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Abstract

Precision measurement of the fine-structure constant with atom interferometry

by

Weicheng Zhong

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Holger Müller, Chair

The fine-structure constant α is ubiquitous in physics, and a comparison among different
experiments provides a powerful test of the Standard Model of particle physics. We have
recorded the most accurate measurement of α = 1/137.035999046(27) at an accuracy of
0.20 parts per billion (ppb) via measuring h/mCs, the quotient of the Planck constant and
the mass of a cesium-133 atom. Our tools are simultaneous conjugate Ramsey-Bordé atom
interferometers based on a cesium atomic fountain. Using Bragg diffraction and Bloch oscil-
lations, we have demonstrated the largest phase (12 million radians) of any Ramsey-Bordé
interferometer and controlled the systematic effects at a level of 0.12 ppb. Comparing the
Penning trap measurements with the Standard Model prediction of the electron gyromag-
netic moment anomaly ae based on our α result, a 2.5-σ tension has been observed. This
tension provides hints for new physics beyond the Standard Model.

One of the largest systematic effects of our α measurement comes from the gravity gra-
dient γ. In order to suppress this effect in the next-generation α measurement, we have
demonstrated a new atom interferometer configuration - offset simultaneous conjugate in-
terferometers (OSCIs). We create two pairs of simultaneous conjugate interferometers and
precisely control the offset between them with Bragg diffraction and Bloch oscillations. The
multichannel readouts of OSCIs allow us to not only cancel the effect of γ, but also reduce
the undesired diffraction phase from Bragg diffraction beam splitters.

Other ongoing and planned upgrades of the next-generation α measurement have also been
presented in this thesis, including an over-sized vacuum chamber and a high-power pulsed
laser system. With these upgrades, we expect to improve the accuracy of α by one to two
orders of magnitude.
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Chapter 1

Introduction

1.1 The Fine Structure Constant α

The fine structure constant α is a fundamental physics constant characterizing the strength of
the electromagnetic interaction between elementary charged particles. It relates the binding
energy of an electron-proton system to the electron rest energy by the formula

hcR∞ =
1

2
α2mec

2, (1.1)

where h is the Planck constant, c is the speed of light in vacuum, R∞ is the Rydberg constant,
and me is the mass of an electron. Historically, α has been measured by various methods
from different fields of physics , such as the AC Josephson effect [92], the quantum Hall
effect [44], the electron anomalous magnetic moment effect [86, 39], as well as photon recoil
in atom interferometry [91, 16, 66] and so on, see Figure 1.1. The overall agreement of these
measurements is a powerful confirmation of the consistency of theory and experiment across
physics. In particular, two types of measurements have been prevailed in their accuracy
in the past two decades. The first one is determining α from measurements of the electron
anomalous magnetic moment ae = (ge−2)/2 by using the Standard Model of particle physics,
including quantum electrodynamics to the fifth order and muonic as well as hadronic physics
(the red data points in Figure 1.1) [5, 54]. The second one is based on the measurements
of the quotient of the Planck constant and the mass of a neutral atom h/mAt in atom
interferometry (the green data points in in Figure 1.1) [91]. Comparison of the results from
these two kinds of experiments provides a stringent test of the Standard Model and is a
powerful probe for new physics beyond.

We have demonstrated the most accurate measurement of α

1

α
= 137.035999046(27)

with an accuracy of 0.20 parts per billion (ppb) through measuring h/mCs using an atom
interferometer, where mCs is the mass of a cesium-133 atom [66].
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Figure 1.1: Results of selected α measurements, plotted as δα/α on a relative scale in
parts per billion [86, 92, 44, 51, 91, 39, 16, 66]. “0” on the plot is the CODATA 2014
recommended value [57]. The green points are from photon recoil experiments; the red ones
are from electron ge − 2 measurements. The inset is a close-up view of the bottom three
measurements. Error bars indicate 1σ uncertainty. Berkeley-18 measurement is the one that
we will talk about in this thesis.

1.2 Testing the Standard Model through ae

In the Standard Model of particle physics, the electron’s gyromagnetic anomaly ae can
be expressed as a function of α. Its contributions come from three types of interactions,
electromagnetic, electroweak and hadronic [5]:

ae(α) = ae(QED) + ae(weak) + ae(hadron). (1.2)

The dominant contribution ae(QED) can be expanded as a power series of α,

ae(QED) =
∞∑
n=1

A(2n)
e

(α
π

)n
+
∞∑
n=1

A(2n)
µ,τ

(me

mµ

,
me

mτ

)(2n)(α
π

)n
. (1.3)

The first series on the RHS of the above equation is the mass-independent contribution of
the electron sector of the Standard Model. Each nth-order term is the sum of all nth order
Feynman diagrams. The coefficients A

(2n)
e have been analytically calculated up to the 4th

order, and a numerical calculation of the 5th order (involving > 10,000 Feynman diagrams)
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with certain theoretical uncertainty is also available. The second series is the contribution of
the muon and tauon. It is a function of lepton mass ratios. Its terms have been calculated up
to the 4th order and contribute only a negligible uncertainty [5, 4, 3]. All these contributions
to ae as well as their uncertainties are summarised in Figure 1.2.

Based on this theory, an experimental measurement of ae can be used to derive α under
the framework of the Standard Model. An accuracy of 0.24 ppb has been achieved along this
path [39, 3, 57]. Alternatively, if an independent measurement of α using other methods, e.g.,
measurements of h/mAt using atom interferometry, is available, one can plug α into Equation
1.2 to theoretically predict ae(α), and compare it to experimental measurements. This kind
of comparison is sensitive to a broad range of previously unmeasurable physics, both within
the Standard Model and beyond. Within the Standard Model, it provides a stringent test
of our understanding of QED theory as well as electroweak and hadronic physics; beyond
the Standard Model, it can provide hints for dark-sector particles, such as dark photons and
dark-axial bosons (see Section 4.6).

1.3 Measuring α using h/mAt

Atom interferometers measure α based on measuring the recoil kinetic energy transferred
from or to an atom of mass mAt after scattering a photon that carries momentum ~k [91,
16, 66], where ~ = h/2π is the reduced Plance constant and k is the photon wavenumber.
This recoil kinetic energy is given by ~ωr, where

ωr =
~k2

2mAt

(1.4)

is the recoil frequency. With an accurate monitor of k by an optical frequency comb, h/mAt

can therefore be measured [91, 16, 66]. α is then determined via the relationship

α2 =
2R∞
c

mAt

me

h

mAt

(1.5)

Here the speed of light c is a defined constant with no uncertainty; the Rydberg constant
R∞ is known to 3 ppt accuracy [57]. The atom-to-electron mass ratio mAt/me is expressed
as

mAt

u

u

me

where u is the atomic mass unit. The cesium mass mCs/u is known to 0.06 ppb accuracy [8]
and the electron mass me/u is known to 29 ppt accuracy [57]. The overall accuracy of α is
limited by h/mAt.

The determination of R∞ from hydrogen and deuterium spectroscopy includes correc-
tions from the Lamb shift using QED theory [78]. The most accurate determination of the
electron’s atomic mass me/u requires a calculation of a g-factor where QED is needed [35].
The QED contributions to α in Equation 1.5 through these quantities are of order 1 ppm.
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Figure 1.2: Magnitude of contributions to the electron’s magnetic-moment anomaly
(ae, term/ae, total) in the unit of part-per-trillion (ppt). Terms labeled from α to α5 are contri-
butions from mass-independent QED terms. Mass-dependent QED contributions from muon
and tauon are labeled as µ and τ , respectively. Contributions from weak interaction as well
as hadronic physics are also labeled accordingly. Red bars show the magnitude and orange
ones the uncertainty (δae, term/ae, total). The red dashed line indicates the uncertainty of the
Harvard ae measurement. The green dashed line indicates the calculated uncertainty using
our fine structure constant value.

But the uncertainties of these contributions are of order 1 ppt, much smaller than the uncer-
tainty of h/mAt. A measurement of h/mAt from atom interferometry is free from QED. The
predicted ae using α from Equation 1.5 therefore provides a test of the QED theory when
compared to its experimental measurements. The sensitivity of this kind of comparison is
currently at the order of 0.2 ppb, limited by the accuracy of penning trap measurements of
ae and atom interferometry measurements of h/mAt.

Before our measurement, an accuracy of 0.62 ppb in α has been achieved at Laboratoire
Kastler Brossel (LKB) by rubidium-h/mRb measurements [16]. In our recent measurement
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using cesium atoms, we have recorded

h

mCs

= 3.0023694721(12)× 10−9 m2/s (1.6)

with an accuracy of 0.40 ppb. The overall accuracy of α thus has reached 0.20 ppb [66]. One
of the largest systematic effects of our measurement comes from the gravity gradient γ. In
order to suppress this effect, we have demonstrated a new atom interferometer configuration
- offset simultaneous conjugate interferometers (OSCIs) (see Chapter 5). This geometry
paves the way for measurements of α below the 20-ppt level.

One may think h/mCs can be calculated directly using the values of h and mCs. However,
in the old international system of units (SI), h has an uncertainty of 1.2 ppb; mCs can
be calculated via the relationship mCs = mCs/u × u, and the atomic mass unit u has an
uncertainty of 12 ppb [57]. It turns out more accurate to measure the quotient h/mCs as a
whole. In the new SI system adopted in 2019, the Planck constant is defined to have the
exact value h = 6.62607015 × 10−3 J · s 1. Measuring h/mAt now can be interpreted as
measuring the mass of a neutral atom mAt.

The vacuum permeability µ0 used to have an exact defined value µ0 = 4π × 10−7 H/m.
This is not true since the new SI system. µ0 is related to α via the relationship

µ0 =
2α

e2

h

c
. (1.7)

In the new SI system, since e, h and c now have exact values, µ0 is directly proportional
to α. A measurement of α is also a measurement of µ0. This also applies to the vacuum
permittivity ε0 = 1/(µ0c

2). In CODATA 2018 recommended values, µ0 and ε0 both have an
uncertainty of 0.15 ppb, the same as α.

1.4 Outline of this Thesis

In Chapter 2, we review the basic theory of atom interferometry. In Chapter 3, we intro-
duce the apparatus as well as the timing sequence used in the experiments. Chapter 4 will
focus on our α measurement. The theory and the apparatus of this measurement have been
documented in Reference [96, 52, 29]. The implications of the result have been discussed
in Reference [96]. However, the data collection and analysis procedures have not been doc-
umented yet. We will present these details in this chapter. Chapter 5 talks about OSCIs,
which will be employed in the next-generation α measurement to cancel the systematic ef-
fects from gravity gradient. Finally, in Chapter 6 we will introduce other progress towards
the next-generation α measurement.

1https://physics.nist.gov/cgi-bin/cuu/Value?h
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Chapter 2

Theory

2.1 Overview

Atom interferometers are powerful tools for practical applications as well as fundamental
physics experiments. They have been used for inertial sensing [70, 37, 82, 27, 94], testing
Einstein’s Equivalence Principle (EEP) [34, 77, 83, 99, 26], measuring Newton’s gravita-
tional constant G [32, 75], and searching for dark-sector particles [28, 38]. Similar to an
optical interferometer, an atom interferometer splits matter waves into different paths and
recombines them in a coherent manner [46]. Sequences of laser pulses are used to split, direct
and recombine the atomic matter waves along different trajectories, acting as beam splitters
and mirrors. Through measuring the resulting interference fringes, we can extract the phase
difference accumulated between the waves on the paths. Quantities that enter this phase
difference then can be accurately determined.

In the simplest scenario, consider an atom initially in some state |ψ1〉. A beam splitter,
which usually consists of a pair of counter-propagating laser pulses with specifically chosen
durations, frequencies, polarizations and intensities, will drive this atom into a superposition
of two states |ψ1〉 and |ψ2〉 with equal probability. The two states have different momenta
due to photon recoils. So the trajectories of the two states start to split, forming the two
arms of the interferometer. More beam splitters and mirrors are then applied to control the
trajectories of the two arms. The trajectories will also be affected by external potentials,
such as gravity. During this process, the states in the two arms will acquire phase differently
due to various mechanisms. In the end, a final beam splitter is applied when the two arms
overlap to mix the wave functions of the two arms, resulting in two output ports. The
probability of detecting the atom from each of them then will be a function of the phase
difference accumulated between the two arms. Mathematically, this process can be described
as

|ψf〉 = ÛSplitterÛEvolutionÛSplitter |ψi〉 , (2.1)
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where |ψi〉 is the initial state of the atom

ψi =

[
1
0

]
, (2.2)

ÛSplitter represents the beam splitter

ÛSplitter =
1√
2

[
1 i
i 1

]
, (2.3)

and ÛEvolution summarizes the phases that two arms acquire between the initial and final
beam splitters

ÛEvolution =

[
eiφ1 0
0 eiφ2

]
. (2.4)

Substituting the above operators into Equation 2.1, the final state of the atom is

ψf =
1

2

[
eiφ1 − eiφ2

ieiφ1 + ieiφ2

]
. (2.5)

The probability of the atom being in each state is

P1 = | 〈ψ1|ψf〉 |2 = sin2 ∆φ

2
, (2.6a)

P2 = | 〈ψ2|ψf〉 |2 = cos2 ∆φ

2
, (2.6b)

where ∆φ = φ1 − φ2 is the differential phase acquired between the two arms. We see that
the probabilities P1 and P2 are functions of ∆φ. By measuring P1 and P2, ∆φ can therefore
be determined.

To read out these probabilities, we usually manipulate millions to billions of atoms at
one time, and measure the atom population in each state after interference. To get rid of the
dependence of the signal on the total population, which may vary from shot to shot because
of instabilities in experiments, we usually do a relative measurement

I =
N1 −N2

N1 +N2

= C · cos(φ1 − φ2) +O, (2.7)

where N1 and N2 are the atom populations in the two states after interference, and they are
respectively proportional to the probabilities P1 and P2; C is the contrast; O is some offset.

Generally speaking, the phase that an atom acquires during this process can be at-
tributed into two sources: the free evolution phase and the atom-light interaction phase.
The calculation of the free evolution phase is reviewed in Section 2.2. Mechanisms of two
types of beam splitters, namely Raman transition and Bragg diffraction, and their associated
atom-light interaction phases are introduced in Section 2.3 and 2.4. Different geometries of
atom interferometers have different applications. In Section 2.5, we will talk about Mach-
Zehnder interferometers. In particular, Ramsey-Bordé interferometers have been used for
the α measurement. It will be introduced in Section 2.6.
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2.2 Free Evolution Phase

Consider an atom with mass m that evolves in a potential V (z). The Lagrangian describing
this system is

L(z, ż) =
1

2
mż2 − V (z). (2.8)

Assume initially the atom is in state |ψ(za, ta)〉 at space-time (za, ta). According to Feynman’s
formulation of quantum mechanics, the wave function |ψ(zb, tb)〉 at space-time (zb, tb) is given
by

|ψ(zb, tb)〉 = eiScl/~ |ψ(zb, tb)〉 , (2.9)

where Scl is the the classical action

Scl[ta, za; tb, zb] =

∫ tb

ta

L[z(t), ż(t)]dt. (2.10)

Here z(t) and ż(t) are the classical trajectory and velocity. They can be derived from the
Euler-Lagrange equation

∂L

∂z
− d

dt

∂L

∂ż
= 0. (2.11)

Therefore, the free evolution phase that an atom interferometer measures can be easily
determined by calculating the difference between the classical actions of the two arms of the
interferometer

φfree =
S1

cl − S2
cl

~
. (2.12)

One caveat is that Equation.2.9 only holds when the Lagrangian has a quadratic form
with respect to z and ż [81]. One simple example of this kind of Lagrangian is an atom in a
uniform gravitational field

L(z, ż) =
1

2
mż2 −mgz. (2.13)

When the Lagrangian is not quadratic, corrections to Equation 2.9 will be required. But we
will not talk about that here.

The Lagrangian in Equation 2.13 is of particular importance, as many atom interferome-
ter experiments are performed in ultra-high vacuum environment where the only significant
potential that atoms sense is gravity. However, one limitation of Equation 2.13 is that it
assumes a uniform gravitational field. In reality, gravity is different at different heights on
the earth. Usually, we will need to expend gravity to first order

g(z) = g + γz, (2.14)

where the constant γ is the gravity gradient. We will treat the effect of gravity gradient as
a perturbation to the original Lagrangian. This perturbation is given by

δL(z) =
1

2
mγz2. (2.15)
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According to the perturbation theory, the phase shift due to perturbations can be calculated
by integrating the Lagrangian perturbation along the unperturbed path [81]. Therefore, the
phase shift due to gravity gradient is

φfree,γ =
1

~

∫ t1

t0

(δL[z1(t)]− δL[z2(t)])dt, (2.16)

where z1 and z2 are the trajectories of the two arms determined using the unperturbed
Lagrangian in Equation 2.13.

2.3 Raman Transition

Before

After

Figure 2.1: An atom undergoes stimulated Raman transition. The atom absorbs a photon
with wave vector k1, and emits a photon with wave vector k2 in the other direction via
stimulated emission. This process drives the atom to another hyperfine state, transfers the
photon momentum to the atom due to momentum conservation, and imprints a laser phase
on the atom’s wave function.

Stimulated Raman transition is an important technique used in atom interferometry to
split atomic wave functions coherently. Imagine an atom initially in an electronic state |g1〉
has momentum p = 0. The atom is illuminated by two counter-propagating laser pulses, as
shown in Figure 2.1. The two laser pulses have frequencies ω1 and ω2, respectively. Their
wave vectors are k1 and k2, respectively. We can define an effective frequency ωeff = ω1−ω2,
and an effective wave vector keff = k1 + k2. If ωeff is close to the splitting between |g1〉 and
another hyperfine state |g2〉, the atom will absorb a photon with frequency ω1, and emit a
photon with frequency ω2 via stimulated emission. After this process, the atom will be driven
to |g2〉. The momentum of the atom will change by ~keff due to momentum conservation.
This process is also coherent. It will change the phase of the atomic wave function by φ1−φ2,
where φ1 and φ2 are the phases of the two photons. The probability of this process can be
well controlled by the duration, frequency and intensity of the laser pulses. Due to these
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properties, stimulated Raman transition is an ideal candidate for beam splitters in atom
interferometry.

Figure 2.2: Atomic energy level structure of a three-level system. Two ground states |g1〉
and |g2〉 are coupled to an excited state |e〉 by two optical fields. The population can be
driven between the ground stats as in an effective two-level system.

To understand the mechanism of Raman transition, we can model the atom as a three-
level system, as shown in Figure.2.2. Taking the hyper-fine excited state |e〉 to have zero
energy, the two hyper-fine ground states |g1〉 and |g2〉 have internal energy levels as−~ω01 and
−~ω02, respectively. Two laser pulses E1 = E01 cos(k1z−ω1t) and E2 = E02 cos(−k2z−ω2t)
couple the ground states to the excited state. Each of them is detuned by ∆1 or ∆2 from
resonance. The Hamiltonian describing this system can be written as

H = ~


p2

2m~
− ω01 0

Ω1

2
e−i(k1z−ω1t)

0
p2

2m~
− ω02

Ω2

2
e−i(−k2z−ω2t)

Ω∗1
2

ei(k1z−ω1t)
Ω∗2
2

ei(−k2z−ω2t)
p2

2m~

 . (2.17)

In the above equation, p is the momentum of the center of mass of the atom, and m is the
mass of the atom. The diagonal elements describe the free evolution of the atomic wave
function, which are combinations of external kinetic energy and internal electronic energy
levels; the off-diagonal elements describe the atom-light interactions. Ω1 and Ω2 are the
single-photon Rabi frequencies defined as

Ωα =
−〈gα|E0α · d |e〉

~
. (2.18)

They describe the strength of the coupling from the ground level |gα〉 through field Eα to
the excited level |e〉 (α = 1 or 2). In practice, the intensity of the laser pulses is not very
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high and the detuning is much less then the resonant frequency ∆α � ω0α, so we have used
the dipole and rotating-wave approximations in the above Hamiltonian [80]. We have also
assumed the cross-couplings, such as coupling between |g2〉 and |e〉 through E1 or coupling
between |g1〉 and |e〉 through E2, are negligible. We also neglect spontaneous emission since
the laser pulses are usually detuned far enough ∆α � Γ (Γ is spontaneous decay rate of the
excited state |e〉).

The state vector of the atomic wave function can be factored into the external components
|p〉 and the internal components |α〉. Notice that when the atom absorbs or emits a photon,
the atom will acquire or lose the photon’s momentum, due to momentum conservation. If
we define the momentum of state |g1〉 as p0, then the momentum of state |e〉 and state |g2〉
will be p0 + ~k1 and p0 + ~keff, respectively. Therefore, we can write the state vector as
|ψ〉 = c1 |g1, p0〉+ ce |e, p0 + ~k1〉+ c2 |g2, p0 + ~keff〉, or in the matrix form

|ψ〉 =

c1

c2

ce

 . (2.19)

The coefficients cα carry the time dependence of the state.
The evolution of the state can be solved from the Schrödinger equation

i∂t |ψ〉 = H |ψ〉 . (2.20)

One thing that complicates the Schrödinger equation is that the Hamiltonian in Equation
2.17 is time dependent. It involves oscillatory terms at optical frequencies. To simplify the
math, we usually apply a unitary transformation

U =

e−iω1t 0 0
0 e−iω2t 0
0 0 1

 (2.21)

to the Hamiltonian and the state vector. The transformation rule for the Hamiltonian is
H̃ = UHU † + i~(∂tU)U †, and for the state vector |ψ̃〉 = U |ψ〉. Under this transformation,
the Hamiltonian becomes

H̃ = ~


p2

2m~
+ ∆1 0

Ω1

2
e−ik1z

0
p2

2m~
+ ∆2

Ω2

2
eik2z

Ω∗1
2

eik1z
Ω∗2
2

e−ik2z
p2

2m~

 . (2.22)

The state vector becomes

|ψ̃〉 =

c̃1

c̃2

ce

 =

e−iω1tc1

e−iω2tc1

ce

 . (2.23)
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We see that under this transformation, the time-dependent terms in the atom-light interac-
tion part are gone. This transformation is the so-called rotating frame transformation, as in
this frame, the ground state |gα〉 is rotating with the optical frequency ωα, or equivalently,
its electronic energy level is shifted up by ~ωα. From here on, our derivation will be in this
rotating frame. The tilde symbol will be omitted for brevity.

