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ABSTRACT OF THE DISSERTATION

Mathematical Tools and Convergence Results for Dynamics over Networks

by

Rohit Yashodhar Parasnis

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California San Diego, 2022

Professor Behrouz Touri, Chair
Professor Massimo Franceschetti, Co-Chair

Mathematical models of networked dynamical systems are ubiquitous - they are used

to study power grids, networks of webpages, robotic and sensor networks, and social networks,

to name a few. Importantly, most real-world networks are time-varying and are affected by

stochastic phenomena such as adversarial attacks and communication link failures. Time-varying

networks, therefore, have been under study for a few decades. However, our current under-

standing of the dynamical processes evolving over such networks is limited. This observation

motivates the two-pronged objective of this dissertation: (i) to use theoretical and empirical

methods to analyze certain networked dynamical systems that cannot be studied using standard

xvi



tools and techniques, and (ii) to develop suitable mathematical techniques for the systematic

study of such systems.

As our main contribution resulting from (i), we use the properties of random time-varying

networks to provide a rigorous theoretical foundation for the age-structured Susceptible-Infected-

Recovered model, a model of epidemic spreading. We then use system identification to show

that the age-structured SIR dynamics accurately model the spread of COVID-19 at city and state

levels in two different parts of the world – Tokyo and California.

As for our contributions resulting from (ii), we extend two assertions of the Perron-

Frobenius theorem to time-varying networks described by strongly aperiodic stochastic chains,

thereby widening the applicability of the fundamental result that is foundational to probability

theory and to the studies of complex networks, population dynamics, internet search engines,

etc. Our results enable us to extend several known results on distributed learning and averaging.

Moreover, they promise to advance our understanding of dynamical processes over real-world

networks.

As an application of these results, we study non-Bayesian social learning on random time-

varying networks that violate the standard connectivity criterion of uniform strong connectivity.

In doing so, we also make a methodological contribution: we show how the theory of absolute

probability sequences and martingale theory can be combined to analyze nonlinear dynamics

that approximate linear dynamics asymptotically in time.

Finally, we study the convergence properties of social Hegselmann-Krause dynamics

(which is a variant of the classical Hegselmann-Krause model of opinion dynamics and in-

corporates state-dependence into distributed averaging). As our main contribution here, we

provide nearly tight necessary and sufficient conditions for a given connectivity graph to exhibit

unbounded ε-convergence times for such dynamics.
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Chapter 1

Introduction

In this chapter, we review a few background concepts that will be used in subsequent

chapters, we use some of these concepts to motivate the objectives of this dissertation, and we

provide a brief summary for each of the subsequent chapters.

We begin with a few basic concepts from graph theory.

1.1 Graphs and Networks

Given a natural number n, a time-invariant graph or a static graph on n nodes/vertices is

a tuple G= (V,E), where V is a finite set with |V |= n, and E is a subset of V ×V , where | · |

denotes the cardinality of a set and ‘×’ denotes the Cartesian product of two sets. The elements

of V are called the nodes of G or the vertices of G, and the elements of E are called the edges

of G. For any two nodes i, j ∈ V , node j is said to be a neighbor of node i (equivalently, j is

adjacent to i) if (i, j) ∈ E.

A static graph G = (V,E) is said to be a directed graph or a digraph if there exists at

least one pair of nodes (i, j) ∈ E such that (j, i) /∈ E, in which case the edges of G are called

arcs or directed edges. If a graph is not directed, it is said to be undirected, in which case its

edges are also said to be undirected. Note that the edge set of an undirected graph (V,E) satisfies

the following property: for any two nodes i, j ∈ V , we have (i, j) ∈ E if and only if (j, i) ∈ E.

Suppose now that V is the set of the first n natural numbers, i.e., V = [n] := {1,2, . . . ,n}.
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Then, by an extension of the terminology introduced above, a weighted time-invariant graph on

n nodes is a tuple G = ([n],E,W ) where E ⊂ [n]× [n] and W is a non-negative n×n matrix

such that for any two nodes i, j ∈ [n], the (i, j)-th entry of W is positive if and only if (i, j) ∈ E,

i.e., wij > 0 if and only if (i, j) ∈ E, in which case wij is called the weight of the edge (i, j).

Here, the matrix W is called the the weight matrix of G. In subsequent chapters, W is also called

the adjacency matrix of G and thereby denoted by A or Aadj.

We now extend all of the above static concepts to their time-varying counterparts. Given

a time index t (which may be either discrete, as in t= 0,1,2, . . ., or continuous, as in t ∈ [0,∞)),

a time-varying graph on n nodes is a tuple (V,E(t)) of a static vertex set V that satisfies |V |= n

and a time-varying edge setE(t) that satisfiesE(t)⊂ V ×V for all times t. Similarly, a weighted

time-varying graph on n nodes is a tuple ([n],E(t),W (t)) of the static vertex set [n], a time-

varying edge set E(t) ⊂ [n]× [n], and a time-varying non-negative weight matrix W (t) such

that for all i, j ∈ [n], we have wij(t) > 0 if and only if (i, j) ∈ E(t). Similar to time-invariant

graphs, time-varying graphs can be either undirected ((j, i) ∈ E for all (i, j) ∈ E) or directed,

regardless of whether they are weighted or unweighted (not weighted).

In this dissertation, we often use the term network to refer to a graph, regardless of

whether the graph is static or time-varying, directed or undirected, and weighted or unweighted.

1.2 Dynamical Processes over Networks

Let Rn be the space of all n-dimensional real-valued column vectors. A continuous-time

dynamical process over a network G(t) = ([n],E(t),W (t)) is a function x : [0,∞)→ Rn that

evolves in time as per an update rule that can be expressed by an equation of the form

ẋ(t) = f(t,x(t),W (t)) for all t≥ 0, (1.1)

where f is a function that has Rn as its range and satisfies certain regularity conditions, and

x(0) is the initial state or the initial condition for (1.1). Likewise, a discrete-time dynamical
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process over a network G(t) = ([n],E(t),W (t)) is a function x : {0,1,2, . . .}→ Rn that can be

described by an update rule of the form

x(t+1) = f(t,x(t),W (t)) for all t ∈ {0,1,2, . . .}, (1.2)

where f and x(0) are as described above. In the context of either of the two dynamics (1.1)

and (1.2), we refer to x(t) as the state of the network G(t) at time t, and for a generic node index

i ∈ [n], we refer to xi(t) (the i-th entry of x(t)) as the state of the node i at time t. We also refer

to dynamical processes over networks as networked dynamical proceses.

We now provide a simple example of a class of dynamical processes over networks.

Consider a deterministic (non-random) time-invariant network G = ([n],E,W ). Suppose the

network has a non-random initial state x(0), and suppose the state vector x(t) evolves in time as

per one of the following two equations in the absence of a control input,

x(t+1) = Ax(t), t= 0,1,2, . . . (1.3)

ẋ(t) = Ax(t), t≥ 0, (1.4)

where A, the state evolution matrix, is an n×n matrix that is determined by W (in the simplest

case, we have A = W ). Then (1.3) and (1.4) define the simplest and most well-understood

classes of dynamical processes over networks.

Observe that the dynamics defined by (1.3) and (1.4) are linear because the map z→Az

satisfies the properties of homogeneity and superposition, and they are time-invariant because

the network G (and hence also the state evolution matrix A) is constant in time. They are also

deterministic processes since both A and x(0) are assumed to be non-random.

However, most networks in the real world are dynamic rather than static, exhibit non-

linear behavior, and are affected by stochastic phenomena such as communication link failures

and adversarial attacks. In other words, most real-world network dynamical processes are
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not time-invariant, non-random, or linear. This motivates us to study certain less-understood

dynamics over networks that involve either randomness, non-linearities, temporal dependence,

or a combination of some of these properties. In our analysis, we not only characterize the

convergence properties (or the long-term evolution) of some of these dynamics, but we also

develop mathematical tools that hold promise for advancing our understanding of several other

networked dynamical processes that are not studied in this dissertation.

We now categorize the networked dynamical processes studied in this work as follows:

I Dynamics related to distributed averaging, a method of information mixing that can be

used to model the spread of information in social networks, distributed coordination in

sensor networks and robotic networks, etc.

II Dynamics that model epidemic spreading in social networks.

We now introduce each of these categories.

1.3 Distributed Averaging and Related Dynamics

Distributed averaging is a method of information pooling or belief aggregation in multi-

agent systems or networks of interacting agents that share common objectives, such as networks

of temperature sensors used in an industrial plant, or social networks of voters attempting to

choose the best political candidates in an election. It is a networked dynamical process in which

the state of every node shifts to a weighted average of the neighbors’ states in every update

period.

Distributed averaging finds applications in distributed optimization [3, 4], distributed

parameter estimation and signal processing [5], distributed hypothesis testing [6], networks of

power systems [7], decentralized control of robotic networks [8], and opinion dynamics [9, 10].

Hence, a variety of distributed averaging dynamics have been studied till date within different

mathematical frameworks [11–13].

We now provide a brief mathematical description of these dynamics.

4



1.3.1 Distributed Averaging Dynamics

In discrete time, distributed averaging can be described as a dynamical process {x(t)}∞t=0

on a network G(t) = ([n],E(t),W (t)) with the update rule

x(t+1) = A(t,x(t),W (t))x(t) for all t= 1,2, . . . , (1.5)

where for each t∈ {1,2, . . .} the state evolution matrixA(t,x(t),W (t)) is an n×n row-stochastic

matrix, i.e., all the entries of A(t,x(t),W (t)) are non-negative and the sum of the entries in every

row of A(t,x(t),W (t)) equals 1.

In what follows, Chapter 2 develops mathematical tools for studying time-varying dis-

tributed averaging dynamics that can be described either by (1.5) after replacing A(t,x(t),W (t))

with A(t) = W (t) or by the continuous-time analog of the same dynamics (given by ẋ(t) =

A(t)x(t)). On the other hand, Chapter 3 focuses on a special class of state-dependent dynamics

that can be subsumed under (1.5) with A(t,x(t),W (t)) = A(x(t),W0), where W0 is a certain

binary matrix that remains constant in time.

Chapter 4, by contrast, focuses on a dynamical process that is stochastic and non-linear,

but one that is closely related to the distributed averaging dynamics described above. This

non-linear process falls under the category of distributed learning dynamics, which we introduce

below.

1.3.2 Distributed Learning

Distributed learning is a method of implementing hypothesis testing in a decentralized

manner across a multi-agent system. To elaborate, consider a network of interacting agents driven

by the shared purpose of identifying an unknown state of the world or a parameter of interest.

Distributed learning then combines the process of belief aggregation or information mixing

inherent to distributed averaging with the process of acquiring private signals, measurements, or

observations made on the unknown state of the world.
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Chapter 4 reviews a few applications of distributed learning as well as a few seminal

works on the topic. To see how all of the distributed learning dynamics that we study in Chapter 4

are related to distributed averaging, we note that the former are a special case of the family of

networked dynamical processes defined by

xθ(t+1) = A(t)xθ(t)+u(t,xθ(t)), for all t= 0,1,2, . . . (1.6)

where A(t) is the adjacency matrix of a random1 time-varying graph G(t), θ is a parameter that

belongs to a finite set Θ, xθ is the (random) state of the system corresponding to a given value of

θ, and the control input u : {0,1,2, . . . ,}×Rn→ Rn is a random non-linear function satisfying

limt→∞u(t,xθ(t)) = 0 almost surely for a subset Θ∗ of the parameter space Θ. As a result, for

sufficiently large values of t we have xθ(t)≈ A(t)xθ(t) for all θ ∈Θ∗. This means that, for all

θ ∈ Θ∗, the distributed learning dynamics studied in this dissertation approximate distributed

averaging in the limit as time goes to infinity. As we shall see in Chapter 4, this observation

enables us to exploit the properties of sequences of row-stochastic matrices in order to derive

convergence results on all the distributed learning dynamics analyzed therein.

1.4 Epidemic Spreading in Social Networks

Motivated by the devastating economic and medical impacts of COVID-19 all over the

world, Chapter 5 examines certain non-linear dynamical processes that model epidemic spreading

in social networks.

The dynamics investigated in Chapter 5 are of two kinds: (a) age-structured SIR dynamics,

defined by a system of bilinear ODEs, and (b) a time-homogeneous continuous-time Markov

chain that describes a stochastic epidemic process occurring over a random, time-varying social

network. Since most of the mathematical analysis responsible for our main theoretical results

involves a detailed examination of (b), in the remainder of this section we summarize a few
1We assume that all random quantities are defined with respect to an underlying probability space (Ω,B,Pr).

6



prerequisites from the theory of time-homogeneous continuous-time Markov chains (CTMCs).

1.4.1 Prerequisites from the Theory of Time-Homogeneous CTMCs

Suppose we are given a probability space (Ω,B,Pr). We borrow the definition of time-

homogeneous CTMCs from [14] and modify it slightly for our purposes.

Definition 1 (Time-Homogeneous CTMCs). A time-homogeneous CTMC with state space X

is a random process {X(t) : t≥ 0} ⊂ X such that

(a) The paths X : [0,∞)×Ω→X are step functions that are right-continuous with respect to

the first argument; and

(b) For any set of times ti < ti+1 = ti +∆i+1t and states xi ∈ X , with t0 := 0, we have

Pr(X(tk+1) = xk+1 |X(ti) = xi ∀ i≤ k) = Pr(X(∆k+1t) = xk+1 |X(0) = xk) .

For time-homogeneous CTMCs, we define the concept of infinitesimal generators below.

Definition 2 (Infinitesimal Generator). The infinitesimal generator of a time-homogeneous

CTMC X := {X(t) : t≥ 0} is the function Q : X ×X → R, defined by

Q(x,y) := lim
∆t→0

Pr(X(t+∆t) = y |X(t) = x)
∆t for all x,y ∈ X with x ̸= y

if this limit exists, in which case we let Q(x,x) :=−∑y∈X \{x} Q(x,y) for all x ∈ X .

Throughout Chapter 5, we repeatedly use the following two well-known [15] properties

of infinitesimal generators for time-homogeneous CTMCs on finite state spaces:

(i) The random time T := inf{t > 0 : X(t) ̸= x0} at which the CTMC X leaves an initial

state x0 ∈ X is exponentially distributed with rate −Q(x0,x0) (so that the expected value

of T is given by E[T ] =− 1
Q(x0,x0) ).
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(ii) Given that the CTMC X has transitioned from a state x ∈ X to another state at time t, the

conditional probability that the successor state is y ∈ X \{x} is given by

Pr(X(t) = y |X(0) = x,T = t) = Q(x,y)∑
z∈X \{x} Q(x,z) .

1.5 Outline of the Dissertation

We now summarize the remaining chapters of this dissertation.

1. Chapter 2, which is based on [16], begins with a review of the Perron-Frobenius theorem, a

fundamental tool in matrix analysis that has applications to complex networks, population

dynamics, social learning, and numerous physical, engineering, and economic phenomena.

However, since this theorem and many of its extensions can be applied only to a single

matrix at a time, their applications in networked dynamical systems are limited to static

networks. To extend the applicability of these results to time-varying networks, Chapter 2

generalizes two assertions of the Perron-Frobenius theorem to sequences as well as con-

tinua of row-stochastic matrices. The results reported therein have potential applications

in areas such as distributed averaging, optimization, and estimation.

2. Having developed a mathematical tool to analyze variants of distributed averaging, Chap-

ter 3 considers a special class of state-dependent averaging dynamics called social Hegsel-

mann–Krause (HK) dynamics, a variant of the HK model of opinion dynamics where

a physical connectivity graph that accounts for the extrinsic factors that could prevent

interaction between certain pairs of agents is incorporated. As opposed to the original HK

dynamics (which terminates in finite time), we show that for any underlying connected

and incomplete graph, under a certain mild assumption, the expected termination time of

social HK dynamics is infinity. We then investigate the rate of convergence to the steady

state by studying the ε-convergence time, i.e., the time required by the social HK system
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to enter an ε-neighborhood of the steady state. We provide bounds on the maximum

ε-convergence time in terms of the properties of the physical connectivity graph. We

extend this discussion and observe that for almost all n, there exists an n-vertex physical

connectivity graph on which social HK dynamics may not even ε-converge to the steady

state within a bounded time frame. We then provide nearly tight necessary and sufficient

conditions for arbitrarily slow merging (a phenomenon that is essential for arbitrarily slow

ε-convergence to the steady state). Using the necessary conditions, we show that complete

r-partite graphs have bounded ε-convergence times.

3. In Chapter 4, which is based on [17], we study a set of distributed learning dynamics

called non-Bayesian social learning on random directed graphs, and we show that, under

mild connectivity assumptions, all the agents almost surely learn the true state of the

world asymptotically in time if the sequence of the associated weighted adjacency matrices

belongs to Class P∗ (a broad class of stochastic chains that subsumes uniformly strongly

connected chains). We show that uniform strong connectivity, while being unnecessary for

asymptotic learning, ensures that all the agents’ beliefs converge to a consensus almost

surely, even when the true state is not identifiable. We then provide a few corollaries

of our main results, some of which apply to variants of the original update rule such as

inertial non-Bayesian learning and learning via diffusion and adaptation. Others include

extensions of known results on social learning. We also show that, if the network of

influences is balanced in a certain sense, then asymptotic learning occurs almost surely

even in the absence of uniform strong connectivity.

4. In Chapter 5, which is based on [17], we examine the age-structured SIR model, a variant

of the classical Susceptible-Infected-Recovered (SIR) model of epidemic propagation,

in the context of COVID-19. In doing so, we provide a theoretical basis for the model,

perform an empirical validation, and discover the limitations of the model in approximating

arbitrary epidemics. We first establish the differential equations defining the age-structured

9



SIR model as the mean-field limits of a continuous-time Markov process that models

epidemic spreading on a social network involving random, asynchronous interactions.

We then show that, as the population size grows, the infection rate for any pair of age

groups converges to its mean-field limit if and only if the edge update rate of the network

approaches infinity, and we show how the rate of mean-field convergence depends on the

edge update rate. We then propose a system identification method for parameter estimation

of the bilinear ODEs of our model, and we test the model performance on a Japanese

COVID-19 dataset by generating the trajectories of the age-wise numbers of infected

individuals in the prefecture of Tokyo for a period of over 365 days. In the process, we

also develop an algorithm to identify the different phases of the pandemic, each phase

being associated with a unique set of contact rates. Our results show a good agreement

between the generated trajectories and the observed ones.

Chapter 1, in parts, contains material as it appears in the abstracts of the following papers and

research articles: Rohit Parasnis, Massimo Franceschetti and Behrouz Touri, “Towards a Perron-

Frobenius Theorem for Strongly Aperiodic Stochastic Chains”, arXiv preprint arXiv:2204.00573

(2022); Rohit Parasnis, Massimo Franceschetti and Behrouz Touri, “On the Convergence Proper-

ties of Social Hegselmann–Krause dynamics,” in IEEE Transactions on Automatic Control 67.2

(2021): 589-604; Rohit Parasnis, Massimo Franceschetti and Behrouz Touri, “Non-Bayesian

Social Learning on Random Digraphs with Aperiodically Varying Network Connectivity”,

in IEEE Transactions on Control of Network Systems, in press (2022); and Rohit Parasnis,

Ryosuke Kato, Amol Sakhale, Massimo Franceschetti and Behrouz Touri, “Usefulness of the

Age-Structured SIR Dynamics for Modelling COVID-19”, arXiv preprint arXiv:2203.05111

(2022). The dissertation author was the primary investigator and author of these papers and

articles.
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Chapter 2

Towards a Perron-Frobenius Theorem for
Strongly Aperiodic Stochastic Chains

2.1 Introduction

Perron-Frobenius theorem is a foundational tool in linear algebra that is central to theory

of Markov chain, and has many applications in database systems, complex networks, population

dynamics, opinion dynamics, social learning, economic growth and income inequalities, and

many other physical, social, and economic phenomena [9, 18–29]. Its strength lies in connecting

the limiting behavior of Ak as k→∞ with the structural (graph-theoretic) pattern of a fixed

non-negative matrix A. For example, in the case of Google’s PageRank algorithm, A denotes the

transition matrix of a Markov chain modelling a web-surfer, and the theory relates the ergodic

(long term) behavior of this Markov chain to the centrality of webpages on World Wide Web

(WWW).

However, since this theorem and many of its extensions (e.g. [30–33]) apply only to fixed

matrices, their applications in understanding networked dynamical systems are limited to static

networks. By contrast, most real-world networks are time-varying due to changing connections

and communication patterns, temporary link failures, etc. [34–37]. Dynamical processes over

such networks are related to products of time-varying matrices that capture the network structure.

Such products are natural generalizations of powers of time-invariant matrices. This motivates

us to study the generalization of the Perron-Frobenius theorem to products of time-varying
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matrices, as such a generalization would enhance many of the applications of the original result

to time-varying settings.

In view of the above, we extend two assertions of the Perron-Frobenius theorem to

time-varying networks. Specifically, the original theorem implies that a weighted random walk

over a static strongly connected network has a stationary distribution that is (a) unique and (b)

positive. Analogously, we establish the generalization of strong connectivity for time-varying

networks and show that for lazy random walks over such networks, the time-varying extension of

stationary distribution (Kolmogorov’s absolute probability sequence [38]) is (a) unique and (b)

uniformly positive if and only if the network is strongly connected over time in the generalized

sense. We believe that this fundamental study will help advance the state-of-the-art understanding

of dynamical processes over real-world networked systems.

The chapter is organized as follows. We first present a brief overview of all our main

results in Section 2.2. Next, we formulate the problem of interest in Section 2.3 and discuss our

main results in Section 2.4. We then provide a few applications of our main results in Section 2.5

and end with a few concluding remarks in Section 5.6. The proofs of all the results are provided

in the Appendix.

Other Related Works: This endeavor evolves out of our work on social learning over

time-varying networks [39, 40]. Therein, we showed that non-Bayesian social learning can occur

asymptotically almost surely over random time-varying networks even if standard connectivity

conditions are violated. This result begs the question, “What kinds of network connectivity

hinder social learning?”. Generalizing the Perron-Frobenius theorem should help answer this

question as well as other similar questions in the broader areas of social learning [41–47],

distributed optimization [4, 48–52], distributed estimation [5, 53–55], and distributed hypothesis

testing [6, 56–59].

Notation: Let N := {1,2, . . .} denote the set of natural numbers and let N0 := N⋃{0}.
Let R denote the set of real numbers, let Rn denote the set of n-dimensional real-valued column

vectors, and let Rn×n denote the set of square matrices with real entries. For a given matrix
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A ∈ Rn×n, we let aij = (A)ij denote the entry in the i-th row and the j-th column of A.

Let I denote the identity matrix (of the known dimension), let O denote the all-zeros

matrix (of the known dimension), and let 0 and 1 denote the vector (of the known dimension)

with all entries equal to zero and the vector with all entries equal to one, respectively.

A vector v ∈ Rn is said to be stochastic if v is non-negative and vT 1 = 1. A matrix

A0 ∈ Rn×n is called row-stochastic or simply stochastic if A0 is non-negative and if each row of

A0 sums up to 1, i.e., if A0 ≥ O and A01 = 1. Note that all matrix and vector inequalities are

assumed to hold entry-wise. Let {A(t)}∞t=0 be a stochastic chain (a sequence of row-stochastic

matrices in Rn×n). Then, for any two times t1, t2 ∈ N0 with t1 < t2, we use the following

notation to denote the backwards matrix product of {A(t)}∞t=0 corresponding to the time interval

[t1, t2].

A(t2 : t1) := A(t2−1)A(t2−2) · · ·A(t1)

with the convention that A(t : t) := I for all t ∈ N0.

For a matrix A ∈ Rn×n and a subset S ⊂ [n], let AS be the principal sub-matrix of A

corresponding to the rows and columns indexed by S. Let S̄ := [n] \S, and let ASS̄ denote

the sub-matrix of A corresponding to the rows indexed by S and the columns indexed by S̄.

For a sequence of matrices {A(t)}∞t=0 ⊂ Rn×n and times t0, t1 ∈ N0 satisfying t0 ≤ t1, let

AS(t1 : t0) := (A(t1 : t0))S and ASS̄(t1 : t0) := (A(t1 : t0))SS̄ .

An unweighted undirected graph with vertex set [n] and edge set E is denoted by

G = ([n],E). On the other hand, a weighted time-varying directed graph with vertex set

[n], edge set E(t) ⊂ [n]× [n], and edge weights {wij(t) : (i, j) ∈ [n]× [n]} is denoted by

G(t) = ([n],E(t),W (t)), where W (t) ∈Rn×n with (W (t))ij := wij(t), which denotes the edge

weight of the node pair (i, j) ∈ [n]× [n]. We assume that wij(t) ̸= 0 if and only if (i, j) ∈ E(t),

i.e., E(t) = {(i, j) ∈ [n]× [n] : wij(t) ̸= 0}. Recall that G(t) is said to be strongly connected if,

for any two nodes i, j ∈ [n], there exists a directed path from i to j in G(t).

For a weighted time-varying directed graph G(t) = ([n],E(t),W (t)), we let L(t) =
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(ℓij(t)) denote the weighted Laplacian matrix of G(t), defined by ℓij(t) =−wij(t) for all i ̸= j

and ℓii(t) = ∑
j ̸=iwij(t) for all i ∈ [n]. In addition, for a given matrix A0, we let G(A0) =

([n],E(A0),A0) denote the weighted directed graph whose weighted adjacency matrix is A0, i.e.,

we let E(A0) = {(i, j) ∈ [n]× [n] : (A0)ij > 0} and we construct G(A0) in such a way that every

(i, j) ∈ E(A0) is a directed edge in G(A0) with weight (A0)ij .

2.2 Overview of the Main Results

To highlight the main results of this work and before discussing the their connection

to the classical Perron-Frobenius Theorem in details, we state our main results here. These

results are based on the three definitions provided below. We shall reproduce these definitions in

Section and extensively discuss them with regards to the classical Perron-Frobenius Theorem in

Section 2.3.

The first definition is an extension of strong aperiodicity [60] to time-varying stochastic

chains.

Definition 3 (Strong Aperiodicity). A stochastic chain {A(t)}∞t=0 is said to be strongly aperiodic

if there exists a constant γ > 0 such that aii(t)≥ γ for all i ∈ [n] and all t ∈ N0.

The second object, an approximate reciprocal chain, is a central object of this work and

we will see shortly its connection to the classical Perron-Frobenius Theorem.

Definition 4 (Approximate Reciprocity). A stochastic chain {A(t)}∞t=0 is said to be approxi-

mately reciprocal if there exist constants p0,β ∈ (0,∞) such that the following inequality holds

for all S ⊂ [n] and all times t0, t1 ∈ N0 that satisfy t0 < t1.

p0
t1−1∑
t=t0

1TASS̄(t)1≤
t1−1∑
k=t0

1TAS̄S(t)1+β. (2.1)

Finally, let us introduce a proper object extending the concept of Perron eigenvector

for a stochastic matrix to time-varying chains and a proper extension of positive eigenvector to
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time-varying setting.

Definition 5 (Uniformly Positive Absolute Probability Sequence). Let {A(t)}∞t=0 be a stochas-

tic chain. A sequence of stochastic vectors {π(t)}∞t=0 is said to be a uniformly positive absolute

probability sequence for {A(t)}∞t=0 if

πT (t+1)A(t) = πT (t) for all t ∈ N0

and if there exists a constant p∗ > 0 such that π(t)≥ p∗1 for all t ∈ N0.

With the introduction of these concepts, we are ready to assert the main results of this

work.

Theorem 1 (An Analog of the Positive Eigenvector Assertion of the Perron-Frobenius

Theorem). Suppose {A(t)}∞t=0⊂Rn×n is a strongly aperiodic stochastic chain. Then {A(t)}∞t=0

has a uniformly positive absolute probability sequence if and only if it is approximately reciprocal.

As we shall show, this theorem generalizes the following Perron-Frobenius assertion to

time-varying matrices: an irreducible non-negative matrix has a positive principal left eigenvector.

Theorem 2 (An Analog of the Uniqueness Assertion of the Perron-Frobenius Theorem). Let

{A(t)}∞t=0 ⊂Rn×n be a strongly aperiodic stochastic chain that is also approximately reciprocal.

Then, {A(t)}∞t=0 admits a unique absolute probability sequence if and only if its infinite flow

graph is connected.

We shall see that this result extends the following statement to the case of time-varying

matrices: an irreducible non-negative matrix has a principal left eigenvector that is unique up to

scaling.

We now state the continuous-time analogs of the above results, which are based on the

following continuous-time analogs of the above definitions.
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Definition 6 (Uniformly Positive Absolute Probability Sequence in Continuous Time). Let

{A(t)}t≥0 be a continuous-time stochastic chain and let Φ(·, ·) denote the state transition matrix

for the dynamics ẋ(t) = Ax(t). Then, a continuum of stochastic vectors {π(t)}t≥0 is said to be

a uniformly positive absolute probability sequence for {A(t)}t≥0 if

πT (t)Φ(t, τ) = πT (τ)

holds for all t≥ τ ≥ 0, and if there exists a constant p∗ > 0 such that π(t)≥ p∗1 for all t≥ 0.

The following is the natural continuous counterpart of approximate reciprocity.

Definition 7 (Approximate Reciprocity in Continuous Time). A continuous-time stochastic

chain {A(t)}t≥0 is said to be approximately reciprocal if there exist p0,β ∈ (0,∞) such that

p0

∫ tm

tℓ

1TASS̄(t)1dt≤
∫ tm

tℓ

1TAS̄S(t)1dt+β

holds for all sets S ⊂ [n] and for all ℓ,m ∈ N0 with ℓ≤m.

With these definition, we have the following results regarding the continuous-time

variations of Theorem 1 and Theorem 2.

Theorem 3 (Continuous-time Analog of Theorem 1). Let {A(t)}t≥0 be a continuous-time

stochastic chain that satisfies Assumption 1 (which states that the weights {aij(t) : i ̸= j ∈ [n]},

when integrated over certain recurring time intervals, are uniformly bounded). Then {A(t)}t≥0

has a uniformly positive absolute probability sequence if and only if it is approximately reciprocal.

Theorem 4 (Continuous-time Analog of Theorem 2). Let {A(t)}t≥0 be an approximately

reciprocal continuous-time stochastic chain that satisfies Assumption 1 (uniform bound on

integral weights). Then {A(t)}t≥0 admits a unique absolute probability sequence if and only if

its infinite flow graph is connected.
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The rest of the chapter is on the detailed discussion on these results, their connection to

the classical Perron-Frobenius theorem, and their implications.

2.3 Classical Perron-Frobenius Theorem, Approximate
Reciprocity, and Absolute Probability

We first review the eigenvector assertions of the original Perron-Frobenius theorem. For

this purpose, we need to recall the following property of irreducible matrices, which is often

stated as a definition of irreducibility.

Lemma 1 (Section 8.3, [61]). A non-negative matrix A0 ∈ Rn×n is irreducible if and only if the

associated digraph G(A0) is a strongly connected directed graph.

In addition, we need the concepts of reciprocity and infinite flow graphs, which we

reproduce from [62] below.

Definition 8 (Reciprocity/Cut-balance). A stochastic chain {A(t)}∞t=0 is said to be cut-balanced

or reciprocal if there exists a constant α ∈ (0,1) such that

∑
i∈S

∑
j∈S̄

aij(t)≥ α
∑
i∈S̄

∑
j∈S

aij(t)

holds for all times t ∈ N0 and all subsets S ⊂ [n] and their complements S̄ := [n]\S. In other

words, 1TASS̄(t)1≥ α1TAS̄S(t)1 for all S ⊂ [n] and all t ∈ N0.

Intuitively, a stochastic chain is said to be reciprocal if the sequence of associated directed

graphs is such that the total influence of any subset S of individuals on the complementary subset

S̄ is comparable to the total reverse influence of S̄ on S, i.e., the ratio of the forward and the

backward influences does not vanish in time.

Definition 9 (Infinite Flow Graph [62]). For a stochastic chain {A(t)}∞t=0, we define its infinite

flow graph to be the unweighted undirected graph G∞ = ([n],E∞) with vertex set [n] and edge
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set E∞, where

E∞ :=
{
{i, j} ⊂ [n]

∣∣∣∣ ∞∑
t=0

(aij(t)+aji(t)) =∞, i ̸= j ∈ [n]
}
.

Intuitively, there exists a link from a node j ∈ [n] to another node i ∈ [n] \ {j} in the

infinite flow graph G∞ if and only if node j exerts a long-term influence on node i in the

time-varying directed graph G(A(t)).

We now observe that for a static chain A(t) = A0, the irreducibility of A0 can be

expressed in terms of the connectivity of the infinite flow graph G∞ and the reciprocity of

{A(t)}∞t=0.

Lemma 2. Let {A(t)}∞t=0 be a static stochastic chain with A(t) = A0 ∈ Rn×n for all t ∈ N0.

Then, A0 is irreducible if and only if {A(t)}∞t=0 is reciprocal and its infinite flow graph G∞ is

connected.

We are now ready to recall two eigenvector assertions of the Perron-Frobenius theorem in

the context of row-stochastic matrices. Lemma 2 enables us to state these assertions as follows.

Proposition 1 (Eigenvector Assertions of the Perron-Frobenius Theorem for Stochastic

Matrices). Let {A(t)}∞t=0 be a static stochastic chain with A(t) = A0 ∈ Rn for all t ∈ N0. If

{A(t)}∞t=0 is reciprocal and if its infinite flow graph is connected, then A0 has a stochastic

principal left eigenvector π0 ∈ Rn that is

(a) entry-wise positive,

(b) unique.

Note that the original theorem applies to left eigenvectors as well as to right eigenvectors.

However, we choose to focus on the former because it is clear that all row-stochastic matrices

have 1 as their principal right eigenvector. Moreover, our main results are centered on a concept

that generalizes the notion of principal left eigenvectors to the case of time-varying row-stochastic

matrices. This concept is defined below.
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Definition 10 (Kolmogorov Absolute Probability Sequence [38]). Let {A(t)}∞t=0 be a stochas-

tic chain. A sequence of stochastic vectors {π(t)}∞t=0 is said to be an absolute probability

sequence for {A(t)}∞t=0 if

πT (t+1)A(t) = πT (t) for all t ∈ N0.

Note that every stochastic chain admits an absolute probability sequence [38]. Moreover,

if {A(t)}∞t=0 is a static chain with A(t) = A0 ∈ Rn×n for all t ∈ N0, then the static sequence

π(t) = π0, where π0 ∈Rn is a stochastic vector satisfying πT
0 A0 = πT

0 , is an absolute probability

sequence for {A(t)}∞t=0. Hence, absolute probability sequences are a time-varying analog of

stochastic principal left eigenvectors.

This discussion naturally leads to the following question: can we generalize Proposition 1

to the class of non-static stochastic chains (or any sub-class thereof) using the notion of absolute

probability sequences? The next section answers this question.

2.4 Results

We first extend Proposition 1 to discrete-time stochastic chains of the form {A(t) : t∈N0}

and then to continuous-time stochastic chains of the form {A(t) : t≥ 0}.

2.4.1 Discrete Time

To extend the first assertion of Proposition 1 to time-varying matrices (non-static chains),

we need to extend the notion of positive principal left eigenvectors to the time-varying case. The

following concept, first introduced in [62], offers such an extension.

Definition 11 (Class P∗ [62]). We let (Class-)P∗ be the set of all stochastic chains that admit

uniformly positive absolute probability sequences, i.e., a sequence of stochastic vectors {π(t)}∞t=0

for which there exists a p∗ > 0 such that π(t) ≥ p∗1 for all t ∈ N0. (Note that the absolute

probability sequence and the value of p∗ may vary from chain to chain).
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It is worth noting that in the context of social learning, if {π(t)}∞t=0 is an absolute

probability sequence for {A(t)}∞t=0, then πi(t) denotes the Kolmogorov centrality or social

power of agent i at time t, which quantifies how influential the i-th agent is relative to other

agents at time t [62, 63]. In view of Definition 47, this means that a stochastic chain belonging

to Class P∗ describes a sequence of influence graphs in which the social power of every agent

exceeds a fixed positive threshold p∗ at all times.

Since the definition of Class P∗ eludes simple interpretation, we would like to derive

necessary and sufficient conditions for a given stochastic chain to belong to Class P∗. To this

end, we introduce the idea of approximate reciprocity, which is a weaker notion of reciprocity

(Definition 8).

Definition 12 (Approximate Reciprocity). A stochastic chain {A(t)}∞k=0 is said to be approxi-

mately reciprocal if there exist constants p0,β ∈ (0,∞) such that the following inequality holds

for all S ⊂ [n] and all times t0, t1 ∈ N0 that satisfy t0 < t1.

p0
t1−1∑
t=t0

1TASS̄(t)1≤
t1−1∑
k=t0

1TAS̄S(t)1+β. (2.2)

As it turns out, approximate reciprocity is a necessary condition for a given stochastic

chain to belong to Class P∗.

Proposition 2 (Necessary Conditions for Class P∗). Let {A(t)}∞t=0 ⊂ Rn×n be a stochastic

chain. If {A(t)}∞t=0 belongs to Class P∗, then {A(t)}∞t=0 is approximately reciprocal.

Interestingly, approximate reciprocity is also a sufficient condition for certain stochastic

chains called strongly aperiodic chains to belong to Class P∗. A given stochastic chain is called

strongly aperiodic if all the diagonal entries of its matrices are uniformly bounded away from

zero.

Definition 13 (Strong Aperiodicity). A stochastic chain {A(t)}∞t=0⊂Rn×n is said to be strongly

aperiodic if there exists a constant γ > 0 such that A(t)≥ γI for all t ∈ N0.

20



To connect approximate reciprocity, a property expressed in terms of sums of matrix

entries, to Class P∗, a concept associated with products of matrices, we need the following

lemmas that help relate matrix sums to matrix products.

Lemma 3. Let ε ∈ (0,1) be given. Then 1−x≥ e−M(ε)x for all x ∈ [0,1− ε], where M(ε) :=
1

1−ε ln 1
ε .

Lemma 4. Let n,σ ∈ N and i, j ∈ [n] be given. Let {B(t)}σ−1
t=0 ⊂ Rn×n be a sequence of

substochastic matrices and let tL := max{t ∈ {0,1, . . . ,σ−1} :Bji(t)> 0}. Suppose there exist

positive constants ηi and ηj such that

Bii(t1 : t0)≥ ηi if 0≤ t0 ≤ t1 ≤ tL,

Bjj(t1 : t0)≥ ηj if 0≤ t0 ≤ t1 ≤ σ, and
σ−1∑
t=0

Bji(t)≥ δ for some δ ∈ (0,ηj).

Then Bji(σ : 0)≥ 1
2ηiηjδ.

In addition to the above lemmas, we need the notion of approximately stochastic chains,

which we define below.

Definition 14 (Approximate Stochasticity). Let n ∈ N and m ∈ N⋃{∞} be given. A sequence

{A(t)}mt=0 of n×n sub-stochastic matrices is said to be approximately stochastic if there exists

a constant ∆<∞ such that
m∑

t=0
1T (1−A(t)1)≤∆.

The constant ∆ will be referred to as the deviation from stochasticity of the sequence {A(t)}mt=0.

Note that ∆ = 0 if {A(t)}mt=0 is a stochastic chain.

We are now well-equipped to establish approximate reciprocity as a sufficient condition

for strongly aperiodic chains to lie in P∗. To do so, we use inductive arguments involving
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approximately stochastic chains to prove a slightly more general result that asserts that the

backward matrix products of the concerned chains can be uniformly lower-bounded by a multiple

of the identity matrix. This general result is stated below and proved in the appendix.

Proposition 3. For every n ∈ N, there exists a function

ηn : (0,1)× (0,1)× (0,∞)× [0,∞)→ (0,1)

such that the inequality,

A(t1 : t0)≥ ηn(γ,p0,β,∆)I

holds for all t0, t1 ∈N0,γ,p0 ∈ (0,1),β ∈ (0,∞), and ∆ ∈ [0,∞) whenever {A(t)}∞t=0 ⊂Rn×n

is a substochastic chain with the following properties.

1. (Strong aperiodicity/Feedback property [62]). aii(t)≥ γ for all i ∈ [n] and all t ∈ N0.

2. (Approximate reciprocity). For every subset S ⊂ [n] and t0, t1 ∈ N0 satisfying t0 < t1:

p0
t1−1∑
t=t0

1TASS̄(t)1≤
t1−1∑
t=t0

1TAS̄S(t)1+β.

3. (Approximate stochasticity). {A(t)}∞t=0 is approximately stochastic and ∆ is its deviation

from stochasticity.

We now obtain the desired sufficient conditions as a straightforward consequence of the

above proposition.

Corollary 1 (Sufficient Conditions for Class P∗). Suppose {A(t)}∞t=0 ⊂ Rn×n is a strongly

aperiodic stochastic chain, i.e., suppose there exists a γ > 0 such that A(t)≥ γI for all t ∈ N0.

If {A(t)}∞t=0 is approximately reciprocal, then {A(t)}∞t=0 ∈ P∗.

As a direct consequence of Corollary 1 and Proposition 2, we obtain the following

necessary and sufficient conditions for Class P∗: a strongly aperiodic stochastic chain belongs
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to P∗ iff it is approximately reciprocal. Since a stochastic chain belongs to Class P∗ iff it has

a uniformly positive absolute probability sequence, we obtain Theorem 1, whose statement is

reproduced below.

Theorem 1 (An Analog of the Positive Eigenvector Assertion of the Perron-Frobenius

Theorem). Suppose {A(t)}∞t=0⊂Rn×n is a strongly aperiodic stochastic chain. Then {A(t)}∞t=0

has a uniformly positive absolute probability sequence if and only if it is approximately reciprocal.

Observe how Theorem 1 parallels the first assertion of Proposition 1: the original theorem

asserts that for a static network that is reciprocal and whose infinite flow graph is connected (i.e.,

a network defined by an irreducible matrix), there exists a positive principal left eigenvector.

Analogously, Theorem 1 asserts that for a dynamic network that is approximately reciprocal,

there exists a uniformly positive absolute probability sequence.

Next, we extend the second assertion of Proposition 1 (the unique eigenvector assertion of

Perron-Frobenius theorem). For this purpose, we will need the following lemmas and definitions.

Definition 15 (Ergodicity for Stochastic Chains [64]). A stochastic chain {A(t)}∞t=0 ∈ Rn×n

is said to be ergodic if, for every t0 ∈ N, there exists a stochastic vector π(t0) ∈ Rn such that

lim
t→∞

A(t : t0) = 1πT (t0).

To interpret the above definition, we first observe that in the distributed averaging

dynamics x(t+1) = A(t)x(t) with a starting time t0 ∈ N0 and an initial condition x(t0) ∈ Rn,

we have

x(t) = A(t : t0)x(t0) for all t ∈ N0 (2.3)

For an ergodic chain, this means that limt→∞x(t) = πT (t0)x(t0)1, which is a consensus vector

(i.e., all its entries are equal). Therefore, a stochastic chain being ergodic means that it always
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enables consensus among the nodes of the network, regardless of the starting time t0 and the

starting point x(t0).

Definition 16 (Infinite Flow Stability [62]). A stochastic chain {A(t)}∞t=0 is said to be infinite

flow stable if

1. The sequence {x(t)}∞t=t0 , which evolves as x(t+ 1) = A(t)x(t), converges to a limit for

all starting times t0 ∈ N0 and all initial conditions x(t0) ∈ Rn.

2. limt→∞(xi(t)−xj(t)) = 0 for all (i, j) ∈ E∞, where E∞ is the edge set of the infinite

flow graph of {A(t)}∞t=0.

Put simply, a stochastic chain is infinite flow stable if (a) the states of all the nodes of

the corresponding time-varying network converge to a limit asymptotically in time, and (b) if a

consensus is necessarily reached among nodes that exert a long-term influence on each other.

Lemma 5. Suppose G∞ = ([n],E∞), the infinite flow graph of {A(t)}∞t=0, is connected. Then

{A(t)}∞t=0 is ergodic if it is infinite flow stable.

We are now ready to extend the second assertion of Proposition 1 to dynamic stochastic

chains. We thus reproduce the statement of Theorem 2 below.

Theorem 2 (An Analog of the Uniqueness Assertion of the Perron-Frobenius Theorem). Let

{A(t)}∞t=0 ⊂Rn×n be a strongly aperiodic stochastic chain that is also approximately reciprocal.

Then, {A(t)}∞t=0 admits a unique absolute probability sequence if and only if its infinite flow

graph is connected.

Like Theorem 1, Theorem 2 closely parallels an assertion of the Perron-Frobenius

theorem. In view of Proposition 1, the original theorem asserts that, if a matrix describes a

static network that is reciprocal and whose infinite flow graph is connected, then its principal

left eigenvector is unique. Analogously, Theorem 2 asserts that, if a stochastic chain describes a
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time-varying network that is approximately reciprocal and whose infinite flow graph is connected,

then its absolute probability sequence is unique.

Besides, it is worth noting that stochastic chains that are approximately reciprocal and

whose infinite flow graphs are connected are a time-varying analog of irreducible matrices (this

follows immediately from Lemma 2). Therefore, we shall henceforth use the term irreducible

chains to refer to such chains.

2.4.2 Continuous Time

We now extend our discrete-time results (Theorems 1 and 2) to continua of row-stochastic

matrices, henceforth called continuous-time stochastic chains. Consider the following continuous-

time analog of the discrete-time dynamics (2.3).

ẋ(t) = A(t)x(t) for all t≥ 0, (2.4)

where A(t) =−L(t) is the negative of the Laplacian matrix of a given graph G(t). Throughout

this section, we assume

∫ t2

t1
aij(t)dt <∞ for all 0≤ t1 < t2 <∞. (2.5)

It is well-known [65, 66] that under Assumption (2.5), the solution to (2.4) is unique and can be

expressed as

x(t) = Φ(t, τ)x(τ) for all t≥ τ ≥ 0, (2.6)

where the state-transition matrix Φ is the unique solution to the equation continuum

Φ(t, τ) = I+
∫ t

τ
A(τ ′)Φ(τ ′, τ)dτ ′ for all t≥ τ ≥ 0.
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It is also known that Φ(t, τ) is row-stochastic for all t≥ τ ≥ 0, Φ(τ,τ) = I for all τ ≥ 0, and

Φ(t2, t1) = Φ(t2, τ)Φ(τ, t1) for all t2 ≥ τ ≥ t1 ≥ 0. (2.7)

Therefore, for any sequence of increasing times {tk}∞k=1 ⊂ R≥0, if we let B(k) := Φ(tk+1, tk)

for all k ∈ N0, then we have B(m : ℓ) = Φ(tm : tℓ) for all ℓ,m ∈ N with ℓ≤m. As a result, an

application of Proposition 3 to the stochastic chain {B(k)}∞k=0 yields the following result.

Lemma 6. Let Φ(·, ·) denote the state transition matrix for the dynamics (2.4) under the assump-

tion (2.5). Consider now a sequence of increasing times {tk}∞k=0 ⊂ R≥0 and a constant γ > 0

such that Φ(tk+1, tk)≥ γI for all k ∈ N0. If there exist constants p̃0, β̃ ∈ (0,∞) such that

p̃0
m∑

k=ℓ

1T ΦSS̄ (tk+1, tk)1≤
m∑

k=ℓ

1T ΦS̄S (tk+1, tk)1+ β̃ (2.8)

holds for all sets S ⊂ [n] and for all ℓ,m ∈ N0 with ℓ≤m, then there exists an η > 0 such that

Φ(tm, tℓ)≥ ηI for all ℓ,m ∈ N0 satisfying ℓ≤m.

It is clear from Lemma 6 above and from Lemma 8 of [67] that the discrete-time chain

{Φ(tk+1, tk)}∞k=0 lies in Class P∗ if the approximate reciprocity condition (2.8) and the strong

aperiodicity condition Φ(tk+1, tk) ≥ γI are satisfied. As we shall see shortly, the following

assumptions ensure that both these conditions are met.

Assumption 1 (Uniform Bound on Integral Weights [65]). There exists an M <∞ and an

increasing sequence {tk}∞k=0 ⊂ R≥0 such that

∫ tk+1

tk

aij(t)dt≤M

for all k ∈ N and all i, j ∈ [n] with i ̸= j.

Assumption 1 is sufficient to guarantee the strong aperiodicity condition Φ(tk+1, tk)≥ γI

for some γ > 0 and all k ∈ N0. This is evident from the proof of Lemma 8 in [65].
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Assumption 2 (Continuous-time Approximate Reciprocity). There exist p0,β ∈ (0,∞) such

that

p0

∫ tm

tℓ

1TASS̄(t)1dt≤
∫ tm

tℓ

1TAS̄S(t)1dt+β

holds for all sets S ⊂ [n] and for all ℓ,m ∈ N0 with ℓ≤m.

We now establish the required equivalence.

Lemma 7. Under Assumption 1, Assumption 2 is equivalent to the existence of constants

p̃0, β̃ ∈ (0,∞) such that (2.8) holds for all sets S ⊂ [n].

We now use Lemma 7 to show that approximate reciprocity in continuous time is

equivalent to {A(t)}∞t=0 belonging to Class P∗. To begin, we first define the continuous-time

analogs of absolute probability sequences and Class P∗.

Definition 17 (Continuous-time Absolute Probability Sequence [67]). A continuum of stochas-

tic vectors {π(t)}t≥0 is said to be an absolute probability sequence for a continuous-time

stochastic chain {A(t)}t≥0 if

πT (t)Φ(t, τ) = πT (τ)

holds for all t≥ τ ≥ 0, where Φ(·, ·) denotes the state transition matrix for the dynamics (2.4).

Definition 18 (Continuous-time Class P∗ [67]). We let continuous-time Class P∗ be the

set of all continuous-time stochastic chains that admit uniformly positive absolute probability

sequences, i.e., a continuum of stochastic vectors {π(t)}t≥0 such that π(t)≥ p∗1 for some scalar

p∗ > 0 and all t ∈ N0. (Note that the absolute probability sequence and the value of p∗ may vary

from chain to chain).

We are now ready to state the first main result of this section. It is Theorem 3, whose

statement is reproduced below.

Theorem 3 (Continuous-time Analog of Theorem 1). Let {A(t)}t≥0 be a continuous-time
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stochastic chain that satisfies Assumption 1. Then {A(t)}t≥0 has a uniformly positive absolute

probability sequence if and only if it is approximately reciprocal.

The next step is to provide a continuous-time analog of Theorem 2. For this purpose, we

define the continuous-time analog of the infinite flow graph as follows.

Definition 19 (Infinite Flow Graph in Continuous Time). For a continuous-time stochastic

chain {A(t)}t≥0, we define its infinite flow graph to be the graph G∞ = ([n],E∞) with

E∞ :=
{
{i, j} ⊂ [n]

∣∣∣∣ ∫ ∞

0
(aij(t)+aji(t))dt=∞, i ̸= j ∈ [m]

}
.

We now reproduce the statement of the desired theorem (Theorem 4).

Theorem 4 (Continuous-time Analog of Theorem 2). Let {A(t)}t≥0 be an approximately

reciprocal continuous-time stochastic chain that satisfies Assumption 1 (uniform bound on

integral weights). Then {A(t)}t≥0 admits a unique absolute probability sequence if and only if

its infinite flow graph is connected.

To interpret Theorems 1 - 4, we provide below a series of remarks in which we start from

some existing interpretations of Proposition 1, which is based on the classical theorem, and we

extend these interpretations to the case of time-varying networks.

Remark 1 (Implications for Markov Chains). The eigenvector assertions of the Perron-

Frobenius theorem can be interpreted as follows: for a time-homogeneous Markov chain with

transition probabilities given by an aperiodic irreducible matrix, the probability of visiting

any given state converges asymptotically in time to a unique positive value, regardless of the

initial probability distribution. Analogously, Theorems 1 and 2 can be interpreted as follows:

given a starting time, for a backward-propagating time-non-homogeneous Markov chain with

transition probabilities given by strongly aperiodic irreducible chain, the probability of visiting

any given state converges asymptotically in time to a unique positive value, regardless of the
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initial probability distribution. Although this limiting probability is a function of the starting

time, it is bounded away from zero by a fixed threshold that does not depend on the starting time.

Remark 2 (Opinion Dynamics-Based Interpretation). In the context of opinion dynamics, the

matrix A(t) can be interpreted as the influence matrix at time t, i.e., aij(t) quantifies the extent

to which agent i values agent j’s opinion at time t (or equivalently, the extent to which agent

j influences agent i at time t). Therefore, an irreducible chain (and hence also an irreducible

matrix) describes a network in which every subset of agents influences the complementary subset

persistently over the entire course of opinion evolution, which means that there exists no group of

elite agents that dominate others forever. Additionally, as mentioned before, absolute probability

sequences can be interpreted as quantifying the agents’ social powers.

Therefore, an interpretation of the eigenvector assertions of the original theorem is as

follows: in a static social network, the social power of every agent (given by the eigenvector

centrality of the corresponding network node) is unique and positive if no subset of agents

dominates other agents forever. Analogously, Theorems 1- 2 can be interpreted as follows:

in a time-varying social network, the time-varying social power of every agent (given by the

Kolmogorov centrality of the corresponding network node) is unique and uniformly positive

(lower-bounded by a constant positive threshold) if no subset of agents dominates other agents

forever.

Remark 3 (Implications for Economic Growth). Here, we follow the approach taken in [68].

Consider an economy with n sectors of activity, and let xi denote the activity level in the i-th

sector. Then the evolution of activity levels may be expressed as x(t+ 1) = A(t)x(t), wherein

aij(t) quantifies the number of activity units in Sector i that are required in the next economic

cycle as a result of the completion of each activity unit in Sector j. In addition, if A(t) is a static

matrix, then its principal left eigenvector gives the long-term economic value of the activity

carried out in Sector i during the zeroth time period (t= 0) relative to the long-term values of

the activities carried out in other sectors during the zeroth time period.

29



Therefore, the original theorem now has the following interpretation: if the activity evolu-

tion matrix is static and exhibits the properties of reciprocity and connectivity (via irreducibility),

then the long-term economic value of the initial activity in any given sector relative to initial

activities in other sectors will be positive and can be determined uniquely. Analogously, our

main results imply that, if the activity evolution matrix is time-varying and exhibits the properties

of approximate reciprocity and connectivity of the infinite flow graph, then, for any starting time

period t= t0 (as opposed to t= 0), the long-term economic value of initial activity in any given

sector relative to initial activities in other sectors will be uniformly positive and can be uniquely

determined.

Remark 4 (Implications for Population Dynamics). Analogous to the economic growth model,

we may consider a population comprised of n age groups instead of an economy comprised of

n sectors. We may let xi denote the population size of the i-th age group and further let aij(t)

quantify the fraction of individuals that transition from the j-th age group to the i-th age group in

the t-th time period for i= j+1. In addition, we may let a1j(t) quantify the number of births per

parent in the j-th age group. In this setting, the entry πi(t0) of the absolute probability sequence

denotes the sensitivity of the long-term total population size to the size that the i-th age group

has at time t0. One may then interpret the original theorem and our results in this context by

drawing analogies with the economic growth context discussed above.

2.5 Applications

We now derive a few corollaries of our main results. Since some of these corollaries

apply to random stochastic chains, we first define the relevant terms.

2.5.1 Infinite Flow Stability of Independent Random Chains

The concept of independent random chains is a straightforward extension of the concept

of deterministic chains, as per the definition below.
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Definition 20 (Independent Random Chain). A discrete-time stochastic chain {A(t)}∞t=0 is

called an independent random chain if {A(t)}∞t=0 are all random and independently distributed.

We now extend the notion of Class P∗ to independent random chains.

Definition 21 (Class P∗ for Independent Random Chains [62]). An independent random

chain {A(t)}∞t=0 is said to belong to Class P∗ if the expected chain {E[A(t)]}∞t=0 belongs to

Class P∗.

We will also need the notion of feedback property, a weak notion of strong aperiodicity

for independent random chains.

Definition 22 (Feedback Property for Independent Random Chains [62]). Let {A(t)}∞t=0 be

an independent random chain. We say that {A(t)}∞t=0 has the feedback property if there exists

a γ > 0 such that E[aii(t)aij(t)]≥ γE[aij(t)] for all t ∈ N0 and all distinct i, j ∈ [n], in which

case γ is called the feedback coefficient.

In addition, we will use the term mutual ergodicity, which we define below.

Definition 23 (Mutual Ergodicity [62]). Let {A(t)}∞t=0 be a (deterministic or random) stochas-

tic chain. We say that i ∈ [n] and j ∈ [n] are mutually ergodic indices for {A(t)}∞t=0, which we

denote by i↔A j, if limt→∞(xi(t)−xj(t)) = 0 for the dynamics x(t+ 1) = A(t)x(t) started

with an arbitrary initial condition x(t0) = x0 (where t0 ∈ N0 and x0 ∈ Rn).

Based on these concepts, we have the following result.

Corollary 2. Let {A(t)}∞t=0 be an independent random chain with feedback property, and

suppose the expected chain {Ā(t)}∞t=0 := {E[A(t)]}∞t=0 is approximately reciprocal. Then,

(i) {A(t)}∞t=0 is infinite flow stable almost surely (i.e., almost every realization of {A(t)}∞t=0

is infinite flow stable).

(ii) For any two indices i and j in [n], we have i↔A j iff i↔Ā j.
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(iii) i and j belong to the same connected component of G∞ iff i and j belong to the same

connected component of Ḡ∞, the infinite flow graph of {Ā(t)}∞t=0.

Remark 5. By the definition of infinite flow stability, Assertion (i) of Corollary 2 implies that if

{A(t)}∞t=0 is an independent random chain with feedback property, then limt→∞A(t : t0) exists

almost surely for all t0 ∈ N0. In conjunction with Assertions (ii) and (iii), this further implies

that, for any two indices i, j ∈ [n] and an arbitrary starting time t0 ∈ N0, the event that the i-th

row of limt→∞A(t : t0) equals the j-th row of limt→∞A(t : t0) almost surely equals the event

that i and j belong to the same connected component of the infinite flow graph of the expected

chain {Ā(t)}∞t=0.

2.5.2 Rate of Convergence to Steady State

We now provide a result on the rate of convergence for the dynamics x(t+1) =A(t)x(t)

in terms of the quadratic comparison function Vu(x) = ∑m
i=1ui

(
xi−uTx

)2
, where u is an

arbitrary stochastic vector in Rn.

Corollary 3. Let {A(t)}∞t=0 be an independent random chain with feedback property and

feedback coefficient γ > 0, and suppose the expected chain {Ā(t)}∞t=0 is approximately reciprocal.

In addition, let tq = 0 for q = 0 and let

tq = argmin
t≥tq−1+1

Pr
 min

S⊂[m]

t−1∑
t=tq−1

1TAS(t)1≥ δ
≥ ε

for all q ≥ 1. Then, for all q ≥ 1 and all stochastic vectors u ∈ Rn,

E [Vu (x(tq) , tq)]≤
(

1− εδ(1− δ)
2γp∗

(m−1)2

)q

E[Vu(x(0),0)].

2.5.3 Implications for Infinite Jet-Flow and Sonin’s Jet Decomposition

For a stochastic chain to be ergodic, it is necessary for the chain to possess a property

called the infinite jet-flow property [69]. In this subsection, our aim is to connect the concept of
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approximate reciprocity with the infinite jet-flow property and also with the related concept of

Sonin’s jet decomposition [69, 70]. We first reproduce the required definitions from [69].

Definition 24 (Jet). For a given set S ⊂ [n], a jet J in S is a sequence {J(t)}∞t=0 of subsets of S.

A jet J in S is called proper if ∅⊊ J(t) ⊊ S for all t ∈ N0. In addition, for a jet J , the jet limit

J∗ denotes limt→∞J(t) if it exists, in the sense that the sequence becomes constant after a finite

time.

The following definition quantifies the interaction between two jets.

Definition 25 (Total Interaction between Jets). For a given stochastic chain {A(t)}∞t=0 and

any two disjoint jets Ju and Jv in S, the total interaction between the two jets over the time

interval [0,∞), denoted by UA(Ju,Jv), is defined by

UA (Ju,Jv) =
∞∑

t=0

 ∑
i∈Ju(t+1)

∑
j∈Jv(t)

aij(t)+
∑

i∈Jv(t+1)

∑
j∈Ju(t)

aij(t)
 .

The next definition captures the idea of long-term non-vanishing interaction between two

jets.

Definition 26 (Infinite Jet Flow Property). A stochastic chain {A(t)}∞t=0 is said to have the

infinite jet-flow property over a subset S of [n] if, for every proper jet {J(t)}∞t=0 in S, we have

UA({J(t)}∞t=0,{[n]\J(t)}∞t=0) =∞.

Finally, we reproduce the definition of a weak notion of ergodicity.

Definition 27 (Class Ergodicity). A stochastic chain {A(t)}∞t=0 is called class-ergodic if

limt→∞A(t : t0) exists for all t0 ∈ N0, in which case [n] can be partitioned into ergodic classes,

whereby i, j ∈ [n] belong to the same ergodic class if limt→∞((A(t : t0))ik− (A(t : t0))jk) = 0

for all k ∈ [n].
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We now have the following result, the second assertion of which is a consequence of

Theorem 5.1 in [62] and of Theorem 1 above.

Corollary 4. Let {A(t)}∞t=0 be a strongly aperiodic and an approximately reciprocal stochastic

chain. Then

1. The infinite jet-flow property holds over each connected component of G∞, the infinite

flow graph of {A(t)}∞t=0.

2. The chain {A(t)}∞t=0 is class-ergodic and the connected components ofG∞ are the ergodic

classes of {A(t)}∞t=0.

3. The connected components ofG∞ constitute the jet limits in Sonin’s jet decomposition [70]

of {A(t)}∞t=0. These limits are attained in finite time.

2.5.4 Some Other Applications

We now briefly discuss a few other applications of our main results.

1. Multiple Consensus: We say that multiple consensus [71] occurs whenever limt→∞x(t)

exists but is not necessarily a multiple of the consensus vector 1, meaning that different

entries of x(t) may or may not converge to different limits. An immediate consequence of

Theorem 3 above and Theorem 2 of [71] is that multiple consensus always occurs in the

continuous-time dynamics ẋ(t) = A(t)x(t) if {A(t)}t≥0 is an approximately reciprocal

chain that satisfies Assumption 1.

