captured for the preconditioner,

especially for one with strong influence.
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