Let’s plug the Hamiltonian and the state vector into the Schrödinger equation and write
down the equation of motion for each state explicitly,

i~ċ1 = [
p2

0

2m
+ ~∆1 − ~∆]c1 +

~Ω1

2
e−ik1zce, (2.24a)

i~ċ2 = [
(p0 + ~keff)2

2m
+ ~∆2 − ~∆]c2 +

~Ω2

2
eik2zce, (2.24b)

i~ċe = [
(p0 + ~k1)2

2m
− ~∆]ce +

~Ω∗1
2

eik1zc1 +
~Ω∗2

2
e−ik2zc2. (2.24c)

Here we have shifted all energy levels by −~∆, where ∆ = (∆1 + ∆2)/2 (equivalently,
we added an phase term ei∆t to all states). From the equations above, we see that the
excited state evolves with a natural frequency |∆|, while the two ground states evolving with
frequencies |∆α−∆|. Usually |∆1−∆2| � |∆|, so the excited state evolves much faster than
the two ground states. We can assume ce damps to equilibrium instantaneously compared
to c1 and c2, thus can be eliminated adiabatically (ė = 0). Also notice that p2/2m � ~|∆|
(p2/(2m~) is usually around ∼ kHz for atoms moving at velocities of ∼ mm/s, and |∆| is at
the level of ∼ 10 MHz). From Equation 2.24c we have

ce ≈
Ω∗1
2∆

eik1zc1 +
Ω∗2
2∆

e−ik2zc2. (2.25)

Substituting the above equation into Equation 2.24a and Equation 2.24b, we get

i~ċ1 = [
p2

0

2m
+ ~∆1 + ~ωAC1]c1 +

~ΩR

2
e−ikeffzc2,

i~ċ2 = [
(p0 + ~keff)2

2m
+ ~∆2 + ~ωAC2]c2 +

~Ω∗R
2

eikeffzce,

or in the matrix form

i~
d

dt

[
c1

c2

]
=

 p2
0

2m
+ ~∆1 + ~ωAC1

~ΩR

2
e−ikeffz

~Ω∗R
2

eikeffz
(p0 + ~keff)2

2m
+ ~∆2 + ~ωAC2

[c1

c2

]
. (2.27)

Here we have removed the energy shift ~∆. ωR is the two-photon Rabi frequency defined as

ωR =
Ω1Ω∗2
2∆

, (2.28)
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and the ac-Stark shift

ΩACα =
‖Ωα‖2

4∆
. (2.29)

Equation 2.27 is just the Schrödinger equation of an effective two-level system with the
state vector |ψeff〉 = c1 |g1, p0〉+ c1 |g2, p0 + ~keff〉 and the Hamiltonian

Heff = ~

 p2

2m~
+ ∆1 + ωAC1

ΩR

2
e−ikeffz

Ω∗R
2

eikeffz
p2

2m~
+ ∆2 + ωAC2

 . (2.30)

Solution to a two-level system can be found in many literatures [80]. Assuming the initial
condition as c1,0 and c2,0, we have

[
c1(t)
c2(t)

]
=

cos
Ω̃t

2
− i∆R

Ω̃
sin

Ω̃t

2
−iΩR

Ω̃
e−ikeffz sin

Ω̃t

2

−iΩ
∗
R

Ω̃
eikeffz sin

Ω̃t

2
cos

Ω̃t

2
+ i

∆R

Ω̃
sin

Ω̃t

2

[c1,0

c2,0

]
, (2.31)

where ∆R is the generalized detuning

∆R = (
p2

0

2m~
+ ∆1 + ωAC1)− (

(p0 + ~keff)2

2m~
+ ∆2 + ωAC2)

= (∆1 −∆2) + (ωAC1 − ωAC2)− keff(v0 + vr), (2.32)

and Ω̃ the generalized Rabi frequency

Ω̃ =
√

∆2
R + ‖ΩR‖2. (2.33)

Assuming initially the atom is in the state |g1, p0〉 and ∆R = 0, we have

[
c1(t)
c2(t)

]
=

 cos
Ω̃t

2

−iΩ
∗
R

Ω̃
eikeffz sin

Ω̃t

2

 . (2.34)

We see that the probability in each state ‖cα‖2 oscillates with the frequency Ω̃. We can thus
define a laser pulse with the duration π/Ω̃ as a π-pulse, which will drive the atom from one
state to the other state with probability 1. Similarly, we can also define a π/2-pulse, which
has a duration π/(2Ω̃). A π/2 pulse has 50% chance to drive the atom from one state to
another. π-pulses and π/2-pulses are of particular importance in atom interferometry. They
work as mirrors and beam splitters as their counterparts in light interferometers. Another
thing we should notice is that c2 has a phase shift keffz relative to c1. That means the atom
will acquire the laser phase when it undergoes Raman transition.
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So far we have assumed the atom is a three-level system and have neglected other excited
states. We have also neglected cross-couplings by assuming electric field Eα only couples
|e〉 and |gα〉. In a real precision experiment, these facts will lead to systematic effects like
ac-Stark shift, thus need to be treated very carefully.

If the two laser pulses counter-propagate, keff = k1 + k2. The generalized detuning from
Equation 2.32 is velocity dependent. Therefore, the driving efficiency of Raman transition
depends on an atom’s velocity. We will use this property to select a velocity subgroup of
atoms from a cold atom cloud, see Section 3.2. On the contrary, if the two laser pulses co-
propagate, by replacing k2 with −k2 in the above derivations, we have keff = k1−k2 ≈ 0. The
generalized detuning will be velocity independent. A velocity-independent Raman transition
pulse will be used in our experiments as a state selection pulse, see Section 3.2.

Raman transition has its limitations. It only transfers the momentum of two photons
every time. This will limit the sensitivity of the atom interferometers. As atoms stay in
two different electronic states, there are many associated systematic effects, such as the
differential ac-Stark shift. Bragg diffraction has proven to be a beam-splitter technique
better in these aspects.

2.4 Bragg Diffraction

-5ħk -3ħk -1ħk 1ħk 3ħk 5ħk

Δ

|𝑔〉

|𝑒〉

Momentum

En
er

gy

δ

Figure 2.3: 5th-order Bragg diffraction. Counter-propagating laser pulses drive the atom
between different momentum states of the same internal electronic ground state. Bragg
diffraction will transfer multiple photon momenta every time, and leave the atom in the
same internal state during the process.

Much like Raman transition, during Bragg diffraction, an atom is illuminated by a pair of
counter-propagating laser pulses with frequency ω1 and ω2, respectively. But unlike Raman
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transition, the atom absorbs n photons with frequency ω1 and emits n photons with frequency
ω2 at one time. The internal electronic state of the atom will not change during this process.
As the two pulses couple different momentum states of the same internal electronic state, the
frequency difference between the two pulses (< 1MHz) is much smaller than the hyper-fine
splitting of the atom (∼ 10GHz). One easy way to find the resonant condition of Bragg
diffraction is to use energy and momentum conservation. Assume the initial and the final
velocity of the atom are vi and vf . From energy conservation, we have

1

2
m(v2

f − v2
i ) = n~(ω1 − ω2). (2.35)

From momentum conservation, we have

m(vf − vi) = n~(k1 + k2). (2.36)

Solving the above two equations, we get

vf = 2nvr + vi, (2.37)

where vr = ~(k1 + k2)/(2m) is the recoil velocity;

ω1 − ω2 = 4(n+ n0)ωr, (2.38)

where ωr = mv2
r/2 is the recoil energy, and n0 is defined as vi/vr.

For a more rigorous derivation, let’s study Bragg diffraction in a semi-classical way.
Bragg diffraction drives atoms between different momentum states of the same internal
state, as shown in Figure 2.3. Here we have chosen a reference frame such that the initial
velocity of the atom is zero. Imagine a pair of laser pulses E1 = E01 cos(kz − ωt) and
E2 = E02 cos(−kz − ωt) are applied on an atom. The two laser beams have the same
frequency but opposite wave vectors. The Hamiltonian describing this system is

H = ~

 p2

2m~
− ω0

Ω1

2
e−i(kz−ωt) +

Ω2

2
e−i(−kz−ωt)

Ω∗1
2

ei(kz−ωt) +
Ω∗2
2

ei(−kz−ωt)
p2

2m~

 . (2.39)

The state vector is |ψ〉 = cg |g, pg〉+ ce |e, pe〉, or in the matrix form

|ψ〉 =

[
cg
ce

]
. (2.40)

Similar to Raman transition, let’s first apply a rotating-frame transformation,

U =

[
e−iωt 0

0 1

]
(2.41)
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The Hamiltonian becomes

H = ~

 p2

2m~
+ ∆

Ω1

2
e−ikz +

Ω2

2
eikz

Ω∗1
2

eikz +
Ω∗2
2

e−ikz
p2

2m~

 , (2.42)

and the state vector becomes

|ψ〉 =

[
c̃g
ce

]
=

[
e−iωtcg
ce

]
. (2.43)

Plug the Hamiltonian and the state vector into the Schrödinger equation and write down
the equations of motion explicitly, we get

i~ċg =
p2
g

2m
cg + (

~Ω1

2
e−ikz +

~Ω2

2
eikz)ce, (2.44a)

i~ċe = (
p2
e

2m
− ~∆)ce + (

~Ω∗1
2

eikz +
~Ω∗2

2
e−ikz)cg, (2.44b)

where we have shifted the energy levels of both electronic state down by ~∆. After adiabat-
ically eliminating the excited state:

ce = (
Ω∗1
2∆

eikz +
Ω∗2
2∆

e−ikz)cg, (2.45)

we get the equation of motion of the ground state

i~ċg = − ~2

2m

∂2cg
∂z2

+ ~
‖Ω1‖2 + |Ω2‖2 + Ω∗1Ω2e2ikz + Ω1Ω∗2e−2ikz

4∆
cg, (2.46)

or

i~ċg = − ~2

2m

∂2cg
∂z2

+ ~(ωAC +
Ω∗R
2

e2ikz +
ΩR

2
e−2ikz)cg, (2.47)

where the ac-Stark shift ωAC and the two-photon Rabi frequency ΩR are defined in Equation
2.28 and 2.29.

Equation 2.47 can be viewed as the Schrödinger equation of an atom loaded in periodic
optical lattices. Assuming ΩR is real, the effective potential of the optical latices is ~(ωAC +
ΩR cos 2kz). According to Bloch theorem, cg can be expanded as a sum of Fourier series

cg = eikqz
∞∑

l=−∞

g2l(t)e
2ilkz, (2.48)

where the quasi-wavenumber kq describes the initial velocity of the atom. Each term have
different momentum 2l~k, with g2l the probability amplitude of the atom in that momentum
state. Substituting the above solution into Equation 2.47, and factoring out the terms that
have the same momentum, we get

iġ2l = [ωr(2l + l0)2 + ωAC]g2l +
Ω∗R
2
g2(l−1) +

ΩR

2
g2(l+1), (2.49)
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where we have defined the recoil frequency ωr = ~k2/2m and l0 = kq/k. This is an infinity
set of coupled differential equations. Each of them can be viewed as coupling from g2l to
g2(l−1) and g2(l+1) as a two-photon process.

Neglect the ac-Stark shift and assume ΩR is real. When the duration of the laser pulse is
short t � 1/ωr (the Raman-Nath regime), the frequency spread of the laser pulse is larger
than the energy difference between adjacent momentum states, and the kinetic term becomes
negligible. Equation 2.49 can be simplified as

iġ2l =
ΩR

2
(g2(l−1) + g2(l+1)). (2.50)

This equation can be satisfied by Bessel functions [60]:

g2l(t) = (−i)lJl(ΩRt). (2.51)

In this scenario, imagine initially all atoms are in the zero momentum state: g0(0) = 1,
gl 6=0(0) = 0. A pulse that has duration τ will drive the atoms to the momentum state
2l~k with probability ‖g2l(τ)‖2. Since all momentum states have certain probabilities to be
occupied after the pulse, the driving efficiency of the pulse will be low.

On the contrary, if the laser pulse is long enough (the Bragg regime), the momentum state
|p = −n~k〉 will be coupled to the momentum state |p = n~k〉 due to energy conservation,
and all the intermediate states will adiabatically eliminated. Under this limit, the system
can be viewed as a two-level system with the effective Rabi frequency [60]

Ωeff =
Ωn
R

(8ωr)n−1

1

[(n− 1)!]2
. (2.52)

The driving efficiency of such a Bragg pulse will reach 100%.
In a real experiment, the Bragg pulse length is usually set to an intermediate regime.

We want the pulse length to be short so that there is less single photon scattering, but not
too short so it can still have high driving efficiency. We will also use Gaussian temporal-
profile pulses, instead of square pulses, as a square pulse has frequency sidebands that will
drive atoms to unwanted momentum states. Therefore, ΩR will be time-dependent. With
these facts, it is hard to find an analytical solution to Equation 2.49. Instead, we solve the
truncated equation series numerically. Assume initially atoms are in the −nth momentum
state. An nth-order Bragg pulse will mostly populate the momentum states between −n
and n. We can truncate Equation 2.49 at some limit nmax (nmax > n). The equation series
becomes
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iġ−nmax = ωrn
2
maxg−nmax +

ΩR

2
g−nmax+2

iġ−nmax+2 = ωr(−nmax + 2)2g−nmax+2 +
ΩR

2
(g−nmax + g−nmax+4),

iġ−nmax+4 = ωr(−nmax + 4)2g−nmax+4 +
ΩR

2
(g−nmax+2 + g−nmax+6),

· · ·

iġnmax−4 = ωr(nmax − 4)2gnmax−4 +
ΩR

2
(gnmax−2 + gnmax−6),

iġnmax−2 = ωr(nmax − 2)2gnmax−2 +
ΩR

2
(gnmax + gnmax−4),

iġnmax = ωrn
2
maxgnmax +

ΩR

2
gnmax−2,

(2.53)

where the two-photon Rabi frequency ΩR = ΩR0Exp(−t2/2w2) is now time-dependent and
has a Gaussian temporal profile. This set of equations can be solved numerically.

Figure 2.4 shows an example of the effect of a π/2 5th-order Bragg diffraction pulse.
nmax is set to be 11; the amplitude of the time-dependent two-photon Rabi frequency is
ΩR0 = 30.29ωr; the width of the Gaussian temporal profile is w = 0.23588667ω−1

r ; and the
pulse has a during of 3w [95]. The upper plot shows the population change. Atoms are
initially in the n = −5 state. With the Bragg diffraction pulse, the n = −5 and n = 5 states
are eventually equally populated. During this process, atoms have certain probabilities to
be in the intermediate states.

The large-momentum-transfer mechanism of Bragg diffraction improves sensitivity, but
also poses challenges. It will lead a systematic effect known as the diffraction phase. For
a two-photon process e.g. Raman transition, that only couples two states, if the atom
population in one state is sin2 φ, due to population conservation, the population in the other
state must be cos2 φ. The phase difference between these two state then will always be
π/2. But for Bragg diffraction, this population conservation no longer holds: atoms has
certain probabilities to be in unwanted states. The lower plot of Figure 2.4 shows the phase
difference between the n = 5 state and n = −5 state. We see that as the total population
in the n = 5 state and n = −5 state deviates from 1 during the pulse, this differential phase
deviates from −π/2. After the pulse, about 99.4% atoms are either in n = −5 or n = 5 state.
The differential phase between these two states deviates from −π/2 by 5 mrad. In a real
experiment, this diffraction phase depends on a lot of parameters, such as pulse duration,
pulse intensity, atom velocity, and so on. It can be as large as several hundred milliradians.
This is one of the major systematic sources of our experiment. We will talk about them in
detail in subsequent chapters.

Another challenge about Bragg diffraction is that it requires much higher power than
Raman transition. Bragg diffraction requires an intensity proportional to n2 for constant
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Figure 2.4: Top: The population of different momentum states as a function of time for a
Gaussian π/2 Bragg pulse. The Bragg order n = 5. Bottom: The phase difference between
the |p = −5~k〉 momentum state and the |p = 5~k〉 momentum state as a function of time
for the Bragg pulse.

pulse duration, or n4 for constant single-photon scattering rate at an increased detuning
[60]. To drive 5th-order Bragg diffraction in our experiment, we have used Ti:Sapphire
lasers which can output up to 6W power. In order to further increase the Bragg order, new
laser system that can generate much stronger laser pulses will be required. As a comparison,
diode lasers that outputs tens of mW power is able to drive Raman transition in very high
precision measurements [69].

2.5 Mach-Zehnder Interferometer

The first interferometer geometry we will look into is the Mach-Zehnder geometry, as shown
in Figure 2.5. A Mach-Zehnder interferometer has three evenly-spaced laser pulses. The
first pulse is a π/2-pulse, which splits the atomic wave function into two. The two wave
functions travel along different trajectories due to having different momenta. The second
pulse is a π-pulse. It acts as a mirror and will reflect both trajectories. The third pulse is
another π/2-pulse. It mixes the wave functions from the two trajectories when they spatially
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overlap. When Raman transition is used for beam splitters and mirrors, the phase we can
read out from this type of interferometer is

ΦMZ = kgT 2, (2.54)

where k is the wave number of the laser pulse, g is the gravity acceleration, and T is the
pulse separation time. As the two arms of the interferometer spend equal amount of time in
the two internal electronic and external momentum states, the overall free evolution phase
is cancelled between the two arms. ΦMZ comes solely from atom-light interactions.

Figure 2.5: A Mach-Zehnder atom interferometer using Raman transition as beam splitters
and mirrors. Dashed lines represent pairs of counter-propagating laser pulses. π/2 Raman
pulses act as beam splitters; π Raman pulses act as mirrors.

Since k can be measured very accurately via a frequency comb, Mach-Zehnder interfer-
ometers have been applied to measure gravity acceleration g since its first demonstration
by Mark Kasevich and Steven Chu at Stanford in 1991 [46]. There have also been many
variations of this type of experiment. For example, experiments that run Mach-Zehnder
interferometers with different distances to a source mass have been used to measure the
Newton’s gravitational constant G [32], and detect dark matter and dark energy [28]; ex-
periments that perform Mach-Zehnder interferometers with different species of atoms have
been used to test Einstein’s Equivalence principle [99]. There are also proposals for detecting
gravitational waves using Mach-Zehnder interferometers [41]. In our measurement of the fine
structure constant α, we use Bragg diffraction as beam splitteres and run two Mach-Zehnder
interferometers at different heights simultaneously. By taking the differential phase between
the two interferometers, we measured the gravity gradient γ, which is one of the largest
systematic source in our measurement of α, see Section 4.5.
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2.6 Ramsey-Bordé Interferometer

History

Our measurement of α is based on the Ramsey-Bordé configuration. Before we introduce
the theory, let’s first review the its history.

Ramsey-Bordé atom interferometers were first proposed by Christian J. Bordé in 1989
as a tool for measuring acceleration and rotation [7]. In his proposal, the atom source came
from a thermal atomic beam and the beam splitters were effected by Raman transitions.
The experiment was later realized by F. Riehle et al from J. Helmcke’s group [73].

In 1993, David Weiss, Brenton Young and Steven Chu from Stanford demonstrated this
interferometer configuration using laser-cooled atoms for the first time, and applied it to
the measurement of ~/mCs [88, 87]. In their experiment, they used Raman transitions as
beam splitters. They performed two interferometers at the same time, but read out the
interference fringes from each of them separately.

One year later, Martin Weitz, Brenton Young, and Steven Chu used adiabatic popula-
tion transfer as beam splitters [90]. Adiabatic population transfer has the advantage over
Raman transition of being insensitive to the small changes in experimental parameters such
as intensity and frequency of the laser pulses. It is also immune to ac Stark shift, a trouble-
some systematic effect when using Raman transitions. In 2002, a 7.9ppb accuracy in α was
achieved by Andreas Wicht et al from Chu’s group with this geometry.

Holger Müller, Sheng-wey Chiow et al from Chu’s group proposed the simultaneous
conjugate interferometer configuration to cancel the effects of vibration in 2006. They also
proposed to use multi-photon Bragg diffraction as beam splitters to increase the sensitivity
of the interferometers [59]. They demonstrated it in 2009 with a Bragg order of n = 10 [18].

To further increase the sensitivity and suppress systematic effects, Bloch oscillations were
introduced in the geometry by Pei-Chen Kuan, Shau-Yu Lan, Brian Estey and Holger Müller
[29, 30] from UC Berkeley. Before the work of this thesis, n = 8 for Bragg diffraction and
N = 20 for Bloch oscillations have been achieved.