2. Éminence Grise Coalitions: In essence, an éminence grise coalition (EGC, [67]) is a subset

of the total agent population that has the ability to steer the opinions of all the individuals

in the network to a desired consensus asymptotically in time. A direct consequence of

Theorem 3 above and Corollary 3 of [67] is as follows: if {A(t)}t≥0 is an approximately

reciprocal chain satisfying Assumption 1, then the size of a minimal EGC of a network

with dynamics ẋ(t) =A(t)x(t) is the number of connected components in the infinite flow

graph of {A(t)}t≥0.
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3. Distributed Optimization: A typical distributed optimization framework consists of a

network of n interacting agents with the common objective of minimizing the sum of n

convex functions {fi : Rd→ Rd}ni=1 subject to the constraint that for each i ∈ [n], the

function fi is known only to agent i. Notably, [72] provides a continuous-time algorithm

for distributed optimization without requiring the associated stochastic chain {A(t)}t≥0 to

be cut-balanced [62]. However, the results therein are based on an assumption involving

an abstract concept called Class P∗ flows, the interpretation of which is aided significantly

by results such as Theorem 3.

4. Distributed Learning/Hypothesis Testing: In a typical distributed learning scenario, there

is a set of possible states of the world, of which a subset of states are true. In addition,

there is a network of interacting agents whose common objective is to learn the identity of

the true state through mutual interaction as well as by performing private measurements on

the state of the world. We note that [40] generalizes certain known results on distributed

learning to networks described by random, independently distributed time-varying directed

graphs. Importantly, the sequence of weighted adjacency matrices of all the networks

considered therein are assumed to belong to Class P∗. Hence, along with Definitions 20

and 21, Theorem 1 significantly facilitates our interpretation of the main results of [40].

2.6 Conclusion

We extended two eigenvector assertions of the classical Perron-Frobenius theorem to

sequences as well as continua of row-stochastic matrices that satisfy the mild assumption of

strong aperiodicity. In the process, we established approximate reciprocity as an equivalent

characterization of Class P∗, a special but broad class of stochastic chains that subsumes a few

important sub-classes such as cut-balanced (reciprocal) chains, doubly stochastic chains, and

uniformly strongly connected chains [62]. We then discussed a few applications of our main

results to problems in distributed learning, averaging with strongly quasi-non-expansive maps,

etc.
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In future, we would like to examine whether it is possible to weaken the assumption of

strong aperiodicity while retaining the essence of our main results. We would also like to extend

our results to dependent random chains, as such chains are pivotal to the study of real-worlds

networks subjected to random phenomena such as communication link failures. As yet another

future direction, it would be interesting to attempt an extension of our results to sequences of

non-negative matrices that are not necessarily row-stochastic. Such an extension would result in

a complete generalization of the eigenvector assertions of the Perron-Frobenius theorem to the

case of time-varying matrices.

Nevertheless, we believe that our main results, even in their present form, have the

potential to find a significant number of applications other than those discussed above. This

belief is rooted in the already wide applicability of the classical theorem.

Appendix

Proof of Lemma 2

Proof. Since {A(t)}∞t=0 is a static chain, for any two distinct nodes i, j ∈ [n], there exists an

edge between i and j in G∞ if and only if
∑∞

t=0(aij(t)+aji(t)) =∞, which holds if and only

if (A0)ij +(A0)ji > 0. Hence, (i, j) ∈ E∞ iff either (A0)ij > 0 or (A0)ji > 0.

Suppose now that G∞ is connected. It follows from the above observation that for

every subset of nodes S ⊂ [n], there exists a pair of nodes (i, j) ∈ (S× S̄)⋃(S̄×S) such that

(A0)ij > 0. Suppose w.l.o.g. that (i, j)∈ S× S̄. If we further assume that {A(t)}∞t=0 is reciprocal,

this implies that 1TAS̄S(t)1 ≥ α1TASS̄(t)1 ≥ α(A0)ij > 0. Hence, there exists a node pair

(p,q) ∈ S̄×S such that (A0)pq > 0. We have thus shown that for every subset S ⊂ [n], there

exist directed edges from S to S̄ as well as from S̄ to S in G(A0). Therefore, G(A0) is strongly

connected. It now follows from Lemma 1 that A0 is irreducible.

On the other hand, suppose we are given that A0 is irreducible. As a result, G(A0) is

strongly connected (by Lemma 1). This means that G∞ is connected, because the preceding
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paragraphs argue that (i, j) ∈ E∞ if either (i, j) ∈ E(A0) or (j, i) ∈ E(A0). Moreover, G(A0)

being strongly connected also implies that for every S ⊂ [n], there exist two pairs of nodes

(i, j)∈S×S̄ and (p,q)∈ S̄×S such that aij(t) = (A0)ij > 0 and apq(t) = (A0)pq > 0. Therefore,

by letting

α :=
minℓ,m∈[n]:(A0)ℓ,m>0(A0)ℓ,m

n

and by using the fact that 1TA01 = 1T 1 = n, we can easily verify that the inequality given by

1TASS̄(t)1≥ α1TAS̄S(t)1 holds for all t ∈ N0. Hence, {A(t)}∞t=0 is reciprocal.

Proof of Proposition 2

Proof. Consider any set S ⊂ [n], and let S̄ := [n]\S. Then, there exists a permutation matrix Q

such that

QTA(t)Q=

 AS(t) ASS̄(t)

AS̄S(t) AS̄(t)


for all t ∈ N0. Let {π(t)}∞t=0 denote an absolute probability sequence for {A(t)}∞t=0. Then one

may verify that the corresponding absolute probability sequence for {QTA(t)Q}∞t=0 is given by

{π̃(t)}∞t=0, where

π̃(t) :=

πS(t)

πS̄(t)


for all t ∈ N0. As a result, the following holds for all t ∈ N0.

[
πT

S (t+1) πT
S̄

(t+1)
] AS(t) ASS̄(t)

AS̄S(t) AS̄(t)

=
[
πT

S (t) πT
S̄

(t).
]

The above equation is essentially a pair of two vector equations, the second of which is

πT
S (t+1)ASS̄(t)+πT

S̄
(t+1)AS̄(t) = πT

S̄
(t).
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Multiplying each side of this equation by the all-ones vector yields

πT
S (t+1)ASS̄(t)1+πT

S̄
(t+1)AS̄(t)1 = πT

S̄
(t)1. (2.9)

On the other hand, the row-stochasticity of A(t) implies that

AS̄(t)1 = 1−AS̄S(t)1. (2.10)

Combining (2.9) and (2.10) gives us

πT
S (t+1)ASS̄(t)1+πT

S̄
(t+1)(1−AS̄S(t)1) = πT

S̄
(t)1. (2.11)

On transposition, we obtain

πT
S (t+1)ASS̄(t)1 =

(
πT

S̄
(t)−πT

S̄
(t+1)

)
1+πT

S̄
(t+1)AS̄S(t)1

Since {A(t)}∞t=0 ∈ P∗, there exists a p∗ > 0 such that πS(t+1)≥ p∗1. Therefore,

p∗1TASS̄(t)1≤
(
πT

S̄
(t)−πT

S̄
(t+1)

)
1+πT

S̄
(t+1)AS̄S(t)1

≤
(
πT

S̄
(t)−πT

S̄
(t+1)

)
1+1TAS̄S(t)1. (2.12)

Now, let k0,k1 ∈ N be any two numbers such that k0 < k1. Then, summing both the sides

of (2.12) over the range t ∈ {k0,k0 +1, . . . ,k1−1} yields

p∗
k1−1∑
t=k0

1TASS̄(t)1≤
(
πT

S̄
(k0)−πT

S̄
(k1)

)
1+

k1−1∑
t=k0

1TAS̄S(t)1,

where we have used a telescoping sum on the right hand side.
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Since
(
πT

S̄
(k0)−πT

S̄
(k1)

)
1≤ πT

S̄
(k0)1≤ πT (k0)1 = 1, the above implies that

p∗
k1−1∑
t=k0

1TASS̄(t)1≤ 1+
k1−1∑
t=k0

1TAS̄S(t)1,

which is the same as (2.2).

Proof of Lemma 3

Proof. Let f : [0,1− ε]→ R be defined by f(x) = 1−x− e−M(ε)x. Then f(0) = 0. Next, note

that f ′′(x) =−M(ε)2e−M(ε)x < 0 for all x ∈ [0,1−ε], implying that f is concave on its domain.

Also, observe that f(1−ε) = 0. Therefore, by Jensen’s inequality, for any x ∈ [0,1−ε], we have

f(x) = f
(

x

1− ε(1− ε)+
(

1− x

1− ε

)
·0
)
≥ x

1− εf(1− ε)+
(

1− x

1− ε

)
f(0) = 0.

Proof of Lemma 4

Proof. We define N = |{k ∈ {0, . . . ,σ−1} :Bji(k)> 0}| and use induction on N . For N = 1,

we have Bji(kL)≥ δ and hence

Bji(σ : 0)≥Bjj(σ : kL +1)Bji(kL)Bii(kL : 0)≥ ηjδηi, (2.13)

which verifies the lemma.

Now, suppose the lemma holds whenN =N0 for someN0 ∈N, and considerN =N0 +1.

We define ε :=Bji(kL), and consider two cases.

If ε≥ δ, i.e., Bji(kL)≥ δ, then (2.13) still holds, thereby proving the lemma.

On the other hand, if ε < δ, then we let B̃(k) :=B(k) for each k ∈ {0, . . . ,σ−1}\{kL},

and

B̃(kL) :=B(kL)−Bji(kL)eje
T
i .
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In other words B̃(kL) is obtained from B(kL) by setting its (j, i)th element to zero. Therefore,

{B̃(k)}σ−1
k=0 is a sequence of substochastic matrices satisfying

|{k ∈ {0, . . . ,σ−1} : B̃ji(k)> 0}|=N0.

Next, we have B̃ii(k1 : k0) = Bii(k1 : k0) ≥ ηi whenever 0 ≤ k0 ≤ k1 ≤ kL. Since the

definitions of kL and {B̃(k)}σ−1
k=0 imply that k̃L := max{k≤ σ−1 : B̃ij(k)> 0}< kL, it follows

that B̃ii(k1 : k0) ≥ ηi whenever 0 ≤ k0 ≤ k1 ≤ k̃L. Next, note that for all k0,k1 satisfying

0≤ k0 ≤ k1 ≤ σ and {k0, . . . ,k1−1} ̸∋ kL, we have B̃jj(k1 : k0) = Bjj(k1 : k0)≥ ηj whereas

for all k0,k1 satisfying 0≤ k0 ≤ kL < k1 ≤ σ, we have

B̃jj(k1 : k0)≥Bjj(k1 : k0)−Bjj(k1 : kL +1)Bji(kL)Bij(kL : k0)≥ ηj− ε

because the substochasticity of {B(k)} implies that max{Bjj(k1 : kL + 1),Bij(kL : k0)} ≤ 1.

Moreover,
∑σ−1

k=0 B̃ji(k) =∑σ−1
k=0 B̃ji(k)−Bij(kL)≥ δ− ε. Thus,

B̃ii(k1 : k0)≥ ηi if 0≤ k0 ≤ k1 ≤ k̃L,

B̃jj(k1 : k0)≥ η̃j if 0≤ k0 ≤ k1 ≤ σ, and
σ−1∑
k=0

Bji(k)≥ δ̃,

where η̃j := ηj− ε > δ− ε > 0 and δ̃ := δ− ε ∈ (0, η̃j). Therefore, by our inductive hypothesis,

we have B̃ji(σ : 0)≥ 1
2ηiη̃j δ̃ = 1

2ηi(ηj− ε)(δ− ε).

Now, observe that

Bji(σ : 0) = B̃ji(σ : 0)+Bjj(σ : kL +1)Bji(kL)Bii(kL : 0)

≥ 1
2ηi(ηj− ε)(δ− ε)+ηjεηi

= 1
2ηiε

2 + 1
2ηi(ηj− δ)ε+ 1

2ηiηjδ ≥
1
2ηiηjδ,
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where the last inequality holds because ε > 0 and ηj > δ. The lemma thus holds for N =N0 +1

and hence, for all N ≤ σ.

Proof of Proposition 3

Proof. We use induction on n, the matrix dimension. Consider n = 1, suppose that γ,p0 ∈

(0,1),β ∈ (0,∞) and ∆ ∈ [0,∞) are given, and let {A(k)}∞k=0 = {a(k)}∞k=0 be a sequence of

real numbers satisfying the three properties required by the proposition. Then, by the feedback

property of the chain, {ak}∞k=0 is a sequence of scalars in [γ,1]. Let āk := 1−ak for each k ∈N0.

Then āk ∈ [0,1−γ] for all k ∈ N0, and
∑∞

k=0 āk ≤∆ by almost-stochasticity. Hence, for any

given t0, t1 ∈ N0 satisfying t0 ≤ t1,

A(t1 : t0) =
t1−1∏
k=t0

(1− āk)
(a)
≥

t1−1∏
k=t0

e−M(γ)āk = e
−M(γ)

∑t1−1
k=t0

āk ≥ e−M(γ)
∑∞

k=0 āk ≥ e−M(γ)∆,

where (a) is a consequence of Lemma 3. Thus, we may set η1(γ,p0,β,∆) = e−M(γ)∆. This

proves the proposition for n= 1.

Now, suppose the proposition holds for all n≤ q for some q ≥ 1, and consider n= q+1.

We again suppose that γ,p0,β and ∆ are given, and let {A(k)}∞k=0 ⊂ Rn×n be a substochastic

chain satisfying the required properties. For each k ∈ N0, let v(k) := 1−A(k)1 and vmax(k) :=

maxi∈[n](v(k))i. Observe that the feedback property and the stub-stochasticity of A(k) together

imply that 0 ≤ v(k) ≤ (1−γ)1 for all k ∈ N0. We also observe that A(k)1 ≥ (1− vmax(k))1

for all k ∈ N0. Therefore, for all 0≤ k0 ≤ k1 <∞, we have

A(k1 : k0)1 = A(k1−1) · · ·A(k0 +1)A(k0)1≥ A(k1−1) · · ·A(k0 +1)(1−vmax(k0))1

(a)
≥

k1−1∏
k=k0

(1−vmax(k))
1

(b)
≥ e

−M(γ)
∑k1−1

k=k0
vmax(k)1

≥ e−M(γ)
∑k1−1

k=k0
1T v(k) (c)

≥ e−M(γ)∆1, (2.14)
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where (a) can be easily shown by induction, (b) is obtained by a repeated application of Lemma

3, and (c) follows from the almost-stochasticity of the chain.

We now construct two chains of substochastic matrices with dimensions smaller than

n and then apply our inductive hypothesis to the resulting chains. To this end, let us use

{τ0, τ1, τ2, . . . , τn} ⊂ N⋃{∞} to denote the set of times defined by τ0 = t0 and

τl := inf

τ ≥ τl−1 : min
T ⊂[n]

τ−1∑
k=τl−1

1TAT T̄ (k)1≥ 1

 .
Further, let m= max{s : τs <∞} so that τs =∞ iff s > m.

Now, consider any s ∈ {0,1, . . . ,min{m,n−1}}. Then, by the definition of τs+1, there

exists at least one set T ⊂ [n] such that
∑τs+1−2

k=τs
1TAT T̄ (k)1 ≤ 1 (note that this also holds if

m≤ n−1 and s=m, in which case τs+1−2 =∞). We choose any one such set T and assume

that T = [|T |] w.lo.g.1 We accordingly define the chains {B(k)}∞k=τs
and {C(k)}∞k=τs

as

B(k) =


AT (k) if τs ≤ k ≤ τs+1−1,

I|T | otherwise,

and

C(k) =


AT̄ (k) if τs ≤ k ≤ τs+1−1,

I|T̄ | otherwise.

Now, the definition of T implies that
∑τs+1−1

k=τs
1TAT T̄ (k)1≤ 1+n≤ 2n. Due to approximate

reciprocity, it follows that
∑τs+1−1

k=τs
1TAT̄ T (k)1≤ 2n+β

p0
. Note that

∑τs+1−1
k=τs

1TAT T̄ (k)1≤ 2n

also implies that

τs+1−1∑
k=τs

1T (1−AT (k)1) =
τs+1−1∑
k=τs

1T (AT T̄ (k)1+vT (k))≤ 2n+∆.

1If T ̸= [|T |], we can relabel the n coordinates so that T = [|T |].
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Similarly, the inequality
∑τs+1−1

k=τs
1TAT̄ T (k)1≤ 2n+β

p0
implies that

τs+1−1∑
k=τs

1T (1−AT̄ (k)1)≤ 2n+β

p0
+∆.

Therefore, {AT (k)}τs+1−1
k=τs

and {AT̄ (k)}τs+1−1
k=τs

are both almost-stochastic sequences. Since I is

a stochastic matrix, it follows that {B(k)}∞k=τs
and {C(k)}∞k=τs

are also almost-stochastic.

Next, for any subset U ⊂ T , let Ū := [n]\U and Ũ := T \U . Then {A(k)}∞k=0, being

approximately reciprocal, satisfies

p0
k1−1∑
k=k0

1TAŨU (k)1≤ p0
k1−1∑
k=k0

1TAŪU (k)1

≤
k1−1∑
k=k0

1TAUŪ (k)1+β

=
k1−1∑
k=k0

1TAUŨ (k)1+
k1−1∑
k=k0

1TAUT̄ (k)1+β

≤
k1−1∑
k=k0

1TAUŨ (k)1+
k1−1∑
k=k0

1TAT T̄ (k)1+β ≤
k1−1∑
k=k0

1TAUŨ (k)1+2n+β

whenever τs ≤ k0 ≤ k1 ≤ τs+1. Since 1TBUŨ (k)1 = 0 for all U ⊂ T and k ≥ τs+1, it follows

that

p0
k1−1∑
k=k0

1TBŨU (k)1≤
k1−1∑
k=k0

1TBUŨ (k)1+2n+β

for all τs ≤ k0 ≤ k1 <∞. This shows that {B(k)}∞k=τs
is approximately reciprocal (though one

of the associated constants is β+ 2n instead of β). We can similarly show that {C(k)}∞k=0 is

also approximately reciprocal. It can be easily seen that these two sequences also possess the

feedback property. Hence, by our inductive hypothesis, there exist positive constants

ηB := min
r∈[n−1]

ηr(γ,p0,β+2n,∆+2n) and ηC := min
r∈[n−1]

ηr

(
γ,p0,β+ 2n+β

p0
,∆+ 2n+β

p0

)

such that B(k1 : k0)≥ ηBI and C(k1 : k0)≥ ηCI for all k0,k1 ∈ N0 satisfying τs ≤ k0 ≤ k1 ≤
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τs+1. By noting that AT (k1 : k0) ≥ B(k1 : k0) and AT̄ (k1 : k0) ≥ C(k1 : k0), we observe that

A(k1 : k0) ≥ ηminI for all τs ≤ k0 ≤ k1 ≤ τs+1, where ηmin := min{ηB,ηC}. Note that this is

true for all s ∈ {0, . . . ,min{m,n−1}} and that the value of ηmin is independent of s.

We now consider two cases.

Case 1: m< n. In this case, τm+1 is defined and it equals∞. Hence, there exists an

s ∈ {0,1, . . . ,m} such that τs ≤ t1 ≤ τs+1. Therefore,

A(t1 : t0) = A(t1 : τs) ·A(τs : τs−1) · · ·A(τ1 : τ0)≥ ηs+1
min I ≥ ηn

minI.

Case 2: m= n. In this case, τn <∞, so we either have t1 ≤ τn or t1 > τn.

If t1 ≤ τn, then there exists an s ∈ {0,1, . . . ,n−1} such that τs ≤ t1 ≤ τs+1. Hence, we

can proceed as in Case 1. Otherwise, if t1 > τn, we need the following analysis.

For each s ∈ {0,1, . . . ,n− 1}, let G(s) be the directed graph whose adjacency matrix

W (s) is given by

W
(s)
ij =


1, if i ̸= j and

∑τs+1−1
k=τs

Aij(k)≥ 1
n2 ,

0, otherwise
,

for all i, j ∈ [n]. We now claim that G(s) is a strongly connected graph for each s∈ {0, . . . ,n−1}.

In order to prove this claim, suppose it is false for some s ∈ {0, . . . ,n−1}. Then, there exists a

partition {T, T̄} of [n] such that there is no directed link from any node in T to any node in T̄ in

G(s). This implies that

τs+1−1∑
k=τs

1TAT̄ T (k)1 =
∑
i∈T̄

∑
j∈T

τs+1−1∑
k=τs

Aij(k)< |T̄ | · |T | · 1
n2 ≤ 1,

which contradicts the definitions of the times τ0, . . . , τn−1, thereby proving the claim. Since the

weighted adjacency matrix of a strongly connected graph is irreducible, it follows that W (s) is

an irreducible matrix for each s ∈ {0, . . . ,n−1}.

Thus, for any two indices i, j ∈ [n], it follows that there exist r ∈ [n], node indices
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l0, l1, . . . , lr ∈ [n−1] and time indices 0≤ s1 ≤ s2 ≤ ·· · ≤ sr ≤ n−1 such that l0 = i, lr = j, and

W
(s1)
il1

= W
(s2)
l1l2

= · · · = W
(sr)
lr−1lr

= 1. Moreover, from the definition of W (s), it further follows

that

τs1+1−1∑
k=τs1

Ail1(k)≥ 1
n2 ,

τs2+1−1∑
k=τs2

Al1l2(k)≥ 1
n2 , . . . ,

τsr+1−1∑
k=τsr

Alr−1j(k)≥ 1
n2 . (2.15)

Next, we bound Alu−1lu(τsu+1 : τsu) for all u ∈ [r]. On setting ηi = ηj = ηmin and

δ = min{ 1
n2 ,

ηmin
2 }, and then applying Lemma 4 to the sequence {A(k)}τsu+1

k=τsu
, we obtain the

following for each u ∈ [r]

Alu−1lu(τsu+1 : τsu)≥ 1
2η

2
minδ.

Now, for any y ∈ [n] and any two indices 0≤ s < t≤ n−1, we have

Ayy(τt : τs)≥
t−1∏
k=s

Ayy(τk+1 : τk)≥
t−1∏
k=s

ηmin ≥ ηn
min.

Thus,

Aij(τn : t0) = Aij(τn : τ0)

≥ Aii(τs1 : τ0)Ai,l1(τs1+1 : τs1)Al1l1(τs2 : τs1+1)Al1l2(τs2+1 : τs2) · · ·

· · ·Alr−1lr−1(τsr : τsr)Alr−1j(τsr+1, τsr)Ajj(τn : τsr+1)

≥
(
ηn

min ·
η2

minδ

2

)r

ηn
min ≥ ηD > 0,

where ηD :=
(
ηn

min ·
η2

minδ
2

)n

ηn
min.

Since i, j ∈ [n] were arbitrary, we have shown that A(τn : t0) ≥ ηD11T . From (2.14),

it now follows that A(t1 : t0) = A(t1 : τn)A(τn : t0) ≥ ηDA(t1 : τn)11T ≥ ηDe
−M(γ)P 11T ≥

ηDe
−M(γ)∆I .
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To summarize, in both Case 1 and Case 2, we have A(t1 : t0)≥ ηF I where

ηF :=
(
ηn

min ·
η2

min
2 ·min

{ 1
n2 ,

ηmin
2

})n

ηn
mine

−M(γ)∆ > 0.

Since ηF is uniquely determined by γ,p0,β and ∆, it follows that we can define the function

ηn : (0,1)× (0,1)× (0,∞)× [0,∞)→ (0,1) by the relation ηn(γ,p0,β,∆) = ηF while ensuring

that

A(t1 : t0)≥ ηn(γ,p0,β,∆)I

for all 0≤ t0≤ t1 <∞ whenever {A(k)}∞k=0 satisfies the required properties. Thus, the assertion

of the proposition holds for n= q+1 and hence, for all n ∈ N.

Proof of Corollary 1

Proof. Since {A(t)}∞t=0 is a stochastic chain, it satisfies almost stochasticity (with the deviation

from stochasticity being ∆ = 0). Hence, if {A(t)}∞t=0 satisfies (2.2) for all S ⊂ [n] and all

k0,k1 ∈ N0 with k0 < k1, then it follows from Proposition 3 that there exists an η > 0 satisfying

A(t1 : t0)≥ ηI

for all t0, t1 ∈ N0 with t0 ≤ t1. This means that 1TA(t1 : t0)≥ η1T for all t1, t0 ∈ N0. In light

of Lemma 8 of [67], this means that {A(t)}∞t=0 ∈ P∗.

Proof of Lemma 5

Proof. Since G∞ is connected, for every pair of indices (i, j) ∈ [n]× [n], there exists a path

between i and j in G∞. In other words, there exists an r ∈ [n] and vertices ℓ1, ℓ2, . . . , ℓr ∈ [n]

with ℓ1 = i and ℓr = j such that (ℓ1, ℓ2),(ℓ2, ℓ3) . . . ,(ℓr−1, ℓr) ∈ E∞. Since {A(t)}∞t=0 is also

infinite flow stable, this means that limt→∞(xℓk
(t)−xℓk+1(t)) = 0 for all k ∈ [r−1]. As a result,

we have limt→∞(xi(t)−xj(t)) = 0. Since i and j are arbitrary, it follows from Theorem 2.2
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in [62] that {A(t)}∞t=0 is ergodic.

Proof of Theorem 2

Proof. From Theorem 1, we know that {A(t)}∞t=0 admits a uniformly positive absolute probabil-

ity sequence, i.e., {A(t)}∞t=0 ∈ P∗. As a result, Theorem 4.4 of [62] implies that {A(t)}∞t=0 is

infinite flow stable.

Now, suppose that the infinite flow graph of {A(t)}∞t=0 is connected. Since the chain is

also infinite flow stable, we know from Lemma 5 that the chain is ergodic. It now follows from

Theorem 1 of [73] that {A(t)}∞t=0 admits a unique absolute probability sequence.

On the other hand, suppose that the infinite flow graph of {A(t)}∞t=0 is not connected.

Then, by Lemma 3.6 of [62], either there exists an initial condition (t0,x(t0)) with t0 ∈ N and

x(t0)∈Rn such that x(t+1) =A(t)x(t) does not converge to a steady state (Case 1: limt→∞x(t)

does not exist), or there exist indices i and j such that (i, j) ∈ [n]× [n] and limsupt→∞ |xi(t)−

xj(t)|> 0 (Case 2).

In the first case, we know that limt→∞A(t : t0) does not exist (because otherwise,

limt→∞x(t0) = limt→∞A(t : t0)x(t0) would exist). Hence, {A(t)}∞t=0 is not ergodic.

Consider now the second case and suppose that {A(t)}∞t=0 is ergodic. Then, for every

initial condition (t0,x(t0)), there exists a π(t0) ∈ Rn such that limt→∞x(t) = limt→∞A(t :

t0)x(t0) = πT (t0)x(t0)1, which implies that limt→∞xl(t) = limt→∞xm(t) for all l,m ∈ [n].

However, this contradicts the hypothesis of Case 2. Hence, {A(t)}∞t=0 cannot be ergodic.

We have thus shown that if the infinite flow graph of {A(t)}∞t=0 is not connected, it is not

ergodic. It now follows from Theorem 1 in [73] that if the infinite flow graph of {A(t)}∞t=0 is not

connected, then the chain does not admit a unique absolute probability sequence.
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Proof of Lemma 7

Proof. We first recall from Proposition 7 of [65] that under Assumption 1, there exists a constant

G ∈ (0,∞) such that

G
∫ tk+1

tk

1TASS̄(t)1dt≤ 1TϕSS̄ (tk+1, tk)1≤ n
∫ tk+1

tk

1TASS̄(t)1dt (2.16)

holds for all k ∈ N0 and all sets S ⊂ [n].

Now, suppose Assumption 2 holds. Then, for all S ⊂ [n] and ℓ,m ∈ N0 with ℓ≤m, we

have

G
p0
n

m∑
k=ℓ

1T ΦSS̄(tk+1, tk)1≤Gp0

∫ tm+1

tℓ

1TASS̄(t)1dt

(a)
≤ G

(∫ tm+1

tℓ

1TASS̄(t)1dt+β

)

≤
m∑

k=ℓ

1T ΦSS̄(tk+1, tk)+Gβ,

where (a) follows from Assumption 2. Therefore, (2.8) holds with p̃0 = Gp0
n and β̃ =Gβ.

Similarly, if we are given that (2.8) holds for all S ⊂ [n], then we can again use (2.16) to

make arguments similar to the preceding ones to show that Assumption 2 holds with p0 = G
n p̃0

and β = β̃
n .

Proof of Theorem 3

Proof. Suppose {A(t)}t≥0 has a uniformly positive absolute probability sequence, i.e., suppose

{A(t)}t≥0 ∈ P∗. Then we know that {Φ(tk+1, tk)}∞k=0 ∈ P∗ in discrete time. It follows from

Proposition 2 that {Φ(tk+1, tk)}∞k=0 is approximately reciprocal in discrete time, i.e., there exist

constants p̃0 > 0 and β̃ ∈ (0,∞) such that (2.8) holds for all S ⊂ [n]. Lemma 7 now implies

that Assumption 2 holds, which means that {A(t)}t≥0 is approximately reciprocal.

On the other hand, suppose we are given that {A(t)}t≥0 is approximately reciprocal with
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respect to the increasing sequence of times {tk}∞k=0 ⊂R≥0. We now show that for any two times

τ1, τ2 ≥ 0 with τ1 < τ2, the chain {A(t)}t≥0 is also approximately reciprocal with respect to the

augmented sequence of times t1, t2, . . . , tq, τ1, tq+1, . . . , tr−1, τ2, tr, . . ., where q := max{ℓ ∈ N0 :

tℓ ≤ τ1} and r := min{ℓ ∈ N0 : tℓ ≥ τ2}. To this end, we use Assumption 1 to argue that for any

set S ⊂ [n], we have

∫ tq+1

τ1
1TASS̄(t)1dt≤

∑
i∈[n]

∑
j∈[n]\{i}

∫ tq+1

τ1
aij(t)dt≤

∑
i∈[n]

∑
j∈[n]\{i}

∫ tq+1

tq

aij(t)dt≤ n(n−1)M.

Similarly,
∫ τ1
tq

1TASS̄(t)1dt,
∫ τ2
tr−1 1TASS̄(t)1dt, and

∫ tr
τ2 1TASS̄(t)1dt are all upper bounded

by n(n−1)M . In addition, we have
∫ tm
tℓ

1TAS̄S(t)1dt≥ 0 for all ℓ,m ∈ N0 with ℓ < m. As a

result, the inequality in Assumption 2 implies that for all S ⊂ [n] and ℓ < m, we have

p0

∫ t′
m

t′
ℓ

1TASS̄(t)1dt≤
∫ t′

m

t′
ℓ

1TAS̄S(t)1dt+β+2n(n−1)Mp0,

where {t′k}∞k=0 denotes the augmented sequence t1, t2, . . . , tq, τ1, tq+1, . . . , tr−1, τ2, tr, . . .. Invok-

ing Lemma 7 now shows that the stochastic chain {Φ(t′k+1, t
′
k)}∞k=0 is approximately reciprocal

in discrete time. Moreover, Assumption 1 (which continues to hold after replacing {tk}∞k=0 with

{t′k}∞k=0) and Lemma 8 in [65] together imply that {Φ(t′k+1, t
′
k)}∞k=0 is strongly aperiodic. It

now follows from Proposition 3 that there exists a constant η > 0 such that Φ(t′m : t′ℓ)≥ ηI for all

ℓ,m ∈ N0 satisfying ℓ≤m. In particular, we have Φ(τ2 : τ1)≥ ηI . Since τ1 and τ2 are arbitrary,

it follows from Lemma 8 of [67] that {A(t)}t≥0 ∈ P∗.

Proof of Theorem 4

Proof. Observe that by repeating some of the arguments used to prove Theorem 3, we can show

that Assumptions 1 and 2 continue to hold (if only with different constants) even if we augment

the sequence {tk}∞k=0 by inserting into it an arbitrary constant τ ≥ 0. By Lemma 8 of [65],

this further implies that the discrete-time chain {Φ(t′k+1 : t′k)}∞k=0 (where {t′k}∞k=0 denotes the
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augmented sequence t1, t2, . . . , τ, . . . ,) is strongly aperiodic. In addition, since {A(t)}t≥0 satisfies

the uniform bound assumption (Assumption 1) in addition to the condition of approximate

reciprocity, we know from Theorem 3 that {A(t)}t≥0 ∈ P∗. By Definitions 17 and 18, this

implies that {Φ(t′k+1 : t′k)}∞k=0 ∈ P∗ in discrete time. Hence, by Theorem 1, {Φ(t′k+1 : t′k)}∞k=0

is approximately reciprocal.

Now, the infinite flow graph of {A(t)}t≥0 being connected is equivalent to the condition∫∞
0 1TASS̄(t)1dt+

∫∞
0 1TAS̄S(t)1dt=∞ being satisfied for all S ⊂ [n], which, by Proposition

7 of [65], is in turn equivalent to the infinite flow graph of the discrete-time stochastic chain

{Φ(t′k+1 : t′k)}∞k=0 being connected. By the strong aperiodicity and the approximate reciprocity

of {Φ(t′k+1, t
′
k)}∞k=0 (established above), Theorem 2 implies that the connectivity of the infinite

flow graph of {Φ(t′k+1, t
′
k)}∞k=0 is equivalent to the discrete-time chain admitting a unique

absolute probability sequence.

To summarize, the infinite flow graph of {A(t)}t≥0 is connected if and only if {Φ(t′k+1 :

t′k)}∞k=0 admits a unique absolute probability sequence, i.e., if and only if the stochastic vectors

{π(tk)}∞k=0
⋃{π(τ)} are unique. Since τ is arbitrary, it follows that the infinite flow graph of

{A(t)}t≥0 is connected if and only if the absolute probability sequence {π(τ)}τ≥0 is unique.

Proof of Corollary 2

Proof. By Lemma 4.2 of [62], {A(t)}∞t=0 having feedback property implies that {E[A(t)]}∞t=0

has the strong feedback property (i.e., the expected chain is strongly aperiodic). Since the

expected chain is also approximately reciprocal, we know from Theorem 1 that {E[A(t)]}∞t=0 ∈

P∗. Hence, {A(t)}∞t=0 ∈ P∗. Assertion (i) now follows from Theorem 4.4 of [62] and the

remaining assertions follow from Theorem 5.1 of [62].

Proof of Corollary 3

Proof. We can repeat the arguments used in the proof of Corollary 2 to show that {E[A(t)]}∞t=0 ∈

P∗. Therefore, this corollary is a straightforward consequence of Theorem 1 above, Lemma 4.2
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of [62], and Theorem 5.2 of [62].

Proof of Corollary 4

Proof. The first assertion is a direct consequence of Theorem 1 above and Lemma 2 of [69]. The

second assertion follows from Theorem 1 above and from Theorem 5.1 in [62] (see Remark 5

above for a more detailed explanation). The third assertion follows from Theorem 1 above, from

Corollary 3 and Theorem 4 of [69], and from the fact that strong aperiodicity implies weak

aperiodicity.

Chapter 2, in full, is a reprint of the material as it appears in Rohit Parasnis, Massimo

Franceschetti, and Behrouz Touri, “Towards a Perron-Frobenius Theorem for Strongly Aperiodic

Stochastic Chains”, arXiv preprint arXiv:2204.00573 (2022). The dissertation author was the

primary investigator and author of this article.

Chapter 2, in full, is currently being prepared for submission for publication as Rohit

Parasnis, Massimo Franceschetti, and Behrouz Touri, “Towards a Perron-Frobenius Theorem

for Strongly Aperiodic Stochastic Chains” (the publication venue is to be determined). The

dissertation author was the primary investigator and author of this article.
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Chapter 3

On the Convergence Properties of Social
Hegselmann-Krause Dynamics

3.1 Introduction

With social networks gaining omnipresence and their associated datasets becoming

accessible to the public, opinion dynamics has attracted researchers from a range of disciplines

in recent times [74]. Besides having social scientific applications such as forecasting election

results [75], opinion dynamics models are also used in engineering problems such as distributed

rendezvous in a robotic network [76].

Among the existing models, confidence-based models form a noteworthy class. In

particular, a bounded-confidence model proposed in [77], also known as the Hegselmann-Krause

model (referred as the HK model from here on), has garnered a lot of interest in the last two

decades. Essentially, it models a non-linear time-varying system in which every agent’s opinion

is either a real number or a real-valued vector, and assumes that every agent has a confidence

bound defining their neighborhood (the set of agents influencing them at the given point in time).

At every time-step, each agent’s belief moves to the arithmetic mean of their neighbors’ beliefs.

To cite a few notable results, [78] showed that HK dynamics always converge to a steady

state in finite time for every set of initial opinions. Later on, the termination time of the dynamics

was studied extensively and it is now known that for a system of n agents having scalar opinions,

the maximum termination time is at least Ω(n2) and at most O(n3) [79], [80], [81]. When the

52



opinions are multidimensional, the best known lower and upper bounds are Ω(n2) and O(n4),

respectively [79], [82]. Other properties of interest, such as inter-cluster distance and equilibrium

stability were studied in [83] and [84].

Even though a number of variants of the HK model have been proposed and analyzed

(such as [85–92]), very few models, such as the social HK model, proposed in [93], the gener-

alized Deffuant-Weisbuch model proposed in [94], and the social similarity-based HK model,

proposed in [95], address an important shortcoming that is central to the original model: the

assumption that every agent has access to every other agent’s opinion (regardless of whether or

not they are influenced by other agents).

Such an assumption is questionable, as on large scales a multitude of extrinsic factors

such as geographical separation along with differences in culture, nationality, socio-economic

background, etc., may drastically reduce the likelihood of two like-minded individuals contacting

each other. To address this issue, the social HK model incorporates a physical connectivity graph,

denoted by Gph, into the classical HK model. A pair of agents can access each other’s opinions

if and only if the corresponding vertices are adjacent in Gph.

The social HK model was proposed in [93], which provides a conjecture on the minimum

value of the confidence bound required to achieve consensus in the limit as the number of agents

goes to infinity. Subsequently, [96] provided an upper bound on the number of time steps in

which two agents separated by a minimum distance influence each other. Recently, in [47], we

showed that for any incomplete Gph and any continuous probability density function having the

state space as its support, the expected termination time of social HK dynamics is infinity.

This result motivates us to investigate the convergence properties of the social HK

model in this chapter. We begin by introducing the original HK model, the social HK model,

and the associated terminology in Section 5.2. In Section 3.3, we provide the proof of the

aforementioned result on the expected termination time of the dynamics. In Section 3.4, we

show that the conditional upper bound on the maximum ε-convergence time provided in [47]

is applicable to a wider class of initial opinion distributions. In Section 3.5, we show that
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delaying an event that we call merging is the only way to indefinitely delay a social HK system’s

ε-convergence to the steady state. We then provide a set of sufficient conditions and another set

of necessary conditions for arbitrarily slow merging, and use the necessary conditions to show

that the ε-convergence time of a complete r-partite graph is bounded. We conclude by observing

that these conditions are nearly tight under certain assumptions on the initial opinion distribution,

and also provide some future directions.

A subset of the results of this work have also been reported in our conference paper [97],

where we discriminate between consensus and non-consensus states, and provide sufficient

conditions for a physical connectivity graph to have an unbounded convergence time in each

case.

Notation: We denote the set of real numbers by R, the set of positive real numbers by

R+, the set of integers by Z, the set of positive integers by N, and the set N∪{0} by N0. We

define [n] := {1, . . . ,n}. We use I to denote the identity matrix (of the known dimension).

We denote the cardinality of a set S by |S|, the vector space of column vectors consisting

of n-tuples of real numbers by Rn, the∞-norm in Rn by ∥ · ∥∞, and the all-one vector and the

all-zero vector in Rn by 1n and 0n, respectively, dropping the subscripts when the dimension is

clear from the context. For a set S, 1S denotes 1|S|.

An undirected graph on n vertices is G= (V,E) where V or V (G) is the set of vertices

and E = E(G) ⊆ V ×V is the set of edges, with (i, j) ∈ E if and only if (iff) (j, i) ∈ E for

i, j ∈ V . If |V | = n, we can label the vertices so that V = [n], without loss of generality

(w.l.o.g.). For any vector w ∈ Rn and a subset of vertices VP ⊆ V , we let wP denote the

restriction of w to the coordinates specified by VP . Also, for any l ∈ [n], let w[l] denote the

vector [w1 . . . wl]T . Throughout this work, all the graphs are undirected. We say that i and j

are neighbors in G, if (i, j) ∈ E (and hence, (j, i) ∈ E). The set of neighbors of a node i in G

is the set Ni := {j : (i, j) ∈ E} and the degree of node i is di := |Ni|. The adjacency matrix of

G = ([n],E) is the n×n binary matrix Aadj where (Aadj)ij = 1 iff (i, j) ∈ E, and the degree

matrix of G is the diagonal matrix D with Dii = di. We define the normalized adjacency matrix
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of G to be the matrix A :=D−1Aadj. The Laplacian of G is defined to be L :=D−Aadj and the

normalized Laplacian of G is defined to be N := D−1/2LD−1/2 = I−D−1/2AadjD
−1/2. For

two graphs G1 = ([n],E1) and G2 = ([n],E2) on n vertices, we let G1∩G2 = ([n],E1∩E2).

For any subscript P , if GP denotes a graph, then AP denotes its normalized adjacency matrix. A

complete graph (or clique) on n vertices is the graph Kn := ([n], [n]× [n]).

Finally, for any matrix M , we use Null(M) to denote the null space of M .

3.2 Problem Formulation

3.2.1 Original Model

Consider a network of n agents. For each k ∈N, let xi[k] be the opinion of the ith agent at

time k. Then the state of the system at time k is defined as x[k] := [x1[k] x2[k] . . . xn[k]]T ∈Rn.

Occasionally, we drop the indexing [k] for the state and its associated quantities when the context

makes the time index clear. In the original HK model, at time k, agents i and j are neighbors iff

|xi[k]−xj [k]| ≤R, where R, the confidence bound, is assumed to be the same for every agent.

Thus, the set of neighbors of agent i at time k is:

Ni(x[k]) = {j ∈ [n] : |xi[k]−xj [k]| ≤R} .

Note that i ∈Ni for all i ∈ [n]. Also, i is a neighbor of j iff j is a neighbor of i. Therefore, we

can encode all of the information about the influences in the network at time k into an undirected

graph, Gc(x[k]), which we call the communication graph of the network at time k. This n-vertex

graph has a link between two vertices iff the corresponding agents are neighbors at time k.

Observe that Gc(x[k]) always has a self-loop at each vertex at all times. Finally, at every time

instant, every agent’s opinion shifts to the average of his/her neighbors’ current opinions:

xi[k+1] =
∑

j∈Ni(x[k])xj [k]
|Ni(x[k])| . (3.1)
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This being a bounded confidence model, it is possible that an agent does not have

any neighbor other than himself/herself, in which case, his/her opinion does not change i.e.,

xi[k+1] = xi[k]. Such an agent is said to be isolated.

3.2.2 Modification

In the original HK dynamics, if the opinions of any two agents are within a distance of R

from each other, then the agents necessarily influence each other. This assumption is relaxed in

the social HK model by the introduction of a second graph, as described below.

Let the physical connectivity graphGph = ([n],Eph) be an undirected graph on n-vertices

with each vertex representing an agent. Two agents i and j can communicate with each other

iff their corresponding vertices are adjacent in Gph. Hence, for two individuals to influence

each other’s opinions, they not only need to be similarly opinionated but also to be physically

connected through Gph. Throughout this chapter, we assume that Gph is connected, time-

invariant, and contains all the self-loops, i.e., (i, i) ∈ Eph for all i ∈ [n].

Observe that in the special case that Gph is a complete graph, no external restrictions are

imposed on the interaction between any two agents. This case, therefore, is equivalent to the

well-known original model of the last subsection. However, the social HK generalization starts

differing from the original model when there is at least one pair of non-adjacent vertices in Gph,

as will be revealed next.

3.2.3 State-Space Representation

Each of the two models discussed above has the following state-space representation:

x[k+1] = A(x[k])x[k], (3.2)

where A(x[k]) is the normalized adjacency matrix of Gph ∩Gc(x[k]). Thus, G̃[k] = Gph ∩

Gc(x[k]) is the effective graph or the influence graph at time k. The original HK model is a

56



special case with Gph =Kn, which gives G̃[k] =Gc(x[k]).

Note the explicit dependence of the state evolution matrix on the state of the system at

time k. It arises from the dependence of the structure of the communication graph on the agents’

opinions at the concerned time instant.

Now, let Aadj (x[k]) denote the adjacency matrix of G̃[k] and let D (x[k]) denote its

degree matrix. Then

x[k+1] =D−1 (x[k]) ·Aadj (x[k]) ·x[k]

which can be expressed more compactly as:

x[k+1] =D−1Aadjx[k]. (3.3)

In other words, the state evolution matrix is given by A=D−1Aadj. (We drop the dependencies

of these matrices on x[k] for notational simplicity).

3.3 Analysis of Termination Time

In this section, we show that social HK dynamics on an incomplete physical connectivity

graph may never attain the steady state in finite time. However, as the following result shows,

the system is guaranteed to converge to a steady state.

Proposition 4. Consider the dynamics described by (3.1) for any given initial state, x0 ∈ Rn.

Then the limit, x∞(x0) := limk→∞x[k] exists and will be referred to as the steady state of the

system corresponding to the initial state x0.

Proof. Note that for any trajectory {x[k]} of the dynamics, the corresponding sequence of

matrices {A(x[k])} satisfies (a) Aii(x[k])≥ 1
n , as each agent is always its own neighbor, and (b)

Aij(x[k])≥ 1
nAji(x[k]) as Gph∩Gc(x) is undirected for all x ∈Rn and further, we are utilizing
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uniform neighbor averaging on this graph at each time k. Thus, by Theorem 2 of [98], the limit

x∞(x0) exists for all x0 ∈ Rn.

We now define some quantities in order to make the notion of finite-time termination

precise.

Definition 28 (Termination Time). For an initial state x0 and a given physical connectivity

graph Gph, the termination time T (Gph,x0) is the time taken by the system to reach the steady

state corresponding to x0, i.e.:

T (Gph,x0) := inf{k ∈ N : x[k] = x∞(x0)}.

Next we define the maximum termination time for a given physical connectivity graph.

Definition 29 (Maximum Termination Time). For a given physical connectivity graph Gph, the

maximum termination time T ∗(Gph) is the supremum of termination times over all possible

initial states:

T ∗(Gph) := sup
x0∈Rn

T (Gph,x0).

As a special case, it was shown in [80] and [81] that the maximum termination time of

the original HK dynamics satisfies cn2 ≤ T ∗(Kn)≤ Cn3 asymptotically as n→∞ when d= 1,

for some constants c,C > 0.

We now state a few properties of a class of normalized adjacency matrices that appear in

the state evolution dynamics (3.2). These properties form the basis of our results.

The following lemma is proven in [82] as well as [47].

Lemma 8. For any undirected graph Ĝ, the normalized adjacency matrix Â is similar to I− N̂

(where N̂ is the normalized Laplacian matrix). As a result, Â is diagonalizable.
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The next result provides more information about the spectral properties of the adjacency

matrix of a graph, if we have mild additional structures on the graph.

Lemma 9. Let Ĝ be an undirected and incomplete graph that is connected and has all the

self-loops. Then, if the eigenvalues of the normalized adjacency matrix Â (labeled as {λi}ni=1)

are ordered such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, we have 1 = λ1 > |λ2|> 0. Moreover, Â has at

least one positive eigenvalue besides 1.

Proof. The first part of the result is proven [47]. Since Â is a row-stochastic matrix, we have

λ1 = 1. To show that Â has a positive eigenvalue besides 1, we have
∑n

i=1λi = 1+∑n
i=2λi =

Tr(Â), but since Ĝ is incomplete, Tr(Â)> 1. Therefore,
∑n

i=2λi > 0 and hence, λi > 0 for some

i.

We are now ready to show that on average, social HK dynamics on an incomplete graph

never terminate.

Proposition 5. Let x[0] be a random vector over Rn whose distribution induces the Borel-

measure µ on Rn with µ(V ) > 0 for any non-empty open set V ⊂ Rn (or in other words,

the probability density function of x[0] is non-zero almost everywhere). Suppose that Gph is

not a complete graph. Then the expected termination time of the dynamics is infinite, i.e.,

Ex[0][T (Gph,x[0])] =∞.

Proof. Let

S :=
{
x ∈ Rn : |max

i∈[n]
xi−min

j∈[n]
xj |<R

}
.

Note that S is a nonempty open set in Rn and hence, µ(S)> 0. Also, whenever x[0] ∈ S, every

agent is within the confidence of every other agent and thus Gc(x[0]) is an n-clique. Additionally,

from the update rule (3.1), it follows that maxi∈[n]xi[k] is monotonically non-increasing and

minj∈[n]xj [k] is monotonically non-decreasing. Therefore, the communication graph remains

a clique and hence, G̃[k] = Gph for all k ∈ N. In this case, the dynamics become linear and

time-invariant: A= A(x[k]) = A(x[0]) and hence, x[k] = Akx[0].
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Lemma 8 now allows us to use the Spectral Theorem for Diagonalizable Matrices

(see [61], page 517) so as to write Ak =∑n
j=1λ

k
jPj , where λj is the jth eigenvalue of A and Pj

is the projector onto the jth eigenspace of A along the range space of A−λjI . Moreover, by

Lemma 9 we have λ1 = 1 and |λj |< 1 for all j ∈ {2, . . . ,n}. Therefore, Ak = P1 +∑n
j=2λ

k
jPj ,

which implies that limk→∞Ak = P1.

Now, consider a random initial vector x[0] = x0 ∼ µ. Then by the above discussion, on

the set {x[0] ∈ S}, we have the following for any k ∈ N:

∥x[k]−x∞(x[0])∥= ∥Akx[0]− lim
k→∞

Akx[0]∥

= ∥
n∑

j=2
λk

jPjx[0]∥, (3.4)

which means that ∥x[k]−x∞(x[0])∥= 0 iff x[0] belongs to the null space of
∑n

j=2λ
k
jPj .

On the other hand, since λ2 ̸= 0 by Lemma 9, we have that rank
(∑n

j=2λ
k
jPj

)
≥ 1.

This implies that nullity
(∑n

j=2λ
k
jPj

)
≤ n− 1. By the continuity of x[0], it follows that

Pr
(
x[0] ∈ Null(∑n

j=2λ
k
jPj)

)
= 0. As a result, (3.4) implies that the event {x[k] = x∞(x[0])}

occurs with zero probability on the set {x[0] ∈ S}. Thus, on the set {x[0] ∈ S}, the event

{T (Gph,x[0]) =∞}= ∩∞
k=1{x[k] ̸= x∞(x[0])} occurs almost surely. Since Pr(x[0] ∈ S)> 0, it

follows that Ex[0]T (Gph,x[0]) =∞.

In essence, Proposition 5 states that for any incomplete Gph, there is a continuum of

initial states starting from which social HK dynamics never terminate. This shows that HK

dynamics over complete graphs are indeed an anomaly.

3.4 Bounds on the Convergence Time

Now that we know that a social HK system may never reach the steady state, the next

pertinent question is: how fast does it approach the steady state?

We begin with a few relevant definitions.
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Definition 30 (ε-Convergence). Given a physical connectivity graph Gph, an initial state x0,

and ε > 0, the system is said to have achieved ε-convergence at time N ≥ 0 if its state lies in

the ε-neighborhood of the steady state corresponding to x0, i.e., ∥x[k]−x∞(x0)∥< ε, for all

k ≥N .

Based on this, we define the ε-convergence time as:

Definition 31 (ε-Convergence Time). For a given physical connectivity graph Gph, an initial

state x0 ∈ Rn, and a given ε > 0, the ε-convergence time kε(Gph,x0) is the time taken by the

system to achieve ε-convergence:

kε(Gph,x0) : = inf {N ∈ N : ∥x[k]−x∞(x0)∥< ε,

for all k ≥N} .

Similar to T ∗, we define k∗
ε to be the supremum of ε-convergence times for all initial

states.

Definition 32 (Maximum ε-Convergence Time). For a given physical connectivity graph Gph

and ε > 0, the maximum ε-convergence time k∗
ε(Gph) is the supremum of ε-convergence times

over all possible initial opinions:

k∗
ε(Gph) := sup

x0∈Rn
kε(Gph,x0). (3.5)

3.4.1 Lower Bound

We now provide a lower bound on the maximum ε-convergence time k∗
ε(Gph) in terms

of the conductance of Gph. We borrow the definition of conductance from [99].

Let G= ([n],E) be an undirected graph on n vertices. For a subset S ⊂ [n], let ∂(S) :=

{(i, j) ∈ E | i ∈ S,j ∈ S̄}, where S̄ = [n]\S. In words, ∂S represents the set of edges that
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connect S to the rest of the graph. Further, let d(S) denote the sum of the degrees of the vertices

in S. Then we have the following definition.

Definition 33 (Conductance). The conductance ϕ(G) of a graph G= ([n],E) is defined as:

ϕ(G) := min
S⊂[n]
S ̸=∅

|∂(S)|
min

(
d(S),d(S̄)

) .

The next proposition states that a system whose physical connectivity graph has a low

conductance might take a long time to converge to its steady state.

Proposition 6. For any incomplete graph Gph and any given ε > 0, the maximum ε-convergence

time of the social Hegselmann-Krause dynamics, as defined in (3.5), satisfies

k∗
ε(Gph)>

log
(

ε
√

2
R

)
log

(
1−2ϕ(Gph)

) . (3.6)

Proof. Let N denote the normalized Laplacian matrix of G and let ν1 ≤ ν2 ≤ ·· · ≤ νn denote

the eigenvalues of N . Note that they can be ordered so because they are all real numbers by

virtue of the symmetry of N . By Lemma 2, we know that the eigenvalues of A are 1− ν1 ≥

1−ν2 ≥ ·· · ≥ 1−νn. By Cheeger’s Inequality [100], we have ν2 ≤ 2ϕ(G), which then translates

to |λ2| ≥ 1−2ϕ(G) for the eigenvalue of A with the second-largest magnitude.

Now, let x[0] = v, where v is an eigenvector of A corresponding to λ2, that also satisfies

maxn
i=1 vi−minn

j=1 vj =R so that we have G(x[k]) =Gph for all k ∈ N as argued earlier. Note

that such a choice of v is possible as v ̸= α1 for any α ∈ R. As a result, the state evolution

reduces to x[k] = λk
2x[0] and hence x∞(x[0]) = limk→∞λk

2x[0] = 0 (since |λ2|< 1 by Lemma 9).

For the system to reach an ε-neighborhood of the steady state, we need ∥λk
2x[0]∥< ε. Together

with the lower bound on |λ2|, this requires (1−2ϕ(Gph))k∥x[0]∥< ε.
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Next, observe that the constraint maxixi[0]−minj xj [0] =R enforces the following:

∥x[0]∥2 ≥
√

(max
i
xi[0])2 +(min

j
xj [0])2

=
√

(min
i
xi[0])2 +(min

j
xj [0]+R)2

≥R/
√

2.

Combining this with the necessary condition derived above, we need to have:

(1−2ϕ(Gph))k(R/
√

2)< ε,

and hence,

kε(Gph,v)>
log

(
ε
√

2
R

)
log

(
1−2ϕ(Gph)

) .
This implies (3.6).

Remark 5. Proposition 6 can be used to compute a lower bound on the maximum ε-convergence

time in terms of n for graphs whose conductance is known as a function of n. For example, the

dumbbell graph on n vertices has ϕ=O
(

1
n2

)
[101] which yields k∗

ε = Ω(n2).

3.4.2 Upper Bound Applicable to a Class of Initial Opinions

We now show that if the influence graph remains connected and time-invariant until

ε-convergence to the steady state, then the said ε-convergence is achieved in O(n3 logn) steps.

Proposition 7. Suppose there exist ε > 0 and an initial state x0 ∈ Rn such that the influence

graph, G̃[k] remains connected and constant in time until ε-convergence is achieved. Then with

x0 as the initial state, the social HK system achieves ε-convergence in O(n3 logn) steps.

Proposition 7 follows immediately from Corollary 5.2 of [102]. See Appendix A for

further details.
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3.5 Arbitrarily Slow ε-Convergence

The results in the previous section prompt us to ask: What if the initial state does not

enable G̃[k] to remain constant in time? In such cases, the convergence time could be unbounded

above if the physical connectivity graph has more than three vertices. In other words, it is

possible that k∗
ε(Gph) =∞.

Here is a relevant example from [96]. Let Gph be the path graph on 4 vertices, let

ε < R/2, and let X =
{
[−R,0,R,−(R− δ)]T for δ ∈ (0,R/2)

}
. Then note that for x[0] ∈ X ,

we have x1[1] = −R/2, x2[1] = 0, x3[1] = R/2 and x4[1] = −(R− δ) because at time 1, the

sets of neighbours of the first three agents are {1,2},{1,2,3} and {2,3} respectively. In G̃[1],

the fourth agent remains disconnected from the first three agents because R > 2δ and the

confidence interval of the fourth agent at time 1 is [δ−2R,δ]. By induction, we can show that

x[k] =
[
−R/2k,0,R/2k,−(R− δ)

]T
as long as the third and the fourth agents remain outside

each others’ confidence intervals, i.e., as long as R/2k +R− δ > R, or equivalently, as long as

k < log2(R/δ). At time k = ⌈log2(R/δ)⌉, however, agents 3 and 4 become neighbors. Thus,

at k = ⌈log2(R/δ)⌉, the influence graph G̃[k] is a connected graph satisfying maxixi[k]−

minj xj [k] = max{R/2k +R− δ,2 ·R/2k} ≤ R. This implies that x∞(x[0]) = c1 for some

c ∈ R. Therefore, ε-convergence requires |xi[k]− c| ≤ ε for i ∈ [n]. By the triangle inequality,

this in turn requires |x3[k]−x4[k]| ≤ 2ε < R which is not satisfied for k < ⌈log2(R/δ)⌉. Hence,

kε(Gph,x[0])≥ ⌈log2(R/δ)⌉. As a result, we have k∗
ε(Gph)≥ supδ∈(0,R/2)⌈log2(R/δ)⌉=∞.

We can generalize the example above to graphs having more than 4 vertices by choosing

the same initial opinions for agents 1 - 4, setting xi[0] = x4[0] for 5≤ i≤ n, and by repeating

the above arguments. Therefore, we may state the following lemma without proof.

Lemma 10. For every n≥ 4, there exists an n-vertex physical connectivity graph Gph such that

k∗
ε(Gph) =∞ for all ε ∈ (0,R/2).
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3.5.1 Underlying Phenomenon

In the example leading to Lemma 10, G̃[0] was a disconnected graph, and we could

indefinitely delay the formation of a link between two connected components of this graph

(namely, the connected components with vertex sets {1,2,3} and {4}) so as to make kε(Gph,x[0])

arbitrarily large. The next proposition will clarify that for any Gph, this is the only way to make

kε(Gph,x[0]) arbitrarily large.

To establish this result, we define two kinds of events that can change the structure of

G̃[k] during opinion evolution.

Definition 34 (Link break). Let Gph = (V,Eph) and let i, j ∈ V . The link (i, j) is said to break

at time k ≥ 1 if i and j are adjacent in G̃[k−1] but non-adjacent in G̃[k]. Additionally, we let

B(i, j) denote the event that the link (i, j) breaks (at the concerned time instant).

Note that a link (i, j) ∈ Eph breaks at time k iff |xi[k−1]−xj [k−1]| ≤R, and |xi[k]−

xj [k]|>R.

Definition 35 (Merging). Let G̃[k0− 1] be a disconnected graph for some k0 ≥ 1, and let

G1(x[k]) = (V1,E1(x[k])) and G2(x[k]) = (V2,E2(x[k])) be two induced subgraphs of G̃[k]

that are disconnected from each other in G̃[k] at time k0−1. Then G1 and G2 are said to merge

at time k0 if there exists a pair of agents (i, j) ∈ V1×V2 such that i and j become neighbors in

G̃ at time k0, i.e., (i, j) ∈ Ẽ(x[k0]).

Besides merging and link breaks, the only kind of event that can alter the structure of G̃

is the formation of a link between two agents belonging to the same component of this graph.

We call these events intra-component link formations.

We now borrow from [96] the definition of a Lyapunov function called energy and that

of a related quantity called active energy.

Definition 36 (Energy). Let G̃[k] = (V [k],E[k]). The energy of the social HK system at time k
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is defined as:

E [k] :=
∑

(i,j)∈E[k]
|xi[k]−xj [k]|2 +

∑
(i,j)/∈E[k]

R2.

Definition 37 (Active energy). Let G̃[k] = (V [k],E[k]). The active energy of the social HK

system at time k is defined as:

Eact[k] :=
∑

(i,j)∈E[k]
|xi[k]−xj [k]|2.

Note that 0≤ E [k]≤ 2
(

n
2

)
R2 for all k ∈ N.

Lemma 11. If B(i, j) occurs at time k+1 for some k ∈ N, then there exist two agents p,q ∈ [n]

such that p ∈Ni[k], q ∈Nj [k], and |xp[k]−xq[k]|>R.

Proof. Suppose the lemma is false, i.e., for every pair (p,q) ∈Ni[k]×Nj [k], we have |xp[k]−

xq[k]| ≤R. Then

|xi[k+1]−xj [k+1]| ≤max
{
| max
q∈Nj [k]

xq[k]− min
p∈Ni[k]

xp[k]|, | max
p∈Ni[k]

xp[k]− min
q∈Nj [k]

xq[k]|
}

≤ max
(p,q)∈Ni[k]×Nj [k]

|xp[k]−xq[k]|

≤R.

The first inequality stems from the fact that HK dynamics are an averaging dynamics and each

agent’s opinion at any time instant is bounded by the minimum and the maximum of his/her

neighbors’ opinions at the previous time instant. The last inequality above implies that agents i

and j are neighbors at time k+1, thereby contradicting the fact that the link (i, j) breaks at time

k+1.

Next, we need to establish that only finitely many link breaks can occur in any opinion

evolution process.
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Lemma 12. The total number of link breaks during the entire process of opinion evolution is

O(n5) regardless of the structure of Gph and the initial state x[0] ∈ Rn.

Proof. Based on Proposition 1 of [96], we have:

E [k]−E [k+1]≥ (1−|λk|2)Eact[k] (3.7)

for k ∈ N, where

λk := {max |λ| : λ ̸= 1 is an eigenvalue of A[k]},

and if we let deff(G) be the largest diameter of any connected component of the graph G, we

have the lower bound

1−|λk|2 ≥
3

2n2deff(G̃[k])
≥ 3

2n3 , (3.8)

which was derived in [82] (see page 517 of [82]). Here, we derive a lower bound on the active

energy. Let i, j ∈ [n] and suppose B(i, j) occurs at time k+1 for some k ∈ N. Then by Lemma

11, we can find two agents p,q ∈ [n] such that p ∈ Ni[k], q ∈ Nj [k], and |xp[k]−xq[k]| > R.

Therefore, by the definition of active energy, we have

Eact[k]≥ |xp[k]−xi[k]|2 + |xi[k]−xj [k]|2 + |xj [k]−xq[k]|2

≥ 1
3 (|xp[k]−xi[k]|+ |xi[k]−xj [k]|+ |xj [k]−xq[k]|)2

≥ 1
3 |xp[k]−xq[k]|2

>R2/3, (3.9)

where the second and the third inequalities follow from the Cauchy-Schwarz and the triangle

inequalities, respectively.

Combining (3.7), (3.8) and (3.9) yields

E [k]−E [k+1]≥ R2

2n3 (3.10)
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which means that the energy of the network decreases every time a link breaks and the decrement

corresponding to each link break is at least R2/2n3. Since E [0]≤ n2R2 and E [k]≥ 0 for k ∈ N,

the maximum possible number of link breaks that can ever occur is at most n2R2

R2/2n3 =O(n5).

The next lemma bounds the maximum possible time interval between two consecutive

link breaks under the condition that no new link is formed during this interval.

Lemma 13. Let GP = (VP ,EP ) be a connected component of G̃[k0] at some time k0 ≥ 0.

Suppose (i) no link break occurs between any two agents of GP until time k1 > k0, (ii) one

or more link breaks occur within GP at time k1, and (iii) no new edge is formed between any

node belonging to VP and any node belonging to [n] during the time interval (k0,k1). Then

k1−k0 =O(n3 logn).

Proof. Assumptions (i) and (iii) of the lemma imply that GP remains a connected compo-

nent of G̃[k] during (k0,k1). It thus follows from Lemma 11 and Assumption (ii) that De :=

maxi∈VP
xi[k1−1]−minj∈VP

xj [k1−1]>R. Hence, De > 0.

Now, consider a hypothetical network N̂ whose vertex set is VP , and whose influence

graph and state at time k are denoted by Ĝ[k] and y[k], respectively. Let D[k] = maxi∈VP
xi[k]−

minj∈VP
xj [k] and let c1VP

be the steady state associated with N̂ corresponding to the initial

state y[0] = xP [k0] (where xP denotes the restriction of x to the coordinates specified by

VP ). In this case, Ĝ[k] achieves De-convergence latest by time ∆ := k1− 1− k0 because

c ∈ [mini yi[∆],maxi yi[∆]] and hence

max
i
|yi[∆]− c|= max

(
c−min

i
yi[∆],max

i
yi[∆]− c

)
≤max

i
yi[∆]−min

i
yi[∆]

= max
i
xP i[∆+k0]−min

j
xP j [∆+k0]

=De.
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Moreover, since GP remains a connected component of G̃[k] during the interval (k0,k1),

our choice of y[0] implies that Ĝ[k] =GP for k ∈ (0,∆]. Thus, by Proposition 7, if there exists

an ε > 0 such that N̂ achieves ε-convergence at time ∆ or earlier, then the said ε-convergence

occurs in O(|VP |3 log |VP |) =O(n3 logn) steps. Since De-convergence occurs latest by time ∆

and since De > 0, we can find an ε ∈ (0,De] such that N̂ achieves ε-convergence precisely at

time ∆. Hence, ∆ =O(n3 logn), which proves the lemma.

We are now ready to show that merging is unavoidable if we desire arbitrarily slow

ε-convergence to the steady state.

Proposition 8. In social HK dynamics, all the link breaks and intra-component link formations

always occur in O(n8 logn) time steps. Hence, if there exists ε > 0 such that k∗
ε(Gph) =∞, then

there exists a set X0 ⊂ Rn such that whenever x[0] ∈ X0, merging occurs at least once during

the process of opinion evolution.

Proof. Let ε > 0 be such that k∗
ε(Gph) =∞. Consider an arbitrary initial state x[0] ∈ Rn. We

now consider two cases in the evolution of the dynamics. The cases are defined in such a way

that merging does not occur in either case.

Case 1: no link formation ever takes places. Then by Lemma 12, we know that at most

O(n5) links break in the opinion evolution process, and by Lemma 13, the maximum possible

time interval between two consecutive link breaks is O(n3 logn). Therefore, the time at which

the last link breaks is at most O(n8 logn). After this point in time, the structure of G̃[k] never

changes. Therefore, for any ε > 0, it takes O(n2 log(n)d(Gph)) additional time steps to achieve

ε-convergence. Hence, kε(Gph,x[0]) =O(n8 logn)+O(n2 log(n)d(Gph)) =O(n8 logn).

Now, consider Case 2: at least one new link is formed during the opinion evolution

but merging never occurs. For r ∈ N\{0}, let tr denote the time at which the r-th set of

simultaneous link breaks occur. Now, suppose an intra-component link formation occurs at

a time k′ ∈ {tl, tl + 1, . . . , tl+1} for some l ∈ N\{0}. Let (i, j) denote this new link. Since no

merging occurs, (i, j) is formed within some connected component G′ of G̃. Thus, we have
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|xi[k′− 1]−xj [k′− 1]| > R and |xi[k′]−xj [k′]| ≤ R. Also, no link formation or link break

during the time interval [tl,k′− 1] implies that G′ is a connected component of G̃[k] for all

k ∈ [tl,k′− 1]. In other words, the influence graph has a connected component that remains

constant during the time interval [tl,k′− 1]. Therefore, it follows from Proposition 7 that

k′− tl =O(n2 logn ·d(G1)) =O(n3 logn).

Having seen that the time elapsed between a link break and the first intra- component

link formation to occur thereafter is O(n3 logn), one can repeat the arguments of the previous

paragraph to show that the time elapsed between two consecutive intra-component link formations

too is O(n3 logn), provided that no link breaks during the elapsed time.

Next, we estimate the maximum number of link formations that can occur in any opinion

evolution process. Note that there are at most n2 links in an n-vertex graph. So, it may

appear that at most n2 link formations can occur. However, every link break gives rise to

the possibility of a link formation. Therefore, the maximum number of link formations is at

most n2 +O(n5) = O(n5). Hence, if all the link breaks and intra-component link formations

were to occur one after the other, then by Lemma 12, all of these events would occur in

O(n5 ·n3 logn+n5 ·n3 logn) = O(n8 logn) steps. On the other hand, it is also possible that

some of these events occur simultaneously, so that the last of them occurs even sooner. After

all the link breaks and link formations, however, the structure of G̃ remains constant and ε-

convergence occurs in O(n3 logn) additional steps. Thus, kε(Gph,x[0]) =O(n8(logn)) in Case

2.

Finally, since k∗
ε(Gph) =∞, there exists a set of initial states X0 ⊂Rn that do not belong

to the above two cases, i.e., a merging event occurs during the evolution of the dynamics started

at those initial states.
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3.5.2 Sufficient Conditions for Arbitrarily Slow Merging

Since the results of the previous subsection imply that arbitrarily slow merging between

two components of Gph is necessary as well as sufficient for arbitrarily slow ε-convergence, it

is essential to analyze the concept of arbitrarily slow merging in order to better understand the

latter concept. In view of this, we provide conditions on the components of Gph that ensure that

the time of merging of the corresponding components of the influence graph is unbounded.

These conditions can be motivated informally as follows. Pick an arbitrary connected

component of Gph and partition it into two induced subgraphs, GP0 and GQ0 . Let 1,2, . . . , l be

the nodes of GP0 that are adjacent to one or more nodes of GQ0 in Gph (see Fig. 3.1). We call [l]

Figure 3.1. Potential Neighbors of GQ0 in GP0

the set of potential neighbors of GQ0 in GP0 because only these nodes of GP0 have the potential

to influence GQ0 . Now, suppose that at time 0, all the agents of GQ0 have the same opinion

R− δ, where δ is a small positive quantity. Then their opinions will remain constant in time as

long as GP0 and GQ0 are disconnected in the influence graph. To ensure that GP0 and GQ0 are

disconnected in G̃[0], let us set all the initial opinions of [l] to some sufficiently negative values

(see Fig. 3.2). This can be done by setting x1[0] = v1,x2[0] = v2, . . . ,xl[0] = vl, where v is an

eigenvector of the normalized adjacency matrix AP0 of GP0 such that v1, . . . ,vl are all negative.

Now, if the corresponding eigenvalue λ is in (0,1), the opinions of GP0 will monotonically

increase and approach 0 as time passes, whereas those of GQ0 will remain constant in time (at

least initially). At a point in time kM , the opinion of some potential neighbor of GQ0 exceeds the
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Figure 3.2. Illustration for the Proof of Proposition 9

confidence threshold −δ (see Fig. 3.2) where GQ0 merges with GP0 . Such an argument shows

that we can make kM arbitrarily large by choosing a sufficiently small δ.

To formalize the above discussion, we need some additional notation. Let VP and VQ

be the vertex sets of GP0 and GQ0 , respectively, and let GP [k] = (VP ,EP [k]) and GQ[k] =

(VQ,EQ[k]) denote the corresponding induced subgraphs of the influence graph G̃[k]. Also, for

a given initial state x0 ∈ Rn, let kM (x0,VP ,VQ) denote the time at which GP and GQ merge

for the first time. If no merging occurs, then we set kM (x0,VP ,VQ) =∞. We then have the

following result.

Proposition 9. Let GP0 and GQ0 be two vertex-disjoint induced subgraphs of Gph (as described

above), and let [l]⊂ VP be the set of potential neighbors of GQ0 in GP0 (as shown in Fig. 3.1).

Suppose the following conditions hold:

1. GP0 is a connected graph.

2. AP0 has an eigenpair (λ,v) such that λ ∈ (0,1), and v1,v2, . . . ,vl are all positive or all

negative (which means that the entries of v corresponding to the potential neighbors of

GQ0 within GP0 are of the same sign).

Then there exists a set XM ⊂ Rn such that kM (x0,VP ,VQ) <∞ holds for all x0 ∈ XM but

supx0∈XM
kM (x0,VP ,VQ) =∞, which means that GP and GQ merge if the dynamics start in

XM , but the merging time is unbounded.
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Proof. W.l.o.g., let VP = {1,2, . . . ,p} and VQ = {p+1,p+2, . . . ,p+q} for some p,q ∈ [n]. Scale

v (outlined in condition (2) of the proposition) suitably so as to satisfy vi < 0 for 1≤ i≤ l and

maxi vi−minj vj ≤ R. Let v0 :=−maxi∈[l] vi. Consider XM = {z ∈ Rn : zP = v,zQ = (R−

δ)1q for some δ ∈ (0,v0)}. Then observe that if x[0]∈XM , then δ ∈ (0,v0) ensures that G̃[0] is a

disjoint union of GP0 and GQ0 (and possibly some other connected components). This is because

all the potential neighbours of GQ in GP , i.e., the nodes 1,2, . . . l, are outside the confidence

interval [−δ,2R− δ] of every agent in VQ, and because maxixP i[0]−minj xP j [0]≤R implies

thatGP0 is an induced subgraph of G̃[0]. Also, note that maxixP i[0]−minj xP j [0]≤R enforces

xP [1] = AP0x[0] = λv.

Now, λ > 0 implies that xP i[1] = λvi < 0 for i ∈ [l]. Therefore, GP and GQ are also dis-

connected from each other in G̃[1] provided δ < λv0. Similarly, for k ≥ 1, we have xP [k] = λkv

implying that GP and GQ remain disconnected from each other as long as δ < λkv0, i.e., for

k < log1/λ(v0/δ). However, since λ < 1, a time is reached when k = ⌈log1/λ(v0/δ)⌉ and conse-

quently, merging occurs, i.e., kM (x[0],VP ,VQ) = ⌈log1/λ(v0/δ)⌉<∞ because the agent having

the opinion maxi∈[l]xP i[k] = −λkv0 enters the confidence interval [−δ,2R− δ] of its poten-

tial neighbor(s) in GQ. Therefore, supx[0]∈XM
kM (x[0],VP ,VQ) = supδ∈(0,v0)⌈log1/λ(v0/δ)⌉=

∞.

3.5.3 Necessary Conditions for Arbitrarily Slow Merging

Having seen a set of sufficient conditions for arbitrarily slow merging, we now try to

derive a set of necessary conditions for a pair of subgraphs of the influence graph to exhibit this

property. To be specific, we seek to identify conditions on Gph to indefinitely delay the merging

of GP [k] and GQ[k] for some induced subgraphs GP0 and GQ0 of Gph?

The sufficient conditions in Proposition 9 provide a good starting point for this. For

simplicity, let us suppose that Condition 1 of this proposition holds (i.e., GP0 is connected), and

let us focus only on Condition 2. Recall that this condition serves two purposes:
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1. At time 0, the sign pattern of v allows the nodes 1, . . . , l (the potential neighbors of GQ) to

be outside the confidence interval [−δ,2R− δ] of GQ as well as to lie on the same side of

this confidence interval.

2. In the limit as k→∞, the requirement λ ∈ (0,1) ensures that the opinions of these nodes

approach 0 monotonically.

As a result, merging occurs exactly when the opinions of the potential neighbors of GQ move

sufficiently close to 0 (i.e., cross the threshold −δ). In this manner, Condition 2 guarantees the

occurrence of the desired merging event while simultaneously allowing us to delay this event

indefinitely.

This discussion motivates us to ask: if Condition 2 is violated, is arbitrarily slow merging

still possible? Can it happen by some other means? As per the intuition described below, the

answer is likely to be ‘no’.

Intuition

Suppose Condition 2 of Proposition 9 is violated. For simplicity, let us consider a special

case: let us assume that all the agents of GQ0 have the same initial opinion, say R, so that the

state of GQ[k] is fixed until the merging time kM = kM (x[0],VP ,VQ). In addition, let us assume

that the initial state xP [0] of GP can be expressed as a linear combination of the eigenvectors

of AP0 corresponding to eigenvalues having distinct magnitudes, i.e., xP [0] = c01 +∑m
j=2 vj

for some c0 ∈ R, where {(λj ,vj)}mj=2 is a set of eigenpairs of AP0 satisfying |λ2|> · · ·> |λm|.

Finally, suppose GP [k] remains constant and connected until it merges with GQ. Then, observe

that the state of GQ evolves as xP [k] = c01 +∑m
j=2λ

k
j vk for k ∈ [0,kM ), implying that the

opinion of every agent of GP moves closer to c0 with time (because |λj |< 1 by Lemma 9).

Now, the confidence interval of every agent of GQ[0] is [0,2R]. So, if c0 is very far from

[0,2R], then GP may never merge with GQ (because xP [k] moves closer to c01 with time). On

the other hand, if c0 is close to the midpoint R of [0,2R], then merging is likely to occur when
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GP achieves R-convergence to c01. So, by Proposition 7, kM is likely to be bounded in this

case. Therefore, we assume that either |c0−0| or |c0−2R| is very small.

Next, since the eigenvalues have distinct magnitudes, we have
∑m

j=2λ
k
j vj ≈ λk

2v2 for

sufficiently large k, i.e., the eigenvector v2 dominates the difference vector xP [k]− c01. Since

we are examining the boundedness of merging time kM , kM can be assumed to be much greater

than the time around which v2 dominates the difference vector. Thus, we may ignore the effects

of other eigenvectors on xP [k].

With these approximations, if λ2 > 0, then the violation of Condition 2 of Proposition 9

is likely to imply that (xP [k])[l] has entries on either side of c0 (i.e., it has some entries that are

less than c0 as well as some entries that are greater than c0). Since c0 is very close to either 0

or 2R (say, c0 is close to 0), then this means that at least a few of the nodes 1, . . . , l are likely

to be within the confidence interval [0,2R] of GQ (because their opinions are greater than c0),

implying that merging occurs as soon as v2 becomes dominant.

On the other hand, if λ2 < 0, then every non-zero entry of xP [k]− c01≈ (−1)k|λ2|kv2

keeps flipping its sign as k increases, meaning that the potential neighbors’ opinions keep

oscillating about c0. Once again, since c0 is very close to 0 or 2R, this suggests that GP will

merge with GQ as soon as v2 begins to dominate.

Hence, the only way to indefinitely delay merging is to indefinitely delay the emergence

of v2 as the dominant vector. One way to do so is to scale down v2 appropriately so that its entries

becomes negligible relative to those of some other eigenvector vj (where j ≥ 3). However, this

would result in vj dominating xP [k]− c01 for small values of k, in which case we can simply

repeat the above arguments to show that the domination of vj would lead to immediate merging.

The above discussion suggests that arbitrarily slow merging is possible only if Condition

2 of Proposition 9 is violated. We state this formally in Lemma 16. However, in order to prove

this lemma, we need to extend our intuition to account for more general initial conditions.
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Extension to More General Initial States

Above, we argued that if Condition 2 of Proposition 9 is violated, and if there exists a

dominant eigenpair (λ,v), then the sign of λ and the sign pattern of v would possibly imply

that some potential neighbors of GQ would have opinions that are less than c0, and some whose

opinions would exceed c0 (both of which happen only periodically if λ< 0). Thus, both (−∞, c0)

and (c0,∞) get occupied by the opinions of [l]. This insight suggested that the merging time is

bounded, which is enabled by the fact that the eigenvalues are distinct in magnitude and hence,

we have just one dominant eigenvector and ignore the rest.

For an arbitrary xP [0] ∈ R|VP |, we have xP [0] = c01 +∑τ
i=2aivi for some c0 ∈ R, τ =

|VP | and ai ∈ {0,1} , where (λi,vi) are the eigenpairs of AP0 ordered as |λ2| ≥ |λ3| ≥ · · · ≥ |λτ |

but with possible repetitions in these absolute values. In this setting, v2 may not necessarily

dominate xP [k]− c01 for large k. This is because the following cases may arise.

Case 1: λ2 = λ3 = · · ·= λm for some m≤ τ , and |λm|> |λm+1| if m< τ . In this case,

we can simply combine v2, . . . ,vm into a single eigenvector v′
2 =∑m

j=2ajvj , and observe that v′
2

dominates xP [k]− c01 for large k.

Case 2: λ2 = · · ·= λs =−λs+1 = · · ·=−λm for some s < m≤ τ , and |λm|> |λm+1|

if m < τ . W.l.o.g. suppose λ2 > 0. Then we can combine the contributions of v2, . . . ,vs by

setting v+
2 :=∑s

j=2ajvj . Similarly, we set v−
2 :=∑m

j=s+1ajvj , and observe that for sufficiently

large k, we have xP [k]− c01≈ λk
2v

′
2 for even k, whereas xP [k]− c01≈ λk

2v
′′
2 for odd k, where

v′
2 := v+

2 +v−
2 and v′′

2 := v+
2 −v−

2 .

We use such combinations of the eigenvectors of AP0 to rigorously address the problem

at hand. In addition, we need to consider the transient phases of opinion evolution during which

combinations of some other eigenvectors (those corresponding to smaller |λi|) may dominate.

To address this, the comparison between ∥(v2)[l]∥, . . . ,∥(vτ )[l]∥ becomes important. For these

purposes, we introduce the Elimination Method below.
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The Elimination Method

Let {λi}τi=1 ⊂ R, {ui}τi=1 ⊂ Rn and l ∈ [n] be fixed, and let S[k] :=∑τ
i=1λ

k
i ui for each

k ∈ N, so that S[k] has the same form as xP [k]− c01 had in the preceding subsection. Then the

Elimination Method entails the following:

1. Find a minimal set of real numbers, {µi}mi=1, such that {λi}ni=1 = {±µi}mi=1∪{0}, and

µ1 > · · ·> µm > 0. Distinguishing between the magnitudes of {λi}ni=1 helps us identify

the dominant vector combinations.

2. For each i ∈ [m], find νi,σi ∈ [τ ] satisfying λνi = µi = −λσi , and define u+
i := uνi and

u−
i := uσi . If no such νi (respectively, σi) exists, then set u+

i = 0 (respectively, u−
i = 0).

3. For i∈ [m], define αi = maxj∈[l] |u+
ij +u−

ij | and ζi = maxj∈[l] |u+
ij−u

−
ij |. Further, define vi

by: vi :=
(
u+

i +u−
i

)
/αi if αi ̸= 0 and vi := 0 otherwise. Likewise, let zi :=

(
u+

i −u
−
i

)
/ζi

if ζi ̸= 0 and let zi := 0 otherwise. This is analogous to defining v′
2 and v′′

2 (as above),

finding the infinity-norms and normalizing them with respect to the evaluated norms.

4. If αi = ζi = 0, discard µi from {µj}mj=1, decrement the value of m by 1, and re-enumerate

{µj}mj=1 so that µ1 > µ2 > · · · > µm. This helps us remove redundant terms from the

summation.

The following observations illustrate the rationale behind the above method. First, we have the

following for every j ∈ [l]:

Sj [k] =
m∑

i=1
αiµ

k
i vij ∀ k ∈ N : k is even,

Sj [k] =
m∑

i=1
ζiµ

k
i zij ∀ k ∈ N : k is odd. (3.11)

Hence, the vectors, {vi}mi=1 and {zi}mi=1 will be called even-k vectors and odd-k vectors re-

spectively. Second, {(µi,vi)}mi=1 and {(µi, zi)}mi=1 behave like sets of eigenpairs with distinct
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eigenvalue magnitudes. Third, if we restrict our attention to the first l entries alone, then

v1, . . . ,vm and z1, . . . , zm have the same ‘strength’, because ∥(zi)[l]∥ = ∥(vi)[l]∥ = 1 for each

i ∈ [m]. Thus, the scaling of these vectors is completely captured by {αi} and {ζi}. Finally, note

that at least one of {αi, ζi} is comparable to ∥(u+
i )[l]∥ because Triangle Inequality yields

∥(2u+
i )[l]∥ ≤ ∥(αivi)[l]∥+∥(ζizi)[l]∥= αi + ζi. (3.12)

Let us now put the Elimination Method in the context of arbitrarily slow merging. Recall the

notation of the previous subsection, and suppose xj [k]− c0 = Sj [k] for all j ∈ VP . Then, going

by our earlier arguments, in order to show that Condition 2 of Proposition 9 is necessary for

arbitrarily slow merging, it seems enough to show that vr and zr̃ collectively have significant

positive and negative elements, where vr (respectively, zr̃) is the vector that dominates S[k] for

even k (respectively, for odd k). This idea motivates the following lemma, which plays a key

role in the proof of Lemma 15.

Lemma 14. Suppose we have performed the Elimination Method on {Sj [k]}lj=1 (defined above).

Also, suppose that for every pair (λi,ui) satisfying λi > 0 and (ui)[l] ̸= 0, we have maxp∈[l]uip >

0, minp∈[l]uip < 0 and |maxp∈[l]uip|/|minq∈[l]uiq| ≥ γ0, where γ0 ∈R+ is a constant. Further,

for each i ∈ [m], let p(i) := argmaxj∈[l] vij , and p̃(i) := argmaxj∈[l] zij . Then for every i ∈ [m],

we have

max
(
vip(i), zip̃(i)

)
≥ γ̂0,

where γ̂0 := γ0
2+γ0

. Furthermore, if vip(i) < γ̂0 (respectively, zip̃(i) < γ̂0), then ζi/αi ≥ γ̂0 (respec-

tively αi/ζi ≥ γ̂0).

Proof. Consider any i ∈ [m] and let q(i) := argminl
j=1 vij and q̃(i) := argminl

j=1 zij .

Now, two possibilities arise: either (u+
i )[l] = 0 or (u+

i )[l] ̸= 0. If (u+
i )[l] = 0, then

(vi)[l] = −(zi)[l]. Hence, either vip(i) ≥ |viq(i)| or zip̃(i) ≥ |ziq̃(i)|. Since it turns out that

max
(
maxf∈[l] |vif |,maxf∈[l] |zif |

)
= 1 ≥ γ̂0 due to the Elimination Method, we infer that

78



max
(
vip(i), zip̃(i)

)
≥ γ̂0.

On the other hand, if (u+
i )[l] ̸= 0, then µi = λνi for some νi ∈ [τ ]. Hence, maxf∈[l]u

+
if > 0

and |maxf∈[l]u
+
if |/|minf∈[l]u

+
if | ≥ γ0. In the light of Lemma 19, this implies that either

αivip(i) > 0 and |vip(i)| ≥ γ̂0|viq(i)|, (3.13)

or

ζizip̃(i) > 0 and |zip̃(i)| ≥ γ̂0|ziq̃(i)|. (3.14)

If (3.13) holds, then as a result of the Elimination Method, we have 1 = maxf∈[l] |vif | =

max
(
|vip(i)|, |viq(i)|

)
. Since αi ≥ 0, this means that either |vip(i)| = 1 ≥ γ̂0, or |vip(i)| ≥

γ̂0|viq(i)| = γ̂0. Thus, |vip(i)| ≥ γ̂0 in either subcase. Similarly, (3.14) leads to the conclusion

that |zip̃(i)| ≥ γ̂0.

For the second part, suppose vip(i) < γ̂0. Then zip̃(i) ≥ γ̂0 by the first assertion. We now

consider two cases.

Case (a): maxf∈[l] |vif |= 0, implying that αi = 0. By (3.14), ζi ̸= 0. Thus, ζi/αi =∞>

γ̂0.

Case (b): maxf∈[l] |vif | > 0. Then maxf∈[l] |vif | = 1 due to the Elimination Method.

Furthermore, γ̂0 < 1 by the definitions of γ0 and γ̂0. Now, the assumption vip(i) < γ̂0 and the

facts maxf∈[l] |vif | = 1, γ̂0 < 1 and maxf∈[l] |vif | = max(|vip(i)|, |viq(i)|) together imply that

|viq(i)|= 1. Consequently, vip(i) < γ̂0|viq(i)|. Therefore, by Lemma 19,

ζizip̃(i) ≥
γ0|αiviq(i)|−max

(
αivip(i),0

)
γ0 +1

=
γ0αi−max

(
αivip(i),0

)
γ0 +1 .
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If vip(i) ≤ 0, then the above yields:

ζi

αi
≥ γ0

(γ0 +1)zip̃(i)
≥ γ0
γ0 +1 > γ̂0

because 0< zip̃(i) ≤maxf∈[l] |zif |= 1. On the other hand, if vip(i) > 0, then

ζi

αi
≥
γ0−vip(i)
γ0 +1 >

γ0− γ̂0
γ0 +1 = γ̂0.

When Lemma 14 is applied to (λi,ui) and (λi,−ui), it effectively means that under

conditions similar to the violation of Condition 2 of Proposition 9, vi and zi collectively have

significant positive and negative elements.

A Preliminary Result

We are now ready to make the above arguments precise and prove that Condition 2 of

Proposition 9 is nearly necessary for arbitrarily slow merging. We first state this result formally.

Lemma 15. For every initial state x[0] ∈ Rn, let GP [k] = GP (x[k]) = (VP ,EP (x[k])) and

GQ[k] = GQ(x[k]) = (VQ,EQ(x[k])) be two vertex-disjoint induced subgraphs of G̃[k] such

that GP0 , the subgraph of Gph induced by VP , is connected. Also, let X denote the set of all

x[0] ∈ Rn satisfying assumptions below:

(a). All the agents of GQ[0] have the same opinion value, i.e., xi[0] = xQ for all i ∈ VQ, where

xQ ∈ R is constant in time but depends on x[0].

(b). kM (x[0],VP ,VQ)<∞, i.e., GP and GQ indeed merge.

(c). GP [k] is connected and constant until time kM .

Furthermore, for some l ∈ R, let [l] index the set of nodes of GP [0] that are adjacent to one or

more nodes of GQ[0] in the graph Gph, as shown in Fig. 3.3.
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Now, suppose supx[0]∈X kM (x[0]) =∞. Then AP0 has an eigenpair (λ,v) such that

0< λ < 1, vi ̸= 0 for some i ∈ [l], and vivj ≥ 0 for all i, j ∈ [l].

Figure 3.3. Illustration for the Proof of Lemma 15

We prove this lemma by showing that it is mathematically equivalent to Lemma 16, a

purely technical result. To this end, suppose all the agents of GQ have the same initial opinion

xQ = R, and that Assumption (b). of Lemma 15 holds. Then, we can express the opinion

evolution of GP during the interval [0,kM ) as xP [k] = c01 +∑τ
i=1λ

k
i ui, where c0 ∈ R, and

{(λi,ui)}τi=1∪{(1,1)} are the eigenpairs of AP0 . Now, as per Fig. 3.3, the lower confidence

threshold of GQ is xQ −R. Thus, GP and GQ merge at time kM iff the following hold:

xP [k]< (xQ−R)1 for all k < kM , and xj [kM ]≥ xQ−R for some j ∈ [l]. These relations are

equivalent to:

τ∑
i=1

λk
i uij < δ for all 1≤ k < kM and all j ∈ [l], (3.15)

and

τ∑
i=1

λkM
i uit ≥ δ for some t ∈ [l], (3.16)
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where δ := xQ−R− c0 (see Fig. 3.3). Note that δ may or may not be positive. Also, for any i,

the eigenvector ui need not even be unique up to a scaling factor because λi can be a repeated

eigenvalue of AP0 . Nevertheless, ui is constrained to belong to Ui, the λi-eigenspace of AP0 .

In light of the above, arbitrarily slow merging is equivalent to supK =∞, where K is

the set of all merging times that satisfy the above relations. This motivates the next lemma.

Lemma 16. Let {λi}τi=1 and {Ui}τi=1 be such that |λi| < 1 and Ui is a linear subspace of Rl

for each i ∈ [τ ], where l ∈ N. Further, suppose λf > 0 for some f ∈ [τ ]. Let K be the set of

all kM ∈ N such that (3.15) and (3.16) hold for some δ ∈ R and some (u1, . . . ,uτ ) ∈∏τ
i=1Ui.

If supK =∞, then there exists a d ∈ [τ ] such that λd > 0, and there exists a corresponding

non-zero vector v ∈ Ud such that vivj ≥ 0 for all i, j ∈ [l].

To put it simply, Lemma 16 asserts that if we wish to have arbitrarily slow merging

between an evolving network GP and a static network GQ, then Condition 2 of Proposition 9

must be satisfied, except for the possible presence of zeros in the concerned eigenvectors.

Proof of Lemma 16

We first sketch the proof outline below:

1. Suppose that supK =∞ but the implication of the lemma does not hold. Then, for

any f ∈ [τ ] such that λf > 0, every uf ∈ Uf has significant positive and negative elements (by

Lemma 18). We use this observation later on.

2. As time goes by, only one of the component vectors of
∑

iλ
k
i ui remains significant.

Typically, this is the one corresponding to the largest |λi|. However, this is not necessary because

of possible repetitions in {|λi|}τi=1 and because the norms of {ui}τi=1 may not be comparable

to each other. To resolve these two issues, we perform the Elimination method and obtain

xj [k]− c0 = Sj [k], where Sj [k] is given by (3.11).

3. To use the assumption supK =∞ effectively, we define ρs1, ρs2, and a few more

auxiliary quantities in terms of {αi}mi=1,{vi}mi=1,{zi}mi=1 and {ζi}mi=1, and consider an increasing
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sequence of merging times {k(h)
M }∞h=1. We then try to identify the most dominant vector among

{vi}mi=1 by identifying an index r such that for h ∈ N:

α(h)
r ≥ α

(h)
i

ρ
(h)
r1

for some ρ(h)
r1 > 0 and all 1≤ i < r, and

α(h)
r ≥ ρ(h)

r2 α
(h)
i for some ρ(h)

r2 > 0 and all r < i≤m,

where limh→∞ ρ
(h)
r1 = 0 but limh→∞ ρ

(h)
r2 > 0. The rationale is that for large h and large k,

the relations ρ(h)
r2 > 0 and µk

r ≫ ·· · ≫ µk
m guarantee the domination of vr over vr+1, . . . ,vm,

whereas ρ(h)
r1 ≈ 0 ensures that vr dominates v1, . . . ,vr−1. Similarly, we identify zr̃, the most

dominant vector among {zi}mi=1.

4. We then use (3.15) and (3.16) to show that, along the sequence {k(h)
M }∞h=1, the greatest

positive entry vrp of vr is eventually insignificant. Similarly, the greatest positive entry zr̃p̃ of zr̃

is eventually insignificant.

5. We use the above observation along with Lemma 14 to reach a contradiction.

We now prove the lemma by following this proof outline.

Proof. Suppose that supK = ∞ and that for every d ∈ [τ ] such that λd > 0, every vector

v ∈ Ud \{0} has both positive and negative entries.

Step 1: If λd > 0, then by Lemma 18 and the above assumption, there exists a positive con-

stant γd that lower bounds the ratios |maxp∈[l] vp|/|minq∈[l] vq| and |minp∈[l] vp|/|maxq∈[l] vq|

for all v ∈ Ud \ {0}. Hence, the positive constant γ0 := mind∈[τ ]:λd>0 γd lower bounds these

ratios for every d ∈ [τ ] for which λd > 0. Thus, every vector lying in Ud \{0} has significant

positive and negative entries.

Step 2: We now perform the Elimination Method so as to obtain the values of {αi}mi=1,

{ζi}mi=1, {vi}mi=1 and {zi}mi=1 for which Sj [k] = ∑τ
i=1λ

k
i uij satisfies (3.11). Here we make a

few observations. First, µi < 1 for all i ∈ [m] because |λi|< 1 for all i ∈ [m]. Second, if kM is
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even and kM ≥ 4, then (3.15) and (3.16) imply that αi > 0 for some i ∈ [m]. W.l.o.g., we assume

that kM is even from now onwards.

Step 3: We let γ̂0 := γ0/(2 +γ0), and for each s ∈ [m] that satisfies αs > 0, we define

the following quantities:

ρs1 = max
i≤s−1

αi

αs
, ρs2 = min

i≥s

αs

αi
,

p(s) ∈ argmax
j∈[l]

vsj , q(s) ∈ argmin
j∈[l]

vsj ,

vs0 =


vsp(s), if vsp(s) ≥ γ̂0

1, otherwise
, and

τs = vs0
maxr∈[l] (

∑m
i=s |vir|)

.

Similarly, for each s ∈ [m] satisfying ζs ̸= 0, we define:

ρ̃s1 = max
i≤s−1

ζi

ζs
, ρ̃s2 = min

i≥s

ζs

ζi
,

p̃(s) ∈ argmax
j∈[l]

zsj , q̃(s) ∈ argmin
j∈[l]

zsj ,

zs0 =


zsp̃(s), if zsp̃(s) ≥ γ̂0

1, otherwise
, and

τ̃s = zs0
maxr∈[l] (

∑m
i=s |zir|)

.

We also let ρ11 = 0 if α1 > 0 and ρm2 = 1 if αm > 0. Similarly, ρ̃11 = 0 if ζ1 > 0 and ρ̃m2 = 1 if

ζm > 0.

With the above, we can easily show that τs ∈ [ γ̂0
n ,1].

We now analyze the evolution of the quantities defined above as kM →∞. Consider

any sequence, {y(h)}∞h=1 = {(u(h)
1 , . . . ,u

(h)
τ , δ(h))}∞h=1, of variables associated with an increasing

and unbounded sequence of solutions {k(h)
M }∞h=1 ⊂ K. Since m <∞, there exists an index
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Me ∈ [m] and a subsequence {y(hg)}∞g=1 of the original sequence {y(h)}∞h=1 such that Me ∈

argmaxi∈[m]α
(hg)
i (where α(h)

i := αi(y(h))), for all g ∈ N. Pick such a subsequence and relabel

it as {y(h)}∞h=1, so that 0≤ α(h)
i /α

(h)
Me
≤ 1 for all i ∈ [m]. Now that {α(h)

i /α
(h)
Me
}∞h=1 is bounded

for each i ∈ [m], we may assume (by passing to yet another subsequence if necessary) that

ηi := limh→∞α
(h)
i /α

(h)
Me

exists for each i ∈ [m].

Now, let r= min{i∈ [m] : ηi > 0}. Then ηb = 0 for b∈ [r−1] and hence, limh→∞ ρ
(h)
r1 =

0 whereas limh→∞ ρ
(h)
r2 = ηr > 0. Thus, for sufficiently large h, we have:

ηr/2< ρ
(h)
r2 ≤ 3ηr/2, (3.17)

k
(h)
M is large enough, and ρ(h)

r1 is small enough (as will be made precise later). Moreover, since

µk
r ≫ µk

r+1≫ ·· · ≫ µk
m for large k, we observe that vr dominates Sj [2k] for large k.

Step 4: Our next goal is to show that

v
(h)
rp(r) < γ̂0. (3.18)

for sufficiently large h. To this end, we restrict our focus to even values of k, assume that h is

sufficiently large, and drop the superscript (h) to reduce clutter in notation. Since the detailed

proof of (3.18) is tedious, we relegate it to Appendix C and only present the informal argument

below.

Suppose vrp ≥ γ̃0, implying that vrp is significant. Then for even k(h)
M and positive

δ, (3.16) would imply that µ
k

(h)
M

r vrp ≥ δ, which would mean that vrp≫ δ because k(h)
M ≫ 1 for

large h. However, this likely implies that
∑τ

i=1λ
k
i uip ≈ µk

rvrp ≥ µkM
r vrp ≥ δ for large k < kM ,

thereby violating (3.15). Thus, our assumption that vrp ≥ γ̃0 was wrong. This proves (3.18).

Next, we establish the following odd-k analog of (3.18):

zr̃p̃(r̃) < γ̂0, (3.19)
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where we have defined Mo := argmaxi∈[m] ζ
(h)
i , η̃i := limh→∞ ζ

(h)
i /ζ

(h)
Mo

, and r̃ := min{i∈ [m] :

η̃i > 0} analogous to Me, ηi, and r, respectively. Please see 3.6.3 for further details.

Step 5: Note that (3.18), (3.19), and Lemma 14 imply that r ̸= r̃. We may assume

that r < r̃ because the case r > r̃ can be handled similarly. Then by the definition of r̃, we

have limh→∞ ζ
(h)
r /ζ

(h)
r̃ = 0. Furthermore, by applying Lemma 14 to both r and r̃, we obtain

min(α(h)
r̃ /ζ

(h)
r̃ , ζ

(h)
r /α

(h)
r )≥ γ̂0. Therefore,

lim
h→∞

α
(h)
r̃

α
(h)
Me

= lim
h→∞

α
(h)
r̃

ζ
(h)
r̃

· ζ
(h)
r̃

ζ
(h)
r

· ζ
(h)
r

α
(h)
r

· α
(h)
r

α
(h)
Me

≥ γ̂0 ·∞ · γ̂0 ·ηr =∞

because ηr > 0 by our definition of r. But this contradicts the definition of Me, thereby proving

the lemma.

By proving Lemma 16, we have effectively proven Lemma 15. So, the next step is to

extend Lemma 15. To this end, we eliminate the assumption that the opinions of GQ remain

constant until the desired merging event occurs. To analyze the resulting scenario, we make a

few observations:

1. Since we now allow both GP and GQ to have changing opinions, we not only need to

focus on the potential neighbors of GQ in GP , but also on the potential neighbors of GP in GQ.

Let us assume for simplicity that {VP ,VQ} is a partition of [n], the vertex set of Gph. Then, from

the viewpoint of Gph, the potential neighbors are precisely the boundary nodes of GP and GQ.

2. The merging time kM (x[0],VP ,VQ) depends not on the absolute opinions of the

agents but rather on the differences between the opinions of the agents of GP and GQ. So, it

is sufficient to observe the opinion evolution of GP from the reference frame of the boundary

nodes of GQ. To elaborate, suppose for simplicity that there are exactly b boundary nodes

in GP0 and GQ0 each, and that there are exactly b boundary edges {(ie, je)}be=1 ⊂ VP ×VQ
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between the two subgraphs. Then, instead of analyzing {xie [k]}be=1, the absolute opinions

of the nodes {ie}be=1, we may analyze {xie [k]−xje [k]}be=1, their opinions relative to {je}be=1.

Now, observe that we can express the vector [xi1 [k], . . . ,xib[k]]T as a linear combination of the

eigenvectors of AP0 after restricting these eigenvectors to the coordinates specified by {ie}be=1.

We can do the same for [xj1 [k], . . . ,xjb[k]]T . Hence, we can express the relative opinion vector

[xi1 [k]− xj1 [k], . . . ,xib
[k]− xjb

[k]]T as a linear combination of the eigenvectors of AP0 and

those of AQ0 after restricting them to the coordinates specified by the boundary nodes. This

motivates the concept of boundary-restricted eigenvectors, which we formally define below.

Suppose GP0 = (VP ,EP0) and GQ0 = (VQ,EQ0) are two induced subgraphs of Gph such

that VP ∩VQ = ∅. Let {(ie, je)}be=1 ⊂ VP ×VQ be the set of boundary edges of {GP0 ,GQ0} in

Gph (i.e., the set of edges connecting GP0 with GQ0 in Gph), and let {1}∪{λd}md=1 be the union

of the spectra of AP0 and AQ0 (such that λd ̸= 1 for all d ∈ [m]). Further, for each d ∈ [m], let

Ud(P ) (respectively, Ud(Q)) be the eigenspace of λd with respect toAP0 (respectively,AQ0) if λd

is an eigenvalue of AP0 (respectively, AQ0), and let Ud(P ) = {0} (respectively, Ud(Q) = {0}),

otherwise. Finally, for each d ∈ [m], let fP
br(u) := [ui1 . . . uib

]T for all u ∈ Ud(P ), and let

fQ
br(w) := [wj1 . . . wjb

]T for all w ∈ Ud(Q). Note that the dimensions of fP
br(u) and fQ

br(w)

equal b for all u ∈ Ud(P ) and w ∈ Ud(Q).

Definition 38. For each d ∈ [m], the boundary-restricted eigenspace of λd associated with

{GP0 ,GQ0} is the set ÛP Q
d := ÛP

d + ÛQ
d , where ÛP

d := span({fP
br(v) : v ∈ Ud(P )}) and ÛQ

d :=

span({fQ
br(v) : v ∈Ud(Q)}). For any v ∈ ÛP Q

d , we refer to v as a boundary-restricted eigenvector

of {GP0 ,GQ0} corresponding to the eigenvalue λd, and we refer to (λd,v) as a boundary-

restricted eigenpair of {GP0 ,GQ0}.

Finally, we let kM (x[0]) denote the time at which GP [k] and GQ[k] merge for the first

time.

Proposition 10. For every initial state x[0] ∈ Rn, let GP [k] =GP (x[k]) = (VP ,EP (x[k])) and
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GQ[k] = GQ(x[k]) = (VQ,EQ(x[k])) be the induced subgraphs of G̃[k] corresponding to VP

and VQ, respectively, and let X denote the set of all x[0] ∈ Rn satisfying the assumptions below:

(i). kM (x[0])<∞, i.e., GP indeed merges with GQ.

(ii). GP [k] and GQ[k] are connected graphs for 0≤ k < kM (x[0]).

(iii). No link breaks occur in GP [k] or GQ[k] until time kM (x[0]).

Suppose supx[0]∈X kM (x[0]) =∞. Then there exists an index d ∈ [m] and a corresponding

boundary-restricted eigenpair (λd, v̂) of {GP0 ,GQ0} such that λd ∈ (0,1), v̂[b] ̸= 0, and v̂ev̂f ≥ 0

for all e,f ∈ [b].

Proof. Since no link break occurs within GP [k] or GQ[k] until they merge, both of them remain

connected in G̃[k] until kM (x[0]). Moreover, since supx[0]∈X kM (x[0]) =∞, and because all

the intra-component link formations taking place in G̃[k] occur in O(n8 logn) steps as per

Proposition 8, we may choose an x[0] ∈ Rn such that kM (x[0]) is large enough, and GP [k]

and GQ[k] both remain constant and connected during a time interval [kc,kM (x[0])) for some

kc < kM (x[0]). As a result, we may further assume that the sub-networks of Gph corresponding

to GP0 and GQ0 achieve R/4-convergence to their respective consensus states at some time

kR ∈ [kc,kM (x[0])). We now shift the origin of our time axis to kR, thus obtaining GP [0] =GP0

and GQ[0] =GQ0 .

Now, we express the initial states of GP and GQ as

xP [0] = cP 1P +
m∑

d=1
βP

d v
P
d

xQ[0] = cQ1Q +
m∑

d=1
βQ

d v
Q
d ,

where cP , cQ ∈ R depend on our choice of xP [0] and xQ[0], and the vectors are chosen such that

for each d∈ [m], vP
d (respectively, vQ

d ) is an eigenvector ofAP0 (respectively,AQ0) corresponding
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to λd iff λd is an eigenvalue of AP0 (respectively, AQ0) and vP
d = 0 (respectively, vQ

d = 0)

otherwise. This is possible because AP0 and AQ0 are diagonalizable by Lemma 8. In addition,

we assume that {vP
d }md=1 \{0} and {vQ

d }md=1 \{0} are bases of eigenvectors for AP0 and AQ0 ,

respectively.

Next, let {(ie, je)}be=1 ⊂ VP ×VQ enumerate the set of boundary edges of {GP0 ,GQ0}

in Gph. Note that assumption (3.5.3) requires |xie [k]−xje [k]| > R for all e ∈ [b] and 0 ≤ k <

kM := kM (x[0]), and |xit [kM ]−xjt [kM ]| ≤ R for some t ∈ [b]. Now, for a given e ∈ [b], we

could either have

xie [k]−xje [k]>R, or (3.20)

xje [k]−xie [k]>R (3.21)

for a particular k ∈ [0,kM ). Suppose (3.20) holds at some k1 ∈ [0,kM ) and (3.21) at some k2 ∈

[0,kM ). Then max(xie [k1]−xie [k2],xje [k2]−xje [k1])>R. But this contradicts the assumption

that both GP and GQ have achieved R/4-convergence to their respective consensus states at

time 0. Therefore, for a given e ∈ [b], if (3.20) holds for some k ∈ [0,kM ), then it must hold for

all k ∈ [0,kM ). Similarly, we can show that for a given k ∈ [0,kM ), if (3.20) holds for some

e ∈ [b], then it must hold for all e ∈ [b]. The same applies to (3.21). Hence, w.l.o.g., we assume

(3.21) for all e ∈ [b] and all 0≤ k < kM .

Now, for each d ∈ [m], let v̂d := [v̂d1 . . . v̂db]T , where v̂de = βP
d vdie−β

Q
d vdje for e ∈ [b].

Further, let δ := cQ−R− cP . With these definitions and the assumption given by (3.21), we can

express assumption (3.5.3) of the proposition as:

m∑
d=1

λk
dv̂de < δ for all 0≤ k < kM and all e ∈ [b],

and
∑m

d=1λ
kM
d v̂dt ≥ δ for some t ∈ [b]. Since |λd| < 1 for all d ∈ [m] and maxdλd > 0 by

Lemma 9, and since (v̂1, . . . , v̂m) ∈ ∏m
d=1 Û

P Q
d , the assertion of Proposition 10 now follows
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immediately from Lemma 16.

3.5.4 Graphs with Finite Maximum ε-Convergence Time

In this section, we show that the ε-convergence time of a complete r-partite graph is

bounded. We first define complete r-partite graphs below.

Definition 39 (Complete r-Partite Graph). An undirected graph G = (V,E) is said to be a

complete r-partite graph if its vertex set, V admits a partition {V1, . . . ,Vr} such that (i, j) ∈ E

iff (i, j) /∈ ∪r
l=1V

2
l .

We now characterize the eigenvectors of the normalized adjacency matrix of a complete

r-partite graph with self-loops. To this end, suppose G= ([n],E) is a complete r-partite graph

for some n ∈ N. Let G have all the n self-loops, let A ∈ Rn×n be the normalized adjacency

matrix ofG, and let ni := |Vi| ≥ 1 for i∈ [r]. For each i∈ [r], let Vi = {Ni−1 +1, . . . ,Ni}, where

Nj :=∑j
i=1ni for j ∈ [r] and N0 := 0. Finally, we define a matrix B ∈ Rr×r by:

Bij :=


(n−ni +1)−1 if j = i

nj(n−ni +1)−1 if j ̸= i

,

and let {w(i)}qi=1 be an eigenvector basis for B with {λ(i)}qi=1being the corresponding eigenval-

ues. We then have the following lemma.

Lemma 17. The matrices A and B (as described above) have the following properties:

(i) For each i ∈ [r] such that ni ≥ 2 and each t ∈ {2, . . . ,ni}, the vector v(i,t) ∈ Rn, defined

as:

v
(i,t)
j :=



+1, if j =Ni−1 +1

−1, if j =Ni−1 + t

0, otherwise

,

90



is an eigenvector of A corresponding to 1/(n−ni + 1). Moreover, the set U1 := {v(i,t) :

2≤ t≤ ni, i ∈ [r]} is a set of linearly independent vectors.

(ii) For each i ∈ [q], the vector ṽ(i) ∈ Rn, defined as ṽ(i)
p = w

(i)
j for all p ∈ Vj and j ∈ [r], is

an eigenvector of A corresponding to λ(i).

(iii) The eigenvectors of B span Rr, i.e., q = r.

(iv) If λ(i) ̸= 1, then λ(i) ≤ 0 for all i ∈ [r].

(v) U := ∪r
j=1{v(j,t) : 2≤ t≤ nj}∪{ṽ(i)}ri=1 is an eigenvector basis for A.

Proof. Observe that for all p ∈ [r], the degree of each vertex in Vp, with its self-loop counted, is

n−np +1. Hence, given i ∈ [r], for all p ∈ [r]\{i} and j ∈ Vp, we have:

(Av(i,t))j = (n−np +1)−1
(
v

(i,t)
Ni−1+1 +v

(i,t)
Ni−1+t

)
= 0 = (n−np +1)−1v

(i,t)
j .

Next, if j =Ni−1 +1, then

(Av(i,t))j = (n−ni +1)−1v
(i,t)
Ni−1+1 +0 ·v(i,t)

Ni−1+t

= (n−ni +1)−1v
(i,t)
j .

Similarly, (Av(i,t))j = v
(i,t)
j /(n− ni + 1) also holds for j = Ni−1 + t. Finally, for j ∈ Vi \

{Ni−1 + 1,Ni−1 + t}, we have (Av(i,t))j = Ajj · 0 +∑
s∈V \Vi

Ajs · 0 = v
(i,t)
j /(n−ni + 1). So,

for each i ∈ [r] and each t ∈ {2, . . . ,ni}, v(i,t) is an eigenvector of A corresponding to 1
n−ni+1 .

By taking linear combinations, we can easily see that {v(i,t) : 2 ≤ t ≤ ni, i ∈ [r]} are linearly

independent vectors. This proves (i).
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As for (ii), for any j ∈ [r] and p ∈ Vj , we have:

(Aṽ(i))p =
n∑

s=1
Apsṽ

(i)
s

= 1
n−nj +1 · ṽ

(i)
p +

∑
l∈[r]\{j}

 ∑
m∈Vl

1
n−nj +1 · ṽ

(i)
m


= (n−nj +1)−1 ·w(i)

j +
∑

l∈[r]\{j}
nl(n−nj +1)−1 ·w(i)

l

=
r∑

l=1
Bjlw

(i)
l

= (Bw(i))j = (λ(i)w(i))j = λ(i)ṽ(i)
p .

To prove (iii), note that B = D1SD2, where D1 := diag((n−n1 + 1)−1, . . . ,(n−nr +

1)−1), D2 := diag(n1, . . . ,nr), and S is the symmetric r× r matrix given by:

Sij =


1
ni

if j = i

1 if j ̸= i

.

Now, observe that the commutativity of diagonal matrices allows us to express D1SD2 as

DA(DBSDB)D−1
A , where DA := (D1D

−1
2 ) 1

2 and DB := (D1D2) 1
2 . Thus, the matrix B =

DA(DBSDB)D−1
A is similar to the symmetric matrix DBSDB and hence, its eigenvectors span

Rr, i.e., q = r.

As for (iv), for any λ(i) ̸= 1, we know that D
1
2 ṽ(i) is an eigenvector of D

1
2AD− 1

2 which

is a symmetric matrix as per Lemma 1 of [47]. Hence, {D 1
2 ṽ(i)}ri=1 is an orthogonal set. Since

1 ∈ {ṽ(i)}ri=1, this implies that

1TDṽ(i) = 0 if i ∈ [r] and λ(i) ̸= 1, (3.22)

thereby forcing each ṽ(i) to have both positive and negative entries. Now, pick any i ∈ [r] for
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which λ(i) ̸= 1, and let s ∈ [r] be the index such that w(i)
j ≥ 0 for j ∈ [s] and w(i)

j < 0 otherwise

(we can always label the vertices suitably so that such an s exists). Then (3.22) implies that

1≤ s≤ r−1. Consequently, we have the following relations:

λ(i)|w(i)
1 |=

|w(i)
1 |+

∑s
j=2nj |w(i)

j |−
∑r

j=s+1nj |w(i)
j |

n−n1 +1

−λ(i)|w(i)
s+1|=

∑s
j=1nj |w(i)

j |−
∑r

j=s+2nj |w(i)
j |− |w

(i)
s+1|

n−ns+1 +1 .

On the basis of this, we have the following for λ(i) /∈ {0,1}:

0< (n−n1 +1)|w(i)
1 |+(n−ns+1 +1)|w(i)

s+1|

=−
(n1−1)|w(i)

1 |+(ns+1−1)|w(i)
s+1|

λ(i) ,

implying λ(i) < 0 because n1,ns+1 ≥ 1 by assumption.

For part (v), note that U1 and {ṽ(i)}ri=1 are linearly independent sets by assertions (i)

and (ii). Also, observe that span{ṽ(i) | i ∈ [r]}= span⊥{v(j,t) | j ∈ [r], t ∈ {2, . . . ,nj}} because

ṽ(i)T v(j,t) =w
(i)
j ×1+w(i)

j ×−1 = 0. Finally, noting that |U |=∑r
j=1(nj−1)+r=∑r

j=1nj =n,

we conclude that U is an eigenvector basis for A.

Remark 6. Points (1), (4) and (5) of Lemma 17, along with the fact that eigenspaces are linear,

imply that every eigenpair (λ,v) of A that satisfies λ ∈ (0,1), corresponds to some i ∈ [r] such

that |Vi| ≥ 2 and vs = 0 for all s /∈ Vi. Furthermore,
∑

s∈Vi
vs = 0 for such an i.

We are now well equipped to establish our main result.

Proposition 11. Let n ∈ N and ε > 0 be given, and let Gph = ([n],Eph) be a complete r-partite

graph for some r ∈ [n]. Then k∗
ε(Gph)<∞.

Proof. If Gph is a complete 1-partite graph, then Eph = ∅ and hence k∗
ε(Gph) = 0. On the other

hand, if r = n, then Gph =Kn. In this case, k∗
ε(Gph) =O(n3)<∞ by [80] and [47]. Therefore,
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we assume 1< r < n hereafter.

Suppose kε(Gph) =∞. From Proposition 8, we know that arbitrarily slow convergence

happens only in the presence of arbitrarily slow merging and that all the other structural changes

in G̃[k] occur in O(n8 logn) steps. Hence, it suffices to show that no two connected components

of the influence graph can take an arbitrarily long period of time to merge, under the assumption

that no link breaks occur.

For this purpose, let V1, . . . ,Vr be the r parts of Gph, and let VP ,VQ ⊂ [n] be any two

disjoint sets. Further, let {(ie, je)}be=1 ⊂ VP ×VQ be the set of boundary edges connecting GP0

and GQ0 in Gph, and let {1}∪{λd}md=1 be the union of the sets of eigenvalues of AP0 and AQ0

(such that λd ̸= 1 for all d). Now, since Gph is a complete r-partite graph, it follows that GP0

and GQ0 are also complete p-partite and q-partite graphs for some p,q ∈ [r], and their parts are

given by the partitions {VP ∩Vi}ri=1 \{∅} and {VQ∩Vi}ri=1 \{∅}, respectively.

Next, for each initial state x[0] ∈ Rn, let GP [k] = GP (x[k]) = (VP ,EP (x[k])) and

GQ[k] = GQ(x[k]) = (VQ,EQ(x[k])) be disconnected from each other in G̃[k] = G̃(x[k]) un-

til they merge at time kM (x[0],VP ,VQ). As per our earlier reasoning, we may restrict our

attention to the subset X (VP ,VQ) ⊂ Rn of initial states for which (i) kM (x[0],VP ,VQ) <

∞, i.e., merging occurs, (ii) no link breaks occur within GP [k] or GQ[k] until they merge,

i.e., for k ≤ kM (x[0],VP ,VQ), and (iii) both GP [k] and GQ[k] are connected graphs for k ≤

kM (x[0],VP ,VQ).

Now, suppose supx[0]∈X (VP ,VQ)kM (x[0],VP ,VQ) =∞. Then Proposition 10 implies

that there exists a d ∈ [m] with λd ∈ (0,1) and a corresponding vector v ∈ ÛP Q
d satisfying

ve ̸= 0 for some e ∈ [b] and vfvg ≥ 0 for all f,g ∈ [b]. Since ve = uie +wje for some u ∈ Ud(P )

and w ∈ Ud(Q), we have either uie ̸= 0 or wje ̸= 0. W.l.o.g., we assume uie > 0 (and hence

that (λd,u) is an eigenpair of AP0). Now, let ρ ∈ [r] and σ ∈ [r] denote the indices for which

ie ∈ VP ρ := VP ∩Vρ and je ∈ VQσ := VQ∩Vσ. Then observe that ρ ̸= σ because (ie, je) ∈ Eph.

Also, by Remark 6, λd ∈ (0,1) implies that
∑

s∈VP ρ
us = 0. Hence, there exists another node

z ∈ VP ρ such that uz < 0. Now, two cases arise: either |VQσ|= 1 or |VQσ| ≥ 2.
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Consider Case 1: |VQσ| = 1, i.e., VQσ = {je}. Now, if λd is not an eigenvalue of AQ0 ,

then Ud = {0}, which means w = 0. Hence, wje = 0. Otherwise, by Remark 6, Lemma 17

requires wje = 0 because λd > 0 and |VQσ| < 2. Thus, wje = 0 is true whenever |VQσ| = 1.

Moreover, ρ ̸= σ implies that (z,je) ∈ Eph. Since z ∈ VP and je ∈ VQ, we may denote z by

if and je by jf so that (z,je) is the f -th boundary edge, (if , jf ), for some f ∈ [b]. But now,

vf = uif
+wjf

= uz +wje = uz < 0, whereas ve = uie > 0. As a result, vevf < 0, thus violating

the requirement that vfvg ≥ 0 for all f,g ∈ [b].

On the other hand, in Case 2: |VQσ| ≥ 2, both wje = 0 and wje ̸= 0 are possible subcases.

If wje = 0, then we simply repeat the arguments of the previous paragraph to show that vevf < 0

for some f ∈ [b]. So, assumewje ̸= 0. Then (λd,w) is necessarily an eigenpair ofAQ0 . Therefore,

the requirement
∑

s∈VQσ
ws = 0 of Lemma 17 implies wywje < 0 for some y ∈ VQσ. First,

suppose wje > 0 and wy < 0. Then, ρ ̸= σ implies that (z,y) ∈ Eph and hence that (z,y) is

a boundary edge. By denoting (z,y) as the f -th boundary edge (if , jf ) for some f ∈ [b], we

have vf = uif
+wjf

= uz +wy < 0. However, we still have ve = uie +wje > 0, implying that

vevf < 0. Now, assume wje < 0 and wy > 0. Then, by denoting the boundary edges (z,je) and

(ie,y) as (iα, jα) and (iβ, jβ), respectively for some α,β ∈ [b], we have vα = uz +wje < 0 and

vβ = uie +wy > 0. This implies that vαvβ < 0. Thus, the requirement vfvg ≥ 0 for all f,g ∈ [b]

is violated in Case 2 as well.

Hence, supx[0]∈X (VP ,VQ)kM (x[0],VP ,VQ)<∞. Note that this applies to every selection

of VP ⊂ V and VQ ⊂ V such that VP ∩VQ = ∅. Moreover, since the number of such choices of

VP and VQ is finite, we conclude that no merging event can be delayed indefinitely in the social

HK dynamics on the given Gph. This completes the proof.

3.6 Conclusion and Future Directions

In this chapter, we have investigated the convergence properties of the social HK model of

opinion dynamics. We have shown that for certain physical connectivity graphs, we cannot even
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guarantee ε-convergence to the steady state within a bounded time-frame, much less termination

in finite time. In addition, we have shown that complete r-partite graphs have bounded ε-

convergence times. Moreover, we can observe that the necessary and sufficient conditions

provided by Proposition 9 and Lemma 15 are nearly tight (i.e., tight under the assumption

vivj ̸= 0, in addition to the other assumptions made by these two results). However, finding a set

of necessary and sufficient conditions for arbitrarily slow merging (and thereby for arbitrarily

slow ε-convergence) that are tight in the most general case, remains an interesting open problem.

Also open is the problem of finding other classes of graphs that have bounded ε-convergence

times.

Appendices

3.6.1 Proof of Proposition 7

Proof. Let ε and x0 be as described above, and let x[0] = x0. Then observe that the state

evolution until ε-convergence can be expressed as x[k] = Akx0, where A is the weighted

adjacency matrix of G̃[0]. This is equivalent to the equal-neighbor, time-invariant, bidirectional

model of distributed averaging defined in [102]. Moreover, G̃[0] is a connected graph. Therefore,

invoking Corollary 5.2 of [102] completes the proof of the proposition.

3.6.2 Some Technical Lemmas

Lemma 18. Consider a vector subspace U ⊂ Rn such that for every v ∈ U \ {0}, we have

vivj < 0 for some i, j ∈ [l]. Further, define ϕ : Rn \{0}→ R as

ϕ(v) = min
(∣∣∣∣∣mini∈[l] vi

maxi∈[l] vi

∣∣∣∣∣ ,
∣∣∣∣∣maxi∈[l] vi

mini∈[l] vi

∣∣∣∣∣
)
.

Then there exists a constant γ > 0 such that ϕ(v)≥ γ for all v ∈ U \{0}.

Proof. Since ϕ(λv) = ϕ(v) for all λ ∈ R\{0} and v ∈ Rn \{0}, it suffices to prove the lemma
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for v ∈D := U ∩{v ∈ Rn : ∥v∥= 1}.

Observe that D is the intersection of the unit ball and a vector subspace of Rn. Hence, it

is a compact set. Next, since ϕ is continuous on D, we know that infv∈D ϕ(v) is attained because

D is a compact set, i.e., U∗ := argminv∈D ϕ(v) exists and is well defined. Hence, for all v ∈D

and any u ∈ U∗, we have ϕ(v)≥minv∈D ϕ(v) = ϕ(u)> 0, which follows from the assumption

of the lemma enforcing maxi∈[l]ui > 0>mini∈[l]ui.

Lemma 19. Let v ∈Rl satisfy vivj < 0 for some i, j ∈ [l], and let γ ∈R be any constant satisfying

0< γ ≤ |maxi vi|/|mini vi|. Then for any u ∈ Rl, either

max
i

(v+u)i > 0 and

∣∣∣∣∣maxi(v+u)i

mini(v+u)i

∣∣∣∣∣≥ γ′ (3.23)

or

max
i

(v−u)i > 0 and

∣∣∣∣∣maxi(v−u)i

mini(v−u)i

∣∣∣∣∣≥ γ′ (3.24)

where γ′ := γ
γ+2 . Moreover, if (3.23) holds and mini(v−u)i < 0, then

max
i

(v+u)i ≥
γ|mini(v−u)i|−max(0,maxi(v−u)i)

γ+1 . (3.25)

Proof. We first prove that either (3.23) or (3.24) holds. Before we begin, observe that γ > 0

implies γ′ <min(1,γ).