Ramsey-Bordé Interferometers with Bragg Diffraction

Figure 2.6 shows a Ramsey-Bordé interferometer using Bragg diffraction as beam splitters.
Consider an atom initially in the momentum state |0〉. An nth-order π/2 Bragg pulse
consisting of frequency ω1 and ω2 is applied on the atom and drives it into a superposition
of |0〉 and |n〉 with equal probability. The two momentum states start to split, forming the
two arms of the interferometer. After free-falling for time T , a second π/2 pulse is applied
to split the states into four trajectories. Only the two resulting |0〉 states will be used to
create interference. With another time T ′, a third π/2 pulse is applied. The frequency of the
down-going component of this Bragg pulse is shifted by ωm so that it drives Bragg diffraction
in the other direction. The upper arm now is in the |−n〉 state. Finally, after time T , a forth
π/2 pulse which is identical to the third one is used to combine the wave packets to create
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interference. Since we use Bragg diffraction as beam splitters, the atom stays in the same
internal electronic state during the whole process. We will have to wait for enough time
for the wave packets to be spatially resolved so that we can read out interference fringes.
According to Equation 2.38, the resonant condition of Bragg diffraction, the frequencies of
the laser pulses should satisfy ω1 − ω2 = 4nωr and ωm = 8nωr.

Figure 2.6: Atom trajectories in a Ramsey-Bordé atom interferometer. Dashed lines with
arrows represent pairs of counter-propagating laser pulses that drive nth order Bragg diffrac-
tion. The frequency of the third and forth Bragg pulses is shifted by ωm relative to the first
and second Bragg pulses.

In the absence of systematic effects, the phase we can read out from this type of inter-
ferometer is

ΦRB = 8n2ωrT − 2nkg(T + T ′)T − nωmT + nωmT
v0

c
, (2.55)

where k = (ω1 + ω2)/c is the averaged wave vector of the first two Bragg pulses, ωr is the
recoil frequency, and v0 is the velocity of the atom at the moment of the first Bragg pulse
[95]. This phase can be understood intuitively. Because the upper arm of the interferometer
has none zero velocity relative to the lower arm, the first term 8n2ωrT is proportional to
the kinetic energy difference between the two arms. The two arms spend time at different
heights, sensing different gravitational potentials, so the second term is related to g. The
last two Bragg pulses have different averaged wave vectors when compared to the first two
Bragg pulses, so the third and forth terms depend on ωm.

For the forth term of ΦRB in Equation 2.55, it can be interpreted as a separation phase.
Because of the frequency shift ωm, the interferometer will not be fully closed at the moment
of the last Bragg pulse. There will be a vertical separation of δz = n~ωmT/(mc) in the end,
as shown in Figure 2.7. This separation is small when compared to the coherent length of
the atom. So we will still be able to observe interference. But it will introduce a separation
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Figure 2.7: The Ramsey-Bordé interferometer is not fully closed due to ωm.

phase

φseparation =
mv0δz

~
= nωmT

v0

c
. (2.56)

This term may seem to violate Lorentz invariance: if we choose a different reference frame,
v0 will be different, so the total phase will be different. But keep in mind that ωm will have
to be Doppler shifted if we use a different reference frame. Say the new reference frame has
a velocity v′ relative to our lab frame, the third term of ΦRB becomes −mωmT (1− v′/c) and
the separation phase becomes nωmT (v0 − v′)/c in this new frame. The dependence on v′

cancels. The total phase doesn’t change.
H

Simultaneous Conjugate Ramsey-Bordé Interferometers

Since ΦRB from a Ramsey-Bordé interferometer depends on the recoil frequency ωr =
~k2/(2m), Ramsey-Bordé interferometers can therefore be used to measure h/m and, from
that, the fine structure constant α. However, ΦRB also depends on g, which means it will be
sensitive to other accelerations like vibrations. Without mechanically stabilizing the optics,
we can make a simple modification to the geometry to get rid of the g-dependent term and
the effects from vibrations.

For the down-propagating component of the third and forth Bragg pulses, instead of
sending only one frequency ω2 + ωm, we can send two frequencies ω2 ± ωm, as shown in
Figure 2.8. The frequency pair {ω1, ω2 + ωm} will drive the atom from state |0〉 to state
|−n〉, and the frequency pair {ω1, ω2 − ωm} will drive the atom from state |n〉 to state |2n〉.
This creates two simultaneous conjugate Ramsey-Bordé interferometers. The phases that
they measure are

ΦRB± = ±8n2ωrT ∓ nωmT + 2nkg(T + T ′)T + Φvibration, (2.57)

where ΦRB+ is the phase from the upper interferometer, and ΦRB− from the lower interfer-
ometer. Φvibration is the phase shift introduced by vibrations. Systematic effects as well as
the separation phase have been omitted for clarity.

If we don’t mechanically stabilize the optics, the random change in Φvibration will com-
pletely wash out the interference fringe from each interferometer. But as the two interferom-
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Figure 2.8: Simultaneous conjugate Ramsey-Bordé interferometers. The down-propagating
component of the last two Bragg pulses contains two frequencies ω2 ± ωm.

eters run simultaneously, Φvibration, as well as the 2nkg(T + T ′)T term, is a common mode
effect of the two interferometers. We can use techniques like ellipse fitting [31, 33] to extract
the differential phase between the two interferometers. This differential phase is

Φd = ΦRB+ − ΦRB− = 16n2ωrT − 2nωmT. (2.58)

Theory of ellipse fitting is introduced in Section 4.1.

With Bloch Oscillations

While the simultaneous conjugate geometry cancels the effects from vibrations, it can be
improved in many aspects. In terms of sensitivity, when we use this geometry to measure
the recoil frequency, the total measured phase can be viewed as Φtotal = 16n2ωrT (see Section
4.4). In order to improve the sensitivity, we would want to increase this total measured phase.
In terms of systematic effects, this geometry doesn’t cancel the diffraction phase from Bragg
diffraction beam splitters. The diffraction phase is caused primarily by off-resonant Bragg
scattering in the third and fourth laser pulses, where multiple frequencies for the Bragg
beams are used to simultaneously address both interferometers [30, 65]. It would be good
if we can increase ωm to move the off-resonant component further off resonance. Bloch
oscillations have proved to be beneficial in these aspects.

Bloch oscillation describes the oscillation of a particle confined in a periodic potential
when a constant force is acting on it. In atomic physics, an atom trapped in optical lattices
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will undergo Bloch oscillations when the frequencies of lattice beams are ramping at a con-
stant rate [13, 68]. Assuming the ramp rate is r, in the lab frame, the lattices have a constant
acceleration rate r/2k. Therefore, in the rest frame of the lattices, there is a constant force

F = −rm
2k

acting on the atom, where m is the mass of the atom. The atom has a well defined
quasi-momentum ~kq as determined by the band structure of the lattice, where kq is the
quasi-wavenumber taken from the first Brillouin zone [−k, k) (see Equation 2.48). With the
presence of the constant force F , the quasi-wavenumber evolves as

kq(t) = kq(0) +
Ft

~
. (2.59)

When kq(t) approaches k, the right edge of the first Brillouin zone, if the linear ramp is slow
enough, it will wrap back into the first Brillouin zone from the left edge −k, and starts the
linear evolution again. This can be understood as a first-order Bragg transition undergone
via adiabatic passage. As the atom accelerates in one direction, the increasing Doppler shift
brings its detuning closer to two-photon resonance. The atom then adiabatically passes
through the transition, and receives 2~k momentum kick [19]. Therefore, in the rest frame
of the optical lattices, the quasi-momentum oscillates between −~k and ~k. The period of
this oscillation is

TB =
2~k
|F | =

4~k2

rm
. (2.60)

Now switch back to the lab frame, the momentum of the atom will increase by 2~k after
every TB. By holding the atom in the lattice and ramping the frequencies of the lattice
beams for N periods (N Bloch oscillations), we can increase the momentum of the atom by
2N~k.

In our experiment, we apply Bloch oscillations between the second and third Bragg pulses,
as shown in Figure 2.9. After the second Bragg pulse, the upper interferometer is in the
momentum state |n〉 and the lower interferometer is in the momentum state |0〉. They are
adiabatically loaded into two optical lattices. The two optical lattices accelerate and drive
Bloch oscillations in opposite directions. After N periods, the upper interferometer is in the
momentum state |n+N〉, and the lower interferometer is in the momentum state |−N〉.
They are then adiabatically unloaded from the lattices by turning down the power of the
lattice beams gradually.

The Bloch oscillation beams can be generated in the same way as the multi-frequency
Bragg pulses: one frequency ω1 propagates upwards and two frequencies ω2±ωb propagates
downwards. The frequency pair {ω1, ω2 + ωb} addresses the lower interferometer, and the
frequency pair {ω1, ω2 − ωb} addresses the upper interferometer. ωb is swept from 4nωr to
(4n+8N)ωr when N Bloch oscillations are used. For adiabatically loading into and unloading
from the optical lattices, the Bloch oscillation beams should have trapezoid temporal profiles.
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In order for the third and forth Bragg beams to stay resonant for nth order Bragg diffraction,
ωm = 8(n+N)ωr.

The differential phase we can read out from this geometry is

Φd = 16n(N + n)ωrT − 2nωmT. (2.61)

Comparing to Equation 2.58, the total measured phase is increased from 16n2ωrT to 16n(n+
N)ωrT . By applying hundreds of Bloch oscillations, we can greatly improve the sensitivity
of the interferometers. In the meantime, ωm is increased from 8nωr to 8(n + N)ωr, helping
suppress systematic effects like the diffraction phase.

In practice, the maximum number of Bloch oscillations that we can use is limited by
various loss and decoherence mechanisms. Since a Bloch oscillation is an adiabatic process,
an atom may leave the lattice during every Bloch period due to Landau-Zener tunneling
[97]. Single photon scattering will also cause the loss of the atoms. As a result, applying
Bloch oscillations will lower the signal size exponentially. If the Bloch beams have wave front
distortions, atoms addressing by Bloch beams will experience decoherence due to varying
ac-Stark shifts. We will talk about these limitations in Chapter 4.

Figure 2.9: Simultaneous conjugate interferometers with Bloch oscillations. The pink band
represents the Bloch oscillation sequences.
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Chapter 3

Apparatus

3.1 Overview

In this chapter, we will review the apparatus and the timing sequence used in the experiment.
Having simple energy structure to manipulate, alkali atoms have been used in most atom

interferometry experiments. We use cesium-133 atoms in our experiments. Specifically, we
use the cesium D2 line for trapping, cooling and interferometry. A diagram of the cesium
D2 transition hyperfine structure is shown in Figure 3.1 [79]. Cesium D2 line includes the
transitions from the 62S1/2 ground state to the 62P3/2 excited state. The 62S1/2 ground state
has two hyperfine levels F = 3 and F = 4, separated by about 9.19 GHz. The 62P3/2 excited
state has four hyperfine levels F ′ = 2 to F ′ = 5, separated by several hundreds of MHz. The
wavelength of D2 transitions is around 852 nm, which is accessible by semiconductor lasers
and Ti:Sapphire lasers.

The experiments are performed in an ultra-high vacuum environment to reduce scatter-
ings from background atoms. Increasing the free-fall time of the atoms in vacuum will allow
us to increase the pulse separation time, thus improve the sensitivity. To achieve this goal,
the experiments are performed with an atomic fountain, where we launch the atoms upward
to double the free fall time. We also implement various trapping and cooling techniques to
cool down the temperature of the atoms, so we can have a longer coherence time and better
signal-to-noise ratio.

Figure 3.2 shows the design of the vacuum chamber and the optical system for generating
Bragg and Bloch beams. The chamber has three parts. From bottom to top, the first part is
for trapping atoms with Magneto-Optical Trap. We also launch the atoms in that chamber.
This chamber is referred to as the MOT chamber later in this thesis. The second part is for
Raman sideboard cooling when the atoms move upward, and for detection when the atoms
fall back. It will be referred to as the detection chamber later. The third part is a 1.6m
long tube. This is where interferometry happens. Inside this tube, there are three layers of
µ-metal shields that isolate the atoms from environment magnetic fields. Inside the µ-metal
shields is a solenoid winded around an aluminum tube, which creates magnetic fields along
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62P3/2

62S1/2

F = 3

F = 4

Fʹ = 2

Fʹ = 3

Fʹ = 4

Fʹ = 5

251.00(2) MHz

9.192 631 770 GHz

351.730 549 61(11) THz

201.24(2) MHz

151.21(2) MHz

351.725 718 50(11)THz

12.815(9) MHz

4.021776 GHz

5.170855 GHz

Figure 3.1: Cesium D2 transition hyperfine structure, with frequency splittings between the
hyperfine energy levels [79].



CHAPTER 3. APPARATUS 29

the vertical direction that will define the quantum axis for the atoms. The vacuum pressure
in the chamber has been pumped down to 10−9 torr.

The optical system of our experiments can be divided into three subsystems: a spec-
troscopy, the atom cloud preparation system and the coherent manipulation system. For the
spectroscopy, a reference laser (New Focus Vortex TLB-6917) is frequency stabilized to the
cesium F = 3→ F ′ = 2 D2 transition using a hybrid Doppler-free frequency modulation and
modulation transfer spectroscopy [100]. All other lasers used in the experiments are locked
to the spectroscopy with various locking methods. The atom cloud preparation system in-
cludes the optics for trapping, launching, cooling and detecting atoms. The light sources
of this part are semiconductor lasers. Acousto-optic modulators (AOMs) and electro-optic
modulators (EOMs) are used to shift the frequency of the lasers for different purposes. Ta-
pered amplifiers are used to amplify the power of the lasers when needed. The coherent
manipulation system generates Bragg and Bloch beams with a Ti:Sapphire laser. AOMs are
used to shape the temporal profiles, tune the frequencies, and control the timing of the laser
beams. This part is shown in Figure 3.2.

The experimental timings are controlled by two programmable National Instrument cards
(PCI-6534 and PCI-DIO-32HS) which creates TTL signals for atom preparation and to ini-
tiate the interferometer sequence. Once the interferometer sequence starts, the separation
time between the Bragg and Bloch beams are precisely controlled by SRS DG535 and DG645
pulse generators. All frequencies of electronics, such as pulse generators and function gener-
ators, are referenced to a rubidium frequency standard which is itself stabilized to the global
positioning system.

The apparatus is mainly inherited from previous generations of researchers. One can refer
to their theses [95, 52, 29] for a detailed description about the apparatus. In the following
sections, we will focus on the experiment sequence and the coherent manipulation system.
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Figure 3.2: Experimental apparatus, including the vacuum chamber and the optical system
for generating Bragg and Bloch beams.
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3.2 Experiment sequence

Figure 3.3 shows the timing sequence used in the experiment. The whole sequence takes
2.4 seconds. It can be roughly split into three stages: atom cloud preparation (including
magneto-optical trap, atomic fountain, Raman sideband cooling, rapid adiabatic passage,
state selection and velocity section), interferometry and detection. We introduce them one
by one.

Magneto-Optical Trap Atomic Fountain

Raman Sideband Cooling

Rapid Adiabatic Passage

State SelectionVelocity Selection

 Interferometer Sequence

Fluorescence Detection

Figure 3.3: The overall experimental time sequence.

Magneto-Optical Trap

In an atom interferometer, every atom interferes with itself. The interactions between atoms
are considered as systematic effects and should be suppressed. In theory, running the ex-
periment with one atom per shot and integrating for long enough time will give us the same
result. In practice, in order to accelerate the integration, we usually trap billions of atoms
to an atom cloud and operate on all trapped atoms at one time. One standard technique
for creating an atom cloud is Magneto-optical trapping (MOT) [72]. It captures atoms
from room-temperature atom vapor using counter-propagating lasers and magnetic fields.
The atom population density in the atom cloud created by MOT usually is not very high,
and the captured atoms can still be considered as thermal atoms. This is ideal for atom
interferometry, as the interatomic potential is negligible in the atom cloud.

In our experiment, MOT happens in the first second of the sequence. Cesium atoms
are first captured from cesium vapor with a 2D MOT in a separate glass vacuum cham-
ber (not shown in Figure 3.2). This 2D MOT contains two pairs of counter-propagating
beams, which confine the motion of atoms in the transverse dimension. The resulting atom
flux in the longitudinal direction will be injected into the main MOT chamber through a
differential pumping tube and captured by a 3D MOT. The 3D MOT has three pairs of
counter-propagating beams, with one pair along the horizontal direction (x-axis), and two
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pairs forming an ‘X’ shape in the vertical plane (y-z plane), as shown in Figure 3.2. These
three pairs of beams completely confine the motion of the atoms. The quadruple magnetic
field used for the 3D MOT is generated by two big coils in an anti-Helmholtz configuration
along the x-axis. By loading atoms with two separate vacuum chambers, we can have a high
cesium partial pressure in the 2D MOT chamber for fast loading, while having a low vacuum
pressure in the main MOT chamber to reduce background scattering during interferometry.

After loading for 1 second, the 2D MOT laser beams and magnetic fields are turned off.
The large magnetic fields for 3D MOT are shut off by turning off the current in the MOT
coils. But as the MOT chamber is made of steel, the Eddy current induced by the change
of magnetic flux will last for many milliseconds. This Eddy current will cause secondary
magnetic filed, which will affect the next step of the experiment. Therefore, the laser beams
for 3D MOT are kept unchanged for another 30 ms to prevent trapped atoms from escaping
while the Eddy current is decaying. After this is done, the remaining atom cloud contains
about 109 atoms. They are in the F = 4 ground state.

Atomic Fountain

After Eddy current decays, we use the Moving Molasses technique to launch the atom cloud
[63]. The trap frequency ftrap of the MOT beams are initially 15.5 MHz red detuned from the
cesium F = 4 → F ′ = 5 D2 transition. We keep the frequency of the two horizontal MOT
beams unchanged. The frequency of the two upper MOT beams are decreased by ε, and the
frequency of the two lower MOT beams are increased by ε. Once the frequencies are shifted,
photons from the lower MOT beams are more likely to be absorbed by the atoms comparing
to photons from the upper MOT beams, as their frequency is closer to resonance. This
gives the atoms an overall upward recoil. After the atoms gaining a velocity v, the resonant
frequency of the atoms will change by ftrapv/c due to the Doppler effect. The motion of the
atoms reaches equilibrium again when the Doppler effect cancels the applied frequency shift.
Therefore, we can estimate the equilibrium launch velocity of the atom cloud from

ftrap
vlaunch√

2c
= ε, (3.1)

where vlaunch is the launch velocity of the atoms. The
√

2 comes from the fact that the upper
and lower MOT beams are 45 degrees along the vertical launch direction. In our experiment,
we set ε to 4 MHz. The trap frequency is about 252 THz for 852 nm light. This gives us a
launch velocity of about 4.8 m/s.

The atom cloud from the MOT has a theoretical Doppler temperature limit, which is 125
µK for cesium. This temperature is too high to be useful for atom interferometry experiment.
At this temperature, the thermal expansion rate of the atom cloud along the vertical direction
will outweigh the momentum differences between the interferometer’s different output ports
(which can be characterized by the recoil temperature, 200 nK for cesium). The output ports
of the interferometer will not be resolved. To further cool down the temperature of the atom
cloud, polarization gradient cooling (PGC) is applied right after moving molasses [89, 85]:
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after loading the atoms in the moving molasses for 2 ms, the laser beam intensity is lowed
by a factor of 2 and the detuning is increased. After another 1 ms, the laser beam intensity
is then ramped off adiabatically to release the atoms from the moving molasses lattices.
PGC reduces the temperature of the atom cloud to 2 µK, as measured by the time-of-flight
technique.

Note that the atom cloud has a radius about 1 mm and the MOT beam has a waist of
1.6 cm. All the steps we have talked about so far are effected by the same laser beams and
happen at about the same height. After PGC, we let the atom cloud fly into the detection
chamber for further preparation.

Raman Sideband Cooling

Despite the micro kelvin temperature achieved after PGC, the atom cloud is still not cold
enough for interferometry. In the vertical direction, the thermal expansion rate is still larger
than the momentum differences between the interferometer’s different output ports. In the
transverse dimension, since the Bragg and Bloch beams have Gaussian wavefronts, the fast
thermal expansion rate of the atom cloud will increase the intensity inhomogeneity across
the atom cloud. This will lower the driving efficiencies of the Bragg and Bloch beams, and
lower the signal-to-noise ratio. To further narrow the velocity distribution of the atoms,
Raman Sideband cooling (RSC) is applied when the atoms reach the center of the detection
chamber. For detailed theory about RSC, one can refer to the thesis [47]. RSC lasts for 2.8
ms. After RSC, the temperature of the atom cloud is measured to be around 300 nK by
time-of-flight, which is at the same level as the recoil temperature of cesium.

Adiabatic rapid passage

RSC pumps the atoms to the magnetic sensitive state F = 3, mF = 3. In order to suppress
the systematic effects associated with magnetic fields, such as the Zeeman shift, we would
want the atoms to stay in a magnetic insensitive mF = 0 state. Therefore, adiabatic rapid
passage (ARP) is applied right after RSC. ARP drives the atoms to the magnetic insensitive
state F = 4, mF = 0 with high power micro wave [56]. After that, the atoms fly into the
interferometer chamber.

State Selection

The driving efficiency of ARP is not perfect. After ARP, there are still some atoms left in
the F = 3 state. ARP also has some probability to drive the atoms to the magnetic sensitive
sub-levels of the F = 4 state. To clean out all those unwanted atoms, a sequence of state
selection pules are applied. A pulse that is resonant with the F = 3 → F ′ = 2 cycling
transition (henceforth referred to as the 3-state blow-away pulse) first removes the residual
atoms in the F = 3 state after ARP. A velocity insensitive Raman transition pulse then
drives the atoms from the F = 4, mF = 0 state to the F = 3, mF = 0 state. A pulse that is
resonant with the F = 4 → F ′ = 5 cycling transition (henceforth referred to as the 4-state
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blow-away pulse) then blows away the residual atoms in all magnetic sub-levels of the F = 4
state. With this sequence of pulses, all atoms are now in the F = 3, mF = 0 state.

The velocity insensitive Raman pulse, as well as the velocity sensitive Raman pulse for
velocity selection that we will talk about later, is generated in a similar way as the Bragg
and Bloch pulses (see Section 3.3). The differences include: the temporal profiles of the
Raman pulses are shaped to be square by AOM2 (see Figure 3.2); an EOM is used in
the frequency component which double-passes AOM4 to introduce a ∼9.19 GHz shift; the
driving frequency of this EOM as well as AOM4 are tuned either to drive velocity insensitive
or velocity sensitive Raman transitions; the intensity of all Raman pulses are tuned to be
slightly lower than maximum efficiency to prevent from over-driving.

Velocity Selection

As mentioned in the RSC subsection, the temperature of the atom cloud after RSC reaches
the level of several hundred nano kelvin, and the spread of atoms’ velocity distribution is at
the level of 1 recoil velocity vr (for cesium, vr ≈ 3.5 mm/s). This is still not narrow enough
for Bragg diffraction. Bragg diffraction requires the atoms to have a velocity distribution
narrower than 1vr along the vertical direction, so they can have similar Doppler effect,
thus similar driving efficiency. Since the velocity difference between two output ports of
an interferometer is on the order of vr, a narrower vertical velocity distribution also makes
it easier for the two outputs of one interferometer to be spatially resolved when they fall
through the detection region. Therefore, we apply a sequence of pulses to select a vertical-
velocity subgroup of atoms and discard others: a velocity sensitive Raman pulse is applied
to drive the atoms within a narrow vertical-velocity range from the F = 3, mF = 0 state
to the F = 4, mF = 0 state, a second velocity sensitive Raman pulse then drives the atoms
back to the F = 3, mF = 0 state. After each velocity sensitive Raman pulse, residual atoms
are blown away with a 3-state or 4-state blow-away beam.

After this sequence of velocity-selection pulses, there are about 107 atoms left in the
F = 3,mF = 0 state. They have a vertical velocity spread about 0.1 vr. These atoms are
ready for the interference sequence.

Inteferometry

One interference sequence consists of several Bragg diffraction pulses and Bloch oscillation
sequences. Different combinations of them will lead to different atom interferometer config-
urations. Details about the experimental realization of the Bragg and Bloch beams will be
discussed in the next section. In general, we want interference to happen as soon as possible
relative to start of the experimental sequence. As the atom cloud are thermal expanding
during the flight, applying the interference sequence earlier means the atom cloud will be
smaller when it interacts with the laser pulses. The laser intensity will be more uniform
across the atom cloud. This helps to improve the contrast. Applying the interference se-
quence earlier also allows the output ports to have more time to separate, thus makes it



CHAPTER 3. APPARATUS 35

easier for detection. This becomes more critical when there are more output ports, such as
the OSCIs that we will talk about in Chapter 5. Another thing we need to pay attention to
is, we want to avoid applying Bragg or Bloch beams when the atom trajectory reaches the
apex. At the apex, the velocity of the atoms is close to zero. The Doppler shift vanishes at
the apex, so the frequency of the up-going and down-going beams degenerate (see Section
3.3).

Detection

We detect the atoms with a pair of large 100 mm diameter, f = 100 mm lenses, which
collect the atom fluorescence and focus the light onto a 2 mm × 2 mm silicon photodetector.
Atoms are driven on the cycling F = 4, mF = 4→ F ′ = 5, mF ′ = 5 transition with circularly
polarized light. The fluorescence beam and the detector are apertured so as to detect only
the central part of the atomic cloud.

3.3 Coherent Manipulation

Ti:Sapphire Lasers

The Bragg and Bloch beams, as well as the state selection and velocity selection Raman
pulses, are generated by a MSquared SolsTis titanium:sapphire laser, which can output
up to 6 W of single-frequency 852 nm light when pumped by a Verdi V18 DPSS laser.
Historically, we use a special MSquared laser with its etalons being removed, so that it can
outputs enough power (see reference [52]). The frequency of this special MSquared laser is
stabilized with the help of a Coherent 899 titanium:sapphire laser: the Coherent 899 laser
is pumped by a Verdi V10 DPSS laser, and can output around 450 mW of 852 nm light; it
is phase-locked to the reference laser with a tuneable offset of several GHz; the output of
the Coherent 899 laser is then injected into the special MSquared laser to force stimulated
emission at the injection frequency. We have used this special MSquared laser for the α
measurement (see Chapter 4). In early 2018, after we are done with the measurement, we
replaced the special MSquared laser with a newer-version one, which can be directly phase
locked to the reference laser with a tuneable offset while outputting enough power of single
frequency 852 nm light. The new MSquared laser has been used for the OSCI experiment
(see Chapter 5), and will be used for the new α measurement in the future (see Chapter 6).

Single-frequency Bragg Beam Splitter

As discussed in Section 2.6, for a Simultaneous Conjugate Ramsey-Bordé interferometer, the
first pair of Bragg beam splitters have the frequency components ω1 and ω2, and the second
pair has frequencies ω1 and ω2 ± ωm. The first pair of Bragg beam splitters are referred
to as the single-frequency Bragg beam splitters, and the second pair as the multi-frequency
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Bragg beam splitters. Figure 3.2 shows how these frequencies are generated and applied to
the atoms.

The frequency of our spectroscopy laser is on resonant with the F = 3 → F ′ = 4 D2

transition. We denote this frequency as f3,4′ . The MSquared laser is phase-locked to the
spectroscopy with some offset. Its frequency is

fMSquared = f3,4′ + ∆− δ,

where ∆ is an offset set by a microwave generator. For the fine-structure constant measure-
ment and the OSCI experiments, this offset is set to 14 GHz. δ is a radio frequency set by a
DDS. It is around 80 MHz. To generate a single-frequency Bragg pulse, AOM1 first shapes a
Gaussian pulse in a closed feedback loop (see Thesis [52]). The driving frequency of AOM1
is 80 MHz. The Gaussian pulse is truncated at 3σ and has a total width of 14.5 µs. The
power of this Gaussian pulse is then split into two pulses by AOM2. AOM2 is driven at 180
MHz. The diffracted pulse from AOM2 is the ω2 component of the single-frequency Bragg
pulse. Its frequency thus can be calculated as

f2 = f3,4′ + ∆− δ + fAOM1 + fAOM2 = f3,4′ + ∆− δ + 260 MHz.

For the undiffracted pulse from AOM2, AOM3, which also runs at 180 MHz, is used to tune
the power of this pulse by diffracting some power into a beam dump. The remaining power
then double-passes AOM4, which shares the same frequency source as δ. The resulting pulse
becomes the ω1 component of the single-frequency Bragg beam splitter. Its frequency can
be calculated as

f1 = f3,4′ + ∆ + δ + fAOM1 = f3,4′ + ∆ + δ + 80 MHz.

With these efforts, the effective frequency of the single-frequency Bragg pulse is

ωeff = 2π(f1 − f2) = 2π(2δ − 180 MHz), (3.2)

and the average wave number

k =
k1 + k2

2
=
π

c
(f1 + f2) =

2π

c
(f3,4′ + ∆ + 170 MHz). (3.3)

The effective frequency ωeff only depends on δ. By fine tuning δ, we can make the
pulse resonant with different orders of Bragg diffractions. To compensate the Doppler effect
introduced by gravity acceleration so that the atoms see constant laser frequencies across all
Bragg and Bloch beams, we add a linear frequency ramp on top of δ during the interferometer
sequence:

δ = δ0 + Λt. (3.4)

The ramp rate Λ = g/λ ≈ 11.5 MHz/s. When δ is ramped, the averaged wave number k
doesn’t change. This makes the data analysis process a lot easier, as k is directly used to
compute h/m from the measured recoil frequency.



CHAPTER 3. APPARATUS 37

The two frequency components ω1 and ω2 are overlapped with orthogonal linear polar-
izations using a polarized beam splitter, and then delivered to the bottom of the vacuum
chamber through a single-mode optical fiber, as shown in Figure 3.2. After passing through
a quarter-wave plate, these two frequency components become oppositely circular polarized.
They then enter the vacuum chamber through the bottom mirror. Let’s denote the two
frequency components as ω1+↑ and ω2−↑ (+ or − denotes the polarization, ↑ or ↓ denotes
the direction of propagation). There is a mirror and a quarter-wave plate on the top of the
chamber. The two frequency components are retro-reflected with two passes through the
quarter-wave plate, reversing their polarizations. Therefore, the retro-reflected pulse has the
frequency components ω1−↓ and ω2+↓. Bragg diffraction only happens when the two counter-
propagating pulses have the same circular polarization, or parallel linear polarization [95]. In
our setup, only the frequency pair {ω1+↑, ω2+↓} or {ω2−↑, ω1−↓} can be used to drive Bragg
diffraction. When the velocity of the atoms are not zero, these two pairs will not be on
resonant at the same time due to Doppler effect. We fine tune δ to make {ω1+↑, ω2+↓} on
resonant with the nth-order Bragg diffraction.

Multi-frequency Bragg Beam Splitter

The multi-frequency Bragg beam splitter is generated in a similar way as the the single-
frequency one. But for the multi-frequency pulse, AOM2 is driven with with two frequencies
180 MHz ± ωm, instead of a single frequency. The frequencies of the ω2 ± ωm component
become

f2± = f3,4′ + ∆− δ + fAOM1 + fAOM2 = f3,4′ + ∆− δ + 260 MHz ± ωm.

ωm is around 2 MHz when 5th-order Bragg diffraction and 125 Bloch oscillations are used.
It is low enough so that the deflection efficiencies of AOM2 for the two frequencies are
nearly equal. The two frequencies can also be coupled into the fiber with the same coupling
efficiency. This way of generating the frequency pair ω2±ωm ensures that both components
have the same optical paths, which results in a constant intensity balance and low differential
phase noise between the two components.

Because AOM2 is driven with two frequencies, there is necessarily a beat in the detected
optical power due to interference of the two frequencies. Therefore, the undeflected order
from AOM2 also has a beat due to energy conversation. This will introduce unwanted
sidebands on the ω1 component of the Bragg pulse. To solve this problem, AOM3 is driven
with the same frequency as AOM2 but with a phase that is shifted by 90 degrees. When
the transmitted optical power from AOM2 reaches a maximum, the RF power of AOM3 is
tuned so that AOM3 will deflects the excess power into the beam dump. Figure 3.4 shows
the temporal profile of the ω1 frequency component of a multi-frequency Bragg beam splitter.
It is detected by placing a photo detector after AOM3. While it is very close to a Gaussian
pulse, we can still observe some residual modulation at the peak of this pulse.

For all Bragg beam splitters in a Simultaneous Conjugate Ramsey-Bordé interferometer,
we adjust the RF power of AOM2, AOM3 and AOM4, so that all pulses have about the
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Figure 3.4: The ω1 frequency component of a multi-frequency Bragg beam splitter. It is
detected by placing a photo detector after AOM3.

same optical power in the ω1 component, and the same optical power in the ω2, ω2 + ωm
and ω2−ωm components. This ensures that the four Bragg beam splitters have roughly the
same π/2 intensity.

Bloch Oscillations

The way of generating a Bloch oscillation sequence is very similar to the way of generating
a multi-frequency Bragg beam splitter. For the Bloch oscillation sequence, AOM1 generates
a trapezoid pulse, instead of a Gaussian pulse. The trapezoid pulse has a 100 µs rising edge
for adiabatically loading the atoms into the optical lattice when Bloch oscillation begins,
and a 100 µs failing edge for adiabatically unloading when Bloch oscillation ends. The
duration for a single Bloch oscillation is TB = 66.3556 µs. The total duration of an Nth-
order Bloch oscillation sequence is NTB, including the rising and falling edges. When 200
Bloch oscillations are used, the sequence lasts more than 13 ms. AOM2 and AOM3 run at
the frequency of 180 MHz ± ωb during a Bloch oscillation sequence, where ωb ramps from
4nωr to (4n+ 8N)ωr (see Section 2.6).
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Chapter 4

Fine Structure Constant
Measurement

4.1 Overview

Phase Formula

Figure 4.1 shows the interferometer geometry that we used for the α measurement. The
theory of this geometry is introduced in Section 2.6; the experimental realization of Bragg
and Bloch beams is discussed in Section 3.3. The overall differential phase between the upper
and lower interferometers is given by [95]

Φd = −2nTωm + 16n(n+N)ωrT + Φγ + Φδk + Φseparation + Φ0, (4.1)

where n is the Bragg diffraction order; N is the number of Bloch oscillations; T is the
pulse separation time (see Figure 4.1); ωm is the frequency modulation applied to the last
two Bragg beam splitters; ωr is the recoil frequency that we want to measure; Φ0 is the
diffraction phase from Bragg beam splitters. Higher order effects Φγ, Φδk and Φseparation are
introduced below.

The two simultaneous Ramsey-Bordé interferometers are at different heights. The lo-
cal gravity they measure are slightly different. Therefore, Φd includes a term Φγ which is
proportional to the acceleration gradient,

Φγ =
4

3
γnωrT

[
n
(
2T 2 + 3TT ′2 + 3(T ′21 + T ′22 )

)
(4.2)

+2N
(
T 2 + 3T

(
T ′2 −

NTB
2

)
+ 3T ′2(T ′2 −NTB) +

(
N2 − 1

4

)
T 2
B

)]
.

Here TB is the duration of a single Bloch oscillation; T ′1 and T ′2 are separation times defined
in Figure 4.1; γ is the local acceleration gradient, such as the gravity gradient.
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Figure 4.1: Simultaneous conjugate Ramsey-Bordé atom interferometers with Bloch oscilla-
tions. Solid lines denote the atoms’ trajectories; dashed lines represent laser pulses driving
Bragg diffractions; yellow band represents laser beams for Bloch oscillations. |n〉 denotes a
momentum eigenstate with momentum 2n~k. Gravity is neglected in this figure. A to D
are the four output ports. Bragg pulses have Gaussian temporal profiles. Bloch oscillation
beams have trapezoid temporal profiles.

For the third and fourth beam splitters, the effective wave-vectors addressing the upper
and lower interferometers differ by ωm/c. This difference results in a phase shift

Φδk =
gnT (3T + 2T ′1 + 2T ′2)ωm

c
− 4n2ωrT

ωm
ωL

, (4.3)

where ωL = (ω1 + ω2)/2 is the average laser frequency.
As mentioned in Section 2.6, the two interferometers are not fully closed at the moment

of the last Bragg beam splitter. Therefore, there is a separation phase shift Φseparation that
depends on the initial velocity of the atom

Φseparation = −2nTωmv0

c
. (4.4)

Finally, due to the multi-port nature of Bragg diffraction, Φd includes the diffraction phase
Φ0 from Bragg beam splitters. Here Φ0 will be treated as a constant. Higher order variations
on the diffraction phase will be treated as systematic effects, and considered separately.
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The acceleration gradient γ in Equation 4.1 has been measured in situ from an indepen-
dent experiment (see Section 4.5). For a specific setting of k (or ωL), n, N , T , T ′1, T ′2 TB, and
ωm, once Φd is measured, the only unknowns in Equation 4.1 are ωr and Φ0. To determine
ωr, we can scan the pulse separation time T . At every T , we measure Φd, and calculate the
theoretical value of ωm that would lead to zero Φd. This theoretical ωm is then fitted as a
function of T . ωr and Φ0 will be determined as the fitting parameters.
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Figure 4.2: Fluorescence observed at n = 5, N = 125, T = 5 ms. The four outer peaks
correspond to the four output ports A to D of the interferometers (see Figure 2.8) . Atoms
left behind by Bloch oscillations form the central peaks; they do not contribute to the
measurement.

We use a technique called ellipse fitting to extract the differential phase between the two
simultaneous conjugate interferometers [33, 31].

After interference, the wave functions of the four output ports will fall through the
detection beam one by one. The fluorescence signal is then recorded. Figure 4.2 shows the
typical signal we observe when 5th-order Bragg beam splitters and 125 Bloch oscillations
are applied. Peak A and B are from the upper interferometer, and peak C and D are from
the lower interferometer (see Figure 2.8). Atoms left behind by Bloch oscillations form the
central peaks; they do not contribute to the measurement. As mentioned in Section 2.1, the
normalized signal from the two output ports of an interferometer is a sinusoidal function
of the phase that the interferometer measures. In our scenario, the signals that we can get
from the two interferometers are

x =
C −D
C +D

= Cx · cos(Φc +
Φd

2
) +Ox, (4.5)

y =
A−B
A+B

= Cy · cos(Φc −
Φd

2
) +Oy. (4.6)
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Here x and y are the signals, Cx and Cy are the contrasts, Ox and Oy are the offsets. Φc is
the common-mode phase of the two interferometers. Φd is the differential phase between the
two interferometers, given by Equation 4.1.

If Φc is constant, then only one interferometer is needed to measure Φd: one can scan
Φd by adding a modulation δωm to ωm; this will trace out an oscillating fringe; by fitting
the fringe to a cosine function, one can determine Φd at δωm = 0. In reality, as discussed in
Section 2.6, Φc is sensitive to vibration. Without stabilizing the top retro-reflection mirror,
Φc fluctuates more than π radians per shot, washing out the fringe. Therefore, we use ellipse
fitting to read out Φd instead: we plot the signal from the upper interferometer against the
signal from the lower interferometer; vibration will trace out an ellipse; from the shape of
the ellipse, we can determine Φd.

Figure 4.3 demonstrates the ellipse fitting technique. The normalized signal from the
lower (x) or upper (y) interferometer varies shot by shot due to vibration. It has no apparent
interference pattern. But due to the correlation between the two signals, plotting x against
y will trace out an ellipse. To understand that, we just need to cancel the common mode
phase Φc in Equation 4.6. x and y are related as

1

C2
x

x2 − 2 cos Φd

CxCy
xy +

1

C2
y

y2 +

(
2Oy cos Φd

CxCy
− 2Ox

C2
x

)
x+

(
2Ox cos Φd

CxCy
− 2Oy

C2
y

)
y (4.7)

+

(
O2
x

C2
x

+
O2
y

C2
y

− 2OxOy cos Φd

CxCy
− sin2 Φd

)
= 0.

Equation 4.7 has the form of an ellipse function:

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0. (4.8)

With enough data points, we can fit these coefficients a1 - a6. Φd then can be calculated as

Φd = cos−1

(
−a2

2
√
a1a2

)
(4.9)

We can also compute the contrasts:

C2
x =

4a3(a6(a2
2 − 4a1a3) + a3a

2
4 + a1a

2
5 − a2a4a5)

(a2
3 − 4a1a3)2

(4.10)

C2
y =

4a1(a6(a2
2 − 4a1a3) + a3a

2
4 + a1a

2
5 − a2a4a5)

(a2
3 − 4a1a3)2

(4.11)

To fit these coefficients, one may think we just need to minimize the residual sum
of squares ||Da||2, where a = [a1, a2, a3, a4, a5, a6]T is the vector of coefficients that we
want to optimize; D = [x1,x2, · · · ,xn]T is a matrix consisting of measured data xi =
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Figure 4.3: Ellipse fitting. x is the normalized signal from the lower interferometer; y is the
normalized signal from the upper interferometer. Due to vibration, these signals have no
apparent interference patterns. However, plotting x against y will trace out an ellipse. From
the shape of the ellipse the differential phase can be determined.

[x2
i , xiyi, y

2
i , xi, yi, 1]T . But this will lead to a trivial solution a = 0. To avoid this prob-

lem, we impose a constraint 4a1a3 − a2
2 = 1, or in the matrix form aTCa = 1, where

C =


0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

In summary, the coefficients of the ellipse can be fitted by solving a constrained optimization
problem:

mina ||Da||2 (4.12)

s.t. aTCa = 1



CHAPTER 4. FINE STRUCTURE CONSTANT MEASUREMENT 44

Note that ||Da||2 = aTDTDa. Using a Lagrange multiplier λ, the above equation can be
simplified as

DTDa− λCa = 0. (4.13)

λ and a are the eigenvalue and eigenvector of the equation and can be solved easily. There
are usually multiple eigen-solutions to this equation. It has been proved that the eigenvector
with the negative eigenvalue is the best fit for a [31].

Phase Measurement

As mentioned in Section 2.6, the resonant condition for the third and forth Bragg beam
splitters is ωm = 8(n + N)ωr. We don’t know ωr accurately before the measurement (that
is why we need to run the experiment!). However, we can approximate ωr with the value of
the Planck constant ~, the cesium mass in the atomic mass unit mCs/u, and the value of the
atomic mass unit u. ωm then can be calculated as:

ωm = 8(n+N)ω̃r = 8(n+N)
~k2

2(mCs/u)u
. (4.14)

The tilde symbol above ωr is to denote that it is a calculated value. Due to historical reasons,
we used the CODATA 1998 recommended values [58], where ~ has an uncertainty of 78 ppb,
and u has an uncertainty of 79 ppb (the uncertainty of mCs/u is negligible compared to
these values). The value of k used in the above equation is also a theoretical value defined
by our spectroscopy. It is slightly different from the true value (see Section 4.5). In short,
ω̃r calculated in this way has a large uncertainty. But it is close enough to calculate a value
for ωm that will make the interferometers work.