Now, suppose neither (3.23) nor (3.24) is true. However, we know that maxi(v+u)i +

maxi(v−u)i≥maxi[(v+u)+(v−u)]i = 2maxi vi > 0. As a result, either maxi(v+u)i > 0 (in

which case |maxi(v+u)i|< γ′|mini(v+u)i|), or maxi(v−u)i > 0 (in which case |maxi(v−

u)i|< γ′|mini(v−u)i|). By implication, there exists a constant ε ∈ (0,γ′) such that P1 ≤ εM1

and P2 ≤ εM2, where we define P1 := max(0,maxi(v+ u)i), P2 := max(0,maxi(v− u)i),

M1 := |mini(v+u)i| and M2 := |mini(v−u)i|.
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Now, three cases arise.

Case 1: (mini(v+ u)i)(mini(v− u)i) ̸= 0 and either mini(v+ u)i > 0 or mini(v−

u)i > 0. Suppose mini(v+ u)i = M1 > 0. Then maxi(v+ u)i/mini(v+ u)i ≥ 1 ≥ γ′, thus

contradicting the inequality P1 ≤ εM1 and thereby proving the first part of the lemma. The

subcase mini(v−u)i > 0 is handled similarly.

Case 2: Either mini(v+u)i = 0 or mini(v−u)i = 0. Suppose mini(v+u)i =M1 = 0.

If maxi(v+u)i > 0, then we have εM1 = 0 < P1, which again results in a contradiction and

establishes the first part of the lemma. On the other hand, if maxi(v+u)i = 0, then it follows

that u=−v. Consequently, the assumptions made by the lemma lead to the following: maxi(v−

u)i = 2maxi vi > 0, and maxi(v− u)i ≥ 2γ|mini vi| = γ|mini(v− u)i| > γ′|mini(v− u)i|.

These inequalities establish (3.24) and hence prove the first assertion of the lemma. The subcase

mini(v−u)i = 0 is handled similarly.

Case 3: mini(v+u)i =−M1 < 0 and mini(v+u)i =−M2 < 0. Observe that

2max
i
vi = max

i
{(v+u)+(v−u)}i

≤max
i

(v+u)i +max
i

(v−u)i

(a)
≤ P1 +P2 ≤ ε(M1 +M2). (3.26)

Also,

2min
i
vi = min

i
{(v+u)+(v−u)}i

≤max
i

(v+u)i +min
i

(v−u)i

(b)
≤ P1−M2 ≤ εM1−M2. (3.27)

Similarly,

2min
i
vi ≤ εM2−M1. (3.28)

98



Within this case, two subcases arise. Subcase 1: Suppose both εM1−M2 < 0 and

εM2−M1 < 0. In other words, ε < η < 1/ε, where we define η := M1/M2. Consider the

inequality εM1 −M2 < 0 first. Along with (3.27), it implies: |mini vi| ≥ 0.5|M2 − εM1|.

Likewise, (3.26) and the assumption maxi vi > 0 imply: |maxi vi| ≤ 0.5ε(M1 +M2). Combining

these inequalities with the assumption maxi vi ≥ γ|mini vi| yields:

ε(M1 +M2)
M2− εM1

≥ γ. (3.29)

Similarly, the subcase inequality εM2−M1 < 0, leads to:

ε(M1 +M2)
M1− εM2

≥ γ. (3.30)

We express (3.29) and (3.30) in terms of η as (3.31)-(a) and (3.31)-(b) respectively:

γ− ε
ε(1+γ)

(a)
≤ η

(b)
≤ ε(1+γ)

γ− ε
, (3.31)

which is possible only if γ− ε ≤ ε(1 + γ), i.e., only if ε ≥ γ
γ+2 = γ′. This contradicts that

ε ∈ (0,γ′), thus establishing the first assertion of the lemma.

Finally, we have Subcase 2: εM2−M1 ≥ 0 or εM1−M2 ≥ 0. We assume the former

w.l.o.g. Then η ≤ ε < γ′ < 1 < 1/ε. Hence εM1−M2 < 0, implying (3.31)-(a) again. On

eliminating η by using the observation η ≤ ε, we obtain (γ+1)ε2 +ε−γ ≥ 0. Since ε is positive

by assumption, this inequality requires ε ≥ γ
γ+1 ≥ γ′ which contradicts ε ∈ (0,γ′), thereby

proving that either (3.23) or (3.24) holds.

For the second part, given that (3.23) holds, we have maxi(v+u)i = P1 > 0. Note that

if P1 ≥M2 = |mini(v−u)i|, then (3.25) follows from γ > 0. So, suppose that P1 <M2. Then

(3.27)-(b) implies that 2|mini vi| ≥M2−P1. Likewise, maxi vi > 0 and (3.26)-(a) together

imply that 2|maxi vi| ≤ P1 +P2. Combining these inequalities with the lemma assumption
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maxi vi ≥ γ|mini vi| yields P1+P2
M2−P1

≥ γ, rearranging which we obtain:

P1 ≥
γM2−P2
γ+1

which is equivalent to (3.25).

3.6.3 Proofs of (3.18) and (3.19)

Proof of (3.18)

We will assume that (3.18) is false, and show that vr dominates other vectors for a range

of values of k. To begin, let p= p(r), suppose vrp ≥ γ̂0 so that vr0 = vrp and assume that k is

even. Then, by (3.11):

Sj [k] =
r−1∑
i=1

αiµ
k
i vij +αrµ

k
rvrj +

m∑
i=r+1

αiµ
k
i vij , (3.32)

and by (3.15), this implies:

r−1∑
i=1

αiµ
k
i vij +αrµ

k
rvrj +

m∑
i=r+1

αiµ
k
i vij < δ, (3.33)

for k in the range 2≤ k < kM and j ∈ [l].

Now, for any j ∈ [l], we can show that:

∣∣∣∣∣∣
r−1∑
i=1

αiµ
k
i vij +

m∑
i=r+1

αiµ
k
i vij

∣∣∣∣∣∣ (3.34)

≤rρr1αrµ
k
1 +(ρr2τr)−1αrµ

k
r+1vr0. (3.35)

Next, we identify a range of k over which the contribution from µr dominates the

contributions from both µr+1 and µ1. Let kre := max(0,2⌈0.5log(µr/µr+1)(40/ηrτr)⌉) and

k′
r := 2⌊0.5log(µ1/µr+1)( vr0

rρr1ρr2τr
)⌋. Then, for ρr1 small enough, the bounds on τr and (3.17)

100



ensure that kre ≤ k′
r <∞, and

rρr1αrµ
k
1 ≤ (ρr2τr)−1αrµ

k
r+1vr0 for k ≤ k′

r, (3.36)

Furthermore, the definition of kre and (3.17) imply that

(ρr2τr)−1αrµ
k
r+1vr0 ≤ 0.05αrµ

k
rvr0 for k ≥ kre. (3.37)

Combining (3.34), (3.36) and (3.37) yields:

∣∣∣∣∣∣
r−1∑
i=1

αiµ
k
i vij +

m∑
i=r+1

αiµ
k
i vij

∣∣∣∣∣∣≤ 0.1αrµ
k
rvr0 (3.38)

for kre ≤ k ≤ k′
r and j ∈ [l]. Thus, if (3.18) fails, then the contribution of the dominant vector

vr is much greater than the combined contributions of other even-k vectors when kre ≤ k ≤ k′
r.

Now, (3.38), the assumption vrp ≥ γ̂0, and (3.33) at j = p together result in the following:

δ > αrµ
k
rvrp−

∣∣∣∣∣∣
r−1∑
i=1

αiµ
k
i vij +

m∑
i=r+1

αiµ
k
i vip

∣∣∣∣∣∣
≥ 0.9αrµ

k
rvr0 for kre ≤ k ≤ k′

r. (3.39)

By (3.32), (3.38), and (3.39), we have:

Sj [k]≤ 1.1αrµ
k
rvr0 ≤ 1.1αrµ

kre+log1/µr (11/9)
r vr0 < δ, (3.40)

for all j ∈ [l] and k ∈
[
kre +log1/µr

(11/9),min(k′
r,kM )

]
.

In particular,

S
(h)
j [k(h)

m ]≤ 1.1α(h)
r µk

(h)
m

r vr0 < δ(h), (3.41)

where k(h)
m := min(k′(h)

r ,k
(h)
M ). On the other hand, for (3.16) to hold for an arbitrarily large kM ,
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we need vrp to be much greater than δ so as to compensate for the corresponding (small) value

of µkM
r . This leads to a contradiction. To elaborate, let t(h) ∈ [l] be the index satisfying (3.16).

Then, for every h≥ h0, (3.16), (3.41), and (3.39) imply:

m∑
i=1

α
(h)
i u

(h)
it(h)

(
µ

k
(h)
M

i −µk
(h)
m

i

)

> 0.9α(h)
r µkre

r vr0−1.1α(h)
r µk

(h)
m

r vr0. (3.42)

Division by α(h)
r and rearranging the terms yield:

1.1µk
(h)
m

r vr0 +
m∑

i=1

α
(h)
i

α
(h)
r

uit(h)

(
µ

k
(h)
M

i −µk
(h)
m

i

)
> 0.9µkre

r vr0. (3.43)

However, the left-hand side of (3.43) tends to zero as h→∞ (since ηr > 0) because the fact that

limh→∞ ρ
(h)
r1 = 0 implies that limh→∞k

′(h)
r =∞ and in turn that limh→∞k

(h)
m =∞, whereas

the right-hand side remains positive. This contradicts our assumption on vrp, thus proving (3.18).

Proof of (3.19)

Proof. By (3.17), (3.18) and Lemma 14, we have

ζ(h)
r ≥ γ̂0α

(h)
r > 0 (3.44)

for h≥ h0. Therefore, analogous to Me, ηi for i∈ [m], and r, we define Mo := argmaxi∈[m] ζ
(h)
i

for h≥ h0, η̃i := limh→∞ ζ
(h)
i /ζ

(h)
Mo

for i ∈ [m], and r̃ := min{i ∈ [m] : η̃i > 0}, respectively (by

passing to a subsequence of {y(h)[0]}∞h=1 if necessary).

Suppose now that (3.19) is false. Note that we did not use the assumption that k(h)
M is

even until (3.41). Thus, if zr̃p̃(r̃) ≥ γ̂0 holds, then similar to δ(h) > 0.9α(h)
r µkre

r vr0, we have:

δ(h) > 0.9ζ(h)
r̃ µkro

r̃ zr̃0, (3.45)
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where kro := max(0,2⌈0.5log(µr̃/µr̃+1)(40/η̃r̃τ̃r̃)⌉). On the other hand, St(h) [k(h)
M ] ≥ δ(h) im-

plies:

δ(h) ≤
m∑

i=1
α

(h)
i µ

k
(h)
M

i vij ≤ α
(h)
Me
µ

k
(h)
M

1 m (3.46)

since |vij | ≤ 1. Then, (3.45) and (3.46) result in:

α
(h)
Me

ζ
(h)
r̃

≥ 0.9µkro
r zr0
m

(
1
µ1

)k
(h)
M

,

implying that limh→∞(α(h)
Me
/ζ

(h)
r̃ ) =∞. Hence:

lim
h→∞

ζ
(h)
r

α
(h)
r

= lim
h→∞

ζ
(h)
r

ζ
(h)
Mo

·
ζ

(h)
Mo

ζ
(h)
r̃

· ζ
(h)
r̃

α
(h)
Me

·
α

(h)
Me

α
(h)
r

= η̃r · η̃−1
r̃ ·0 ·η−1

r = 0.

However, this contradicts (3.44). Therefore, (3.19) holds.

Chapter 3, in full, is a reprint of the material as it appears in Rohit Parasnis, Massimo

Franceschetti, and Behrouz Touri, “On the Convergence Properties of Social Hegselmann–Krause

dynamics,” in IEEE Transactions on Automatic Control 67.2 (2021): 589-604. The dissertation

author was the primary investigator and author of this paper.
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Chapter 4

Non-Bayesian Social Learning on Ran-
dom Digraphs with Aperiodically Varying
Network Connectivity

4.1 Introduction

The advent of social media and internet-based sources of information such as news

websites and online databases over the last few decades has significantly influenced the way

people learn about the world around them. For instance, while learning about political candidates

or the latest electronic gadgets, individuals tend to gather relevant information from internet-

based information sources as well as from the social groups they belong to.

To study the impact of social networks and external sources of information on the

evolution of individuals’ beliefs, several models of social dynamics have been proposed during

the last few decades (see [9] and [10] for a detailed survey). Notably, the manner in which the

agents update their beliefs ranges from being naive as in [103], wherein an agent’s belief keeps

shifting to the arithmetic mean of her neighbors’ beliefs, to being fully rational (or Bayesian) as

in the works [104] and [43]. For a survey of results on Bayesian learning, see [45].

However, as argued in [105] and in several subsequent works, it is unlikely that real-

world social networks consist of fully rational agents because not only are Bayesian update rules

computationally burdensome, but they also require every agent to understand the structure of the
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social network they belong to, and to know every other agent’s history of private observations.

Therefore, the seminal paper [105] proposed a non-Bayesian model of social learning to model

agents with limited rationality (agents that intend to be fully rational but end up being only

partially rational because they have neither the time nor the energy to analyze their neighbors’

beliefs critically). This model assumes that the world (or the agents’ object of interest) is

described by a set of possible states, of which only one is the true state. With the objective of

identifying the true state, each agent individually performs measurements on the state of the

world and learns her neighbors’ most recent beliefs in every state. At every new time step, the

agent updates her beliefs by incorporating her own latest observations in a Bayesian manner and

others’ beliefs in a naive manner. With this update rule, all the agents almost surely learn the

true state asymptotically in time, without having to learn the network structure or others’ private

observations.

Notably, some of the non-Bayesian learning models inspired by the original model

proposed in [105] have been shown to yield efficient algorithms for distributed learning (for

examples see [6, 106–113], and see [114] for a tutorial). Furthermore, the model of [105] has

motivated research on decentralized estimation [115], cooperative device-to-device communica-

tions [116], crowdsensing in mobile social networks [117], manipulation in social networks [118],

impact of social networking platforms, social media and fake news on social learning [119, 120],

and learning in the presence of malicious agents and model uncertainty [121].

It is also worth noting that some of the models inspired by [105] have been studied in

fairly general settings such as the scenario of infinitely many hypotheses [109], learning with

asynchrony and crash failures [113], and learning in the presence of malicious agents and model

uncertainty [121].

However, most of the existing non-Bayesian learning models make two crucial assump-

tions. First, they assume the network topology to be deterministic rather than stochastic. Second,

they describe the network either by a static influence graph (a time-invariant graph that indicates

whether or not two agents influence each other), or by a sequence of influence graphs that are
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uniformly strongly connected, i.e., strongly connected over time intervals that occur periodically.

By contrast, real-world networks are not likely to satisfy either assumption. The first

assumption is often violated because real-world network structures are often subjected to a variety

of random phenomena such as communication link failures. As for the second assumption,

the influence graphs underlying real-world social networks may not always exhibit strong

connectivity properties, and even if they do, they may not do so periodically. This is because

there might be arbitrarily long deadlocks or phases of distrust between the agents during which

most of them value their own measurements much more than others’ beliefs. This is possible

even when the agents know each other’s beliefs well.

This dichotomy motivates us to extend the model of [105] to random directed graphs

satisfying weaker connectivity criteria. To do so, we identify certain sets of agents called

observationally self-sufficient sets. The collection of measurements obtained by any of these sets

is at least as useful as that obtained by any other set of agents. We then introduce the concept

of γ-epochs which, essentially, are periods of time over which the underlying social network

is adequately well-connected. We then derive our main result: under the same assumptions as

made in [105] on the agents’ prior beliefs and observation structures, if the sequence of the

weighted adjacency matrices associated with the network belongs to a broad class of random

stochastic chains called Class P∗, and if these matrices are independently distributed, then our

relaxed connectivity assumption ensures that all the agents will almost surely learn the truth

asymptotically in time.

The contributions of this chapter are as follows:

1. Criteria for Learning on Random Digraphs: Our work extends the earlier studies on

non-Bayesian learning to the scenario of learning on random digraphs, and as we will show,

our assumption of recurring γ-epochs is weaker than the standard assumption of uniform

strong connectivity. Therefore, our main result identifies a set of sufficient conditions

for almost-sure asymptotic learning that are weaker than those derived in prior works.
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Moreover, our main result (Theorem 7) does not assume almost-sure fulfilment of our

connectivity criteria (see Assumption IV and Remark 7). Consequently, our main result

significantly generalizes some of the known results on social learning.

2. Implications for Distributed Learning: Since the learning rule (4.1) is an exponentially

fast algorithm for distributed learning [114, 122], our main result significantly extends the

practicality of the results of [105, 110, 123, 124].

3. A Sufficient Condition for Consensus: Theorem 6 shows how uniform strong connectivity

ensures that all the agents’ beliefs converge to a consensus almost surely even when the

true state is not identifiable.

4. Results on Related Learning Scenarios: Section 4.5 provides sufficient conditions for

almost-sure asymptotic learning in certain variants of the original model such as learning

via diffusion-adaptation and inertial non-Bayesian learning.

5. Methodological Contribution: The proofs of Theorems 7 and 6 illustrate the effectiveness

of the less-known theoretical techniques of Class P∗ and absolute probability sequences.

Although these tools are typically used to analyze linear dynamics, our work entails a

novel application of the same to a non-linear system. Specifically, the proof of Theorem 7

is an example of how these methods can be used to analyse dynamics that approximate

linear systems arbitrarily well in the limit as t→∞.

Out of the available non-Bayesian learning models, we choose the one proposed in [105]

for our analysis because its update rule is an analog of DeGroot’s learning rule [103] in a learn-

ing environment that enables the agents to acquire external information in the form of private

signals [122], and experiments have repeatedly shown that variants of DeGroot’s model predict

real-world belief evolution better than models that are founded solely on Bayesian rational-

ity [125–127]. Moreover, DeGroot’s learning rule is the only rule that satisfies the psychological

assumptions of imperfect recall, label-neutrality, monotonicity and separability [63].
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Related works: We first describe the main differences between this chapter and our prior

work [39]:

1. The main result (Theorem 1) of [39] applies only to deterministic time-varying networks,

whereas the main result (Theorem 7) of this chapter applies to random time-varying net-

works. Hence, Theorem 7 of this chapter is more general than the main result of [39].

As we will show in Remark 7, the results of this chapter apply to certain random graph

sequences that almost surely fall outside the class of deterministic graph sequences consid-

ered in [39].

2. In addition to the corollaries reported in [39], this chapter provides three corollaries of our

main results that apply to random networks. These corollaries are central to the sections

on learning amid link failures, inertial non-Bayesian learning, and learning via diffusion

and adaptation (Section 4.5.1 – Section 4.5.3).

As for other related works, [128] and [129] make novel connectivity assumptions, but

unlike our work, neither of them allows for arbitrarily long periods of poor network connectivity.

The same can be said about [120] and [130], even though they consider random networks and

impose connectivity criteria only in the expectation sense. Finally, we note that [131] and [132]

come close to our work because the former proposes an algorithm that allows for aperiodically

varying network connectivity while the latter makes no connectivity assumptions. However, the

sensor network algorithms proposed in [131] and [132] require each agent to have an actual

belief and a local belief, besides using minimum-belief rules to update the actual beliefs. By

contrast, the learning rule we analyze is more likely to mimic social networks because it is

simpler and closer to the empirically supported DeGroot learning rule. Moreover, unlike our

analysis, neither [131] nor [132] accounts for randomness in the network structure.

We begin by defining the model in Section 5.2. In Section 4.3, we review Class P∗, a

special but broad class of matrix sequences that forms an important part of our assumptions.
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Next, Section 5.3 establishes our main result. We then discuss the implications of this result in

Section 4.5. We conclude with a brief summary and future directions in Section 5.6.

Notation: We denote the set of real numbers by R, the set of positive integers by N, and

define N0 := N∪{0}. For any n ∈ N, we define [n] := {1,2, . . . ,n}.

We denote the vector space of n-dimensional real-valued column vectors by Rn. We use

the superscript notation T to denote the transpose of a vector or a matrix. All the matrix and vector

inequalities are entry-wise inequalities. Likewise, if v ∈ Rn, then |v| := [|v1| |v2| . . . |vn|]T , and

if v > 0 additionally, then log(v) := [log(v1) log(v2) . . . log(vn)]T . We use I to denote the

identity matrix (of the known dimension) and 1 to denote the column vector (of the known

dimension) that has all entries equal to 1. Similarly, 0 denotes the all-zeroes vector of the known

dimension.

We say that a vector v ∈ Rn is stochastic if v ≥ 0 and vT 1 = 1, and a matrix A is

stochastic if A is non-negative and if each row of A sums to 1, i.e., if A ≥ 0 and A1 = 1. A

stochastic matrix A is doubly stochastic if each column of A sums to 1, i.e., if A ≥ 0 and

AT 1 = A1 = 1. A sequence of stochastic matrices is called a stochastic chain. If {A(t)}∞t=0 is

a stochastic chain, then for any two times t1, t2 ∈ N0 such that t1 ≤ t2, we define A(t2 : t1) :=

A(t2−1)A(t2−2) · · ·A(t1), and let A(t1 : t1) := I . If {A(t)}∞t=0 is a random stochastic chain

(a sequence of random stochastic matrices), then it is called an independent chain if the matrices

{A(t)}∞t=0 are P -independent with respect to a given probability measure P .

4.2 Problem Formulation

4.2.1 The Non-Bayesian Learning Model

We begin by describing our non-Bayesian learning model which is simply the extension

of the model proposed in [105] to random network topologies.

As in [105], we let Θ denote the (finite) set of possible states of the world and let θ∗ ∈Θ

denote the true state. We consider a social network of n agents that seek to learn the identity of
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the true state with the help of their private measurements as well as their neighbors’ beliefs.

Beliefs and Observations

For each i ∈ [n] and t ∈ N0, we let µi,t be the probability measure on (Θ,2Θ) such that

µi,t(θ) := µi,t({θ}) denotes the degree of belief of agent i in the state θ at time t. Also, for each

θ ∈Θ, we let µt(θ) := [µ1,t(θ) µ2,t(θ) . . . µn,t(θ)]T ∈ [0,1]n.

As in [105], we assume that the signal space (the space of privately observed signals) of

each agent is finite. We let Si denote the signal space of agent i, define S := S1×S2×·· ·×Sn,

and let ωt = (ω1,t, . . . ,ωn,t) ∈ S denote the vector of observed signals at time t. Further, we

suppose that for each t ∈ N, the vector ωt is generated according to the conditional probability

measure l(·|θ) given that θ∗ = θ, i.e., ωt is distributed according to l(·|θ) if θ is the true state.

We now repeat the assumptions made in [105]:

1. {ωt}t∈N is an i.i.d. sequence.

2. For every i ∈ [n] and θ ∈Θ, agent i knows li(·|θ), the ith marginal of l(·|θ) (i.e., li(s|θ) is

the conditional probability that ωi,t = s given that θ is the true state).

3. li(s|θ)> 0 for all s ∈ Si, i ∈ [n] and θ ∈Θ. We let l0 := minθ∈Θ mini∈[n] minsi∈Si
li(si|θ).

Note that l0 > 0.

In addition, it is possible that some agents do not have the ability to distinguish between

certain states solely on the basis of their private measurements because these states induce the

same conditional probability distributions on the agents’ measurement signals. To describe such

situations, we borrow the following definition from [105].

Definition 40 (Observational equivalence). Two states θ1, θ2 ∈Θ are said to be observationally

equivalent from the point of view of agent i if li(·|θ1) = li(·|θ2).

For each i ∈ [n], let Θ∗
i := {θ ∈ Θ : li(·|θ) = li(·|θ∗)} denote the set of states that are

observationally equivalent to the true state from the viewpoint of agent i. Also, let Θ∗ :=∩j∈[n]Θ∗
j
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be the set of states that are observationally equivalent to θ∗ from every agent’s viewpoint. Since

we wish to identify the subsets of agents that can collectively distinguish between the true state

and the false states, we define two related terms.

Definition 41 (Observational self-sufficience). IfO⊂ [n] is a set of agents such that ∩j∈OΘ∗
j =

Θ∗, then O is said to be an observationally self-sufficient set.

Definition 42 (Identifiability). If Θ∗ = {θ∗}, then the true state θ∗ is said to be identifiable.

Network Structure and the Update Rule

Let {G(t)}t∈N0 denote the random sequence of n-vertex directed graphs such that for

each t ∈ N0, there is an arc from node i ∈ [n] to node j ∈ [n] in G(t) if and only if agent i

influences agent j at time t. Let A(t) = (aij(t)) be a stochastic weighted adjacency matrix of the

random graph G(t), and for each i ∈ [n], let Ni(t) := {j ∈ [n]\{i} : aij(t)> 0} denote the set

of in-neighbors of agent i in G(t). We assume that at the beginning of the learning process (i.e.,

at t= 0), agent i has µi,0(θ) ∈ [0,1] as her prior belief in state θ ∈Θ. At time t+1, she updates

her belief in θ as follows:

µi,t+1(θ) = aii(t)BUi,t+1(θ)+
∑

j∈Ni(t)
aij(t)µj,t(θ), (4.1)

where “BU” stands for “Bayesian update” and

BUi,t+1(θ) := li(ωi,t+1|θ)µi,t(θ)∑
θ′∈Θ li(ωi,t+1|θ′)µi,t(θ′) .

Finally, we let (Ω,B,P∗) be the probability space such that {ωt}∞t=1 and {A(t)}∞t=0 are

measurable w.r.t. B, and P∗ is a probability measure such that:

P∗(ω1 = s1,ω2 = s2, . . . ,ωr = sr) =
r∏

t=1
l(st|θ∗)
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for all s1, . . . , sr ∈ S and all r ∈N∪{∞}. As in [105], we let E∗ denote the expectation operator

associated with P∗.

4.2.2 Forecasts and Convergence to the Truth

At any time step t, agent i can use her current set of beliefs to estimate the probability

that she will observe the signals s1, s2, . . . , sk ∈ Si over the next k time steps. This is referred to

as the k-step-ahead forecast of agent i at time t and denoted by m(k)
i,t (s1, . . . , sk). We thus have:

m
(k)
i,t (s1, . . . , sk) :=

∑
θ∈Θ

k∏
r=1

li(sr|θ)µi,t(θ).

We use the following notions of convergence to the truth.

Definition 43 (Eventual Correctness [105]). The k-step ahead forecasts of agent i are said to

be eventually correct on a path (A(0),ω1,A(1),ω2, . . .) if, along that path,

m
(k)
i,t (s1, s2, . . . , sk)→

k∏
j=1

li(sj |θ∗) as t→∞.

Definition 44 (Weak Merging to the Truth [105]). We say that the beliefs of agent i weakly

merge to the truth on some path if, along that path, her k-step-ahead forecasts are eventually

correct for all k ∈ N.

Definition 45 (Asymptotic Learning [105]). Agent i ∈ [n] asymptotically learns the truth on

a path (A(0),ω1,A(1),ω2, . . .) if, along that path, µi,t(θ∗)→ 1 (and hence µi,t(θ)→ 0 for all

θ ∈Θ\{θ∗}) as t→∞.

Note that, if the belief of agent i weakly merges to the truth, it only means that agent i

is able to estimate the probability distributions of her future signals/observations with arbitrary

accuracy as time goes to infinity. On the other hand, if agent i asymptotically learns the truth, it

means that, in the limit as time goes to infinity, agent i rules out all the false states and correctly
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figures out that the true state is θ∗. In fact, it can be shown that asymptotic learning implies weak

merging to the truth, even though the latter does not imply the former [105].

4.3 Revisiting Class P∗: A Special Class of Stochastic
Chains

Our next goal is to deviate from the standard strong connectivity assumptions for social

learning [105, 110, 123, 124]. We first explain the challenges involved in this endeavor. To begin,

we express (4.1) as follows (Equation (4) in [105]):

µt+1(θ)−A(t)µt(θ)

= diag
(
. . . ,aii(t)

[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

]
, . . .

)
µt(θ), (4.2)

where mi,t(s) := m
(1)
i,t (s) for all s ∈ Si. Now, suppose θ = θ∗. Then, an extrapolation of the

known results on non-Bayesian learning suggests the right-hand-side of (4.2) decays to 0 almost

surely as t→∞. This means that for large values of t (say t ≥ T0 for some T0 ∈ N), the

dynamics (4.2) for θ = θ∗ can be approximated as µt+1(θ∗)≈A(t)µt(θ∗). Hence, we expect the

limiting value of µt(θ∗) to be closely related to limt→∞A(t : T0), whenever the latter limit exists.

However, without standard connectivity assumptions, it is challenging to gauge the existence of

limits of backward matrix products.

To overcome this difficulty, we use the notion of Class P∗ introduced in [62]. This notion

is based on Kolmogorov’s ingenious concept of absolute probability sequences, which we now

define.

Definition 46 (Absolute Probability Sequence [62]). Let {A(t)}∞t=0 be either a deterministic

stochastic chain or a random process of independently distributed stochastic matrices. A

deterministic sequence of stochastic vectors {π(t)}∞t=0 is said to be an absolute probability
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sequence for {A(t)}∞t=0 if

πT (t+1)E[A(t)] = πT (t) for all t≥ 0.

Note that every deterministic stochastic chain admits an absolute probability sequence

[38]. Hence, every random sequence of independently distributed stochastic matrices also admits

an absolute probability sequence.

Of interest to us is a special class of random stochastic chains that are associated with

absolute probability sequences satisfying a certain condition. This class is defined below.

Definition 47 (Class P∗ [62]). We let (Class-)P∗ be the set of random stochastic chains that

admit an absolute probability sequence {π(t)}∞t=0 such that π(t)≥ p∗1 for some scalar p∗ > 0

and all t ∈ N0.

Remarkably, in scenarios involving a linear aggregation of beliefs, if {π(t)}∞t=0 is an

absolute probability sequence for {A(t)}∞t=0, then πi(t) denotes the Kolmogorov centrality or

social power of agent i at time t, which quantifies how influential the i-th agent is relative to

other agents at time t [62, 63]. In view of Definition 47, this means that, if a stochastic chain

belongs to Class P∗, then the expected chain describes a sequence of influence graphs in which

the social power of every agent exceeds a fixed threshold p∗ > 0 at all times. Let us now now

look at a concrete example.

Example 1. Suppose A(t) = Ae for all even t ∈ N0, and A(t) = Ao for all odd t ∈ N0, where

Ae and Ao are the matrices defined below:

Ae :=

 1 0
1
2

1
2

 , Ao :=

 1
2

1
2

0 1

 .

Then one may verify that the alternating sequence [2
3

1
3 ]T , [1

3
2
3 ]T , [2

3
1
3 ]T , . . . is an absolute

probability sequence for the chain {A(t)}∞t=0. Hence, {A(t)}∞t=0 ∈ P∗.
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Let us now add a zero-mean independent noise sequence {W (t)}∞t=0 to the original

chain, where for all even t ∈N0, the matrix W (t) is the all-zeros matrix (and hence a degenerate

random matrix), and for all odd t ∈N0, the matrix W (t) is uniformly distributed on {W0,−W0},

with W0 given by

W0 :=

−1
2

1
2

0 0

 .
Then by Theorem 5.1 in [62], the random stochastic chain {A(t)+W (t)}∞t=0 belongs to Class

P∗ because the expected chain {E[A(t)+W (t)]}∞t=0 = {A(t)}∞t=0 belongs to Class P∗.

Remark 7. Interestingly, Example 1 illustrates that a random stochastic chain may belong to

Class P∗ even though almost every realization of the chain lies outside Class P∗. To elaborate,

consider the setup of Example 1, and let Ã(t) := A(t) +W (t). Observe that Ao−W0 = I ,

which means that for any B ∈ N and t1 ∈ N0, the probability that A(t) +W (t) = I for all

odd t ∈ {t1, . . . , t1 + 2B− 1} is
(

1
2

)B
> 0. Since {W (t)}∞t=0 are independent, it follows that

for P∗-almost every realization {Â(t)}∞t=0 of {Ã(t)}∞t=0, there exists a time τ ∈ N0 such that

Â(τ +2B : τ) =Ae ·I ·Ae ·I · · ·Ae ·I =AB
e . Therefore, if {πR(t)}∞t=0 is an absolute probability

sequence for the deterministic chain {Â(t)}∞t=0, we can use induction along with Definition 46

to show that πT
R(τ +2B)Â(τ +2B : τ) equals πT

R(τ). Thus,

πT
R(τ) = πT

R(τ +2B)AB
e ≤ 1TAB

e .

Since the second entry of 1TAB
e evaluates to 1

2B , and since B is arbitrary, it follows that there

is no lower bound p∗ > 0 on the second entry of πR(τ). Hence, {Â(t)}∞t=0 /∈ P∗, implying that

P∗-almost no realization of {Ã(t)} belongs to Class P∗.

We now turn to a noteworthy subclass of Class P∗: the class of uniformly strongly

connected chains (Lemma 5.8, [62]). Below is the definition of this subclass (reproduced

from [62]).
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Definition 48 (Uniform Strong Connectivity). A deterministic stochastic chain {A(t)}∞t=0 is

said to be uniformly strongly connected if:

1. there exists a δ > 0 such that for all i, j ∈ [n] and all t ∈N0, either aij(t)≥ δ or aij(t) = 0,

2. aii(t)> 0 for all i ∈ [n] and all t ∈ N0, and

3. there exists a constant B ∈N such that the sequence of directed graphs {G(t)}∞t=0, defined

by G(t) = ([n],E(t)) where E(t) := {(i, j) ∈ [n]2 : aji(t)> 0}, has the property that the

graph:

G(k) :=
[n],

(k+1)B−1⋃
q=kB

E(q)


is strongly connected for every k ∈ N0.

Due to the last requirement above, uniformly strongly connected chains are also called

B-strongly connected chains or simply B-connected chains. Essentially, a B-connected chain

describes a time-varying network that may or may not be connected at every time instant but is

guaranteed to be connected over bounded time intervals that occur periodically.

Besides uniformly strongly connected chains, we are interested in another subclass of

Class P∗: the set of independent balanced chains with feedback property (Theorem 4.7, [62]).

Definition 49 (Balanced chains). A stochastic chain {A(t)}∞t=0 is said to be balanced if there

exists an α ∈ (0,∞) such that:

∑
i∈C

∑
j∈[n]\C

aij(t)≥ α
∑

i∈[n]\C

∑
j∈C

aij(t) (4.3)

for all sets C ⊂ [n] and all t ∈ N0.

Definition 50 (Feedback property). Let {A(t)}∞t=0 be a random stochastic chain, and let

Ft := σ(A(0), . . . ,A(t−1)) for all t ∈ N. Then {A(t)}∞t=0 is said to have feedback property if
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there exists a δ > 0 such that

E[aii(t)aij(t)|Ft]≥ δE[aij(t)|Ft] a.s.

for all t ∈ N0 and all distinct i, j ∈ [n].

Intuitively, a balanced chain is a stochastic chain in which the total influence of any

subset of agents C ⊂ [n] on the complement set C̄ := [n]\C is neither negligible nor tremendous

when compared to the total influence of C̄ on C. As for the feedback property, we relate its

definition to the strong feedback property, which has a clear interpretation.

Definition 51 (Strong feedback property). We say that a random stochastic chain {A(t)}∞t=0

has the strong feedback property with feedback coefficient δ if there exists a δ > 0 such that

aii(t)≥ δ a.s. for all i ∈ [n] and all t ∈ N0.

Intuitively, a chain with the strong feedback property describes a network in which all

the agents’ self-confidences are always above a certain threshold.

To see how the strong feedback property is related to the (regular) feedback property,

note that by Lemma 4.2 of [62], if {A(t)}∞t=0 has feedback property, then the expected chain,

{E[A(t)]}∞t=0 has the strong feedback property. Thus, a balanced independent chain with

feedback property describes a network in which complementary sets of agents influence each

other to comparable extents, and every agent’s mean self-confidence is always above a certain

threshold.

Remark 8. It may appear that every stochastic chain belonging to Class P∗ is either uniformly

strongly connected or balanced with feedback property, but this is not true. Indeed, one such

chain is described in Example 1, wherein we have A(t) +W (t) = Ae for even t ∈ N0, which

implies that (4.3) is violated at even times. Hence, {A(t) +W (t)}∞t=0 is not a balanced chain.

As for uniform strong connectivity, recall from Remark 7 that P∗-almost every realization of

{A(t)+W (t)}∞t=0 lies outside Class P∗. Since Class P∗ is a superset of the class of uniformly
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strongly connected chains (Lemma 5.8, [62]), it follows that {A(t)+W (t)}∞t=0 is almost surely

not uniformly strongly connected.

Remark 9. [133] provides examples of subclasses of Class P∗ chains that are not uniformly

strongly connected, such as the class of doubly stochastic chains. For instance, let D ⊂ Rn×n

be any finite collection of doubly stochastic matrices such that I ∈ D, and let {A(t)}∞t=0 be a

sequence of i.i.d. random matrices, each of which is uniformly distributed on D. Then {A(t)}∞t=0,

being a doubly stochastic chain, belongs to Class P∗ (see [133]). Now, for any B ∈ N and

t1 ∈ N0, the probability that A(t) = I for all t ∈ {t1, . . . , t1 +B−1} equals 1
|D|B > 0. In light

of the independence of {A(t)}∞t=0, this implies that there almost surely exists a time interval

T of length B such that A(t) = I for all t ∈ T , implying that there is no connectivity in the

network during the interval T . As the interval duration B is arbitrary, this means that the chain

{A(t)}∞t=0 is almost surely not uniformly strongly connected.

4.4 The Main Result and its Derivation

We first introduce a network connectivity concept called γ-epoch, which plays a key role

in our main result.

Definition 52 (γ-epoch). For a given γ > 0 and ts, tf ∈ N satisfying ts < tf , the time interval

[ts, tf ] is a γ-epoch if, for each i ∈ [n], there exists an observationally self-sufficient set of agents,

Oi ⊂ [n], and a set of time instants Ti ⊂ {ts +1, . . . , tf} such that for every j ∈Oi, there exists a

t ∈ Ti satisfying ajj(t)≥ γ and (A(t : ts))ji ≥ γ. Moreover, if [ts, tf ] is a γ-epoch, then tf − ts

is the epoch duration.

As an example, if n ≥ 9 and if the sets {2,5,9} and {7,9} are observationally self-

sufficient, then Fig. 4.1 illustrates the influences of agents 1 and n in the γ-epoch [0,5].

Intuitively, γ-epochs are time intervals over which every agent strongly influences an

observationally self-sufficient set of agents whose self-confidences are guaranteed to be above a

certain threshold at the concerned time instants.
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Figure 4.1. Example of a γ-epoch (from the viewpoint of nodes 1 and n)

We now list the assumptions underlying our main result.

I (Recurring γ-epochs). There exist constants γ > 0 andB ∈N, and an increasing sequence

{tk}∞k=1 ⊂ N such that t2k− t2k−1 ≤B for all k ∈ N, and

∞∑
k=1

P∗ ([t2k−1, t2k] is a γ-epoch) =∞.

This means that the probability of occurrence of a γ-epoch of bounded duration does not

vanish too fast with time. Note, however, that t2k+1− t2k (the time elapsed between two

consecutive candidate γ-epochs) may be unbounded.

II (Existence of a positive prior). There exists an agent j0 ∈ [n] such that µj0,0(θ∗)> 0, i.e.,

the true state is not ruled out entirely by every agent. We assume w.l.o.g. that j0 = 1.

III (Initial connectivity with the agent with the positive prior). There a.s. exists a random

time T <∞ such that1 E∗ [log (A(T : 0))i1]>−∞ for all i ∈ [n].
1In general, if Q := {j ∈ [n] : µj,0(θ∗) > 0}, then we only need E∗[maxj∈Q log((A(T : 0))ij)] >−∞.
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IV (Class P∗). {A(t)}∞t=0 ∈ P∗, i.e., the sequence of weighted adjacency matrices of the

network belongs to Class P∗ w.r.t. the probability measure P∗.

V (Independent chain). {At}∞t=0 is a P∗-independent chain.

VI (Independence of observations and network structure). The sequences {ωt}∞t=1 and

{At}∞t=0 are P∗-independent of each other.

We are now ready to state our main results.

Theorem 5. Suppose that the sequence {A(t)}∞t=0 and the agents’ initial beliefs satisfy Assump-

tions II - VI. Then:

(i) If {A(t)}∞t=0 either has the strong feedback property or satisfies Assumption I, then every

agent’s beliefs weakly merge to the truth P∗-a.s. (i.e., P∗-almost surely).

(ii) If Assumption I holds and θ∗ is identifiable, then all the agents asymptotically learn the

truth P∗-a.s.

Theorem 7 applies to stochastic chains belonging to Class P∗, and hence to scenarios in

which the social power (Kolmogorov centrality) of each agent exceeds a fixed positive threshold

at all times in the expectation sense (see Section 4.3). While Part (i) identifies the recurrence of

γ-epochs as a sufficient connectivity condition for the agents’ forecasts to be eventually correct,

Part (ii) asserts that, if γ-epochs are recurrent and if the agents’ observation methods enable them

to collectively distinguish the true state from all other states, then they will learn the true state

asymptotically almost surely.

Note that the sufficient conditions provided in Theorem 7 do not include uniform strong

connectivity. However, it turns out that uniform strong connectivity as a connectivity criterion

is sufficient not only for almost-sure weak merging to the truth but also for ensuring that all

the agents asymptotically agree with each other almost surely, even when the true state is not

identifiable. We state this result formally below.

120



Theorem 6. Suppose Assumption II holds, and suppose {A(t)}∞t=0 is deterministic and uniformly

strongly connected. Then, all the agents’ beliefs converge to a consensus P∗-a.s., i.e., for each

θ ∈Θ, there exists a random variable Cθ ∈ [0,1] such that limt→∞µt(θ) = Cθ1 a.s.

Before proving Theorems 7 and 6, we look at the effectiveness of the concepts of

Section 4.3 in analyzing the social learning dynamics studied in this chapter. We begin by noting

the following implication of Assumption IV: there exists a deterministic sequence of stochastic

vectors {π(t)}∞t=0 and a constant p∗ > 0 such that {π(t)}∞t=0 is an absolute probability sequence

for {A(t)}∞t=0, and π(t)≥ p∗1 for all t ∈ N0.

Using Absolute Probability Sequences and the Notion of Class P∗ to
Analyze Social Learning

1) Linear Approximation of the Update Rule: Consider the update rule (4.2) with θ = θ∗. Note

that the only non-linear term in this equation is

u(t) := diag
(
. . . ,aii(t)

[
li(ωi,t+1|θ∗)
mi,t(ωi,t+1) −1

]
, . . .

)
µt(θ∗).

So, in case limt→∞u(t) = 0, then the resulting dynamics for large t would be µt(θ∗) ≈

A(t)µt(θ∗), which is approximately linear and hence easier to analyze. This motivates us

to use the following trick: we could take the dot product of each side of (4.2) with a non-

vanishing positive vector q(t), and then try to show that qT (t)u(t)→ 0 as t→∞. Also, since

{A(t)} ∈ P∗, we could simply choose {q(t)}∞t=0 = {π(t)}∞t=0 as our sequence of non-vanishing

positive vectors.

Before using this trick, we need to take suitable conditional expectations on both sides

of (4.2) so as to remove all the randomness from A(t) and aii(t). To this end, we define

Bt := σ(ω1, . . . ,ωt,A(0), . . . ,A(t)) for each t ∈ N, and obtain the following from (4.2):

E∗[µt+1(θ∗) | Bt]−A(t)µt(θ∗) = E∗[u(t) | Bt],
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where we used that µt(θ∗) is measurable w.r.t. Bt.

We now use the said trick as follows: we left-multiply both the sides of the above equation

by the non-random vector πT (t+1) and obtain:

πT (t+1)E∗[u(t) | Bt] = πT (t+1)E∗[µt+1(θ∗)|Bt]−πT (t+1)A(t)µt(θ∗).

Here, we use the definition of absolute probability sequences (Definition 46): we replace

πT (t+1) with πT (t+2)E∗[A(t+1)] in the first term on the right-hand-side. Consequently,

πT (t+1)E∗[u(t) | Bt] = πT (t+2)E∗[A(t+1)]E∗[µt+1(θ∗) | Bt]−πT (t+1)A(t)µt(θ∗)
(a)= E∗[πT (t+2)A(t+1)µt+1(θ∗) | Bt]−πT (t+1)A(t)µt(θ∗), (4.4)

where (a) follows from Assumptions V and VI (for more details see Lemma 27). Now, to

prove that limt→∞u(t) = 0, we could begin by showing that the left-hand-side of (4.4) (i.e.,

πT (t+1)E∗[u(t) | Bt]) goes to 0 as t→∞. As it turns out, this latter condition is already met:

according to Lemma 21 (in the appendix), the right-hand side of (4.4) vanishes as t→∞. As a

result,

lim
t→∞

πT (t+1)E∗[u(t) | Bt] = 0 a.s.

Equivalently,

n∑
i=1

πi(t+1)aii(t)E∗
[
li(ωi,t+1|θ∗)
mi,t(ωi,t+1) −1

∣∣∣∣Bt

]
µi,t(θ∗)−→ 0 almost surely as t→∞,

where we have used that aii(t) and µt(θ∗) are measurable w.r.t. Bt. To remove the summation

from the above limit, we use the lower bound in Lemma 24 to argue that every summand in the

above expression is non-negative. Thus, for each i ∈ [n],

lim
t→∞

πi(t+1)aii(t)E∗
[
li(ωi,t+1|θ∗)
mi,t(ωi,t+1) −1

∣∣∣∣Bt

]
µi,t(θ∗) = 0
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a.s. More compactly, limt→∞πi(t+1)E∗[ui(t) | Bt] = 0 a.s. Here, Class P∗ plays an important

role: since π(t+1)≥ p∗1, the multiplicand πi(t+1) can be omitted:

lim
t→∞

E∗ [ui(t) | Bt] = 0 a.s. (4.5)

We have thus shown that limt→∞E∗[u(t) | Bt] = 0 a.s. With the help of some algebraic manipu-

lation, we can now show that limt→∞u(t) = 0 a.s. (see Lemma 25 for further details).

2) Analysis of 1-Step-Ahead Forecasts: Interestingly, the result limt→∞u(t) = 0 a.s. can

be strengthened further to comment on 1-step-ahead forecasts, as we now show.

Recall that π(t)≥ p∗1 for all t∈N0. Since log(µt(θ∗))≤ 0, this means that the following

hold almost surely:

p∗ liminf
t→∞

n∑
i=1

log(µi,t(θ∗)) = liminf
t→∞

p∗1T log(µt(θ∗))

≥ liminf
t→∞

πT log(µt(θ∗))>−∞,

where the last step follows from Lemma 21. This is possible only if liminft→∞ log(µi,t(θ∗))>

−∞ a.s. for each i ∈ [n], which implies that liminft→∞µi,t(θ∗) > 0 a.s., that is, there a.s.

exist random variables δ > 0 and T ′ ∈ N such that µi,t(θ∗) ≥ δ a.s. for all t ≥ T ′. Since

limt→∞ui(t) = 0 a.s., it follows that limt→∞
ui(t)

µi,t(θ∗) = 0 a.s., that is,

lim
t→∞

aii(t)
(
li(ωi,t+1|θ∗)
mi,t(ωi,t+1) −1

)
= 0 a.s.

On multiplying the above limit by −mi,t(ωi,t+1), we observe that the following holds a.s.

limt→∞aii(t)(mi,t(ωi,t+1)− li(ωi,t+1|θ∗)) = 0. We now perform some simplification (see
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Lemma 28) to show that

lim
t→∞

aii(t)(mi,t(s)− li(s|θ∗)) = 0 a.s. for all s ∈ Si. (4.6)

Therefore, if there exists a sequence of times {tk}∞k=1 with tk ↑ ∞ such that the i-th agent’s

self-confidence aii(t) exceeds a fixed threshold γ > 0 at times {tk}∞k=1, then (4.6) implies that its

1-step-ahead forecasts sampled at {tk}∞k=1 converge to the true forecasts, i.e., limk→∞mi,tk
(s) =

li(s|θ∗) a.s.

The following lemma generalizes (4.6) to h-step-ahead forecasts. Its proof is based on

induction and elementary properties of conditional expectation.

Lemma 20. For all h ∈ N, s1, s2, . . . , sh ∈ Si and i ∈ [n],

lim
t→∞

aii(t)
m(h)

i,t (s1, s2, . . . , sh)−
h∏

r=1
li(sr|θ∗)

= 0 a.s.

Proof. We prove this lemma by induction. Observe that since mi,t(s) ≤ 1 for all s ∈ Si and

i∈ [n], on multiplication bymi,t(s), Lemma 25 implies that Lemma 20 holds for h= 1. Now, sup-

pose Lemma 20 holds for some h ∈ N, and subtract both the sides of (4.2) from E∗[µt+1(θ)|Bt]

in order to obtain

E∗[µt+1(θ)|Bt]−µt+1(θ)

= E∗[µt+1(θ)|Bt]−A(t)µt(θ)−diag
(
. . . ,aii(t)

[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

]
, . . .

)
µt(θ).

Rearranging the above and using Lemma 26 results in

E∗[µt+1(θ)|Bt]−µt+1(θ)+ diag
(
. . . ,aii(t)

[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

]
, . . .

)
µt(θ) t→∞−→ 0

a.s. For i ∈ [n], we now pick the i-th entry of the above vector limit, multiply both its sides by
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aii(t)
∏h

r=1 li(sr|θ) (where s1, s2, . . . , sr are chosen arbitrarily from Si), and then sum over all

θ ∈Θ. As a result, the following quantity approaches 0 almost surely as t→∞

∑
θ∈Θ

aii(t)
 h∏

r=1
li(sr|θ)

(E∗[µi,t+1(θ)|Bt]−µi,t+1(θ))

+
∑
θ∈Θ

 h∏
r=1

li(sr|θ)
a2

ii(t)
[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

]
µi,t(θ) (4.7)

On the other hand, the following holds almost surely

∑
θ∈Θ

aii(t)
 h∏

r=1
li(sr|θ)

(E∗[µi,t+1(θ)|Bt]−µi,t+1(θ))

= aii(t)E∗

∑
θ∈Θ

h∏
r=1

li(sr|θ)µi,t+1(θ)
∣∣∣∣ Bt

−aii(t)
∑
θ∈Θ

h∏
r=1

li(sr|θ)µi,t+1(θ)

= aii(t)E∗
[
m

(h)
i,t+1(s1, . . . , sr)|Bt

]
−aii(t)m(h)

i,t+1(s1, . . . , sr)

= E∗

aii(t)
m(h)

i,t+1(s1, . . . , sr)−
h∏

r=1
li(sr|θ)

 ∣∣∣∣ Bt


−aii(t)

m(h)
i,t+1(s1, . . . , sr)−

h∏
r=1

li(sr|θ)
 t→∞−→ 0 (4.8)

where the last step follows from our inductive hypothesis and the Dominated Convergence

Theorem for conditional expectations. Combining (4.7) and (4.8) now yields:

∑
θ∈Θ

 h∏
r=1

li(sr|θ)
a2

ii(t)
[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

]
µi,t(θ)→ 0

a.s. as t→∞, which implies:

a2
ii(t)

mi,t(ωi,t+1)m
(h+1)
i,t (ωi,t+1, s1, . . . , sh)−a2

ii(t)m
(h)
i,t (s1, . . . , sh)→ 0 a.s. as t→∞.

By the inductive hypothesis and the fact that |aii(t)| and |mi,t(ωi,t+1)| are bounded, the above
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means:

a2
ii(t)m

(h+1)
i,t (ωi,t+1, s1, . . . , sh)−a2

ii(t)mi,t(ωi,t+1)
h∏

r=1
li(sr|θ∗) t→∞−→ 0 a.s.

Once again, the fact that |mi,t(ωi,t+1)| is bounded along with Lemma 25 implies that the limit

aii(t)mi,t(ωi,t+1)−aii(t)li(ωi,t+1|θ∗)→ 0 holds a.s. and hence that

a2
ii(t)m

(h+1)
i,t (ωi,t+1, s1, . . . , sh)−a2

ii(t)li(ωi,t+1|θ∗)
h∏

r=1
li(sr|θ∗) t→∞−→ 0 a.s.

By the Dominated Convergence Theorem for Conditional Expectations, we have

a2
ii(t)E∗

m(h+1)
i,t (ωi,t+1, s1, . . . , sh)− li(ωi,t+1|θ∗)

h∏
r=1

li(sr|θ∗)|Bt

 t→∞−→ 0 a.s.,

which implies that

a2
ii(t)

∑
sh+1∈Si

li(sh+1|θ∗)
m(h+1)

i,t (sh+1, s1, . . . , sh)−
h+1∏
r=1

li(sr|θ∗)
 t→∞−→ 0 a.s.

Since li(sh+1|θ∗)> 0 for all sh+1 ∈ Si, it follows that

a2
ii(t)

m(h+1)
i,t (sh+1, s1, . . . , sh)−

h+1∏
r=1

li(sr|θ∗)
 t→∞−→ 0 a.s.

for all s1, s2, . . . , sh+1 ∈ Si. We thus have

aii(t)
m(h+1)

i,t (s1, s2, . . . , sh+1)−
h+1∏
r=1

li (sr | θ∗)
2

= a2
ii(t)

m(h+1)
i,t (s1, s2, . . . , sh+1)−

h+1∏
r=1

li (sr | θ∗)


·

m(h+1)
i,t (s1, s2, . . . , sh+1)−

h+1∏
r=1

li (sr | θ∗)
 ,
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which decays to 0 almost surely as t→∞, because
∣∣∣∣m(h+1)

i,t (s1, s2, . . . , sh+1)−∏h+1
r=1 li (sr | θ∗)

∣∣∣∣
is bounded. This proves the lemma for h+1 and hence for all h ∈ N.

3) Asymptotic Behavior of the Agents’ Beliefs: As it turns out, Lemma 21, which we used

above to analyze the asymptotic behavior of u(t), is a useful result based on the idea of absolute

probability sequences. We prove this lemma below.

Lemma 21. Let θ∈Θ∗. Then the following limits exist and are finite: P∗-a.s: limt→∞πT (t)µt(θ),

limt→∞πT (t+ 1)A(t)µt(θ) and limt→∞πT (t) logµt(θ∗). As a result, we can assert that

E∗[πT (t+2)A(t+1)µt+1(θ∗) | Bt]−πT (t+1)A(t)µt(θ∗) approaches 0 a.s. as t→∞.

Proof. Let B′
t := σ(A(0), . . . ,A(t−1),ω1, . . . ,ωt) for all t ∈ N. Taking the conditional expecta-

tion E[·|B′
t] on both sides of (4.2) yields

E∗[µt+1(θ) | B′
t]−E∗[A(t) | B′

t]µt(θ)

= diag
(
. . . ,E∗

[
aii(t)

(
li(ωi,t+1 | θ)
mi,t(ωi,t+1) −1

)∣∣∣∣B′
t

]
, . . .

)
µt(θ∗), (4.9)

where we used that µt(θ) is measurable w.r.t. B′
t. Now, observe that B′

t ⊂ Bt, which implies that

E∗
[
aii(t)

(
li(ωi,t+1 | θ)
mi,t(ωi,t+1) −1

) ∣∣∣∣ B′
t

]
= E∗

[
E∗
[
aii(t)

(
li(ωi,t+1 | θ)
mi,t(ωi,t+1) −1

) ∣∣∣∣ Bt

] ∣∣∣∣ B′
t

]

= E∗
[
aii(t) ·E∗

[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

∣∣∣∣ Bt

] ∣∣∣∣ B′
t

]

≥ 0,

where the inequality follows from the lower bound in Lemma 24. Hence, (4.9) implies that

E∗[µt+1(θ) | B′
t]≥E∗[A(t) | B′

t]µt(θ). Since E∗[A(t) | B′
t] =E∗[A(t)] by Assumptions V and VI,
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it follows that

E∗[µt+1(θ) | B′
t]≥ E∗[A(t)]µt(θ) (4.10)

a.s. for all t ∈ N. Left-multiplying both the sides of (4.10) by πT (t+1) results in the following

almost surely

πT (t+1)E∗[µt+1(θ)|B′
t]≥ πT (t+1)E∗[A(t)]µt(θ)

= πT (t)µt(θ), (4.11)

where the last step follows from the definition of absolute probability sequences (Definition 46).

Since {π(t)}∞t=0 is a deterministic sequence, it follows from (4.11) that

E∗[πT (t+1)µt+1(θ) | B′
t]≥ πT (t)µt(θ) a.s.

We have thus shown that {πT (t)µt(θ)}∞t=1 is a submartingale w.r.t. the filtration {B′
t}∞t=1. Since

it is also a bounded non-negative sequence (because 0 ≤ π(t),µt(θ) ≤ 1), it follows that

{πT (t)µt(θ)}∞t=1 is a bounded non-negative submartingale. Hence, limt→∞πT (t)µt(θ) ex-

ists and is finite P∗-a.s.

The almost-sure existence of limt→∞πT (t+ 1)A(t)µt(θ) and limt→∞πT (t) logµt(θ∗)

can be proved using similar submartingale arguments, as we show below.

In the case of limt→∞πT (t+1)A(t)µt(θ), we derive an inequality similar to (4.10): we

take conditional expectations on both sides of (4.2) and then use the lower bound in Lemma 24

to establish that

E∗[µt+1(θ) | Bt]≥ A(t)µt(θ) a.s. (4.12)
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Next, we observe that

πT (t+1)A(t)µt(θ)
(a)
≤ πT (t+1)E∗[µt+1(θ)|Bt]

= πT (t+2)E∗[A(t+1)]E∗[µt+1(θ)|Bt]
(b)= πT (t+2)E∗[A(t+1)|Bt]E∗[µt+1(θ)|Bt]
(c)= πT (t+2)E∗[A(t+1)µt+1(θ)|Bt]

= E∗[πT (t+2)A(t+1)µt+1(θ)|Bt] a.s., (4.13)

where (a) follows from (4.12), and (b) and (c) each follow from Assumptions V and VI.

Thus, {πT (t+ 1)A(t)µt(θ)}∞t=1 is a submartingale. It is also a bounded sequence. Hence,

limt→∞πT (t+ 1)A(t)µt(θ) exists and is finite a.s. Next, we use an argument similar to the

proof of Lemma 2 in [105]: by taking the entry-wise logarithm of both sides of (4.1), using the

concavity of the log(·) function and then by using Jensen’s inequality, we arrive at:

logµi,t+1(θ∗)≥ aii(t) logµi,t(θ∗)+aii(t) log
(
li(ωi,t+1|θ∗)
mi,t(ωi,t+1)

)
+

∑
j∈Ni(t)

aij(t) logµj,t(θ∗).

(4.14)

Note that by Lemma 23 and Assumptions II and III, we have the following almost surely for all

i ∈ [n]:

µi,T (θ∗)≥ (A(T : 0))i1(l0/n)Tnµ1,0(θ∗)> 0.

Therefore, (4.14) is well defined for all t≥ T and i ∈ [n]. Next, for each i ∈ [n], we have:

E∗
[
log li(ωi,t+1|θ∗)

mi,t(ωi,t+1)

∣∣∣∣ B′
t

]
=
∑
s∈Si

li(s|θ∗) log
(
li(s|θ∗)
mi,t(s)

)
=D(li(·|θ∗) ∥mi,t(·))≥ 0, (4.15)

where D(p ∥ q) denotes the relative entropy between two probability distributions p and q, and is

always non-negative [134]. Taking conditional expectations on both the sides of (4.14) and then
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using (4.15) yields:

E∗[logµi,t+1(θ∗) | B′
t]≥ E∗[aii(t)] logµi,t(θ∗)+

∑
j∈Ni(t)

E∗[aij(t)] logµj,t(θ∗) (4.16)

a.s. for all i ∈ [n] and t sufficiently large, which can also be expressed as E∗[logµt+1(θ∗) | B′
t]≥

E∗[A(t)] logµt(θ∗) a.s. Therefore, E∗[A(t)] logµt(θ∗)≤ E∗[logµt+1(θ∗) | B′
t] a.s., and we have:

πT (t) logµt(θ∗) = πT (t+1)E∗[A(t)] logµt(θ∗)

≤ πT (t+1)E∗[logµt+1(θ∗) | B′
t]

= E∗[πT (t+1)logµt+1(θ∗) | B′
t] (4.17)

a.s. Thus, {πT (t) logµt(θ∗)}∞t=0 is a submartingale. Now, recall that the following holds almost

surely:

µi,T (θ∗)≥ (A(T : 0))i1

(
l0
n

)T

nµ1,0(θ∗)> 0,

which, along with (4.17), implies that {πT (t) logµt(θ∗)}∞t=T is an integrable process. Since

πT (t) logµt(θ∗) < 0 a.s., it follows that the submartingale is also L1(P∗)-bounded. Hence,

limt→∞πT (t) logµt(θ∗) exists and is finite almost surely.

Having shown that limt→∞πT (t+ 1)A(t)µt(θ∗) exists a.s., we use the Dominated

Convergence Theorem for Conditional Expectations (Theorem 5.5.9 in [135]) to prove the

last assertion of the lemma. We do this as follows: we note that we almost surely have

limt→∞
(
πT (t+2)A(t+1)µt+1(θ∗)−πT (t+1)A(t)µt(θ∗)

)
= 0. Therefore,

E∗[πT (t+2)A(t+1)µt+1(θ∗) | Bt]−πT (t+1)A(t)µt(θ∗)

= E∗[πT (t+2)A(t+1)µt+1(θ∗)−πT (t+1)A(t)µt(θ∗) | Bt]→ 0 a.s. as t→∞,

where the second step follows from the Dominated Convergence Theorem for Conditional

Expectations.
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We now use the above observations to prove Theorems 7 and 6.

Proof of Theorem 7

We prove each assertion of the theorem one by one.

Proof of (i): If {A(t)}∞t=0 has the strong feedback property, then by Lemma 20, for all

s ∈ Si, h ∈ N and i ∈ [n],

m
(h)
i,t (s1, s2, . . . , sh)−

h∏
r=1

li(sr|θ∗) t→∞−→ 0 a.s.

which proves (i).

So, let us now ignore the strong feedback property and suppose that Assumption I

holds. Let Dk denote the event that [t2k−1, t2k] is a γ-epoch. Since {A(t)}∞t=0 are indepen-

dent, and since
∑∞

k=1 Pr(Dk) =∞, we know from the Second Borel-Cantelli Lemma that

Pr(Dk infinitely often) = 1 a.s. In other words, infinitely many γ-epochs occur a.s. So, for

each k ∈ N, suppose the k-th γ-epoch is the random time interval [T2k−1,T2k]. Then by the

definition of γ-epoch, for each k ∈ N and i ∈ [n], there almost surely exist ri,k ∈ [n], an obser-

vationally self-sufficient set, {σi,k(1), . . . ,σi,k(ri,k)} ⊂ [n], and times {τi,k(1), . . . , τi,k(ri,k)} ⊂

{T2k−1, . . . ,T2k} such that

min
(
aσi,k(q)σi,k(q)(τi,k(q)),(A(τi,k(q) : T2k−1))σi,k(q) i

)
≥ γ

a.s. for all q ∈ [ri(k)]. Since n is finite, there exist constants r1, r2, . . . , rn ∈ [n] and a con-

stant set of tuples {(σi(1), . . . ,σi(ri))}i∈[n] such that ri,k = ri and (σi,k(1), . . . ,σi,k(ri,k)) =

(σi(1), . . . ,σi(ri)) hold for all i ∈ [n] and infinitely many k ∈ N. Thus, we may assume that the

same equalities hold for all i ∈ [n] and all k ∈ N (by passing to an appropriate subsequence of
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{Tk}∞k=1, if necessary). Hence, by Lemma 20 and the fact that aσi(q)σi(q) ≥ γ, we have

m
(h)
σi(q), τi,k(q)(s1, . . . , sh)→

h∏
p=1

lσi(q)(sp|θ∗)

a.s. for all s ∈ [r] as k→∞, which means that the forecasts of each agent in {σi(q) : q ∈ [ri]}

are asymptotically accurate along a sequence of times. Now, making accurate forecasts is

possible only if agent σi(q) rules out every state that induces on Sσi(q) (the agent’s signal

space) a conditional probability distribution other than lσi(q)(·|θ∗). Such states are contained

in Θ \Θ∗
σi(q). Thus, for every state θ /∈ Θ∗

σi(q), we have µσi(q), τi,k(q)(θ)→ 0 a.s. as k →∞

(alternatively, we may repeat the arguments used in the proof of Proposition 3 of [105] to prove

that µσi(q), τi,k(q)(θ)→ 0 a.s. as k→∞).

On the other hand, since the influence of agent i on agent σi(q) over the time interval

[T2k−1, τi,k(q)] exceeds γ, it follows from Lemma 23 that µσi(q), τi,k(q)(θ) is lower bounded by a

multiple of µi,T2k−1(θ). To elaborate, Lemma 23 implies that for all θ ∈Θ\Θ∗
σi(q):

µi,T2k−1(θ)≤
µσi(q), τi,k(q)(θ)

(A(τi,k(q) : T2k−1))σi(q) i
·
(
n

l0

)τi,k(q)−T2k−1

≤
µσi(q), τi,k(q)(θ)

γ

(
n

l0

)B

.

Considering the limit µσi(q), τi,k(q)(θ)→ 0, this is possible only if limk→∞µi,T2k−1(θ) = 0 a.s. for

all θ ∈ Θ\Θ∗
σi(q) and q ∈ [ri], i.e., limk→∞µi,T2k−1(θ) = 0 a.s. for all θ ∈ ∪q∈[ri]

(
Θ\Θ∗

σi(q)

)
.

Since {σi(q) : q ∈ [ri]} is an observationally self-sufficient set, we are able to deduce that

∪q∈[ri]
(
Θ\Θ∗

σi(q)

)
= Θ \Θ∗ and hence that limk→∞µi,T2k−1(θ) = 0 a.s. for all θ ∈ Θ \Θ∗.

Since i ∈ [n] is arbitrary, this further implies that limk→∞µT2k−1(θ) = 0 for all θ /∈Θ∗. Hence,

limk→∞
∑

θ∈Θ∗ µT2k−1(θ) = 1 a.s.

To convert the above subsequence limit to a limit of the sequence {∑θ∈Θ∗ µt(θ)}∞t=0, we
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first show the existence of limt→∞πT (t)∑θ∈Θ∗ µt(θ) and use it to prove that

lim
t→∞

∑
θ∈Θ∗

µt(θ) = 1 a.s. (4.18)

This is done as follows. First, we note that limt→∞πT (t)∑θ∈Θ∗ µt(θ) exists a.s. because

lim
t→∞

πT (t)
∑

θ∈Θ∗
µt(θ) =

∑
θ∈Θ∗

lim
t→∞

πT (t)µt(θ),

which is a sum of limits that exist a.s. by virtue of Lemma 21. On the other hand, since

limk→∞
∑

θ∈Θ∗ µT2k−1(θ) = 1 a.s., we have

lim
k→∞

πT (T2k−1)
∑

θ∈Θ∗
µT2k−1(θ) = lim

k→∞
πT (T2k−1)1 = 1

a.s. because {π(t)}∞t=1 are stochastic vectors. Hence, limt→∞πT (t)∑θ∈Θ∗ µt(θ) = 1 a.s., be-

cause the limit of a sequence is equal to the limit of each of its subsequences whenever the

former exists.

We now prove that liminft→∞
∑

θ∈Θ∗ µt(θ) = 1 a.s. Suppose this is false, i.e., suppose

there exists an i ∈ [n] such that liminft→∞
∑

θ∈Θ∗ µi,t(θ) < 1. Then there exist ε > 0 and a

sequence, {φk}∞k=1 ⊂ N such that
∑

θ∈Θ∗ µi,φk
(θ)≤ 1− ε for all k ∈ N. Since there also exists

a p∗ > 0 such that π(t)≥ p∗1 a.s. for all t ∈ N, we have for all k ∈ N:

πT (φk)
∑

θ∈Θ∗
µφk

(θ∗)≤ πi(φk)(1− ε)+
∑

j∈[n]\{i}
πj(φk) ·1

=
n∑

j=1
πj(φk)− επi(φk)

≤ 1− εp∗

< 1,
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which contradicts the conclusion of the previous paragraph. Hence, liminft→∞
∑

θ∈Θ∗ µt(θ) = 1

indeed holds a.s., which means that

lim
t→∞

∑
θ∈Θ∗

µt(θ) = 1 a.s. (4.19)

In view of the definition of Θ∗ (see Section 5.2), (4.18) means that the beliefs of agent i

asymptotically concentrate only on those states that generate the i.i.d. signals {ωi,t}∞t=1 according

to the true probability distribution li(·|θ∗). That is, agent i asymptotically rules out all those

states that generate signals according to distributions that differ from the one associated with the

true state. Since agent i knows that each of the remaining states generates {ωi,t}∞t=1 according to

li(·|θ∗), this implies that agent i estimates the true distributions of her forthcoming signals with

arbitrary accuracy as t→∞, i.e., her beliefs weakly merge to the truth. This claim is proved

formally below.

For any i ∈ [n] and k ∈ N, we have

m
(k)
i,t (s1, . . . , sk) =

∑
θ∈Θ

k∏
r=1

li(sr|θ)µi,t(θ)

(a)=
∑

θ∈Θ\Θ∗

k∏
r=1

li(sr|θ)µi,t(θ)+
 k∏

r=1
li(sr|θ∗)

 ∑
θ∈Θ∗

µi,t(θ)

t→∞−→
∑

θ∈Θ\Θ∗

k∏
r=1

li(sr|θ) ·0+
 k∏

r=1
li(sr|θ∗)

 ·1
=

k∏
r=1

li(sr|θ∗) P∗-a.s.

where (a) follows from Definition 40 and the definition of Θ∗. Thus, every agent’s beliefs weakly

merge to the truth P∗-a.s.
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Proof of (ii): Next, we note that if Assumption I holds and θ∗ is identifiable, then:

lim
t→∞

µt(θ∗) = lim
t→∞

∑
θ∈{θ∗}

µt(θ) = lim
t→∞

∑
θ∈Θ∗

µt(θ) = 1

a.s., where the last step follows from (4.18). This proves (ii).

Proof of Theorem 6

To begin, suppose {A(t)}∞t=0 is a deterministic uniformly strongly connected chain, and

let B denote the constant satisfying Condition 3 in Definition 48. Then one can easily verify that

Assumptions I and III hold (see the proof of Lemma 22 for a detailed verification). Moreover,

{A(t)}∞t=0 ∈P∗ by Lemma 5.8 of [62]. Thus, Assumptions I - VI hold (the last two of them hold

trivially), implying that Equation (4.18) holds, which proves that cθ = 0 for all θ ∈Θ\Θ∗. So,

we restrict our subsequent analysis to the states belonging to Θ∗, and we let θ denote a generic

state in Θ∗.

Since we aim to show that all the agents converge to a consensus, we first show that their

beliefs attain synchronization as time goes to∞ (i.e., limt→∞ (µi,t(θ)−µj,t(θ)) = 0 a.s. for all

i, j ∈ [n]), and then show that the agents’ beliefs converge to a steady state almost surely as time

goes to∞.

Synchronization

To achieve synchronization asymptotically in time, the quantity |maxi∈[n]µi,t(θ)−

minj∈[n]µj,t(θ)|, which is the difference between the network’s maximum and minimum beliefs

in the state θ, must approach 0 as t→∞. Since this requirement is similar to asymptotic stability,

and since the update rule (4.2) involves only one non-linear term, we are motivated to identify a

Lyapunov function associated with linear dynamics on uniformly strongly connected networks.

One such function is the quadratic comparison function Vπ : Rn×N0→ R, defined as follows

135



in [62]:

Vπ(x,k) :=
n∑

i=1
πi(k)(xi−πT (k)x)2.

Remarkably, the function Vπ(·,k) is comparable in magnitude with the difference function

d(x) := |maxi∈[n]xi−minj∈[n]xj |. To be specific, Lemma 29 shows that for each k ∈ N0,

(p∗/2)
1
2d(x)≤

√
Vπ(x,k)≤ d(x). (4.20)

As a result, just like Vπ, the difference function d(·) behaves like a Lyapunov function

for linear dynamics on a time-varying network described by {A(t)}∞t=0. To elaborate, Vπ being a

Lyapunov function means that, for the linear dynamics x(k+1) = A(k)x(k) with x(0) ∈ Rn as

the initial condition, there exists a constant κ ∈ (0,1) such that

Vπ(x((q+1)B),(q+1)B)≤ (1−κ)qVπ(x(0),0)

for all q ∈ N0 (see Equation (5.18) in [62]). This inequality can be combined with (4.20) to

obtain a similar inequality for the function d(·) as follows: in the light of (4.20), the inequality

above implies the following for all q ∈ N0:

d(x(q+1)B)≤
√

2(1−κ)q

p∗ d(x(0)).

Now, note that there exists a q0 ∈ N0 that is large enough for
√

2(1−κ)q0
p∗ < 1 to hold. We then

have

d(x(T0))≤ αd(x(0)),

where T0 := (q0 + 1)B and α :=
√

2(1−κ)q0
p∗ < 1. More explicitly, we have d(A(T0 : 0)x0) ≤

αd(x0) for all initial conditions x0 ∈ Rn. Now, given any r ∈ N, by the definition of uniform
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strong connectivity the truncated chain {A(t)}∞t=rB is also B-strongly connected. Therefore, the

above inequality can be generalized to:

d(A(T0 + rB : rB)x0)≤ αd(x0). (4.21)

By using some algebra involving the row-stochasticity of the chain {A(t)}∞t=0, Lemma 30

transforms (4.21) into the following, where t1, t2 ∈ N0 and t1 < t2:

d(A(t2 : t1)x0)≤ α
t2−t1

T0
−2
d(x0). (4.22)

For the linear dynamics x(k+1) =A(k)x(k), (4.22) implies that d(x(k))→ 0 as k→∞. Since

we need a similar result for the non-linear dynamics (4.2), we first recast (4.2) into an equation

involving backward matrix products (such as A(t2 : t1)), and then use (4.22) to obtain the desired

limit. The first step yields the following, which is straightforward to prove by induction [124]

µt+1(θ) = A(t+1 : 0)µ0(θ)+
t∑

k=0
A(t+1 : k+1)ρk(θ), (4.23)

where ρk(θ) is the vector with entries:

ρi,k(θ) := aii(k)
(
li(ωi,k+1|θ)
mi,k(ωi,k+1) −1

)
µi,k(θ).

We now apply d(·) to both sides of (4.23) so that we can make effective use of (4.22). We do

this below.

d(µt+1(θ))
(a)
≤ d(A(t+1 : 0)µ0(θ))+

t∑
k=0

d(A(t+1 : k+1)ρk(θ))

(b)
≤ α

t+1
T0

−2
d(µ0(θ))+

t∑
k=0

α
t−k
T0

−2
d(ρk(θ)). (4.24)

In the above chain of inequalities, (b) follows from (4.22), and (a) follows from the fact that
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d(x+y)≤ d(x)+d(y) for all x,y ∈ Rn.

We will now show that limt→∞ d(µt+1(θ)) = 0 a.s. Observe that the first term on the

right hand side of (4.24) vanishes as t→∞. To show that the second term also vanishes, we use

some arguments of [124] below.

Note that Theorem 7 (i) implies that for all i ∈ [n] and θ ∈Θ∗:

li(ωi,t+1|θ)−mi,t(ωi,t) = li(ωi,t+1|θ∗)−mi,t(ωi,t)→ 0

a.s. as t→∞. It now follows from the definition of ρk(θ) that limk→∞ ρk(θ) = 0 a.s. for all

θ ∈Θ∗. Thus, limk→∞ d(ρk(θ)) = 0 a.s. for all θ ∈Θ∗.

Next, note that
∑t

k=0α
t−k
T0

−2 ≤ α−2 · 1
1−α1/T0

<∞. Since limk→∞ d(ρk(θ)) = 0 a.s., we

have limt→∞
∑t

k=0α
t−k
T0

−2
d(ρk(θ)) = 0 a.s. by Toeplitz Lemma. Thus, (4.24) now implies that

limt→∞ d(µt+1(θ)) = 0 a.s. for all θ ∈Θ∗, i.e., synchronization is attained as t→∞.

Convergence to a Steady State

We now show that limt→∞µi,t(θ) exists a.s. for each i ∈ [n] because limt→∞πT (t)µt(θ)

exists a.s. by Lemma 21. Formally, we have the following almost surely:

lim
t→∞

µi,t(θ) = lim
t→∞

µi,t(θ)
n∑

j=1
πj(t)


= lim

t→∞

n∑
j=1

πj(t)(µj,t(θ)+(µi,t(θ)−µj,t(θ)))

(a)= lim
t→∞

n∑
j=1

πj(t)µj,t(θ)

= lim
t→∞

πT (t)µt(θ),

which exists almost surely. Here (a) holds because limt→∞(µi,t(θ)−µj,t(θ)) = 0 a.s. as a result

of asymptotic synchronization.

We have thus shown that limt→∞µt(θ) exists a.s. for all θ ∈Θ∗, and we have also shown
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that limt→∞ |µi,t(θ)−µj,t(θ)|= 0 a.s. for all i, j ∈ [n] and θ ∈Θ∗. It follows that for each θ ∈Θ∗,

limt→∞µt(θ) =Cθ1 a.s. for some scalar random variable Cθ =Cθ(A(0),ω1,A(1),ω2, . . .). This

concludes the proof of the theorem.

4.5 Applications

We now establish a few useful implications of Theorem 7, some of which are either

known results or their extensions.

4.5.1 Learning in the Presence of Link Failures

In the context of learning on random graphs, the following question arises naturally: is it

possible for a network of agents to learn the true state of the world when the underlying influence

graph is affected by random communication link failures? For simplicity, let us assume that there

exists a constant stochastic matrix A such that aij(t), which denotes the degree of influence of

agent j on agent i at time t, equals 0 if the link (j, i) has failed and Aij otherwise. Then, if the

link failures are independent across time, the following result answers the question raised.

Corollary 5. Let ([n],E) be a strongly connected directed graph whose weighted adjacency

matrix A= (Aij) satisfies Aii > 0 for all i ∈ [n]. Consider a system of n agents satisfying the

following criteria:

1. Assumption II holds.

2. The influence graph at any time t ∈N is given by G(t) = ([n],E−F (t)), where F (t)⊂E

denotes the set of failed links at time t, and {F (t)}∞t=0 are independently distributed

random sets.

3. The sequences {ωt}∞t=1 and {F (t)}∞t=0 are independent.

4. At any time-step, any link e ∈ E fails with a constant probability ρ ∈ (0,1). However, the

failure of e may or may not be independent of the failure of other links.
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5. The probability that G(t) is connected at time t is at least σ > 0 for all t ∈ N0.

Then, under the update rule (4.1), all the agents learn the truth asymptotically a.s.

Proof. Since {F (t)}∞t=0 are independent across time and also independent of the observation

sequence, it follows that the chain {A(t)}∞t=0 satisfies Assumptions V and VI.

Next, we observe that for any t∈N0, we have E∗[A(t)] = (1−ρ)A and hence, {E∗[A(t)]}

is a static chain of irreducible matrices because A, being the weighted adjacency matrix of a

strongly connected graph, is irreducible. Also, mini∈[n]Aii > 0 implies that {E∗[A(t)]} has

the strong feedback property. It now follows from Theorem 4.7 and Lemma 5.7 of [62] that

{E∗[A(t)]} belongs to Class P∗. As a result, Assumption IV holds.

We now prove that Assumption I holds. To this end, observe that {(G(nt),G(nt+

1),G(nt+n−1))}∞t=0 is a sequence of independent random tuples. Therefore, if we let Lr denote

the event that all the graphs in the rth tuple of the above sequence are strongly connected, then

{Lr}∞r=0 is a sequence of independent events. Note that P (Lr)≥ σn and hence,
∑∞

r=0P (Lr) =

∞. Thus, by the Second Borel-Cantelli Lemma, infinitely many Lr occur a.s. Now, it can be

verified that if Lr occurs, then at least one sub-interval of [(r−1)n,rn] is a γ-epoch for some

positive γ that does not depend on r. Thus, infinitely many γ-epochs occur a.s.

Finally, the preceding arguments also imply that there almost surely exists a time T <∞

such that exactly 1 of the events {Lr}∞r=0 has occurred until time T . With the help of the

strong feedback property of {A(t)}∞t=0 (which holds because Aii > 0), it can be proven that

log(A(T : 0))i1 >−∞ a.s. for all i ∈ [n]. Thus, Assumption III holds.

We have shown that all of the Assumptions I - VI hold. Since θ∗ is identifiable, it follows

from Theorem 7 that all the agents learn the truth asymptotically a.s.

4.5.2 Inertial Non-Bayesian Learning

In real-world social networks, it is possible that some individuals affected by psycho-

logical inertia cling to their prior beliefs in such a way that they do not incorporate their own
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observations in a fully Bayesian manner. This idea is closely related to the notion of prejudiced

agents that motivated the popular Friedkin-Johnsen model in [136]. To describe the belief updates

of such inertial individuals, we modify the update rule (4.1) by replacing the Bayesian update

term BUi,t+1(θ) with a convex combination of BUi,t+1(θ) and the ith agent’s previous belief

µi,t(θ), i.e.,

µi,t+1(θ) = aii(t)(λi(t)µi,t(θ)+(1−λi(t))BUi,t+1(θ))

+
∑

j∈Ni(t)
aij(t)µj,t(θ), (4.25)

where λi(t) ∈ [0,1] denotes the degree of inertia of agent i at time t. As it turns out, Theorem 7

implies that even if all the agents are inertial, they will still learn the truth asymptotically a.s.

provided the inertias are all bounded away from 1.

Corollary 6. Consider a network of n inertial agents whose beliefs evolve according to (4.25).

Suppose that for each i ∈ [n], the sequence {λi(t)}∞t=0 is deterministic. Further, suppose

λmax := supt∈N0 maxi∈[n]λi(t) < 1 and that Assumptions II - VI hold. Then Assertions (i)

and (ii) of Theorem 7 are true.

Proof. In order to use Theorem 7 effectively, we first create a hypothetical copy of each of

the n inertial agents and insert all the copies into the given inertial network in such a way that

the augmented network (of 2n agents) has its belief evolution described by the original update

rule (4.1). To this end, let [2n] index the agents in the augmented network so that for each i ∈ [n],

the ith real agent is still indexed by i whereas its copy is indexed by i+n. This means that for

every i ∈ [n], we let the beliefs, the signal structures and the observations of agent i+n equal

those of agent i at all times, i.e., let µi+n,t(θ) := µi,t(θ), Si+n := Si, li+n(·|θ) := li(·|θ) and
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ωi+n,t := ωi,t for all θ ∈Θ and all t ∈ N0. As a result, (4.25) can now be expressed as:

µi,t+1(θ)

= bi(t)BUi,t+1(θ)+wi(t)µi+n,t(θ)+
∑

j∈Ni(t)

1
2aij(t)µj,t(θ)+

∑
j∈Ni(t)

1
2aij(t)µj+n,t(θ)

(4.26)

for all i ∈ [n], where bi(t) := (1−λi(t))aii(t), and wi(t) := λi(t)aii(t) so that aii(t) = bi(t) +

wi(t). Now, let b(t) ∈ Rn and w(t) ∈ Rn be the vectors whose ith entries are bi(t) and wi(t),

respectively. Further, let Â(t) ∈ Rn×n and Ã(t) ∈ R2n×2n be the matrices defined by:

âij(t) := (Â(t))ij =


aij(t), if i ̸= j

0, if i= j

and

Ã(t) =

 Â(t)/2+ diag(b(t)) Â(t)/2+ diag(w(t))

Â(t)/2+ diag(w(t)) Â(t)/2+ diag(b(t))

 .
Then, with the help of (4.26), one can verify that the evolution of beliefs in the augmented

network is captured by:

µi,t+1(θ) = ãii(t)BUi,t+1(θ)+
∑

j∈[2n]\{i}
ãij(t)µj,t(θ), (4.27)

where ãij(t) is the (i, j)-th entry of Ã(t).

We now show that the augmented network satisfies Assumptions II - VI with {Ã(t)}∞t=0

being the associated sequence of weighted adjacency matrices.

It can be immediately seen that Assumption II holds for the augmented network because

it holds for the original network.

Regarding Assumption III, we observe that bi(t)≥ (1−λmax)aii(t) and also that ãij(t)≥
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1
2 âij(t) = 1

2aij(t) for all distinct i, j ∈ [n] and all t ∈ N0. Therefore,

ãij(t)≥ λ0aij(t) (4.28)

for all i, j ∈ [n] and all t ∈ N0, where λ0 := min
{
1−λmax,

1
2

}
. Note that λ0 > 0 because

λmax < 1. Since Assumption III holds for the original network, it follows that

(Ã(T : 0))i1 ≥ λT
0 (A(T : 0))i1 > 0 a.s.

for all i∈ [n]. By using the fact that ã(n+i) (n+j)(t) = ã(n+i)j(t) = ãij(t) for all distinct i, j ∈ [n],

we can similarly show that (Ã(T : 0))(n+i)1 > 0 a.s. for all i ∈ [n].

As for Assumption IV, let {π(t)}∞t=0 be an absolute probability process for {A(t)}∞t=0

such that π(t) ≥ p∗1 for some scalar p∗ > 0 (such a scalar exists because {A(t)}∞t=0 satisfies

Assumption IV). Now, let {π̃(t)}∞t=0 be a sequence of vectors in R2n defined by π̃i+n(t) =

π̃i(t) = πi(t)/2 for all i ∈ [n] and all t ∈ N0. We then have π̃(t) ≥ 0 and
∑2n

i=1 π̃i(t) = 1.

Moreover, for all i ∈ [n]:

(
π̃T (t+1)Ã(t)

)
i
=

2n∑
j=1

ãji(t)π̃j(t+1)

=
∑

j∈[n]\{i}
(ãji(t)+ ãn+j i(t))

πj(t)
2 +(ãii(t)+ ãn+i i(t))

πi(t+1)
2

=
∑

j∈[n]\{i}
aji(t)

πj(t)
2 +(bi(t)+wi(t))

πj(t)
2

= 1
2

n∑
i=1

aji(t)πj(t+1)

= 1
2
(
πT (t+1)A(t)

)
i
,

143



and hence,

E∗
[(
π̃T (t+1)Ã(t)

)
i
| Bt

]
= 1

2E
∗
[(
πT (t+1)A(t)

)
i
|Bt

]
= 1

2πi(t) = π̃i(t) (4.29)

for all i∈ [n]. We can similarly prove (4.29) for all i∈{n+1, . . . ,2n}. This shows that {π̃(t)}∞t=0

is an absolute probability process for {Ã(t)}∞t=0. Since π̃T (t) = 1
2 [πT (t) πT (t)] implies that

π̃(t)≥ p∗

2 12n for all t ∈N0, it follows that {Ã(t)}∞t=0 ∈ P∗, i.e., the augmented network satisfies

Assumption IV.

Note that the augmented network also satisfies Assumptions V and VI because Ã(t)

is uniquely determined by A(t) for every t ∈ N0 (under the assumption that {λi(t)}∞t=0 is a

deterministic sequence for each i ∈ [n]).

To complete the proof, we need to show that if {A(t)}∞t=0 has feedback property (or

satisfies Assumption I), then {Ã(t)}∞t=0 also has feedback property (or satisfies Assumption I).

Since the following holds for all i ∈ [n]:

ãi+n i+n(t) = ãii(t) = (1−λi(t))aii(t)≥ (1−λmax)aii(t), (4.30)

it follows that {Ã(t)}∞t=0 has feedback property if {Ã(t)}∞t=0 has feedback property. Now,

suppose the original chain, {A(t)}∞t=0 satisfies Assumption I. Recall that ã(n+i) (n+j)(t) =

ã(n+i)j(t) = ãij(t) for all distinct i, j ∈ [n]. In the light of this, (4.28) and (4.30) now imply that

ãi+n j+n(t)≥ λ0aij(t) for all i, j ∈ [n] and all t ∈ N0. It follows that

min{(Ã(t2 : t1))ij ,(Ã(t2 : t1))n+i n+j} ≥ λt2−t1
0 (A(t2 : t1))ij (4.31)

for all i, j ∈ [n] and all t1, t2 ∈ N0 such that t1 ≤ t2. Moreover, if O is an observationally self-

sufficient set for the original network, then both O and n+O are observationally self-sufficient

sets for the augmented network. Therefore, by (4.31), if [t1, t2] is a γ-epoch of duration at

most B for {A(t)}∞t=0 then [t1, t2] is a λB
0 γ-epoch for {Ã(t)}∞t=0. Assumption I thus holds for
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{Ã(t)}∞t=0.

An application of Theorem 7 to the augmented network now implies that the first two

assertions of this theorem also hold for the original network.

Remark 10. Interestingly, Corollaries 5 and 6 imply that non-Bayesian learning (both inertial

and non-inertial) occur almost surely on a sequence of independent Erdos-Renyi random graphs,

provided the edge probabilities of these graphs are uniformly bounded away from 0 and 1 (i.e., if

ρ(t) is the edge probability of G(t), then there should exist constants 0 < δ < η < 1 such that

δ ≤ ρ(t)≤ η for all t ∈N0.) This is worth noting because a sequence of Erdos-Renyi networks is

a.s. not uniformly strongly connected, which can be proved by using arguments similar to those

used in Remarks 8 and 9.

4.5.3 Learning via Diffusion and Adaptation

Let us extend our discussion to another variant of the original update rule (4.1). As per

this variant, known as learning via diffusion and adaptation [110], every agent combines the

Bayesian updates of her own beliefs with the most recent Bayesian updates of her neighbor’s

beliefs (rather than combining the Bayesian updates of her own beliefs with her neighbors’

previous beliefs). As one might guess, this modification results in faster convergence to the truth

in the case of static networks, as shown empirically in [110].

For a network of n agents, the time-varying analog of the update rule proposed in [110]

can be stated as:

µi,t+1(θ) =
n∑

j=1
aij(t)BUj,t+1(θ) (4.32)

for all i ∈ [n], t ∈N0 and θ ∈Θ. On the basis of (4.32), we now generalize the theoretical results

of [110] and establish that diffusion-adaptation almost surely leads to asymptotic learning even

when the network is time-varying or random, provided it satisfies the assumptions stated earlier.

Corollary 7. Consider a networkH described by the rule (4.32), and suppose that the sequence

{A(t)}∞t=0 and the agents’ initial beliefs satisfy Assumptions II - VI. Then Assertions (i) and (ii)
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of Theorem 7 hold.

Proof. Similar to the proof of Corollary 6, in order to use Theorem 7 appropriately, we construct

a hypothetical network H̃ of 2n agents, and for each i ∈ [n], we let the signal spaces and the

associated conditional distributions of the ith and the (n+ i)th agents of H̃ be given by:

S̃i = S̃n+i = Si, l̃i(·|θ) = l̃n+i(·|θ) = li(·|θ) for all θ ∈Θ, (4.33)

respectively. Likewise, we let the prior beliefs of the agents of H̃ be given by µ̃i,0 = µ̃n+i,0 =

µi,0 for all i ∈ [n]. However, we let the observations of the hypothetical agents be given

by ω̃i,2t = ω̃n+i,2t := ωi,t and ω̃i,2t+1 = ω̃n+i,2t+1 := ωi,t for all t ∈ N0. In addition, we let

W (t) := diag(a11(t), . . . ,ann(t)) and Â(t) :=A(t)−W (t) for all t ∈N so that âii(t) = 0 for all

i ∈ [n]. Furthermore, let the update rule for the network H̃ be described by:

µ̃i,t+1(θ) = ãii(t)B̃Ui,t+1(θ)+
∑

j∈[2n]\{i}
ãij(t)µ̃j,t(θ), (4.34)

where ãij(t) is the (i, j)th entry of the matrix Ã(t) defined by

Ã(2t) =

 1
2Â(t−1) 1

2Â(t−1)+W (t−1)
1
2Â(t−1)+W (t−1) 1

2Â(t−1)



and Ã(2t+1) = I2n for all t ∈ N0, and

B̃Ui,t+1(θ) := l̃i(ω̃i,t+1|θ)µ̃i,t({θ})∑
θ′∈Θ l̃i(ω̃i,t+1|θ′)µ̃i,t({θ′})

.

One can now verify that for all t ∈ N0:

BUi,t(θ) = µ̃i,2t(θ) = µ̃n+i ,2t(θ) = B̃Ui,2t(θ)
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and

µi,t(θ) = µ̃i,2t+1(θ).

Hence, it suffices to prove that the first two assumptions of Theorem 7 apply to the hypothetical

network H̃.

To this end, we begin by showing that if Assumption I holds for the original chain

{A(t)}∞t=0, then it also holds for the chain {Ã(t)}∞t=0. First, observe that

(
In In

)
Ã(2t+2) =

(
A(t) A(t)

)
.

Since A(2t+3) = I2n, this implies:

(
In In

)
Ã(2t+5 : 2t+2)

=
(
A(t+1) A(t+1)

)
Ã(2t+2)

=
(
A(t+1)A(t) A(t+1)A(t)

)
=
(
A(t+2 : t) A(t+2 : t)

)
.

By induction, this can be generalized to:

(
In In

)
Ã(2(t+k)+1 : 2t+2)

=
(
A(t+k : t) A(t+k : t)

)
. (4.35)

for all k ∈N and all t ∈N0. On the other hand, due to block multiplication, for any i, j ∈ [n], the

(i, j)th entry of the left-hand-side of (4.35) equals (Ã(2(t+k)+1 : 2t+2))ij +(Ã(2(t+k)+1 :

2t+2))n+ij . Hence, (4.35) implies:

max
{
(Ã(2(t+k)+1 : 2t+2))ij ,(Ã(2(t+k)+1 : 2t+2))n+ij

}
≥ 1

2(A(t+k : t))ij . (4.36)
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Together with the fact that Ã(2τ + 1) = I for all τ ∈ N0, the inequality above implies the

following: given that i ∈ [n], ts, tf ∈ N0, and k ∈ N, if there exist γ > 0, C ⊂ [n] and T ⊂ {ts +

1, . . . , tf} such that for every j ∈C, there exists a t∈T satisfying ajj(t)≥ γ and (A(t : ts))ji≥ γ,

then there exists a set C̃ ⊂ [2n] such that {i mod n : i ∈ C̃} = C and for every j ∈ C̃, there

exists a t ∈ T satisfying

ãjj(2t+1)≥ γ/2 and (Ã(2t+1 : 2ts +2))ji ≥ γ/2.

Next, we observe that if O ⊂ [n] is an observationally self-sufficient set for the original

networkH, then (4.33) implies that any set Õ ⊂ [2n] that satisfies {i mod n : i ∈ Õ}=O is an

observationally self-sufficient set for H̃. In the light of the previous paragraph, this implies that

if [ts, tf ] is a γ-epoch for H, then [2ts + 2,2tf + 1] is a γ
2 -epoch for H̃. Thus, if Assumption I

holds forH, then it also holds for H̃.

Now, since Assumption II holds forH, it immediately follows that Assumption II also

holds for H̃.

Next, on the basis of the block symmetry of Ã(2t), we claim that the following analog of

(4.36) holds for all i, j ∈ [n]:

max
{
(Ã(2(t+k)+1 : 2t+2))ij ,(Ã(2(t+k)+1 : 2t+2))in+j

}
≥ 1

2(A(t+k : t))ij .

This implies that for any τ ∈ N:

max
{
(Ã(2τ +1 : 2))ij ,(Ã(2τ +1 : 2))in+j

}
≥ 1

2(A(τ : 0))ij .

On the basis of this, it can be verified that Assumption III holds for H̃ whenever it holds forH.

As for Assumption IV, it can be verified that if {π(t)}∞t=0 is an absolute probability
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process for {A(t)}∞t=0, then the sequence {π̃(t)}∞t=0, defined by

π̃T (2t) = π̃T (2t−1) = 1
2[πT (t−1) πT (t−1)]

for all t ∈ N and π̃T (0) = 1
2 [πT (0) πT (0)] is an absolute probability process for {Ã(t)}∞t=0.

Since {A(t)}∞t=0 ∈ P∗, it follows that {Ã(t)}∞t=0 also satisfies Assumption IV.

Finally, observe that {Ã(t)}∞t=0 satisfies Assumptions V and VI because the original

chain {A(t)}∞t=0 satisfies them. In sum, Assumptions II - VI are all satisfied by H̃. As a result,

Assertions (i) and (ii) of Theorem 7 hold for H̃. Hence, the same assertions apply to the original

network as well.

Remark 11. The proof of Corollary 7 enables us to infer the following: it is possible for a

network of agents following the original update rule (4.1) to learn the truth asymptotically

almost surely despite certain agents not taking any new measurements at some of the time

steps (which effectively means that their self-confidences are set to zero at those time steps).

This could happen, for instance, when some of the agents intermittently lose contact with their

external sources of information and therefore depend solely on their neighbors for updating their

beliefs at the corresponding time instants. As a simple example, consider a chain {A(t)}∞t=0 ∈

P∗ ∩Rn×n, an increasing sequence {τk}∞k=0 ∈ N0 with τ0 := 0, and a chain of permutation

matrices, {P (k)}∞k=1 ⊂ Rn×n such that P (k) ̸= In for any k ∈ N. Then the chain,

A(0), . . . ,A(τ1−1),P T (1)A(τ1),P (1),A(τ1 +1), . . .

. . . ,A(τ2−1),P T (2)A(τ2),P (2),A(τ2 +1), . . .

can be shown to belong to Class P∗ even though Pii(k) = 0 for some i ∈ [n] and infinitely

many k ∈ N. If, in addition, {A(t)}∞t=0 satisfies Assumption I and {τk}∞k=0 have been chosen

such that τk−1 < t2k−1 < t2k < τk for each k ∈ N, then it can be shown that even the modified

chain satisfies Assumption I. In this case the assertions of Theorem 7 apply to the modified
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chain. Moreover, the modified chain violates Condition 2 of Definition 48, and hence, it is not

a uniformly strongly connected chain. The upshot is that intermittent negligence of external

information combined with the violation of standard connectivity criteria does not preclude

almost-sure asymptotic learning.

4.5.4 Learning on Deterministic Time-Varying Networks

We now provide some corollaries of Theorem 7 that apply to deterministic time-varying

networks. We will need the following lemma in order to prove the corollaries.

Lemma 22. Let {[A(t)]}∞t=0 be deterministic and uniformly strongly connected. Then Assump-

tions I, III and IV hold.

Proof. Let δ, B, {G(t)}∞t=0 and {G(k)}∞k=0 be as defined in Definition 48. Consider As-

sumption I. By Definition 48, for any two nodes i, j ∈ [n] and any time interval of the form

[kB,(k+1)B−1] where k ∈ N0, there exists a directed path from i to j in G(k), i.e., there exist

an integer q ∈ [B], nodes s1, s2, . . . , sq−1 ∈ [n] and times τ1, . . . , τq ∈ {kB, . . . ,(k+ 1)B− 1}

such that

aj sq−1(τq), asq−1,sq−2(τq−1), . . . ,as1i(τ1)> 0.

Observe that by Definition 48, each of the above quantities is lower bounded by δ. Also,

arr(t)> 0 and hence, arr(t)≥ δ for all r ∈ [n] and t ∈ [kB,(k+1)B−1]. Hence, for all r ∈ [n]

and t1, t2 ∈ {kB, . . . ,(k+1)B} satisfying t1 ≤ t2:

(A(t2 : t1))rr ≥
t2−1∏
t=t1

arr(t)≥ δt2−t1 ≥ δB. (4.37)
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It follows that:

(A(τq +1 : kB))ji

≥ aj,sq−1(τq)(A(τq : τq−1 +1))sq−1sq−1 ·asq−1sq−2(τq−1)(A(τq−1 : τq−2 +1))sq−2sq−2 · · ·

· · ·as1i(τ1)(A(τ1 : kB))ii

≥ (δ · δB)q

≥ δq(B+1)

≥ δB(B+1).

(4.38)

Thus, setting γ = δB(B+1) ensures (A(τ : kB))ji ≥ γ as well as ajj(τ)≥ γ for some τ ∈ {kB+

1, . . . ,(k+1)B}. Since i, j ∈ [n] and k ∈ N0 were arbitrary, and since [n] is observationally self-

sufficient, it follows that [kB,(k+1)B] is a γ-epoch for every k ∈ N0. Thus, by setting t2k−1 =

2kB and t2k = (2k+ 1)B, we observe that the sequence {tk}∞k=1 satsifies the requirements of

Assumption I.

As for Assumption III, (4.38) implies the existence of τ1, τ2, . . . , τn ∈ [B] such that

(A(τi : 0))i1 > 0 for every i ∈ [n]. Then (A(B : 0))i1 ≥ (A(B : τi))ii(A(τi : 0))i1 and the latter

is positive since (A(B : τi))ii > 0 by (4.37). Thus, Assumption III holds with T =B.

Finally, Assumption IV holds by Lemma 5.8 of [62].

An immediate consequence of Lemma 22 and Theorem 7 is the following result.

Corollary 8. Suppose Assumption II holds and that {A(t)}∞t=0 is a deterministic B-connected

chain. Then all the agents’ beliefs weakly merge to the truth a.s. Also, all the agents’ beliefs

converge to a consensus a.s. If, in addition, θ∗ is identifiable, then the agents asymptotically

learn θ∗ a.s.

Note that Corollary 8 is a generalization of the main result (Theorem 2) of [123] which

imposes on {A(t)}∞t=0 the additional restriction of double stochasticity.
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Besides uniformly strongly connected chains, Theorem 7 also applies to balanced chains

with strong feedback property, since these chains too satisfy Assumption IV.

Corollary 9. Suppose Assumptions II and III hold, and that {A(t)}∞t=0 is a balanced chain with

strong feedback property. Then the assertions of Theorems 7 and 6 apply.

Essentially, Corollary 9 states that if every agent’s self-confidence is always above a

minimum threshold and if the total influence of any subset S of agents on the complement set

S̄ = [n]\S is always comparable to the total reverse influence (i.e., the total influence of S̄ on

S), then asymptotic learning takes place a.s. under mild additional assumptions.

It is worth noting that the following established result (Theorem 3.2, [124]) is a conse-

quence of Corollaries 8 and 9.

Corollary 10 (Main result of [124]). Suppose {A(t)}∞t=0 is a deterministic stochastic chain such

that A(t) = η(t)A+(1−η(t))I , where η(t) ∈ (0,1] is a time-varying parameter and A= (Aij)

is a fixed stochastic matrix. Further, suppose that the network is strongly connected at all times,

that there exists2 a γ > 0 such that Aii ≥ γ for all i ∈ [n] (resulting in aii(t)> 0 for all i ∈ [n]

and t ∈ N0), and that µj0,0(θ∗) > 0 for some j0 ∈ [n]. Then the 1-step-ahead forecasts of all

the agents are eventually correct a.s. Additionally, suppose σ := inft∈N0 η(t) > 0. Then all

the agents converge to a consensus a.s. If, in addition, θ∗ is identifiable, then all the agents

asymptotically learn the truth a.s.

Proof. Let δ := mini,j∈[n]{Aij : Aij > 0}, let C ⊂ [n] be an arbitrary index set and let C̄ :=

[n] \C. Observe that since the network is always strongly connected, A(t) is an irreducible

matrix for every t ∈N0. It follows that A is also irreducible. Therefore, there exist indices p ∈ C

and q ∈ C̄ such that Apq > 0. Hence, Apq ≥ δ. Thus, for any t ∈ N:

∑
i∈C

∑
j∈C̄

aij(t) =
∑
i∈C

∑
j∈C̄

η(t)Aij ≥ η(t)Apq ≥ η(t)δ.

2This assumption is stated only implicitly in [124]. It appears on page 588 (in the proof of Lemma 3.3 of the
paper).
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On the other hand, we also have:

∑
i∈C̄

∑
j∈C

aij(t) = η(t)
∑
i∈C̄

∑
j∈C

Aij ≤ η(t)
∑
i∈C̄

∑
j∈C

1≤ n2η(t).

Hence,
∑

i∈C
∑

j∈C̄ aij(t)≥ δ
n2
∑

i∈C̄

∑
j∈C aij(t) for all t ∈ N. Moreover,

aii(t) = 1−η(t)(1−Aii)≥ 1−1(1−γ) = γ > 0

for all i ∈ [n] and t ∈ N. Hence, {A(t)}∞t=0 is a balanced chain with feedback property. In

addition, we are given that Assumption II holds. Furthermore, feedback property and the strong

connectivity assumption imply that Assumption III holds with T = n−1. Then by Corollary 9,

all the agents’ beliefs weakly merge to the truth. Thus, every agent’s 1-step-ahead forecasts are

eventually correct a.s.

Next, suppose inft∈N0 η(t) > 0, i.e., η(t) ≥ σ > 0 for all t ∈ N0. Then for all distinct

i, j ∈ [n], either aij(t)≥ σδ or aij(t) = 0. Along with the feedback property of {A(t)}∞t=0 and

the strong connectivity assumption, this implies that {A(t)}∞t=0 is B-connected with B = 1. We

now invoke Corollary 8 to complete the proof.

Finally, we note through the following example that uniform strong connectivity is not

necessary for almost-sure asymptotic learning on time-varying networks.

Example 2. Let n= 6, let {2,3} and {5,6} be observationally self-sufficient sets, and suppose

µ1,0(θ∗)> 0. Let {A(t)}∞t=0 be defined by A(0) = 1
611T and

A(t) =



Ae if t= 22k for some k ∈ N0,

Ao if t= 22k+1 for some k ∈ N0,

I otherwise,
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where

Ae :=



1/3 1/3 1/3 0 0 0

1/8 1/2 3/8 0 0 0

1/4 1/2 1/4 0 0 0

0 0 0 1/3 1/3 1/3

0 0 0 1/8 3/8 1/2

0 0 0 1/2 1/4 1/4


and

Ao :=



1/3 0 0 0 1/3 1/3

0 3/8 3/8 1/4 0 0

0 1/6 1/2 1/3 0 0

0 1/3 1/3 1/3 0 0

1/2 0 0 0 1/4 1/4

1/2 0 0 0 3/8 1/8



.

Then it can be verified that {A(t)}∞t=0 is a balanced chain with strong feedback property. Also,

our choice of A(0) ensures that Assumption III holds with T = 1. Moreover, we can verify that

Assumption I holds with t2k−1 = 2k and t2k = 2k + 1 for all k ∈ N. Therefore, by Corollary 9,

all the agents asymptotically learn the truth a.s. This happens even though {A(t)}∞t=0 is not

B-connected for any finite B (which can be verified by noting that limk→∞(22k+1−22k) =∞).

Remark 12. Note that by Definition 49, balanced chains embody a certain symmetry in the

influence relationships between the agents. Hence, the above example shows that asymptotic

learning can be achieved even when some network connectivity is traded for influence symmetry.

4.6 Conclusions and Future Directions

We extended the well-known model of non-Bayesian social learning [105] to study social

learning over random directed graphs satisfying connectivity criteria that are weaker than uniform

strong connectivity. We showed that if the sequence of weighted adjacency matrices associated
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to the network belongs to Class P∗, implying that no agent’s social power ever falls below a

fixed threshold in the average case, then the occurrence of infinitely many γ-epochs (periods of

sufficient connectivity) ensures almost-sure asymptotic learning. We then showed that our main

result, besides generalizing a few known results, has interesting implications for related learning

scenarios such as inertial learning or learning in the presence of link failures. We also showed

that our main result subsumes time-varying networks described by balanced chains, thereby

suggesting that influence symmetry aids in social learning. In addition, we showed how uniform

strong connectivity guarantees that all the agents’ beliefs almost surely converge to a consensus

even when the true state is not identifiable. This means that, although periodicity in network

connectivity is not necessary for social learning, it yields long-term social agreement, which may

be desirable in certain situations.

In addition to the above results, we conjecture that our techniques can be useful to tackle

the following problems.

1. Log-linear Learning: In the context of distributed learning in sensor networks, it is well-

known that under standard connectivity criteria, log-linear learning rules (in which the

agents linearly aggregate the logarithms of their beliefs instead of the beliefs themselves)

also achieve almost-sure asymptotic learning but exhibit greater convergence rates than

the learning rule that we have analyzed [6, 106]. We therefore believe that one can obtain

a result similar to Theorem 7 by applying our Class P∗ techniques to analyse log-linear

learning rules.

2. Learning on Dependent Random Digraphs: As there exists a definition of Class P∗ for

dependent random chains [62], one may be able to extend the results of this chapter to

comment on learning on dependent random graphs. Regardless of the potential challenges

involved in this endeavor, our intuition suggests that recurring γ-epochs (which ensure a

satisfactory level of communication and belief circulation in the network) in combination

with the Class P∗ requirement (which ensures that every agent is influential enough to
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make a non-vanishing difference to others’ beliefs over time) should suffice to achieve

almost-sure asymptotic learning.

In future, we would like to derive a set of connectivity criteria that are both necessary and

sufficient for asymptotic non-Bayesian learning on random graphs. Yet another open problem is

to study asymptotic and non-asymptotic rates of learning in terms of the number of γ-epochs

occurred.

Appendix: Relevant Lemmas

The lemma below provides a lower bound on the agents’ future beliefs in terms of their

current beliefs.

Lemma 23. Given t,B ∈ N and ∆ ∈ [B], the following holds for all i, j ∈ [n] and θ ∈Θ:

µj,t+∆(θ)≥ (A(t+∆ : t))ji

(
l0
n

)B

nµi,t(θ). (4.39)

Proof. We first prove the following by induction:

µj,t+∆(θ)≥ (A(t+∆ : t))ji

(
l0
n

)∆
nµi,t(θ). (4.40)

Pick any two agents i, j ∈ [n], and note that for every θ ∈Θ, the update rule (4.1) implies that

µj,t+1(θ)≥ ajj(t)
lj(ωj,t+1|θ)
mj,t(ωj,t+1)µj,t(θ)≥ ajj(t)l0µj,t(θ),

whereas the same rule implies that µj,t+1(θ) ≥ aji(t)µi,t(θ) if i ̸= j. As a result, we have

µj,t+1(θ) ≥ aji(t)l0µi,t(θ), which proves (4.40) for ∆ = 1. Now, suppose (4.40) holds with
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∆ =m for some m ∈ N. Then:

µj,t+m+1(θ)
(a)
≥ ajp(t+m) l0

n
·nµp,t+m(θ)

(b)
≥ ajp(t+m)(A(t+m : t))pi

(
l0
n

)m+1
n2µi,t(θ). (4.41)

for all p ∈ [n], where (a) is obtained by applying (4.40) with ∆ = 1 and with t replaced by t+m,

and (b) follows from the inductive hypothesis. Now, since

(A(t+m+1 : t))ji =
n∑

q=1
ajq(t+m)(A(t+m : t))qi,

it follows that there exists a p ∈ [n] satisfying

ajp(t+m)A(t+m : t)pi ≥ A((t+m+1 : t))ji/n.

Combining this inequality with (4.41) proves (4.40) for ∆ = m+ 1 and hence for all ∆ ∈ N.

Suppose now that ∆ ∈ [B]. Then (4.40) immediately yields the following:

µj,t+∆(θ)≥ (A(t+∆ : t))ji

(
l0
n

)∆
nµi,t(θ)≥ (A(t+∆ : t))ji

(
l0
n

)B

nµi,t(θ),

where the second inequality holds because l0
n ≤ l0 ≤ 1 by definition. This completes the

proof.

Lemma 24. There exists a constant K0 <∞ such that

0≤ E∗
[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

∣∣∣∣ Bt

]
≤K0

P∗-a.s. for all θ ∈ Θ∗
i , i ∈ [n] and t ∈ N0. Moreover, the second inequality above holds for all

θ ∈Θ.
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Proof. By an argument similar to the one used in [105], since the function R+ ∋ x→ 1/x ∈ R+

is strictly convex, by Jensen’s inequality, we have the following almost surely for every i ∈ [n]

and θ ∈Θ∗
i :

E∗
[
li(ωi,t+1|θ)
mi,t(ωi,t+1)

∣∣∣∣ Bt

]
>

(
E∗
[
mi,t(ωi,t+1)
li(ωi,t+1|θ)

∣∣∣∣ Bt

])−1
. (4.42)

Also, (4.2) implies that µt(θ) is completely determined by ω1, . . . ,ωt,A(0), . . . ,A(t−1)

and hence, it is measurable with respect to Bt. Therefore, the following holds a.s:

E∗
[
mi,t(ωi,t+1)
li(ωi,t+1|θ)

∣∣∣∣ Bt

]
= E∗

[∑
θ′∈Θ li(ωi,t+1|θ′)µi,t(θ′)

li(ωi,t+1|θ)

∣∣∣∣ Bt

]

=
∑

θ′∈Θ
E∗
[
li(ωi,t+1|θ′)
li(ωi,t+1|θ)

∣∣∣∣ Bt

]
µi,t(θ′)

(a)=
∑

θ′∈Θ
E∗
[
li(ωi,t+1|θ′)
li(ωi,t+1|θ∗)

∣∣∣∣ σ(ω1, . . . ,ωt)
]
µi,t(θ′)

(b)=
∑

θ′∈Θ

∑
s∈Si

li(s|θ′)µi,t(θ′)

= 1,

where we have used the implication of observational equivalence and Assumption VI in (a), and

the fact that {ωi,t}∞t=0 are i.i.d. ∼ li(·|θ∗) in (b). Thus, (4.42) now implies the lower bound in

Lemma 24.

As for the upper bound, since l0 > 0, we also have:

li(ωi,t+1|θ)
mi,t(ωi,t+1) ≤

1
mi,t(ωi,t+1) = 1∑

θ∈Θ li(ωi,t+1|θ)µi,t(θ)
(a)
≤ 1
l0
<∞,

where (a) follows from the fact that
∑

θ∈Θµi,t(θ) = 1. This shows that E∗
[

li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

∣∣∣∣ Bt

]
≤

1
l0
−1 a.s. for all θ ∈Θ. Setting K0 = 1

l0
−1 now completes the proof.

The next lemma is one of the key steps in showing that the agents’ beliefs weakly merge
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to the truth almost surely.

Lemma 25. For all i ∈ [n], we have

ui(t) := aii(t)
(
li(ωi,t+1|θ∗)
mi,t(ωi,t+1) −1

)
µi,t(θ∗)→ 0 a.s. as t→∞.

Proof. Let i ∈ [n] be a generic index. Similar to an argument used in [105], we observe that

(4.5) implies the following:

aii(t)E∗
[
li(ωi,t+1|θ∗)
mi,t(ωi,t+1) −1

∣∣∣∣ Bt

]
µi,t(θ∗)

= aii(t)µi,t(θ∗)
∑
s∈Si

li(s|θ∗)
(
li(s|θ∗)
mi,t(s)

−1
)

(a)= aii(t)µi,t(θ∗)
∑
s∈Si

(
li(s|θ∗) li(si|θ∗)−mi,t(s)

mi,t(s)

)
+aii(t)µi,t(θ∗)

∑
s∈Si

(mi,t(s)− li(s|θ∗))

=
∑
s∈Si

aii(t)µi,t(θ∗)(li(s|θ∗)−mi,t(s))2

mi,t(s)
t→∞−→ 0 a.s.

where (a) holds because
∑

s∈Si
mi,t(s) =∑

s∈Si
li(s|θ∗) = 1 since both li(·|θ∗) and mi,t(·) are

probability distributions on Si. Since every summand in the last summation above is non-negative,

it follows that for all i ∈ [n]:

aii(t)µi,t(θ∗)(li(s|θ∗)−mi,t(s))2

mi,t(s)
→ 0 for all s ∈ Si

a.s. as t→∞. Therefore, for every s ∈ Si and i ∈ [n],

limsup
t→∞

[
aii(t)

(
li(s|θ∗)
mi,t(s)

−1
)
µi,t(θ∗)

]2

= limsup
t→∞

[
aii(t)µi,t(θ∗) [li(s|θ∗)−mi,t(s)]2

mi,t(s)
· aii(t)µi,t(θ∗)

mi,t(s)

]

≤ limsup
t→∞

[
aii(t)µi,t(θ∗) [li(s|θ∗)−mi,t(s)]2

mi,t(s)
· 1
l0

]
= 0 a.s.,
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which proves that

lim
t→∞

∣∣∣∣∣aii(t)
(
li(s|θ∗)
mi,t(s)

−1
)
µi,t(θ∗)

∣∣∣∣∣= 0 a.s.

Since Si is a finite set, this implies that

lim
t→∞

max
s∈Si

∣∣∣∣∣aii(t)
(
li(s|θ∗)
mi,t(s)

−1
)
µi,t(θ∗)

∣∣∣∣∣= 0 a.s.,

which proves the lemma, because ωi,t+1 ∈ Si for all t ∈ N0.

We are now equipped to prove the following result which is similar to Lemma 3 of [105].

Lemma 26. For all θ ∈Θ :

E∗[µt+1(θ)|Bt]−A(t)µt(θ)→ 0 a.s. as t→∞.

Proof. We first note that
∑

s∈Si
li(s|θ) =∑

s∈Si
li(s|θ∗) = 1 implies that for all θ ∈Θ:

∑
s∈Si

li(s|θ∗)
(
li(s|θ)
mi,t(s)

−1
)

=
∑
s∈Si

li(s|θ)
(
li(s|θ∗)
mi,t(s)

−1
)
.

Hence, for any i ∈ [n] and θ ∈Θ:

aii(t)E∗
[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

∣∣∣∣ Bt

]
= aii(t)

∑
s∈Si

li(s|θ∗)
(
li(s|θ)
mi,t(s)

−1
)

= aii(t)
∑
s∈Si

li(s|θ)
(
li(s|θ∗)
mi,t(s)

−1
)

=
∑
s∈Si

li(s|θ)aii(t)
(
li(s|θ∗)
mi,t(s)

−1
)

t→∞−→ 0 a.s., (4.43)

where the last step follows from Lemma 25. Consequently, taking conditional expectations on
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both sides of (4.2) yields

E∗[µt+1(θ)|Bt]−A(t)µt(θ) = diag
(
. . . ,aii(t)E∗

[
li(ωi,t+1|θ)
mi,t(ωi,t+1) −1

∣∣∣∣ Bt

]
, . . .

)
µt(θ) t→∞−→ 0

almost surely, thus proving Lemma 26.

Lemma 27.

E∗[πT (t+2)A(t+1)µt+1(θ∗) | Bt] = πT (t+2)E∗[A(t+1)] ·E∗[µt+1(θ∗) | Bt]

Proof. We first prove that the following holds almost surely:

E∗ [A(t+1)µt+1(θ∗) | Bt] = E∗[A(t+1)]E∗[µt+1(θ∗) | Bt]. (4.44)

To this end, observe from the update rule (4.1) that the belief vector µt+1(θ∗) is determined

fully by ω1, . . . ,ωt,ωt+1 and A(0), . . . ,A(t). That is, there exists a deterministic vector function

ψ such that

µt+1(θ∗) = ψ(ω1, . . . ,ωt,A(0), . . . ,A(t),ωt+1),

Consider now a realization w0 of the tuple (ω1, . . . ,ωt) and a realization A0 of the tuple

(A(0), . . . ,A(t)). Also, recall that ωt+1 ∈ S = ∏n
i=1Si, and let ϕ : S → [0,∞) be the func-
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tion defined by ϕ(s) := ψ(w0,A0, s). Then,

E∗ [A(t+1)µt+1(θ∗) | Bt]
∣∣∣∣
(ω1,...,ωt,A(0),...,A(t))=(w0,A0)

= E∗ [A(t+1)µt+1(θ∗) | ω1, . . . ,ωt,A(0), . . . ,A(t)]
∣∣∣∣
(ω1,...,ωt,A(0),...,A(t))=(w0,A0)

= E∗ [A(t+1)µt+1(θ∗) | (ω1, . . . ,ωt,A(0), . . . ,A(t)) = (w0,A0)]

= E∗ [A(t+1)ψ(ω1, . . . ,ωt,A(0), . . . ,A(t),ωt+1) | (ω1, . . . ,ωt,A(0), . . . ,A(t)) = (w0,A0)]

= E∗ [A(t+1)ψ(w0,A0,ωt+1) | (ω1, . . . ,ωt,A(0), . . . ,A(t)) = (w0,A0)]

= E∗[A(t+1)ϕ(ωt+1) | (ω1, . . . ,ωt,A(0), . . . ,A(t)) = (w0,A0)]
(a)= E∗[A(t+1)ϕ(ωt+1)]
(b)= E∗[A(t+1)]E∗[ϕ(ωt+1)]
(c)= E∗[A(t+1)]E∗[ϕ(ωt+1) | (ω1, . . . ,ωt,A(0), . . . ,A(t)) = (w0,A0)]

= E∗[A(t+1)]E∗[ψ(w0,A0,ωt+1) | (ω1, . . . ,ωt,A(0), . . . ,A(t)) = (w0,A0)]

= E∗[A(t+1)]E∗[ψ(ω1, . . . ,ωt,A(0), . . . ,A(t),ωt+1) | (ω1, . . . ,ωt,A(0), . . . ,A(t)) = (w0,A0)]

= E∗[A(t+1)]

·E∗[ψ(ω1, . . . ,ωt,A(0), . . . ,A(t),ωt+1) | ω1, . . . ,ωt,A(0), . . . ,A(t)]
∣∣∣∣
(ω1:t,A(0),...,A(t))=(w0,A0)

= E∗[A(t+1)]E∗[ψ(ω1, . . . ,ωt,A(0), . . . ,A(t),ωt+1) | Bt]
∣∣∣∣
(ω1,...,ωt,A(0),...,A(t))=(w0,A0)

= E∗[A(t+1)]E∗ [µt+1(θ∗) | Bt]
∣∣∣∣
(ω1,...,ωt,A(0),...,A(t))=(w0,A0)

where (a) follows from Assumptions V and VI, (b) follows from Assumption VI, and (c)

follows from Assumption VI and the assumption that {ωt}∞t=1 are i.i.d. Since (w0,A0) is

arbitrary, the above chain of equalities holds for P∗-almost every realization (w0,A0) of

(ω1, . . . ,ωt,A(0), . . . ,A(t)), and hence, (4.44) holds almost surely.
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As a result, we have

E∗
[
πT (t+2)A(t+1)µt(θ∗) | Bt

] (a)= πT (t+2)E∗ [A(t+1)µt(θ∗) | Bt]
(b)= πT (t+2)E∗ [A(t+1)]E∗ [µt(θ∗) | Bt] ,

where (a) holds because π(t+1) is a non-random vector, and (b) holds because of (4.44). This

completes the proof.

Lemma 28. Let i ∈ [n]. Given that limt→∞aii(t)(mi,t(ωi,t+1)− li(ωi,t+1|θ∗)) = 0 a.s., we have

lim
t→∞

aii(t)(mi,t(s)− li(s|θ∗)) = 0 a.s. for all s ∈ Si.

Proof. We first note that limt→∞ |aii(t)(mi,t(ωi,t+1)− li(ωi,t+1|θ∗))|= 0 a.s. So, by the Domi-

nated Convergence Theorem for Conditional Expectations (Theorem 5.5.9 in [135]), we have

lim
t→∞

E∗ [|aii(t)(mi,t(ωi,t+1)− li(ωi,t+1|θ∗))| | Bt] = 0 a.s. (4.45)

Now, since ωi,t+1 is independent of {ω1, . . . ,ωt,A(0), . . . ,A(t)} because of Assumption VI and

the i.i.d. property of the observation vectors, we have

P∗(ωi,t+1 = s | ω1, . . . ,ωt,A(0), . . . ,A(t)) = P∗(ωi,t+1 = s) = li(s|θ∗).

Also, the mapping mi,t(·) is determined fully by ω1, . . . ,ωt and A(0), . . . ,A(t) (i.e., mi,t(s) is

Bt-measurable for all s ∈ Si). Therefore, (4.45) is equivalent to the following:

lim
t→∞

∑
s∈Si

li(s|θ∗)|aii(t)(mi,t(s)− li(s|θ∗))|= 0 a.s.

Now, since li(s|θ∗)> 0 for all s ∈ Si, every summand in the above summation is non-negative,
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which implies that

lim
t→∞

li(s|θ∗)|aii(t)(mi,t(s)− li(s|θ∗))|= 0 a.s. for all s ∈ Si.

Finally, since li(s|θ∗)> 0 is independent of t, we can delete li(s|θ∗) from the above limit. This

completes the proof.

Lemma 29. Let the function d : Rn→R be defined by d(x) := maxi∈[n]xi−minj∈[n]xj , and let

the function Vπ : Rn×N0→ R be defined by Vπ(x,k) :=∑n
i=1πi(k)(xi−πT (k)x)2 as in [62].

Then

(p∗/2)
1
2d(x)≤

√
Vπ(x,k)≤ d(x)

for all x ∈ Rn and k ∈ N0, where p∗ > 0 is a constant such that π(k)≥ p∗1 for all k ∈ N0.