One problem with the ωm calculated in the above way is that Φd will be close to zero,
since the term −2nTωm almost cancels the term 16n(n+N)ωr in Equation 4.1. The signals
x and y that we can get from the two simultaneous interferometers will be roughly co-linear
(see Equation 4.6). If we plot x against y, we will get a diagonal line, instead of a circle.
Simulations have shown that when Φd deviates from π/2, the fitting error from ellipse fitting
will increase. In the extreme case when Φd is close to 0, the ellipse fitting algorithm would
fail to get an accurate phase [52]. To solve this problem, we add additional modulations
±δωm to ωm, where

δωm =
π

4nT
. (4.15)

Replacing ωm with ωm±δωm in Equation 4.1, the differential phase we can measure becomes

Φd± = 2nTδωm ∓
[
gnT (3T + 2T ′1 + 2T ′2)

c
− 4n2ωrT

ωL

]
δωm ∓ Φd (4.16)

=
π

2
∓
[
gnT (3T + 2T ′1 + 2T ′2)

c
− 4n2ωrT

ωL

]
δωm ∓ Φd.
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The second term in the above equation comes from the change in Φδk. Note the phase we
measure with the ellipse fitting technique is always positive. As the second and third terms
in Φd± are small, Φd± will be close to π/2. Figure 4.3 shows an ellipse with the +δωm
modulation at T = 5 ms, n = 5 and N = 125. The ellipse with the −δωm modulation looks
very similar. Having Φd+ and Φd−, Φd can be calculated as

Φd =
Φd− − Φd+

2
. (4.17)

4.2 Data Collection

In the experiment, we use 5th-order Bragg diffractions as beam splitters (n = 5), and usually
apply 125 - 200 Bloch oscillations (N = 125− 200). Our laser beam is roughly 14 GHz blue
detuned from the cesium F = 3→ F ′ = 4 D2 line. We fix the timing of the second and third
Bragg beam splitters as well as the start of Bloch oscillations in the experiment sequence:
the second Bragg pulse happens at 1.32 s in the sequence; T ′1 = 5 ms, T ′2 = 15.3727 ms. The
duration of a single Bloch oscillation TB is also fixed: TB = 66.3556 µs. T usually varies
from 5 ms to 80 ms, as long as we have enough contrast for ellipse fitting.

Before taking data, the frequency and power of the laser beams need to be optimized.
As mentioned in Section 3.3, in the experiment, the center frequency of the two counter-
propagating beams ωL = (ω1 +ω2)/2 (see Figure 4.1) is fixed. We have the degree of freedom
to tune the difference between these two frequencies δω = ω2 − ω1. δω mainly affects the
diffraction phase. δω is thus optimized to minimize the total measured differential phase Φd

at T = 40 ms (the center of the range of T values). The power of the Bragg beam is usually
optimized by maximizing the contrast of the ellipse at T = 40 ms. The power of the Bloch
oscillation beam is tuned to the point where the efficiency is maximized.

Once the frequency and power of the laser beams is fine tuned, we start taking data.
The data taking procedure works as follows: We choose several different T values in the
range from 5 ms to 80 ms. At every T , we alternate between the setting of ωm + δωm and
ωm− δωm for 30 times. This gives us two ellipses, each of which contains 30 data points. Φd

at that T then can be obtained with the ellipse fitting technique and using the Equation 4.17.
Measuring the Φd for all chosen T values yields one “run” of the experiment. This process
was repeated until the system was interrupted due to, e.g. the spectroscopy was unlocked.
This yields one “measurement” of h/mCs (equivalently, α). One measurement usually lasts
roughly for one day. The final result is an weighted average of several measurements. Details
about how h/mCs is computed will be discussed in the next section.

Figure 4.4 shows the measurements we performed to determine α. There are 28 measure-
ments in total, collected from December 2016 to July 2017. In each measurement, only one
Bloch oscillation order N was used. In order to control the systematic effects depending on
N and T , different choices of N ’s and T ’s have been used for different measurements. This
information is summarized in Table 4.1. The final result is obtained by weighted averaging
all these measurements. The overall statistical uncertainty is 0.16 ppb. The reduced χ2 for
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the combined data is 1.2, with a p-value of 0.2, indicating that the data follows a normal
distribution.

While the signal-to-noise ratio of our experiment would allow us to reach a 0.2-ppb
precision in less than one day, our data were collected over the course of seven months.
During the measurement campaigns, we have taken extensive data to suppress and control
systematic effects. We have also realigned the system several times for best performance. For
example, we would adjust the polarization and power balance of the MOT beams to make
sure the atom cloud is launched straight up; we would fine tune the position and pointing
of the bottom fiber port to make sure the atom cloud is always at the center of the laser
beams; we would also adjust the top retro-reflection mirror so that the reflected laser beams
can be back-coupled to the bottom fiber port. All these efforts have allowed the system to
maintain its best sensitivity.
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Figure 4.4: Data sets used in the determination of α. The pink band represents the overall
±1σ statistical error. The reduced χ2 for the combined data is 1.2, with a p-value of 0.2. ᾱ
is the weighted average of the measurements. Error bars indicate 1σ uncertainty.

4.3 Data Analysis

To extract the value of h/mCs from one measurement of data, we process the data twice. In
the first pass, we filter out the outliers. In the second pass, we calculate h/mCs as well as its
uncertainty.
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Index Date N T (ms) # of runs

1 161213 125 10, 40, 70 46
2 161214 150 5, 10, 20, 40, 60 28
3 161215 200 5, 10, 20, 30 67
4 161221 200 5, 10, 20, 30 79
5 161222 200 5, 10, 20, 30 18
6 170102 125 5, 10, 20, 40, 60, 75 89
7 170103-0 125 5, 10, 20, 40, 60, 75 18
8 170103-1 125 5, 10, 20, 40, 60, 75 50
9 170104 125 5, 10, 20, 40, 60, 75 45
10 170105 125 5, 10, 20, 40, 60, 75 45
11 170109 125 5, 10, 20, 40, 60, 75 35
12 170110 125 5, 10, 20, 40, 60, 75 41
13 170311 125 5, 10, 20, 40, 60, 70 29
14 170313 125 5, 10, 20, 40, 60, 70 11
15 170327 125 10, 40, 60 144
16 170328 125 10, 40, 60 56
17 170329 125 10, 40, 60 53
18 170330 125 10, 40, 60 49
19 170404 125 5, 10, 20, 40, 60, 70 89
20 170405 125 5, 10, 20, 40, 60, 70 13
21 170406 125 5, 10, 20, 40, 60, 80 19
22 170602 125 5, 10, 20, 40 64
23 170603 125 5, 10, 20, 40 115
24 170607 125 5, 10, 20, 40, 60, 70 33
25 170609 125 5, 10, 20, 40 135
26 170610 125 5, 10, 20, 40 33
27 170611 125 5, 10, 20, 40, 60, 80 68
28 170612 125 5, 10, 20, 40, 60, 80 7

Table 4.1: Settings of each α measurement.
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First Pass

After neglecting the higher order effects Φγ, Φδk and Φseparation, we can rewrite Equation 4.1
as

ω′m =
Φ0

2nT
+ 4(n+N)k2 ~

mCs

, (4.18)

where ω′m = ωm + Φd/(2nT ) can be viewed as a theoretical value that would lead zero
measured phase. We see that ω′m has a linear relationship with 1/T . The slope of this linear
relationship is Φ0/(2n), and the intercept 4(n + N)k2~/mCs. As mentioned in last section,
each run of experiment includes several different T ’s. By linearly regress ω′m on 1/T , we can
get (~/mCs)i and (Φ0)i for each run (i denote the ith run in one measurement). We then
compute the standard deviation σ of the values of ~/mCs from all runs. Runs with results
which are 3σ away from the mean are viewed as outliers and will be filtered out.

Second Pass

Now including the higher order effects, Equation 4.1 can be rewritten as

ω′m =
Φ0

2nT
+ λ

~
mCs

, (4.19)

where

ω′m =
[
1− g(3T + 2T ′1 + 2T ′2)

2c
+
v0

c

]
ωm +

Φd

2nT
, (4.20)

and

λ = 4(n+N)k2 +
k2

3
γ
[
n
(
2T 2 + 3TT ′2 + 3(T ′21 + T ′22 )

)
(4.21)

+2N
(
T 2 + 3T

(
T ′2 −

NTB
2

)
+ 3T ′2(T ′2 −NTB) +

(
N2 − 1

4

)
T 2
B

)]
− nk2ωm

ωL
.

~/mCs and Φ0 can be fitted from our data using this equation. In the fitting, we assume
each run of experiment has a different diffraction phase Φ0 (as the various experimental
parameters may drift slowly over time), but the value of ~/mCs is the same through out the
whole measurement. Two different algorithms have been used to solve the problem. One is
a Levenberg-Marquardt algorithm [66]. The other is weighted linear regression. The results
from these two methods agree with other.

For the weighted linear regression method, we minimize the weighted residual sum of
squares

K∑
i=1

L∑
j=1

((Φ0)i
2nTj

+ λi,j
~
mCs

− (ω′m)i,j

)2

/σ2
j . (4.22)

The subscript i denotes the ith run in the measurement, and the subscript j denotes any
quantities related to the jth T in one run. There are K runs in total, each of which contains
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L different T ’s. The weight σj is the standard deviation of (ω′m)i,j from all runs at Tj. σj
can be interpreted as the uncertainty of the measured ωm at Tj. In the matrix form, the
problem can be stated as

minu ||Cu− Ω||2, (4.23)

where u is a (K + 1) vector: the first element u1 = ~/mCs, other elements ui+1 = (Φ0)i; Ω
is a K · L vector: Ω(i−1)·L+j = (ω′m)i,j/σj. C is a (K · L)× (K + 1) matrix: the first column
C(i−1)·L+j,1 = λi,j/σj; other columns contain zeros except for C(i−1)·L+j,j+1 = 1/(2nTjσj).
The best estimation of u can be solved as

ũ = (CTC)−1CTΩ, (4.24)

with the fitted ~/mCs being the first element of ũ. The uncertainty of ũ is

βu =

√
||Cũ− Ω||2
K · L− 2

diag((CTC)−1). (4.25)

The uncertainty of the fitted ~/mCs is the first element of βu.
Once we have computed the values and uncertainties of ~/mCs from all measurements,

the final result is an average of all measurement results weighted by their variance

~
mCs

=
∑
l

(~/mCs)l
σ2
l

/∑
l

1

σ2
l

. (4.26)

The final statistical uncertainty is

σ2
stat = 1

/∑
l

1

σ2
l

. (4.27)

Here the subscript l denotes the lth measurement.
In Equation 4.20, the wave vector k should be a corrected value. The correction comes

from the frequency comb measurement, alignment correction, and wavefront correction in-
cluding the Gouy phase and the small scale wavefront distortions. We will talk about them
in detail in the systematic effect section.

We performed the data-taking and analysis blind, so that our result would not be in-
fluenced by the knowledge of how ours compared to those of previous measurements. To
achieve this, the frequency (equivalently, k) calibration of the reference laser versus spec-
troscopy laser power was given to Prof. Rana Adhikari, who added a random offset in the
range -1 MHz to +1 MHz, and obfuscated this blinded calibration in a Matlab p-code that
prevented us from deciphering the random offset. This allowed us to work without knowl-
edge of the exact laser frequency (i.e. ‘blind’) to within a +/- 3 ppb window. After all the
data was taken and analyzed, Prof. Adhikari provided the random offset to ‘unblind’ the
result, which was then submitted for publication with no further modifications, other than
the correction of a typo in the phase calculation and the addition of an analysis of the effect
of small-scale intensity variations on the Bragg beam (see Section 3).
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4.4 Statistical Sensitivity

The overall uncertainty σtotal of α is a combination of the statistical uncertainty σstat and
the systematic uncertainty σsys:

σtotal =
√
σ2

sys + σ2
stat. (4.28)

σsys will be discussed in the next section. The way we calculate σstat is discussed in last
section. σstat roughly scales with

σstat ∼
1

CΦtotal

√NTint

, (4.29)

where C is the contrast of the signal, Φtotal is the total measured phase, N is the atom
population in one shot and Tint is the integration time. We see that σstat scales with 1/

√
Tint.

In order to reduce the statistical uncertainty by a factor of 10, the data-taking time will have
to be 100 times longer. To integrate σstat down faster (equivalently, improve the sensitivity
of the experiment), we need to increase the total phase Φtotal or the contrast C.

For our experiment, Φtotal can be calculated from Equation 4.19 as

Φtotal = 2nω′mT ≈ 16n(n+N)ωrT. (4.30)

It scales quadratically with the Bragg order n when N = 0. By using 5th-order Bragg
diffraction as beam splitters, we increase Φtotal by a factor of 25 compared to the standard
two-photon Raman transition. At the current detuning level, this number is limited by the
output power of the laser.

Φtotal can also be increased by using a longer pulse separation time T . The maximum T
we can achieve is usually limited by the contrast of the ellipse. Figure 4.5 shows the typical
ellipses we observe at various T ’s when 125 Bloch oscillations are applied. We can see that
as T increases, the contrast of the ellipse decreases. When T goes from 5 ms to 80 ms, the y
(signal from the upper interferometer) contrast decays from 33% to 21%, and the x (signal
from the lower interferometer) contrast decays from 26% to 17%. This decay in contrast can
be explained from two aspects. Firstly, our laser beams have roughly Gaussian wave fronts.
The intensity is lower at the position that is further away from the center of the beam. Due
to the thermal expansion of the atom cloud during the flight, the laser intensity that the
atoms experience will change. Therefore, the driving efficiencies of the four Bragg pulses are
not uniform. Using a longer T will increase this nonuniformity, as the atom cloud expands
more between the four Bragg pulses. Secondly, as T is increased, distortions in the wave
fronts of the Bragg and Bloch beams (which originate from the same fiber port) will result
in spatially varying ac Stark shifts that lead to decoherence. The distortions can be caused
by diffraction from obstructions such as dust on optics or viewports, the circular aperture of
the fiber port, and the inner wall of the vacuum system. The ellipses we are showing here
are taken with the ac Stark compensation beam (see below). Without the compensation
beam, this decay in contrast will be even more severe.
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Figure 4.5: Interference ellipses at different T ’s when N = 125.
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Figure 4.6: Interference ellipses at different T ’s when N = 200.
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Figure 4.7: Fluorescence signals of the atom clouds as they fall through the detection region,
after the interferometer sequence, for varying number N of Bloch oscillations, measured with
fixed laser power and acceleration of the atoms during Bloch oscillations. For visibility, a
vertical offset has been applied to each trace. The four outer peaks correspond to the four
output ports A to D of the interferometers. Atoms left behind by the Bloch oscillations form
the central peaks. T = 5 ms for these data sets.
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Another way to increase Φtotal is to apply more Bloch oscillations. We have achieved up
to N = 200 Bloch oscillations in our experiment. The relative velocity between the output
ports A and B in Figure 4.1 reaches 2.9 m/s (830 recoil velocities, 1 recoil velocity of cesium
D2 transition is about 3.5 mm/s) at this setting. However, using a higher Bloch oscillation
order will deteriorate the contrast, and lower the maximum T we can achieve. Figure 4.6
shows the typical ellipses we observe when 200 Bloch oscillations are applied. At T = 60
ms, the ellipse is barely visible. This is because, when more Bloch oscillations are used, the
signal-to-noise ratio will decrease dramatically due to various loss mechanisms, such as single
photon scattering and Landau–Zener tunneling. Figure 4.7 shows the fluorescence trace we
observe when different number of Bloch oscillations are applied. When higher-order Bloch
oscillations are applied, the signal size is much smaller. As atoms stay in the optical lattices
of Bloch oscillation beams longer, the decoherence from the spatially varying ac Stark shifts
also becomes more severe.

To suppress decoherence from ac Stark shifts, we apply a beam from the same fiber port as
the Bragg and Bloch beams, with the same intensity but the opposite single-photon detuning,
as suggested in [49]. This beam is single frequency, does not satisfy Bragg resonance, and
does not drive Bragg transitions. This beam compensates for the variable ac Stark shifts,
and improve the contrast at large T . Figure 4.8 shows the contrasts of the ellipses we observe
with and without the compensation beam when N = 125 Bloch oscillations are applied. At
lower T ’s, the contrast is lowered by the compensation beam, as the compensation beam
introduces additional single photon scattering. But at higher T ’s, the compensation beam
increases the contrast. Loss of contrast with increasing pulse separation time and Bloch
order used to limit us to N ∼ 75 Bloch oscillations at T = 80 ms pulse separation time.
With the help of the compensation beam, we are able to get useable contrast at an increased
Bloch order of N = 125 at T = 80 ms or N = 200 at T = 60 ms, as shown in Figure 4.5 and
4.6.

Additional methods have been used to improve the sensitivity of the apparatus. For
example, we steer the Bragg beam directions to undo Earth’s rotation, thus zero the Coriolis
effect on the atoms [53]. Beams from a step-index optical fiber have substantial non-Gaussian
intensity tails [84], which will be reflected from the vacuum chamber wall, interact with the
atoms and cause decoherence and systematic shifts. To suppress this effect, beams for Bragg
diffraction as well as Bloch oscillations first pass through an apodizing filter before they
enter the vacuum chamber, as shown in Figure 3.2. Taken together, these efforts allow us to
demonstrate more than 12 million radian measured phase and set a record for Ramsey-Bordé
interferometers.
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Figure 4.8: Contrast in the interferometer as a function of the pulse separation time T is
increased, after the addition of the apodizing filter, for N = 125. Data with (blue, solid line)
and without (red, dashed line) ac Stark compensation is shown.

4.5 Systematic Effects

Error Budget

Table 4.2 gives an overview of the systematic effects that we have considered. The total
systematic uncertainty is controlled at 0.12 ppb level. Many systematic effects like the laser
frequency, acceleration gradients caused by gravity and magnetic fields, beam alignment,
density shifts, index of refraction from hot and cold atoms, and the Sagnac effect are com-
monly known in atom interferometers [20]. We also include the systematic effects which have
not been considered before, such as the speckle phase shift, thermal motion of atoms, and
parasitic interferometers. We will introduce them one by one.

Laser Frequency

The frequency of the reference spectroscopy is monitored using a femtosecond optical fre-
quency comb (Menlo systems). Variations in the laser power used for the reference spec-
troscopy will result in correlated variations in the lock frequency. We therefore monitor this
laser power and apply a dynamical correction to the laser frequency. The long-term stabil-
ity of this approach has been found to be better than 10 kHz, which results in a 0.03 ppb
uncertainty in α [52].
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Effect Direct Measured Value δα/α (ppb)

Laser frequency f = 351.74507211 THz -0.24±0.03
Acceleration gradient γ = (2.256± 0.014)× 10−6 s−2 -1.79±0.02
Gouy phase N/A -2.60±0.03
Beam alignment N/A 0.05±0.03
Bloch Oscillation light shift N/A 0±0.002
Density shift N/A 0±0.003
Index of refraction N/A 0±0.03
Speckle phase shift N/A 0±0.04
Sagnac effect N/A 0±0.001
Modulation frequency wave-
vector

N/A 0±0.001

Thermal motion of atoms N/A 0±0.008
Non-Gaussian waveform N/A 0±0.03
Parasitic interferometers N/A 0±0.03
Total systematic error N/A -4.58±0.12
Statistic error h/mCs = 3.0023694721×10−9 m2/s ±0.16

Other studies
Electron mass [57] me = 5.4857990907× 10−4 u ±0.02
Cesium mass [8] mCs = 132.9054519615 u ±0.03
Rydberg constant [57] R∞ = 1.0973731568508× 107 m−1 ±0.003

Combined results
Total uncertainty in α α−1 = 137.035999046 ±0.20

Table 4.2: Error budget of the fine-structure-constant measurement. The laser frequency is
the theoretical value without frequency comb calibration. u is the atomic mass unit.
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Figure 4.9: Gradiometer Geometry. The interferometer geometry used to measure the gravity
gradient. Figure is taken from [66].

The measured phase depends on the acceleration gradient γ, see Equation 4.2. We
measure γ in situ using a gradiometer consisting of two vertically separated Mach-Zehnder
interferometers [95], as shown in Figure 4.9. The differential phase of this configuration is

∆Φγ = 8nωrγT
2[N(2T −NTB + 2T ′2) + n(T + T ′1 + T ′2)] +

8gn(n+ 2N)T 2ωr
c

, (4.31)

where T , T ′1 and T ′2 are separation times defined in Figure 4.9. We take data at N = 125,
T ′1 + T ′2 = 50 ms, with T varying between 60 and 100 ms. γ is measured to be γ =
(2.256± 0.014)× 10−6 s−2.

We also consider the effect of second-order variations of gravity, the gradient of the
gradient. This will be dominated by the local mass distribution, particularly the M ∼
15 kg detection chamber below the atom interferometer. As the atoms are never closer
than r = 40 cm from the detection chamber, we can calculate the gradient to be at most
2GM/r3 = 2.9 × 10−8 s−2 at the closest approach of the atoms, decaying rapidly with
distance. If the atom interferometer measuring α and the gravity gradiometer are sensitive
to the gradient at the same effective location, this cancels out between the two measurements,
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but these locations differ by 5 cm. (Additional suppression is provided by the fact that this
extra gradient drops sharply with distance; we will not consider this.) This results in a
contribution of 0.01 ppb, which is added in quadrature to the error from the gradiometer
measurement for an overall uncertainty of 0.02 ppb. Objects further away have even smaller
influences that we neglect. For example, 1000 kg at r = 2 m (the optical table weighs about
700 kg) lead to 0.003 ppb and 6× 103 kg (an estimate for the weight of (2.5 m)2 of the floor)
at 2.5 m to 0.002 ppb.