Proof. For any x ∈ Rn, let us define xmax := maxi∈[n]xi and xmin := mini∈[n]xi. Then for any

k ∈ N0:

Vπ(x,k)≥ p∗
n∑

i=1
(xi−πT (k)x)2

≥ p∗(xmax−πT (k)x)2 +p∗(πT (k)x−xmin)2

≥ p∗

2 (xmax−xmin)2, (4.46)

which follows from the fact that a2 + b2 ≥ (a+b)2

2 . Also, since xmin ≤ xi,π
T (k)x ≤ xmax, we

have:

Vπ(x,k)≤
n∑

i=1
πi(k)(xmax−xmin)2 = (xmax−xmin)2. (4.47)

As a result, (4.47) and (4.46) together imply that

(p∗/2)
1
2d(x)≤

√
Vπ(x,k)≤ d(x). (4.48)
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Lemma 30. Let q0 ∈N0, and suppose that {A(t)}∞t=0 is aB-connected chain satisfying d(A(T0 +

rB : rB)x)≤ αd(x) for all x ∈ Rn, r ∈ N0 and T0 := (q0 +1)B. Then the following holds for

all x ∈ Rn:

d(A(t2 : t1)x)≤ α
t2−t1

T0
−2
d(x). (4.49)

Proof. We are given that d(A(T0 + rB : rB)x)≤ αd(x). In particular, when r = u(q0 +1) for

some u ∈ N0, we have rB = uT0, and hence:

d(A((u+1)T0 : uT0)x)≤ αd(x)

for all x ∈ Rn and u ∈ N0. By induction, we can show that

d(A((u+k)T0 : uT0)x)≤ αkd(x)

for all x ∈ Rn and u,k ∈ N0. Furthermore, since {A(t)}∞t=0 is a stochastic chain, we have

d(A(k2 : k1)x)≤ d(x) for all k1,k2 ∈ N0 such that k1 ≤ k2. It follows that for any v,w ∈ [T0],

k ∈ N0 and x ∈ Rn:

d(A(v+(u+k)T0 : uT0−w)x)

= d(A(v+(u+k)T0) : (u+k)T0) ·A((u+k)T0 : uT0) ·A(uT0 : uT0−w)x)

≤ d(A((u+k)T0 : uT0) ·A(uT0 : uT0−w)x)

≤ αkd(A(uT0 : uT0−w)x)≤ αkd(x).

Now, if v+w ≥ T0, it is possible that k < 0 and yet v+(u+k)T0 ≥ uT0−w. However, since
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α < 1, in case k < 0, we have:

d(A(v+(u+k)T0 : uT0−w)x)≤ d(x)≤ αkd(x),

which shows that

d(A(v+(u+k)T0 : uT0−w)x)≤ αkd(x) (4.50)

holds whenever v+(u+k)T0 ≥ uT0−w. Now, for any t1, t2 ∈ N0 such that t1 ≤ t2, on setting

u = ⌈t1/T0⌉, k = ⌊t2/T0⌋−⌈t1/T0⌉, v = t2−⌊t2/T0⌋T0 and w = ⌈t1/T0⌉T0− t1, we observe

that t2 = v+(u+k)T0 and t1 = uT0−w with v,w ∈ [T0]. Since k ≥ t2−t1
T0
−2, we can express

(4.50) compactly as:

d(A(t2 : t1)x)≤ α
t2−t1

T0
−2
d(x), (4.51)

which completes the proof.

Chapter 4, in full, is a reprint of the material as it appears in Rohit Parasnis, Massimo

Franceschetti, and Behrouz Touri, “Non-Bayesian Social Learning on Random Digraphs with

Aperiodically Varying Network Connectivity”, in IEEE Transactions on Control of Network

Systems, in press (2022). The dissertation author was the primary investigator and author of this

paper.
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Chapter 5

Usefulness of the Age-Structured SIR Dy-
namics in Modelling COVID-19

5.1 Introduction

The global COVID-19 death toll has crossed 6 million [137], and it is no surprise that

researchers all over the world have been forecasting the evolution of this pandemic to propose

control policies aimed at minimizing its medical and economic impacts [138–143]. Their efforts

have typically relied on classical epidemiological models or their variants (for an overview

see [144] and the references therein). One such classical epidemic model is the Susceptible-

Infected-Recovered (SIR) model. Proposed in [145], the SIR model is a compartmental model

in which every individual belongs to one of three possible states at any given time instant: the

susceptible state, the infected state, and the recovered state. The continuous-time SIR dynamics

models the time-evolution of the fraction of individuals in any of these states using a set of

ordinary differential equations (ODEs) parameterized by two quantities: the infection rate (the

rate at which a given infected individual infects a given susceptible individual) and the recovery

rate of infected individuals.

Even though the continuous-time SIR model is a deterministic model, it models an

inherently random phenomenon in a large (but discrete) population. To bridge between the
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deterministic continuous-time SIR model and the underlying random processes over a finite

population, researchers have shown that the associated (continuous-time) ODEs are the mean-

field limits of continuous-time Markovian epidemic processes over a finite population [146, 147].

Similar results have been obtained for variants of the original model, such as for the SIR dynamics

on a configuration model network [148, 149]. These results theoretically justify the SIR model

ODEs.

Classical SIR models, however, (continuous and discrete-time) are homogeneous – the

same infection and recovery rates apply to the whole social network despite differences in the

individuals’ age, gender, race, immunity level, and pre-existing medical conditions. For COVID-

19, this assumption is inconsistent with studies showing that the contact rates between individuals

and the recovery rates of infected individuals depend on factors such as age and location [150–

153]. In addition, [154] argues that homogeneous models can introduce significant biases in

forecasting the epidemic, including overestimation of the number of infections required to achieve

herd immunity, overestimation of the strictness of optimal control policies, overestimation of the

impact of policy relaxations, and incorrect estimation of the time of onset of the pandemic.

We therefore need to shift our focus to variants of the classical SIR model with hetero-

geneous contact rates. Examples include the multi-risk SIR model [141] and the age-stratified

SIR models considered in [140, 155, 156], in which the population is partitioned into multiple

groups and the rates of infection and recovery vary across groups. See [154] for a survey of these

papers.

However, the models considered in the above works have two main shortcomings. On the

one hand, barring exceptions such as [157], they are typically not validated using real data. On

the other hand, they do not have a strong theoretical foundation because the dynamical processes

studied in these works have not been established as the mean field limits of stochastic epidemic

processes evolving on time-varying random graphs. We emphasize that even the convergence

results obtained for homogeneous SIR models [146–149] make the unrealistic assumption that the

network of physical contacts (in-person interactions) existing in the population is time-invariant.
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As such, we cannot justify the use of these models in designing optimal control policies aimed at

minimizing the impact of any epidemic. We therefore address the aforementioned shortcomings

using the age-structured SIR model, a multi-group SIR model that partitions the population

of a given region into different age groups and assigns different infection rates and recovery

rates to the age groups. We note that, although we adopt the term age-structured in this chapter,

our analysis also applies to populations partitioned on the basis of differences in geographical

location, sex, immunity level, etc. Moreover, among existing heterogeneous models [154], the

age-structured SIR model is the simplest and hence more mathematically and computationally

tractable than other models.

The contributions of this chapter are as follows:

1. Modeling: We extend our previously proposed stochastic epidemic model [158] to a more

general model that incorporates (a) a random and time-varying network of physical con-

tacts (in-person interactions between pairs of individuals) that are updated asynchronously

and at random times, (b) random transmissions of disease-causing pathogens from in-

fected individuals to their susceptible neighbors, and (c) recoveries of infected individuals

that occur at random times. We analyze the resulting dynamics and show that under

certain independence assumptions, the expected trajectories of the fractions of suscep-

tible/infected/recovered individuals in any age group converge in mean-square to the

solutions of the age-structured SIR ODEs as the population size goes to∞.

2. Convergence Rate Analysis: We derive a lower bound on the effective infection rate for a

given pair of age groups in the stochastic model. This bound, as we show, is approximately

linear in the reciprocal of the network update rate, which leads to the infection rate

converging to its limit (specified by the ODEs) as fast as the reciprocal of the network

update rate vanishes.

3. Validation: We validate our age-structured model empirically by estimating the parameters

of our model using a Japanese COVID-19 dataset and, subsequently, by generating the
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age-wise numbers of infected individuals as functions of time. In this process, we leverage

the crucial fact that the ODEs defining our model are linear in the model parameters

(transmission and recovery rates), which enables us to use a least-squares method for the

system identification.

4. A Method to Detect Changes in Social Behavior: We design a simple algorithm that

can be used to detect changes in social behavior throughout the duration of the pandemic.

Given the age-wise daily infection counts, the algorithm estimates the dates around which

the inter-age-group contact rates change significantly.

5. Insights into Epidemic Spreading: We interpret the results of our phase detection algo-

rithm to identify the least and the most infectious age groups and the least and the most

vulnerable age groups. Additionally, we analyze the data for the entire period from March

2020 to April 2021 to explain how certain social events influenced the propagation of

COVID-19 in the prefecture of Tokyo.

The structure of this chapter is as follows: We introduce the age-structured SIR model

and our stochastic epidemic model in Section 5.2. We establish the age-structured SIR ODEs as

the mean-field limits of our stochastic model in Section 5.3. We also discuss the limitations of

(converse result for) our model in Section 5.3. Next, we describe the empirical validation of our

model (in the context of the COVID-19 outbreak in Tokyo) in Section 5.5. We conclude with a

brief summary and future directions in Section 5.6.

Related Works: [159] proposes a heterogeneous epidemic model with time-varying pa-

rameters to show that heterogeneous susceptibility to infection results in a temporary weakening

of the COVID-19 pandemic but not in herd immunity. The model is validated using the death

tolls (and not the case numbers) reported for New York and Chicago for a period of about

80 days. [155] uses the age-structured SEIQRD model to predict the number of deaths with a

reasonable accuracy, but unlike our work, it does not use the proposed model to generate the

number of new cases as a function of time. [160] uses heterogeneous variants of the SEIR model
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to study the impact of the lockdown policy implemented in France, but it does not validate these

models empirically. [152] reports contact rate matrices for the population of the UK based on the

self-reported data of 36,000 volunteers. However, the study ignores the time-varying nature of

these contact rates, which we capture in our phase detection algorithm (Section 5.5). Another

study that uses time-invariant model parameters is [161], which proposes the age-structured

SEIRA model and uses it to simulate the number of new infections in different social groups of

Chile.

[162] uses a heterogeneous SEIRD model to predict the effects of various relaxation

policies on infection counts in certain regions of Italy. The model therein is empirically validated

only using the data obtained during the first 60 days of the pandemic. In [156], the authors

propose an age-structured SIRD model and calibrate it with the data obtained from [138]. Unlike

this chapter, however, [156] divides the population into only two age groups, and does not

compare the model-generated values of the number of infections with the official case counts.

Two other studies that use two-age-group SIR models are [163] and [164]. While [163] argues

that in Florida, old and socially inert adults have been possibly infected by the young, [164]

argues that age-group-targeted policies are more effective than uniform policies in reducing the

economic impact of COVID-19. [165] proposes a heterogeneous SIR model with feedback and

forecasts the economic and medical impacts of various policies aimed at controlling the pandemic

in Chile. Unlike our study, however, [165] ignores the time-varying nature of contact rates. [157]

proposes the SEIR-HC-SEC-AGE model, a heterogeneous SEIR model that sub-divides each

age-group further into risk sectors with different vulnerabilities to the SARS-CoV-2 virus. The

model therein, which is calibrated to predict the effects of different lockdown policies in certain

regions of Italy, simulates the time-evolution of the observed death toll with a high accuracy. By

contrast, we pick a much simpler heterogeneous model and examine whether it fits the observed

case numbers well. [140] and [141] use an age-structured SIR model to show that control policies

that target different age groups differently perform better than uniform policies. However, these

results assume that inter-age-group contact rates are the same for all pairs of age groups, an
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assumption that is inconsistent with our empirical results (Section 5.5). Hence, deriving optimal

policies in the framework of the age-structured SIR model under more general assumptions is an

important open problem.

Notation: We let N denote the set of natural numbers and N0 := N∪ {0}. We let

[l] := {1,2, . . . , ℓ} for ℓ ∈ N. We denote the set of real and positive real numbers by R and R+,

respectively. For x ∈ R, we let x+ := max{x,0} denote the positive part of x.

The symbols t and k are used as a continuous-time and discrete-time indices, respectively.

We use the notation z(t) for functions z : R+∪{0}→ R and z[k] for functions z : N→ R. We

occasionally omit the time index (t) when the value of t is clear from the context.

We use the Bachmann-Landau asymptotic notation O(f(n)) for a given function f : N→

R in the context of n→∞. We use o(∆t) in the context of ∆t→ 0. In addition, for a given

function g : [0,∞)→R, we use the notation g′ = g′(t) to denote dg
dt , the first derivative of g with

respect to time.

For a set S, we let |S| denote the cardinality of S. In this chapter, all random events

and random variables are with respect to a probability space (Ω,F ,Pr), where Ω is the sample

space, F is the set of events, and Pr(·) is the probability measure on this space. We denote

random variables and random events using capital letters, and for a random event C, we define

1C to be the indicator random variable associated with C, i.e, 1C : Ω→ R is the random variable

with 1C(ω) = 1 if ω ∈ C and 1C(ω) = 0, otherwise. For an event C ∈ F , C̄ represents the

complement of C. For a random variable X , E[X] denotes the expected value of X and E[X |C]

denotes the conditional expectation of X given the event C. For random variables X and Y and

a random event C, we define

E[X | Y,C] = E[X1C | Y ]
E[1C | Y ] .
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Therefore, for an event F ∈ F

Pr(F | Y,C) = E[1F | Y,C] = E[1F ∩C | Y ]
E[1C | Y ] .

We denote tuples of length r > 1 using bold-face letters and random tuples using bold-

face capital letters. For a tuple x of length r ∈ N and an index ℓ ∈ [r], we let xℓ = (x)ℓ denote

the ℓ-th entry of x.

For n ∈ N and E ⊂ [n]× [n], we use G= ([n],E) to denote the directed graph (digraph)

with vertex set [n] and edge set E. Finally, for a graph G = ([n],E), given two distinct nodes

a,b∈ [n], we let ⟨a,b⟩ := (a−1)(n−1)+b−χb−a, where χα = 1 if α> 0 and χα = 0, otherwise.

Note that ⟨·, ·⟩ maps the edges between (distinct) nodes of the graph to the numbers 1, . . . ,n2−n

in lexicographic order.

5.2 Problem Formulation

We now introduce two epidemic models, of which the first describes a deterministic

dynamical system and the second describes a stochastic process on a finite population. One of

the main objectives of this work is to relate these models, which is achieved in Section 5.3.

5.2.1 The Age-Structured SIR Model

Consider a population of individuals spanning m age groups1. Suppose a part of this

population contracts a communicable disease at time t = 0. Let si(t),βi(t), and ri(t) denote,

respectively, the fractions of susceptible, infected, and recovered individuals in the i-th age group

at (a continuous) time t≥ 0, so that si(t)+βi(t)+ ri(t) equals the fraction of individuals in the

i-th age group for all t≥ 0. As the disease spreads across the population, susceptible individuals

1As mentioned before, throughout this chapter, we could generalize the discussions involving age groups to
subpopulations distinguished by geographical locations, pre-existing health conditions, sex, etc.
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get infected, and infected individuals recover in accordance with the system of ODEs given by

ṡi(t) =−si(t)
m∑

j=1
Aijβj(t),

β̇i(t) = si(t)
m∑

j=1
Aijβj(t)−γiβi(t), (5.1)

ṙi(t) = γiβ(t),

where for each i, j ∈ [m], the constant Aij represents the rate of infection transmission from

an individual in age group j to an individual in age group i, and γi denotes the recovery rate

of an infected individual in age group i. Hereafter, we refer to Aij as the contact rate of age

group j with age group i. Note that the third equation in (5.1) can be obtained from the first two

equations simply by using the fact that ṡi(t)+ β̇i(t)+ ṙi(t) = 0 for all t≥ 0. Also, if m= 1, the

above model reduces to the classical (homogeneous and continuous-time) SIR model.

5.2.2 A Stochastic Epidemic Model

Let us now define a continuous-time Markov chain that describes an age-structured pro-

cess of epidemic spreading occurring over a finite (atomic) population composed of individuals

that are connected through a random, time-varying network G(t).

Age Groups

Let n∈N denote the total population size, and let [n] be the vertex set of the time-varying

graph G(t), so that the vertex set indexes all the individuals/nodes in the network. We assume

that [n] is partitioned into m age groups {Ai}mi=1 and that |Ai| (the number of individuals in the

i-th age group) scales linearly with n for all i ∈ [m]. In the following, i, j ∈ [m] are generic age

group indices.
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State Space

The state space of our random process is the space S = {−1,0,1}n×{0,1}2n(n−1). The

network state is a tuple x = (x1,x2, . . . ,x2n2−n) ∈ S, where

(i) {xℓ}ℓ∈[n] denotes the disease states of the nodes in the network, i.e., for ℓ ∈ [n], we set

xℓ = 0, 1, or −1 accordingly as node ℓ is susceptible, infected, or recovered, respectively.

(ii) For ℓ ∈ {n+ 1,n+ 2, . . . ,n2}, we let xℓ denote the edge state of the ℓ-th pair in the

lexicographic order of pairs of distinct nodes given below.

(1,2), . . . ,(1,n),(2,1), . . . ,(2,n), . . . ,(n,1), . . . ,(n,n−1)

In other words, for any node pair (a,b) ∈ [n]× [n] such that a ̸= b, we set x⟨a,b⟩ = 1 if there

is a directed edge from b to a in the network G, and x⟨a,b⟩ = 0, otherwise. For notational

convenience, we let 1(a,b)(x) := x⟨a,b⟩.

(iii) For ℓ ∈ {n2 +1, . . . ,2n2−n}, we let xℓ be a binary variable whose value flips (becomes

1−xℓ) whenever the (ℓ−n2)-th edge state gets updated (re-initialized). However, the

direction of this flip (whether xℓ changes from 0 to 1 or from 1 to 0) carries no significance.

State Attributes

For all x ∈ S, we let Si(x) := {a ∈ Ai : xa = 0}, Ii(x) := {a ∈ Ai : xa = 1}, and

Ri(x) := {a ∈ Ai : xa =−1} denote, respectively, the set of susceptible individuals, the set of

infected individuals, and the set of recovered individuals in Ai given that the network state is x.

We let S(x) := ∪m
i=1Si(x) and I(x) := ∪m

i=1Ii(x). Additionally, for every node a ∈ [n], we let

E
(a)
j (x) :=∑

c∈Ij(x) 1(a,c)(x) be the number of arcs from Ij(x) to a.

The Markov Process

Let X(t) ∈ S denote the state of the network at any time t ≥ 0. Then we assume that

{X(t) : t≥ 0} is a right-continuous time-homogeneous Markov process in which every transition
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from a state x ∈ S to a state y ∈ S\{x} belongs to one of the following categories:

1. Infection transition: This occurs when a node a ∈ Si(x) gets infected by a node in

∪m
k=1Ik(x), while the disease states of all other nodes and the edge states of all the

node pairs remain the same. In other words, xa = 0, ya = 1, and xℓ = yℓ for all ℓ ̸= a.

Denoting the state-independent rate of pathogen transmission from a node in Ik(x) to an

adjacent node in Si(x) by Bik, we note that the rate of infection transmission from any

node c ∈ Ik(x) to a is Bik1(a,c)(x). Hence, the total rate at which a receives pathogens

from Ik is
∑

c∈Ik(x)Bik1(a,c)(x) =BikE
(a)
k (x), assuming that different edges transmit the

infection independently of each other during vanishingly small time intervals. As a result,

the effective rate at which a gets infected is
∑m

k=1BikE
(a)
k (x). We denote the successor

state y of x, where the node a turns from susceptible to infected, by x↑a.

2. Recovery transition: This occurs when a node a ∈ Ii(x) recovers, i.e., xa = 1, ya =−1,

and xℓ = yℓ for all ℓ ̸= a. We let γi denote the rate at which an infected node in Ai (such

as a) recovers. For such a transition, we denote y = x↓a.

3. Edge update transition: This occurs when x⟨a,b⟩, the edge state of a node pair (a,b) ∈

Ai×Aj , is updated or re-initialized, i.e., yn2+⟨a,b⟩ = 1−xn2+⟨a,b⟩, and yℓ = xℓ for all

ℓ /∈ {⟨a,b⟩,n2 + ⟨a,b⟩}. We let λ denote the edge update rate or the rate at which an edge

state is updated. In addition, given that the edge state of (a,b) is updated at time t≥ 0, the

probability that 1(a,b)(t) = 1 (i.e., the edge (a,b) exists after the re-initialization) equals
ρij

n , where ρij > 0 is constant in time. Therefore, if y⟨a,b⟩ = 1 (meaning that (a,b) exists

as an arc in G in the network state y), then the rate of transition from x to y equals λρij

n ,

whereas if y⟨a,b⟩ = 0, then the rate of transition from x to y equals λ
(
1− ρij

n

)
. In the

former case, we write y = x↑(a,b), while in the latter case, we write y = x↓(a,b). Note that

the rate of transition from x to x↓(a,b) or x↑(a,b) does not depend on x.

The edge update transition of (a,b) can be described informally as follows. Throughout

the evolution of the pandemic, a and b decide whether or not to meet each other at a
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constant rate λ > 0, i.e., their decision times {T (a,b)
ℓ }∞ℓ=1 form a Poisson process with rate

λ. Each time they make such a decision, they decide to interact with probability ρij

n , and

they decide not to interact with probability 1− ρij

n , independently of their past decisions.

The probability of interaction is assumed to scale inversely with n so that the mean degree

of every node is constant with respect to n.

To summarize, the rate of transition from any state x ∈ S to any state y ∈ S\{x} is given by Q,

the infinitesimal generator of the Markov chain {X(t) : t≥ 0}, where for x ̸= y

Q(x,y) :=



∑m
k=1BikE

(a)
k (x) if y = x↑a for some a ∈ Si(x), i ∈ [m]

γi if y = x↓a for some a ∈ Ii(x), i ∈ [m]

λ
ρij

n if y = x↑(a,b) for some (a,b) ∈ Ai×Aj , i, j ∈ [m]

λ
(
1− ρij

n

)
if y = x↓(a,b), for some (a,b) ∈ Ai×Aj , i, j ∈ [m]

0 otherwise

,

and Q(x,x) := −∑y∈S\{x} Q(x,y). In addition, we say that y succeeds x potentially iff

Q(x,y)> 0.

5.3 Main Result

To provide a rigorous mean-field derivation of the dynamics (5.1), we now consider a

sequence of social networks with increasing population sizes such that each network obeys the

theoretical framework described in Section 5.2. Given a network from this sequence with pop-

ulation size n ∈ N, we let S(n)
j (t) := Sj(X(t)), I(n)

j (t) := Ij(X(t)), and R(n)
j (t) :=Rj(X(t))

denote the (random) sets of infected, susceptible, and infected individuals in the j-th age group,

respectively, and we let s(n)
j (t) := 1

n |S
(n)
j (t)|, β(n)

j (t) := 1
n |I

(n)
j (t)| and r(n)

j (t) := 1
n |R

(n)
j (t)|

denote the fractions of susceptible, infected, and recovered individuals in the j-th age group,

respectively. As for the absolute numbers, we let S(n)
j (t) := |S(n)

j (t)|, I(n)
j (t) := |I(n)

j (t)|, and
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R
(n)
j (t) := |R(n)

j (t)|. Additionally, we let E(n)(t) denote the edge set of the network at time t,

and we drop the superscript (n) when the context makes our reference to the n-th network clear.

Another quantity that varies with n is λ(n), the edge update rate. To obtain the desired

mean-field limit in Theorem 7, we assume that λ(n)→∞ as n→∞. To interpret this assumption,

consider any pair of individuals (a,b) ∈ Ai×Aj that are in contact with each other at time t≥ 0

during the epidemic. Since the edge state of (a,b) is updated to 0 (the state of non-existence) at a

time-invariant rate of λ(n)
(
1− ρij

n

)
, the assumption implies that the mean interaction time of b

with a, which is 1
λ(n) +O

(
1

nλ(n)

)
, vanishes as the population size increases. This is a possible

real-world scenario, because as n increases, the population density of the given geographical

region increases, which could result in overcrowding and rapidly changing interaction patterns

in the network. This may be especially true in the case of public places such as supermarkets

and subway stations at a time when the society is already aware of an evolving epidemic.

Another implication of limn→∞λ(n) =∞ is that the rate at which a given infected node contacts

and transmits pathogens to a given susceptible node vanishes as the population size goes to

∞ (see Remark 13 for an explanation). This implication is weaker than the often-assumed

condition that the rate of pathogen transmission is proportional to the reciprocal of the population

size [166, 167].

We are now ready to state our main result. Its proof is based on the theory of continuous-

time Markov chains and an analysis of how the disease propagation process is affected by random

updates occurring in the network structure at random times (which results in Propositions 12

and 13) in addition to the proof techniques used in [166]. The proofs of all these results are

available in the appendix.

Theorem 7. Suppose that limn→∞λ(n) =∞ and that for every i ∈ [m], there exist si,0,βi,0 ∈

[0,1] such that limn→∞ s
(n)
i (0) = si,0 and limn→∞β

(n)
i (0) = βi,0. Then for each i ∈ [m],

lim
n→∞E

[∥∥∥∥(s(n)
i (t),β(n)

i (t)
)
− (yi(t),wi(t))

∥∥∥∥2

2

]
= 0.

178



on any finite time interval [0,T0], where (yi(t),wi(t)) is the solution to the ODE system given by

the first two equations in (5.1), i.e., (yi(t),wi(t)) satisfies

(I) ẏi =−yi
∑m

j=1Aijwj , yi(0) = si,0,

(II) ẇi = yi
∑m

j=1Aijwj−γiwi, wi(0) = βi,0,

and A ∈ Rm×m is defined by Aij := ρijBij .

Theorem 7 relies on the following proposition.

Proposition 12. For each i, j ∈ [m], let

χij = χij(t,S,I) := E[1(a,b)(t) | S(t),I(t)] = Pr((a,b) ∈ E(t) | S(t),I(t))

be the random variable that denotes the conditional probability that a pair of nodes (a,b) ∈

Si(t)×Ij(t) are in physical contact at time t given the state of the network at time t. Then the

following equations hold for all t≥ 0:

(i) E[si]′ =−∑m
j=1BijE[nχijsiβj ],

(ii) E[βi]′ =∑m
j=1BijE[nχijsiβj ]−γiE[βi],

(iii) E[s2
i ]′ =−∑m

j=1
(
2BijE[nχijs

2
iβj ]−BijE[nχijsiβj ]/n

)
,

(iv) E[β2
i ]′ =∑m

j=1Bij(2E[nχijsiβjβi]+E[nχijsiβj ]/n)−γi

(
2E[β2

i ]−E[βi]/n
)
.

Proof. We derive the equations one by one.
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Proof of (i).

Suppose i, j ∈ [m] and t ≥ 0 are given. Let Wi(t) := min{ℓ : ℓ ∈ Si(t)} and Xj(t) :=

min{ℓ : ℓ ∈ Ij(t)}. Then, as per our model of disease propagation, for any ∆t > 0, we have

Pr(∪τ∈[t,t+∆t){Xj(t) τ⇝Wi(t)}

| (Wi(t),Xj(t)) ∈ ∩τ∈[t,t+∆t)E(τ),S,I)

=Bij∆t+o(∆t), (5.2)

wherein we have used the Bachmann-Landau asymptotic notation o(x), which means that

lim
x→0

o(x)
x

= 0.

Before we proceed, we define the random variable χij(t,S,I) to be the following

conditional probability:

χij(t,S,I) = Pr((Wi(t),Xj(t)) ∈ E(t) | S(t),I(t)).

Observe that χij(t,S,I) is a conditional probability that there exists an edge at time t between

the susceptible node of Ai with the smallest index and the infected node of Aj with the smallest

index. However, recall from Section 5.2 that the probabilities of disease transmission and edge

existence are independent of how the nodes are labelled within their respective age groups. Hence,

χij(t,S,I) is simply the conditional probability that any two nodes a ∈ Si(t) and b ∈ Ij(t) are

in contact with each other at time t, given that S(t) and I(t) are known.

Now, suppose ∆t is small enough so that [t, t+∆t)⊂ [kT,(k+1)T ) for some k ∈ N0.
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It then follows that E(τ) is constant for τ ∈ [t, t+∆t) and hence,

Pr((Wi(t),Xj(t)) ∈ ∩τ∈[t,t+∆t)E(τ) | S(t),I(t))

= Pr((Wi(t),Xj(t)) ∈ E(t) | S(t),I(t)) = χij . (5.3)

Another implication of [t, t+∆t)⊂ [kT,(k+1)T ) is that

∪τ∈[t,t+∆t){Xj(t) τ⇝Wi(t)} ⊂ ∪τ∈[t,t+∆t)]{(Wi(t),Xj(t)) ∈ E(τ)}

= {(Wi(t),Xj(t)) ∈ ∩τ∈[t,t+∆t)E(τ)}.

Therefore, on combining (5.2) and (5.3) we obtain

Pr(∪τ∈[t,t+∆t){Xj(t) τ⇝Wi(t)} | S(t),I(t)) =Bijχij∆t+o(∆t).

By the label symmetry arguments discussed above, the above implies that for any node pair

(a,b) ∈ Si(t)×Ij(t),

Pr(∪τ∈[t,t+∆t){b
τ⇝ a} | S(t),I(t)) =Bijχij∆t+o(∆t). (5.4)

Next, we evaluate the probability of multiple transmissions occurring during [t, t+∆t) as shown

below.

Pr
(
∪τ1,τ2∈[t,t+∆t)({b1

τ1⇝ a1}∩{b2
τ2⇝ a2}) | S,I

)
= Pr

(
∪τ1,τ2∈[t,t+∆t) ({b1

τ1⇝ a1}∩{b2
τ2⇝ a2}) | (a1, b1),(a2, b2) ∈ ∩τ∈[t,t+∆t)E(τ),S,I

)
×Pr((a1, b1),(a2, b2) ∈ ∩τ∈[t,t+∆t)E(τ) | S,I)

≤ Pr
(
∪τ1,τ2∈[t,t+∆t) ({b1

τ1⇝ a1}∩{b2
τ2⇝ a2}) | (a1, b1),(a2, b2) ∈ ∩τ∈[t,t+∆t)E(τ),S,I

)
.
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In continuation of the above sequence of inequalities, we have

Pr
(
∪τ1,τ2∈[t,t+∆t) ({b1

τ1⇝ a1}∩{b2
τ2⇝ a2}) | (a1, b1),(a2, b2) ∈ ∩τ∈[t,t+∆t)E(τ),S,I

)
(a)= Pr(∪τ∈[t,t+∆t){b1

τ⇝ a1} | (a1, b1) ∈ ∩τ∈[t,t+∆t)E(τ),S,I)

×Pr(∪τ∈[t,t+∆t){b2
τ⇝ a2} | (a2, b2) ∈ ∩τ∈[t,t+∆t)E(τ),S,I)

= (Bij∆t+o(∆t))2

= o(∆t),

where (a) follows from Assumption V. We now use (5.4) along with the inclusion-exclusion

principle to obtain the following:

Pr(∩τ∈[t,t+∆t){Ij
τ⇝ Si} | S,I)

=
∑

(a,b)∈Si×Ij

Pr(∩τ∈[t,t+∆t){b
τ⇝ a} | S,I)

−
∑

(a1,b1),

∑
(a2,b2)∈Si×Ij

Pr
(
∪τ∈[t,t+∆t) ({b1 τ⇝ a1}

∩{b2
τ⇝ a2}) | S,I

)
+ · · ·

(a)=
∑

(a,b)∈Si×Ij

(Bijχ(t,S,I)∆t+o(∆t))

−
∑

(a1,b1),

∑
(a2,b2)∈Si×Ij

(Bijχ(t,S,I)∆t+o(∆t))2 + · · ·

= SiIj (Bijχ(t,S,I)∆t+o(∆t))−o(∆t)+o(∆t)−·· ·

=BijχijSiIj∆t+o(∆t), (5.5)

where (a) follows from the assumption that different edges transmit independently of each other

during vanishingly small time intervals. By using a similar argument based on the inclusion-
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exclusion principle, we can invoke the same assumption to show that

Pr(Si is infected during [t, t+∆t) | S,I)

= Pr
(
∪m

j=1∪τ∈[t,t+∆t) {Ij
τ⇝ Si} | S,I

)
=

m∑
j=1

Pr
(
∪τ∈[t,t+∆t){Ij

τ⇝ Si} | S,I
)

+o(∆t)

=
m∑

j=1
BijχijSiIj∆t+o(∆t). (5.6)

Now, we need to use the above expressions to compute the expected decrease in the

number of susceptible individuals over a small time interval. To this end, we first let ∆tSi :=

Si(t+∆t)−Si(t) and observe that it is unlikely for more than one susceptible individual to be

infected during a small time interval:

Pr
(
∩d

l=1
(
∪τ∈[t,t+∆t){bℓ

τ⇝ aℓ}
)
| S,I

)
=

d∏
l=1

(O(∆t)+o(∆t)) = o(∆t) for all d≥ 2.

(5.7)

Thus,

Pr(Si is infected during [t, t+∆t) | S,I)−Pr(∆tSi =−1 | S,I) = o(∆t).

Consequently,

E[Si(t+∆t)−Si(t) | S,I] = (−1) ·Pr(∆tSi =−1 | S,I)+
Si(t)∑
j=2

(−j) ·Pr(∆tSi =−j | S,I)

=−
 m∑

j=1
Bijχ(t,S,I)SiIj∆t+o(∆t)

+
Si(t)∑
j=2

(−j) ·o(∆t).
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Since Si(t)≤ n <∞, we have

E[Si(t+∆t)−Si(t) | S,I] (a)= −
 m∑

j=1
Bijχ(t,S,I)SiIj∆t+o(∆t)

+o(∆t)

=−
m∑

j=1
BijχijSiIj∆t+o(∆t), (5.8)

Taking expectations on both sides of (5.8) and dividing by ∆t results in the following:

E
[
Si(t+∆t)−Si(t)

∆t

]
=−

m∑
j=1

BijE[χijSiIj ]+
o(∆t)

∆t . (5.9)

Thus,

(E[Si(t)])′ = lim
∆t→0

E[Si(t+∆t)]−E[Si(t)]
∆t

=− 1
n

m∑
j=1

BijE[nχijSiIj ].

Dividing both sides of the above by n yields (i).

Proof of (ii).

For any time t ∈ [0,∞) and any node a ∈ ∪m
j=1Ij(t), let Da denote the event that a

recovers during the time interval [t, t+∆t). Then

Pr(∪i∈Ii
Di | S(t),I(t))

=
∑
a∈Ii

Pr(Da | S,I)−
∑

a1∈Ii

∑
a2∈Ii

Pr(Da1 ∩Da2 | S,I)+ . . .

(a)=
∑
a∈Ii

(γi∆t+o(∆t))−
∑

a1∈Ii

∑
a2∈Ii

Pr(Da1 | S,I) ·Pr(Da2 | S,I)+ . . .

= γiIi∆t+o(∆t)−
∑

a1∈Ii

∑
a2∈Ii

(γi∆t+o(∆t))2 + . . .

= γiIi∆t+o(∆t), (5.10)
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where (a) holds because of the assumption that different nodes recover independently of each

other during vanishingly small time intervals. Consequently,

γiIi∆t+o(∆t)

= Pr(∪a∈Ii
Da | S,I)

≥ Pr(Ii(t+∆t) ⊊ Ii(t) | S,I)

= Pr((∪a∈Ii
Da)∩{∆tSi = 0} | S,I)

(†)
≥ Pr(∪a∈Ii

Da | S,I)Pr(∆tSi = 0 | S,I)

= (γiIi∆t+o(∆t))
1+o(∆t)−

m∑
j=1

BijχijSiIj∆t


= γiIi∆t+o(∆t),

which shows that Pr(Ii(t+∆t)< Ii(t) | S,I) = γiIi∆t+o(∆t). Similarly, we can show that

Pr(Ii(t+∆t)> Ii(t) | S,I)

= Pr(Si(t+∆t)< Si(t) | S,I)+o(∆t)

=
m∑

j=1
BijχijSiIj∆t+o(∆t).

Moreover, by repeating some of the arguments used in deriving (5.35), we can show that

Pr(Ii(t+∆t)− Ii(t)≤−2 | S,I) = o(∆t). Therefore,

E[∆tIi(t) | S,I]

= +1 ·Pr(Ii(t+∆t)> Ii(t) | S,I)

−1 ·Pr(Ii(t+∆t)< Ii(t) | S,I)

= 1
n

m∑
i=1

Bij(nχij)SiIj∆t−γiIi∆t+o(∆t). (5.11)
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The rest of the derivation parallels that of (i); take expectations on both the sides of (5.11),

divide by ∆t, let ∆t→ 0 and divide both sides by n so as to obtain (ii).

Proof of (iii).

Observe that when ∆tSi =−1, we have S2
i (t+∆t)−S2

i (t) = 1−2Si(t). Therefore,

E[S2
i (t+∆t)−S2

i (t) | S,I]

= (1−2Si(t)) ·Pr(∆tSi =−1 | S,I)+o(∆t)

= 1
n
Bijnχij

 m∑
j=1

SiIj∆t−
2
n

m∑
j=1

S2
i Ij∆t

+o(∆t).

Taking expectations on both sides, dividing by ∆t, letting ∆t→ 0, and dividing both sides by n2

yields (iii).

Proof of (iv).

Observe that if ∆tIi(t) =−1, we have I2
i (t+∆t)−I2

i (t) = 1−2Ii(t), and if ∆tIi(t) = 1,

we have I2
i (t+∆t)− I2

i (t) = 1+2Ii(t).

Thus,

E[I2
i (t+∆t)− I2

i (t) | S,I]

= (1−2Ii(t)) ·Pr(Ii(t+∆t)< Ii(t) | S,I)

+(1+2Ii(t)) ·Pr(Ii(t+∆t)> Ii(t) | S,I). (5.12)

On substituting the probabilities above with the expressions derived earlier, taking expectations

on both sides, dividing by n2∆t and letting ∆t→ 0, we obtain (iv).

We point out that if χij = ρij

n then Equations (i) and (ii) have the same coefficients as (I)

and (II). It is then natural to ask: how does the conditional edge probability χij compare to the

unconditional edge probability ρij

n ? The following proposition provides an answer. As we show
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in Remark 13, our answer helps characterize the rate at which the infection transmission rates

converge to their respective limits, an analysis missing from other works such as [166] and [167].

Proposition 13. For all t≥ 0, n ∈ N and i, j ∈ [m],

ρij

n

(
1− Bij

λ(n)

(
1− e−λ(n)t

))
≤ χij ≤

ρij

n
.

Remark 13. Given (S(t),I(t)), note that the conditional probability that a given infected node in

Aj infects a given susceptible node inAi during a time interval [t, t+∆t) is Bijχij(t,S,I)∆t+

o(∆t). In light of Proposition 13, this means that the associated conditional infection rate

Bijχij(t,S,I) belongs to the interval

[ 1
n
Aij

(
1− Bij

λ(n) (1− e−λ(n)t)
)
,
1
n
Aij

]
.

On taking expectations, we realize that the same applies to the associated unconditional infection

rate as well. Hence, the total rate of infection transmission from all of Aj to any given node of

Ai is at least I(n)
j (t)× 1

nAij

(
1− Bij

λ(n) (1− e−λ(n)t)
)

= Aijβ
(n)
j (t)

(
1− Bij

λ(n) (1− e−λ(n)t)
)

and

at most Aijβ
(n)
j (t). Since we assume limn→∞λ(n) =∞, this further implies that the concerned

rate is approximately Aijβ
(n)
j (t) for large n, thereby giving us an interpretation of the ‘contact

rate’ Aij as a normalized infection rate. That is, in the limit as n→∞, the matrix A quantifies

the infection transmission rates between any two age groups relative to the level of infectedness

(fraction of infected persons) of the transmitting age group. Moreover, Proposition 13 also

implies that the difference between the age-wise infection transmission rates and their respective

mean-field limits (which exist as per Theorem 7) is O
(

1
λ(n)

)
.

5.4 A Converse Result

The purpose of this section is to argue that the age-structured SIR dynamics does not

model an epidemic well if the infection rates Bij are high enough to be comparable to the edge
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update rate of the network.

Theorem 8. Suppose λ∞ := limn→∞λ(n) <∞ and that for every p∈ [m], there exist sp,0,βp,0 ∈

[0,1] such that s(n)
p (0)→ sp,0 and β(n)

i (0)→ βp,0 as n→∞. In addition, let {(yq(t),wq(t))}

be the solutions of the ODEs (I) and (II). Then, there exists no interval [t1, t2]⊂ [0,∞) for which

minp,q∈[m] mint∈[t1,t2] yp(t)wq(t)> 0 and on which the pairs
{(
s

(n)
q (t),β(n)

q (t)
)}m

q=1
uniformly

converge in probability to the corresponding pairs in {(yq(t),wq(t))}mq=1. More precisely, for

every interval [t1, t2]⊂R such that yp(t)> 0 and wp(t)> 0 for all p ∈ [m] and t ∈ [t1, t2], there

exists a q ∈ [m] and an εq > 0 such that

liminf
n→∞ sup

t∈[t1,t2]
Pr
(∥∥∥(s(n)

q (t),β(n)
q (t)

)
− (yq(t),wq(t))

∥∥∥
2
> εq

)
> 0.

Proof. Suppose, on the contrary, that there exists a time interval [t1, t2] ⊂ [0,∞) such that

yp(t) > 0 and wp(t) > 0 for all p ∈ [m] and t ∈ [t1, t2], and the following holds for all q ∈ [m]

and all εq > 0:

liminf
n→∞ sup

t∈[t1,t2]
Pr
(∥∥∥(s(n)

q (t),β(n)
q (t)

)
− (yq(t),wq(t))

∥∥∥
2
> εq

)
= 0,

i.e., for a fixed ε > 0, there exists a sequence {π(n)}∞n=1 ⊂ N such that

lim
n→∞ sup

t∈[t1,t2]
Pr
(∥∥∥(s(π(n))

q (t),β(π(n))
q (t)

)
− (yq(t),wq(t))

∥∥∥
2
> ε

)
= 0.

We then arrive at a contradiction, as shown below.

We first choose an η > 2
(
1+ Amax

λ∞

)
(where Amax := max{Apq : p,q ∈ [m]}) and a

t ∈ (t1, t2). By our hypothesis and norm equivalence, for κ0 := 1
ηλ∞

and for every δ > 0, there

exists an Nε,δ ∈ N such that

Pr
(∥∥∥(s(π(n))

q (τ) ,β(π(n))
q (τ)

)
− (yq (τ) ,wq (τ))

∥∥∥
1
≤ ε

)
≥ 1− δ
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for all n≥Nε,δ and all τ ∈ [t−κ0, t].

We now define α0 := minp,q∈[m] mint∈[t1,t2] yp(t)wq(t) and we let a and b be any two

nodes such that (a,b) ∈ Si(t)×Ij(t) for arbitrary i, j ∈ [m]. Additionally, we let K := t−

inf{τ ≥ 0 : b∈ I(τ)} denote the (random) time elapsed between the time at which b gets infected

and time t. We then have

Pr(K ≤ κ0 | S(t),I(t)) = Pr(b is infected during [t−κ0, t] | S(t),I(t))
(a)
≤ 1− e−Amaxκ0

(b)
≤ Amaxκ0

= Amax
ηλ∞

, (5.13)

where (b) holds because 1− e−u ≤ u for all u≥ 0, and (a) can be explained as follows: given

(S(τ),I(τ)) and an infected node c∈Iq(τ) for some time τ ∈ [t−κ0, t), and given that b∈Sj(τ),

we know from Proposition 13 that the conditional probability of the edge (b,c) existing in the

network at time τ is at most ρjq

π(n) . Also, as per the definition of our stochastic epidemic model,

given that (b,c) ∈ E(τ) and given (S(τ),I(τ)) (and hence, also that (b,c) ∈ Sj(τ)×Iq(τ)), the

conditional rate of infection transmission from c to b at time τ is Bjq. Hence, given (S(τ),I(τ))

(and hence, that (b,c) ∈ Sj(τ)×Iq(τ)), the conditional rate of infection transmission from c to

b is at most Bjq
ρjq

π(n) = Ajq

π(n) . Under our modelling assumption that distinct edges transmit the

infection independently of each other during vanishingly small time intervals, this means that,

conditional on S(τ) and I(τ), the conditional total rate at which b receives infection is at most

∑
q∈[m]

∑
c∈Iq(τ)

Ajq

π(n) =
∑

q∈[m]
|Iq(τ)| Ajq

π(n) =
∑

q∈[m]
β(π(n))

q (τ)Ajq ≤ Amax
∑

q∈[m]
β(π(n))

q (τ)≤ Amax.

Note that this upper bound is time-invariant and does not depend on S(τ) or I(τ) for any time τ .

It thus follows that, conditional on (S(t),I(t)), the rate at which b gets infected is at most Amax
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throughout the interval [t−κ0, t) and hence, the probability that b does not get infected during

an interval of length κ0 is at least e−Amaxκ0 . This implies (a).

We now infer from (5.13) that

Pr(K ≥ κ0 | S(t),I(t))≥ 1− Amax
ηλ∞

. (5.14)

Next, we lower-bound Pr(T ≥ κ0 | S(t),I(t)). To this end, note from Proposition 13 that

Pr((a,b) ∈ E(t) | S(t),I(t))≤ ρij

π(n) . As a result, we have

|Pr(T ≥ κ0 | S(t),I(t))−Pr(T ≥ κ0 | (a,b) /∈ E(t),S(t),I(t))|

= |Pr(T ≥ κ0 | (a,b) /∈ E(t),S(t),I(t))(1−Pr((a,b) ∈ E(t) | S(t),I(t)))

+Pr(T ≥ κ0 | (a,b) ∈ E(t),S(t),I(t)) ·Pr((a,b) ∈ E(t) | S(t),I(t))

−Pr(T ≥ κ0 | (a,b) /∈ E(t),S(t),I(t))|

≤ ρij

π(n) ,

which also means that

|Pr(T < κ0 | (S(t),I(t)))−Pr(T < κ0 | (a,b) /∈ E(t),(S(t),I(t)))| ≤ ρij

π(n) . (5.15)

Moreover, for any realization (S0,I0) of (S(t),I(t)), Remark 17 asserts that

Pr(T ≤ κ0 |K = κ,(S(t),I(t)) = (S0,I0),(a,b) /∈ E(t))≤ 1− e−λκ0

for all 0≤ κ≤ t. Since the right-hand-side above is independent of both κ and (S0,I0), it follows

that

Pr(T ≤ κ0 | (S(t),I(t)),(a,b) /∈ E(t))≤ 1− e−λκ0 ≤ λκ0. (5.16)
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Therefore, as a consequence of (5.14), (5.15), (5.16), and the union bound, we have

Pr(T ≥ κ0,K ≥ κ0 | S(t),I(t)) = 1−Pr({T < κ0}∪{K < κ0} | S(t),I(t))

≥ 1−Pr(T < κ0 | S(t),I(t))−Pr(K < κ0 | S(t),I(t))

≥ 1− Amax
ηλ∞

− λ
(π(n))

ηλ∞
− ρij

π(n) . (5.17)

This further yields,

χij(t,S,I)

= Pr((a,b) ∈ E(t) | S(t),I(t))

= Pr((a,b) ∈ E(t) | T ≥ κ0,K ≥ κ0,S(t),I(t)) ·Pr(T ≥ κ0,K ≥ κ0 | S(t),I(t))

+Pr((a,b) ∈ E(t) | {T < κ0}∪{K < κ0},S(t),I(t)) ·Pr({T < κ0}∪{K < κ0} | S,I)

≤ ρij

π(n)e
−Bijκ0

(
1− Amax

ηλ∞
− λ

(π(n))

ηλ∞
− ρij

π(n)

)
+
(
Amax
ηλ∞

+ λ(π(n))

ηλ∞
+ ρij

π(n)

)
ρij

π(n)

= ρij

π(n)e
−

Bij
ηλ∞

(
1− Amax

ηλ∞
− λ

(π(n))

ηλ∞
− ρij

π(n)

)
+
(
Amax
ηλ∞

+ λ(π(n))

ηλ∞
+ ρij

π(n)

)
ρij

π(n) (5.18)

where the inequality is a consequence of (5.17) and Remark 16. Recall that limn→∞λ(n) = λ∞,

which means that the right hand side can be made smaller than (1+ ε) ρij

π(n)e
−

Bij
ηλ∞ by choosing n

large enough. Moreover (5.18) holds for all t ∈ [t1, t2].

Proposition 12 now implies that for all t ∈ [t1, t2] and large enough n,

E[si]′ =−
m∑

j=1
BijE[nχijsiβj ]>−

m∑
j=1

Aij(1+ ε)e−
Bij

ηλ∞ E[siβj ], (5.19)
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Now, observe that for any t ∈ [t1, t2], we have

E[si(t)βj(t)]

≤ 1 ·Pr
(∥∥∥(s(n)

q (τ) ,β(n)
q (τ)

)
− (yq (τ) ,wq (τ))

∥∥∥
1
> ε

)
+(wi(t)+ ε)(yj(t)+ ε) ·Pr

(∥∥∥(s(n)
q (τ) ,β(n)

q (τ)
)
− (yq (τ) ,wq (τ))

∥∥∥
1
≤ ε

)
≤ δ+yi(t)wj(t)+2ε+ ε2. (5.20)

Therefore, assuming that δ and ε are small enough to satisfy δ+2ε+ε2 <α0

e

Bij
ηλ∞
1+ε −1

, (5.19)

implies the existence of a constant ε′ > 0 such that :

E[si]′ =−
m∑

j=1
BijE[nχijsiβj ]≥−

m∑
j=1

Aijyi(t)wj(t)+ ε′ = y′
i(t)+ ε′.

Since this holds for all t ∈ [t1, t2], we have

E[s(π(n))
i (t2)]−yi(t2)≥ E[s(π(n))

i (t1)]−yi(t1)+(t2− t1)ε′

for all sufficiently large n. Here, we observe that {s(n)
i (t1),β(n)

j (t1) : i, j ∈ [m],n ∈ N} are

bounded by the constant function 1, which is integrable with respect to probability measures.

Therefore, {s(n)
i (t1) : i, j ∈ [m],n ∈ N} are uniformly integrable. Since they converge in proba-

bility to {yi(t1) : i, j ∈ [m]} (by hypothesis), it follows by Vitali’s Convergence Theorem that

they also converge in L1-norm. Thus, E[s(n)
i (t1)]−yi(t1)→ 0 as n→∞, thereby implying that

liminf
n→∞

(
E[s(π(n))

i (t2)]−yi(t2)
)
≥ (t2− t1)ε′. (5.21)

On the other hand, Vitali’s Convergence Theorem and our hypothesis also imply that

E[s(n)
i (t2)]→ yi(t2) as n→∞, which contradicts (5.21). Hence, our hypothesis that the fractions

{s(n)
q (t),β(n)

q (t)}q∈[m] converge in probability to the solutions of (I) and (II) uniformly on the
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interval [t1, t2] is false. This completes the proof.

Before interpreting Theorem 8, we first note that the result only applies to the time intervals

on which {yi(t)wj(t) : i, j ∈ [m]} are positive throughout the interval. Although this condition

appears stringent, it is mild from the viewpoint of epidemic spreading in the real world. This is

because, in practice we are only interested in time periods during which every age group has

infected cases (which ensures that βj(t)> 0 for all j ∈ [m]), and most epidemics leave behind

uninfected individuals (thereby ensuring that si(t)> 0 for all i ∈ [m]). Therefore, Theorem 8

applies to all time intervals of practical interest.

Restricting our focus to such intervals, Theorem 8 asserts that, if the edge update rate

does not go to ∞ with the population size, then there exists a positive lower bound on the

probability of the age-wise infected and susceptible fractions differing significantly from the

corresponding solutions of the age-structured SIR ODEs at one or more points of time in the

considered time interval. At this point, we remark that for large populations, the edge update

rate λ is approximately the reciprocal of the mean duration of every interaction in the network.

This means that the greater the value of λ, the faster will be the changes that occur in the social

interaction patterns of the network. Therefore, in conjunction with Theorem 7, Theorem 8

enables us to draw the following inference: the age-structured SIR model can be expected to

approximate a real-world epidemic spreading in a large population accurately if and only if the

social interaction patterns of the network change rapidly with time. This is more likely to be the

case in crowded public places such as supermarkets and airports.

There is another way to interpret Theorems 7 and 8. Note that we have assumed that

the sequence of edge states realized during the timeline of the epidemic are independent for

every pair of nodes in the network. Therefore, for greater values of λ, the network structure

becomes more unrecognizable from its past realizations. Thus, the age-structured SIR model

can be expected to approximate epidemic spreading well if and only if the network is highly
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memoryless, i.e., if and only if the network continually “forgets” its past interaction patterns

throughout the timeline of the epidemic under study.

Remark 14. Observe from the proof of Theorem 8 that the difference between E[si]′, the first

derivative of the expected fraction of infected nodes in Ai, and y′
i, the first derivative of the

corresponding ODE solution yi(t), is small only if e−
Bij

ηλ∞ is close to 1, which happens when

λ∞≫Bij . Moreover, this observation is consistent with Remark 13, according to which the total

infection rate from [n] = ∪m
j=1Aj to any given susceptible node in Ai is close to

∑m
j=1Aijβj(t)

(and hence, in close agreement with the ODEs (5.1)) when Bij

λ(n) ≪ 1. Along with Theorems 7

and 8, this means that the age-structured SIR model is likely to approximate real-world epidemic

spreading well if and only if the infection transmission rates are negligible when compared to

the social mixing rate λ.

Intuitively, when Bij

λ ≪ 1, the time scales (the mean duration of time) over which the

concerned disease spreads from any age group to any other age group are orders of magnitude

greater than the time scale over which the network is updated. As a result, the independence

of the sequences of edge state updates ensures that most of the possible realizations of the

network structure are attained over the time scale of infection transmission. Equivalently, from

the viewpoint of the pathogens causing the disease, the effective network structure (the network

topology averaged over any of the age-wise infection timescales) is close to being a complete

graph. Hence, by extrapolating the existing results on mean-field limits of epidemic processes

on complete graphs (such as [166]) to heterogeneous epidemic models, we can assert that the

age-structured SIR ODEs are able to approximate the epidemic propagation with a high accuracy.

On the other hand, if the infection rates Bij are too high (and hence, comparable to

the social mixing rate λ, which is always finite in reality), the pathogens perceive a randomly

generated network even on the time scale of infection transmission. Since this random network

is sparse (because we assume the expected node degrees to be constant, which results in the edge

probability scaling inversely with the population size), it follows that the number of transmissions
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occurring in any given time period is likely to be smaller than in the case of a complete graph.

Thus, the age-structued SIR ODEs overestimate the rate of growth of age-wise infected fractions.

This is further confirmed by the sign of the inequality in (5.21).

5.5 Empirical Validation

We now validate the age-structured SIR model in the context of the COVID-19 pandemic

in Japan as follows: we first estimate the model parameters using the data provided by the

Government of Japan, and we then compare the trajectories generated by the model with the

reference data.

5.5.1 Dataset

We use a dataset provided by the Government of Japan at [168]. This dataset partitions

the population of the prefecture of Tokyo into m= 5 age groups: 0 - 19, 20 - 39, 40 - 59, 60 -

79, and 80+ years old individuals. For each age group i ∈ [m] and each day k in the year-long

timeline Γ = {March 10, 2020, . . . ,April 9, 2021}, the dataset lists the total number of people

infected in the age group until date k. We denote this number by IT
i [k].

5.5.2 Preprocessing

Due to several factors, such as lack of reporting/testing on the weekends, the raw data has

missing information and is contaminated with noise. Therefore, using a moving average filter

with a window size of 15 days, we de-noise the raw data to obtain the estimated total number

of infected individuals by day k in age group i, denoted by IT
i [k]. We then estimate from the

smoothed data the number of susceptible, infected, and recovered individuals in age group i∈ [m]

on day k, denoted by Si[k], Ii[k], and Ri[k], respectively. We do this as follows: for any age

group i ∈ [m] and day k ∈ Γ, we have IT
i [k] = Ii[k]+Ri[k], because the cumulative number of

infections IT
i [k] includes both active COVID-19 cases and closed cases (cases of individuals who

were infected in the past but recovered/succumbed by day k). Therefore, to estimate Ii[k] and
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Ri[k] from IT
i [k], we assume that every infected individual takes exactly TR = 14 days to recover.

This assumption is consistent with WHO’s criteria for discharging patients from isolation (i.e.,

discontinuing transmission-based precautions) [169] after a period involving the first 10 days

from the onset of symptoms and 3 additional symptom-free days (if the patient is originally

symptomatic) or after 10 days from being tested positive for SARS-CoV-2 (if the patient is

asymptomatic). After the required period, the patients were not required to re-test. Under such an

assumption on the recovery time, we have Ri[k] = IT
i [k−TR] and Ii[k] = IT

i [k]− IT
i [k−TR].

Next, we obtain Si[k] by subtracting IT
i [k] from the total population of Ai, which is obtained

from the age distribution and the total population of Tokyo.

We must mention that in the subsequent analysis, all infected individuals are considered

infectious, i.e., they can potentially transmit the SARS-CoV-2 virus to their susceptible contacts.

This assumption, on which the classical SIR model and all its variants are based, is consistent

with the CDC’s understanding of the first wave of SARS-CoV-2 infection, which claims that

every infected individual remains infectious for up to about 10 days from the onset of symptoms,

though the exact duration of the period of infectiousness remains uncertain [170].

5.5.3 Parameter Estimation Algorithm

Before estimating the parameters of our model, we discretize the ODEs (5.1) with a step

size of 1 day and obtain the following:

si[k+1]− si[k] =−si[k]
m∑

j=1
Aijβj [k],

βi[k+1]−βi[k] = si[k]
m∑

j=1
Aijβj [k]−γiβi[k], (5.22)

ri[k+1]− ri[k] = γiβi[k],

A key observation here is that these equations are linear in the model parameters.

Therefore, given the sets of fractions {si[k] : i ∈ [m],k ∈ Γ}, {βi[k] : i ∈ [m],k ∈ Γ}, and
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{ri[k] : i ∈ [m],k ∈ Γ} (which we obtain by implementing the data processing steps described

above) for all i ∈ [m], we can express (5.22) in the form of a matrix equation Cx = d, where

the column vector x ∈ Rm2+m is a stack of the parameters {Aij : 1 ≤ i, j ≤m} and {γi : 1 ≤

i ≤ m}, the column vector d is a stack of the increments {si[k+ 1]− si[k] : i ∈ [m],k ∈ Γ},

{βi[k+1]−βi[k] : i ∈ [m],k ∈ Γ}, and {ri[k+1]− ri[k] : i ∈ [m],k ∈ Γ}, and C is a matrix of

coefficients. Thus, solving the least-squares problem (5.23) gives us the best estimates of the

model parameters {Aij : i, j ∈ [m]}∪{γi : i ∈ [m]} in the mean-square sense.

x̂= argmin
x≥0

∥Cx−d∥2. (5.23)

However, the values of the contact rates Aij change as and when the patterns of social

interaction in the network change during the course of the pandemic. For this reason, we assume

that the pandemic timeline splits up into multiple phases, say Γ1, . . . ,Γs, with the contact rates

varying across phases, and we perform the required optimization separately for each phase. At

the same time, we do not expect the contact rates to make quantum leaps (or falls) from one

phase to the next. Therefore, for every ℓ≥ 2, in the objective function corresponding to Phase

ℓ we introduce a regularization term that penalizes any deviation of the optimization variables

from the model parameters estimated for the previous phase (Phase ℓ−1). Adding this term also

ensures that our parameter estimation algorithm does not overfit the data associated with any one

phase. Our optimization problem for Phase ℓ thus becomes

x̂(ℓ) = argmin
x≥0

(
∥Cx−d∥2 +λ∥x(ℓ)−x(ℓ−1)∥2

)
, (5.24)

where x(ℓ) is the parameter vector estimated for Phase ℓ.

We now summarize this parameter estimation algorithm for Phase ℓ ∈ [s] .
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Algorithm 1. Parameter Estimation Algorithm for Phase ℓ
Input: (si[k],βi[k], ri[k]) for all i ∈ [m] and k ∈ Γℓ

Output: x̂

1: function GET PARAMETERS((si[k],βi[k], ri[k]))

2: for each day, each age group do

3: Stack the difference equations (5.22) vertically

4: Obtain the matrix equation Cx= d

5: Solve Least Squares Problem (5.24)

6: return x̂

5.5.4 Phase Detection Algorithm

We now provide an algorithm that divides the timeline of the pandemic into multiple

phases in such a way that the beginning of each new phase indicates a significant change in one

or more of the contact rates {Aij : i, j ∈ [m]}.

Given the pandemic timeline {p0, . . . ,ps} (where p0 denotes March 10, 2020 and ps

denotes April 9, 2021), our phase detection algorithm outputs s− 1 phase boundaries p1 ≤

p2 ≤ ·· · ≤ ps−1 that divide [p0,ps) into s phases, namely Γ1 = [p0,p1),Γ2 = [p1,p2), . . . ,Γs =

[ps−1,ps). Central to the algorithm are the following optimization problems:

Problem (a): Unconstrained Optimization

minimize
x≥0

∥C[p,p+w)x−d[p,p+w)∥2. (5.25)

Problem (b): Constrained Optimization

minimize
x≥0

∥C[p,p+w)x−d[p,p+w)∥2,

subject to ∥x− x̄[p,p+w)∥2 ≤ ε∥x̄[p−∆p,p−∆p+w)∥2. (5.26)
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In these problems, p ∈ Γ denotes the start date (chosen recursively as described in Al-

gorithm 2), w ∈ N is the optimization window, ∆p < w is the algorithm step size, [p,p+w)

denotes a w-day period from day p, C[p,p+w) and d[p,p+w) are obtained from {(si[k],βi[k], ri[k]) :

i ∈ [m],k ∈ {p, . . . ,p+w}} by using the procedure described in Section 5.5.3, and x̄ :=

argminx≥0 ∥C[p,p+w)x− d[p,p+w)∥2 is the parameter vector estimated by Problem (a). We

set w = 30 (days), and the quantities ∆p and ε are pre-determined algorithm parameters whose

choice is discussed in the next subsection.

Observe that both Problem and Problem (b) result in the minimization of the mean-square

error (5.27), where {(ŝi[k], β̂i[k], r̂i[k]) : i ∈ [m],k ∈ {p, . . . ,p+w}} are the model-generated

values (estimates) of the susceptible, infected, and recovered fractions {(si[k],βi[k], ri[k]) :

i ∈ [m],k ∈ {p, . . . ,p+w}}. Also note that Problem (a) performs this minimization while

ignoring all the previously estimated model parameters, whereas Problem (b) performs the same

minimization while constraining x to remain close to the parameter vector estimated for the

period [p−∆p,p−∆p+w). However, if the contact rates do not change significantly around

day p, then the additional constraint imposed in Problem (b) should be satisfied automatically

(without imposition) in Problem (a), which should in turn result in the same mean-square error

for both the problems.

E = 1
3m(w+1)

∑
i∈[m]

∑
k∈{p,...,p+w}

(
(si[k]− ŝi[k])2 +(βi[k]− β̂i[k])2 +(ri[k]− r̂i[k])2

)
.

(5.27)

Therefore, after solving Problems (a) and (b), our phase detection algorithm compares

E(a)p (the mean-square error for Problem (a)) with E(b)p (the mean-square error for Problem

(b)) as follows: using (5.27), the algorithm first computes E(a)p and E(b)p. It then compares
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|E(b)p−E(a)p|
E(a)p

with δ, a positive threshold whose choice is discussed in the next subsection. If

|E(b)p−E(a)p|
E(a)p

> δ, (5.28)

then p is identified as a phase boundary. Otherwise, the algorithm increments the value of p

by ∆p, checks whether the interval [p,p+w) is part of the timeline Γ, and repeats the entire

procedure described above.

Finally, the algorithm merges every short phase (length ≤ 20 days) with its predecessor

by deleting the appropriate phase boundary(s). There are two reasons for this step. First, the

contact rates are believed to change not instantly but with a transition period of positive duration.

Second, since the data used is noisy, to avoid overfitting the data it is necessary for the number of

data points per phase (given by 2m times the number of days per phase) to significantly exceed

m2 +m, the number of model parameters to be estimated per phase.

We now provide the pseudocode for the entire algorithm. Observe that Problems (a) and

(b) are both convex optimization problems. This enables us to use the Embedded Conic Solver

(ECOS) [171] of CVXPY [172, 173] to implement our algorithm.
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Algorithm 2. Phase Detection Algorithm
Input: (si[k],βi[k], ri[k]) for all i ∈ [m] and k ∈ Γ

Output: Set of phase boundaries B

1: function DETECT PHASES((si[k],βi[k], ri[k]))

2: Initialize set of phase boundaries B ← ϕ

3: Initialize start date p←∆p

4: while p ∈ Γ do

5: Solve Problem (a) for window [p,p+w)

6: Solve Problem (b) for window [p,p+w)

7: if condition (5.28) holds then

8: B ←B∪{p}

9: p← p+∆p

10: Initialize pstart← 0

11: Initialize b← list(B)

12: Sort b in ascending order

13: for p ∈ b do

14: if p−pstart ≤ 20 then

15: B ←B\{p}

16: else

17: pstart = p

18: return B

5.5.5 Selection of Algorithm Parameters

We now explain our parameter choices for the algorithms described above.
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Phase Detection Algorithm

As mentioned earlier, for Algorithm 2, we set ∆p= 5 days and the optimization window

w = 30 days. This ensures that the optimization window is large enough for the number of model

parameters to be significantly smaller than the number of data points used to estimate these

parameters in Problems (a) and (b). In addition, we set δ = 3, and ε = 10−4 for the following

reasons:

1. ε= 10−4: If both [p,p+w) and [p−∆p,p−∆p+w) are sub-intervals of the same phase,

then the same set of contact rates (and hence the same parameter vector x) should apply to

the network during both the time intervals.

2. δ = 3: If day p marks the beginning of a new phase (i.e., a new set of contact rates), we

expect the least-squares error (5.27) to increase significantly upon the imposition of the

constraint introduced in (5.26).

Parameter Estimation Algorithm

We set λ= 10−5 in (5.24). This small but non-zero value is consistent with our belief that

around every phase boundary, contact rates change gradually but significantly during a transition

period involving the phase boundary.

5.5.6 Results

We now present the results of implementing both the algorithms on our chosen dataset.

Phase Detection

Algorithm 2 detects the following phases.
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Table 5.1. Phases Detected by Algorithm 2 [1, 2]

Phase From To Corresponding Events

1 Mar 10 2020 Mar 28 2020 Closure of Schools

2 Mar 28 2020 April 23 2020 Issuance of State of Emergency

3 April 23 2020 May 20 2020

4 May 20 2020 Jun 22 2020

5 Jun 22 2020 Jul 24 2020 Summer Vacation

6 Jul 24 2020 Aug 25 2020 Obon, Summer Vacation

7 Aug 25 2020 Sep 23 2020 Summer Vacation

8 Sep 23 2020 Oct 20 2020 “Go to Travel” Campaign

Relaxation of Immigration Policy

9 Oct 20 2020 Nov 14 2020 “Go to Eat” Campaign

“Go to Travel” Campaign

10 Nov 14 2020 Dec 19 2020

11 Dec 19 2020 Jan 12 2021 Issuance of State of Emergency

Winter Vacation

12 Jan 12 2021 Feb 07 2021

13 Feb 07 2021 Apr 09 2021

Although some of the detected phases can be accounted for by identifying changes in

governmental policies and major social events, many of them seem to result from changes in

social interaction patterns that cannot be explained using public information sources (such as

news websites). However, this is consistent with out intuition that social behavior is inherently

dynamic – it displays significant changes even in the absence of government diktats and important

calendar events. Moreover, except for the first phase, the length of every phase is at least 25

days, which points to the likely scenario that it takes at least 3 to 4 weeks for the contact rates

to change significantly. This could be true because social behavior is often unorganized. In

particular, the interaction patterns of any one individual are often not in synchronization with

those of others.

Another noteworthy inference to be drawn from Table 5.1 and Figure 5.1 is that policy

changes initiated by governments have a delayed effect at times. For example, the “Go to Travel”

and the “Go to Eat” campaigns, launched between mid-September and mid-November (Phases 8
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and 9), seem to have caused a spike in daily case counts in the subsequent phases (Phases 10

and 11). Likewise, the State of Emergency issued in Phase 11 seems to have come to fruition in

Phase 12 and its effects appear to have remained until the last phase (Phase 13).

Parameter Estimation and Its Implications

Figure 5.1 below plots the original and the model-generated fractions of infected individ-

uals in each age group as functions of time.

Figure 5.1. Age-wise Daily Fractions of Infected Individuals in Tokyo, Japan: Original and
Generated Trajectories

Figure 5.2 plots the estimated contact rates and labels the 10 most significant ones among

the 25 rates.

As seen in Figure 5.1, three COVID-19 surges or “waves” occur during the considered

timeline. For each wave, we explain below the corresponding contact rate variations and their

implications with the help of the mobility data of Tokyo (Figure 5.3) collected by Google [174].

The First Wave (March 2020 - June 2020, Phases 1 - 3)

This wave corresponds to a rapid surge in daily cases across the world followed by various

governmental measures such as issuance of national emergencies, tightening of immigration

policies, home quarantines, and school closures. In Japan, the national emergency consisted of

various measures such as restrictions on service times in restaurants and bars, enforcement of
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Figure 5.2. Estimated Contact Rate Between Groups

Figure 5.3. Mobility for Each Type of Place by Google
The period in which state of emergency is issued is highlighted in red.

work from home, and a limit on the number of people attending public events. As a result of

these measures, the mobility of workplaces, retail and recreation, and transit stations dropped

dramatically in April 2020 and remained low for over a month (Figure 5.3).

This drop is reflected in our simulation results (Figure 5.2), which show that the three

greatest contact rates decreased steadily from April to June. However, Figure 5.2 also shows

that contact rates from the age group 60-79 to most other age groups (shown in blue) remained

remarkably high throughout the timeline Γ. This may be because most people admitted to nursing

homes are aged above 60 and frequently come in contact with the relatively younger care-taking
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staff. More strikingly, the contact rate from age group 60-79 to age group 80+ is consistently

high. This could be because there is a significant number of married couples with members

from both these age groups (thereby resulting in a high value of ρij for (i, j) = (m,m−1)) and

because the age group 80+ has the lowest immunity levels, which leads to a large effective Bij

(infection rate) for (i, j) = (m,m−1).

The Second Wave (July 2020 - September 2020, Phases 4 - 7)

The most intriguing aspect of the second wave is that the wave subsided without any

significant governmental interventions (such as the issuance of a nationwide emergency). To

explain this phenomenon, some researchers point out that (i) the rate of PCR testing increased

in July and thus more infections were detected in the first few weeks of the second wave, and

(ii) people’s mobility decreased in August during the Japanese summer vacation period called

“Obon” [2]. As we can infer from Figure 5.3, this decrease in mobility occurs primarily at

workplaces and transit stations [2].

Besides Figure 5.3, our simulation results provide some insight into the second wave.

Figure 5.1 shows that the contact rates from age group 60-79 to other age groups do not show

any increase during the first few weeks of the wave. However, the intra-group contact rate

of the age group 20-39 increases rapidly before this period and drops significantly in August,

corresponding to a decrease in daily cases. This strongly suggests that the social activities of

those aged between 20-39 played a key role in the second wave. Meanwhile, contact rates

from the age group 60-79 decreased after the first wave, possibly because of an increase in the

proportion of quarantined individuals among the elderly, which in turn could have resulted from

an increased public awareness of older age groups’ higher susceptibility to the virus.

The Third Wave (October 2020 - January 2021, Phases 8 - 11)

This wave was the most severe of the three because in October, a policy promoting

domestic travel (the “Go to Travel” campaign) was implemented in the Tokyo prefecture and

206



eating out was promoted as well (as part of the “Go to Eat” campaign). In addition, Japan

started relaxing its immigration policy in October. [2] points out that the “major factors for

this rise include the government’s implementation of further policies to encourage certain

activities, relaxed immigration restrictions, and people not reducing their level of activity”. This

observation is supported by Figure 5.3, which shows that there is no drop in mobility in any

category during the third wave. As a result, daily infection counts dropped only after the second

state of emergency was issued by the government on January 7, 2021.

In agreement with these observations are our simulation results (Figure 5.1), which show

that the age group 60-79 remained the most infectious throughout the third wave, and that the

contact rates from the age group 20-39 gradually increased in the early weeks of the wave. This

was followed by a remarkable decrease in the intra-group contact rate of the age group 60-79

from mid-January onwards.

Comparing the Age Groups on the Basis of Infectiousness as well as
Susceptibility

It is evident from Figure 5.2 that among all the five age groups, members of the youngest

age group (0-19) are the least likely to contract COVID-19. This validates the current understand-

ing of the scientific community that children and teenagers are more immune to the disease than

adults. At the opposite extreme, the age groups 80+ and 20-39 appear to be the most vulnerable,

possibly because members of the former group have the lowest immunity levels and the latter

group exhibits the highest levels of mobility and social activity.

Besides throwing light on how the likelihood of receiving infection varies across age

groups, Figure 5.2 also throws light on how the likelihood of transmitting the infection varies

across age groups. From the figure, the two most infectious age groups are clearly 60-79 and

20-39. Surprisingly, the age group 80+ is found to be less infectious than the group 60-79,

perhaps because of the lower social mobility of the former. The figure also shows that the
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age groups 0-19, 40-59 and 80+ are remarkably less infectious than the other two age groups.

However, we need additional empirical evidence to validate these findings, and it would be

interesting to see whether our inferences are echoed by future empirical studies.

5.6 Conclusion and Future Directions

We have analyzed the age-structured SIR model of epidemic spreading from both theo-

retical and empirical viewpoints. Starting from a stochastic epidemic model, we have shown that

the ODEs defining the age-structured SIR model are the mean-field limits of a continuous-time

Markov process evolving over a time-varying network that involves random, asynchronous

interactions if and only if the social mixing rate grows unboundedly with the population size.

We have also provided a lower-bound on the associated convergence rates in terms of the social

mixing rate. As for empirical validation, we have proposed two algorithms: a least-square

method to estimate the model parameters based on real data and a phase detection algorithm to

detect changes in contact rates and hence also the most significant social behavioral changes

that possibly occurred during the observed pandemic timeline. We have validated our model

empirically by using it to approximate the trajectories of the numbers of susceptible, infected, and

recovered individuals in the prefecture of Tokyo, Japan, over a period of more than 12 months.

Our results show that for the purpose of forecasting the future of the COVID-19 pandemic and

designing appropriate control policies, the age-structured SIR model is likely to be a strong

contender among compartmental epidemic models.

Our analysis, however, has a few limitations. First, it is not clear whether the large

number of phases detected by Algorithm 2 indicates rapidly changing social interaction patterns

or simply that our model is unable to approximate the pandemic over timescales significantly

longer than a month. Second, the outputs of our algorithms have a few surprising implications

that are as yet unconfirmed by independent empirical studies. For example, the estimated contact

rates indicate that the age group 60-79 is consistently more infectious than the age group 20-39,
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a finding that is inconsistent with the widely held belief that younger age groups are significantly

more mobile than the older ones. Such apparent anomalies highlight the need for age-stratified

mobility datasets that would enable further investigation into the dynamic interplay between

social behavior and epidemic spreading.

Appendix

Our first aim is to prove Proposition 12, which is based on the Lemma 31. This lemma

describes a known property of continuous-time Markov chains, but we prove it nevertheless. The

proof is based on the concept of jump times, defined below.

Definition 53 (Jump Times). The jump times of the Markov chain {X(τ) : τ ≥ 0} are the random

times defined by J0 := 0 and Jℓ := inf{τ ≥ 0 : X(Jℓ−1 + τ) ̸= X(Jℓ−1)} for all ℓ ∈ N.

Note that jump times are simply the times at which the Markov chain jumps or transitions

to a new state.

Lemma 31. Let x ∈ S and let [t, t+ ∆t) ⊂ [0,∞). Given that X(t) = x, the conditional

probability that more than one state transitions occur during [t, t+∆t) is o(∆t).

Proof. Let y,z ∈ S be any two states such that y and z potentially succeed x and y, respectively.

Also, let {X(Ji)}∞i=0 be the embedded jump chain of {X(τ)}τ≥0 (where J0 := 0). Then, given

that X(0) = x, X(J1) = y, and X(J2) = z, the holding times J1 and J2−J1 are conditionally

independent exponential random variables with parameters qx := |Q(x,x)| and qy := |Q(y,y)|,

respectively. Therefore, given that the original Markov chain makes its first and second transitions

from x to y and from y to z respectively, the conditional probability that both of these transitions

occur during [0,∆t) is given by Pr(J2 <∆t | (X(0),X(J1),X(J2)) = (x,y,z)), which is upper-
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bounded by Pr(J2−J1 <∆t,J1 <∆t | (X(0),X(J1),X(J2)) = (x,y,z)), which equals

Pr(J2−J1 <∆t | (X(0),X(J1),X(J2)) = (x,y,z))

·Pr(J1 <∆t | (X(0),X(J1),X(J2)) = (x,y,z))

= (1− e−qy∆t)(1− e−qx∆t) = o(∆t). (5.29)

Therefore, Pr(J2 < ∆t |X(0) = x), which is a quantity upper bounded by maxy,z∈SPr(J2 <

∆t | (X(0),X(J1),X(Jt) = (x,y,z)), is o(∆t). Hence, given that X(0) = x, the conditional

probability that at least two state transitions occur during [0,∆t) is o(∆t). By time-homogeneity,

this means the following: given that X(t) = x, the conditional probability that at least two state

transitions occur during [t, t+∆t) is o(∆t).

Proof of Proposition 12

Proof. We derive the equations one by one.

Proof of (i)

Consider any state x ∈ S. Then, by the definition of Q, for any i ∈ [n] and a ∈ Si(x), we

have

Pr(X(t+∆t) = x↑a |X(t) = x) = Q(x,x↑a)∆t+o(∆t) =
 m∑

k=1
BikE

(a)
k (x)

∆t+o(∆t).

(5.30)

We now use (5.30) to evaluate the probability of the event {Si(t+∆t) = Si(t)−1}. To

this end, let Dℓ(U,t,∆t)) denote the event that exactly ℓ nodes in a given set U ⊂ [n] recover

during [t, t+ ∆t) (i.e., there exist exactly ℓ indices r1, . . . , rℓ in U such that Xrk
(t) = 1 and

Xrk
(t+ ∆t) = −1). Similarly, let Iℓ(U,t,∆t) denote the event that exactly ℓ nodes in U get
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infected during [t, t+∆t). Then,

Pr(Si(t+∆t)−Si(t) =−1 |X(t) = x)

= Pr(I1(Ai, t,∆t) |X(t) = x)
(a)= Pr(D0([n], t,∆t)∩I0([n]\Ai, t,∆t)∩I1(Ai, t,∆t) |X(t) = x)+o(∆t)

= Pr
(
∪a∈Si(x){X(t+∆t) = x↑a} |X(t) = x

)
+o(∆t)

=
∑

a∈Si(x)
Pr(X(t+∆t) = x↑a |X(t) = x)+o(∆t)

(b)=
 ∑

a∈Si(x)

m∑
j=1

BijE
(a)
j (x)

∆t+o(∆t)

=

 m∑
j=1

∑
a∈Si(x)

∑
b∈Ij(x)

Bij1(a,b)(x)

∆t+o(∆t). (5.31)

where (a) is a straightforward consequence of Lemma 31, and (b) follows from (5.30). Since

this holds for all x ∈ S, we have

Pr(Si(t+∆t)−Si(t) =−1 |X(t)) =

 m∑
j=1

∑
a∈Si(t)

∑
b∈Ij(t)

Bij1(a,b)(t)

∆t+o(∆t), (5.32)

where Si(t), Ii(t), and 1(a,b)(t) stand for Si(X(t)), Ii(X(t)), and 1(a,b)(X(t)), respectively.

Since S(t) and I(t) are determined by X(t), we may express (5.32) as

Pr(Si(t+∆t)−Si(t) =−1 | S(t),I(t),X(t)) =

 m∑
j=1

∑
a∈Si(t)

∑
b∈Ij(t)

Bij1(a,b)(t)

∆t+o(∆t).

(5.33)
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As a result, we have

Pr(Si(t+∆t)−Si(t) =−1 | S(t),I(t)) =

 m∑
j=1

∑
a∈Si(t)

∑
b∈Ij(t)

BijE[1(a,b)(t) | S(t),I(t)]

∆t

+o(∆t). (5.34)

At this point we note that

E[1(a,b)(t) | S(t),I(t)] = Pr((a,b) ∈ E(t) | S(t),I(t)) = χij(t,S,I).

We thus have the following for ∆tSi := Si(t+∆t)−Si(t):

E[∆tSi | S(t),I(t)] =−Pr(∆tSi =−1 | S(t),I(t))−
n∑

ℓ=2
ℓ ·Pr(∆tSi =−ℓ)

(a)= −Pr(∆tSi =−1 | S(t),I(t))+o(∆t)

=−

 m∑
j=1

∑
a∈Si(t)

∑
b∈Ij(t)

Bijχij(t)

∆t+o(∆t)

=−
 m∑

j=1
Bijχij(t)Si(t)Ij(t)

∆t+o(∆t), (5.35)

where (a) follows from Lemma 31. Taking expectations on both sides of (5.35) and dividing the

resulting relation by ∆t now yields

E
[
Si(t+∆t)−Si(t)

∆t

]
=−

m∑
j=1

BijE[nχij(t)si(t)Ij(t)]+
o(∆t)

∆t , (5.36)

where we used that Si(t) = nsi(t). On letting ∆t→ 0 and then dividing both the sides of (5.36)

by n, we obtain (i).
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Proof of (ii)

Observe that for any x ∈ S, we have

Pr(Ii(t+∆t)− Ii(t) = 1 |X(t) = x)

= Pr(|Ii(X(t+∆t))|− |Ii(X(t))|= 1 |X(t) = x)

= Pr(∪n
ℓ=0(Dℓ(Ai, t,∆t)∩Iℓ+1(Ai, t,∆t)) |X(t) = x)

(a)= Pr(D0(Ai, t,∆t)∩I1(Ai, t,∆t) |X(t) = x)+o(∆t)
(b)= Pr(D0([n], t,∆t)∩I0([n]\Ai, t,∆t)∩I1(Ai, t,∆t) |X(t) = x)+o(∆t)

= Pr
(
∪c∈Si(x){X(t+∆t) = x↑c} |X(t) = x

)
+o(∆t)

=
∑

c∈Si(x)
Pr(X(t+∆t) = x↑c |X(t) = x)+o(∆t)

(c)=
 ∑

c∈Si(x)

m∑
j=1

BijE
(c)
j (x)

∆t+o(∆t), (5.37)

where (a) and (b) follow from Lemma 31 and (c) follows from (5.30).

On the other hand,

Pr(Ii(t+∆t)− Ii(t) =−1 |X(t) = x)

= Pr(∪n
ℓ=0(Dℓ+1(Ai, t,∆t)∩Iℓ(Ai, t,∆t)) |X(t) = x)

(a)= Pr(D1(Ai, t,∆t)∩I0(Ai, t,∆t) |X(t) = x)+o(∆t)
(b)= Pr(D1(Ai, t,∆t)∩D0([n]\Ai, t,∆t)∩I0([n], t,∆t) |X(t) = x)+o(∆t)

=
∑

c∈Ii(x)
Pr(X(t+∆t) = x↓c |X(t) = x)+o(∆t)

=
∑

c∈Ii(x)
(Q(x,x↓c)∆t+o(∆t))+o(∆t)

=
∑

c∈Ii(x)
γi∆t+o(∆t)

= γi|Ii(x)|∆t+o(∆t). (5.38)
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As a result of (5.37), (5.38), and Lemma 31, we have

E[Ii(t+∆t)− Ii(t) |X(t)] =
 ∑

c∈Si(x)

m∑
j=1

BijE
(c)
j (X(t))−γi|Ii(X(t))|

∆t+o(∆t).

We can repeat the arguments used in the proof of (i) to prove that

E[Ii(t+∆t)− Ii(t) | S(t),I(t)] =
 m∑

j=1
Bijχij(t)Si(t)Ij(t)−γiIi(t)

∆t+o(∆t),

which implies that

E
[
Ii(t+∆t)− Ii(t)

∆t

]
=

m∑
j=1

BijE[nχij(t)si(t)Ij(t)]−γiE[Ii(t)]+
o(∆t)

∆t .

On dividing both sides by n and then letting ∆t→ 0, we obtain (ii).

Proof of (iii)

Observe that when ∆tSi =−1, we have S2
i (t+∆t)−S2

i (t) = 1−2Si(t). Therefore,

E[S2
i (t+∆t)−S2

i (t) | S(t),I(t)] = (1−2Si(t)) ·Pr(∆tSi =−1 | S(t),I(t))+o(∆t)

=
 m∑

j=1
BijχijSiIj∆t−2

m∑
j=1

BijχijS
2
i Ij∆t

+o(∆t).

Taking expectations on both sides, dividing by ∆t, letting ∆t→ 0, and dividing both sides by n2

yields (iii).

Proof of (iv)

Observe that if ∆tIi(t) =−1, we have I2
i (t+∆t)−I2

i (t) = 1−2Ii(t), and if ∆tIi(t) = 1,

we have I2
i (t+∆t)− I2

i (t) = 1+2Ii(t).
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Thus,

E[I2
i (t+∆t)− I2

i (t) | S(t),I(t)]

= (1−2Ii(t)) ·Pr(∆tIi =−1 | S(t),I(t))+(1+2Ii(t)) ·Pr(∆tIi = 1 | S(t),I(t))+o(∆t)

On substituting the probabilities above with the expressions derived earlier, taking expectations

on both sides, dividing by n2∆t and letting ∆t→ 0, we obtain (iv).

Lemma 32. Let a∈Ai and b∈Aj be any two nodes, let t∈ [0,∞) be any time, and let T ∈ [0, t]

be the random variable such that t−T is the time at which 1(a,b) is updated for the last time

during the interval [0, t]. Then the random variables T and 1(a,b)(t) are independent.

Proof. For τ ∈ [0, t], let Nτ denote the number of times 1(a,b) is updated in the open interval

(t− τ, t), and let Uτ denote the zero-probability event that 1(a,b) is updated at time t− τ . Note

that Q(x,x↑(a,b))+Q(x,x↓(a,b)) = λ for all x ∈ S, which means that the rate at which 1(a,b) is

updated is time-invariant and independent of the network state. This means that the sequence of

times at which 1(a,b) is updated is a Poisson process, which further means that the updates of

1(a,b) occurring in disjoint time intervals are independent. It follows that Nτ is a Poisson random

variable (with mean λτ ) that is independent of Uτ and 1(a,b)(t− τ). As a result,

Pr((a,b) ∈ E(t) | T = τ) (a)= Pr((a,b) ∈ E(t− τ) | Uτ ,Nτ = 0)
(b)= Pr(Nτ = 0 | (a,b) ∈ E(t− τ),Uτ )

Pr(Nτ = 0 | Uτ ) ·Pr((a,b) ∈ E(t− τ) | Uτ )

=
Pr(Nτ = 0 | 1(a,b)(t− τ) = 1,Uτ )

Pr(Nτ = 0 | Uτ ) ·Pr((a,b) ∈ E(t− τ) | Uτ )

= Pr(Nτ = 0)
Pr(Nτ = 0) ·Pr((a,b) ∈ E(t− τ) | Uτ )

(c)= ρij

n
,

where (a) follows from the definition of T , (b) follows from Bayes’ rule, and (c) follows from
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the model definition (Section 5.2). Thus, Pr(1(a,b)(t) = 1 | T = τ) and Pr(1(a,b)(t) = 0 | T = τ)

do not depend on τ , which means that T and 1(a,b)(t) are independent.

The proof of Proposition 13 is based on the concepts of transition sequences and agnostic

transition sequences, which we define below.

Definition 54 (Transition Sequence). Consider any time t≥ 0, integer r ∈ N0, tuples denoted

by x(1),x(2), . . . ,x(r) ∈ S, and times 0 ≤ t1 < t2 < · · · < tr ≤ t. Let F = {x(0) t1→ x(1) t2→

·· · tr→ x(r) t→ x(r)} denote the event that the embedded jump chain {X(Jℓ) : ℓ ∈ N0} satisfies

X(Jℓ) = x(ℓ) and Jℓ = tℓ for all ℓ ∈ [r], and Jr+1 > t. Then F is said to be a transition sequence

for the time interval [0, t].

Note that if F is a transition sequence for [0, t], then for every tuple x ∈ S, we either have

F ⊂ {X(t) = x} or F ⊂ {X(t) ̸= x}.

Definition 55 ((a,b)-Complement). Let x ∈ S. Then the (a,b)-complement of x, denoted by

x(a,b), is defined by

(x(a,b))ℓ =


xℓ if ℓ ∈ [2n2−n]\{⟨a,b⟩},

1−xℓ if ℓ= ⟨a,b⟩.

Definition 56 ((a,b)-Agnostic Transition Sequence). Let a,b ∈ [n], and let F = {x(0) t1→ x(1) t2→

·· · tr→ x(r) t→ x(r)} be a transition sequence for a time interval [0, t]. Further, let Λ(a,b)(F ) be

defined by Λ(a,b)(F ) :=


max

{
ℓ ∈ [r] : x(ℓ) ∈ {x(ℓ−1)

↑(a,b),x
(ℓ−1)
↓(a,b)}

}
if
{
ℓ ∈ [r] : x(ℓ) ∈ {x(ℓ−1)

↑(a,b),x
(ℓ−1)
↓(a,b)}

}
̸= ∅

0 otherwise.

Then the (a,b)-agnostic transition sequence for F is the event F?(a,b) = F ∪F(a,b), where F(a,b),
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defined by

F(a,b) :=
{

x(0) t1→ ·· ·
tΛ(a,b)(F )−1
→ x(Λ(a,b)(F )−1)

tΛ(a,b)(F )
→ x(Λ(a,b)(F ))

(a,b)
tΛ(a,b)(F )+1
→ x(Λ(a,b)(F )+1)

(a,b)

tΛ(a,b)(F )+2
→ ·· · tr→ x(r)

(a,b)
t→ x(r)

(a,b)

}
,

is called the (a,b)-complement of F .

Given that F occurs, tΛ(a,b)(F ) denotes the time at which the edge state of (a,b) is updated

for the last time during the time interval [0, t] (note that, if the edge state of (a,b) is not updated

during [0, t], then tΛ(a,b)(F ) = t0 := 0). Therefore, the only difference between F and F(a,b) is

that the last edge state of (a,b) to be realized during the interval [0, t] is different for F and F(a,b).

Stated differently, if F ⊂ {(a,b) ∈ E(t)}, then F(a,b) ⊂ {(a,b) /∈ E(t)}, and vice-versa. As a

result, the event F?(a,b) is (a,b)-agnostic in that the occurrence of this event does not provide any

information about the edge state of (a,b) at time t.

Note that if F is a transition sequence, then F , F(a,b), and F?(a,b) are all zero-probability

events. We now approximate these events with the help of suitable positive-probability events.

Definition 57 (δ-Approximation). Let F = {x(0) t1→ x(1) t2→ ·· · tr→ x(r) t→ x(r)} be a transition

sequence. Then, for a given δ > 0, the δ-approximation of F is the event F δ := {X(0) =

x(0), . . . ,X(Jr) = x(r),∆1J ∈ [∆1t,∆1t+δ), . . . ,∆rJ ∈ [∆rt,∆rt+δ),∆r+1J > t−tr}, where

∆ℓJ := Jℓ−Jℓ−1, ∆ℓt := tℓ− tℓ−1, and t0 := 0. Also, the δ-approximation of F?(a,b) is the event

F δ
?(a,b) := F δ ∪F δ

(a,b) (where F δ
(a,b) is the δ-approximation of F(a,b)).

The following lemma evaluates the probability of occurrence of a δ-approximation event.

Lemma 33. Let F = {x(0) t1→ x(1) t2→ ·· · tr→ x(r) t→ x(r)} be a transition sequence. Then for all

sufficiently small δ > 0, the ratio Pr(F δ)
Pr(X(0)=x(0)) equals

e−qr(t−tr)
r∏

ℓ=1
qℓ−1,ℓ(e−qℓ−1(tℓ−tℓ−1)δ+o(δ)),
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where t0 := 0, qℓ :=−Q(x(ℓ),x(ℓ)), and qℓ,ℓ+1 := Q(x(ℓ),x(ℓ+1)) for each ℓ ∈ [r].

Proof. Observe that

Pr(F δ)
Pr(X(0) = x(0))

= Pr(∩ℓ∈[r]{X(Jℓ) = x(ℓ),∆ℓJ ∈ [∆ℓt,∆ℓt+ δ)} |X(0) = x(0))

×Pr(∆r+1J > t− tr | ∩ℓ∈[r]{X(Jℓ) = x(ℓ),∆ℓJ ∈ [∆ℓt,∆ℓt+ δ)})

(a)=
r∏

ℓ=1
Pr(∆ℓJ ∈ [∆ℓt,∆ℓt+ δ),X(Jℓ) = x(ℓ) |X(Jℓ−1) = x(ℓ−1))

×Pr(∆r+1J > t− tr |X(Jr) = x(r))

(b)=
r∏

ℓ=1
Pr(∆1J ∈ [∆ℓt,∆ℓt+ δ),X(J1) = x(ℓ) |X(0) = x(ℓ−1))

×Pr(∆1J > t− tr |X(0) = x(r))

(c)=
r∏

ℓ=1

(
Pr(∆1J ∈ [∆ℓt,∆ℓt+ δ) |X(0) = x(ℓ−1))

·Pr(X(J1) = x(ℓ) |X(0) = x(ℓ−1))
)

×Pr(∆1J > t− tr |X(0) = x(r))

(d)=
r∏

ℓ=1

((
qℓ−1e

−qℓ−1∆ℓtδ+o(δ)
) qℓ−1,ℓ

qℓ−1

)
× e−qr(t−tr)

= e−qr(t−tr)
r∏

ℓ=1
qℓ−1,ℓ

(
e−qℓ−1(tℓ−tℓ−1)δ+o(δ)

)
,

where (a) follows from the strong Markov property and the fact that jump times are stopping

times, (b) follows from Proposition 3.2 of [14], (c) follows from the fact that X(J1) and ∆1J

(which equals J1) are conditionally independent given X(0) (see Proposition 3.1 of [14]), and

(d) follows from the following two facts:

1. ∆1J is conditionally exponentially distributed with mean q−1
ℓ−1 given that X(0) = x(ℓ−1).

2. For the embedded jump chain, the probability of transitioning from x ∈ S to y ∈ S is

Q(x,y)
|Q(x,x)| .
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For the rest of the appendix, let a ∈ Ai and b ∈ Aj be any two nodes, let t ∈ [0,∞) be

any time instant, let T ∈ [0, t] be the random variable such that t−T is the time at which 1(a,b)

is updated for the last time during the interval [0, t), and let K := t−min{t, inf{τ : b ∈ I(τ)}},

where inf{τ : b ∈ I(τ)} is the time at which b gets infected.

Lemma 34. The PDF of T has [0, t] as its support and is given by

fT (τ) = λe−λτ + e−λtδD(τ − t),

where δD(·) is the Dirac-delta function.

Proof. The definition of T implies that the support of its PDF is [0, t]. To derive the required

closed-form expression for this PDF, recall that Q(x,x↑(a,b))+Q(x,x↓(a,b)) = λ for all x ∈ S,

which means that the edge state of (a,b) is updated at a constant rate of λ at all times. Therefore,

for any τ ∈ [0, t), the quantity Pr(T > τ) (the probability that 1(a,b) is not updated during

[t− τ, t]) is given by e−λτ . However, Pr(T > t) = 0, implying that Pr(T = t) = Pr(T ≥ t) =

limτ→t− Pr(T > τ) = e−λt. Hence, the CDF of T is F (τ) = 1− e−λτ for all τ ∈ [0, t), and

F (t) = 1. Taking the first derivative of this CDF now yields the required expression for fT .

To prove the next lemma, we need the notion of agnostic superstates, which is defined

below.

Definition 58 ((a,b)-Agnostic Superstate). Given a node pair (a,b) ∈ [n]× [n], a collection of

states X⊂ S is an (a,b)-agnostic superstate if X can be expressed as X =
{
x,x(a,b),y,y(a,b)

}
for a pair of states x,y ∈ S satisfying yn2+⟨a,b⟩ = 1−xn2+⟨a,b⟩ and xℓ = yℓ for all ℓ ∈ [2n2−

n]\{n2 + ⟨a,b⟩}.

Note that an (a,b)-agnostic superstate specifies the disease states of all the nodes and the

edge states of all the node pairs except (a,b).
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Definition 59 ((a,b)-Agnostic Jump Times). Given (a,b) ∈ [n]× [n], the (a,b)-agnostic jump

times of the chain {X(τ) : τ ≥ 0}, denoted by {Lk}∞k=0, are defined by L0 := 0 and Lk :=

inf{Jℓ : ℓ ∈ N,Jℓ > Lk−1,X(Jℓ) /∈ {(X(Jℓ−1))↑(a,b),(X(Jℓ−1))↓(a,b)}} for all k ∈ N.

Note that {Lk}∞k=0 ⊂ {Jℓ}∞ℓ=0 and that the (a,b)-agnostic jump times of {X(τ)} are the

jump times of the chain at which the edge state of (a,b) is not updated.

Lemma 35. K is independent of (T,1(a,b)(t)).

Proof. Note that K is a function of K̃ := inf{τ ≥ 0 : b ∈ I(τ)}, the time at which b gets infected.

Hence, it suffices to prove that K̃ is independent of (T,1(a,b)(t)).

Consider now any κ≥ 0 and note that {K̃ ≥ κ}= ∪∞
N=0

(
{K̃ = LN}∩{LN ≥ κ}

)
. To

examine the probability of {K̃ = LN}, we let FN (κ) denote the set of all the events of the form

F = {X(0)∈X(0),X(L1)∈X(1), . . . ,X(LN )∈X(N)} (where X(0), . . . ,X(N) are (a,b)-agnostic

superstates satisfying X(k) ̸=X(k−1) for all k ∈ [N ]) that satisfy F ⊂ {K̃ =LN}, and we observe

that {K̃ = LN}= ∪F ∈FN (κ)F .

We now examine Pr(F ) for an arbitrary F = {X(0) ∈X(0),X(L1) ∈X(1), . . . ,X(LN ) ∈

X(N)} ∈ FN (κ). Pick any k ∈ [N ] and x ∈ X(k−1). Note that F ⊂ {K̃ = LN} implies that

b ∈ S(x). In view of our definition of Q, this means that Q(x,x) =−∑z∈S\{x} Q(x,z), which

possibly depends on the disease states {x1, . . . ,xn} and on the edge states {1(c,d)(x) : (c,d) ∈

[n]× [n] : d ∈ I(x)}, does not depend on 1(a,b)(x). We next observe that, by the definitions

of (a,b)-agnostic states and jump times, none of the possible transitions from X(k−1) to X(k)

involves an edge state update for (a,b), which means that the values of both X⟨a,b⟩ = 1(a,b)(X)

and Xn2+⟨a,b⟩ are preserved in such transitions. Therefore, for every x ∈ X(k−1), there exists

at most one state y ∈ X(k) that potentially succeeds x. For such a state y, the transition rate
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Q(x,y), given by

Q(x,y) =



∑m
q=1

∑
d∈Iq(x)Bpq1(c,d)(x) if ∃ c ∈ Sp(x) such that y = x↑c

γp if ∃ c ∈ Ip(x) such that y = x↓c,

λρpq

n if ∃ (c,d) ∈ Ap×Aq \{(a,b)} with y = x↑(c,d),

λ
(
1− ρpq

n

)
if ∃ (a,b) ∈ Ap×Aq \{(a,b)} with y = x↓(c,d),

does not depend on x⟨a,b⟩ = y⟨a,b⟩ or on xn2+⟨a,b⟩ = yn2+⟨a,b⟩, because b /∈ I(x) implies that

(a,b) /∈ ∪m
p=1 ∪c∈Sp(x) ∪m

q=1{(c,d) : d ∈ Iq(x)}. It follows that the rate at which the Markov

chain {X(τ)} transitions from x to a state in X(k), given by
∑

z∈X(k) Q(x,z) = Q(x,y), is

time-invariant and takes the same value for every x ∈ X(k−1). This means that, as long as the

Markov chain {X(τ) : τ ≥ 0} does not leave the (a,b)-agnostic superstate X(k−1), the rate at

which the chain transitions to X(k) remains the same regardless of transitions within X(k−1). We

can express this formally as

lim
∆τ→0

Pr(X(τ +∆τ) ∈ X(k) |X(τ) ∈ X(k−1),X(τ) = x)
∆τ = Q(X(k−1),X(k))

for all τ ≥ 0 and x ∈ X(k−1), where

Q(X(k−1),X(k)) := lim
∆τ→0

Pr(X(τ +∆τ) ∈ X(k) |X(τ) ∈ X(k−1))
∆τ

denotes the time-invariant rate of transitioning from X(k−1) to X(k).

By Markovity, this implies that2

lim
∆τ→0

Pr(X(τ +∆τ) ∈ X(k) |X(τ) = x,{X(τ ′) : 0≤ τ ′ < τ})
∆τ = Q(X(k−1),X(k)),

2In this chapter, conditioning an event H on {X(τ ′) : 0≤ τ ′ ≤ τ} means conditioning H on every X(τ ′) for
0≤ τ ′ ≤ τ , i.e., conditioning H on the trajectory traced by the Markov chain during the interval [0, τ ] and not just
on the random set of tuples {X(τ ′) : 0≤ τ ′ ≤ τ}. Conditioning on the set {X(τ ′) : 0≤ τ ′ ≤ τ} is not sufficient
because sets, by definition, are unordered.
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for all τ ≥ 0 and x ∈ X(k−1), which means that the conditional rate at which the chain leaves

X(k−1) time τ is independent of the history {X(τ ′) : τ ′ ∈ [0, τ ]}. Since {1(a,b)(τ ′) : 0≤ τ ′ ≤ τ}

are determined by {X(τ ′) : 0≤ τ ′ ≤ τ}, it follows that

lim
∆τ→0

Pr(X(τ +∆τ) ∈ X(k) |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ})
∆τ = Q(X(k−1),X(k))

for all τ ≥ 0 and x ∈ X(k−1). Now, let T↑(τ) := inf{τ ′ ≥ 0 : X(τ + τ ′) = (X((τ + τ ′)−))↑(a,b)}

be the (random) time elapsed between time τ and the first of the updates of 1(a,b) that occur after

time τ and result in 1(a,b) = 1. Then, the following holds for all x ∈ X(k−1), τ ≥ 0, σ > 0 and

sufficiently small ∆τ > 0:

Pr(T↑(τ)≥ σ |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ},X(τ +∆τ) ∈ X(k))

= Pr(T↑(τ +∆τ)≥ σ−∆τ

|X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ},X(τ +∆τ) ∈ X(k),T↑(τ)≥∆τ)

·Pr(T↑(τ)≥∆τ |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ},X(τ +∆τ) ∈ X(k))

= Pr(T↑(τ +∆τ)≥ σ−∆τ |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ},X(τ +∆τ) ∈ X(k),

Xn2+⟨a,b⟩(τ ′) =Xn2+⟨a,b⟩(τ)∀τ ′ ∈ [τ,τ +∆τ))

·Pr(T↑(τ)≥∆τ |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ},X(τ +∆τ) ∈ X(k))
(a)= e−λ

ρij
n (σ−∆τ) ·Pr(T↑(τ)≥∆τ |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ},X(τ +∆τ) ∈ X(k))

∆τ→0−→ e−λ
ρij
n σ ·1

(b)= Pr(T↑(τ)≥ σ |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ}),

where (a) and (b) follow from Markovity and the fact that Q(z,z↑(a,b)) = λ
ρij

n for all 𭟋 ∈ S.

Now, let T (1)
↑ (τ) := T↑(τ) and T (ℓ)

↑ (τ) := T↑(T (ℓ−1)
↑ (τ)) for all ℓ ∈ N. Then, since {T (ℓ)

↑ }∞ℓ=1

are stopping times, similar arguments can be used to show the following for all σ1,σ2, . . . ,σℓ ≥ 0
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and all ℓ ∈ N

lim
∆τ→0

Pr
(
T

(1)
↑ (τ)≥ σ1, . . . ,T

(ℓ)
↑ (τ)≥ σℓ

|X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ},X(τ +∆τ) ∈ X(k)
)

= Pr
(
T

(1)
↑ (τ)≥ σ1, . . . ,T

(ℓ)
↑ (τ)≥ σℓ |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ}

)
.

Similarly, if we let T (1)
↓ := inf{τ ′ ≥ 0 : X(τ + τ ′) = (X((τ + τ ′)−))↓(a,b)} and T

(ℓ)
↓ (τ) :=

T↓(T (ℓ−1)
↓ (τ)) for all ℓ ∈ N, then we can show that for all σ↑1, . . . ,σ↑ℓ,σ↓1 , . . . ,σ↓ℓ′ ≥ 0 and

all ℓ,ℓ′ ∈ N,

lim
∆τ→0

Pr
(
T

(1)
↑ (τ)≥ σ↑1, . . . ,T

(ℓ)
↑ (τ)≥ σ↑ℓ,T

(1)
↓ (τ)≥ σ↓1, . . . ,T

(ℓ′)
↓ (τ)≥ σ↓ℓ′

|X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ},X(τ +∆τ) ∈ X(k)
)

= Pr
(
T

(1)
↑ (τ)≥ σ↑1, . . . ,T

(ℓ)
↑ (τ)≥ σ↑ℓ,T

(1)
↓ (τ)≥ σ↓1, . . . ,T

(ℓ′)
↓ (τ)≥ σ↓ℓ′

|X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ τ}
)
.

As a result, we have the following for all σ↑1, . . . ,σ↑ℓ,σ↓1 , . . . ,σ↓ℓ′ ≥ 0 and all ℓ,ℓ′ ∈ N:

Pr
(

X(τ +∆τ) ∈ X(k) |X(τ) = x,{1(a,b)(τ ′)},{T (ξ)
↑ (τ)≥ σ↑ξ},{T

(ξ)
↓ (τ)≥ σ↓ξ}

)
∆τ

(a)=
Pr
(
{T (ξ)

↑ (τ)≥ σ↑ξ},{T
(ξ)
↓ (τ)≥ σ↓ξ} |X(τ) = x,{1(a,b)(τ ′)},X(τ +∆τ) ∈ X(k)

)
Pr
(
{T (ξ)

↑ (τ)≥ σ↑ξ}ℓξ=1,{T
(ξ)
↓ (τ)≥ σ↓ξ}ℓ

′
ξ=1 |X(τ) = x,{1(a,b)(τ ′)}τ ′∈[0,τ ]

)

×
Pr
(

X(τ +∆τ) ∈ X(k) |X(τ) = x,{1(a,b)(τ ′)}τ ′∈[0,τ ]

)
∆τ

∆τ→0−→ 1×Q(X(k−1),X(k)),
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i.e.,

lim
∆τ→0

Pr
(

X(τ +∆τ) ∈ X(k) |X(τ) = x,{1(a,b)(τ ′)}τ ′∈[0,τ ],{T
(ξ)
↑ (τ)}ℓξ=1,{T

(ξ)
↓ (τ)}ℓ′

ξ=1

)
∆τ

= Q(X(k−1),X(k))

for all ℓ,ℓ′ ∈ N. Now, observe that if we are given {1(a,b)(τ ′) : 0 ≤ τ ′ ≤ τ}, then {1(a,b)(τ ′) :

τ ≤ τ ′ ≤ t} are determined by a subset of the random variables {T (ℓ)
↑ }∞ℓ=1∪{T

(ℓ)
↓ }∞ℓ=1 and this

subset is random but almost surely finite. Hence, the above limit implies the following for all

x ∈ X(k−1) and τ ≥ 0:

lim
∆τ→0

Pr
(
X(τ +∆τ) ∈ X(k) |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t}

)
∆τ = Q(X(k−1),X(k)).

Moreover, since the above arguments remain valid if we replace X(k) with an arbitrary (a,b)-

agnostic superstate Y ̸= X(k−1), we can generalize the above to

lim
∆τ→0

Pr
(
X(τ +∆τ) ∈ Y |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t}

)
∆τ = Q(X(k−1),Y)

for all (a,b)-agnostic superstates Y ̸= X(k−1). It follows that

lim
∆τ→0

Pr
(
X(τ +∆τ) /∈ X(k−1) |X(τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t}

)
∆τ =

∑
Y̸=X(k−1)

Q(X(k−1),Y)

(5.39)

for all x ∈ X(k−1) and all τ ≥ 0. This means that, given {X(Lk−1) = x} for some x ∈ X(k−1),

the random quantity Lk−Lk−1, which is the duration of time spent by the Markov chain in

X(k−1), is conditionally exponentially distributed with rate
∑

Y ̸=X(k−1) Q(X(k−1),Y) and it is

conditionally independent of {1(a,b)(τ ′) : 0≤ τ ′ ≤ t}. Besides, the above deductions also imply

the following: given {1(a,b)(τ ′) : 0≤ τ ′ ≤ t} and given that the chain exits X(k−1) from state x
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at time τ ≥ 0, the conditional probability that it enters X(k) at time τ is

Pr(X(τ) ∈ X(k) |X(τ−) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t},X(τ) /∈ X(k−1))

= lim
∆τ→0

Pr(X(τ) ∈ X(k) |X(τ −∆τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t},X(τ) /∈ X(k−1))

= lim
∆τ→0

Pr(X(τ) ∈ X(k) |X(τ −∆τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t})
Pr(X(τ) /∈ X(k−1) |X(τ −∆τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t})

= lim
∆τ→0

Pr(X(τ) ∈ X(k) |X(τ −∆τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t})
∆τ

× lim
∆τ→0

Pr(X(τ) /∈ X(k−1) |X(τ −∆τ) = x,{1(a,b)(τ ′) : 0≤ τ ′ ≤ t})
∆τ

−1

= Q(X(k−1),X(k))∑
Y̸=X(k−1) Q(X(k−1),Y)

.

By invoking Markovity in the preceding arguments, the above can be generalized to

Pr(X(τ) ∈ X(k) |X(τ−) = x,{X(τ ′)}τ ′∈[0,τ),{1(a,b)(τ ′)}τ ′∈[0,t],X(τ) /∈ X(k−1))

= Q(X(k−1),X(k))∑
Y ̸=X(k−1) Q(X(k−1),Y)

, (5.40)

which implies that

Pr(X(τ) ∈ X(k) |X(τ ′) = x∀τ ′ ∈ [Lk−1, τ),{X(τ ′)}{1(a,b)(τ ′)}τ ′∈[0,t],X(τ) /∈ X(k−1))

= Q(X(k−1),X(k))∑
Y ̸=X(k−1) Q(X(k−1),Y)

.

Equivalently,

Pr(X(Lk) ∈ X(k) |X(Lk−1) = x,{X(τ ′)}τ ′∈[0,Lk−1),{1(a,b)(τ ′)}τ ′∈[0,t],Lk = τ)

= Q(X(k−1),X(k))∑
Y ̸=X(k−1) Q(X(k−1),Y)

.
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for all τ > 0 and x ∈ X(k−1). Hence,

Pr(X(Lk) ∈ X(k) |X(Lk−1) ∈ X(k−1),{X(τ ′)}τ ′∈[0,Lk−1),{1(a,b)(τ ′)}τ ′∈[0,t],Lk)

= Q(X(k−1),X(k))∑
Y ̸=X(k−1) Q(X(k−1),Y)

. (5.41)

Since the entire analysis above holds for all k ∈ [N ], we have the following for all indices

σ1,σ2, . . . ,σN ≥ 0.

Pr
((
∩N

k=1{Lk−Lk−1 ≥ σk}
)
∩
(
∩N

k=0{X(Lk) ∈ X(k)}
)
|X(0) ∈ X(0),{1(a,b)(τ ′)}

)
=

N∏
k=1

Pr(X(Lk) ∈ X(k),Lk−Lk−1 ≥ σk | {X(Lξ) ∈ X(ξ),Lξ−Lξ−1 ≥ σξ},{1(a,b)(τ ′)})

=
N∏

k=1
Pr(Lk−Lk−1 ≥ σk | {X(Lξ) ∈ X(ξ),Lξ−Lξ−1 ≥ σξ}k−1

ξ=0 ,{1(a,b)(τ ′)}τ ′∈[0,t])

×
N∏

k=1
Pr(X(Lk) ∈ X(k) | Lk−Lk−1 ≥ σk,{X(Lξ) ∈ X(ξ),Lξ−Lξ−1 ≥ σξ},{1(a,b)(τ ′)})

(a)=
N∏

k=1
Pr(Lk−Lk−1 ≥ σk |X(Lk−1) ∈ X(k−1),{1(a,b)(τ ′)}τ ′∈[0,t])

×
N∏

k=1
Pr(X(Lk) ∈ X(k) | Lk−Lk−1 ≥ σk,{X(Lξ) ∈ X(ξ),Lξ−Lξ−1 ≥ σξ},{1(a,b)(τ ′)})

(b)=
N∏

k=1
exp

−σk

∑
Y ̸=X(k−1)

Q(X(k−1),Y)

× N∏
k=1

Q(X(k−1),X(k))∑
Y̸=X(k−1) Q(X(k−1),Y)

, (5.42)

where (a) is a consequence of the strong Markov property and the fact that {Lk}Nk=1 are stopping

times, and (b) follows from (5.39) and (5.41). Since σ1, . . . ,σN are arbitrary and since the above

expression is independent of {1(a,b)(τ) : 0≤ τ ≤ t}, we have shown that for the event

F ∩{LN ≥ κ}=

X(0) ∈ X(0), . . . ,X(LN ) ∈ X(N),
N∑

k=1
(Lk−Lk−1)≥ κ

 ,
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we have Pr(F ∩{LN ≥ κ} | {1(a,b)(τ) : 0≤ τ ≤ t}) = Pr(F ∩{LN ≥ κ}). As a result,

Pr({K̃ = LN}∩{LN ≥ κ} | {1(a,b)(τ) : 0≤ τ ≤ t})

= Pr
(
∪F ∈FN (κ)(F ∩{LN ≥ κ}) | {1(a,b)(τ) : 0≤ τ ≤ t}

)
(a)=

∑
F ∈FN (κ)

Pr
(
F ∩{LN ≥ κ} | {1(a,b)(τ) : 0≤ τ ≤ t}

)

=
∑

F ∈FN (κ)
Pr(F ∩{LN ≥ κ})

(b)= Pr
(
∪F ∈FN (κ)(F ∩{LN ≥ κ})

)
= Pr({K̃ = LN}∩{LN ≥ κ}),

where (a) and (b) hold because the definition of FN (κ) implies that FN (κ) is a collection of

disjoint events. Since {K̃ ≥ κ}=∪∞
N=0

(
{K̃ = LN}∩{LN ≥ κ}

)
and since {K̃ =L1}∩{L1≥

κ},{K̃ = L2}∩{L2 ≥ κ}, . . . are disjoint events, it follows that Pr(K̃ ≥ κ | {1(a,b)(τ) : 0≤ τ ≤

t}) = Pr(K̃ ≥ κ). Moreover, since κ ≥ 0 is arbitrary, this means that K̃ is independent of

| {1(a,b)(τ) : 0 ≤ τ ≤ t}. Finally, since K and (T,1(a,b)(t)) are functions of K̃ and {1(a,b)(τ) :

0≤ τ ≤ t}, respectively, it follows that K and (T,1(a,b)(t)) are independent.

Remark 15. Observe that in the proof of Lemma 35, (5.42) implies that the event {LN ≥ κ}∩(
∩N

k=0{X(Lk) ∈ X(k)}
)

is independent of {1(a,b)(τ) : 0≤ τ ≤ t} (since LN =∑N
k=1(Lk−Lk−1)

and since the initial state X(0) is assumed to be non-random). Note that this is true for all the

choices of (a,b)-agnostic superstates {X(k)}Nk=0 that satisfy ∩N
k=0{X(Lk)∈X(k)} ⊂ {K̃ =LN}

and hence also for all {X(k)}Nk=0 that satisfy ∩N
k=0{X(Lk)∈X(k)}⊂ {K̃ =LN}∩{X(K̃)∈Y},

where Y is an arbitrary (a,b)-agnostic superstate. Now, let us by X the set of all {X(k)}Nk=0

satisfying ∩N
k=0{X(Lk) ∈ X(k)} ⊂ {K̃ = LN}∩{X(K̃) ∈ Y}, we have

∪{X(k)}N
k=0∈X

(
∩N

k=0{X(Lk) ∈ X(k)}
)

= {K̃ = LN}∩{X(K̃) ∈ Y}.
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Then, by the preceding arguments we have

Pr({K̃ = LN}∩{X(K̃) ∈ Y}∩{LN ≥ κ} | {1(a,b)(τ) : 0≤ τ ≤ t})

= Pr
(
∪{X(k)}N

k=0∈X

(
∩N

k=0{X(Lk) ∈ X(k)}
)
∩{LN ≥ κ} | {1(a,b)(τ) : 0≤ τ ≤ t}

)
=

∑
{X(k)}N

k=0∈X
Pr
(
∩N

k=0{X(Lk) ∈ X(k)}∩{LN ≥ κ} | {1(a,b)(τ) : 0≤ τ ≤ t}
)

=
∑

{X(k)}N
k=0∈X

Pr
(
∩N

k=0{X(Lk) ∈ X(k)}∩{LN ≥ κ}
)

= Pr
(
∪{X(k)}N

k=0∈X

(
∩N

k=0{X(Lk) ∈ X(k)}∩{LN ≥ κ}
))

= Pr({K̃ = LN}∩{X(K̃) ∈ Y}∩{LN ≥ κ}), (5.43)

which shows that {K̃ =LN}∩{X(K̃)∈Y}∩{LN ≥ κ} is independent of {1(a,b)(τ) : 0≤ τ ≤ t}.

Since {K̃ ≥ κ}∩ {X(K̃) ∈ Y} = ∪∞
N=0

(
{K̃ = LN}∩{X(K̃) ∈ Y}∩{LN ≥ κ}

)
, it follows

that {K̃ ≥ κ}∩{X(K̃) ∈Y} is independent of {1(a,b)(τ) : 0≤ τ ≤ t}. As a consequence of this

observation, the fact that Y is an arbitrary (a,b)-agnostic superstate and the fact that κ is an

arbitrary non-negative number, we have that (X(K̃), K̃) are independent of {1(a,b)(τ) : 0≤ τ ≤

t}, where X(K̃) denotes the (a,b)-agnostic superstate of the chain at time K̃.

In order to state the remaining lemmas, we need to introduce some additional notation.

For two nodes (a,b) ∈ [n]× [n], we let b t⇝ a denote the event that b transmits pathogens to a at

time t. For a given time interval [t, t+ ∆t) ⊂ [0,∞), we let
{
b

t,∆t
⇝ a

}
:= ∪τ∈[t,t+∆t){b

τ⇝ a}.

The complement of this event is denoted by
{
b

t,∆t
⇝̸ a

}
. For two given node sets A,B ⊂ [n], we

use {B t⇝ A} to denote the event that some node(s) of B infect(s) one or more nodes in A at

time t.

We now provide a sequence of lemmas that we later use to prove Proposition 13.

Lemma 36. Suppose a ∈Ai, b ∈Aj , y ∈ {0,1}, and t1, t2 ∈ [0,∞) such that t1 < t2. Given that

b∈ Ij(t1) := Ij(X(t1)) and that 1(a,b)(τ) := 1(a,b)(X(τ)) = y for all τ ∈ [t1, t2), the conditional
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probability that b neither recovers nor infects a during the interval [t1, t2) is e−(Bijδ1y+γj)(t2−t1),

where δij is the Kronecker delta.

Proof. Let X := {x ∈ S : b ∈ Ij(x),1(a,b)(x) = y}. Also, let ∆t > 0. Since the rate of infection

transmission from b to a at time t1 is Bij1(a,b)(X(t1)), we have the following for all x ∈ X:

Pr
(
b

t1,∆t
⇝ a

∣∣∣∣X(t1) = x
)

=Bijδ1y∆t+o(∆t).

On the other hand, denoting the event that b recovers during [t1, t1 +∆t) by Db, we have

Pr(Db |X(t) = x) = γj∆t+o(∆t).

Similarly, if we let F(a,b) denote the event that the edge state 1(a,b) flips (i.e., changes from y

to 1−y) during [t1, t1 +∆t), we have Pr(F(a,b) |X(t) = x) = λ
(
y
(
1− ρij

n

)
+(1−y)ρij

n

)
∆t+

o(∆t). As a result, we have

Pr
({

b
t1,∆t
⇝̸ a

}
∩ D̄b∩ F̄(a,b)

∣∣∣∣X(t1) = x
)

= 1−Pr
({
b

t1,∆t
⇝ a

}
∪Db∪F(a,b)

∣∣∣∣X(t1) = x
)

(a)= 1−Pr
(
b

t1,∆t
⇝ a

∣∣∣∣X(t1) = x
)
−Pr(Db |X(t1) = x)−Pr(F(a,b) |X(t1) = x})+o(∆t)

= 1− (Bijδ1y∆t+o(∆t))− (γj∆t+o(∆t))−
(
λ
(
y
(

1− ρij

n

)
+(1−y)ρij

n

)
∆t+o(∆t)

)
+o(∆t)

= 1−
(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))
∆t+o(∆t),

where (a) follows from Lemma 31 and the Inclusion-Exclusion principle. Since this holds for all
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x ∈ X, the above implies that

Pr
({

b
t1,∆t
⇝̸ a

}
∩ D̄b∩ F̄(a,b)

∣∣∣∣X(t1) ∈ X
)

= 1−
(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))
∆t+o(∆t).

Now, consider any ℓ ∈ N0. By replacing t1 with t1 + ℓ∆t in the above relation, we obtain

Pr
({

b
t1+ℓ∆t,∆t
⇝̸ a

}
∩ D̄(ℓ)

b ∩ F̄
(ℓ)
(a,b)

∣∣∣∣X(t1 + ℓ∆t) ∈ X
)

= 1−
(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))
∆t+o(∆t),

where D(ℓ)
b is the event that b recovers during [t1 + ℓ∆t, t1 + (ℓ+ 1)∆t) and F (ℓ)

(a,b) is the event

that 1(a,b) flips during [t1 +ℓ∆t, t1 +(ℓ+1)∆t). Therefore, on setting ∆t= t2−t1
N for an arbitrary

N ∈ N, it follows that

Pr
(
{b ∈ I(t)}∩

{
b

t1,t2−t1
⇝̸ a

}
∩{1(a,b)(τ) = y∀τ ∈ [t1, t2)}

∣∣∣∣X(t1) = x
)

=
N−1∏
ℓ=1

Pr
({

b
t1+ℓ∆t,∆t
⇝̸ a

}
∩ D̄(ℓ)

b ∩ F̄
(ℓ)
(a,b)∣∣∣∣ b t1,ℓ∆t

⇝̸ a,D̄b, D̄
(1)
b , . . . , D̄

(ℓ−1)
b , F̄(a,b), . . . , F̄

(ℓ−1)
(a,b) ,X(t1) = x

)

×Pr
({

b
t1,∆t
⇝̸ a

}
∩ D̄b∩ F̄(a,b)

∣∣∣∣X(t1) = x
)

=
N−1∏
ℓ=1

Pr
({

b
t1+ℓ∆t,∆t
⇝̸ a

}
∩ D̄(ℓ)

b ∩ F̄
(ℓ)
(a,b)

(a)=
N−1∏
ℓ=1

(
1−

(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))
∆t+o(∆t)

)

×
(

1−
(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))
∆t+o(∆t)

)
, (5.44)
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i.e.,

Pr
(
{b ∈ I(t)}∩

{
b

t1,t2−t1
⇝̸ a

}
∩{1(a,b)(τ) = y∀τ ∈ [t1, t2)}

∣∣∣∣X(t1) = x
)

∣∣∣∣X(t1 + ℓ∆t) ∈ X, b
t1,ℓ∆t
⇝̸ a,{D̄(σ)

b }
ℓ−1
σ=0,{F̄

(σ)
(a,b)}

ℓ−1
σ=0,X(t1) = x

)

×
(

1−
(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))
∆t+o(∆t)

)
=
(

1−
(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))(
t2− t1
N

))N

+o
( 1
N

)
, (5.45)

where (a) follows from the following observation: for any y ∈ X, Markovity implies that

Pr
({

b
t1+ℓ∆t,∆t
⇝̸ a

}
∩ D̄(ℓ)

b ∩ F̄
(ℓ)
(a,b)∣∣∣∣X(t1 + ℓ∆t) = y, b

t1,ℓ∆t
⇝̸ a,{D̄(σ)

b }
ℓ−1
σ=0,{F̄

(σ)
(a,b)}

ℓ−1
σ=0,X(t1) = x

)

= Pr
({

b
t1+∆t,∆t
⇝̸ a

}
∩ D̄(1)

b ∩ F̄
(1)
(a,b)

∣∣∣∣X(t1 +∆t) = y
)

= 1−
(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))
∆t+o(∆t),

which further implies that

Pr
({

b
t1+ℓ∆t,∆t
⇝̸ a

}
∩ D̄(ℓ)

b ∩ F̄
(ℓ)
(a,b)∣∣∣∣X(t1 + ℓ∆t) ∈ X, b

t1,ℓ∆t
⇝̸ a,{D̄(σ)

b }
ℓ−1
σ=0,{F̄

(σ)
(a,b)}

ℓ−1
σ=0,X(t1) = x

)

= 1−
(
Bijδ1y +γj +λ

(
y
(

1− ρij

n

)
+(1−y)ρij

n

))
∆t+o(∆t).
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Now, since (5.44) holds for all N ∈ N, it follows that

Pr
(
{b ∈ I(t)}∩

{
b

t1,t2−t1
⇝̸ a

}
∩{1(a,b)(τ) = y∀τ ∈ [t1, t2)}

∣∣∣∣X(t1) = x
)

= lim
N→∞

((
1−

(
Bijδ1y +γj +λy

(
1− ρij

n

)
+λ(1−y) ρij

n

)(
t2− t1
N

))N

+o
( 1
N

))

= e
−
(

Bijδ1y+γj+λ
(

y
(

1−
ρij
n

)
+(1−y)

ρij
n

))
(t2−t1)

. (5.46)

Similarly, we can show that

Pr
(

1(a,b)(τ) = y∀τ ∈ [t1, t2)
∣∣∣∣X(t1) = x

)
= e

−λ
(

y
(

1−
ρij
n

)
+(1−y)

ρij
n

)
(t2−t1)

. (5.47)

As a result of (5.46) and (5.47),

Pr
(
{b ∈ I(t)}∩

{
b

t1,t2−t1
⇝̸ a

} ∣∣∣∣ {1(a,b)(τ) = y∀τ ∈ [t1, t2)},X(t1) = x
)

=
Pr
(
{b ∈ I(t)}∩

{
b

t1,t2−t1
⇝̸ a

}
∩{1(a,b)(τ) = y∀τ ∈ [t1, t2)}

∣∣∣∣X(t1) = x
)

Pr
(

1(a,b)(τ) = y∀τ ∈ [t1, t2)
∣∣∣∣X(t1) = x

)
= e−(Bijδ1y+γj)(t2−t1).