The effects of magnetic fields can be fully accounted for as a contribution to the acceler-
ation gradient. Our atoms are in the F = 3, mF = 0 state and only experience a quadratic
Zeeman shift of about β = +213 Hz/G2. The magnetic field in the interferometer region can
be modeled as a polynomial B(z) = B0 + B′z + B′′z2+... The corresponding energy shift
changes the Lagrangian for the atoms by

LB =
g2
Jµ

2
B

4∆Ehfs

B2(z) ≈ ~β[B2
0 + 2B0B

′z + (B′2 + 2B0B
′′)z2]. (4.32)

The B2
0 term is common mode to all arms of the interferometer and can be ignored. Com-

paring this Lagrangian to the one due to gravity, L = p2/(2m) − mgz + mγz2/2, shows
that the term linear in z is similar to the one caused by a linear gravitational potential
and cancels out between the two interferometers. The term proportional to z2 causes an
acceleration gradient and can be absorbed into the gravity gradient term by substituting
γ → γ+2β(B′2 +2B0B

′)/m. By applying gravity gradient corrections from the gradiometer
measurements, we have already dealt with these magnetic gradients.

As an independent verification of this approach, data on the fine structure constant was
taken with bias B-fields of 0.38 G and 3.7 G, with the resulting recoil frequencies consistent
with each other to within 1σ (1.4 ppb). This puts an upper-bound on any systematic due
to magnetic fields at the smaller bias field at 0.014 ppb, which is further reduced after the
acceleration gradient is measured and taken out.

Gouy phase

While a plane electromagnetic wave at frequency ω has a wave-vector of exactly k = ω/c,
inhomogeneities of the laser intensity will lead to shifts of the wave-vector k as

δk =
1

2k
Re

(∇2
TE

E

)
, (4.33)

where E is the electric field and ∇2
T = ∂2

∂x2 + ∂2

∂y2 the transverse Laplace operator for a beam
propagating along the z−axis. Since the photon momentum is proportional to k, the change
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in k will shift our measured phase by [95]

ΦGouy = 4n2ωrT
δk↑2 + δk↓2

k
+ 2n2ωrT

δk↑3l + δk↓3l + δk↑3u + δk↓3u
k

(4.34)

+ 4nNωrT
δk↑Bl + δk↓Bl + δk↑Bu + δk↓Bu

k
+ 4n(N + n)ωrT

δk↑4l + δk↓4l + δk↑4u + δk↓4u
k

+ 2nωr(nT
′
1 + nT ′2 + 2NT ′2)

δk↑4l + δk↓4l + δk↑4u + δk↓4u − δk↑3l − δk↓3l − δk↑3u − δk↓3u
k

+ 8nNωrT
′
1

δk↑2 + δk↓2 − δk↑1 − δk↓1
k

,

where k1, k2, k3, k4, kB represents wave-vectors of the four Bragg pulses and the Bloch
beam. The superscript ↑ or ↓ indicates the up-going or down-going beam. The subscript u
or l indicates the upper or lower interferometer. If E has a Gaussian profile, Equation 4.33
reproduces the usual Gouy phase of a Gaussian beam.

Our laser beam profiles deviate from Gaussian profiles, because they are delivered using
a step-index optical fiber and sent through an apodized filter. Imperfection of optics will
also lead to small-scale intensity variations on the wavefronts. These small-scale intensity
fluctuations do not average out completely, since the probability P (I) of an atom to take part
in the interference is a function of the local beam intensity I. In particular, the efficiency of
Bloch oscillations rises sharply with intensity near a threshold intensity Ic [9].

To characterize the shift in α due to the Gouy phase, we construct a 3D Monte Carlo
simulation which uses actual beam profiles as inputs. The beam profiles are measured with
a CCD camera. For each atom position (corresponding to a specific Bragg or Bloch pulse),
two images are taken (one for the up-going beam and one for the down-going beam). At each
position 10 images are recorded and averaged, and there are 10 positions in total. Fig. 4.10
shows a typical raw image that we recorded. The Monte Carlo is similar to the one described
in [65]. It evaluates the motion of a single atom as it interacts with each pulse, calculating
not only the complex amplitude for each relevant momentum state, but also the local Gouy
phase experienced by the atom at each pulse. The images are filtered using a 5x5 pixel
average to suppress the effect of pixel noise (this filter is chosen to match the experimentally
observed contrast). The overall Gouy phase shift can be analyzed to be (−2.60± 0.03) ppb
in α. The error bar is determined by running the Monte Carlo with different images, and
finding the histogram of the resulting shifts in α.

Small-scale Intensity Variations

We can verify the scale of the effect of small-scale variations on the beam in two ways: first,
with an analytic calculation, and second, by experimental data. For analytic calculation, we
average 〈

δk

k

〉
=

1

k2

〈κP (J)〉
〈P (J)〉 , J ≡ I

Ī
, κ ≡ 1

2

∇2
⊥E

Ē
, (4.35)
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Figure 4.10: A raw beam profile image taken by the CCD beam profiler

where I = |E|2 is the intensity and P (J) the intensity-dependent probability that an atom
takes part in the interferometer. We assume that J and κ are drawn from a bivariate normal
distribution

f(J, κ) =
1

2πσJσκ
√

1− ρ2
e
− 1

2(1−ρ2)

[
(J−1)2

σ2
J

+ κ2

σ2
κ
− 2ρ
σJσκ

Jκ

]
, (4.36)

whose covariance matrix is given by

cov (J, κ) =

(
σ2
J ρσJσκ

ρσJσκ σ2
κ

)
. (4.37)

The parameters of the model can be determined by measuring the autocorrelation function,

rE(~d) =
1

Ē2
〈[E(~x)− Ē][E∗(~x+ ~d)− Ē]〉, (4.38)

where Ē = 〈E(~x)〉. We define the spatial derivatives

r
(2n)
E ≡ ∇2n

⊥ rE(0), (4.39)

where ∇⊥ is the two-dimensional Laplacian on a beam cross-section. The following results
are obtained by integration by parts:

Ē2r
(0)
E = 〈EE∗〉 − Ē2 ≡ σ2

E,

〈(E − Ē)∇2
⊥E〉 = 〈E∇2

⊥E〉 = Ē2∇2
⊥rE(0) ≡ Ē2r

(2)
E ,

〈(∇2
⊥E)2〉 = 〈E∇2

⊥∇2
⊥E
∗〉 = Ē2∇4

⊥rE(0) ≡ E2
0r

(4)
E . (4.40)

The elements of the covariance matrix Equation 4.37 are thus

r
(0)
E =

σ2
J

4
, σκ =

σJ
√
r4

4
, ρ =

r2√
r4

. (4.41)
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This allows us to determine σJ and σκ from the autocorrelation function: Since σJ = 2σE/Ē,

σ2
J =

〈
(I − I0)2

I2
0

〉
= 4

〈
(E − E0)2

Ē2

〉
= 4r

(0)
E ,

σ2
κ =

1

4Ē2

[
〈(∇2

⊥E)2〉 − 〈∇2
⊥E〉2

]
=

1

4
r

(4)
E , (4.42)

where we have used that

〈∇2
⊥E〉 =

∫∫
~∇⊥ ·

(
~∇⊥E

)
d2x =

∮
s

n̂ · ~∇⊥E dx = 0, (4.43)

which holds because ~∇⊥E goes to zero quickly enough. Furthermore,

ρσJσκ =

〈
2
E − Ē
Ē

1

2

∇2E

Ē

〉
=

1

Ē2

〈
(E − Ē)∇2E

〉
= r

(2)
E . (4.44)

Therefore,

cov (J, κ) =

(
4r

(0)
E r

(2)
E

r
(2)
E r

(4)
E /4

)
, (4.45)

where r2 = r
(2)
E /r

(0)
E and r4 = r

(4)
E /r

(0)
E .

From this model, the results in Ref. [10] can be reproduced. They have assumed a flat-top
beam intensity distribution and that P (J) is Heaviside-shaped

P (J) = θ(J − Jc), (4.46)

where Jc is a critical intensity. In this case, 〈δk/k〉 = A/(Bk2) where

A =

∫
κP (J)f(J, κ)dJdκ =

σκρ√
2π
e−(Jc−1)2/(2σ2

J ), (4.47)

B =

∫
P (J)f(J, κ)dJdκ =

1

2
erfc

(
Jc − 1√

2σJ

)
. (4.48)

If we assume a Gaussian autocorrelation function,

rE(~d) = r
(0)
E e−

d2

2`2 , r
(2)
E =

−2r
(0)
E

`2
, r

(4)
E =

8r
(0)
E

`4
, (4.49)

we obtain 〈
δk

k

〉
= − σJ

k2`2erfc
(
Jc−1√

2σJ

)e−(Jc−1)2/(2σ2
J ). (4.50)

If we insert, e.g., ` = 180µm, σJ = 0.01, and Jc = 0.8, we obtain 〈δk/k〉 = −1.5 × 10−96.
The model of a constant beam intensity is too optimistic, as the influence of intensity noise
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will rise sharply when the beam intensity I0 approaches the critical intensity Ic at a certain
radius from the center of the beam.

For a more realistic model, consider a laser beam with a Gaussian envelope,

J(r) = e−2r2/w2
0 , (4.51)

where J is normalized to the peak intensity in the middle of the beam. We assume that
the fractional amplitude noise in the laser beam is constant over the beam. We also assume
Gaussian distribution of atoms,

ρ = ρ0e
−r2/2σ2

c . (4.52)

To average 〈κP (J)〉 over all radii, we calculate

〈κP (J)〉r =
√

2πρ0σκρ

∫ ∞
0

reg(r)dr,

g(r) = −(e−2r2/w2
0 − Jc)2

2σ2
J

− r2

2σ2
c

. (4.53)

We now study the argument g(r) of the exponential function. If σJ � 1 − Jc, then eg(r)

will be sharply peaked at the maximum of g(r) at r = r0. It is then sufficient to evaluate
the integrand in this neighborhood. After a lengthy calculation, which involves a Taylor
expansion of the exponent around r0, we find

δk

k
=

σJr
(2)
E w2

0

16r
(0)
E σ2

ck
2
J

w2
0

4σ2
c
−1

c
1

1−
(

1
Ic

)−w2
0/4σ

2
c
. (4.54)

We determine the autocorrelation function from CCD images. The autocorrelation func-
tion is then fit to a 2D 4th-order polynomial using a least-squares algorithm. The rms
amplitude of the noise is about 0.65% of the beam intensity, and r

(2)
I = 2.44 × 10−9/µm2.

With w0 = 3.5 mm, Ic = (0.85 ± 0.05)I0, and σc = 0.58 mm, we find the magnitude of this
systematic effect to be −0.030± 0.019 ppb.

We can also check the validity of this result by directly measuring the shift in α as the
Bloch intensity is varied. The measured dependence on the Bloch efficiency is shown in
Figure 4.11. No dependence is observed within 0.3 ppb (limited by statistics), consistent
with the results of the analytic calculation and Monte Carlo simulation.

As a final check that the Gouy phase was accounted for correctly, data was taken with
two different beam waists (the 5.7 mm beam and the apodized beam). The α values from
these two measurements were within 1σ (Figure 4.12).

Beam Alignment

Misalignment of the retro-reflection angle θ of the Bragg beam reduces the effective wave
vector as

k2
eff ≈ k2 1 + cos θ

2
≈ k2 − k2θ2

4
. (4.55)
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Figure 4.11: Experimental measurements of α, as the Bloch efficiency (i.e. intensity) is
varied. The blue line is the final reported value of α, assuming no dependence on Bloch
efficiency. The red line assumes a linear dependence; the shaded regions represent 1σ error
bars.

Figure 4.12: Experimental measurements of α, for two different beam sizes (the unapodized
5.7 mm beam, and the apodized flat-top beam). Also plotted are the LKB-11 and ge-2
measurements of α for reference.

To measure θ, we monitor the back-coupling efficiency of the light to the fiber. We cali-
brated the back-coupling efficiency as a function of angle. By measuring the coupling effi-
ciency during the experimental run, the relative angle (typically around 12 µrad) can thus
be determined which allows for post correction of the data to reduce the beam alignment
systematic.
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Bloch Oscillation Light Shift

During Bloch oscillations, the atoms are shifted in energy by an amount

δEac =
~Ω2

4∆
(4.56)

due to the ac Stark effect, where Ω is the (local) Rabi frequency of the optical lattice on
the atoms and ∆ is the single-photon detuning. This light shift enters the phase of the
interferometer. The energy shift applies for each component of the Bloch lattice beam for a
total of 6 beams, as the three frequencies ω1, ω± travel up and down after retro-reflection.
Since the Bloch lattice is blue-detuned, the atoms sit at a potential minimum of the lattice
used to accelerate them. The dominant ac Stark shift is thus caused by the time-averaged
energy shift from the remaining four beams, which is a function of the beam intensities at
the location of the atoms.

Denote I↑1 (z), I↑±(z) the intensities of these frequencies as function of z in the up-going

laser beam and I↓1 (z), I↓±(z) the same in the down-going beam. Denote z1−4 the positions
of the partial wave packets during Bloch oscillations, measured relative to the top mirror,
where z1 is the position of the initially uppermost wave packet and z4 the initially lowest.

For the atoms being accelerated upwards, the dominant ac Stark shift arises from I↑± and

I↓1 , I↓+. For the atoms being accelerated downwards, the dominant ac Stark shift arises from

I↑± and I↓1 , I↓−. Defining the abbreviation J = I↑− + I↑+ + I↓1 , the total ac Stark shift entering

the interferometer phase is proportional to ∆I = J(z1) − J(z3) − J(z2) + J(z4) + I↓+(z1) −
I↓+(z3)− I↓−(z2) + I↓−(z4). This is valid for any shape or intensity profile of the laser beam.

A systematic shift can arise from the propagation of our Gaussian laser beam. To de-
termine it, we write z1 = z4 + d + δ, z2 = z4 + d, z3 = z4 + δ, where d = 2nvrT is the
separation of the interferometer arms and δ is the distance between the two interferometers
during Bloch oscillations. We expand the intensities as I(z4 + ε) = I + I ′ε + I ′′ε2/2, where
I, I ′, I ′′ are the intensities and their derivatives taken at z4. This yields

∆I ≈
[
(I↓+)′ − (I↓−)′

]
d+

[
J ′′ + (I↓+)′′

]
δd+

1

2

[
(I↓+)′′ − (I↓−)′′

]
d2. (4.57)

The dominant contribution is the first term. The two beams involved come from the same
optical fiber and were both retro-reflected at the mirror. The z-dependence of their intensities
as well as any retro-reflection losses are thus common to both, and the derivatives are

(I↓±)′ = I0,±
2

z2
R

z4 − z0(
1 +

(z0 − z4)2

z2
R

)2
, (4.58)

where z0 and zR are the common location of the waist and the Rayleigh range of these beams
and I0,± are the intensities of the two beams at the waist. With zR = 35.0 m, z0−z4 = 1.5 m,
n =5, vr = 3.5 mm/s, T = 80 ms, we obtain ∆I ≈ 6.8× 10−6(I0,+ − I0,−).
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Each beam by itself causes an AC Stark shift of about 1.5~ωr and within the 8-ms duration
of our Bloch oscillations causes a phase shift of about 0.16 krad. With a 2% intensity balance
between I0,+ and I0,− (verified by comparing the Bragg diffraction efficiency when kicking
atoms up and down), we estimate ∆Φac = 0.16 krad× 6.8× 10−6 × 0.02 ∼ 22µrad, a 0.002
ppb change in α for n = 5, N = 125, T = 80 ms.

Density Shift

The energy shift in our cloud due to density shifts can then be approximated as

Eρ =
ρ4π~2as

m
, (4.59)

where as = 280(10)a0 for cesium in the F = 3 state and a0 the Bohr radius. For typical
interferometer signals, the atom number density during detection is approximately 2.5 ×
105 atoms/cm3, and the density during the interferometer sequence is approximately 106

atoms/cm3. For an exaggerated beam splitter imbalance of 3:1, the differential density shift
will cause a net interferometer phase of

∆ΦDensity =
∆Eρ
~

(2T + T ′) =
(3ρ

4
− ρ

4

)4π~as
m

(2T + T ′) (4.60)

For typical parameters of T = 80 ms and T ′ = 10 ms, this gives a phase of 8 µrad corre-
sponding to a negligible 0.003 ppb shift in ωr.

Index of Refraction

The effective wave vector keff of the laser is sensitive to the refractive index in the vacuum
chamber, arising from room-temperature as well as cold background cesium atoms. The
refractive index in an atomic vapor in the far-detuned limit is

n− 1 =
σ0ρΓ

4k∆
, (4.61)

where σ0 = 2.5 × 10−9 cm2 is the resonant cross section, ρ is the atom number density, Γ
is the natural linewidth, ∆ ≈ 14 GHz is the single photon detuning. As an upper bound
for the density of cold cesium atoms, we use the density of the atom cloud during the
interferometer sequence, 106 atoms/cm3. The corresponding index of refraction is below
n− 1 = 0.003 ppb, which we take to be negligible. The dominant contribution comes from
room-temperature background atoms. An upper bound of 107 atoms/cm3 on their density
is obtained by assuming that the entire vacuum pressure of 10−9 torr is due to cesium, and
the corresponding index of refraction shift is at most n − 1 = 0.03 ppb. For our low atom
densities, no detailed simulation of the atom cloud is needed.
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Speckle phase

The speckle phase is an estimate for any residual uncertainties that arise from stray reflection
of the laser beam by the walls of the vacuum chamber. A single-mode, step-index optical
fiber delivers a Gaussian beam only near the beam axis. Beyond a certain radius (typically
at 10% of peak intensity), the beam intensity drops more slowly [84]. Thus, substantial
intensity can be reflected off the vacuum chamber walls and interfere with the main beam,
causing an irregular spatial dependent speckle pattern that led to random variations of the
interferometer phase Φd as the pulse separation time was varied. This random phase variation
can be as large as 30 mrad (see Figure 4.13, red data points).

Figure 4.13: Anomalous phases measured after subtracting off all other known systematic
errors, with N = 0. With no effort taken to suppress them, the speckle phases can be as
large as 30 mrad (red data). With the real-time fountain monitor and apodizing filter, the
speckle phases are kept below 3 mrad.

To reduce the amount of scattered light, we add an apodizing filter (Thorlabs NDYR20A)
to the output of the fiber port, gradually attenuating the intensity as a Gaussian function of
distance from the beam axis, as shown in Figure 3.2. The random phase variations caused
by speckle is thus suppressed below 3 mrad (see Figure 4.13, blue data points).

Empirically, we found the speckle phase shifts to be independent of the Bloch order.
Therefore, we can reduce their fractional significance by increasing the Bloch order. When
N = 0, without mode cleaning (Figure 4.13, red), the T -dependent random phase variation
would cause an about 8 ppb uncertainty in α. With mode cleaning (Figure 4.13, blue), the
random phase variation is reduced by an order of magnitude. Operating at N = 125 further
reduces the effect by a factor n/(n+N) = 0.04. Therefore, we expect a possible contribution
to the error budget of approximately 0.03 ppb.

In order to verify this residual effect of any (unresolved) anomalous phases, residual
stochastic variation in the data, we implement a model to estimate the error under the
assumption that the residuals are entirely due to speckle phases (and not due to random
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statistical fluctuations). The systematic error for the residuals shown in Figure 4.14 is below
0.04 ppb in α.

The data in Figure 4.14 verifies both our understanding of systematic shifts and the
speckle phase. Any anomalous phase shifts that depend on the pulse separation times T are
suppressed to the point where any remaining anomalous phases are unresolved.

Figure 4.14: Anomalous phases measured after subtracting off all other known systematic
errors, with the real-time fountain alignment monitor, apodizing filter, and N > 125. These
are the residuals vs T for the data shown in Figure 4.4.

Sagnac Effect

Our Ramsey-Bordé interferometer configuration ideally has zero enclosed spatial area be-
cause all motion takes place in the vertical direction. If there is a misalignment such that
the two interferometer paths enclose a spatial area A, then there will be an extra phase shift

ΦΩ =
4πm

~
−→
A · −→Ω , (4.62)

due to the Sagnac effect, where Ω is the rotation vector. The enclosed areas of the upper and
lower interferometers mostly cancel, but a difference arises because of the gravity gradient γ
if the laser beams are rotating in the atom’s inertial frame at a rate ω as a result of imperfect
Coriolis compensation. The laser rotation rate is zero with perfect Coriolis compensation
and ω = Ωe (i.e. the rotation rate of the Earth) without compensation. The difference in
area between the upper and lower interferometers is then

Au − Al = −n(n+N)v2
rT

2
[4

3
(12 + γT 2)− (12 + 5γT 2) cosωT

]
sinωT, (4.63)

which is below 0.001 ppb after being cancelled to below 10% using Coriolis compensation.
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Modulation Frequency Wave-vector

Φδk in Equation 4.3 depends the gravity acceleration. Since the value of g = −→g · −→k /|k|
is the projection of gravity onto the wave-vector, the vertical alignment of the Bragg beam
introduces a slight uncertainty, but even with a misalignment as large as 10 mrad, it is below
0.001 ppb.

Thermal Motion of Atoms

According our data analysis method introduced in Section 4.3, the diffraction phase Φ0 does
not produce a systematic effect in α to leading order. However, there are higher-order effects
that can produce a systematic effect by causing the diffraction phase to vary with the pulse
separation time T . The dominant effect comes from the thermal motion of the atoms as
they ballistically expand - this causes the atoms to see a different Bragg pulse intensity at
different times during the interferometer sequence. Expanding the diffraction phase Φ0 to
first order in T results in an extra phase term when the total interferometer phase Φd = 0,
so that now the interferometer output is given by

2nωmT = 16n(N + n)ωrT + Φ0 +
dΦ0

dT
T. (4.64)

The extra term will contribute an uncertainty in α as

δα

α
=

1

2

dΦ0

dT
16n(N + n)ωr

. (4.65)

One strategy to reduce this systematic effect is using a large number N of Bloch oscilla-
tions. This will increases the total measured phase, thus lower the fractional significance. It
also further separate the two interferometers, reducing the influence of the off-resonant com-
ponent of the dual-frequency Bragg pulses in each respective interferometer, and lowering
the diffraction phase Φ0.

To quantify this systematic effect, we run an end-to-end Monte Carlo simulation. The
simulation is based on a Gaussian density and velocity profile of the initial atomic cloud.
It takes into account the effect of state and velocity-selection pulses as well as the Bragg
pulses at the location of each atom. Systematic effects from non-Gaussian waveform and
parasitic interferometers are also included in the simulation (see the following subsections).
The simulation also takes into account the ellipse fitting algorithm, and therefore its result
will include any residual systematic effects from ellipse fitting. Details of the simulation can
be found in reference [65]. The simulation is run for the particular experimental parameters
(Bragg pulse intensity, cloud temperature, etc.) used in this work, as well as 1σ variations in
those parameters limited by the experimental repeatability. The resulting systematic shifts
are presented in Table 4.3. We run the simulation enough times so that each shift is well-
resolved compared to the numerical error bar. In total the thermal motion of the atoms
introduces a systematic uncertainty of 0.08 ppb in α.
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Effect Direct Measured Value δα/α (ppb)

Cloud radius (mm) 2.2± 1 ±0.026
Vertical velocity width (vr) 1.5± 0.25 ±0.031
Ensemble horizontal velocity (vr) 0± 0.5 ±0.032
Initial horizontal position (mm) 0± 1 ±0.034
Intensity (Iπ/2) 1.02± 0.02 ±0.028
Last pulse intensity ratio 1.0± 0.02 ±0.034

Table 4.3: Results of Monte Carlo simulation quantifying the systematic shifts arising from
thermal motion of the atoms, which introduces distortion in the ellipses used for phase
extraction. The parameters used in the model are allowed to vary, replicating the level of
control achieved in the actual experiment.

Non-Gaussian Waveform

The T -dependent diffraction phases described in the previous subsection can be amplified by
imperfections in the experimental setup, particularly if the temporal waveform used for the
Bragg diffraction is significantly non-Gaussian. A detailed treatment is given in Reference
[65]. By using an intensity servo to stabilize the temporal waveform to a reference Gaussian
waveform, this systematic effect can be kept below 0.03 ppb.

Parasitic Interferometers

As discussed in Reference [65], the multi-port nature of Bragg diffraction allows for the
formation of unwanted Ramsey-Bordé interferometers that will close at the same time as
the main interferometer and will not be suppressed by Bloch oscillations. These unwanted
interferometers will produce small, oscillating phase shifts as the pulse separation time T is
varied, and can produce a systematic shift as large as 1 ppb in α. Using the Monte Carlo
described above, it was determined that the dominant contribution to this effect comes from
unwanted population in the n = 1 order, which can be suppressed by appropriate choice
of the Bragg pulse duration (109 µs for our experimental parameters). The simulation’s
prediction of the parasitic phases is in good agreement with experimental data, and the
expected systematic shift at the ‘magic’ Bragg duration is below 0.03 ppb in α. See Reference
[65] for more detail.
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4.6 Discussion

Test the Standard Model

With a statistical uncertainty of 0.16 ppb and a systematic uncertainty of 0.12 ppb, the
overall uncertainty of α reaches 0.20 ppb. This is a more than threefold improvement over
the previous measurements of α using atom interferometry (see Figure 1.1). Using our
measurement, the the electron’s gyromagnetic anomaly can be calculated from Equation 1.2
as

ae(α) =
ge − 2

2
= 0.00115965218161(23). (4.66)

As discussed in Section 1.2, this calculation takes into account the contributions from QED
theory as well as electroweak and hadronic contributions. Thus a comparison of the calcu-
lated value and the directly measured value can provide a test of the Standard Model of
particle physics.

Comparison of the calculated value of ae using our result with the most precise directly
measured value [39] yields

δae = ae,meas − ae(α) = −0.88(0.36)× 10−12. (4.67)

For the first time, this kind of comparison reaches an error bar below the 5th-order QED con-
tribution to ae (0.45×10−12). It allows us to confront QED calculations with experiment. It
also shows a 2.5σ tension between the theoretical calculation and experiment measurement.
Based on frequentist statistics, the tension indicates that the Standard Model by itself is
not consistent with existing measurements at 99% confidence level (C.L.). While this is not
statistically significant enough to claim discovery of new physics, it warrants further inves-
tigation. Here we will talk about the implication of this tension on dark-sector particles. In
particular, we consider dark photons and dark axial-vector bosons.

Dark Photons

A hypothetical gauge boson A′ with mass mA′ would couple to the Standard Model leptons
through a Lagrangian [45, 25]

Lcoupling = A′µ
∑
f

f̄(cfV γ
µ + cfAγ

µγ5)f, (4.68)

where A′µ and f are fields of the bosons and leptons, respectively; γµ are Dirac matrices; cfV
and cfA are vector and axial vector coupling constants to lepton f . The coupling constant cfV
is sometimes written as −eε, where -e is electron’s charge and ε the commonly used kinetic
mixing parameter.
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A dark photon is a vector boson. Based on QED, couplings of dark photons and electrons
would lead to a nonzero shift in electron’s gyromagnetic anomaly as [45]

δae =
c2
v

4π2

∫ 1

0

x2(1− x)

x2 +
m2
v

m2
e

(1− x)

dx. (4.69)

In particular, dark photons are one proposed explanation for the well-known 3.7σ discrepancy
between the prediction for the muon’s aµ and its measurement [14, 67]. However, dark
photons cause a δae > 0, opposite to the sign measured in both our experiment and the
rubidium measurement [16, 66]. With the improved error of our measurement, this tension
has grown. A model consisting of the Standard Model and dark photons of any mass mV

or coupling cV now is incompatible with our result at 99% C.L. according to frequentist
statistics.

Figure 4.15 shows excluded parameter space for dark photons as a function of the dark-
photon mass mV and kinetic mixing parameter ε. Two statistical methods have been used to
generate the excluded region using our results: the standard frequentist statistics and a more
conservative method called power-constrained limits (PCL) [96]. For frequentist statistics,
we use 99% C.L. For PCL, we use 90% C.L. and Mmin = 16%. The figure also shows limits
obtained from accelerator experiments. BaBar is searching for invisible decay of a dark
photon produced in e+e− collision at SLAC [55]; NA64 is searching dark photons that decay
into e+e− pairs at the European Organization for Nuclear Research (CERN) [11, 12]; E787
and E949 are searching rare kaon decays at Brookhaven National Laboratory (BNL)[1, 6].
Finally, the figure also shows the excluded region based on previous α measurement at LKB
[16] and 2σ preferred region of muon gµ − 2 measurement [25, 57].

When comparing limits on dark photons, it should be noted that limits obtained from
α and the gyromagnetic anomaly do not depend on assumptions on branching ratios for
the decay of dark photons. Tabletop experiments like ours are as competitive as major
accelerator experiments in searching new physics beyond the Standard Model.

Dark Axial-Vector Boson

A dark axial vector boson characterized by an axial vector coupling constant cA and mass
mA would shift electron’s gyromagnetic anomaly by [45]

δae =
c2
A

4π2

m2
e

m2
A

∫ 1

0

2x3 + (x− x2)(4− x)
m2
A

m2
e

x2 + (1− x)
m2
A

m2
e

dx. (4.70)

Contrary to dark photons, dark axial vector bosons are favored by our result because it
would lead to a negative δa.
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Figure 4.15: Excluded parameter space for dark photons as a function of the dark-photon
mass mV and kinetic mixing parameter ε. The green band is a 95% C.L. in which the muon
g − 2 is explained by a dark photon based on frequentist statistics [57]. Constraints from
BaBar were based on Bayesian limit/ frequentist profile likelihood statistics at 90% C.L.
[55]. The profile likelihood method [74] is similar to CLs. Constraints from rare kaon decay
were obtained from BNL E787+E949 experiments at 95% C.L. [1, 6]. Constraints from
NA64 2017 and NA64 2018 were based on CLs statistics at 90% C.L. [11, 12]. Both electron
ge − 2 for LKB and Berkeley were analyzed under frequentist statistics at 99% C.L. [57, 39,
16, 66]. We have also included the excluded region of the Berkeley result analyzed under
PCL(Mmin = 16%) with 90% C.L. This figure is taken from [96].

Figure 4.16 shows the excluded parameter space for dark axial vector bosons, as a function
of mass mA and axial-vector coupling constant cA. The calculated δa using our result places
limits on the axial vector parameter space from two sides. The allowed region is partially
ruled out by other experiments. However, the region of parameter space consistent with our
result and anomalous pion decay is also consistent with current accelerator limits. Here we
emphasize that the 2.5σ tension in the data is insufficient to conclude the existence of a new
particle. But the remaining region of parameter space warrants further study [45].

Electron Substructure

Our measurement can be used to probe a possible substructure within the electron. An
electron whose constituents have massm∗ � me would result in a modification of the electron
magnetic momentum by δa ∼ me/m∗. In a chirally invariant model, the modification scales
as δa ∼ (me/m∗)2. Following the treatment in [35], the comparison |δa| of this measurement
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Figure 4.16: Excluded parameter space for dark axial vector bosons, as a function of mass
mA and axial-vector coupling constant cA, whose existence would produce a negative δa and
is thus favored. Our work results in a two-sided bound. The region suggested by anomalous
pion decay is shown in green [45] at 95% CL. Accelerator limits are adapted from [55].

of α with the electron ge − 2 result places a limit to a substructure at a scale of m∗ >
411, 000 TeV/c2 for the simple model and m∗ > 460 GeV/c2 for the chirally invariant model
(improvements over the previous limits of m∗ > 240, 000 TeV/c2 and m∗ > 350 GeV/c2,
respectively).
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Chapter 5

Offset Simultaneous Conjugate
Interferometers

5.1 Overview

In the α measurement that we discussed in Chapter 4, we successfully cancel the effect
from gravity to first order by running two conjugated Ramsey-Bordé interferometers simul-
taneously and measuring the phase difference between them. However, because these two
interferometers are running at different heights, the cancellation is not perfect. The second
order effect, the gravity gradient γ, still enters the differential phase (see Equation 5.6). It
is one of the largest corrections that needs be applied to α, as shown in Table 4.2. Inho-
mogenous magnetic fields and blackbody radiation [40] will cause effects similar to γ. We
characterize the effect from γ by measuring it in situ with two vertically separated Mach-
Zehnder interferometers, as shown in Figure 4.9. But this strategy takes long time to take
data, and would inevitably assign an error to the measured γ, introducing uncertainty in α.
In order to perform a more accurate measurement of α, we would want to find a way that
can completely zero the effect from γ.

In this chapter, we propose and demonstrate a new atom interferometer geometry: Offset
Simultaneous Conjugate Interferometers (OSCIs, Figure 5.1) [98]. This geometry can exactly
cancel the effects of acceleration gradients. It can also substantially reduce diffraction phases
from Bragg beam splitters. We split one atom sample into two using one Bragg diffraction
pulse and two Bloch oscillation sequences. We then create two sets of simultaneous conjugate
interferometers (SCIs) to form a multi-channel interferometer. The vertical offset between
the two SCIs is precisely controlled by the timing of these two Bloch oscillation sequences.
Different channels of this geometry can be used to amplify or suppress specific signals.
Importantly, the offset required to cancel the gradient is independent of the magnitude of
the gradient. The undesired diffraction phase from the Bragg beam splitters is suppressed
due to the symmetry of this geometry. With these advantages, we expect this geometry to
be useful for the next generation of the α measurement.
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Figure 5.1: The upper panel shows the pulse sequence and atom trajectories in OSCIs. Every
dashed line represents a pair of counter-propagating laser pulses that drive Bragg diffraction.
Yellow bands represent the optical lattices that drive Bloch oscillations. We split the atom
sample into two with one Bragg pulse and two Bloch oscillation sequences, and create two
sets of SCIs (the blue one and the red one). The four output ports A to D constitute four
output channels. Among these four channels, AC and BD are similar to the SCIs used
previously, BC is the γ-insensitive channel, and AD is the channel most sensitive to γ.
Momentum states are indicated above the lines. In the bottom are the temporal profiles of
all the laser pulses. Bragg pulses have Gaussian temporal profiles. Bloch oscillations have
trapezoid temporal profiles.
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5.2 OSCI Geometry

For an atom interferometer where the atomic wave packets travel along the lower arm zl and
upper arm zu, a vertical acceleration gradient γ will introduce a phase shift, to first order in
γ, as

Φγ =
mγ

2~

∫ (
z2
l − z2

u

)
dt =

mγAzc
~

, (5.1)

where m is the mass of the atom, ~ is the reduced Planck constant, A =
∫

(zl − zu) dt is the
space-time area enclosed between the two arms, and zc =

∫
(z2
l − z2

u) dt/2A is the center of
this space-time area. For two simultaneous interferometers whose centers are separated by
a vertical distance δz, the differential phase shift caused by γ is

δΦγ =
mγA

~
δz. (5.2)

This γ-related phase is an important systematic error source in many atom interferometer
applications [61, 93, 75, 66]. Several schemes have been proposed to control this effect [17,
76, 23, 64]. For example, compensating the gravity gradient effect has been demonstrated
in Raman-pulse Mach-Zehnder interferometers recently [23, 64]. The key idea in those ex-
periments is to adjust the frequency of the central π pulse to compensate the phase shift
produced by γ. However, so far these schemes require the gravity gradient to be measured,
necessarily introducing a corresponding uncertainty. They also involve changing the fre-
quency of the laser beams, which will complicate other systematic effects, such as diffraction
phases.

OSCIs cancel the effect from acceleration gradients by spatially overlapping the centers
of the two simultaneous interferometers, so that δz = 0 and δΦγ vanishes according to
Equation 5.2. Not only does this technique not require a measurement of γ, it also works
for both Bragg and Raman beam splitters, and can be applied to any atom interferometer
geometry, even for the ones that are not intended for a gravity measurement, like Ramsey-
Bordé interferometers.

Figure 5.1 shows the geometry of OSCIs. We first apply an nth order Bragg pulse, which
transfers the momentum of 2n photons, and drives the atoms into a superposition of states
|0〉 and |n〉. After time Ta, Bloch oscillations are applied to accelerate the upper arm to
the state |n+N0〉. A second deceleration Bloch oscillation sequence then brings this arm
back to state |n〉. As the relative motion of these two arms comes from photon recoils, the
displacement between them can be precisely controlled by the timing of these two Bloch
oscillation beams. The initial Bragg pulse and the two Bloch oscillation sequences don’t
participate in interference. They are referred to as the offset-generating Bragg and Bloch
beams henceforth. After another interval Tc, we initiate the normal SCI sequence: we apply
a pair of nth order Bragg beam splitters, a sequence of N Bloch oscillations, and another pair
of nth order Bragg beam splitters. Each pair of Bragg beam splitters has a separation time
of T and the two pairs are separated by time T ′. The second pair of Bragg beam splitters
contains two frequencies, which are shifted by ±ωm relative to the first pair. These beams
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are referred to as interferometer Bragg and Bloch beams. In the end, we have two sets of
SCIs (the blue one and the red one) and four output ports (A to D), which constitute four
output channels. Among these four channels, AC (a channel that outputs the differential
phase between A and C) and BD are similar to the SCIs used previously. BC is the γ-
insensitive channel, as B and C are spatially overlapped and can be used to cancel the γ
effect. AD, AC, and BD are sensitive to γ, with AD having the largest sensitivity due to it
having the largest displacement.

Required Offset for Cancelling γ

The offset-generating beams will offset the two SCIs by

δz = 2vr(nTi +N0Tb), (5.3)

where vr = ~k/mCs is the recoil velocity. Using Equation 5.2, this offset will cause a phase
shift

δΦγ = 8nTωrγ(T + T ′)(nTi +N0Tb) (5.4)

where ωr = mv2
r/(2~) is the recoil energy. Ti, Tb, T and T ′ are pulse-separation time defined

in Figure 5.1. This phase shift has opposite signs on channel AD and BC.
The overall differential phase Φd from channel AC (or BD) is shown in Equation 4.1.

Including the offset phase shift, the differential phase from every channel IJ (IJ ∈ {AC,BD,
BC,AD}) now can be summarized as

Φd = −2nT [ωm − 8ωr (n+N)− ωrγCIJ ] + ΦIJ , (5.5)

where ΦIJ is the overall diffraction phase on every channel; CIJ is the channel-dependent
coefficient of the γ-related phase:

CBD =
2

3
n
(
2T 2 + 3TT ′ + 3T ′2

)
+

4

3
N
(
T 2 + 3TT ′2 + 3T ′22

)
,

CAC = CBD,

CAD = CBD + 4 (nTi +N0Tb) (T + T ′) ,

CBC = CBD − 4 (nTi +N0Tb) (T + T ′) . (5.6)

High order effects, including the phase terms that depend on the atom velocity, the duration
of the Bloch beam, and the gravity acceleration g, are not shown for simplicity. By properly
tuning the timing of the second offset-generating Bloch beam, we can zero CBC , thus suppress
the γ effect on channel BC. In the mean time, CAD will be doubled, thus channel AD will
have higher sensitivity to γ compared to AC and BD.
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Suppressing the Diffraction Phase

The diffraction phase is suppressed in the γ-insensitive channel BC, which can be seen by
examining the symmetries of OSCIs. After the offset-generating Bragg and Bloch beams, the
upper SCI (the blue one) starts from the state |n〉, and the lower SCI (the red one) starts from
the state |0〉. The two interferometers of channel BC now have a symmetric configuration
compared to the regular SCI channel BD (or AC) where the two interferometers start from
the same momentum state. This symmetry leads to the cancellation of the diffraction phase
from the first two interferometer Bragg pulses. To show that, we follow the analysis in
Reference [30, 65]. We use B̂n to denote an nth order Bragg pulse. By numerically solving
the optical Bloch equations that describe the process of Bragg diffraction [65], we obtain the
matrix element 〈b| B̂n |a〉 as the complex amplitude for the Bragg pulse to drive an atom
from state |a〉 into state |b〉. The diffraction phase from the beam splitter B̂n is thus the
argument arg(〈b| B̂n |a〉),

Denote the diffraction phase from the mth interferometer Bragg pulse on output port I
(I ∈ {A,B,C,D}) as ΦI,m. For A, the first interferometer Bragg pulse does not change
the upper arm’s state |n〉, but drives the lower arm from |n〉 to |0〉. Therefore, we have
ΦA,1 = arg(〈n| B̂n |n〉 / 〈n| B̂n |0〉). Similarly,

ΦA,1 = ΦA,2 = ΦB,2 = ΦC,1 = arg

(
〈n| B̂n |n〉
〈n| B̂n |0〉

)
,

ΦB,1 = ΦC,2 = ΦD,1 = ΦD,2 = arg

(
〈n| B̂n |0〉
〈0| B̂n |0〉

)
. (5.7)

For every channel IJ , the diffraction phase from the mth interferometer Bragg pulse, denoted
as ΦIJ,m, is ΦI,m − ΦJ,m. Using Equation 5.7,

ΦAC,1 = ΦBD,1 = 0,

ΦAD,1 = −ΦBC,1 = ΦAC,2 = ΦBD,2 = ΦAD,2

= ΦBC,2 = arg

(
〈0| B̂n |0〉 〈n| B̂n |n〉
〈n| B̂n |0〉2

)
. (5.8)

Because ΦAC,1 = ΦBD,1 = 0, the diffraction phase from the first two Bragg pulses is zero in
channels AC and BD, the main contribution comes from the second one; in the γ-insensitive
channel BC, the diffraction phases from the first two interferometer Bragg pulses cancel each
other because ΦBC,1 = −ΦBC,2; conversely, in channel AD, the first two interferometer Bragg
pulses introduce the same diffraction phase. Similar analysis shows that the diffraction phase
from the third and fourth interferometer Bragg pulses is the same in all channels. Therefore,
the overall diffraction phase is suppressed in channel BC and amplified in channel AD
relative to channel AC and BD.
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5.3 Experiment

We prepare the atom cloud with the steps introduced in Chapter 3. Similar to the α mea-
surement, we use 5th order Bragg pulses (n = 5), and 125 Bloch oscillations (N0 = N = 125)
for offset-generating and interferometer. All the Bragg and Bloch beams are 14 GHz blue-
detuned from the cesium F = 3 → F ′ = 4 D2 transition. The intensity of the offset-
generating Bragg pulse is set so that output port A and B have roughly the same signal
amplitude. The intensities of the two offset-generating Bloch oscillation beams are optimized
to the highest efficiency. The frequencies of the offset-generating Bloch beams are gener-
ated in the same way as the interferometer Bloch beams. So the down-propagating beams
contain a pair of frequencies. For them to only interact with the atoms in the momen-
tum state |n〉, the frequencies of both counter-propagating beams are decreased by 20 kHz:
ω2 − ω′2 = ω1 − ω′1 = 2π × 20 kHz. Atoms left behind by the acceleration Bloch oscillations
are mostly in the |n〉 state and would spatially overlap with the signals. To suppress these
atoms, we apply a velocity selection Raman pulse to drive the atoms with 2n~k momentum
from the F = 3 ground state to the F = 4 ground state, and then apply a resonant beam to
blow away the atoms in the F = 4 state. These pulses are not shown in Figure 5.1. Atoms
left behind by the deceleration Bloch oscillations are in the |n+N0〉 momentum state. They
are spatially resolved from the output channels, thus will not affect the experiment.