Since the above holds for all x ∈ X, it follows that

Pr
(
{b ∈ I(t)}∩

{
b

t1,t2−t1
⇝̸ a

} ∣∣∣∣ {1(a,b)(τ) = y∀τ ∈ [t1, t2)},X(t1) ∈ X
)

= e−(Bijδ1y+γj)(t2−t1),

which proves the lemma.

Lemma 37. Let Ton :=
∫ t−T
t−K 1(a,b)(σ)dσ denote the total duration of time for which the edge (a,b)

exists in the network during [t−K,t−T ]. Then, for all κ,τ ∈ [0, t] and all τon ∈ [0,(κ− τ)+],
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we have

Pr
(
b

0,t
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t−),(a,b) /∈ E(t)
)

= e−Bijτon ,

where we define I(σ−) := ∪ε>0∩τ ′∈[σ−ε,σ) I(τ ′) for all σ ≥ 0. In other words, c ∈ I(σ−) iff

there exists an ε > 0 such that c ∈ I(τ ′) for all τ ′ ∈ [σ− ε,σ).

Proof. We first show that
{
b

t−κ,κ−τ
⇝̸ a

}
is conditionally independent of {(a,b) /∈ E(t)} given

(K,T,Ton) = (κ,τ,τon) and b ∈ I(t− τ):

Pr
(

(a,b) ∈ E(t)
∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t− τ), b

t−κ,κ−τ
⇝̸ a

)
(a)= Pr

(
(a,b) ∈ E(t− τ)

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t− τ), b
t−κ,κ−τ
⇝̸ a

)
(b)= ρij

n

= Pr((a,b) ∈ E(t− τ) | T = τ)
(c)= Pr((a,b) ∈ E(t) | T = τ), (5.48)

where (a) and (c) hold because 1(a,b) is not updated during the interval [t− τ, t), and (b) follows

from the modeling assumption that the probability of the edge (a,b) existing in the network

following an edge state update is ρij

n (independent of the past states {X(τ ′) : 0≤ τ ′ < t− τ}),

the fact that {b ∈ I(t− τ)} = {b ∈ I((t− τ)−)} almost surely, and from the observation that

t− τ is an update time for 1(a,b) given T = τ .

In view of (5.48), the definitions of K, T , and Ton imply that

Pr
(
b

0,t
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t−),(a,b) /∈ E(t)
)

= Pr
(
b

t−κ,κ−τ
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t−),(a,b) /∈ E(t)
)

= Pr
(
b

t−κ,κ−τ
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t−)
)
,
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which means that

Pr
(
b

0,t
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t−),(a,b) /∈ E(t)
)

= Pr
(
b

t−κ,κ−τ
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t− τ), b /∈ ∪τ ′∈(t−τ,t)R(τ ′)
)

= Pr
(
b

t−κ,κ−τ
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t− τ)
)
, (5.49)

where the last step holds because Q(x,x↓b) = γj for all x ∈ S satisfying xb = 1, which implies

that, given b ∈ I(t− τ) and any other conditioning event, node b recovers during (t− τ, t) at a

constant rate of γj independently of all past edge states and past disease states (and therefore

independently of past transmissions as well). Hence,
{
b

t−κ,κ−τ
⇝̸ a

}
and {b /∈ ∪τ ′∈(t−τ,t)R(τ ′)}

are conditionally independent given (K,T,Ton) = (κ,τ,τon) and b ∈ I(t− τ).

We now evaluate the right-hand side of (5.49) as follows. Let C denote the (random)

number of times 1(a,b) flips (changes) during [t−K,t−T ], and let the times of these changes

be T1 < · · ·< TC . We assume that C is even (as the case of C being odd is handled similarly)

and that 1(a,b)(τ ′) = 0 for τ ′ ∈ [t−K,T1] (the case 1(a,b)(τ ′) = 1 for τ ′ ∈ [t−K,T1] is handled

similarly). Then, for a given c ∈ N and a collection of times t1, . . . , tc, τon, we have {C = c,T1 =

t1, . . . ,Tc = tc} ⊂ {Ton = τon} iff
∑c/2

k=1(t2k− t2k−1) = τon. Suppose this condition holds. Then,

observe that

Pr
(
b

t−κ,κ−τ
⇝̸ a,b ∈ I(t− τ)

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon),C = c,(T1, . . . ,Tc) = (t1, . . . , tc)
)

= Pr
(
b

t−κ,κ−τ
⇝̸ a,b ∈ I(t− τ)∣∣∣∣∣(K,T,Ton) = (κ,τ,τon),1(a,b)(τ ′) = 1 iff τ ′ ∈ ∪c/2

k=1[t2k−1, t2k]
)
,
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which means that

Pr
(
b

t−κ,κ−τ
⇝̸ a,b ∈ I(t− τ)

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon),C = c,(T1, . . . ,Tc) = (t1, . . . , tc)
)

(a)=
c/2∏
k=1

Pr
(
b

t2k−1,t2k−t2k−1
⇝̸ a,b ∈ I(t2k)

∣∣∣∣∣1(a,b)(τ ′) = 1∀τ ′ ∈ [t2k−1, t2k], b ∈ I(t2k−1)
)

×
c/2+1∏
k=1

Pr
(
b

t2k−2,t2k−1−t2k−2
⇝̸ a,b ∈ I(t2k−1)∣∣∣∣∣1(a,b)(τ ′) = 0∀τ ′ ∈ [t2k−2, t2k−1], b ∈ I(t2k−1)

)

(b)=
c/2∏
k=1

e−(Bij+γj)(t2k−t2k−1)×
c/2+1∏
k=1

e−γj(t2k−1−t2k−2)

= e−Bij

∑c/2
k=1(t2k−t2k−1) · e−γj

∑c+1
k=1(tk−tk−1)

= e−Bijτone−γj(κ−τ),

(5.50)

where (b) follows from Lemma 36, and (a) follows from the following fact: since the definition

of our epidemic model implies that the rate of pathogen transmission from b to a at any time

instant t′ depends only on 1(a,b)(t′) and the disease state of b at time t′, transmission events

corresponding to disjoint time intervals are conditionally independent if we are given 1(a,b) and

the disease state of b as functions of time.

On the other hand, we have

Pr(b ∈ I(t− τ) | (K,T,Ton) = (κ,τ,τon),C = c,(T1, . . . ,Tc) = (t1, . . . , tc))

= Pr(b /∈ R(t− τ) | (K,T,Ton) = (κ,τ,τon),C = c,(T1, . . . ,Tc) = (t1, . . . , tc))

= e−γj((t−τ)−(t−κ))

= e−γj(κ−τ), (5.51)

where the second equality holds because our model assumes that the rate of recovery of an
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infected node is time-invariant and independent of all the edge states and the disease states of

other nodes (precisely, Q(x,x↓b) = γj for all x ∈ S such that b ∈ I(x)).

As a result of (5.50) and (5.51), we have

Pr
(
b

t−κ,κ−τ
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t− τ),(C,T1, . . . ,TC) = (c, t1, . . . , tc)
)

=
Pr
(
b

t−κ,κ−τ
⇝̸ a,b ∈ I(t− τ)

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon),(C,T1, . . . ,TC) = (c, t1, . . . , tc)
)

Pr
(
b ∈ I(t− τ)

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon),(C,T1, . . . ,TC) = (c, t1, . . . , tc)
)

= e−Bijτon .

Since (c, t1, . . . , tc) was an arbitrary tuple satisfying {(C,T1, . . . ,TC) = (c, t1, . . . , tc)} ⊂ {Ton =

τon}, it follows that

Pr
(
b

t−κ,κ−τ
⇝̸ a

∣∣∣∣∣(K,T,Ton) = (κ,τ,τon), b ∈ I(t− τ)
)

= e−Bijτon .

Invoking (5.49) now completes the proof.

Observe that in the above proof, given that K = κ and that (a,b) /∈ E(t), (C,T1, . . . ,TC)

uniquely determines {1(a,b)(τ) : t−K ≤ τ ≤ t}. Therefore, as an implication of the above proof,

we have

Pr
(
b

t−K,t
⇝̸ a |K = κ,{1(a,b)(τ) : t−K ≤ τ ≤ t}, b ∈ I(t−),(a,b) /∈ E(t)

)
= e−BijTon .

The dependence on the random variable Ton holds because Ton is a function of {1(a,b)(τ) :

t−K ≤ τ ≤ t}. By invoking Markovity, this result can be extended to

Pr
(
b

t−K,t
⇝̸ a |K = κ,{1(a,b)(τ) : 0≤ τ ≤ t}, b ∈ I(t−),(a,b) /∈ E(t)

)
= e−BijTon ,
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which is equivalent to the following lemma.

Lemma 38. Let Ton :=
∫ t−T
t−K 1(a,b)(σ)dσ denote the total duration of time for which the edge

(a,b) exists in the network during [t−K,t−T ]. Then, for all κ ∈ [0, t], we have

Pr
(
b

0,t
⇝̸ a

∣∣∣∣∣K = κ,{1(a,b)(τ) : 0≤ τ ≤ t}, b ∈ I(t−),(a,b) /∈ E(t)
)

= e−BijTon .

Lemma 39. Recall from Lemma 38 that Ton =
∫ t−T
t−K 1(a,b)(σ)dσ. Then for all κ,τ ∈ [0, t], we

have

Pr
(

(S(t),I(t)) = (S0,I0)
∣∣∣∣(K,T,Ton) = (κ,τ,τon), b

0,t
⇝̸ a,(a,b) /∈ E(t), b ∈ I(t−)

)

= Pr
(

(S(t),I(t)) = (S0,I0)
∣∣∣∣K = κ,b

0,t
⇝̸ a,(a,b) /∈ E(t), b ∈ I(t−)

)
.

Proof. We first examine the following conditional probability for an arbitrary (a,b)-agnostic

superstate Y:

Pr
(

(S(t),I(t)) = (S0,I0),X(K̃) ∈ Y,K = κ,b
0,t
⇝̸ a,b ∈ I(t−)

∣∣∣∣ {1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)
)
.

To begin, note that the proof of Lemma 35, Remark 15, and the fact that K is a function of K̃

together imply that

fK|{1(a,b)(τ):0≤τ≤t},(a,b)/∈E(t)(κ) = fK(κ)

and that

Pr(X(K̃) ∈ Y |K = κ,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)) = Pr(X(K̃) ∈ Y |K = κ).

(5.52)
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Next, for the event {b ∈ I(t−)}, we have

Pr
(
b ∈ I(t−) |K = κ,X(K̃) ∈ Y,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)
(a)= e−γj(t−κ)

(b)= Pr
(
b ∈ I(t−) |K = κ

)
(5.53)

where (a) and (b) follow from our modelling assumption that Q(x,x↓b) = γj for all x satisfying

xb = 1, which means that the recovery time of b depends only on the time of infection of b and is

conditionally independent of all other disease states and all the edge states. Similarly, we have

Pr
(
b

0,t
⇝̸ a |X(K̃) ∈ Y,K = κ,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t), b ∈ I(t−)

)
(a)= Pr

(
b

0,t
⇝̸ a |K = κ,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t), b ∈ I(t−)

)
(b)= e−BijTon (5.54)

where (a) follows from our modelling assumptions, which imply that the rate of infection

transmission along an edge depends only on the edge state of the transmitting edge and the

disease state of the transmitting node and is conditionally independent of other disease states and

edge states (which are captured by the (a,b)-agnostic superstate of the chain) and (b) follows

from Lemma 38. Note that Ton is a function of T and hence also of {1(a,b)(τ) : 0≤ τ ≤ t}.

It remains for us to analyze

Pr
(

(S(t),I(t)) = (S0,I0)
∣∣∣∣X(K̃) ∈ Y,K = κ,b

0,t
⇝̸ a,b ∈ I(t−),{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)
.

To do so, we first let LN denote the time of the first (a,b)-agnostic jump to occur after b gets

infected, i.e., N := inf{ℓ ∈ N : Lℓ ≥ K̃}, and we note the following: given the conditioning
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events and variables above (including the event that b does not infect a during [0, t]), the total

conditional rate at which a receives pathogens at any time τ ≤ LN is

m∑
q=1

∑
d∈Iq(X(K̃)\{b}

Biq1(a,d)(X(K̃)),

which is determined uniquely by Y, the (a,b)-agnostic superstate of the chain at time K̃. There-

fore, this rate is conditionally independent of 1(a,b)(τ) for any τ . Similarly, for all age groups

ℓ ∈ [m], given the conditioning events and variables above, the conditional rate at which a

node d ∈ Iℓ(X(K̃)) recovers, which equals γℓ, and the total conditional rate at which a node

c ∈ Aℓ \ {a} receives pathogens, which equals
∑m

q=1
∑

d∈Iq(X(K̃))Bℓq1(c,d)(X(K̃)), are both

conditionally independent of 1(a,b)(τ) given that X(K̃) ∈Y. Therefore, by using arguments sim-

ilar to those made in the proof of Lemma 35, we can show that (S(LN ),I(LN )) is conditionally

independent of {1(a,b)(τ) : 0 ≤ τ ≤ t} given the rest of the conditioning events and variables.

Moreover, by repeating the above for subsequent (a,b)-agnostic jumps, we can generalize this

conditional independence assertion to (S(t),I(t)), which means that

Pr
(

(S(t),I(t)) = (S0,I0)
∣∣∣X(K̃) ∈ Y,K = κ,b

0,t
⇝̸ a,b ∈ I(t−),{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)
= Pr

(
(S(t),I(t)) = (S0,I0) |X(K̃) ∈ Y,K = κ,b

0,t
⇝̸ a,b ∈ I(t−),(a,b) /∈ E(t)

)
. (5.55)
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Combining (5.52), (5.53), (5.54) and (5.55) now yields

Pr
(

(S(t),I(t)) = (S0,I0),X(K̃) ∈ Y, b
0,t
⇝̸ a,b ∈ I(t−)

∣∣∣∣K = κ,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)
)

= Pr
(

(S(t),I(t)) = (S0,I0)
∣∣∣∣X(K̃) ∈ Y,K = κ,b

0,t
⇝̸ a,b ∈ I(t−),(a,b) /∈ E(t)

)

× e−BijTon×Pr(b ∈ I(t−) |K = κ)×Pr(X(K̃) ∈ Y |K = κ)

Summing both the sides of the above equation over the space of all (a,b)-agnostic superstates Y

gives

Pr
(

(S(t),I(t)) = (S0,I0), b
0,t
⇝̸ a,b ∈ I(t−) |K = κ,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)

= e−BijTon×Pr(b ∈ I(t−) |K = κ)

×
∑
Y

Pr
(

(S(t),I(t)) = (S0,I0) |X(K̃) ∈ Y,K = κ,b
0,t
⇝̸ a,b ∈ I(t−),(a,b) /∈ E(t)

)

·Pr(X(K̃) ∈ Y |K = κ)
. (5.56)

Here, we recall from our earlier arguments that

e−BijTon×Pr(b ∈ I(t−) |K = κ)

= Pr
(
b

0,t
⇝̸ a |K = κ,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t), b ∈ I(t−)

)

×Pr
(
b ∈ I(t−) |K = κ,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)
= Pr

(
b

0,t
⇝̸ a,b ∈ I(t−) | {1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)
.
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In light of (5.56), this means that

Pr
(

(S(t),I(t)) = (S0,I0), b
0,t
⇝̸ a,b ∈ I(t−) |K = κ,{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)

= Pr
(
b

0,t
⇝̸ a,b ∈ I(t−) | {1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)

×
∑
Y

Pr
(

(S(t),I(t)) = (S0,I0) |X(K̃) ∈ Y,K = κ,b
0,t
⇝̸ a,b ∈ I(t−),(a,b) /∈ E(t)

)

·Pr(X(K̃) ∈ Y |K = κ)
.

Dividing both the sides of this equation by

Pr
(
b

0,t
⇝̸ a,b ∈ I(t−) | {1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)

gives

Pr
(

(S(t),I(t)) = (S0,I0) |K = κ,b
0,t
⇝̸ a,b ∈ I(t−),{1(a,b)(τ) : 0≤ τ ≤ t},(a,b) /∈ E(t)

)

=
∑
Y

Pr
(

(S(t),I(t)) = (S0,I0) |X(K̃) ∈ Y,K = κ,b
0,t
⇝̸ a,b ∈ I(t−),(a,b) /∈ E(t)

)

·Pr(X(K̃) ∈ Y |K = κ)


= Pr
(

(S(t),I(t)) = (S0,I0) |K = κ,b
0,t
⇝̸ a,b ∈ I(t−),(a,b) /∈ E(t)

)
,

where the last step holds because the summation is independent of {1(a,b)(τ) : 0≤ τ ≤ t} given

that (a,b) /∈ E(t). We have thus shown the following: given K = κ,b
0,t
⇝̸ a, and b ∈ I(t−), the

event {(S(t),I(t)) = (S0,I0)} is conditionally independent of {1(a,b)(τ) : 0≤ τ ≤ t}. Since T

and Ton are functions of {1(a,b)(τ) : 0≤ τ ≤ t}, the assertion of the lemma follows.
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Proof of Proposition 13

Before we prove Proposition 13, we recall that for any transition sequence F = {x(0) t1→

x(1) t2→ ·· · tr→ x(r) t→ x(r)} on a time interval [0, t], the index Λ(a,b)(F ) indexes the transition in

which (a.b) is updated for the last time during [0, t] given that F occurs. We now define another

similar index below:

Γ(a,b)(F ) =


min

{
ℓ ∈ [r] : x(ℓ) = x(ℓ−1)

↑b

}
if
{
ℓ ∈ [r] : x(ℓ) = x(ℓ−1)

↑b

}
̸= ∅

0 otherwise.

Observe that Γb(F ) indexes the transition in which b gets infected given that F occurs.

Proof. Consider any realization (S0,I0) of (S(t),I(t)), and let F be the set of all the tran-

sition sequences for [0, t] that result in the occurrence of {(S(t),I(t)) = (S0,I0)}, so that

{(S(t),I(t)) = (S0,I0)}= ∪F ∈FF .

Consider now any pair of nodes (a,b) ∈ Ai∩S0×Aj ∩I0 (so that we have a ∈ Si(t)

and b ∈ Ij(t) in the event that (S(t),I(t)) = (S0,I0)), and note that for any transition sequence

F ∈ F , we have F(a,b) ∈ F , because both F(a,b) and F involve the same node recoveries and

disease transmissions (all of which occur along edges other than (a,b)). Therefore, F?(a,b) ⊂F

for each F ∈ F , and it follows that {(S(t),I(t)) = (S0,I0)}= ∪F ∈FF?(a,b).

Hence, we can derive bounds on χij(t) (defined to be Pr((a,b) ∈ E(t) | S(t),I(t))) by

bounding Pr((a,b) ∈ E(t) | (S(t),I(t)) = (S0,I0)) = Pr((a,b) ∈ E(t) | ∪F ∈FF?(a,b)). To this

end, we pick F ∈ F and δ > 0, and apply Bayes’ rule to Pr((a,b) ∈ E(t) | F δ
?(a,b)) as follows.

Pr((a,b) ∈ E(t) | F δ
?(a,b)) =

 Pr(F δ
?(a,b))

Pr(F δ
?(a,b) | (a,b) ∈ E(t)) ·Pr((a,b) ∈ E(t))

−1

=
1+

Pr(F δ
?(a,b) | (a,b) /∈ E(t))

Pr(F δ
?(a,b) | (a,b) ∈ E(t))

· Pr((a,b) /∈ E(t))
Pr((a,b) ∈ E(t))

−1

.(5.57)
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At this point, note that Pr((a,b) ∈E(t)) = ρij

n , which is the probability that the edge (a,b) exists

in the network after the last of the updates of 1(a,b) to occur during [0, t]. Therefore,

Pr((a,b) ∈ E(t) | F δ
?(a,b)) =

1+
Pr(F δ

?(a,b) | (a,b) /∈ E(t))
Pr(F δ

?(a,b) | (a,b) ∈ E(t))
· 1−ρij/n

ρij/n

−1

. (5.58)

We now estimate
Pr(F δ

?(a,b)|(a,b)/∈E(t))
Pr(F δ

?(a,b)|(a,b)∈E(t)) . Note that if δ is small enough, either F δ ⊂ {(a,b) ∈E(t)}

or F δ ⊂ {(a,b) /∈ E(t)}. Assume w.l.o.g. that F δ ⊂ {(a,b) /∈ E(t)} (equivalently, F δ
(a,b) ⊂

{(a,b) ∈ E(t)}), and observe that

Pr(F δ
?(a,b) | (a,b) /∈ E(t))

Pr(F δ
?(a,b) | (a,b) ∈ E(t))

=
Pr(F δ

?(a,b)∩{(a,b) /∈ E(t)})
Pr(F δ

?(a,b)∩{(a,b) ∈ E(t)})
· Pr(a,b) ∈ E(t)
Pr(a,b) /∈ E(t)

= Pr(F δ)
Pr(F δ

(a,b))

(
ρij/n

1−ρij/n

)
. (5.59)

Thus, the next step is to evaluate Pr(F δ)
Pr(F δ

(a,b)
) . To do so, suppose F = {x(0) t1→ x(1) t2→

·· · tr→ x(r) tr+1→ x(r)} with tr+1 := t, Λ(a,b)(F ) = ζ ∈ {0,1, . . . , r}, Γb(F ) = ξ ∈ {0,1, . . . , r},

tΛ(a,b)(F ) = tζ = t− τ for some τ ∈ [0, t], and tΓb(F ) = tξ = t−κ for some κ ∈ [0, τ ]. Then the

assumption F δ ⊂ {(a,b) /∈ E(t)} implies that x(ζ) = x(ζ−1)
↓(a,b) and hence also that x(ζ)

(a,b) = x(ζ−1)
↑(a,b) .

As a result,

F(a,b) =
{

x(0) t1→ ·· ·
tζ−1→ x(ζ−1) t−τ→ x(ζ−1)

↑(a,b)
tζ+1→ x(ζ+1)

(a,b)
tζ+2→ ·· · tr→ x(r)

(a,b)
t→ x(r)

(a,b)

}
.

It now follows from Lemma 33 that

Pr(F δ)
Pr(F δ

(a,b))
=
e−qr(t−tr)∏r

ℓ=ζ qℓ−1,ℓ(e−qℓ−1(tℓ−tℓ−1)δ+o(δ))
e−q̄r(t−tr)∏r

ℓ=ζ q̄ℓ−1,ℓ(e−q̄ℓ−1(tℓ−tℓ−1)δ+o(δ))
, (5.60)

where qℓ−1,ℓ := Q(x(ℓ−1),x(ℓ)) and q̄ℓ−1,ℓ := Q(x(ℓ−1)
(a,b) ,x

(ℓ)
(a,b)) for all ℓ ∈ {ζ+ 1, . . . , r}, qℓ :=

−Q(x(ℓ),x(ℓ)) and q̄ℓ :=−Q(x(ℓ)
(a,b),x

(ℓ)
(a,b)) for all ℓ ∈ {ζ, . . . , r}, qζ−1,ζ := Q(x(ζ−1),x(ζ−1)

↓(a,b)) =
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λ
(
1− ρij

n

)
, q̄ζ−1,ζ := Q(x(ζ−1),x(ζ−1)

↑(a,b)) = λ
ρij

n , and q̄ζ−1 = qζ−1 :=−Q(x(ζ−1),x(ζ−1)).

The above definitions imply that qζ−1,ζ

q̄ζ−1,ζ
= 1−ρij/n

ρij/n . To evaluate qℓ−1,ℓ

q̄ℓ−1,ℓ
for ℓ∈{ζ+1, . . . , r},

observe that by the definition of Λ(a,b)(F ), we have x(ℓ) /∈ {x(ℓ−1)
↑(a,b),x

(ℓ−1)
↓(a,b)} for ℓ > ζ = Λ(a,b)(F ).

Moreover, the facts F ⊂ {S(t) = S0} and a ∈ S0 together imply that x(ℓ) ̸= x(ℓ−1)
↑a for all

ℓ ∈ [r]. Hence, x(ℓ) /∈ {x(ℓ−1)
↑(a,b),x

(ℓ−1)
↓(a,b),x

(ℓ−1)
↑a } for all ℓ > ζ. It now follows from the definition

of Q (Section 5.2) that Q(x(ℓ−1),x(ℓ)) = Q(x(ℓ−1)
(a,b) ,x

(ℓ)
(a,b)) for all ℓ ∈ {ζ + 1, . . . , r}. Thus,∏r

ℓ=ζ qℓ−1,ℓ∏r
ℓ=ζ q̄ℓ−1,ℓ

= 1−ρij/n
ρij/n .

To relate q̄ℓ to qℓ, note that F ⊂ {(a,b) /∈ E(t)} implies that x(ℓ)
⟨a,b⟩ = 0 and hence also

that
(

x(ℓ)
(a,b)

)
⟨a,b⟩

= 1 for ℓ≥ ζ . Since x(ℓ)
u =

(
x(ℓ)

(a,b)

)
u

for all u ̸= ⟨a,b⟩, we have

Q
(

x(ℓ)
(a,b),

(
x(ℓ)

(a,b)

)
↑a

)
=

m∑
k=1

BikE
(a)
k

(
x(ℓ)

(a,b)

)

=
m∑

k=1

∑
c∈Ik

(
x(ℓ)

(a,b)

)Bik1(a,c)

(
x(ℓ)

(a,b)

)

=
m∑

k=1

∑
c∈Ik(x(ℓ))

Bik1(a,c)
(
x(ℓ)

)
+Bij1(a,b)

(
x(ℓ)

(a,b)

)

= Q
(

x(ℓ),x(ℓ)
↑a

)
+Bij

for all ℓ ∈ {ζ, . . . , r} such that b ∈ Ij(x(ℓ)), and

Q
(

x(ℓ)
(a,b),

(
x(ℓ)

(a,b)

)
↑a

)
= Q

(
x(ℓ),x(ℓ)

↑a

)

for all ℓ ∈ {ζ, . . . , r} such that b /∈ Ij(x(ℓ)). As a result,

Q
(

x(ℓ)
(a,b),

(
x(ℓ)

(a,b)

)
↑a

)
=


Q
(

x(ℓ),x(ℓ)
↑a

)
if ζ ≤ ℓ < ξ

Q
(

x(ℓ),x(ℓ)
↑a

)
+Bij if max{ζ,ξ} ≤ ℓ≤ r.

(5.61)

Moreover, using the definition of Q one can easily verify that regardless of whether the network
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is in state x(ℓ) or in state x(ℓ)
(a,b), the rates of infection of nodes in S(x(ℓ)) \ {a}, the recovery

rates of nodes in I(x(ℓ)), and the edge update rate (which is λ) are the same. Given that

Q(x,x) =−∑y∈S\{x} Q(x,y) for all x ∈ S, it now follows from (5.61) that

q̄ℓ− qℓ =


0 if ζ ≤ ℓ < ξ

Bij if max{ζ,ξ} ≤ ℓ≤ r.
(5.62)

Combining the above observations with (5.60) yields

Pr(F δ)
Pr(F δ

(a,b))
=
(

1−ρij/n

ρij/n

)
e(q̄r−qr)(t−tr)

r−1∏
ℓ=ζ−1

(
e(q̄ℓ−qℓ)(tℓ+1−tℓ)δ+o(δ)

)
(a)=
(

1−ρij/n

ρij/n

)
r∏

ℓ=ζ−1

(
e(q̄ℓ−qℓ)(tℓ+1−tℓ)δ+o(δ)

)

=
(

1−ρij/n

ρij/n

)max{ζ,ξ}−1∏
ℓ=ζ−1

(1+o(δ))
r∏

ℓ=max{ζ,ξ}

(
eBij(tℓ+1−tℓ)δ+o(δ)

)

=
(

1−ρij/n

ρij/n

)
eBij(t−tmax{ζ,ξ}) +o(δ),

which means that

Pr(F δ)
Pr(F δ

(a,b))
=
(

1−ρij/n

ρij/n

)
eBij min{τ,κ} +o(δ). (5.63)

We now use (5.57) and (5.59) along with (5.63) to show that

Pr((a,b) ∈ E(t) | F δ
?(a,b)) =

(
1+

(
1−ρij/n

ρij/n

)
eBij min{τ,κ} +o(δ)

)−1

= ρij

n
· 1

ρij

n ·1+
(
1− ρij

n

)
eBij min{τ,κ}

+o(δ).
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In the limit as δ→ 0, this yields

Pr((a,b) ∈ E(t) | F?(a,b)) = ρij

n
· 1

ρij

n ·1+
(
1− ρij

n

)
eBij min{τ,κ}

(5.64)

Note that these bounds hold for all F ∈ F satisfying t− tΛ(a,b)(F ) = τ and t− tΓb(F ) = κ.

We now recall that T is the difference between t and the time at which 1(a,b) is updated for the

last time during [0, t], so that we have T = t− tΛ(a,b)(F ) whenever F?(a,b) occurs. Likewise, K =

t− tΓb(F ) on F?(a,b). Therefore, (5.64) holds for all F ∈ F satisfying F ⊂ {T = τ}∩{K = κ}.

As a result, we have

Pr((a,b) ∈ E(t) | ∪F ∈FF?(a,b),T = τ,K = κ) = ρij

n
· 1

ρij

n ·1+
(
1− ρij

n

)
eBij min{τ,κ}

.

Since ∪F ∈FF?(a,b) = {(S(t),I(t)) = (S0,I0)} as argued earlier, it follows that

Pr((a,b) ∈ E(t) | (S(t),I(t)) = (S0,I0),T = τ,K = κ)

= ρij

n
· 1

ρij

n ·1+
(
1− ρij

n

)
eBij min{τ,κ}

. (5.65)

Observe that 0≤min{κ,τ} ≤ τ , which means that

ρij

n
≥ Pr((a,b) ∈ E(t) | (S(t),I(t)) = (S0,I0),T = τ,K = κ)

≥ ρij

n
· 1

ρij

n ·1+
(
1− ρij

n

)
eBijτ

≥ ρij

n
e−Bijτ . (5.66)

Furthermore, since the above bounds do not depend on κ, we can remove the conditioning on K

to obtain

ρij

n
≥ Pr((a,b) ∈ E(t) | (S(t),I(t)) = (S0,I0),T = τ)≥ ρij

n
e−Bijτ . (5.67)
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Consequently,

ρij

n
≥ Pr((a,b) ∈ E(t) | (S(t),I(t)) = (S0,I0))

≥ ρij

n

∫ t

0
e−BijτfT |(S(t),I(t))=(S0,I0)(τ)dτ

≥ ρij

n

(
1− Bij

λ
(1− e−λt)

)
,

where the second inequality follows from Lemmas 41 and 42. Since (S0,I0) is an arbitrary

realization of (S(t),I(t)), the assertion of the proposition follows.

Remark 16. The proof of Proposition 13 enables us to make a stronger statement about the

conditional probability of b being in contact with a at time t. Indeed, consider (5.65) and observe

that it holds for all realizations (S0,I0) of (S(t),I(t)) that satisfy a ∈ S0∩Ai and b ∈ I0∩Aj .

It follows that

Pr((a,b) ∈ E(t) | S(t),I(t),T = τ,K = κ) = ρij

n
· 1

ρij

n ·1+
(
1− ρij

n

)
eBij min{τ,κ}

holds for all node pairs (a,b) ∈ Si(t)×Ij(t). Equivalently, the following holds for all (a,b) ∈

Si(t)×Ij(t):

Pr((a,b) ∈ E(t) | S(t),I(t),T,K) = ρij

n
· 1

ρij

n ·1+
(
1− ρij

n

)
eBij min{T,K}

.

Lemma 40. Let τ1, τ2 ∈ [0, t]. Then

1≤
Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)
)

Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)
) ≤ eBij(τ2−τ1).

Proof. Consider T (τ2)
on :=

(∫ t−τ2
t−κ 1(a,b)(τ ′)dτ ′

)
+

, which denotes the duration of time for which b
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is in contact with a during the interval [t−κ,t− τ2). Then, for any σ ∈ [0,(κ− τ2)+], we have

Pr
(
b

0,t
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

= Pr
(
b

t−κ,κ−τ1
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

= Pr
(
b

t−κ,κ−τ2
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

×Pr
(
b

t−τ2,τ2−τ1
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)
(a)
≥ Pr

(
b

t−κ,κ−τ2
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)
e−Bij(τ2−τ1)

(b)
≥ e−Bijσ · e−Bij(τ2−τ1)

(c)= Pr
(
b

t−κ,κ−τ2
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)

)
e−Bij(τ2−τ1)

= Pr
(
b

0,t
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)

)
e−Bij(τ2−τ1), (5.68)

where (a) follows from the fact that
∫ t−τ1
t−τ2 1(a,b)(τ ′)dτ ′ ≤ τ2− τ1 and from the observation that

Pr
(
b

t−τ2,τ2−τ1
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t),

∫ t−τ1

t−τ2
1(a,b)(τ ′)dτ ′

)

= e
−Bij

(∫ t−τ1
t−τ2

1(a,b)(τ ′)dτ ′
)
,

the proof of which parallels the proof of Lemma 37, and (b) and (c) follow from the fact that

Pr
(
b

t−κ,κ−τ2
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ ′,(a,b) /∈ E(t)

)
= e−Bijσ

holds for all τ ′ ∈ [0, t], the proof of which also parallels the proof of Lemma 37.

We now eliminate T (τ2)
on from (5.68). To do so, we first note the following: given

that t− T ≥ t− τ2, the random variable T (τ2)
on is by definition conditionally independent of

t− T (the time of the last edge update of (a,b) during [t− τ2, t]) because the edge update
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process for (a,b) is a Poisson process and hence, for any collection of disjoint time intervals,

the times at which 1(a,b) is updated during the intervals are independent of each other. Since

{T = τ2},{T = τ1} ⊂ {t−T ≥ t− τ2} and since {t−T ≥ t− τ2}= {T ≤ τ2}, it follows that

Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)
)

=
∫ (κ−τ2)+

0
Pr
(
b

0,t
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

·f
T

(τ2)
on |b∈I(t−),K=κ,T =τ1,(a,b)/∈E(t)

(σ)dσ

=
∫ (κ−τ2)+

0
Pr
(
b

0,t
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

·f
T

(τ2)
on |b∈I(t−),K=κ,T ≤τ2,(a,b)/∈E(t)

(σ)dσ, (5.69)

and likewise,

Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)
)

=
∫ (κ−τ2)+

0
Pr
(
b

0,t
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)

)

·f
T

(τ2)
on |b∈I(t−),K=κ,T ≤τ2,(a,b)/∈E(t)

(σ)dσ.

Therefore, taking conditional expectations on both sides of (5.68) w.r.t. the probability density

function f
T

(τ2)
on |b∈I(t−),K=κ,T ≤τ2,(a,b)/∈E(t)

yields

Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)
)

≥ Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)
)
e−Bij(τ2−τ1),

which proves the upper bound. For the lower bound, we again proceed as in (5.68), but reverse
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the inequality signs:

Pr
(
b

0,t
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

= Pr
(
b

t−κ,κ−τ2
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

×Pr
(
b

t−τ2,τ2−τ1
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

≤ Pr
(
b

t−κ,κ−τ2
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)

)

= e−Bijσ

= Pr
(
b

t−κ,κ−τ2
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)

)

= Pr
(
b

0,t
⇝̸ a

∣∣∣∣T (τ2)
on = σ,b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)

)

In light of (5.69) and (41), the above inequality implies the required lower bound.

Lemma 41. Let T denote the random time defined earlier. Then

∫ t

0
e−BijτfT |(S(t),I(t))=(S0,I0),(a,b)/∈E(t)(τ)dτ ≥ 1− Bij

λ
(1− e−λt).

Proof. We first use Bayes’ rule to note that for any κ ∈ [0, t],

fT |K=κ,(S(t),I(t))=(S0,I0),(a,b)/∈E(t)(τ)

= Pr((S(t),I(t)) = (S0,I0) | T = τ,K = κ,(a,b) /∈ E(t))

·fK|T =τ,(a,b)/∈E(t)(κ) ·fT |(a,b)/∈E(t)(τ)

·
(∫ t

0
Pr((S(t),I(t)) = (S0,I0) | T = τ ′,K = κ,(a,b) /∈ E(t))

·fK|T =τ ′,(a,b)/∈E(t)(κ) ·fT |(a,b)/∈E(t)(τ ′)dτ ′
)−1

.

(5.70)
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We consider each multiplicand one by one. First, we use Lemmas 32 and 35 to note that

fK|T =τ,(a,b)/∈E(t)(κ) · fT |(a,b)/∈E(t)(τ) = fK(κ)fT (τ). To deal effectively with the other multi-

plicands, we let Ton :=
(∫ t−T

t−K 1(a,b)(τ ′)dτ ′
)

+
denote the total duration of time for which b is in

contact with a during the time interval [t−K,t−T ], and we observe that

Pr((S(t),I(t)) = (S0,I0) | T = τ,K = κ,(a,b) /∈ E(t))

=
∫ (κ−τ)+

0

(
Pr((S(t),I(t)) = (S0,I0) | T = τ,K = κ,Ton = τon,(a,b) /∈ E(t))

·fTon|K=κ,T =τ,(a,b)/∈E(t)(τon)
)
dτon

=
∫ (κ−τ)+

0

(
Pr((S(t),I(t)) = (S0,I0) | T = τ,K = κ,Ton = τon,(a,b) /∈ E(t), b

0,t
⇝̸ a,

b ∈ I(t−))

·Pr(b
0,t
⇝̸ a | b ∈ I(t−),T = τ,K = κ,Ton = τon,(a,b) /∈ E(t))

·Pr(b ∈ I(t−) | T = τ,K = κ,Ton = τon,(a,b) /∈ E(t))

·fTon|K=κ,T =τ,(a,b)/∈E(t)(τon)
)
dτon

(a)=
∫ (κ−τ)+

0

(
Pr((S(t),I(t)) = (S0,I0) |K = κ,(a,b) /∈ E(t), b

0,t
⇝̸ a,b ∈ I(t−))

· e−Bijτon · e−γjκ ·fTon|K=κ,T =τ,(a,b)/∈E(t)(τon)
)
dτon,

where (a) follows from Lemmas 37 and 39 and from the modelling assumption that b recovers at

rate γj independently of any edge state. On substituting the above expression into (5.70), we

obtain

fT |K=κ,(S(t),I(t))=(S0,I0),(a,b)/∈E(t)(τ) =

(∫ (κ−τ)+
0 e−Bijτonψκ,τ (τon)dτon

)
fT (τ)∫ t

0

(∫ (κ−τ ′)+
0 e−Bijτonψκ,τ ′(τon)dτon

)
fT (τ ′)dτ ′

,

(5.71)
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where ψκ,τ (·) := fTon|K=κ,T =τ,(a,b)/∈E(t)(·). Now, Lemma 37 implies that

∫ (κ−τ)+

0
e−Bijτonψκ,τ (τon)dτon

=
∫ (κ−τ)+

0

Pr
(
b

0,t
⇝̸ a

∣∣∣∣Ton = τon, b ∈ I(t−),K = κ,T = τ,(a,b) /∈ E(t)
)

·fTon|K=κ,T =τ,(a,b)/∈E(t)(τon)
dτon

(a)=
∫ (κ−τ)+

0
Pr
(
b

0,t
⇝̸ a

∣∣∣∣Ton = τon, b ∈ I(t−),K = κ,T = τ,(a,b) /∈ E(t)
)

·fTon|b∈I(t−),K=κ,T =τ,(a,b)/∈E(t)(τon)dτon

= Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ,(a,b) /∈ E(t)
)
,

where (a) holds because the recovery time of b is conditionally independent of Ton given K = κ

(recall that b recovers at rate γj independently of any edge state (and hence independently of Ton),

and {b ∈ I(t−)} is precisely the event that the recovery time of b is at least K). Hence, (5.71)

implies that for any τ1, τ2 ∈ [0, t] satisfying τ1 ≤ τ2, we have

g(τ2)
g(τ1) =

Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ2,(a,b) /∈ E(t)
)

Pr
(
b

0,t
⇝̸ a

∣∣∣∣b ∈ I(t−),K = κ,T = τ1,(a,b) /∈ E(t)
) · fT (τ2)

fT (τ1) , (5.72)

where g(·) := fT |K=κ(S(t),I(t))=(S0,I0),(a,b)/∈E(t)(·).

As a consequence of (5.72) and Lemma 40, we have

g(τ2)
g(τ1) ≤ e

Bij(τ2−τ1)fT (τ2)
fT (τ1) .

Since fT (τ) = λe−λτ +e−λtδ(τ − t) for τ ∈ [0, t] (see Lemma 34), we have the following for all
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0≤ τ1 ≤ τ2 < t:

g(τ2)≤ e−(λ−Bij)(τ2−τ1)g(τ1), (5.73)

and for all 0≤ τ < t, we have

g̃(t)≤ e−(λ−Bij)(t−τ)

λ
g(τ), (5.74)

where g̃(t) scales δ(0) so that g(t) = g̃(t)δ(0). Since δ is the Dirac-delta function, (5.74) simply

means that

Pr(T = t |K = κ,(S(t),I(t)) = (S0,I0),(a,b) /∈ E(t))≤ e−(λ−Bij)(t−τ)

λ
g(τ).

Our next goal is to use (5.73) and (5.74) to show that

∫ t

0
e−Bijτg(τ)dτ ≥

∫ t

0
e−Bijτφ(τ)dτ, (5.75)

where φ is the probability density function defined by

φ(τ) := (λ−Bij)e−(λ−Bij)τ + e−(λ−Bij)tδ(τ − t)

for all τ ∈ [0, t] and φ(τ) = 0 for τ > t. To this end, we compare g with φ under the following

two cases.

Case 1: There exists a time τ0 ∈ [0, t) such that g(τ0)<φ(τ0). In this case, (5.73) implies
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that for all τ ∈ [τ0, t),

g(τ)≤ e−(λ−Bij)(τ−τ0)g(τ0)

< e−(λ−Bij)(τ−τ0)(λ−Bij)e−(λ−Bij)(τ0)

= φ(τ),

which means that the set {τ ∈ [0, t) : g(τ)< φ(τ)} is either [τ∗, t) or (τ∗, t), where τ∗ := inf{τ :

g(τ) < φ(τ)}. Also, by the definition of τ∗, we have g(τ) ≥ φ(τ) for all τ ∈ [0, τ∗). Next, to

compare g and φ at τ = t, we use (5.74) to note that

g(t)≤ e−(λ−Bij)(t−τ0)

λ
g(τ0)δ(0)

≤ e−(λ−Bij)(t−τ0)

λ
(λ−Bij)e−(λ−Bij)τ0δ(0)

=
(

1− Bij

λ

)
e−(λ−Bij)tδ(0)

≤ φ(t). (5.76)

Thus, g(τ)−φ(τ) ≥ 0 for all τ ∈ [0, τ∗) and g(τ)−φ(τ) ≤ 0 for all τ ∈ (τ∗, t]. Now, since g

and φ are both PDFs, we must have
∫∞
0 (g(τ)−φ(τ))dτ = 0 or equivalently,

∫ τ∗

0
(g(τ)−φ(τ))dτ =

∫ ∞

τ∗
(φ(τ)−g(τ))dτ.

Since both the integrands above are non-negative, we have

∫ τ∗

0
e−Bijτ (g(τ)−φ(τ))dτ

≥ e−Bijτ∗
∫ τ∗

0
(g(τ)−φ(τ))dτ

= e−Bijτ∗
∫ ∞

τ∗
(φ(τ)−g(τ))dτ

≥
∫ ∞

τ∗
e−Bijτ (φ(τ)−g(τ))dτ.
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Adding
∫∞
τ∗ e−Bijτg(τ)dτ +

∫ τ∗

0 e−Bijτφ(τ)dτ to both sides now yields (5.75).

Case 2: g(τ)≥ φ(τ) for all τ ∈ [0, t). In this case, we can simply set τ∗ = t and repeat

the arguments following (5.76) in Case 1 to show that (5.75) holds.

Next, we use the definition of φ to evaluate
∫ t
0 e

−Bijτφ(τ)dτ , and we then restate (5.75)

as follows:

∫ t

0
e−BijτfT |K=κ,(S(t),I(t))=(S0,I0),(a,b)/∈E(t)(τ)dτ ≥ 1− Bij

λ
(1− e−λt). (5.77)

Since this holds for all κ ∈ [0, t), the assertion of the lemma follows.

Using arguments very similar to the proof above, we can prove the following result.

Lemma 42. Let T denote the random time defined earlier. Then

∫ t

0
e−BijτfT |(S(t),I(t))=(S0,I0),(a,b)∈E(t)(τ)dτ ≥ 1− Bij

λ
(1− e−λt).

Remark 17. In the proof of Lemma 41, if, instead of using (5.72) along with the upper bound

in Lemma 40, we had used (5.72) along with the lower bound in Lemma 40, we would have

obtained
g(τ2)
g(τ1) ≥

fT (τ2)
fT (τ1) = e−λ(τ2−τ1).

In addition, if we had subsequently replaced t with a generic τ ∈ [0, t) and the weighting

function [0,∞) ∋ τ → e−Bijτ ∈ (0,∞) by the constant function 1, and if we had defined φ by

φ(τ) := λe−λτ +e−λtδ(τ − t), then using the same arguments but with reversed inequality signs,

we would have been able to prove that

∫ τ

0
1 ·g(τ ′)dτ ′ ≤

∫ τ

0
1 ·φ(τ ′)dτ ′.

Since the integral on the left-hand-side is Pr(T ≤ τ |K = κ,(S(t),I(t)) = (S0,I0),(a,b) /∈E(t))
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and since the right-hand-side evaluates to 1− e−λτ , we conclude that

Pr(T ≤ τ |K = κ,(S(t),I(t)) = (S0,I0),(a,b) /∈ E(t))≤ 1− e−λτ

for all τ ∈ [0, t) and all κ ∈ [0, t].

Some Auxiliary Lemmas

In addition to the above results, the proof of Theorem 7 relies on the following lemmas,

which we reproduce from [166].

Lemma 43. For random variables Y and Z, we have Var[Y +Z]≤ 2(Var[Y ]+ Var[Z]).

Lemma 44. For a random variable Y ∈ [0,1], we have Var[Y 2]≤ 4Var[Y ].

Lemma 45. For random variables Y and Z in [0,1],

|E[Y Z]−E[Y ]E[Z]| ≤ (Var[Y ]+Var[Z])/2

∣∣∣E[Y 2Z
]
−E[Y ]2E[Z]

∣∣∣≤ 2(Var[Y ]+Var[Z]).

The following result is a straightforward consequence of the above lemmas.

Corollary 11. For non-negative random variables Y and Z satisfying 0≤ Y +Z ≤ 1, we have

Var[Y Z]≤ 8(Var[Y ]+ Var[Z]).

Proof. Note that 4Var[Y Z] = Var[2Y Z] = Var[(Y +Z)2 +(−1)(Y 2 +Z2)]. Hence,

4Var[Y Z]
(a)
≤ 2(Var[(Y +Z)2]+ (−1)2Var[Y 2 +Z2])
(b)
≤ 2(4Var[Y +Z]+2(Var[Y 2]+ Var[Z2]))
(c)
≤ 2(4Var[Y +Z]+2(4Var[Y ]+4Var[Z])),

256



where (a) follows from Lemma 43, (b) from both Lemma 43 and Lemma 44, and (c) from

Lemma 44 alone. Thus,

Var[Y Z]≤ 2(Var[Y +Z]+2(Var[Y ]+ Var[Z]))≤ 8(Var[Y ]+ Var[Z]),

where the last inequality follows from Lemma 43.

Proof of Theorem 7

Proof. The proof is based on Proposition 13 and it follows the approach used in [166]. We first

modify Equations (i) - (iv) (Proposition 12) by expressing the expectations of cross-terms such

as E[siβj ] in terms of expectations of individual terms such as E[s2
i ] and E[βj ]. To begin, we

apply Lemma 45 to E[si(t)βj(t)] and obtain

|E[si(t)βj(t)]−E[si(t)]E[βj(t)]| ≤
1
2(Var[si(t)]+ Var[βj(t)]).

Therefore, there exists a function hi,j,1,n : [0,∞)→ [−1,1] such that

E[si(t)βj(t)] = E[si(t)]E[βj(t)]+
hi,j,1,n(t)

2 (Var[si(t)]+ Var[βj(t)]).

Similarly, we can use Lemma 45 to show that there exists a function hi,j,2,n : [0,∞)→

[−1,1] such that

E[s2
i (t)βj(t)] = E[si(t)]2E[βj(t)]+2hi,j,2,n(t)(Var[si(t)]+ Var[βj(t)]).

Next, we use Corollary 11 to express E[si(t)βj(t)βi(t)] as

E[si(t)βj(t)βi(t)] = E[si(t)βj(t)]E[βi(t)]+
hi,j,5,n(t)

2 (Var[si(t)βj(t)]+ Var[βi(t)]),
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which means that

E[si(t)βj(t)βi(t)] =
(
E[si(t)]E[βj(t)]+

hi,j,1,n(t)
2 (Var[si(t)]+ Var[βj(t)])

)
E[βi(t)]

+ hi,j,5,n(t)
2 (hi,j,6,n(t)(8Var[si(t)]+8Var[βj(t)])+ Var[βi(t)]),

where hi,j,5,n(t) ∈ [−1,1] and hi,j,6,n(t) ∈ [0,1].

We thus obtain the following relations:

(I) E[siβj ] = E[si]E[βj ]+ hi,j,1,n

2 (Var[si]+ Var[βj ]),

(II) E[s2
iβj ] = E[si]2E[βj ]+2hi,j,2,n(Var[si]+ Var[βj ]),

(III) E[siβjβi] =
(
E[si]E[βj ]+ hi,j,1,n

2 (Var[si]+ Var[βj ])
)

+hi,j,5,n

2 (hi,j,6,n(8Var[si]+8Var[βj ])+ Var[βi]).

To handle terms of the form BijE[n ·χij(t,S,I) ·U ] where U is some random variable,

we use Proposition 13 to obtain

Aij

(
1− Bij

λ(n) (1− e−λ(n)t)
)
E[U ]≤BijE[nχij(t,S,I)U ]≤ AijE[U ].

As a result, if Pr(|U | ≤ 1) = 1, then there exists a function hi,j,U,n : [0,∞)→ [0,BijAij ] such

that

BijE[nχij(t,S,I)U ] = AijE[U ]− hi,j,U,n(t)
λ(n) . (5.78)

By making the above substitutions in (i) - (iv) and by using the identity Var[Y ]′ = E[Y 2]′−

2E[Y ]E[Y ]′, we obtain the following differential equations:

(I) E[si]′ =∑m
j=1

hi,j,7,n

λ(n) −
∑m

j=1Aij

(
E[si]E[βj ]+ hi,j,1,n

2 (Var[si]+ Var[βj ])
)
,

(II) E[βi]′ =∑m
j=1Aij

(
E[si]E[βj ]+ hi,j,1,n

2 (Var[si]+ Var[βj ])
)
−∑m

j=1
hi,j,7,n

λ(n) −γiE[βi],
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(III)

Var[si]′ =−2
m∑

j=1
Aij

(
E[si]2E[βj ]+2hi,j,2,n(Var[si]+ Var[βj ])

)

+
m∑

j=1
Aij

(
E[si]E[βj ]+

hi,j,1,n

2 (Var[si]+ Var[βj ])
)(

2E[si]+
1
n

)

+
m∑

j=1

(
2hi,j,8,n

λ(n) − hi,j,7,n

nλ(n) −2E[si]
hi,j,7,n

λ(n)

)
,

(IV)

Var[βi]′ = 2
m∑

j=1
Aij

(
E[si]E[βj ]E[βi]+

hi,j,1,n

2 (Var[si]+ Var[βj ])E[βi]

+ hi,j,5,n

2 (hi,j,6,n(8Var[si]+8Var[βj ])+ Var[βi])
)

+
m∑

j=1
Aij

( 1
n
−2E[βi]

)(
E[si]E[βj ]

hi,j,1,n

2 (Var[si]+ Var[βj ])
)
−2γiVar[βi]

+γi
E[βi]
n

−
m∑

j=1

(
2hi,j,9,n

λ(n) + hi,j,7,n

nλ(n)

)
,

where hi,j,7,n, hi,j,8,n, and hi,j,9,n are functions from [0,∞) to [0,BijAij ] and are defined on the

basis of (5.78).

The above equations constitute a proper system of differential equations with the same

variables {E[si]}mi=1, {Var[si]}mi=1, {E[βi]}mi=1, and {Var[βi]}mi=1 appearing on both the sides.

To express these equations compactly, we define z(n) ∈ [0,1]4m as the vector whose entries

are given by z
(n)
i,1 := z

(n)
4(i−1)+1 := E[s(n)

i ], z(n)
i,2 := z

(n)
4(i−1)+2 := E[β(n)

i ], z(n)
i,3 := z

(n)
4(i−1)+3 :=

Var[s(n)
i ], and z(n)

i,4 := z
(n)
4i := Var[β(n)

i ]. Then z(n)(t) is a solution to the initial value problem

(z(n))′ = gn(t,z(n);1/n,1/λ(n)) and z(0) = z
(n)
0 , where

(I) g(1)
i,n (t,z;ε1, ε2) :=−∑m

j=1Aij

(
zi,1zj,2 + hi,j,1,n

2 (zi,3 + zj,4)
)

+ ε2
∑m

j=1hi,j,7,n,

(II) g(2)
i,n (t,z;ε1, ε2) :=∑m

j=1Aij

(
zi,1zj,2 + hi,j,1,n

2 (zi,3 + zj,4)
)
−γizi,2− ε2

∑m
j=1hi,j,7,n,
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(III)

g
(3)
i,n (t,z;ε1, ε2) :=−2

m∑
j=1

Aij((zi,1)2zj,2 +2hi,j,2,n(zi,3 + zj,4))

+
m∑

j=1
Aij

(
zi,1zj,2 + hi,j,1,n

2 (zi,3 + zj,4)
)

(2zi,1 + ε1)

+
m∑

j=1
(2hi,j,8,nε2−hi,j,7,nε1ε2−2E[s1]hi,j,7,nε2) ,

(IV)

g
(4)
i,n (t,z;ε1, ε2) = 2

m∑
j=1

Aij

zi,1zj,2zi,2 + hi,j,1,n

2 (zi,3 + zj,4)zi,2

+ hi,j,5,n

2

hi,j,6,n(8zi,3 +8zj,4)+ zi,4


+

m∑
j=1

Aij (ε1−2zi,2)
(
zi,1zj,2 + hi,j,1,n

2 (zi,3 + zj,4)
)

−2γizi,4 + ε1γizi,2−
m∑

j=1
(2hi,j,9,nε2 +hi,j,7,nε1ε2) ,

(V) z(n)
0 = (s(n)

1 (0),β(n)
1 (0),0,0, s(n)

2 (0),β(n)
2 (0),0,0, . . . , s(n)

m (0),β(n)
m (0),0,0).

Observe that irrespective of the value of n, the solution (z̄i,1(t), z̄i,2(t), z̄i,3(t), z̄i,4(t)) :=

(yi(t),wi(t),0,0) solves the initial value problem z′ = gn(t,z;0,0) and z(0) = z0, where

z0 := (s1,0,β1,0,0,0, s2,0,β2,0,0,0, . . . , sm,0,βm,0,0,0).

Next, we need to bound
∥∥∥z(n)(t)− z̄(t)

∥∥∥ (where z̄(t) ∈ [0,1]4m is the unique vector

satisfying z̄4(i−1)+ℓ(t) = z̄i,ℓ(t) for all i ∈ [m] and ℓ ∈ [4]). For this purpose, we will need the

following lemma, which we borrow from [166].

Lemma 46. Consider the initial value problems x′ = f1(t,x), x(0) = x1 and x′ = f2(t,x),

x(0) = x2 with solutions φ1(t) and φ2(t) respectively. If f1 is Lipschitz in x with constant L and
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∥f1(t,x)−f2(t,x)∥ ≤M, then ∥φ1(t)−φ2(t)∥ ≤ (∥x1−x2∥+M/L)eLt−M/L.

Now, note that the domain of z for gn(t,z;ε1, ε2) can be chosen to be bounded because

0≤ E[si],E[βi]≤ 1 and Var[si]≤ E[s2
i ]≤ 1. Similarly, Var[βi]≤ 1. Also, we let ε1, ε2 ∈ (0,1)

and define ε := max{ε1, ε2}. Since gn(t,z;0,0) is a polynomial in z, it is Lipschitz-continuous

with some Lipschitz constant L ∈ (0,∞). In addition, we use the bounds on z and the functions

{hi,j,ℓ,n : 1≤ ℓ≤ 9} as follows:

∥gn(t,z;ε1, ε2)−gn(t,z;0,0)∥ ≤ 2
m∑

i=1

m∑
j=1

Aijε

∣∣∣∣∣zi,1zj,2 + hi,j,1,n

2 (zi,3 + zj,4)
∣∣∣∣∣+

m∑
i=1

γiε

+10
m∑

i=1

m∑
j=1

AijBijε

≤

 m∑
i=1

m∑
j=1

Aij(4+10Bij)+
m∑

i=1
γi

ε,
i.e.,

∥gn(t,z;ε1, ε2)−gn(t,z;0,0)∥ ≤M(ε),

where M(ε) :=
(∑m

i=1
∑m

j=1Aij(4+10Bij)+∑m
i=1 γi

)
ε.

We now apply Lemma 46 after setting

f1(t,x) = gn(t,x;0,0), f2(t,x) = gn(t,x;1/n,1/λ(n)), x1 = z0, x2 = z
(n)
0 .

Also, we let φ1 = z̄ and φ2 = z(n). Then we have

∥∥∥z(n)(t)− z̄(t)
∥∥∥≤ (∥∥∥∥z0− z(n)

0

∥∥∥∥+ Mαn

L

)
eLt−Mαn

L
,
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where αn := max
{

1
n ,

1
λ(n)

}
. Thus, for all t≤ T ,

∥∥∥z(n)(t)− z̄(t)
∥∥∥≤ (∥∥∥∥z0− z(n)

0

∥∥∥∥+ Mαn

L

)
eLT −Mαn

L
. (5.79)

Since limε→0M(ε) = 0, limn→∞ z
(n)
0 = z0, and limn→∞αn = limn→∞ max

{
1
n ,

1
λ(n)

}
= 0, the

right hand side of (5.79) goes to zero as n→∞. Hence we have the uniform convergence

z(n) → z̄ over any finite time interval [0,T ]. The last step is to show that z(n) → z̄ implies

L2-convergence, i.e., E[∥(s(n)
i −yi,β

(n)
i −wi)∥2]→ 0 as n→∞. To this end, we have

E[∥(s(n)
i −yi,β

(n)
i −wi)∥22] = E[(s(n)

i −yi)2]+E[(β(n)
i −wi)2]

= (E[s(n)
i ]−yi])2 +(E[β(n)

i ]−wi)2 + Var[s(n)
i ]+ Var[β(n)

i ]

≤ |E[s(n)
i ]−yi]|+ |E[β(n)

i ]−wi]|+ Var[s(n)
i ]+ Var[β(n)

i ]

= |z(n)
i,1 − z̄i,1|+ |z(n)

i,2 − z̄i,2|+ |z(n)
i,3 − z̄i,3|+ |z(n)

i,4 − z̄i,4|,

where we used that z̄i,3 = z̄i,4 = 0, and the inequality holds because yi,E[s(n)
i ],wi,E[β(n)

i ]∈ [0,1].

Thus, the uniform convergence of z(n) to z̄ over [0,T ] proves that E[∥(s(n)
i −yi,β

(n)
i −wi)∥2]→ 0

as n→∞.

Chapter 5, in full, is a reprint of the material as it appears in Rohit Parasnis, Ryosuke

Kato, Amol Sakhale, Massimo Franceschetti, and Behrouz Touri, “Usefulness of the Age-

Structured SIR Dynamics for Modelling COVID-19”, arXiv preprint arXiv:2203.05111 (2022).

The dissertation author was the primary investigator and author of this article.

Chapter 5, in full, is currently being prepared for submission for publication as Rohit

Parasnis, Ryosuke Kato, Amol Sakhale, Massimo Franceschetti, and Behrouz Touri, “Usefulness

of the Age-Structured SIR Dynamics for Modelling COVID-19” (the publication venue is to be

determined). The dissertation author was the primary investigator and author of this article.
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