We fix the timing of the offset-generating Bragg pulse, the acceleration offset-generating
Bloch oscillations, the second and the third interferometer Bragg pulses relative to the ex-
periment sequence: Ta = 5 ms, Ti + T = 155 ms, T ′ = 50 ms and T ′2 = 45 ms. When T
changes, we adjust Tb according to Equation 5.6, so that CBC = 0. This guarantees channel
BC has no sensitivity to γ.

5.4 Statistical Sensitivity

First we demonstrate the statistical sensitivity of OSCIs. We set T to 10 ms. Tb is calculated
to be 37.6 ms from Equation 5.6. This results in an offset of about 3.2 cm between the two
wave packets at the moment of the first interferometer Bragg pulse. Figure 5.2 shows the
typical fluorescence signal we observe. The eight peaks on the two sides correspond to four
output ports. The two peaks in the middle come from the atoms that are not driven by the
interferometer Bloch oscillations. These atoms do not contribute to the measurement.

Similar to the α measurement, we use ellipse fitting to extract the differential phase
between two output ports. The ellipses are shown in Figure 5.3. The x axis of each ellipse is
the normalized signal of the lower interferometer (C or D), and the y axis is the normalized
signal of the upper interferometer (A or B). The γ-insensitive channel BC has the same
x contrast as channel AC (about 16%), and the same y contrast as channel BD (about
22%), demonstrating that introducing an offset doesn’t lead to decoherence. After 13 hours
of integration, we reach an uncertainty of about 3 part-per-billion (ppb) in the differential
phase for every channel, which corresponds to 1.5 ppb statistical uncertainty in α [66]. This
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demonstrates the world-class sensitivity of OSCIs.
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Figure 5.2: Fluorescence trace taken at T = 10 ms and Tb = 37.6 ms. It is an average of
30 measurements. The eight peaks on the two sides correspond to four output ports. The
two big peaks in the middle are the atoms not driven by Bloch oscillations, which do not
contribute to the measurement.
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Figure 5.3: Ellipse observed from every channel at T = 10 ms and Tb = 37.6 ms. Data was
collected over a period of 13 hours. The red curve is the fitted ellipse from every channel.
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Figure 5.4: Allan deviation of the measured frequency at T = 10 ms for every OSCI channel.
As a comparison, the Allan deviation for the SCI geometry with the same interferometer
timing sequence is also plotted.
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Figure 5.5: Fluorescence and ellipses from SCI configuration.
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Figure 5.4 shows the Allan deviation of the measured frequency for every OSCI channel.
The sensitivities of all channels are about the same, roughly at 1.1 Hz/

√
Hz. As a com-

parison, we remove the offset-generating beams and leave the interferometer beam sequence
unchanged. This leads to a regular SCI geometry. The Allan deviation for this SCI geometry
is also plotted, showing a sensitivity of 0.38 Hz/

√
Hz. The sensitivity of every OSCI channel

is reduced by only a factor of 3 compared to the SCI geometry.
This reduction in sensitivity is mainly due to the low signal-to-noise ratio of OSCIs. It

can be explained from two aspects. First, OSCIs distribute the atom population on four
output ports. This reduce the effective signal size on each channel. Second, single-photon
scattering and tunnelling loss introduced by the two offset-generating Bloch oscillation se-
quences further lowers the total signal size. Figure 5.5 shows the signal and ellipse we observe
from the SCI geometry. Note that Figure 5.2 and Figure 5.5 have the same unit in the y
axis. The signal in the SCI geometry is about ten times larger that the signals of OSCIs.

Increasing the detuning of the laser pulses to suppress single photon scattering, and
using broader laser beams to drive Bragg diffraction and Bloch oscillations (so the intensity
is more uniform across the atomic sample), is expected to improve the signal-to-noise ratio,
thus benefit the sensitivity.

5.5 Consistent Output and Suppression of Diffraction

Phase

Next, we show the consistency of the recoil frequency from every channel and the suppression
of the diffraction phase. We vary the pulse separation time T from 5 ms to 20 ms, and adjust
Tb accordingly. At each T , we adjust ωm to the point where the total phase Φ is zero. Define
the measured frequency as fm = ωm/(2π). According to Equation 5.5 and Equation 5.6, fm
can be fitted as a function of 1/T with two fitting parameters, the diffraction phase and the
recoil frequency fr = ωr/(2π),

fm =
ΦIJ

4nπT
+ [8(n+N) + γ × CIJ ] fr. (5.9)

Figure 5.6(a) shows the measurement results and the corresponding fittings. At short T s,
the contribution from the gravity gradient is small. fm is roughly linear in 1/T , with a slope
proportional to the diffraction phase. The coefficients CIJ scale with T 2. As T increases,
the effect from the gravity gradient becomes more pronounced, thus the fitting curve is no
longer linear. This represents a potentially large systemic effect in the α measurement. For
instance, at T = 80 ms, the gravity gradient will shift the total phase in channel BD by 8
ppb, which is over two orders of magnitude larger than the required accuracy of the recoil
frequency. By properly setting the timing, sensitivity to γ in channel BC is cancelled. The
fitting for this channel is a straight line.

Figure 5.6(b) shows the fitted recoil frequency from all channels. They agree with each
other within 1σ uncertainty, demonstrating the consistency of the output from every channel.
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Fig. 5.6(c) shows the fitted diffraction phase from all channels: ΦAC = 22± 6 mrad, ΦBD =
41±3 mrad, ΦAD = 70±4 mrad and ΦBC = −7±5 mrad. The diffraction phase is suppressed
by a factor of 6 in channel BC compared to channel BD, and a factor of 10 compared to
channel AD.

We also run Monte Carlo simulations to confirm the suppression of diffraction phase. The
simulation is upgraded from the version which we used in the α measurement. It includes
Bloch oscillations according to Reference [21, 48]. It predicts that the diffraction phase in
channel BC is 3 times smaller than that in channel BD, and 6 times smaller than that in
channel AD. It also predicts that channel AC and BD have roughly the same diffraction
phase. While these results agree with experiments qualitatively, we attribute the discrepancy
to features that are not included in the simulation, such as beam divergence and the different
velocity distribution of the wave-packets in the two SCIs.

5.6 Discussion and Conclusions

A measurement of α using atom interferometers has two leading systematic error sources:
acceleration gradients and non-Gaussian wavefronts, as shown in Table 4.2. With this new
OSCI scheme, the uncertainty from the acceleration gradient will now be negligible. The
effects from non-Gaussian wavefronts can be suppressed by driving Bragg diffraction and
Bloch oscillations with larger-width laser beams, which as mentioned above also improves
the sensitivity.

The ability to control the offset in OSCIs also enables new ways to check many systematic
effects. For example, with the increased vertical separation between A and D, OSCIs can
measure γ using channel AD; Comparing the results from Channel AC and BD allows us
to identify and reduce effects such as the inhomogeneous magnetic field along the vertical
direction, the divergence of the laser beams, and the stray light reflected by the vacuum
chamber; Because these two channels have the same phase produced by gravity gradient,
a comparison between them will also place a bound on third order gravity variation (the
gradient of the gravity gradient). These systematic checks can be done simultaneously with
data taken for a measurement of the recoil frequency.

The OSCI geometry can also be generalized for isotope mass ratio measurements [50].
With sensitive to the mass of atoms and immunity to gravity gradients, OSCIs provides a
compelling scheme for precision mass ratio measurements with matter-wave interferometers.
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ments and curves are corresponding fittings using the functional form of Equation 5.9. The
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Figure 5.7: (a) Fitted recoil frequencies in all channels. They are consistent within in 1σ
uncertainty. The red line is the average of these frequencies. (b) Fitted diffraction phases
from all channels. The red line indicates zero. A 6-fold suppression of the diffraction phase
in channel BC was observed compared to channel BD.
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Chapter 6

Summary and New Experiment

6.1 Summary of the α Measurement

We have recorded the most accurate measurement of the fine structure constant α =
1/137.035999046(27) at an accuracy of 0.20 ppb via measuring h/mCs, the quotient of
the Planck constant and the mass of a cesium atom. Our tools are simultaneous conju-
gate Ramsey-Bordé atom interferometers based on a cesium atomic fountain. Using Bragg
diffraction and Bloch oscillations, we have demonstrated the largest phase (12 million ra-
dians) of any Ramsey-Bordé interferometer and controlled the systematic effects at a level
of 0.12 ppb. Using our result, the Standard Model prediction of the electron gyromagnetic
moment anomaly ae has reached an uncertainty of 0.20 ppb, slightly better than its exper-
imental measurement using Penning traps (0.24 ppb), see Figure 1.2. However, there is a
2.5σ tension between the prediction and the measurement of ae. The tension motivates an
improved measurement of α.

6.2 Motivation for an Improved Measurement

An improved measurement of the fine structure constant α will enable detecting new physics
within the Standard Model. Currently the experimental measurement and the Standard
Model prediction of ae have reached the same level of accuracy. The accuracy of the Standard
Model prediction is limited by the accuracy of α. If both measurement accuracies of α and
ae can be improved by an order of magnitude, we will be able to resolve the contributions
from the weak interaction or even QED for tauon to the predicted ae for the first time.

An improved measurement of α will also be a powerful probe for new physics beyond
the Standard Model. The observed 2.5σ tension between the measured and predicted ae
provides hints of new physics beyond the Standard Model, such as dark photons and dark
axial-vector bosons. Improved measurements of α and ae will help resolve this tension.

The 2.5σ tension could be a potential sign of new physics that mirrors the well-known
3.7σ discrepancy observed in the muon’s gyromagnetic moment anomaly aµ [14, 57]. If the



CHAPTER 6. SUMMARY AND NEW EXPERIMENT 85

discrepancy in aµ is a caused by new physics beyond the Standard Model, it is expected to
show up in ae, scaled by the squared particle mass ratio at ∼ 50 ppt. The two unexplained
discrepancies combine to an overall 4.6σ deviation from the Standard Model for lepton mag-
netic moments1. This has given rise to a great deal of theoretical work. Theories that can
explain both anomalies are arising [24, 22]. It also suggests that improved measurements
of aµ, ae and α are in need. aµ is currently being remeasured by E989 at Fermilab, which
expects to reduce the error more than threefold [42]. Prof. Gerald Gabrielse is currently re-
measuring ae and expects an improvement by an order of magnitude to 20 ppt [36]. Improved
measurement of α therefore is of great importance.

Currently we are building a new experiment, aiming to reduce the uncertainty of h/mCs to
15 ppt. This would be a 30-fold improvement relative to our previous measurement. Without
improvements in the accuracies of cesium and electron masses, the uncertainty in α will be
improved to 45 ppt. There is an anticipated improved measurement of the cesium mass with
an accuracy of 10 ppt instead of 70 ppt [15]. This will further improve the accuracy of α to
20 ppt. We hope the ongoing improvements in h/mAt measurements will motivate a 2-5 fold
improvement in the knowledge of the electron mass. With all the efforts, the accuracy of α
will finally reach 10 ppt. In the following sections, we will talk about the upgrades we are
currently working on or plan to implement in the near future to achieve the goal.

6.3 Vacuum Chamber

Figure 6.1 shows the vacuum chamber that we plan to use for the next-generation α mea-
surement. The experiment will take place in an acoustically and electromagnetically shielded
room, to shield against air currents, background magnetic fields and acoustics. It also helps
maintain a constant temperature. The vacuum chamber is about 4.5 m long and weighs
more than 1600 lb. It has an inner radius around 28 cm. The chamber is designed to be
over-sized so that we can use a large-radius laser beam. This also avoids stray reflections of
the laser beams at wall.

The chamber will be mounted using a hexapod style mechanical connection, with six
support struts providing exact constraint in all six degrees of freedom. The three bipods
composing the hexapod would connect to the optical table via three vibration isolation units.
An example is the stages provided by Minus-K, which have been successfully used in previous
interferometers. Theoretically vibration is cancelled by the interferometry geometry, but a
low-vibration environment will help us to maintain the stability of the delicate beam align-
ment. It will also help us to run the atom interferometer in gravimeter mode, demonstrating
new atom interferometer technologies. It may also be used in possible follow-up projects to
detect dark matter.

1http://resonaances.blogspot.com/2018/06/alpha-and-g-minus-two.html
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Figure 6.1: Vacuum chamber for the new experiment.
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Figure 6.2: Cross section of the detection region.

Figure 6.3: Cross-section of the vacuum chamber including the high-power fiber and the
pinhole fiber. In this drawing the vertical direction points to the right.
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Figure 6.4 shows the cross section of the new vacuum chamber. Similar to the chamber
used for the previous measurement, the new chamber consists of three parts: a MOT cham-
ber, a detection chamber, and a tube where interferometry happens (see Section 3.1). Inside
the interferometer tube are three layers of µ-metal magnetic shields, providing a shielding
factor of 10000. Inside the magnetic shields is a solenoid that generates the magnetic field
along the vertical direction to define the quantum axis for the atoms. To further suppress
the stray reflection at the wall, we will install 20 black copper oxide ring baffles inside the
solenoid. The baffles have an inner diameter of 21.64 cm and an outer diameter of 27.01
cm. They are prepared in a procedure similar to the reference [62]. They have been tested
to be UHV compatible. We will also install copper oxide tube at the detection window to
suppress the random light that would hit the detector and lower the signal-to-noise ratio, as
shown in Figure 6.2.

6.4 High-power Laser System

As shown in Table 4.2, the non-Gaussian wavefront of the laser beam is one of the dominant
error sources in this experiment. The effects scale with (λ/w0)2 (the squared ratio of the
wavelength and the beam radius, which determines the flatness of the wave fronts) or (rc/w0)2

(the squared ratio of the atomic sample radius and the beam radius, which determines
intensity variations across the sample) [65, 66]. The new experiment will take the control
over the laser wavefronts to the extreme by performing atom interferometry with a large-
radius beam, w0 ≈ 25 mm waist, compared with the previous waist of 3 mm. This will
suppress the leading systematic effects by almost two orders of magnitude.

To generate sufficient intensity, we are building a high-power laser system, as shown in
Figure 6.5. The Nd:YAG seed laser outputs 500 mW continuous laser light at the wavelength
of 1064 nm. One pre-amplifier and two main amplifiers are powered in pulse mode and
will shape the laser beam into 100µs-pulses. Every pulse will have more than 1 J energy,
corresponding to more than 10 kW power. The amplifiers are from Northrop-Grumman
Cutting Edge Optronics. An LBO second harmonic generator (SHG) will then convert the
wavelength of the pulses to 532 nm. This has already been demonstrated by Prof. Dave
DeMille from Yale, where more than 0.4 J at 532 nm has been observed. The 532 nm pulses
will then be used to pump an optical parametric amplifier (OPA) which amplifies the 852
nm seed light. The seed beam will come from the MSquared laser used for the previous
experiments. Each resulting 852 nm pulse from the OPA is expected to have a peak power
of more than 300 W (30 mJ for a 100µs-pulse).

The high-power 100µs-pulses will be used for Bragg diffraction in the new experiment.
The Bloch oscillation pulses, however, are substantially longer (15 ms). This will require
different optimizations of the SHG and OPA. This upgrade is currently being studied. We
will be likely to use two groups of SHG and OPA crystals, one for Bragg and one for Bloch,
selected by acousto-optical modulators.

Figure 6.3 shows how the high-power laser pulses are delieved to the atoms. Single-mode
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Figure 6.4: Cross section of the new vacuum chamber.
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optical fibers have been used for beam delivery in the previous measurement. They provide
mode-filtering and independence of the alignment of the physics system from the alignment
of the laser. The main limiting factors for high-power operation of the fiber are the thresholds
for nonlinear scattering, such as the stimulated Raman scattering (SRS) and the stimulated
Brillouin scattering (SBS) [2]. Hollow-core fibers will be used in the new experiment. In a
hollow-core fiber, only about 5% of the energy is in silica, while the rest is in air [43].

The mode shape from a hollow-core fiber is non-ideal due to the photonic crystal struc-
ture. There will also be distortions in the wavefronts due to non-perfection of the optics. To
improve the small-scale structure of the laser beam, we will use a pin-hole filter, shown in
Figure 6.3. The laser beam is focused through a pinhole. The intensity distribution in the
focal plane is a two-dimensional Fourier transform of the input beam; thus, small-scale in-
tensity fluctuations cause off-axis components are blocked by the pinhole. After collimating
the beam, we will obtain a clean beam with a smooth intensity profile [71].

Figure 6.5: High-power laser system. The 532 nm pulsed power source has been shown to
deliver more than 0.4 J at 532 nm at Yale. The planned OPA is conservatively designed for
0.1 J energy (and thus 1 kW power) in 100 µs pulses, but may deliver up to 0.3 J/ 3kW.
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6.5 Gravity Gradient

Another main systematic source is the gravity gradient. The OSCI configuration will be used
for the new measurement. We have demonstrated this method and verified the cancellation
of the gravity gradient using the setup for the previous measurement of α, as discussed in
Chapter 5. The influence of gravity is now limited to higher-order gradients (third and
higher order derivatives of the gravitational potential). These effects come from the different
mass distributions around the two simultaneous interferometers. In the new experiment,
they are mainly from the gravity change caused by the pit and the optical table. The new
vacuum chamber has been designed in a way such that interferometry happens when the
atoms are well above the optical table. For the old setup, higher order gravity effects have
been estimated to be 5 ppt (see Section 4.5). With an improvement by controlling the
gravitational environment of the new experiment, this systematic effect will be suppressed
to 3 ppt.

6.6 Other Upgrades

Detection with a CMOS Camera

In the previous experiment, atoms have been detected via fluorescence detection with a
silicon photodiode. While this makes it easier for timing sequence control, detecting with a
photodiode lacks spatial resolution. As a result, the experiment had to be repeated several
times to study the dependence of the measurement on which part of the atom cloud is
detected. In the new experiment, we will use a CMOS camera to detect the fluorescence.
The recorded image will not only be used for extracting the interference signal, but can also
provide the spatial resolution for future systematic checks.

Launch with Bloch Oscillations

In the previous experiment, the atom cloud was lunched with moving molasses. The launch
direction depends on the power balance and the polarizations of the molasses beams. If the
power of the molasses beams change due to misalignment of the fibers, or the polarizations
drift due to temperature change in the lab, the launch direction will drift, lowing the final
signal size and introducing systematic effects. Therefore, tremendous effort has been spent
in babysitting the system during data collection. We even had to realign the fountain from
scratch several times when it misaligned too much. In the new experiment, we plan to launch
the atom cloud with Bloch oscillations. This is expected to make the system more robust
and therefore facilitate the data collection.
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Linearly Polarized Laser Pulses

For the previous experiment, the state and velocity selection Raman pulses as well as the
Bragg and Bloch pulses are circularly polarized. That was achieved using two quarter wave-
plates, one at bottom of the vacuum chamber and one at the top. These waveplates will
inevitably cause wavefront distortions. In the new experiment, we plan to use linearly po-
larized pulses to avoid the waveplates. Since Raman transition and Bragg diffraction require
different polarization configurations for linearly polarized pulses (lin⊥lin for Raman and
lin‖lin for Bragg [95]), extra efforts will be needed to make it happen.

Independent Laser for Bloch Oscillations

For simplicity, we have so far used the same laser source for both Bragg diffraction and
Bloch oscillations. In order to suppress decoherence due to single-photon scattering, Bloch
oscillations have to be operated at high single photon detuning (typically blue detuned by
14 GHz or more). But Bragg diffraction doesn’t require such a large detuning. In order to
unleash potential for both Bragg diffraction and Bloch oscillations, we will use a separate
laser source to generate the Bloch-oscillation light, as mentioned in Section 6.4. With this
scheme, we could increase the single photon detuning for Bloch oscillations even further
to suppress single photon scattering. And given the power capacity limited by the laser,
running at a smaller detuning will enable us to expand Bragg beam size further or increase
momentum transfer for each individual Bragg beam splitter.

6.7 Expected Sensitivity

We expect a 5-fold increase in atom number, as the thick beam will allow us to use the entire
sample. Using a thick beam with a more uniform wavefront and an increased single photon
detuning for the Bloch oscillations will also help overcome the loss and decoherence mecha-
nisms mentioned in Section 4.4. We therefore expect to increase the pulse separation time T
to 500 ms. Scaling the current statistical sensitivity of 0.2 ppb in a day by 80 ms/500 ms for
the increased pulse separation time, by 1/2 for the increased diffraction order, by 1/

√
5 for

the increased atom number, and down by
√

3/2 for the increased cycle time, we anticipate
a statistical error of 0.008 ppb in α in a day.
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